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Abstract. We consider the Dirichlet problem for the Isaacs equation of pursuit-evasion differ-
ential games and prove estimates of convergence for a numerical scheme associated with it. The
function that we approximate is the Hölder continuous viscosity solution of the problem, and the
direct proof that we propose relies on some ideas related to the maximum principle for viscosity
solutions.

Key words. pursuit-evasion games, Isaacs equations, numerical schemes, estimates of conver-
gence, viscosity solutions

AMS subject classifications. 65N15, 49L25, 90D26, 65N06

PII. S0363012995291865

Introduction. In this paper we study the numerical approximation of the Dirich-
let problem{

µv(x) + minb∈B maxa∈A{−f(x, a, b) ·Dv(x)} − 1 = 0, RN\T ,
v(x) = 0, T ,

(0.1)

where µ > 0 and T is a nonempty closed set. It is known (see in various gen-
eralities Bardi and the author [6], [7], and [22]) that if the vector field f satisfies
local-controllability-type assumptions on ∂T , there is a unique Hölder continuous,
bounded viscosity solution of the problem (0.1). Such a solution is nonnegative and
the Kruzkov transform v = (1 − exp (−µT ))/µ of the capture time function T , the
(lower) value of the pursuit-evasion differential game with dynamics

ẏ = f(x, a, b), y(0) = x,(0.2)

and target T (we refer to the mentioned papers for the actual definition of T ). There-
fore the pair (v, µ) can be thought of as a tool for the real problem we are interested in,
which is the computation of T . From the numerical point of view, it is not convenient
in general to study directly the equation for T since such function is not necessarily
bounded and, as a matter of fact, may not be even finite at all points of the space.
This gives us a reason for the change of variables.

As usual, for dynamic programming equations of control problems (in which case
A or B is a singleton) or differential games (see, e.g., Falcone [15] for control problems,
Bardi, Falcone, and the author [4], [5] for games), to recover an approximation scheme
for the differential equation in (0.1) we proceed in two steps. First we approximate
the directional derivative f(x, a, b) ·Dv(x) as µτ/(1 − τ) (v(x + hf(x, a, b)) − v(x)),
where τ = exp (−µh) and h is a time step for the underlying dynamical system (0.2)
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of the differential game. This approximation looks natural when thinking that our
main goal is to compute the value function T . As a result we obtain the equation{

v(x) + τ minb∈B maxa∈A{−v(x+ hf(x, a, b))} − (1− τ)/µ = 0, RN\T ,
v = 0, T .

(0.3)

This is what we call the discrete-time approximation of (0.1) since the unique bounded
solution of (0.3) is the Kruzkov transform of the value function of the discrete-time
pursuit-evasion differential game in which in the dynamics (0.2) we substitute its Euler
approximation with step h. The convergence of the solutions of (0.3) to the viscosity
solution of (0.1) has been proved by Bardi and Falcone [3] for control problems and
by Bardi and the author [8] for games.

Next we discretize the space as a countable union of simplices whose maximum
diameter is k, the space step, and approximate equation (0.3) by computing it only
at the vertices of the simplices. If G := {xi}i∈N indicates the countable family of the
vertices, we are led to consider{

v(xi) + τ minb∈B maxa∈A{−
∑
j λij(a, b)v(xj)} − (1− τ)/µ = 0, G\T ,

v(xi) = 0, T ,
(0.4)

where the coefficients λij allow us to rewrite the point xi = xi+hf(xi, a, b) =
∑
j λijxj

in a unique way as a convex combination of the vertices of the simplex it belongs to.
This is what we call the fully discrete approximation of (0.1). Equation (0.4) has
a unique bounded solution which can be computed by finding the fixed point of a
contraction functional, as we recall in the next section. For more details about the
algorithm to actually compute the solution of (0.4), for control problems we refer to
[15] and Capuzzo Dolcetta and Falcone [10], and for games we refer to [4] and the
forthcoming review paper [5] for some numerical computations. In [10] the reader
can also find details about an acceleration technique that can be applied to speed up
the computation of the fixed point which would otherwise be rather time consuming.
As one of the referees pointed out to us, another way to increase the speed of the
algorithm could be to allow control and state dependent time steps. This extension
would also be interesting by itself, but in order to keep technicalities at a minimum
and present a rather concise proof, we preferred not to deal with such a generality in
this presentation.

In this paper we show that under controllability assumptions on the vector field
on T , as long as the ratio of the steps k/h remains bounded, the solutions of (0.4)
converge uniformly to the viscosity solution of (0.1). Moreover we compute explicitly
the rate of convergence. When, for example, (0.1) has a Lipschitz continuous solution,
as it happens under reasonable assumptions on the data (see (1.3) below), the rate
is
√
h. In more general cases it is hρ, where ρ = min{β, α/2, γ/2}, γ is the Hölder

exponent of the solution of (0.1), and α, β are parameters of a discrete estimate of the
solutions of (0.4) at the boundary; see, however, the precise statement of the Theorem
in section 1 and Remark 2. The Hölder exponent of the solution can be deduced from
the controllability conditions we require. A proof of convergence of the algorithm in
very general assumptions, also showing that the computations can be restricted to a
bounded region, was already given in [4]. The main new contribution here concerns
the estimates of convergence, remarking, however, that the different argument we
give in our assumptions is easier than the one in [4] and our presentation is self-
contained. Our results are new even for the minimum time problem in control theory.
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Estimates of convergence of the same type were previously obtained in [15] for infinite
horizon control problems, i.e., for equations in the whole space. In [15] the proof
proceeds in two steps establishing first the rate of the convergence of the discrete-
time approximations of (0.1) and next combining it with the rate of convergence of
the fully discrete approximations to the solution of (0.3). In the case of a Dirichlet
problem, the solution of (0.3) is discontinuous even if the solution of (0.1) is smooth
and this makes this method difficult to implement. Instead, we directly compare
the fully discrete approximations and the viscosity solution of (0.1) by means of a
maximum-principle-type argument which follows the idea proposed for discrete-time
approximations of infinite horizon control problems by Capuzzo Dolcetta and Ishii
[11], adapted, of course, to deal with the boundary condition and the fully discrete
scheme.

We finally want to mention that the approximation of Hamilton–Jacobi equations
in the context of viscosity solutions was also studied by Crandall and Lions [13] and
[14], Souganidis [24], Gonzalez and Rofman [16], Alziary de Roquefort [1], Barles and
Souganidis [9], Pourtallier and Tidball [20], and Kocan [17]. Some results concerning
the numerical approximation of discontinuous solutions of (0.1) can be found in [4];
Bardi, Bottacin, and Falcone [2]; and the paper by the author [23]. For general results
concerning approximations of solutions of Hamilton–Jacobi equations with different
methods, we refer to Kushner [18], Kushner and Dupuis [19], and the references
therein.

1. Preliminaries and main result. We start this section with the precise
assumptions we need. The function f : RN ×A×B → RN , where A,B are compact
sets, is supposed to be continuous and to satisfy{

|f(x, a, b)− f(z, a, b)| ≤ L|x− z|,
|f(x, a, b)| ≤ L for all x, z, a, b.

(1.1)

We are also given the closed set T ⊂ RN , which is the target of the pursuit-evasion
differential game with dynamics (0.2). The target may be nonsmooth and unbounded.
We assume that the Dirichlet problem (0.1) has a unique continuous, bounded, non-
negative viscosity solution v. With this we mean that v satisfies the boundary condi-
tion, and for all test functions ϕ ∈ C1(RN ) such that v − ϕ attains a local maximum
(resp., minimum) point at x0 ∈ RN\T we have

µv(x0) + min
b∈B

max
a∈A
{−f(x0, a, b) ·Dϕ(x0)} − 1 ≤ 0 (resp., ≥ 0).

Continuous viscosity solutions exist if and only if the so-called small time local control-
lability of the pursuit-evasion game to T is satisfied. In this case, they are moreover
Hölder continuous. Small time local controllability can be obtained by means of suit-
able assumptions on the direction of the vector field f and of its Lie brackets at the
boundary of the target T (see, e.g., [6], [7], the paper by the author [22], and the
references therein); see also (1.3) and the following discussion. More informations
about the theory of viscosity solution as well as lots of references on the subject can
be found in Crandall, Ishii, and Lions [12].

We now consider a discretization of the space with space step k, meaning a family
of simplices {Sj}j=1,2,... such that RN = ∪jSj , int(Si) ∩ int(Sj) = ∅ for i 6= j,
maxj{diam(Sj)} = k. We denote by G = {xj}j=1,2,... the family of the vertices of the
triangulation, we suppose that it has no accumulation points, and we remark that any
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point x ∈ Si can be expressed, in a unique way, as a convex combination of the vertices
of Si; that is, x =

∑
j λjxj ,

∑
j λj = 1, λj ∈ [0, 1], λj = 0 if xj /∈ Si. Given the time

step h, for all a, b we indicate xi = xi(a, b) = xi+hf(xi, a, b) and define the parameters
λij = λij(a, b) considering the unique convex representation xi =

∑
j λij(a, b)xj with

the properties above. For convenience we choose h, k ∈ (0, 1]. Then we define the
map F : RN → RN by setting

Fi(V ) =

{
τ maxb∈B mina∈A Pi(a, b, V ) + (1− τ)/µ if xi ∈ G\T ,
0 if xi ∈ T ,

where Pi(a, b, V ) =
∑
j λijVj . It is clear by construction that a fixed point of F is

a solution of (0.4). The following result outlines the idea of the algorithm. Its easy
proof is left to the reader; the detailed argument, however, can be found in the papers
by Falcone [15] and Bardi, Falcone, and the author [4] and [5].

LEMMA 1. Assume (1.1). The above map F is monotone with respect to the partial
order U ≥ V if Ui ≥ Vi for all i ∈ N and has a restriction F : [0, 1/µ]N → [0, 1/µ]N

which is a strict contraction.
As we mentioned, the previous result applies to proving that the fixed point of the

map F is a bounded, nonnegative solution of (0.4). Such function is defined only at
grid points, so we extend it to the whole space by linear interpolation. The resulting
function, which we denote by wh,k, is our continuous approximation of the solution
of (0.1). By construction wh,k satisfies

wh,k(xi) + τ min
b∈B

max
a∈A
{−wh,k(xi(a, b))} − (1− τ)/µ = 0, xi ∈ G\T ,

and vanishes at the points of the grid in T .
In the following we indicate with d(x) = dist(x, T ) the distance function from

the target. In order to get the estimates of convergence, we need some additional
conditions at the boundary. To this end we assume that there is a closed uniform
neighborhood of T , Tδ = {x : d(x) ≤ δ} and positive constants α, β, γ ∈ (0, 1] and K
such that {

v(x) ≤ Kdγ(x), x ∈ Tδ,
wh,k(xi) ≤ K(dα(xi) + hβ(1 + (k/h)2)), xi ∈ Tδ ∩ G.

(1.2)

As we assume δ independent of h, k, it is then clear that for small values of the
parameters, Tδ∩G is nonempty; therefore, the second inequality in (1.2) is meaningful.
We can always add grid points on T ; however, the result will not depend on this fact
but only on (1.2).

Remark 1. It is well known, and as a matter of fact easy to prove, that the first
inequality in (1.2) is equivalent to the local γ-Hölder continuity of the capture-time
function T ; see, e.g., [21]. As a consequence of (1.1), when µ ≥ L it is also equivalent
to saying that the bounded solution v of (0.1) is γ-Hölder continuous in RN , as we
proved in [6]. Therefore for any practical purposes, since our main goal is to compute
T and we can then choose µ as we please, we will henceforth assume we are in this case.
In control theory (when B is a singleton), the first inequality in (1.2) is well studied
in the literature (see [7], [21], and the references therein) and sufficient conditions for
it are well known. These are the so-called controllability conditions of order [1/γ]− 1
involving the vector field f and its Lie brackets up to order [1/γ]− 1 at the points of
the boundary of the target T . Sufficient conditions in the case of differential games
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involving only the vector field f in a neighborhood of ∂T can be found in [22]. We
propose the second inequality as the natural discrete version of the first, since, as we
show below, it holds under the same kind of conditions. Finally note that since v,
wh,k are bounded from above (by 1/µ in fact), the properties (1.2) become global
estimates by just changing the constant K.

To justify the second inequality in the assumption (1.2), we want to give an
example where it is fulfilled. We show that even the second estimate in (1.2) is
naturally related to the local controllability properties of the vector field f on ∂T . It
is known (see, e.g., [6] and [22] also for the extension to the nonsmooth and unbounded
case) that if T is the closure of an open set whose boundary ∂T is C2 and bounded,
then the following condition on the vector field

max
b∈B

min
a∈A
{f(x, a, b) · n(x)} < 0, x ∈ ∂T ,(1.3)

where n(x) indicates the interior unit normal vector of RN\T at x, is sufficient for the
first inequality in (1.2) to hold with γ = 1 (and this is in turn equivalent to Lipschitz
continuity of the solution of (0.1) if µ ≥ L). The next proposition shows that it is
also sufficient for the second.

PROPOSITION. Assume (1.1) and (1.3). Then there is C > 0 such that for all h, k

wh,k(xi) ≤ C(d(xi) + h(1 + (k/h)2)) for xi ∈ G;

hence the second inequality in (1.2) is satisfied with α = β = 1.
Proof. As a first step we prove the following lemma, which is a sort of discrete

comparison principle for equation (0.4).
LEMMA 2. Assume that the sequence (Vi)i∈N is such that Vi ∈ [0, 1/µ] for all i

and satisfies V ≥ F (V ). Then we have Vi ≥ wh,k(xi) for all i.
Proof of the lemma. The result follows immediately from Lemma 1 since for any

fixed i, Fn(V )i is a nonincreasing sequence and Fn(V )i → wh,k(xi), as n → +∞.
Therefore wh,k(xi) ≤ F (V )i ≤ Vi and we can conclude.

In the proceeding of the proof and only in this proof d is modified in T as the
signed distance from ∂T ; i.e., d(x) = −dist(x, ∂T ) if x ∈ T . We recall that if ∂T is
of class C2, then d is of class C2 in a neighborhood of ∂T . By (1.1) and (1.3) we can
find ρ, σ > 0, σ ≤ ρ2 ∧ 1, such that

max
b∈B

min
a∈A
{f(x, a, b) ·Dd(x)} ≤ −σ, x ∈ {x : |d(x)| ≤ ρ}.

Let ||D2d||∞ = sup|d(x)|≤2ρ |D2d(x)|, where the right-hand side makes sense if ρ is
sufficiently small.

1. If the steps h, k are so that σ/(||D2d||∞ + 1) ≤ h(L+ k/h)2, then by choosing
C = (||D2d||∞ + 1)/(σµ) we get directly that for any index i

wh,k(xi) ≤ 1/µ ≤ Ch(L+ k/h)2 = Ch(L2 + 2L(k/h) + (k/h)2),

and immediately we obtain the conclusion since k/h ≤ 1 + (k/h)2.
2. Otherwise we can assume that the steps h, k satisfy

h(L+ k/h)2 ≤ σ/(||D2d||∞ + 1).(1.4)

Observe that a nonnegative sequence V ∈ [0, 1/µ]N satisfies

Vi ≥ F (V )i = τ max
b∈B

min
a∈A

∑
j

λij(a, b)Vj + (1− τ)/µ,(1.5)
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for any index i such that xi ∈ G\T , if we can show that

0 ≥ max
b∈B

min
a∈A

∑
j

λij(Vj − Vi) + h exp (µ).(1.6)

In fact, since it is not restrictive to assume h ≤ 1, this follows from exp (x) − 1 ≤
x exp (x) for all x ≥ 0, and τ = exp (−µh). We want to check (1.5) for the sequence
defined by the position

Vi = C(d(xi) + h(L+ k/h)) ∧ (1/µ), xi ∈ G,

where we choose C sufficiently large so that Cρ ≥ 1/µ and Cσ/2 ≥ exp (µ). Then
applying Lemma 2 we get

wh,k(xi) ≤ C(d(xi) + h(L+ k/h)), xi ∈ G,(1.7)

and the conclusion. To this end, we only need to deal with indices xi such that
0 < Vi < 1/µ, since (1.5) is obvious for the ith component if either xi ∈ T or
Vi = 1/µ. For such indices, we will then prove (1.6). Let therefore xi be such that
Vi ∈ (0, 1/µ), and observe that then xi ∈ Tρ\T by the choice of C. By definition of
V we have

Vj − Vi ≤ C(d(xj)− d(xi)) for all xj ∈ G.(1.8)

We now use the regularity of the boundary ∂T ; note that by (1.1) and (1.4)

|xj − xi| ≤ k + Lh(≤
√
σ ≤ ρ),

if λij 6= 0 for some a, b, and compute

d(xj)− d(xi) ≤ ||D2d||∞|xj − xi|2/2 +Dd(xi) · (xj − xi), λij 6= 0.(1.9)

By (1.8) and (1.9), the definition of λij(a, b), (1.3), and the assumption, we then
conclude

max
b∈B

min
a∈A

∑
j

λij(Vj − Vi) ≤ C max
b∈B

min
a∈A

∑
j

λij(d(xj)− d(xi))

≤ C(||D2d||∞(k + Lh)2/2 + max
b∈B

min
a∈A

∑
j

λij(xj − xi) ·Dd(xi))

≤ C(hσ/2 + hmax
b∈B

min
a∈A

Dd(xi) · f(xi, a, b)) ≤ −h exp (µ),

so (1.6) and, consequently, (1.5) hold for the fixed index i.
Our main result is the following.
THEOREM. Assume (1.1) and (1.2), and let µ ≥ L. Then there is a constant

C = C(K,L, µ) such that for all h, k we have

||wh,k − v||∞ ≤ Chρ(1 + (k/h)2),(1.10)

where ρ = min{β, α/2, γ/2} and the parameters α, β, γ are defined in (1.2).
Remark 2. The constant C that appears in the estimate (1.10) can be explicitly

computed in terms of K,L, and µ as can be seen from the proof of the result in the
next section.
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The theorem and the proposition prove that if the solution v of (0.1) is Lipschitz
continuous, the target is smooth, and k/h remains bounded, then the rate of conver-
gence is

√
h. If v is only Hölder continuous, we do not know the rate exactly unless

we compute the parameters α, β in (1.2). In the proposition, we proved the discrete
estimate in (1.2) by using (1.3) and showing that the right-hand side is a supersolution
of the fully discrete equation (0.4). Then we applied a discrete comparison principle.
This draws a parallel with a possible proof of the first estimate in (1.2), see, e.g., [22]
and the references therein, and leads to conjecture that sufficient conditions on the
vector field f and its Lie brackets to prove the first inequality in (1.2) with a certain
γ also guarantee the discrete estimate with β = α = γ. This would then give the
rate of convergence for the scheme hγ/2, as in infinite horizon problems without tar-
gets. However we did not attempt to prove this conjecture in more general situations
than the statement of the proposition, as dealing with Lie brackets and discrete-time
systems is a serious matter by itself.

2. Proof of the theorem. In the following we indicate by ε = h(2−γ)/2 and
drop for convenience of notation the superscripts of wh,k.

1. We start proving that

sup
RN

(w − v) ≤ Chρ(1 + (k/h)2).

We proceed by contradiction assuming that for any fixed constant C > 0, we can find
h, k as small as we please and σ(h, k) ∈ (0, 1] such that for any 0 < σ ≤ σ(h, k) we
have

sup
RN

(w − v) ≥ Chρ(1 + (k/h)2) + 2σ.(2.1)

We introduce the function

ϕ(x, y) = w(x)− v(y)− |x− y|2/ε, (x, y) ∈ R2N .

By (2.1) it follows that

+∞ > sup
R2N

ϕ ≥ Chρ(1 + (k/h)2) + 2σ.

We now choose a point (x1, y1) such that ϕ(x1, y1) > supR2N ϕ − σ and select a
function ξ ∈ C1

c (R2N ) satisfying 0 ≤ ξ ≤ 1, ξ(x1, y1) = 1, |Dξ| ≤ 1. If we denote
ψ = ϕ + σξ, by construction the maximum point of ψ is attained at a point (xo, yo)
in the support of ξ.

2. Observe that w(xo) > 0. This immediately follows from

w(xo)− v(yo) + σ ≥ ψ(xo, yo) ≥ ψ(x1, y1) > sup
R2N

ϕ ≥ Chρ(1 + (k/h)2) + 2σ.(2.2)

We indicate the point xo as the unique convex combination of the vertices of the
simplex to which it belongs, i.e., xo =

∑
λjxj , where

∑
λj = 1, λj ∈ [0, 1], |xo−xj | ≤

k if λj 6= 0. Then it follows that for at least an index j such that λj 6= 0 we have
w(xj) > 0; therefore xj /∈ T . We will need more, and as a matter of fact we prove
that if k ≤ δ, δ as in the assumption (1.2), none of such points xj with λj 6= 0 can be
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on T . In fact if there is xi ∈ T , by (1.2) we obtain the following estimate

w(xo) =
∑
j

λjw(xj) ≤ K

∑
j

λjd
α(xj) + hβ(1 + (k/h)2)


≤ K

∑
j

λj |xj − xi|α + hβ(1 + (k/h)2)

 ≤ K(kα + hβ(1 + (k/h)2)),

which gives a contradiction with (2.1) when C is chosen sufficiently large, since we
have kα = (k/h)αhα ≤ (1 + (k/h)2)hα, and v is nonnegative.

3. We now show that yo /∈ T . We use the inequality ψ(xo, yo) ≥ ψ(xo, xo) and
get

v(xo)− v(yo) + σ(ξ(xo, yo)− ξ(xo, xo)) ≥ |xo − yo|2/ε,

and therefore by the γ-Hölder continuity of v, see Remark 1, if we indicate with
M = M(L, µ), the best γ-Hölder constant of v, we have

|xo − yo|2/ε ≤ σ|xo − yo|+M |xo − yo|γ ,

which implies first that |xo − yo| ≤ M1, where M1 is independent of all small ε and
σ. Consequently, choosing σ sufficiently small,

|xo − yo| ≤ (1 +M)1/(2−γ)ε1/(2−γ).(2.3)

We can now conclude that yo /∈ T ; otherwise, from (1.2) and (2.3) for h, k sufficiently
small so that

k + (1 +M)1/(2−γ)ε1/(2−γ) ≤ δ,

we obtain as in the final estimate in part 2 that

w(xo) ≤ K

∑
j

λjd
α(xj) + hβ(1 + (k/h)2)

 ≤ K
∑

j

λj |xj − yo|α + hβ(1 + (k/h)2


≤ K((k + |xo − yo|)α + hβ(1 + (k/h)2)) ≤ K(kα + (1 +M)α/(2−γ)εα/(2−γ)

+ hβ(1 + (k/h)2)) ≤ 2Khρ(1 + (1 +M)α/(2−γ) + (k/h)2),

which again gives a contradiction with (2.1) when C is sufficiently large. The last
inequality follows by the definition of ε at the beginning of this section.

4. We can now use the equations for v at yo and for w at all vertices xj of
the simplex containing xo. By the definition of viscosity solution, equations (0.1)
and (0.4), the maximality of (xo, yo), and the fact that w is defined in RN by linear
interpolation, we then obtain

µv(yo) + min
b∈B

max
a∈A
{−f(yo, a, b) · σDyξ(xo, yo) + 2/ε f(yo, a, b) · (yo − xo)} − 1 ≥ 0,

w(xj) + min
b∈B

max
a∈A
{−τw(xj + hf(xj , a, b))} − (1− τ)/µ = 0,
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where we recall that τ = exp (−µh). Choosing conveniently first bj ∈ B in the second
equation and then aj ∈ A in the first, we then get

µv(yo)− f(yo, aj , bj) · σDyξ(xo, yo) + 2/ε f(yo, aj , bj) · (yo − xo)− 1 ≥ 0,(2.4)

w(xj)− τw(xj + hf(xj , aj , bj))− (1− τ)/µ ≤ 0.(2.5)

In the following we denote xj = xj +hf(xj , aj , bj). By the optimality of (xo, yo), and
therefore the fact that ψ(xo, yo) ≥ ψ(xj , yo), we deduce

w(xj) ≤ w(xo) + |xj − xo|2/ε+ 2/ε (xj − xo, xo − yo) + σ|xo − xj |
= w(xo)+|xj−xo|2/ε+2/ε (xj−xo, xo−yo)−2h/ε f(xj , aj , bj)·(yo−xo)+σ|xo−xj |.

The last inequality and (2.5) then give

w(xj) ≤ τ{w(xo) + |xj − xo|2/ε+ 2/ε (xj − xo, xo − yo)
− 2h/ε f(xj , aj , bj) · (yo − xo) + σ|xo − xj |}+ (1− τ)/µ.

We multiply by λj as defined in part 2 of the proof, sum on the index j, and get
(2.6)

µw(xo) ≤ µτ/(1− τ)
∑
j

λj{|xj − xo|2/ε+ 2/ε (xj − xo, xo − yo)

−2h/ε f(xj , aj , bj) · (yo − xo) + σ|xo − xj |}+ 1
= µτ/(1− τ)

∑
j

λj{|xj − xo|2/ε− 2h/ε f(xj , aj , bj)

·(yo − xo) + σ|xo − xj |}+ 1,

where the equality follows from the fact that
∑
j λjxj = xo by definition.

We now multiply (2.4) by λj and sum on the index j, then add the result to (2.6)
and obtain, also by the definition of τ ,

µ(w(xo)− v(yo)) ≤ µτ/(1− τ)
∑
j

λj [|xj − xo|2/ε+ σ|xo − xj |]

+
∑
j

λj [−(2/ε) µhτ/(1− τ) f(xj , aj , bj) · (yo − xo)− f(yo, aj , bj) · σDyξ(xo, yo)

+ 2/ε f(yo, aj , bj) · (yo − xo)] ≤ h−1
∑
j

λj [|xj − xo|2/ε+ σ|xo − xj |]

+ 2L/ε
∑
j

λj [|xj − yo||xo − yo|+ µh|xo − yo|] + σL,

where to obtain the second inequality we added and subtracted in each bracket of the
second sum the terms (2/ε) f(xj , aj , bj) · (yo − xo) and used (1.1) and the fact that
0 ≤ 1 − µhτ/(1 − τ) ≤ µh. We now proceed with the estimate using (2.3), the fact
that |xj − xo| ≤ k +Lh if λj 6= 0, and the definition of ε. We then get, if we indicate
P = (1 +M)1/(2−γ) (and for h ≤ 1),

µ(w(xo)− v(yo)) ≤ (εh)−1(k + Lh)2 + σ(2L+ k/h) + 2LP (µh+ k + Pε1/(2−γ))

ε(γ−1)/(2−γ) ≤ hγ/2(L+ k/h)2 + σ(2L+ k/h) + 2LP (µ+ k/h)h(γ+1)/2 + 2LP 2hγ/2

≤ hγ/2[(k/h)2 + 2L(1 + P )(k/h) + L2 + 2µLP + 2LP 2] + σ(2L+ k/h).
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We finally use (2.2) and the fact that σ can be chosen arbitrarily small to get

Chρ(1 + (k/h)2) ≤ µ−1hγ/2[(k/h)2 + 2L(1 + P )(k/h) + L2 + 2µLP + 2LP 2].

This gives a contradiction if the constant C was chosen sufficiently large, again since
k/h ≤ 1 + (k/h)2.

5. To prove the other estimate we need

sup
RN

(v − w) ≤ Chρ(1 + (k/h)2),

we proceed similarly, and we argue again by contradiction. We assume that for any
fixed C > 0 there are h, k as small as we want and σ(h, k) ∈ (0, 1] such that for all
0 < σ ≤ σ(h, k) we have

sup
RN

(v − w) ≥ Chρ(1 + (k/h)2) + 2σ.(2.7)

We follow along the lines above choosing the function ϕ(x, y) = v(x)−w(y)−|x−y|2/ε
and constructing a maximum point (xo, yo) for ψ. As at the beginning of point 2, we
prove that v(xo) > 0, so xo /∈ T . Arguing as in point 3, using this time the inequality
ψ(xo, yo) ≥ ψ(yo, yo), we show that |xo − yo| ≤ (1 + M)1/(2−γ)ε1/(2−γ). Moreover
if we indicate yo =

∑
j λjyj as the unique convex combination of the vertices of

the simplex it belongs to, we can prove that none of the points yj , λj 6= 0, is in T
as follows. Assume by contradiction that yi ∈ T ; then we can estimate, by the first
inequality in (1.2) and for h, k sufficiently small so that k+(1+M)1/(2−γ)ε1/(2−γ) ≤ δ,

v(xo) ≤ Kdγ(xo) ≤ K|xo − yi|γ ≤ K(|xo − yo|+ k)γ

≤ K((M + 1)γ/(2−γ)εγ/(2−γ) + kγ) ≤ K((1 +M)1/(2−γ)hγ/2 + hγ(1 + (k/h)2)),

which provides a contradiction with (2.7) if C is sufficiently large.
We then apply part 4 of the proof with obvious modifications and the final result

then follows.
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Abstract. Consider the problem of stabilization at the origin in minimum time for a planar
control system affine with respect to the control. For a family of generic vector fields, a topological
equivalence relation on the corresponding time-optimal feedback synthesis was introduced in a pre-
vious paper [Dynamics of Continuous, Discrete and Impulsive Systems, 3 (1997), pp. 335–371]. The
set of equivalence classes can be put in a one-to-one correspondence with a discrete family of graphs.
This provides a classification of the global structure of generic time-optimal stabilizing feedbacks in
the plane, analogous to the classification of smooth dynamical systems developed by Peixoto.

Key words. time-optimal control, two-dimensional system, regular synthesis

AMS subject classifications. 93C10, 93B20
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1. Introduction. Let F,G be smooth vector fields on the plane, with F (0) = 0,
and consider the problem of reaching the origin in minimum time for the control
system

(1.1) ẋ = F (x) +G(x)u, |u(t)| ≤ 1.

Under generic assumptions on F,G, it is known that the optimal control admits a
regular feedback synthesis [2], [10]. Namely, for any given τ > 0, on the set Aτ of
points which can be steered to the origin within time τ , one can define a feedback
control u = ϕ(x) with the following properties:

(i) The set Aτ can be partitioned into finitely many submanifolds Vi such that
the restriction of ϕ to each Vi is smooth.

(ii) Every trajectory of the feedback equation

(1.2) ẋ = F (x) +G(x)ϕ(x)

starting inside Aτ reaches the origin in minimum time.
The set of manifolds Vi form a stratification of the set Aτ analogous to the analytic

case; see [12], [15], [16].
For generic F,G ∈ C3, the optimal feedback ϕ = ϕF,G is essentially unique.

We thus regard (1.2) as a differential equation with discontinuous right-hand side,
uniquely determined by the vector fields F,G. The aim of this paper is to provide a
global classification of the flow generated by (1.2) in the generic case. This program
can be outlined as follows:

1. Introduce an equivalence relation between couples of vector fields: (F,G) ∼
(F ′, G′) determined by the topological equivalence of the corresponding flows (1.2).
Roughly speaking, if ϕF,G(x) and ϕF ′,G′(x) are the corresponding time-optimal sta-
bilizing feedbacks, the above equivalence should imply the existence of a homeo-
morphism, defined on a suitable subset of the plane, which maps oriented arcs of

∗Received by the editors August 31, 1995; accepted for publication (in revised form) September 27,
1996. A version of this paper was presented at the 1997 Control and Design Conference, December
10–12, 1997, San Diego, CA.

http://www.siam.org/journals/sicon/36-1/29111.html
†SISSA-ISAS, via Beirut 2–4, 34014 Trieste, Italy (piccoli@sissa.it).
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trajectories of

(1.3) ẋ = F (x) +G(x)ϕ
F,G

(x)

onto oriented arcs of trajectories of

(1.4) ẋ = F ′(x) +G′(x)ϕ
F ′,G′

(x).

2. With each equivalence class associate a discrete graph in such a way that two
systems are equivalent if and only if they correspond to the same graph.

3. Show that, generically, the time-optimal feedbacks are structurally stable. In
other words, given a couple of generic smooth vector fields F,G, prove that (F ′, G′) ∼
(F,G) whenever F ′ is sufficiently close to F and G′ is sufficiently close to G in the C3

norm. A small perturbation of the fields F,G will not change the global structure of
the optimal feedback flow.

4. Characterize the family of all graphs which arise in connection with an optimal
feedback for some system of the form (1.1). In practice, given a suitable graph G, this
requires the construction of vector fields F,G such that the corresponding optimal
feedback flow (1.2) has precisely the topological structure specified by G.

In [2] we completed the first part of this program introducing the equivalence re-
lation, giving a detailed description of the structure of optimal syntheses, and proving
the structural stability for systems in a generic set. For general theory of syntheses
and further references we refer to [17]. The definition of graph and the second part
of the program are developed in this paper.

For convenience, throughout this paper we consider the entirely equivalent prob-
lem of reaching points x ∈ R2 in minimum time, starting from the origin. It is also
not restrictive to assume τ = 1 and to study the global feedback synthesis on the set
R = R(1) of points reachable from the origin within unit time.

Section 2 reviews the basic definitions and some related results from [2], [10], [11],
[14]. For general theory we refer to [13]. We also recall the definition of topological
equivalence between optimal feedback flows, which plays a key role.

In section 3 we give the definition of graph and describe a standard procedure
to associate a graph to a stable system, i.e., to a system for which the algorithm for
constructing an optimal synthesis, described in [2], succeeds. In the following section
admissibility conditions are given in order to single out graphs that correspond to
some system.

In section 5 we prove that two stable systems are equivalent if and only if the
corresponding graphs are equivalent. Moreover, we complete the classification pro-
gram exhibiting, for every admissible graph G, a structurally stable system that is in
correspondence with G.

Finally, in the last section we outline how to generalize all results to the case of
a general two-dimensional manifold.

In [11] we computed a local classification of the syntheses near frame curves and
points (i.e., the singularities of the optimal feedback); see section 2 for definitions. The
countable family of equivalence classes of graphs which we obtain can be regarded as
a dictionary of all possible structures of global optimal feedbacks in connection with
generic vector fields F,G. For the flows generated by these discontinuous feedbacks,
the present classification is analogous to the classical work of Peixoto [8], [9] for smooth
dynamical systems.
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2. Basic definitions. We first review some basic notations also used in [2], [10],
and [14].

The topological frontier, the closure, and the interior of a set D ⊂ R2 are denoted
by Fr(D), Cl(D), and Int(D), respectively. If D is a manifold, then ∂D denotes its
relative boundary. Given a map γ : [a, b] 7→ R2 we denote by Dom(γ) .= [a, b] its
domain. The restriction of γ to a subinterval J ⊂ [a, b] is written γ � J .

In connection with the control system (1.1), consider the Banach space Ξ of pairs
of vector fields Σ = (F,G), with F,G ∈ C3, F (0) = 0, endowed with the C3 norm.

We recall that the Lie bracket of two vector fields F,G is the vector field

[F,G] .= ∇G · F −∇F ·G.

For convenience, we also define the vector fields

(2.1) X = F −G, Y = F +G.

For Σ = (F,G), we write Traj(Σ) for the set of (Carathéodory) trajectories of (1.1).
A trajectory γ ∈ Traj(Σ) is called an X-trajectory [Y -trajectory] if it corresponds
to the constant control u ≡ −1 [u ≡ 1, respectively].

For a fixed τ ≥ 0, the reachable set within time τ is

R(τ) = {x : ∃γ ∈ Traj(Σ) such that γ(0) = 0 ∈ R2, γ(t) = x for some t ≤ τ}.

The minimum time function, T : R2 7→ [0,+∞] is defined by

T (x) .= inf {τ : x ∈ R(τ)}.

A synthesis for the control system Σ on the set R(τ) is a family of trajectories
Γ = {γx : [0, bx] 7→ R2, x ∈ R(τ)} satisfying the following conditions:

(a) for each x ∈ R(τ) one has γx(0) = 0, γx(bx) = x;
(b) if y = γx(t) for some t ∈ [0, bx], then γy = γx � [0, t].
We say that the above synthesis is time optimal if bx = T (x) for each x, i.e., if

each trajectory γx steers the system from the origin to the point x in the minimum
time T (x).

When a trajectory γ, corresponding to a control u, satisfies the Pontryagin max-
imum principle (PMP) with covector field λ, then λ is called an adjoint covector field
along (u, γ) or simply an adjoint variable, and we say that (γ, λ) satisfies the PMP or
that γ is an extremal trajectory.

Consider a trajectory γ corresponding to the control u, t0 ∈ Dom(γ) and v0 ∈ R2.
We write v(v0, t0; t) to denote the value at time t of the variational vector field along
(u, γ) (see (2.4) in [2]) with the boundary condition v(t0) = v0. If t0, t1 ∈ Dom(γ), we
say that t0 and t1 are conjugate along γ if the vectors v(G(γ(t1)), t1; t0) and G(γ(t0))
are linearly dependent.

For each x ∈ R2, one can form the 2× 2 matrices whose columns are the vectors
F, G, or [F,G]. As in [14], we consider the following scalar functions on R2:

(2.2) ∆A(x) .= det (F (x), G(x)) = F (x) ∧G(x),

(2.3) ∆B(x) .= det (G(x), [F,G](x)) = G(x) ∧ [F,G](x),

where det stands for determinant and ∧ denotes an exterior product. A point x ∈ R2

is called an ordinary point if

(2.4) ∆A(x) ·∆B(x) 6= 0.
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On the set of ordinary points we define the scalar functions f , g as the coefficients of
the linear combination

(2.5) [F,G](x) = f(x)F (x) + g(x)G(x).

In [14, p. 447] it was proved that

(2.6) f(x) = −∆B(x)
∆A(x)

.

For a generic system (see [14]) the only time-optimal trajectories γ that are not
bang–bang must verify ∆B(γ(t)) = 0. A C2 embedded one-dimensional submanifold
with boundary S ∈ R2 is a regular turnpike if ∆B(x) = 0 for every x ∈ S, and it
verifies some technical conditions listed in [2], [14]. For every turnpike S we can define
a control ϕS such that the corresponding trajectory runs S. Such a trajectory is called
a Z-trajectory or a singular trajectory.

It may happen that a same point x ∈ R = R(1) can be reached in minimum
time using different controls. An overlap curve is a C2 one-dimensional connected
embedded submanifold K of R2, with the property that for each point of K there
exist two distinct time optimal trajectories γ1, γ2 : [0, T (x)] 7→ R2, both steering the
system from the origin to x in minimum time, with the following property: for some
ε > 0, the restrictions of γ1, γ2 to [T (x) − ε, T (x)] are an X- and a Y -trajectory,
respectively.

For every system Σ = (F,G) in a suitable open dense subset Ξ∗ ⊂ Ξ, the algorithm
A described in [2] constructs a structurally stable optimal synthesis. In the first
step, the algorithm constructs the two trajectories γ±, γ±(0) = 0, corresponding to
constant control ±1, and marks some special points along these curves from which
additional special curves bifurcate. At step N , the algorithm constructs precisely
those trajectories which are concatenations of N bang or singular arcs and satisfy
the PMP. We say that the algorithm succeeds for Σ if it stops in a finite number of
steps and some stability conditions are fulfilled; see [2]. The set R .= R(1) of points
reachable from the origin within unit time can be partitioned in a natural way into a
finite number of open regions, covered by Y - or X-trajectories, separated by curves
called frame curves. The intersections of these frame curves are called frame points. In
connection with the above partition, there exists a piecewise smooth feedback control
u = ϕ(x) with the property that the (Carathéodory) solutions of

(2.7) ẋ = F (x) +G(x)ϕ(x), x(0) = 0

are precisely the time-optimal trajectories. Each optimal trajectory is a finite con-
catenation of X-, Y -, and Z-trajectories.

All frame curves and frame points were classified in [11]. In particular, only five
types of frame curves can generically occur:

(F1) the trajectories γ− and γ+ originating from 0 and corresponding to the
constant controls u− ≡ −1 and u+ ≡ 1, respectively;

(F2) the topological frontier of the reachable set: Fr(R);
(F3) curves of points conjugate to points of other frame curves, also called switch-

ing curves;
(F4) regular turnpikes,
(F5) overlap curves.
To denote the frame curves we use the symbolsX, Y , F , C, S, andK, respectively.

Moreover we use the same notation of [11] for frame points. For example, a point
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that is the intersection of a switching curve and an overlap curve is called the (C,K)
frame point. See [11] for a complete description of notations.

We now recall, from [2], the equivalence relation between systems expressing the
fact that their time-optimal feedback flows have similar structures. Consider two
systems Σ1,Σ2 ∈ Ξ∗. For i = 1, 2 let Ri be the reachable set for Σi at time t = 1.
Define

Ki = {x | x ∈ K \ ∂K, K is an overlap curve of ΓA(Σi)},

and set R′i = Ri \ Ki, i = 1, 2. In the following, for each x ∈ Ri, we denote by
t 7→ γix(t) a trajectory of Σi which reaches x from the origin in minimum time.

DEFINITION 1 (equivalence of feedback flows). We say that the time-optimal
feedback flows for Σ1 on R1 and Σ2 on R2 are equivalent, or simply that Σ1 ∼ Σ2, if
there exists a homeomorphism Ψ : R′1 7→ R′2 such that the following hold:

(E1) Ψ maps arcs of optimal trajectories for Σ1 onto arcs of optimal trajectories
for Σ2. More precisely, for every x ∈ R′1 one has {Ψ(γ1

x(t)) : t ∈ Dom(γ1
x)} =

{γ2
Ψ(x)(t) : t ∈ Dom(γ2

Ψ(x))}.
(E2) Ψ induces a bijection on frame curves that are not overlap curves; i.e., for

each frame curve D1, which occurs in the construction of the optimal feedback for
Σ1 and is not a K-curve, we have that ϕ(D1) is a frame curve of the same type
corresponding to Σ2 and vice versa.

(E3) If A is an open region of R′1 enclosed by frame curves and entirely covered
by Y - or X-trajectories, then Ψ(A) is enclosed by the corresponding frame curves and
is covered by Y - or X-trajectories, respectively.

3. Graphs. In this section we introduce the definition of graph and describe a
procedure to associate a graph with every system for which the algorithm A succeeds.
The points and edges of this topological graph correspond to frame points and curves
of the system. Moreover, some additional lines must be included in the definition of
graph to describe the history of all trajectories that form the optimal synthesis. In
Remark 4.1 we give some examples to motivate the definition of graph.

From now on, we consider only the systems of Ξ for which the algorithm A
succeeds.

DEFINITION 2 (graph). A graph G is a finite set of points of R2 and smooth
connected one-dimensional boundary manifolds connecting the points, called edges.
Moreover, inside each region enclosed by edges there are possibly some other smooth
manifolds, called lines, connecting points and edges. We assume that edges and lines
do not cross one another.

Every edge can be of one of the following type: X,Y, F, S, C,K, corresponding to
the types of frame curves. An edge of type X,Y , or S has an orientation and hence an
initial and a terminal point. The edges of type C have a positive side, corresponding
to the fact that constructed trajectories cross a frame curve of type C passing from
one side to another.

Every region enclosed by edges that are not all of F type has a sign + or −.
This corresponds to the fact that a region of the reachable set in unit time R that
contains no frame curve is covered by X- or by Y -trajectories. On each region we
can have some curves connecting points and edges. These correspond to constructed
trajectories that pass through frame points. See Remark 3.1 below.

We say that two edges E1, E2 are related and we write E1 ∼ E2 if they have in
common a point of the graph.
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We now describe a canonical way of associating a graph with a system. Given
a system Σ (for which A succeeds) we associate a graph G with Σ in the following
way. For every frame point we construct a point of G having the same coordinate in
R2. For every frame curve D, with no frame point in D \ ∂D, ∂D = {x1, x2}, we
construct an edge E of G of the same type connecting the points of G corresponding
to x1, x2. If D is an X,Y , or S-curve, then D has the orientation of increasing time
and we endow E with the corresponding orientation. If D is of type C, then some
constructed trajectories enter one side of D. We define the corresponding side of E
to be positive. For every region A ⊂ R enclosed by frame curves there is a region
A′ in the plane of the graph enclosed by the corresponding edges. If A is covered
by Y -trajectories, we assign to A′ the positive sign, otherwise we assign to A′ the
negative sign.

Now we pass to the construction of lines. These lines are necessary to describe
the behavior of every optimal trajectory of the synthesis; see Remark 3.1. Consider
a frame point x of Cl(A), which is not of (K,K) type (recall the terminology of
[11]), and the constructed trajectory γx verifying γx(tx) = x for some tx. Assume
that γx(I) ⊂ A for some I = [a, b] ⊂ Dom(γ), tx ∈ I. Notice that it can happen
a 6= tx 6= b, e.g., if x is of type (X,K)3. If tx 6= a and γx(a) ∈ D frame curve, then
we construct a line in A′ going from a point y of the edge E, corresponding to D, to
the point x′ of G corresponding to x. If γx(a) is a frame point, then we choose y to
be the corresponding point of E, otherwise we choose y in E \ ∂E. If D is of C type,
and γx(a) ∈ D \ ∂D, then we consider the last switching point z of γx before γx(a).
If D is of S type then there exists a constructed trajectory γ1 that switches at γx(a)
and enters the region on the opposite side, with respect to D, of the region entered
by γx. Indeed, a Y and an X constructed trajectory originate from every point of
a turnpike. In this case, we let z be the first switching point of γ1 after γx(a). If z
belongs to a frame curve D1 then we construct a line going from a point z′ of the
edge E1, corresponding to D1, to the point y. Again if z is a frame point we let z′ be
the corresponding point of G. If D1 is a C or S frame curve then we proceed in the
same way. We continue until we reach a frame curve not of C or S type. We do the
same if tx 6= b.

We can construct these lines in such a way that they do not cross one another. If
G is associated to Σ in this way then we say that G is canonically associated with Σ.

Remark 3.1. Consider the system{
ẋ1 = 3x1 + u,
ẋ2 = x2

1 + x1.

For every time τ > ln(4)/3 the reachable set in time τ contains two switching curves
starting from γ−. There are two frame points of type (X,C) that are not topologically
equivalent. See Example 3 of [11] for an accurate description of this system Σ3 and
for the classification of (X,C) frame points. Portrayed are the reachable set of Σ3
in Fig. 1 and its associated graph G3 in Fig. 2. If we do not specify a sign for every
region of G3 then the two (X,C) frame points are not distinguishable. Hence, for
some system Σ with a frame point of type (X,C)1 or (X,C)2, we can construct a
system with the same graph, except the signs of the regions, but not equivalent to Σ.
This shows the necessity of specifying a sign for every region.

Consider the system Σ4 of Example 4 of [11]. There is a region A that is a
connected component of the complement of the reachable set and is bounded. In
the corresponding graph, we cannot give a sign to the region corresponding to A.
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Otherwise, we would have equivalent systems corresponding to different graphs. The
regions enclosed by edges all of F type correspond exactly to the holes of the reachable
set.

Consider now the frame point x of (C, S)2 type of Example 8 of [11]. If we do
not specify, in the corresponding graph, a positive side for the edge corresponding
to the switching curve then we do not know, from the graph, if the Y or the X
trajectories enter the switching curve. Again there would exist two not equivalent
systems corresponding to the same graph.

The lines divide the graphs into subregions in such a way that the trajectories,
contained in the same subregion, have the same history, i.e., cross the same frame
curves in the same order and are composed of the same sequence of elementary arcs.
For example, XY SX..., where X, Y , and S denote, respectively, X,Y arcs and tra-
jectories running a turnpike. If the lines are not constructed, then in some cases we
cannot decide the story of every trajectory and then we cannot recognize equivalent
systems. To appreciate this point, consider the following examples. First, let the
syntheses of Figs. 3 and 4 correspond to some system. The associated graphs contain
the same points and edges. However, the syntheses are not equivalent. Indeed, the
homeomorphism Ψ should map the trajectory through the (X,S) point onto the cor-
responding one to satisfy (E1), but obviously in this case (E2) cannot be satisfied. To
have an explicit example, consider now the system Σ4 of the fourth example of [11].
Let γ be the constructed trajectory that passes through the (Y, S) point and then
goes on as X trajectory. If we do not consider the lines, from the graph associated to
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Σ4 we cannot know if γ reaches the overlap curve or the frontier of the reachable set.
Hence we cannot uniquely determine the synthesis from the graph.

4. Admissible graphs. We now give some admissibility conditions that char-
acterize a class of graphs. This class will be proved to be the class of graphs that
correspond to systems canonically.
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With every system of the examples of [11] we can associate a topological graph
in the canonical way. We consider these examples restricted to a neighborhood of a
frame point; then we obtain a set of graphs E whose elements are defined locally, and
each one corresponds to a type of frame point. A point x′ of a graph G is said to be
admissible if there exists a graph G′ ∈ E such that G contains a copy of G′ to which
x′ belongs. We use the same terminology for the points of G, e.g., (X,Y ) point. The
first condition is

(G1) all points of G are admissible.
We consider graphs that contain exactly one point of the type (X,Y ) and we

call this point the origin of the graph. Assume that (G1) holds. Let E be a Y -edge
and let x be the initial point of E. If x is not the origin then there exists a Y -edge
E1 for which x is the terminal point. We consider the initial point x1 of E1 and
do the same considerations. Since G is finite, proceeding by induction, we find a
finite collection E1, . . . , En of Y -edges such that Ei ∼ Ei+1, i = 1, . . . , n − 1, and
the initial point of En is the origin. Then, since there is only one origin, the Y -edges
form a set {E1, . . . , Em} such that the initial point of E1 is the origin and for each
i = 1, . . . ,m− 1 the terminal point of Ei is the initial point of Ei+1. We call η+ the
union of these edges. Analogously we define η− for the X-edges. In the first step of A
we have described all the possibilities for the sequence of frame points on a curve γ+

of a system Σ. We say that η+ is admissible if there exists a system Σ such that the
curve γ+ corresponds to η+ canonically. That is, there is a correspondence defined for
points, edges of η+, for lines intersecting η+, and for the regions to which η+ belongs,
that follows the rules of canonical correspondence. This happens exactly when η+

and γ+ have an ordered sequence of corresponding points. The second condition is
(G2) G has exactly one (X,Y ) point, called the origin. The collections of edges

η± are admissible.
Let E be a C-edge, x′1, x

′
2 be the endpoints of E, and A′ be a region on one

side of E. There exist two frame points x1, x2 corresponding to x′1, x
′
2. Consider the

correspondence between x′1 and x1. Let D be the frame curve that corresponds to E
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and Ã1 the region corresponding to A′. We define A1 to be the connected component
of Ã1 \ {x : ∆A(x)∆B(x) = 0} that contains D. Similarly we define the region A2.
We say that E is admissible if there exist x1, x2 such that the functions ∆A,∆B has
the same sign on A1 and A2.

Remark 4.1. If, for example, E connects two points of (C, S) type then A1, A2 are
both covered by Y -trajectories or both are covered by X-trajectories. In this case,
since the two vector fields must point to opposite sides of turnpikes, it follows that
∆A has a different sign on the two regions A1, A2. From Theorem 3.9 of [14] we have
that along C the function f (see (2.5), (2.6)) does not change sign. Hence there exists
at least one curve, intersecting C, on which ∆A = 0,∆B = 0. This is clearly not a
generic situation and is not compatible with the condition (P3) of section 4 of [10].

Another admissibility condition is
(G3) every C-edge is admissible.
The relation ∼ divides the set of F -edges into a finite number of equivalence

classes. If (G1) holds, then the union of the elements of an equivalence class forms a
closed curve.

(G4) Only one closed curve that is union of the elements of an equivalence class
of F -edges, encloses a region in which there are points and edges. Moreover, there
are no frame curves and points outside this region.

Notice that we can have situations with more than one equivalence class of F -
edges, e.g., the system in Example 4 of [11] where R(τ) has one hole.

DEFINITION 3 (entrance, exit, side). Consider a region A′ enclosed by edges of
G. If one edge E is of X type if A′ is positive, of Y type if A′ is negative, of C type
with the negative side on A′, or of S type, then we say that E is an entrance. If E is
of K,F , or C type with positive side on A′ then we say that E is an exit. Otherwise,
we say that E is a side, i.e., if it is of Y type and A′ is positive or of X type and
A′ is negative. The definitions are motivated by the fact that if D is a frame curve
corresponding to E canonically, then through each point of D there pass a constructed
trajectory that enters, resp., exits from the region corresponding to A′ if and only if
E is an entrance, resp., exit.

We say that the set of lines of G is admissible if the following holds. Every line
connects an entrance to an exit. If a point x′ belongs to two entrances, resp., exits,
then there is a line connecting x′ with an exit, resp., entrance. Let x′ be a point of one
of the types (X,C)3, (X,K)3, (C,C)1, (C, S)2, (C,K)1, (S,K), and let A′, B′ be the
two regions such that x′ ∈ Cl(A′), Cl(B′). There are two lines l1, l2, both contained
in A′ or both in B′, passing through x′; l1 connects x′ to an entrance and l2 connects
x′ to an exit.

If x′ is of type (C,C)2 then there are two lines arriving at x′ from different regions
and at least one of them reaches another point. These are the only lines that connect
two points.

If x′ ∈ E \∂E, E is of C or S type and there is a line l arriving at x′ from a region
A′ then there is a line arriving at x′ from the other region B′ such that x′ ∈ Cl(B′).

There are no other lines. If all these conditions are satisfied then we say that the
set of lines of G is admissible.

Remark 4.2. The conditions given for the set of lines follow directly from the
canonical way of associating a graph with a system and from the description of frame
points given in [11]. If we do not assume that the set of lines is admissible, then we
cannot expect that there exists a system corresponding to G.

Consider the closed curve F̃ , union of F -edges, described in (G4). Let U be the
connected component of the complement of the union of F -edges, that is, enclosed by
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F̃ and verifies F̃ ⊂ Cl(U). If A′ is a region contained in U we define L(A′) to be the
set of lines contained in A′. The last condition is

(G5) the set of lines of G is admissible. If A′ ⊂ U and A′1 is a connected component
of A′ \ L(A′), then Cl(A′1) contains exactly one entrance and one exit.

We have given the conditions in (G5) only for regions A′ ⊂ U , because if the
opposite happens, then A′ corresponds to an hole of R, L(A) = ∅ and Cl(A′) contains
only exits.

If a graph G satisfies the conditions (G1), . . . , (G5), then we say that G is admis-
sible. It is easy to check that if G corresponds to a system Σ, then G is admissible. In
the following we will prove the converse.

5. Classification. To ensure that the canonical way of associating a graph with
a system is well defined we have to prove that two systems are equivalent if and only
if the associated graphs are equivalent.

Since we have defined the equivalence between systems in weak form, excluding
overlap curves, we have that equivalent systems may correspond to graphs having a
different number of K edges. Hence we have to define an equivalence relation between
graphs excluding K edges. We give below the exact definition.

Given two admissible graphs G1,G2, we say that they are equivalent and we write
G1 ∼ G2 if there is a correspondence ψ between edges and lines such that the following
hold. We let ψ be multivalued and not injective on the set of K-edges, but it has
to be a bijective function restricted to the edges not of K type. Moreover, ψ is a
bijective function restricted to the set of lines. Finally the following holds:

(H1) For every edge E, not of K type, ψ(E) is an edge of the same type; E1 ∼
E2 if and only if ψ(E1) ∼ ψ(E2), when E1, E2 are not both K-edges; ψ preserves
orientations and positive sides

(H2) If l is a line that connects E1 with E2, then ψ(l) connects ψ(E1) with ψ(E2).
The same holds for line connecting points. If l1, l2 arrive at the same point, then the
same happens for ψ(l1), ψ(l2).

(H3) If A′ is a region enclosed by edges E1, . . . , En, then the region enclosed by
ψ(E1), . . . , ψ(En) has the same sign.

(H4) If K1,K2 is the set of equivalence classes of K-edges (for the relation ∼) of
G1,G2, then ψ induces a bijective correspondence between K1,K2.

We have the following theorem.
THEOREM 5.1. If Σ1,Σ2 are two systems and G1,G2 the corresponding graphs,

then Σ1 ∼ Σ2 if and only if G1 ∼ G2.
Proof. Assume first that Σ1 ∼ Σ2 and let Ψ be as in the definition of equivalence.

For simplicity we will use the symbols Γ1,Γ2 for ΓA(Σ1),ΓA(Σ2), respectively.
Given a frame curve D of Γ1 that is not a K-curve, let E1, E2 be the edges

corresponding, respectively, to D and Ψ(D). We define ψ(E1) = E2. We can proceed
in the same way to define ψ on the set of lines. From (E1), (E2) it follows that (H1)
and (H2) hold, and from (E3) it follows that (H3) holds.

Now, if K1,K2 are two K frame curves (of K type) of Γ1, or of Γ2, then we set
K1 ∼ K2 if they have a point in common. The union of the elements of an equivalence
class of Γ1 is a connected curve K. If we extend Ψ by continuity, then Ψ(K) is the
union of elements of an equivalence class of Γ2. Therefore we can define ψ on K-edges
in such a way that (H4) holds.

Assume now that G1 ∼ G2. Let E1 be an X,Y or S-edge of G1, let E2 = ψ(E1),
and let D1, D2 be the frame curves corresponding to E1, E2, respectively. From (H1)
we have that D1, D2 are of the same type. Assume that x1, . . . , xn are the points of
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D1 \ ∂D1, ordered for increasing time, that are in relation with a frame point, not of
(K,K) type, for the definition given in [2]. There are exactly n lines if D1 is of X
or Y type and 2n lines if D1 is of S type, starting at xi. From (H2) it follows that
there exist y1, . . . , yn ∈ D2 \ ∂D2, ordered for increasing time, from which some lines
of G2 start. Observe that, if l is a line passing through xi and ψ(l) passes through yj ,
then i = j. Indeed, if i 6= j, there must be a crossing between lines, but this is not
allowed by the definition of a graph. We define Ψ on D1 in such a way that Ψ is a
homeomorphism, Ψ(D1) = D2 and Ψ(xi) = yi, i = 1, . . . , n.

For every y ∈ D1 consider the constructed trajectories γy ∈ Γ1 for which y =
γy(by) is a switching point. If D1 is of X or Y type, there is at most one such
trajectory; if D1 is of S type, then there are two such trajectories. If D1 is of type X
or Y and there exists γy, then from (H3) there exists a trajectory γΨ(y) ∈ Γ2 having
the same property. Let cy > by be the first time in which γy reaches another frame
curve and define bΨ(y), cΨ(y) similarly. We define

Ψ(γy(t))=̇γΨ(y)

(
bΨ(y) +

cΨ(y) − bΨ(y)

cy − by
(t− by)

)
∀t ∈ [by, cy].

In this way we have defined Ψ also on the frame curves that are reached by the trajec-
tories γy. We proceed in the same way, defining Ψ on the images of the constructed
trajectories that switch at the point of these new frame curves. After a finite number
of steps we define Ψ on the whole reachable set R1 of the system Σ1. Notice that
we can have two different definitions of Ψ on the K frame curves, but Ψ restricted
to R′1 (see the definition of equivalence) is well defined. Condition (E1) follows by
construction. Conditions (H1), (H2) ensure that corresponding trajectories have the
same history, i.e., they cross the same type of frame curves in the same order and are
composed of the same elementary arcs. Finally from conditions (H1)–(H4) we have
that Ψ satisfies (E1)–(E3).

Assume now that G is an admissible graph. We want to find a system Σ such that
G is associated with Σ in the canonical way. This and Theorem 5.1 show that the
correspondence Σ↔ G is a bijection between the set of equivalence classes of systems
for which A succeeds and the set of equivalence classes of admissible graphs.

THEOREM 5.2. If G is an admissible graph, then there exists a system Σ to which
G is canonically associated.

Proof. We construct Σ = (F,G) defining it on a finite collection of open sets
that cover G and then gluing together along the intersections. We proceed defining
Σ and a synthesis Γ for Σ at the same time. Moreover, every trajectory γ ∈ Γ
will be endowed with an adjoint covector. At the end of the construction, we will
have Γ ≡ ΓA(Σ). It can happen that we will determine Σ defining two of the fields
F,G,X = F −G, Y = F +G.

Let F̃ be the union of the elements of the equivalence class of F -edges described
in (G4). Consider the connected components of the complement, in R2, of the union
of F -edges of G. There is only one such component R that is contained in the region
enclosed by F̃ and such that F̃ ⊂ Cl(R). We have to construct Σ only on R.

From (G2), we have that there is one origin O and O will be also the origin for
Σ. It is clear that, possibly translating G, we can assume that O is the origin of
R2. Consider a differentiable change of coordinates such that η+ corresponds, in the
new coordinates, to the line {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ a} for some a > 0. We
define the field Y = F + G to be the constant field (1, 0) on a neighborhood N+ of
η+ that contains only the points of G that are in η+. Since η+ is admissible there
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exists a function θ̃ such that the points {ti, t′i, si, s′i} of (3.3), (3.4) of [2] determine
the same sequence of frame points of η+. We can define a vector field G(x1) on N+

such that the function θ of (3.1) of [2] verifies θ(t) = θ̃(t). This is easy because from
the definition of Y we have that

θ(t) = θ(x1) = arg(G(0), G(x1)).

Since the synthesis is determined by the sequence of maxima and minima of θ and not
by the values at these points, we can assume that |θ| < π/2 at every point of (3.3),
(3.4) of [2]. Therefore, if G(x1) = (α(x1), β(x1)), then α > 0 and

∇∆B ·X = (1− 2α) ∇∆B · Y.

Indeed, we have

∇∆B =
(
α∂

2β
∂x2

1
− β ∂2α

∂x2
1

0

)
, X =

(
1− 2α
−2β

)
.

The choice of θ uniquely determines the direction of the vector G but not its norm.
Hence, we can choose α in such a way that ∇∆B · Y , ∇∆B ·X have the same (resp.,
the opposite) sign at the points pi = γ+(ti), p′i = γ+(t′i) if at the corresponding points
of η+ there is a C-edge (resp., an S-edge). From (III) of Proposition 3.1 of [2] it
follows that there is a canonical correspondence at the points pi, p′i.

We can again modify θ,G in such a way that Γ̇i(0), i > 1 (see (3.23,24), (SA7)
of [2]) lies in the cone determined by Y (qi), G(qi), qi = γ+(si). We proceed in the
following way. For every y sufficiently small there exists an extremal trajectory γy,
with second coordinate constantly equal to y after the last switching, that switches
along Γi. Let λy be its associated covector. Now Y is constant; then λy is also constant
after the last switching time of γy, and there exists ζ1(y) such that λy ·G(ζ1(y)) = 0.
Since θ is increasing near s1, we have that λy · G(x1) is a monotone function of x1
in [s1 − ε, s1 + ε] for some ε > 0 and then ζ1(y) exists uniquely for y small. Assume
we want to modify G in such a way that Γi is described by the points (ζ2(y), y). Let
ξ(y, x1) be a smooth function, monotone in x1 for every y, verifying

ξ(y, si ± ε) = si ± ε, ξ(y, ζ2(y)) = ζ1(y).

We redefine G in such a way that if θ̃(x1, x2) = arg(G(0), G(x1, x2)) then θ̃(x1, x2) =
θ(ξ(x2, x1)). From the definition of ξ and its monotonicity we have that γy switches
at (ζ2(y), y).

Now, choosing the module of G(qi) in a suitable way, we can assume that X,Y
point to the same side, resp., to opposite side, of Γi if at the corresponding points
of η+ there is a C-edge, resp., a K-edge. We can repeat the same construction for
q′i = γ+(s′i).

Finally, possibly changing θ,G, we can assume that δ > 0, resp., < 0 (see (SA8)
of [2] for the definition of δ) if at the point of η+ corresponding to q1 there is a C-edge,
resp., a K-edge. We repeat the same arguments for q′1. Therefore from Propositions
3.1, 3.2, and 3.3 of [2] we have that η+ corresponds to γ+ in the canonical way. Since
we have defined Y and G the system Σ is determined.

Now consider η− and a change of coordinate as for η+. Possibly restrictingN+, we
can define X and G on a neighborhood N− of η− in such a way that they coincide on
N+ with the previous definitions and such that γ− corresponds to η− in the canonical
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way. In this way we have defined Σ on N+ ∪N−, that is, a neighborhood of η+ ∪ η−.
We define Γ = ΓA(Σ) on N+ ∪ N− and with every γ ∈ Γ we associate the covector
field constructed by A.

Now, let x′ be a point of G that is not in N+∪N−. From (G1) there exists a frame
point x, corresponding to x′, that is of one of the types classified in [11]. We have
shown, in [11], an example for every classified point; hence there exists a system Σ(x′),
a synthesis Γ(x′) both defined on an open set U(x′) and a frame point x ∈ Γ(x′) that
corresponds to x′ in the canonical way. Consider an open neighborhood U ′ of x′ that
does not contain any other frame point and define a diffeomorphism Ψ : U(x′)→ U ′

in such a way that Ψ maps frame points and curves to corresponding points and edges.
Moreover, Ψ maps some constructed trajectories to the corresponding lines. Using Ψ,
we define Σ and Γ on U ′ and we associate a covector field to every γ ∈ Γ.

From (G3) it follows that every C-edge E is admissible. However, it may happen
that if x′, y′ are the points belonging to E, the functions ∆A,∆B do not have the
required signs on U ′(x′), U ′(y′). If Σ(x′) = (F,G) is one of the system of the examples
of [11], we can consider the systems

Σ1 = (F,−G), Σ2 = (−F,G), Σ3 = (−F,−G).

Let ∆i
A,∆

i
B be the functions ∆A,∆B for Σi. We have that

∆1
A,∆

2
A = −∆A; ∆3

A = ∆A; ∆1
B = ∆B ; ∆2

B ,∆
3
B = −∆B .

The systems Σi have the same type of synthesis of Σ (choosing the dual vectors in a
suitable way). Therefore we can define Σ(x′),Σ(y′) in such a way that the functions
∆A,∆B have the correct signs.

Next, we define Σ on neighborhoods of frame curves. Let E be a frame curve,
not of X or Y type, connecting the points x′, y′. We choose a differentiable change of
coordinates Ψ in such a way that E corresponds to the line {(x1, x2) : x2 = 0, 0 ≤ x1 ≤
a} for some a > 0. If E is of C, S, or K type then we define Ψ in such a way that the
vector field Y (defined on U ′(x′)∪U ′(y′)) corresponds to the vector field (0, 1). If E is
of F type and the region on one side of F is positive then again we let Y correspond to
(0, 1), otherwise we let X correspond to (0, 1). For each type of curve we have shown
an example in [11]. We choose the system Σ(E) that gives an example of frame curve
D of the same type of E and is defined on an open set U(E). If E is of C type, we can
choose Σ(E) in such a way that ∆A,∆B have the right sign, i.e., compatible with the
systems Σ(x′),Σ(y′). We define a diffeomorphism Ψ′ : U(E) → U ′(E), where U ′(E)
is a neighborhood of E, in such a way that Ψ′ establishes a canonical correspondence
between D and E, and its differential dΨ′ sends either the vector field Y or X onto
the vector field (0, 1), following the same rules used for Ψ.

We now glue together the systems defined near points and edges. Let V1, V2 be
two open neighborhoods of x′ verifying

Cl(V1) ⊂ V2 ⊂ Cl(V2) ⊂ U ′(x′)

and consider a smooth function hx′ defined on

U = U ′(x′) ∪ U ′(y′) ∪ U ′(E)

such that

hx′ � V1 ≡ 1, hx′ � U \ V2 ≡ 0.
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We define hy′ in the same way for y′. Let (F ′, G′), (F ′′, G′′) be the vector fields
already defined on U ′(x′) ∪ U ′(y′), U ′(E), respectively, and define them to be zero
elsewhere in U . We set

F̃ =̇(hx′ + hy′)F ′ + (1− hx′ − hy′)F ′′, G̃=̇(hx′ + hy′)G′ + (1− hx′ − hy′)G′′.

In this way we have defined a system Σ̃ = (F̃ , G̃) on U . Since the syntheses cor-
responding to Σ(x′),Σ(y′), and Σ(E) coincide on the set of intersections, Γ is well
defined on U . However, if E is of C or of S type, it may happen that in the set where
hx′ , hy′ 6= 0, 1, the functions ∆̃A, ∆̃B , do not have the required properties.

Consider first the case in which E is an S-edge. From E there originate Y -
trajectories that enter the half plane {(x1, x2) : x2 > 0}. In this case,

X̃2 < 0, X̃1 > 0, G̃1 < 0, ∆̃A > 0.

We define a new system Σ by setting

Y =̇Ỹ + (0, α), X=̇X̃,

where |α| < 1. We have ∆A = (1/2)(1 + α)X̃1 > 0. If α(x1, 0) ≡ 0 then, after
straightforward calculations, we obtain

(5.1) ∆B(x1, 0) =
1
2

(
2∆̃B +

∂α

∂x2
G̃1X̃2

)
,

and then we can choose (∂α/∂x2)(x1, 0) in such a way that ∆B(x1, 0) ≡ 0. Moreover,

∇∆B(x1, 0) = ∇∆̃B(x1, 0) + Θ1 + Θ2, Θ1 =
(

0
∂2α
∂x2

2
G̃1X̃2

)
,

Θ2 =
∂α

∂x2

[
∇(G̃1X̃2) +

(
0

G̃2
∂X̃1
x2
− G̃1

∂X̃2
x2
− 1

2 [X̃, Ỹ ]1

)]
+

(
∂2α

∂x1∂x2
G̃1X̃2

∂2α
∂x2∂x1

G̃1X̃1

)
;

hence Θ2 is determined by the previous choices but we can define α choosing

∂2α

∂x2
2

(x1, 0)

in such a way that ∇∆B(x1, 0) 6= 0. From the compactness of E, it follows that there
exists a neighborhood U ′ of E such that {x ∈ U ′ : ∆B(x) = 0} = {(x1, x2) : x2 = 0}.
Then we consider Σ restricted to U ′.

Consider now the case in which E is a C-edge. Assume that from E start Y -
trajectories that enter the half plane {(x1, x2) : x2 > 0} and that X̃1 > 0 (X̃2 > 0
follows from Ỹ2 > 0). Again we define Y = Ỹ + (0, α), X = X̃. If we set α(x1, 0) = 0,
then (5.1) holds and we can choose (∂α/∂x2) in such a way that ∆B(x1, 0) 6= 0. Again
by the compactness of E, there exists a neighborhood U ′ of E in which ∆B does not
vanish. We consider Σ restricted to U ′.

Finally, we want to associate with every trajectory γ of Γ a covector field. If
γ is contained in V1(x′) or V1(y′) or in U ′(E) \ (V2(x′) ∪ V2(y′)) (see the definitions
above), we can associate a dual variable with γ using Ψ or Ψ′, because γ corresponds
to a trajectory of the synthesis of Σ(x′) or Σ(y′) or Σ(E). Otherwise assume that γ
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verifies γ(tx) = x ∈ E \ ∂E. If E is either an F - or K-edge and γ is a Y -trajectory,
resp., X-trajectory, then we choose λγ such that λγ · G(x) > 0, resp., < 0. If E is
either an S- or a C-edge and γ is a Y -trajectory, resp., X-trajectory, after tx, then we
choose λγ in such a way that λγ ·G(x) = 0 and, if E is a C edge, λγ · [F,G](x) > 0,
resp., < 0. We associate to γ the adjoint variable that verifies λ(tx) = λγ . It is clear
that if γ(I) is not a turnpike for every I ⊂ Dom(γ), then (γ, λ) satisfies the PMP on
some neighborhood of tx. Assume now that γ(I) is a turnpike, I = [a, b]. Let ϕS be
the control defined in (2.16) of [2], and consider the system

(5.2)
{
ẋ = F (x) + ϕS(x)G(x),
λ̇ = −λ · (∇F (x) + ϕS(x)∇G(x)),

and the following submanifold of R4:

Z = {(x, λ) : λ ·G(x) = 0}.

From the definition of λ, we have λ(b) ·G(γ(b)) = 0. Since ∆B(γ(t)) = 0 for t ∈ [a, b],
from

d

dt
(λ ·G) = λ · [F,G],

we have

λ(t) ·G(γ(t)) = 0 ⇒ d

ds
(λ(s) ·G(γ(s)))

∣∣∣∣
s=t

= 0.

By the standard theory of ODEs on closed set, we obtain the existence of a solution
(x, µ) that verifies x(b) = γ(b), µ(b) = λ(b), and (x(t), µ(t)) ∈ Z for every t ∈ [a, b].
Since the right-hand side of (5.2) is Lipschitz continuous, there is a unique solution
for every initial data. Hence λ(t) ·G(γ(t)) = 0 for every t ∈ [a, b]. We conclude that
(γ, λ) satisfies the PMP.

From the compactness of E there exists a neighborhood U ′′ of E such that every
γ ∈ Γ restricted to U ′′ is extremal. We consider Σ restricted to U ′′.

In this way we have defined Σ,Γ on an open set that contains all frame points
and curves. Now we complete the definition of Σ,Γ considering the regions enclosed
by edges.

For every region A ⊂ R let Bi(A), i = 1, . . . , n(A), be the connected components
of A \ L(A), where L(A) is the union of lines in A. Let B be the set of all Bi(A),
i = 1, . . . , n(A), as A ranges over the set of regions contained in R. We will define
Σ on every B by induction. From (G5) we have that every Cl(B), B ∈ B, contains
exactly one entrance E(B). The induction hypotheses is that for every x ∈ E(B)
there exists γx : [0, tx] → R2, γx ∈ Γ, such that γx(tx) = x; i.e., the system Σ is
constructed along γx backward in time. We start defining Σ on the regions B for
which E(B) is of X or Y type. Then we consider the regions B such that on the
region B′, that lies on the other side of E(B), the system Σ is already defined. If
E(B) is of S type and x is the initial point of E(B), then we consider B if there is
a trajectory γx that verifies the induction hypothesis. In a finite number of steps we
define Σ on every B ∈ B.

Now fix a region B ∈ B and assumes that the induction hypothesis holds. From
(G5) we have that Cl(B) contains exactly one entrance E1 and one exit E2. If E1 ∼ E2
then B is enclosed by E1, E2, and either a line l or a side E3. Otherwise, B is enclosed
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by E1, E2, a line l1, and either another line l2 or a side E3. We define Σ on B defining
Y or X, and G. Indeed, we define Σ also on a neighborhood of the lines in B if
the system is not already defined near these lines. Consider the case E1 ∼ E2 and
assume that B is positive, being similar to the other case. Possibly using a change of
coordinates, we can assume that

E1 = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ a}, E′ = {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ b},

where either E′ = l or E′ = E3, and that Y is the constant vector field (1, 0). We
could define Y ≡ (1, 0) on B and let Γ be formed by Y -trajectories, but we have to
make some modifications to ensure that every γ ∈ Γ is extremal.

Consider γy ∈ Γ that verifies γy(t1) = (0, y), γy(t2) ∈ E2. By the induction
hypothesis such a trajectory γy exists defined on [0, t2] for every y ∈ [0, a]. Since we
have already defined Σ on a neighborhood of E1 ∪ E2, there is a covector field λy
associated with γy that is defined on

I = [t1, t1 + µ1] ∪ [t2 − µ2, t2]

for some positive µ1, µ2. It can happen that t1 + µ1 = t2 − µ2, e.g., if we are near
the point E1 ∩E2. We want to define Y in such a way that we can associate with γy
a covector field, defined on Dom(γy), that coincides with λy on I. This will ensure,
choosing G in a suitable way, that every γy is extremal.

Consider a region

Ω = [δ1, δ2]× [ε, a− δ3], δ3 > 0, 0 < δ1 < δ2,

such that the following holds: Ω ⊂ A, where A is the region containing B, and
Ω ∩ (E1 ∪ E2) = ∅. See Fig. 5 where Ω is the darkened region.

Let B′ be the region on the other side of E′. If Σ is already defined on B′, then
ε > 0; otherwise ε < 0. Notice that if E′ is a side (see the definition in section 3)
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then it is of X or of Y type and the former case holds. We choose ε, δ3 in such a way
that Σ is already defined on B ∩ {(x1, x2) : a − 2δ3 ≤ x2 ≤ a}, and if ε > 0, then
Σ is already defined on B ∩ {(x1, x2) : 0 ≤ x2 ≤ 2ε}. For every y ∈ [ε, a − δ3], let
γ1
y ∈ Γ be the trajectory that verifies γ1

y(t1(y)) = (0, y) and let λ1
y be the covector

field associated with γ1
y . We have that γ1

y , λ
1
y are defined on a neighborhood of t1(y).

Consider the Mayer problem with final target E2 and the cost function

(5.3) ψ(T, x(T )) = −T + ψ0(x(T ))

depending on terminal point and time, where we want to maximize ψ. For every
y ∈ [ε, a − δ3] let x̄(y) be such that (x̄(y), y) ∈ E2. There exists trajectories γ2

y ∈ Γ
that reach (x̄(y), y) with an associated covector field λ2

y. Let t2(y) be such that
γ2
y(t2(y)) = (x̄(y), y). Observe that γ2

y , λ
2
y are defined on a neighborhood of t2(y). We

can define ψ in such a way that (γ2
y , λ

2
y) satisfies the PMP and the final transversality

condition for the Mayer problem; see [6]. Indeed the PMP is satisfied because γ2
y is

extremal for the time optimal problem. To satisfy the transversality condition, in
view of (5.3) we need to find λ0, λ1 solution to

(5.4) λ0 = max
|ω|≤1

λ2
y(t2(y)) · (F + ωG)(x̄(y), y),

(5.5) λ2
y(t2(y)) = λ0∇ψ0(x̄(y), y) + λ1n2(x̄(y), y),

where n2 is a unit normal vector to E2. Hence, (5.4) determines λ0 and (5.5) gives a
condition for λ1, ψ0.

Choose ν1, ν2, T1, T2 such that δ1 < ν1 < ν2 < δ2 and

T1 > sup{t1(y) : y ∈ [ε, a− δ3]}, T2 < inf{ψ0((x̄(y), y)) : y ∈ [ε, a− δ3]}.

We define Y = (α, 0) on Ω, α continuous and positive, α ≡ 1 on ∂Ω∪[ν1, ν2]×[ε, a−δ3],
and we let Y = (1, 0) outside Ω. We choose α in such a way that the following holds.
For every y we have γ1

y(T1) = (ν1, y). If T2(y) < t2(y) is the time at which γ2
y reaches,

backward in time, the point (ν2, y), then

ψ(t2(y)− T2(y), (x̄(y), y)) = T2.

With this definition of Y we prolong γ1,2
y , λ1,2

y defining them on the whole set B.
Consider the reachable set R(T1); we have that

{(ν1, y) : ε ≤ y ≤ a− δ3} ⊂ ∂R(T1).

Since λ1
y(T1) has to be perpendicular to ∂R(T1), it follows that λ1

y(T1) has the second
component equal to zero. From Theorem 8.2 of Chapter IV of [4] we have that λ2

y

has to be perpendicular to the level set of the function

ψ′(x, y) = ψ(t2(y)− t(x, y), (x̄(y), y)),

where t(x, y) is defined by γ2
y(t(x, y)) = (x, y). Hence also the second component of

λ2
y(T2(y)) has to be zero. By the PMP, since the Hamiltonian is positive (see (PMP2)

of section 2 of [2]), the first components of λ1
y(T1), λ2

y(T2(y)) have the same sign. Since
α = 1 on [ν1, ν2] × [ε, a− δ3], we obtain that λ1

y, λ
2
y coincide up to a scalar multiple.

We can now associate with every γ1
y the covector field λ1

y and define G in such a way
that G is of class C3 and every γ1

y is extremal.
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It may happen, however, that α is not smooth and hence Σ is not smooth. Since
α is continuous there exists a sequence αn of smooth functions converging uniformly
to α. Let Σn,Γn be the system and synthesis associated with αn. If E2 is of K or
F type, then for n large every γ ∈ Γn is extremal and we are done. Indeed in this
case no trajectory of Γ switches on E2, and by compactness the same holds, if n is
sufficiently large, for Γn. If E2 is of C type then Σn has a switching curve Cn near
to E2. Since Σ has not already been defined on the region B′ that lies on the other
side of E2, we can define Σ = Σn for n sufficiently large. The only change is that we
construct the system on a graph equivalent to G, not exactly on G.

The other case, that is, when B is enclosed by E1, E2 and either two lines or one
line and one side, can be treated in an entirely similar manner. This concludes the
construction on the regions B ∈ B, and then we have defined Σ and Γ on the whole R.

We can again modify Σ on the regions B ∈ B, using the same techniques described
above in such a way that the following holds. If γ ∈ Γ reaches Fr(R), then it reaches
Fr(R) at time 1. If x belongs to an overlap curve, γ1, γ2 ∈ Γ, γ1(t1) = x = γ2(t2),
then t1 = t2 ≤ 1, with equality holding only if x ∈ Fr(R).

We can conclude that every γ ∈ Γ is optimal and then R = R(1), the reachable
set in time 1 for Σ. It is possible to apply Theorem 3.1 of [17] or to use a dynamic
programming argument. Indeed the time along the set of trajectories Γ satisfies the
Hamilton–Jacobi–Bellman equation for the value function inside R and is constant on
its frontier; see [1], [3]. It can happen that some points are reached by more than one
trajectory of Γ. However, we can construct a synthesis from Γ, that we call again Γ,
following the procedure described in section 5 of [10]. We obtain Γ = ΓA(Σ). From
the construction it is clear that G corresponds to Σ in the canonical way.

6. Systems on two-dimensional manifolds. Since all the geometric tech-
niques used in [2], [10], [11], [14] are local it is possible to establish analogous results
for a control system defined on a general smooth two-dimensional manifold. In this
case, the classification program is completed giving a new definition of graph. Indeed
we have to allow reachable sets that are not diffeomorphic to a subset of the plane.
By definition, a graph is a stratification (see [12]) of a connected two-dimensional
manifold with the following properties.

DEFINITION 4 (graph 2). A graph G is a finite collection of disjoint connected
manifolds Mi such that the following holds. Each manifold Mi is two, one, or zero
dimensional. For each i, Fr(Mi) is the union of manifolds of G having strictly lower
dimension. The two- (respectively, one-, zero-) dimensional manifolds correspond to
regions (respectively, frame curves, frame points) of the reachable set of the system.
The one-dimensional manifolds are of six types X,Y,C, S,K, or F and satisfy the
same conditions of edges. The two-dimensional manifolds are not enclosed by F edges
and have a sign. On each two-dimensional manifold there are possibly some marked
one-dimensional submanifolds with boundary, which correspond to lines and follow the
same rules. The union of the manifolds Mi is a two-dimensional connected manifold
with boundary denoted by TG.

In this case, we define the relation between one-dimensional manifolds of a graph
as for edges, i.e., Mi ∼Mj if and only if Fr(Mi) ∩ Fr(Mj) 6= ∅.

The admissibility conditions are defined in the same way as before. Given an
admissible graph G our aim is to construct a corresponding system on a suitable
manifold. For doing this, it is necessary to single out a manifold M that contains a
subset diffeomorphic to TG . In particular we are interested in conditions to ensure
that G corresponds to a planar system.
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The partition of TG , naturally defined by G, establishes a kind of triangulation,
and proceeding as follows it is possible to determine its Euler–Poincaré characteristic
χ(TG).

Recall that a finite collection Ti of boundary manifolds homeomorphic to a tri-
angle is a triangulation provided that for every i, j, Ti ∩ Tj is empty, a vertex, or an
edge (where by definition vertices, respectively, edges, are the images of the vertices,
respectively, edges, of the corresponding triangle). If we denote by #T , #E, and #V
the number of Ti’s, edges, and vertices, respectively, then

(6.1) χ(TG) = #T −#E + #V.

Observe that the stratification of TG is not a triangulation. For every two-dimensional
manifold Mi fix an internal point y and consider the frame points x1, . . . , xn of ∂Mi.
There exist n one-dimensional manifolds γj , j = 1, . . . , n, that connect xj with y and
that do not intersect each other. In this way we divide TG in triangles. It can happen
that two triangles have two vertices in common on the boundary of TG . However, it
is easy to see that we can add an edge obtaining an admissible triangulation without
changing the right-hand side of (6.1).

Now, the number of vertices is equal to the number #FP of frame points plus
the number of regions #R. Every frame point x produces two new edges if it either
lies on the frontier of TG or is of type (X,C)3, (X,K)3, (C,C)1, (C, S)2, (C,K)1, or
(S,K) (see [11] for notations). In this case we say that x is a 2-frame point. If the
frame point is of one of the remaining cases then it produces three new edges and we
say that x is a 3-frame point. Let #FC, #2FP , and #3FP denote, respectively, the
number of frame curves, 2-frame points, and 3-frame points. Then, the total number
of edges is #FC + 2 ·#2FP + 3 ·#3FP . Every region is divided in as many parts
as the number of frame points on its boundary. Hence the number of triangles is
2 ·#2FP + 3 ·#3FP . Finally, we obtain

χ(TG) = #R−#FC + #FP.

Let #F denote the number of equivalence classes of frame curves of type F .
From the classification of compact two-dimensional boundary manifolds (see [5], [7])
it follows that the orientability, the Euler–Poincaré characteristic, and the number of
connected components of the boundary determine one equivalence class of diffeomor-
phic manifolds. In particular, every reachable set of a planar system is diffeomorphic
to a manifold Hk obtained from the unit closed ball B removing the interior of k
distinct balls B1, . . . , Bk ⊂ Int(B). Moreover, χ(Hk) = 1 − k and ∂Hk has k + 1
connected components. Thus, we obtain the following theorem.

THEOREM 6.1. An admissible graph G corresponds to a planar system if and only
if TG is orientable and there exists k ≥ 0 such that #R −#FC + #FP = 1− k and
#F = k + 1.
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Abstract. A model reference adaptive control law is defined for nonlinear distributed parameter
systems. The reference model is assumed to be governed by a strongly coercive linear operator defined
with respect to a Gelfand triple of reflexive Banach and Hilbert spaces. The resulting nonlinear
closed-loop system is shown to be well posed. The tracking error is shown to converge to zero,
and regularity results for the control input and the output are established. With an additional
richness, or persistence of excitation assumption, the parameter error is shown to converge to zero
as well. A finite-dimensional approximation theory is developed. Examples involving both first-
and second-order, parabolic and hyperbolic, and linear and nonlinear systems are discussed, and
numerical simulation results are presented.

Key words. model reference adaptive control, parameter convergence, persistence of excitation,
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1. Introduction. In this paper we develop a model reference adaptive control
(MRAC) scheme for rather broad classes of, in general, nonlinear distributed parame-
ter systems. By a distributed parameter system we mean one in which the state space
is infinite dimensional such as occurs in the case of partial differential equations. In
the context of finite-dimensional systems, MRAC is one of the standard approaches
taken in designing a control law for a plant with unknown parameters. A complete
description and analysis of a variety of approaches to MRAC can be found in any
one of a number of standard texts on adaptive control (see, for example, [2], [14],
[30], and [35]). The objective of an MRAC scheme is to determine a feedback control
law which forces the state of the plant to asymptotically track the state of a given
reference model. At the same time, the unknown parameters in the plant model are
estimated and used to update the control law. Typically, the resulting closed loop
system consisting of the plant, the reference model, and the estimator, will be nonlin-
ear. This is true even if the underlying plant and reference models, and the estimator,
are linear. The nonlinearity arises in the coupling. Consequently, the scheme requires
a careful stability analysis to ensure that all signals (both input and output) remain,
in some sense, bounded. It is also desirable, although not necessarily essential, that
some sort of parameter convergence be achieved.
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The focus of the effort we describe here is the extension to infinite-dimensional
systems of one approach to finite-dimensional MRAC. We consider nonlinear plants
with the rather standard restriction that their dependence on the unknown parameters
be affine. The operator describing the dynamics of the reference model is assumed
to be linear and strongly V -coercive (in a Gelfand triple setting). The parameter
space can be either finite or infinite dimensional, and the estimator dynamics for the
unknown parameters are chosen in a fashion which renders the closed-loop error equa-
tions skew-self-adjoint. This is analogous to what is done in finite dimensions and has
the effect of facilitating both tracking error and parameter convergence by forcing the
time derivative of a certain energy functional to be negative semidefinite. We estab-
lish the global well-posedness of the closed-loop system via two different approaches.
First we argue existence of a local solution and then its continuation by treating the
closed-loop system as semilinear (i.e., a nonlinear perturbation of a linear system)
with the linear component of the dynamics being the infinitesimal generator of an an-
alytic semigroup. The second approach involves the application of an abstract version
of the implicit function theorem to obtain a global solution when the initial tracking
and parameter error are sufficiently small. Using an analogue of Barbălat’s lemma,
we establish that the tracking error approaches zero asymptotically. We also establish
regularity results for both the input and output signals. In particular, we establish
a boundedness result for the control signal. With the additional assumption of per-
sistence of excitation, a richness condition on the plant, reference model, and input
reference signal, we establish parameter convergence. The definition of persistence
of excitation for infinite-dimensional systems given in section 3 below is the natural
extension of the analogous definition for finite-dimensional systems as found in, for
example, [29], [30], and [31]. Since the reference model and estimator are, in general,
infinite dimensional, implementation requires some form of finite-dimensional approx-
imation. Consequently, we develop an abstract finite-dimensional approximation and
convergence theory. Finally, we illustrate the application of our general theory on a
number of examples involving a variety of linear and nonlinear distributed parameter
systems.

One drawback of our approach is that it requires (as do the analogous finite-
dimensional schemes, see, for example, [30]) measurement of the full state and dis-
tributed input. Eliminating either of these restrictions represents a formidable chal-
lenge. For example, if only a partial state measurement is available, a coupled adaptive
observer would be required. The corresponding analysis would be significantly more
complicated than the already rather technical arguments we present here. We are cur-
rently looking at the extension of our treatment here to include partial measurements
and finite-dimensional input.

Our effort here is related to our earlier treatment of adaptive identification for dis-
tributed parameter systems in [7], [8], and [9]. In fact, we employ the same estimator
here to identify the unknown parameters in the plant, and the arguments used below
(infinite-dimensional analogues of the finite-dimensional theory presented in [29] and
[31]) to demonstrate the asymptotic convergence of the tracking and parameter error
to zero, are similar to the ones employed to establish state and parameter convergence
for the identification schemes. However, in the case of the identification schemes, the
resulting estimator equations are linear. In the case of MRAC, the resulting closed-
loop system is nonlinear. Consequently, certain aspects of the analysis, in particular,
those dealing with the well-posedness of the closed-loop system and the convergence
of the finite-dimensional approximation, are more delicate. Other related treatments



ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 35

of on-line or adaptive identification for distributed parameter systems can be found
in [1], [6], [16], [17], [18], and [37].

Recently there has been some attention given to the adaptive control of distributed
parameter systems. First, with respect to approaches other than model reference,
indirect adaptive control algorithms for a class of infinite-dimensional stochastic evo-
lution equations have been developed by Duncan, Pasik-Duncan, and their coworkers
in a recent series of papers [12], [13], [11], and [32]. Their approach involves the use
of a least squares based estimator together with a linear quadratic control design.
Parameter convergence together with a continuous dependence result (with respect
to the unknown parameters) for the solutions to the operator algebraic Riccati equa-
tions yield convergence of the adaptive control law to the nonadaptive optimal LQ
controller. Also, Kobayashi in [21], [22], [23], [24], and [25] has proposed a number of
direct schemes based upon an input/output formulation. His approach is primarily
directed toward the case of unknown input and/or output operators (i.e., the B and
C operators) and places a number of restrictions on the A operator (for example, that
it be self-adjoint, its eigenvalues be known, that only a finite number of modes be
unstable, etc.).

In [40] and [41] a finite-dimensional approach to MRAC based upon the so-called
command generator tracker is extended to infinite dimensions. The command gen-
erator tracker theory deals with the problem of a mismatch in the dimensionality of
the plant and the reference model by assuming that there is an infinite-dimensional
system that is input/output equivalent to the reference model. The authors establish
closed-loop stability (and robustness properties) via a Lyapunov argument (which
in infinite dimensions must be done with care) under a number of rather technical
assumptions.

In a recent effort by Hong and Bentsman [19] the authors consider the MRAC
of linear parabolic partial differential equations. The results in [19] apply only to
plants and reference models which are linear parabolic partial differential equations
with Dirichlet boundary conditions under the assumption that the reference signal
and the plant and reference model parameters are analytic. In the present treatment,
the structure of the plant and reference model are essentially independent and must
satisfy only a few relatively mild abstract assumptions. In particular, we consider
general nonlinear plants and require only that the reference model (but not the control
system) dynamics be strongly V -coercive (in a Gelfand triple sense).

An outline of the remainder of the paper is as follows. In section 2 we define
the plant, reference model, and estimator, we derive the closed-loop system, and we
establish well-posedness. In section 3 we establish the convergence of the tracking
error to zero, we define persistence of excitation, and we demonstrate parameter con-
vergence. The finite-dimensional approximation and convergence theory is discussed
in section 4, and examples and the results of our numerical studies are presented in
section 5.

2. The MRAC Problem. Let {H, 〈·, ·〉, | · |} be a Hilbert space over R, and
let {V, ‖ · ‖} be a reflexive Banach space over R which is densely and continuously
embedded in H. Then (see, for example, [27], [38], or [39])

V ↪→ H ↪→ V ∗,(2.1)

with the embeddings dense and continuous where V ∗ denotes the continuous dual of
V . The notation 〈·, ·〉 will also be used to denote the duality pairing between V ∗ and
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V induced by the continuous and dense embeddings given in (2.1). That is, for ϕ ∈ V ∗
and ψ ∈ V , 〈ϕ,ψ〉 denotes the action of the bounded linear functional ϕ on the vector
ψ. Note that when ϕ is in fact an element in H (or, more precisely, can be identified
with an element in H), the embeddings (2.1) imply that the value of ϕ acting on ψ is
equal to the H inner product of ϕ and ψ. Moreover, since H ∼= V ∗, for ϕ ∈ V ∗ and
{ϕn}∞n=1 ⊂ H with limn→∞ ϕn = ϕ in V ∗ we have limn→∞〈ϕn, ψ〉 = 〈ϕ,ψ〉, ψ ∈ V .
Consequently this minor abuse of notation is entirely justified. Let ‖ · ‖∗ denote the
usual norm on V ∗, and let K > 0 be such that

|ϕ| ≤ K‖ϕ‖, ϕ ∈ V.(2.2)

Let V̂ ∗ be a subspace of V ∗, and let {Q, 〈·, ·〉Q, | · |Q} be a real Hilbert space.
For each q ∈ Q, let A1(q) : V → V ∗ be an, in general, nonlinear operator, and for

q ∈ Q, let Dom(A1(q)) = {ϕ ∈ V : A1(q)ϕ ∈ H}. Also, we let A2 : V → V ∗ be an, in
general, nonlinear operator, and we make the following standing assumptions.

(A1) (V -V ∗-boundedness). There exist α1, α2 > 0 such that

|〈A1(q)ϕ,ψ〉| ≤ α1|q|Q‖ϕ‖‖ψ‖, ϕ, ψ ∈ V, q ∈ Q, and

|〈A2ϕ,ψ〉| ≤ α2‖ϕ‖‖ψ‖, ϕ, ψ ∈ V.

(A2) (Q-linearity). For each ϕ ∈ V , the map q → A1(q)ϕ from Q into V ∗ is linear.
For each q ∈ Q, let A(q) : V → V ∗ be given by

A(q)ϕ = A1(q)ϕ+A2ϕ, ϕ ∈ V.(2.3)

We are interested in adaptively controlling the nonlinear plant given by

Dtu(t) +A(q)u(t) = f(t), a.e. t > 0,(2.4)

u(0) = u0,(2.5)

where q ∈ Q is unknown, u0 ∈ H, the operator A(q) is given by (2.3) with q = q,
and the control input f is assumed to satisfy f ∈ L2(0, T ;V ∗) for all T > 0 with
f(t) ∈ V̂ ∗, a.e. t > 0. We assume minimally that the system (2.4), (2.5) is well-posed
in at least some sense. That is, we assume that for sufficiently regular initial data,
u0, and input, f , there exists a weak solution. More precisely, we assume that for
each T > 0, each u0 ∈ U0, U0 a subset of H, and each f ∈ L2(0, T ;V ∗) sufficiently
regular, there exists a unique V -valued function u which is V ∗-absolutely continuous
on (0, T ), u ∈ C(0, T ;H) ∩ L2(0, T ;V ), Dtu ∈ L2(0, T ;V ∗), and which satisfies

〈Dtu(t), ϕ〉+ 〈A(q)u(t), ϕ〉 = 〈f(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.6)

u(0) = u0.(2.7)

Theorem III.2.6 in [5] provides sufficient conditions for the existence of such a solu-
tion. Indeed, if the operator A(q) is hemicontinuous (i.e., limλ→0〈A(q){ϕ + λψ} −
A(q)ϕ, χ〉 = 0, χ ∈ V for any ϕ,ψ ∈ V ), monotone (i.e., 〈A(q)ϕ− A(q)ψ,ϕ− ψ〉 ≥ 0
for all ϕ,ψ ∈ V ), bounded (i.e., there exists α > 0 for which ‖A(q)ϕ‖∗ ≤ α{1 + ‖ϕ‖}
for all ϕ ∈ V ), and coercive (i.e., there exist ρ > 0 and σ ∈ R for which 〈A(q)ϕ,ϕ〉 ≥
ρ‖ϕ‖2 + σ for all ϕ ∈ V ), then just such a weak solution exists for all u0 ∈ H and all
f ∈ L2(0, T ;V ∗).
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We are interested in designing a model reference adaptive controller for the plant,
or system, (2.4), (2.5). That is, we wish to find a control input f in feedback form
which forces the state of the unknown plant, u, to track the state of a given linear
reference model,

〈Dtv(t), ϕ〉+ 〈A0v(t), ϕ〉 = 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.8)

v(0) = v0,(2.9)

where v0 ∈ H, the input reference signal g is assumed to satisfy g ∈ L2(0, T ;V ∗), for
all T > 0, with g(t) ∈ V̂ ∗, a.e. t > 0, and the operator A0 ∈ L(V, V ∗) is assumed to
satisfy the following conditions.

(A3) (V -V ∗-boundedness). There exists α0 > 0 such that |〈A0ϕ,ψ〉| ≤ α0‖ϕ‖‖ψ‖,
ϕ,ψ ∈ V .

(A4) (V -coercivity). There exists ρ0 > 0 for which 〈A0ϕ,ϕ〉 ≥ ρ0‖ϕ‖2, ϕ ∈ V .
(A5) (V̂ ∗-range). For all q ∈ Q we have R(A(q)−A0) ⊂ V̂ ∗.

It is well known (see, for example, [27], [38], or [39]) that assumptions (A3) and
(A4) are sufficient to conclude that the system (2.8), (2.9) admits a unique solution
v satisfying v ∈ C(0, T ;H) ∩ L2(0, T ;V ) with Dtv ∈ L2(0, T ;V ∗) for all T > 0. Let
D0 = Dom(A0) = {ϕ ∈ V : A0ϕ ∈ H}. Then assumptions (A3) and (A4) also
imply (see, for example, [33], [39], or [38]) that the operator −A0 restricted to the
subspace D0 is the infinitesimal generator of an analytic semigroup, {T0(t) : t ≥ 0}, of
bounded linear operators on H. It can also be shown (see [39]) that the operator −A0
is the infinitesimal generator of an analytic semigroup on V ∗ and that appropriately
restricted −A0 generates an analytic semigroup on V (see [3]). Recalling (2.2), it
follows that

|T0(t)ϕ| ≤ e−ρ0K
−2t|ϕ|, ϕ ∈ H,(2.10)

and

‖T0(t)ϕ‖ ≤Me−ρ0K
−2t‖ϕ‖, ϕ ∈ V,(2.11)

for some M > 0. The solution to the initial value problem (2.8), (2.9) is given by

v(t) = T0(t)v0 +
∫ t

0
T0(t− s)g(s)ds, t ≥ 0.(2.12)

The primary motivation for the inclusion of assumption (A5) is to allow us to
apply our abstract framework to second-order systems (i.e., abstract wave equations
and the like). The relevance of assumption (A5) in this regard will become clearer
when we discuss an example involving the control of a one-dimensional damped wave
equation in section 5 below.

REMARK 2.1. Many of the estimates contained in the arguments used to verify
several of the results in this and the following section assume the existence of solutions
belonging to particular regularity classes (i.e., the domains of certain operators, etc.).
Thus our proofs deliver only a posteriori estimates with respect to those assumptions.
A more precise argument in all of these cases would proceed as follows. The dynamical
system, or initial value problem, would be approximated by a Galerkin system using
smooth basis functions chosen as eigenfunctions of the relevant operator (in most cases
A0). A posteriori estimates for the approximating solutions with bounds independent
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of the number of basis functions are established using the same arguments we em-
ploy below. These estimates now serve as a priori estimates for the solutions. Weak,
weak∗, and strong compactness properties (Aubin’s lemma) of bounded subsets of time
dependent functions are then used to obtain corresponding convergent subsequences
and the corresponding regular solutions. Note that at the level of Galerkin solutions,
with bases formed from eigenfunctions, it is immediately clear that the resulting ap-
proximate solutions are sufficiently regular to permit the estimates we make below. In
particular, the Galerkin basis functions satisfy appropriate boundary conditions.

We have the following regularity result for the reference model (2.8), (2.9).
THEOREM 2.2. For the reference model given by (2.8), (2.9), we have the following

results.
(i) If g ∈ L∞(0,∞;H), then v ∈ L∞(0,∞;H).

(ii) If g ∈ L∞(0,∞;V ) and v0 ∈ V , then v ∈ L∞(0,∞;V ).
(iii) If g ∈ L2(0,∞;V ∗), then v ∈ L∞(0,∞;H) ∩ L2(0,∞;V ).
(iv) If g ∈ L2(0,∞;H) is Hölder continuous, i.e.,

|g(t)− g(s)| ≤ C|t− s|ρ, 0 ≤ t, s,<∞,(2.13)

for some C > 0 and ρ ∈ (0, 1], and v0 ∈ V , and if the operator A0 is
symmetric in the sense that

〈A0ϕ,ψ〉 = 〈A0ψ,ϕ〉, ϕ, ψ ∈ V,(2.14)

then v ∈ L∞(0,∞;V ), v(t) ∈ D0, a.e. t > 0, and A0v ∈ L2(0,∞;H).
Proof. We note that (i)–(iv) are standard results for linear initial value problems.

However, in order to establish some estimates for later reference, we include the
following proof. Statements (i) and (ii) follow immediately from (2.10), (2.11), and
(2.12). To verify (iii), for almost every t > 0 we have that

1
2
Dt|v(t)|2 = 〈−A0v(t) + g(t), v(t)〉

≤ −ρ0‖v(t)‖2 + ‖g(t)‖∗‖v(t)‖

≤ −ρ0

2
‖v(t)‖2 +

1
2ρ0
‖g(t)‖2∗.

(2.15)

Integrating both sides of the estimate (2.15) from 0 to t, it follows that

|v(t)|2 + ρ0

∫ t

0
‖v(s)‖2ds ≤ |v0|2 +

1
ρ0
‖g‖2L2(0,∞;V ∗), t > 0,

from which the result is immediately obtained.
To verify (iv), first note that assumption (A4) and (2.14) imply that A0 : D0 ⊂

H → H is positive definite and self-adjoint. It follows that the square root of A0, A
1
2
0 ,

can be defined with Dom(A
1
2
0 ) = V (see, for example, [39]). Moreover, for ϕ ∈ V ,

‖ϕ‖0 = |A
1
2
0 ϕ| defines a norm on V and, by assumptions (A3) and (A4), we have that

ρ0‖ϕ‖2 ≤ 〈A0ϕ,ϕ〉 = 〈A
1
2
0 ϕ,A

1
2
0 ϕ〉 = ‖ϕ‖20 = 〈A0ϕ,ϕ〉 ≤ α0‖ϕ‖2(2.16)

for all ϕ ∈ V . The estimate (2.16) yields that the two norms ‖ · ‖ and ‖ · ‖0 on V are
equivalent.

The assumption of Hölder continuity on g, (2.13), and the fact that {T0(t) : t ≥ 0},
the semigroup of bounded linear operators on H generated by the operator −A0, is
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analytic, are sufficient to conclude that A0v(t) ∈ H for almost all t > 0. It follows
that v(t) ∈ D0, a.e. t > 0, and recalling Remark 2.1, from (2.8), we obtain that
〈Dtv(t), A0v(t)〉+ |A0v(t)|2 = 〈g(t), A0v(t)〉, a.e. t > 0, and therefore that

1
2
Dt‖v(t)‖20 + |A0v(t)|2 ≤ |g(t)||A0v(t)| ≤ 1

2
|g(t)|2 +

1
2
|A0v(t)|2, a.e. t > 0.

Integrating the above estimate from 0 to t, and recalling (2.9), we find that

‖v(t)‖20 +
∫ t

0
|A0v(s)|2ds ≤ ‖v0‖20 +

∫ t

0
|g(s)|2ds ≤ ‖v0‖20 + ‖g‖2L2(0,∞;H), t ≥ 0,

from which the desired conclusion follows.
For each t > 0, let e(t) = u(t) − v(t). We would like to find a control input, f ,

such that

lim
t→∞

|e(t)| = 0,(2.17)

with f remaining, in some sense, bounded (for example, bounded energy; f ∈ L2(0,∞;
V ∗)). If the plant (i.e., q) were known, the convergence in (2.17) could be achieved
by setting

f(t) = A(q)u(t)−A0u(t) + g(t), a.e. t > 0.(2.18)

For then e would satisfy

〈Dte(t), ϕ〉+ 〈A0e(t), ϕ〉 = 0, ϕ ∈ V, a.e. t > 0,

e(0) = e0,

where e0 = u0 − v0 ∈ H. It follows from assumption (A4) and (2.2) that |e(t)| ≤
e−ρ0K

−2t|e0|, t ≥ 0 and, consequently, that (2.17) is satisfied. The closed-loop system
is given by

〈Dtu(t), ϕ〉+ 〈A0u(t), ϕ〉 = 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.19)

u(0) = u0.(2.20)

THEOREM 2.3. For the nonadaptive closed-loop system given by (2.6), (2.7),
(2.18), or, equivalently, (2.18)–(2.20), we have f(t) ∈ V̂ ∗ for a.e. t > 0 and the
following results.

(i) If g ∈ L2(0,∞;V ∗), then u ∈ L∞(0,∞;H) ∩ L2(0,∞;V ) and, moreover,
f ∈ L2(0,∞;V ∗).

(ii) If g ∈ L∞(0,∞;V ) and u0 ∈ V , then u ∈ L∞(0,∞;V ) and f ∈ L∞(0,∞;V ∗).
(iii) If the operator A0 is symmetric in the sense of (2.14), u0 ∈ V , and g ∈

L2(0,∞;H) and satisfies (2.13), then u(t) ∈ D0, a.e. t > 0, u ∈ L∞(0,∞;V )
and A0u ∈ L2(0,∞;H). If, in addition,
(a) g ∈ L∞(0,∞;V ∗), then f ∈ L∞(0,∞;V ∗),

or
(b) for ϕ ∈ D0, A(q)ϕ ∈ H, and |A(q)ϕ| ≤ γ|A0ϕ|, ϕ ∈ D0, for some γ > 0,

then f ∈ L2(0,∞;H).
Proof. The fact that f(t) ∈ V̂ ∗, a.e. t > 0, follows immediately from assumption

(A5) and the assumption that g(t) ∈ V̂ ∗, a.e. t > 0.
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Using the same argument used in the proof of Theorem 2.2, we obtain u ∈
L∞(0,∞;H) ∩ L2(0,∞;V ). Assumptions (A1) and (A3) and the definition of the
control input f given in (2.18) yield

‖f(t)‖∗ ≤ {α1|q|Q + α2 + α0}‖u(t)‖+ ‖g(t)‖∗, a.e. t > 0,(2.21)

from which it follows that f ∈ L2(0,∞;V ∗).
The result given in (ii) follows immediately from (2.11); (2.19) and (2.20) imply

that

u(t) = T0(t)u0 +
∫ t

0
T0(t− s)g(s)ds, t ≥ 0,

and (2.21).
An argument analogous to the one used in the proof of Theorem 2.2(iv) yields

u(t) ∈ D0, a.e. t > 0, u ∈ L∞(0,∞;V ) and A0u ∈ L2(0,∞;H). The result given
in (iii)(a) then follows immediately from (2.21), while the estimate |f(t)| ≤ {γ +
1}|A0u(t)|+ |g(t)|, a.e. t > 0, yields the result given in (iii)(b).

The importance of Theorem 2.3 lies in the fact that it serves as an upper bound
for the results we can hope to obtain for a corresponding adaptive scheme wherein
the plant q is unknown and is estimated in real time.

Since q is in fact unknown, we set

f(t) = A(q(t))u(t)−A0u(t) + g(t), a.e. t > 0,(2.22)

or

〈f(t), ϕ〉 = 〈A(q(t))u(t), ϕ〉 − 〈A0u(t), ϕ〉+ 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.23)

where for each t > 0, q(t) ∈ Q denotes an adaptively updated estimate for q. Once
again, f(t) ∈ V̂ ∗, a.e. t > 0 follows from assumption (A5) and the fact that g(t) ∈ V̂ ∗,
a.e. t > 0. By analogy to the finite-dimensional case, and for the purpose of forcing
an appropriate energy functional which will be defined in the next section when we
consider convergence, we let the adaptation law for q be given by

〈Dtq(t), p〉Q + 〈A1(p)u(t), e(t)〉 = 0, p ∈ Q, a.e. t > 0,(2.24)

q(0) = q0,(2.25)

where q0 ∈ Q, and e(t) = u(t)− v(t), t > 0. The closed-loop system is then given by

〈Dtu(t), ϕ〉+ 〈A0u(t), ϕ〉+ 〈A1(q − q(t))u(t), ϕ〉 = 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.26)

〈Dtv(t), ϕ〉+ 〈A0v(t), ϕ〉 = 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.27)

〈Dtq(t), p〉Q + 〈A1(p)u(t), u(t)− v(t)〉 = 0, p ∈ Q, a.e. t > 0,(2.28)

u(0) = u0, v(0) = v0, q(0) = q0.(2.29)

We are interested in showing that the nonlinear system (2.26)–(2.29) is, at least
in some sense and under some set of minimally realizable assumptions, well-posed.
Recalling that u(t) = e(t) + v(t), and defining the parameter error r to be

r(t) = q(t)− q, t > 0,(2.30)
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we consider instead the equivalent problem of establishing a well-posedness result for
the nonlinear system

〈Dte(t), ϕ〉+ 〈A0e(t), ϕ〉 − 〈A1(r(t)){e(t) + v(t)}, ϕ〉 = 0, ϕ ∈ V, a.e. t > 0,(2.31)

〈Dtv(t), ϕ〉+ 〈A0v(t), ϕ〉 = 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(2.32)

〈Dtr(t), p〉Q + 〈A1(p){e(t) + v(t)}, e(t)〉 = 0, p ∈ Q, a.e. t > 0,(2.33)

e(0) = e0, v(0) = v0, r(0) = r0,(2.34)

where r0 = q0 − q ∈ Q. In the discussion to follow, we present two approaches
to demonstrating the well-posedness of the closed-loop system (2.31)–(2.34). We
will first demonstrate the existence of a unique strong solution using the theory of
semilinear equations with analytic semigroups. The second approach is based upon an
application of an implicit function theorem. Necessarily, each of the two approaches
will require its own set of additional hypotheses which must be satisfied in order for
there to exist a unique solution. The nonlinear system (2.31)–(2.34) is the one we
will be using to establish the tracking error and parameter convergence in the next
section. It is worth noting that the skew-self-adjoint-like structure of the system
(2.31)–(2.34) plays an essential role in the analysis to follow in sections 2.1 and 2.2.
We also note that the equation for v, (2.32), could be decoupled from the rest of the
system and v could be treated as an exogenous input signal. In fact, in our discussion
of our convergence and approximation results in sections 3 and 4 to follow, and the
implicit function theorem approach to well-posedness, it is convenient, and in some
sense essential (for the arguments as given), to do just that. However, we have found
that for our analytic semigroup approach to well-posedness, the arguments are most
elegantly presented in the context of the complete dynamical system (2.31)–(2.34).

2.1. An analytic semigroup approach to closed-loop well-posedness. Let
X = H ×H ×Q be endowed with the inner product

〈(ϕ1, ψ1, q1), (ϕ2, ψ2, q2)〉X = 〈ϕ1, ϕ2〉+ 〈ψ1, ψ2〉+ 〈q1, q2〉Q, (ϕi, ψi, qi) ∈ X, i = 1, 2,

and let | · |X denote the corresponding induced norm. Thus {X, 〈·, ·〉X , | · |X} is
a Hilbert space. Let Y = V × V × Q be endowed with the norm ‖(ϕ,ψ, q)‖Y =
(‖ϕ‖2 + ‖ψ‖2 + |q|2Q)

1
2 , (ϕ,ψ, q) ∈ Y . Then {Y, ‖ · ‖Y } is a reflexive Banach space

which is densely and continuously embedded in X. It follows that

Y ↪→ X ↪→ Y ∗,(2.35)

with the embeddings dense and continuous. For λ > 0, define the linear operator
Aλ : Y → Y ∗ by 〈Aλ(e, v, r), (ϕ,ψ, q)〉Y ∗,Y = 〈A0e, ϕ〉 + 〈A0v, ψ〉 + 〈λr, q〉Q for
(e, v, r), (ϕ,ψ, q) ∈ Y . In the above definition, 〈·, ·〉Y ∗,Y denotes the duality pairing
between Y ∗ and Y induced by the X inner product via the dense and continuous
embeddings given in (2.35). Recalling that D0 = Dom(A0) = {ϕ ∈ V : A0ϕ ∈ H},
for λ > 0, define the operator Aλ : Dom(Aλ) ⊂ X → X by Dom(Aλ) = {(ϕ,ψ, q) ∈
Y : Aλ(ϕ,ψ, q) ∈ X} = D0×D0×Q, Aλ(ϕ,ψ, q) = Aλ(ϕ,ψ, q), (ϕ,ψ, q) ∈ Dom(Aλ).
Note that Dom(Aλ) = Dom(A) is independent of λ > 0, that for λ > 0, −Aλ is
the infinitesimal generator of a uniformly exponentially stable analytic semigroup,
{Tλ(t) : t ≥ 0}, on X, Y , and Y ∗, and that 0 ∈ ρ(−Aλ), the resolvent set of −Aλ.
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For ϕ ∈ V , define the operator B(ϕ) : Q→ V ∗ by

〈B(ϕ)q, ψ〉 = 〈A1(q)ϕ,ψ〉, q ∈ Q, ψ ∈ V.(2.36)

Assumptions (A1) and (A2) imply that for ϕ ∈ V , B(ϕ) ∈ L(Q,V ∗) with ‖B(ϕ)‖ ≤
α1‖ϕ‖. Recalling that V was assumed to be reflexive, and that Q is a Hilbert space,
for ϕ ∈ V , let B(ϕ)′ ∈ L(V,Q) denote the Banach space adjoint of B(ϕ). That is, for
ϕ ∈ V we have

〈B(ϕ)′ψ, q〉Q = 〈B(ϕ)q, ψ〉 = 〈A1(q)ϕ,ψ〉, ψ ∈ V, q ∈ Q.(2.37)

For λ > 0, define Gλ : R+ × Y → Y ∗ by

〈Gλ(t,Φ),Ψ〉Y ∗,Y = 〈B(e+ v)r, ϕ〉+ 〈g(t), ψ〉+ 〈λr −B(e+ v)′e, q〉Q,

where t ≥ 0, Φ = (e, v, r) ∈ Y and Ψ = (ϕ,ψ, q) ∈ Y .
We consider the system (2.31)–(2.34) written as

〈Dtx(t),Φ〉Y ∗,Y + 〈Aλx(t),Φ〉Y ∗,Y = 〈Gλ(t, x(t)),Φ〉Y ∗,Y , Φ ∈ Y, a.e. t > 0,(2.38)

x(0) = x0,(2.39)

where λ > 0, and for each t ≥ 0, x(t) = (e(t), v(t), r(t)). Under appropriate additional
assumptions on the input reference signal g, the initial data e0, v0, and r0, and the
plant (i.e., the operator A1(q) for q ∈ Q), we establish the existence of a unique
solution to the system (2.38), (2.39) by first establishing the existence of a unique
local strong solution to the initial value problem in X given by

Dtx(t) +Aλx(t) = Gλ(t, x(t)), a.e. t > 0,(2.40)

x(0) = x0,(2.41)

and then showing that it is possible to continue this solution for all t > 0. By a
strong (or classical) solution on the interval [0, T ) to the initial value problem (2.40),
(2.41) we mean a function x : [0, T )→ X which is continuous on [0, T ), continuously
differentiable on (0, T ), x(t) ∈ Dom(A) = Dom(Aλ) for t ∈ (0, T ), (2.40) is satisfied
for t ∈ (0, T ), and (2.41) is satisfied.

To establish that the initial value problem (2.40), (2.41) is well-posed, we require
the following additional assumptions.

(A6) (q-independent domain). The subset of V , D1 = Dom(A1(q)) is independent
of q ∈ Q and for some α ∈ (0, 1), Dom(Aα0 ) ⊂ D1.

(A7) (Aα0 -boundedness). There exist β1 > 0 such that for α as in assumption (A6),
we have

|A1(q)ϕ| ≤ β1|q|Q|Aα0ϕ|, q ∈ Q, ϕ ∈ Dom(Aα0 ),(2.42)

(A8) (Aα0 -Lipschitz). There exist γ1 > 0 such that for α as in assumption (A6) we
have

|A1(q)ϕ−A1(q)ψ| ≤ γ1|q|Q|Aα0ϕ−Aα0ψ|, q ∈ Q, ϕ, ψ ∈ Dom(Aα0 ),(2.43)

(A9) (Hölder continuity). For t ≥ 0, g(t) ∈ H, and there exist ν ∈ (0, 1] and δ > 0
such that

|g(t)− g(s)| ≤ δ|t− s|ν , t, s ≥ 0.(2.44)
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Note that assumptions (A3) and (A4) are sufficient for fractional powers of the
operator A0 to be well defined (see, for example, [33]).

THEOREM 2.4. Suppose that assumptions (A1)–(A9) hold and that e0, v0 ∈
Dom(Aα0 ), where α ∈ (0, 1) is as in assumption (A6). Then there exists a T =
T (x0) > 0 such that the initial value problem (2.40), (2.41) has a unique local solution
x ∈ C([0, T );X) ∩ C1((0, T );X).

Proof. For α ∈ (0, 1), the linear operator Aα0 is closed and invertible with domain,
Dom(Aα0 ), dense in H. For the α in assumption (A6), let Hα denote the space
Dom(Aα0 ) endowed with the graph norm ‖ · ‖α corresponding to Aα0 . That is, for ϕ ∈
Dom(Aα0 ), ‖ϕ‖α = |ϕ|+ |Aα0ϕ|. Note that since Aα0 is closed, Hα is a Banach space,
and since Aα0 is invertible, the norm ‖ · ‖α is equivalent to the norm | · |α on Dom(Aα0 )
given by |ϕ|α = |Aα0ϕ| for ϕ ∈ Dom(Aα0 ). Define the Banach space {Xα, | · |Xα} by
Xα = Hα ×Hα ×Q with |Φ|Xα = |ϕ1|α + |ϕ2|α + |ϕ3|Q for Φ = (ϕ1, ϕ2, ϕ3) ∈ Xα.

The theorem will follow at once from Theorem 6.3.1 in [33] once we have estab-
lished that for some λ > 0 and any neighborhood, U ⊂ Xα, of x0, U = {x ∈ Xα :
|x− x0|Xα < ε}, there exists a constant L = L(U, λ) = L(ε, x0, λ) > 0, such that

|Gλ(t,Φ)−Gλ(s,Ψ)|X
≤ L{|t− s|ν + |Aα0ϕ1 −Aα0ψ1|+ |Aα0ϕ2 −Aα0ψ2|+ |ϕ3 − ψ3|Q}

= L{|t− s|ν + |ϕ1 − ψ1|α + |ϕ2 − ψ2|α + |ϕ3 − ψ3|Q}, t, s > 0,

(2.45)

for all Φ = (ϕ1, ϕ2, ϕ3),Ψ = (ψ1, ψ2, ψ3) ∈ U . Let λ > 0 and Φ = (ϕ1, ϕ2, ϕ3),Ψ =
(ψ1, ψ2, ψ3) ∈ U , and consider for t, s > 0,

|Gλ(t,Φ)−Gλ(s,Ψ)|2X
= |B(ϕ1 + ϕ2)ϕ3 −B(ψ1 + ψ2)ψ3|2 + |g(t)− g(s)|2

+|λ{ϕ3 − ψ3} − {B(ϕ1 + ϕ2)′ϕ1 −B(ψ1 + ψ2)′ψ1}|2Q.
(2.46)

Now, assumptions (A7) and (A8) imply that

|B(ϕ1 + ϕ2)ϕ3 −B(ψ1 + ψ2)ψ3| ≤ |B(ϕ1 + ϕ2)ϕ3 −B(ϕ1 + ϕ2)ψ3|
+ |B(ϕ1 + ϕ2)ψ3 −B(ψ1 + ψ2)ψ3|

≤ β1|ϕ3 − ψ3|Q{|Aα0ϕ1|+ |Aα0ϕ2|}
+ γ1|ψ3|Q{|Aα0ϕ1 −Aα0ψ1|+ |Aα0ϕ2 −Aα0ψ2|}

= β1|ϕ3 − ψ3|Q{|ϕ1|α + |ϕ2|α}
+ γ1|ψ3|Q{|ϕ1 − ψ1|α + |ϕ2 − ψ2|α}.

(2.47)
Finally, using assumptions (A7) and (A8), we obtain

|λ{ϕ3 − ψ3} − {B(ϕ1 + ϕ2)′ϕ1 −B(ψ1 + ψ2)′ψ1}|Q(2.48)
≤ λ|ϕ3 − ψ3|Q + sup

|q|Q≤1
|〈{B(ϕ1 + ϕ2)′ϕ1 −B(ψ1 + ψ2)′ψ1}, q〉Q|

= λ|ϕ3 − ψ3|Q + sup
|q|Q≤1

|〈A1(q){ϕ1 + ϕ2}, ϕ1〉 − 〈A1(q){ψ1 + ψ2}, ψ1〉|

≤ λ|ϕ3 − ψ3|Q + sup
|q|Q≤1

|〈A1(q){ϕ1 + ϕ2} −A1(q){ψ1 + ψ2}, ϕ1〉|

+ sup
|q|Q≤1

|〈A1(q){ψ1 + ψ2}, ϕ1 − ψ1〉|
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≤ λ|ϕ3 − ψ3|Q + sup
|q|Q≤1

|A1(q){ϕ1 + ϕ2} −A1(q){ψ1 + ψ2}||ϕ1|

+ sup
|q|Q≤1

|A1(q){ψ1 + ψ2}||ϕ1 − ψ1|

≤ λ|ϕ3 − ψ3|Q + γ1|ϕ1|{|Aα0ϕ1 −Aα0ψ1|+ |Aα0ϕ2 −Aα0ψ2|}
+β1{|Aα0ψ1|+ |Aα0ψ2|}|ϕ1 − ψ1|

≤ λ|ϕ3 − ψ3|Q + γ1κα|ϕ1|α{|ϕ1 − ψ1|α + |ϕ2 − ψ2|α}
+β1κα{|ψ1|α + |ψ2|α}|ϕ1 − ψ1|α,

where κα is such that |ϕ| ≤ ‖ϕ‖α ≤ κα|ϕ|α for ϕ ∈ Hα. Combining (2.46)–(2.48) and
assumption (A9), we obtain (2.45), and the theorem is proved.

In order to extend the local solution guaranteed to exist in Theorem 2.4 we require
the estimate given in the following lemma.

LEMMA 2.5. Let x = (e, v, r) be the unique solution to the initial value problem
(2.40), (2.41) guaranteed to exist on the interval [0, T ) by Theorem 2.4. It then follows
that

|x(t)|2X+ρ0

∫ t

0

{
‖e(s)‖2 + ‖v(s)‖2

}
ds ≤ |x0|2X+

1
ρ0

∫ t

0
‖g(s)‖2∗ds, 0 ≤ t < T.(2.49)

Proof. For s ∈ [0, T ), using (2.40), we obtain

1
2
Dt|x(s)|2X = 〈Dtx(s), x(s)〉X

= −〈Aλx(s), x(s)〉X + 〈Gλ(s, x(s)), x(s)〉X
= −〈A0e(s), e(s)〉 − 〈A0v(s), v(s)〉+ 〈g(s), v(s)〉

≤ −ρ0‖e(s)‖2 − ρ0‖v(s)‖2 + ‖g(s)‖∗‖v(s)‖

≤ −ρ0

2
{
‖e(s)‖2 + ‖v(s)‖2

}
+

1
2ρ0
‖g(s)‖2∗.

(2.50)

Integrating both sides of (2.50) from 0 to t, and using (2.41), we obtain (2.49), and
the lemma is proved.

Note that the proof of Lemma 2.5 given above does not explicitly require that the
additional assumptions (A6)–(A9) be satisfied.

THEOREM 2.6. Suppose that assumptions (A1)–(A9) hold and that e0, v0 ∈
Dom(Aα0 ), where α ∈ (0, 1) is as in assumption (A6). Then the initial value problem
(2.40), (2.41) has a unique solution, x = (e, v, r), which exists for all t ≥ 0.

Proof. The local solution x to the initial value problem (2.40), (2.41) guaranteed
to exist by Theorem 2.4 can be continued so long as |x(t)|Xα remains bounded. We
show that this is in fact the case by using Lemma 2.5 to argue that |x(t)|Xα remains
bounded as t ↑ T .

For t ∈ [0, T ) we have that

x(t) = Tλ(t)x0 +
∫ t

0
Tλ(t− s)Gλ(s, x(s))ds

and therefore that

Aαλx(t) = AαλTλ(t)x0 +
∫ t

0
AαλTλ(t− s)Gλ(s, x(s))ds.
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Equivalently, we have

Aα0 e(t) = Aα0T0(t)e0 +
∫ t

0
Aα0T0(t− s)B(e(s) + v(s))r(s)ds,

Aα0 v(t) = Aα0T0(t)v0 +
∫ t

0
Aα0T0(t− s)g(s)ds,

and

λαr(t) = λαe−λtr0 +
∫ t

0
λαe−λ(t−s){λr(s)−B(e(s) + v(s))′e(s)}ds.

It follows from assumptions (A7) and (A9), (2.10), and Theorem 2.6.13 in [33] that

|e(t)|α ≤ e−ρ0K
−2t|e0|α +

∫ t
0 Mα(t− s)−αe−ρ0K

−2(t−s)β1|r(s)|Q|e(s)|αds

+
∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s)β1|r(s)|Q|v(s)|αds

≤ |e0|α +Mαβ1

∫ t

0
(t− s)−α|r(s)|Q|x(s)|Xαds,

(2.51)

|v(t)|α ≤ e−ρ0K
−2t|v0|α +

∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s)|g(s)|ds

≤ e−ρ0K
−2t|v0|α +

∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s)|g(0)|ds

+
∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s) {|g(s)− g(0)|} ds

≤ |v0|α +Mα

∫ t

0
(t− s)−α{|g(0)|+ δsν}ds

≤ |v0|α +Mα {|g(0)|+ δT ν} T
1−α

1− α,

(2.52)

and

|r(t)|Q ≤ |r0|Q +
∫ t

0
e−λ(t−s){λ|r(s)|Q + |B(e(s) + v(s))′e(s)|Q}ds

≤ |r0|Q +
∫ t

0
{λ|r(s)|Q + sup

|q|Q≤1
|〈A1(q){e(s) + v(s)}, e(s)〉|}ds

≤ |r0|Q +
∫ t

0
{λ|r(s)|Q + β1|e(s)|{|Aα0 e(s)|+ |Aα0 v(s)|}}ds

≤ |r0|Q +
∫ t

0
{λ|r(s)|Q + β1|e(s)|{|e(s)|α + |v(s)|α}}ds

≤ |r0|Q + Tα
∫ t

0
max{λ, β1|e(s)|}(t− s)−α|x(s)|Xαds,

(2.53)

where Mα is a positive constant. Now Lemma 2.5 implies that for s ∈ [0, T ), |x(s)|X
is bounded. It follows that s ∈ [0, T ), |e(s)| and |r(s)|Q are bounded. Combining
(2.51), (2.52), and (2.53), we obtain

|x(t)|Xα ≤ |x0|Xα +Mα {|g(0)|+ δT ν} T
1−α

1− α + C

∫ t

0
(t− s)−α|x(s)|Xαds,(2.54)
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where C > 0. It follows from Theorem 5.6.7 in [33] that |x(t)|Xα ≤ C1 on [0, T ) for
some C1 > 0, and the theorem is proved.

Theorem 2.6 yields the following regularity result for the controller f . We state
it as a corollary.

COROLLARY 2.7. Suppose that assumptions (A1)–(A9) hold, and that e0, v0 ∈
Dom(Aα0 ), where α ∈ (0, 1) is as in assumption (A6). If the operator A2 is such
that D2 = Dom(A2) = {ϕ ∈ V : A2ϕ ∈ H} ⊃ Dom(Aα0 ), where α ∈ (0, 1) is as in
assumption (A6), and satisfies a Lipschitz condition of the form

|A2ϕ−A2ψ| ≤ γ2|ϕ− ψ|α, ϕ, ψ ∈ Dom(Aα0 ),(2.55)

then the control law given in (2.22) or (2.23) satisfies f(t) ∈ H, t > 0, and f ∈
C((0,∞);H).

Proof. For t > 0, the controller f satisfies

f(t) = A(q(t))u(t)−A0u(t) + g(t) = Dtu(t) +A(q)u(t).(2.56)

Theorem 2.6 implies that u(t) ∈ Dom(A0), t > 0. It follows, therefore, that u(t) ∈
Dom(Aα0 ), t > 0, and therefore that u(t) ∈ Dj , j = 1, 2, t > 0. Consequently,
A(q)u(t) ∈ H, t > 0, and, hence, f(t) ∈ H, t > 0. Theorem 2.6 also implies that
Dtu ∈ C((0,∞);H), and for s, t > 0, assumption (A8) together with (2.55) imply
that

|A(q)u(t)−A(q)u(s)| ≤ |A1(q)u(t)−A1(q)u(s)|+ |A2u(t)−A2u(s)|

≤ {γ1|q|Q + γ2}|u(t)− u(s)|α.
(2.57)

Inspection of the proof of Theorem 6.3.1 in [33] immediately reveals that u is continu-
ous in Hα. It follows from (2.56) and (2.57) that f ∈ C((0,∞);H), which establishes
the corollary.

Example 2.8. We provide a simple example which satisfies assumptions (A1)–
(A9). Let H = L2(0, 1), and let it be endowed with the standard inner product 〈·, ·〉
and corresponding induced norm | · |. Let V = H1

L(0, 1) = {ϕ ∈ H1(0, 1) : ϕ(0) = 0},
and let it be endowed with the norm ‖ · ‖ given by ‖ϕ‖ = {

∫ 1
0 |Dϕ(x)|2dx} 1

2 , ϕ ∈
H1
L(0, 1). Then {V, ‖ · ‖} is a reflexive Banach space and, in fact, a Hilbert space,

which is densely and continuously embedded in H. We have |ϕ| ≤ ‖ϕ‖, ϕ ∈ H1
L(0, 1).

Let V̂ ∗ = V ∗, and let Q = R1 with |q|Q = |q| for q ∈ R. We are interested in
controlling the first-order plant given by

∂u

∂t
(t, x) + q

∂u

∂x
(t, x) = f(t, x), 0 < x < 1, t > 0,(2.58)

together with the boundary condition

u(t, 0) = 0, t > 0,(2.59)

and initial condition

u(0, x) = u0(x), 0 ≤ x ≤ 1,(2.60)

where q > 0, u0 ∈ L2(0, 1), and t→ f(t, ·) ∈ L2(0, T ;H) for each T > 0.
For each q ∈ R1, let the operator A1(q) : Dom(A1(q)) ⊂ H → H be given

by A1(q)ϕ = qDϕ, ϕ ∈ D1, where D1 = Dom(A1(q)) = V . For each q ∈ Q, let
A(q) = A1(q). It follows that A2 is the zero operator, that D1 is independent of
q ∈ Q, and that A1(q) : V → V ∗. Moreover, for q ∈ Q and ϕ,ψ ∈ V we have that

|〈A1(q)ϕ,ψ〉| = |q|Q
∣∣∣∣∫ 1

0
Dϕ(x)ψ(x)dx

∣∣∣∣ ≤ |q|Q|Dϕ||ψ| = |q|Q‖ϕ‖|ψ| ≤ |q|Q‖ϕ‖‖ψ‖.
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Consequently assumption (A1) is satisfied with α1 = 1. Assumption (A2) is trivially
satisfied.

It is not difficult to show that the Hilbert space adjoint of the operator A1(q) is
given by A1(q)∗ϕ = −qDϕ, ϕ ∈ D∗1 , where D∗1 = Dom(A1(q)∗) = H1

R(0, 1) = {ϕ ∈
H1(0, 1) : ϕ(1) = 0}. For ϕ ∈ H1

L(0, 1), we have that

〈A1(q)ϕ,ϕ〉 = q

∫ 1

0
Dϕ(x)ϕ(x)dx =

q

2

∫ 1

0
Dϕ(x)2dx =

q

2
ϕ(1)2 ≥ 0(2.61)

and for ϕ ∈ H1
R(0, 1) that

〈A1(q)∗ϕ,ϕ〉 = −q
∫ 1

0
Dϕ(x)ϕ(x)dx = −q

2

∫ 1

0
Dϕ(x)2dx =

q

2
ϕ(0)2 ≥ 0.(2.62)

It follows from (2.61) and (2.62) that (see, for example, [26, Theorem I.4.5]) the oper-
ator −A1(q) is maximal dissipative and therefore that it is the infinitesimal generator
of a C0-semigroup of bounded linear operators (in fact, contractions), {S(t, q) : t ≥ 0},
on H = L2(0, 1). For each t ≥ 0, the unique mild solution, u(t) = u(t, ·) to the system
(2.58)–(2.60) is given by

u(t) = S(t; q)u0 +
∫ t

0
S(t− s; q)f(s)ds,(2.63)

where for each t ≥ 0, f(t) = f(t, ·) ∈ L2(0, 1). When u0 ∈ H1
L(0, 1), and f is

strongly continuously differentiable for t ≥ 0, the function u given by (2.63) is a strong
solution (see, for example, [39, Theorem 3.2.2]). Such a solution certainly satisfies our
minimal well-posedness requirement on the plant. Indeed, in addition to satisfying
the differential equation and initial data, (2.4) and (2.5), we have (see, for example,
[39, p. 64]) u ∈ C1([0, T ];H), u(t) ∈ Dom(A1(q)) = V , t ∈ [0, T ], and A1(q)u ∈
C([0, T ];H) for all T > 0. It immediately follows that u ∈ C(0, T ;H) ∩ L2(0, T ;V )
and Dtu ∈ L2(0, T ;V ∗).

For the reference model, we consider the one-dimensional heat equation given by

∂v

∂t
(t, x)− a0

∂2v

∂x2 (t, x) = g(t, x), 0 < x < 1, t > 0,

together with the boundary conditions v(t, 0) = 0 and ∂v
∂x (t, 1) = 0, t > 0, and the

initial conditions v(0, x) = v0(x), 0 ≤ x ≤ 1, where a0 > 0, v0 ∈ L2(0, 1), and
[t → g(t, ·)] ∈ L2(0, T ;V ∗) for each T > 0. In this case we have A0 ∈ L(V, V ∗) given
by

〈A0ϕ,ψ〉 = a0

∫ 1

0
Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ H1

L(0, 1).

It is immediately clear that assumptions (A3) and (A4) are satisfied with α0 = ρ0 =
a0. Moreover, we have that D0 = Dom(A0) = {ϕ ∈ H1

L(0, 1) : ϕ ∈ H2(0, 1), Dϕ(1) =
0} and that A0 as an operator from V into V ∗ is symmetric or as an operator on H
is self-adjoint. Assumption (A5) is trivially satisfied with the choice of V̂ ∗ = V ∗.

Since A0 is symmetric, V = Dom(A
1
2
0 ) (see [39]). Consequently, we have

Dom(A
1
2
0 ) = V = Dom(A1(q)) = D1.
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It follows that assumption (A6) is satisfied with α = 1
2 . Moreover, for ϕ ∈ H1

L(0, 1) =
V , we have that

|A1(q)ϕ|2 = |qDϕ|2 = |q|2Q|Dϕ|2 = |q|2Q‖ϕ‖2

= |q|2Q
1
a0
〈A0ϕ,ϕ〉 =

1
a0
|q|2Q〈A

1
2
0 ϕ,A

1
2
0 ϕ〉 =

1
a0
|q|2Q|A

1
2
0 ϕ|2.

It follows that assumptions (A7) and (A8) are satisfied with β1 and γ1 in (2.42) and
(2.43), respectively, given by β1 = γ1 = 1√

a0
. Thus, if u0, v0 ∈ H1

L(0, 1), and g is
sufficiently regular (i.e., assumption (A9) and (2.44) being satisfied for some δ > 0
and ν ∈ (0, 1]), then the resulting closed-loop system will be well-posed.

2.2. Closed-loop well-posedness via an implicit function theorem. As-
sumptions (A6)–(A9) can be rather restrictive and may preclude the consideration
of certain classes of problems of interest. In particular, assumption (A7) does not
include the class of problems in which the plant and reference model dynamics are of
the same order (i.e., α ∈ (0, 1)). Thus, for example, the above theory does not allow
for both a plant and reference model described by a diffusion (or heat) equation. To
remedy this, we propose a somewhat different approach to demonstrating the well-
posedness of the closed-loop system (2.26)–(2.28). Our argument is based upon an
application of the implicit function theorem (see, for example, [10]). Of course this
approach requires additional assumptions as well. Indeed, in this case we can guar-
antee well-posedness only for initial data which is sufficiently small in norm. That is,
the plant must initially be close to the reference model, and we require a reasonably
good initial guess for the unknown parameters. Also, to simplify the presentation we
make the following assumption on the linearity of the plant.

(A10) (linearity of the plant). For each q ∈ Q, A1(q) : V → V ∗ is linear.
Note that assumptions (A1) and (A10) together imply that A1(q) ∈ L(V, V ∗) for
each q ∈ Q. We note that assumption (A10) can be weakened quite a bit to allow for
certain classes of nonlinear plants such as certain Lipschitz continuous or differentiable
operators. However, the required technical assumptions would only complicate the
exposition without significantly affecting its substance. Consequently, we opt for
clarity and leave the generalization to the reader.

We also require the following regularity assumption on the state v of the reference
model (2.8), (2.9).

(A11) (regularity of the reference model). The solution v to the system (2.8), (2.9)
satisfies v ∈ L2(0, T ;V ) for all T > 0.

Theorem 2.2 (ii) provides sufficient conditions for assumption (A11) to be satisfied.
We consider v to be an exogenous signal and consider the initial value problem

given by

〈Dte(t), ϕ〉+ 〈A0e(t), ϕ〉 − 〈A1(r(t)){e(t) + v(t)}, ϕ〉 = 0, ϕ ∈ V, a.e. t > 0,(2.64)

〈Dtr(t), p〉Q + 〈A1(p){e(t) + v(t)}, e(t)〉 = 0, p ∈ Q, a.e. t > 0,(2.65)

e(0) = e0, r(0) = r0,(2.66)

THEOREM 2.9. Suppose that assumptions (A1)–(A5) and assumptions (A10) and
(A11) hold. Suppose further that e0 ∈ V . Then there exists a constant C > 0 such
that if

‖e0‖+ |r0|Q < C,(2.67)
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then the initial value problem (2.64)–(2.66) has a unique solution (e, r) with e ∈
L2(0, T ;V ) ∩H1(0, T ;V ∗) and r ∈ L∞(0, T ;Q) ∩W 1,1(0, T ;Q) for all T > 0.

Proof. The proof follows from an application of the implicit function theorem (see,
for example, [10]). We let T > 0, and we begin with the definition of the following
Banach spaces. Let X = X1 ×X2 where X1 = V and X2 = Q with norm

‖(ϕ, q)‖X = ‖ϕ‖X1 + ‖q‖X2 = ‖ϕ‖+ |q|Q, ϕ ∈ V, q ∈ Q.(2.68)

Let Y = Y1 × Y2 where Y1 = L2(0, T ;V ) ∩ H1
L(0, T ;V ∗) and Y2 = L∞(0, T ;Q) ∩

W 1,1
L (0, T ;Q) with norm

‖(ϕ, q)‖Y = ‖ϕ‖Y1 + ‖q‖Y2

=

{∫ T

0
‖ϕ(t)‖2dt

} 1
2

+

{∫ T

0
‖Dtϕ(t)‖2∗dt

} 1
2

+ ess sup
t∈[0,T ]

|q(t)|Q +
∫ T

0
|Dtq(t)|Qdt,

(2.69)

for ϕ ∈ L2(0, T ;V ) ∩ H1
L(0, T ;V ∗) and q ∈ L∞(0, T ;Q) ∩ W 1,1

L (0, T ;Q), and let
Z = Z1 × Z2, where Z1 = L2(0, T ;V ∗) and Z2 = L1(0, T ;Q), with norm

‖(ϕ, q)‖Z = ‖ϕ‖Z1 + ‖q‖Z2 =

{∫ T

0
‖ϕ(t)‖2∗dt

} 1
2

+
∫ T

0
|q(t)|Qdt,(2.70)

for ϕ ∈ L2(0, T ;V ∗) and q ∈ L1(0, T ;Q). The subscript L in the above spaces denotes
homogeneous boundary conditions at the left endpoint of the interval.

Define the function F : X × Y → Z by F(x, y) = (F1(x, y),F2(x, y)), x =
(x1, x2) ∈ X, y = (y1, y2) ∈ Y , where F1 : X × Y → Z1 = L2(0, T ;V ∗) is given
by F1(x, y) = Dty1 + A0 {y1 + x1} − B(y1 + x1 + v) {y2 + x2}, x = (x1, x2) ∈ X,
y = (y1, y2) ∈ Y , and F2 : X × Y → Z2 = L1(0, T ;Q) is given by F2(x, y) =
Dty2 + B(y1 + x1 + v)′ {y1 + x1}, x = (x1, x2) ∈ X, y = (y1, y2) ∈ Y , where for
ϕ ∈ V , the operator B(ϕ) ∈ L(Q,V ∗) and its Banach space adjoint, B(ϕ)′ ∈ L(V,Q)
are given in (2.36) and (2.37), respectively.

The hypotheses of the theorem clearly imply that F(0, 0) = 0 and that F ∈
C(X×Y, Z); that is, F is a continuous mapping from X×Y into Z. It is not difficult
to show that F is continuously differentiable from X × Y into Z. Indeed, we need
only to argue that (see [10, Theorem 8.9.1]) the maps (x, y) 7→ DxiFj from X × Y
into L(Xi, Zj), i, j = 1, 2 and (x, y) 7→ DyiFj from X × Y into L(Yi, Zj), i, j = 1, 2
are continuous. A straightforward calculation reveals that at (x, y) ∈ X × Y with
x = (x1, x2) ∈ X = X1 ×X2 and y = (y1, y2) ∈ Y = Y1 × Y2,

Dx1F1δx1 = A0δx1 −B(δx1){y2 + x2} ∈ Z1, δx1 ∈ X1,

Dx2F1δx2 = B(y1 + x1 + v)δx2 ∈ Z1, δx2 ∈ X2,

Dx1F2δx1 = B(δx1)′{y1 + x1}+B(y1 + x1 + v)′δx1 ∈ Z2, δx1 ∈ X1,

Dx2F2δx2 = 0 ∈ Z2, δx2 ∈ X2,

Dy1F1δy1 = Dtδy1 +A0δy1 −B(δy1){y2 + x2} ∈ Z1, δy1 ∈ Y1,

Dy2F1δy2 = B(y1 + x1 + v)δy2 ∈ Z1, δy2 ∈ Y2,

Dy1F2δy1 = B(δy1)′{y1 + x1}+B(y1 + x1 + v)′δy1 ∈ Z2, δy1 ∈ Y1,

Dy2F2δy2 = Dtδy2 ∈ Z2, δy2 ∈ Y2,

and that the requisite continuity holds.



50 M. BÖHM, M. DEMETRIOU, S. REICH, AND I. ROSEN

We show next that DyF(0, 0) = (DyF1(0, 0), DyF2(0, 0)) is a linear homeomor-
phism of Y onto Z. We do this by demonstrating that for each z = (z1, z2) ∈ Z,
z1 ∈ L2(0, T ;V ∗), and z2 ∈ L1(0, T ;Q) there exists a unique y = (y1, y2) ∈ Y ,
y1 ∈ L2(0, T ;V ) ∩H1

L(0, T ;V ∗), and y2 ∈ L∞(0, T ;Q) ∩W 1,1
L (0, T ;Q) satisfying the

linear initial value problem

Dty1 +A0y1 −B(v)y2 = z1, t > 0,(2.71)

Dty2 +B(v)′y1 = z2, t > 0,(2.72)

y1(0) = 0 and y2(0) = 0,(2.73)

and by providing estimates which establish the continuous dependence of y on z.
If we assume that V is separable, then the argument establishing the existence of
a unique solution to the system (2.71)–(2.73) is the same as the one used to prove
Theorem III.1.2 in [27]. Galerkin approximation is used to define a sequence of finite-
dimensional initial value problems which approximate the system (2.71)–(2.73). Of
course each of the finite-dimensional systems admits a unique solution yn = (yn1 , y

n
2 ).

One then argues that these approximating solutions lie in a bounded subset of Y ,
that yn → y, weakly in Y , and that y is the unique solution to the initial value
problem (2.71)–(2.73) (see also Remark 2.1). The key step in the proof depends
upon the estimate for ‖y‖Y in terms of ‖z‖Z which we now derive. This estimate,
which is given as an a posteriori estimate in (2.78) below, establishes the continuous
dependence of y on z as well.

Taking the inner product of (2.71) with y1 and (2.72) with y2 and then adding,
we obtain

1
2
{
Dt|y1|2 + |y2|2Q

}
+ 〈A0y1, y1〉 = 〈z1, y1〉+ 〈z2, y2〉Q.

For any ε > 0, assumption (A4) implies that
1
2
{
Dt|y1|2 + |y2|2Q

}
+ ρ0‖y1‖2 ≤ ‖z1‖∗‖y1‖+ |z2|Q|y2|Q

≤ 1
2ε
‖z1‖2∗ +

ε

2
‖y1‖2 +

1
2
|z2|Q

{
1 + |y2|2Q

}
.

(2.74)
Choosing ε < 2ρ0, setting c0 = 2ρ0− ε > 0 and c1 = 1/ε, integrating (2.74) from 0 to
t, and recalling (2.73), we obtain

|y1(t)|2 + |y2(t)|2Q + c0

∫ t

0
‖y1(s)‖2ds

≤ c1
∫ t

0
‖z1(s)‖2∗ds+

∫ t

0
|z2(s)|Qds+

∫ t

0
|z2(s)|Q|y2(s)|2Qds

≤ c1‖z‖2Z + ‖z‖Z +
∫ t

0
|z2(s)|Q|y2(s)|2Qds.

An application of the generalized Gronwall inequality (see [15]) yields

|y1(t)|2 + |y2(t)|2Q + c0

∫ t

0
‖y1(s)‖2ds

≤
{
c1‖z‖2Z + ‖z‖Z

}{
1 +

∫ t

0
|z2(s)|Qe

∫ t
s
|z2(τ)|Qdτds

}
≤
{
c1‖z‖2Z + ‖z‖Z

}{
1 + ‖z‖Ze‖z‖Z

}
, t ≥ 0.

(2.75)
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Equation (2.71) and assumptions (A1), (A3), and (A11) yield the estimate ‖Dty1(t)‖∗ ≤
‖z1(t)‖∗ + α0‖y1(t)‖+ α1‖v(t)‖|y2(t)|Q, a.e. t > 0. Consequently there exists a con-
stant c2 = c2(‖v‖L2(0,T ;V )) > 0 such that

‖y1‖2H1
L(0,T ;V ∗) ≤ c2

{
‖z1‖2L2(0,T ;V ∗) + ‖y1‖2L2(0,T ;V ) + |y2|2L∞(0,T ;Q)

}
.(2.76)

Similarly, (2.72) yields |Dty2(t)|Q ≤ |z2(t)|Q + α1‖v(t)‖‖y1(t)‖, a.e. t > 0, and
therefore that

‖Dty2‖L1(0,T ;Q) ≤ ‖z2‖L1(0,T ;Q) + α1‖v‖L2(0,T ;V )‖y1‖L2(0,T ;V ).(2.77)

Combining (2.75), (2.76), and (2.77), we obtain that

‖y‖Y ≤ h(‖z‖Z),(2.78)

where h : R+ → R+ is continuous and monotone increasing.
The following estimates for the dependence on z on y can also be obtained.

Once again, (2.71) and assumptions (A1), (A3), and (A11) imply that ‖z1(t)‖∗ ≤
‖Dty1(t)‖∗ + α0‖y1(t)‖+ α1‖v(t)‖|y2(t)|Q, a.e. t > 0, and, therefore, that

‖z1‖2L2(0,T ;V ∗) ≤ c2
{
‖y1‖2H1

L(0,T ;V ∗) + ‖y1‖2L2(0,T ;V ) + |y2|2L∞(0,T ;Q)

}
.(2.79)

Also (2.72) yields |z2(t)|Q ≤ |Dty2(t)|Q + α1‖v(t)‖‖y1(t)‖, a.e. t > 0, and, therefore,
that

‖z2‖L1(0,T ;Q) ≤ ‖Dty2‖L1(0,T ;Q) + α1‖v‖L2(0,T ;V )‖y1‖L2(0,T ;V ).(2.80)

Combining (2.79) and (2.80), we obtain that ‖z‖Z ≤ h0‖y‖Y , where h0 > 0.
It follows from the implicit function theorem that there exists a C > 0 such

that if x0 = (e0, r0) ∈ X satisfies (2.67), then there exists a unique y = y(x0) =
(y1(x0), y2(x0)) ∈ Y , which is continuously differentiable in x0 and which satisfies
F(x0, y) = (F1(x0, y),F2(x0, y)) = 0. Setting e = y1 + e0 and r = y2 + r0, we obtain
the desired result.

Under additional hypotheses a similar approach can be used to obtain a somewhat
stronger result providing L∞ estimates.

THEOREM 2.10. Suppose that assumptions (A1)–(A5) and assumption (A10) are
satisfied. Suppose further that

(i) D1 = Dom(A1(q)) is independent of q ∈ Q, D1 ⊆ D0, and there exists γ0 > 0
for which |A1(q)ϕ| ≤ γ0|q|Q|A0ϕ|, q ∈ Q, and ϕ ∈ D1;

(ii) A0 is symmetric (A0 : D0 ⊂ H → H is self-adjoint);
(iii) v ∈ L∞(0, T ;V ), v(t) ∈ D0, a.e. t > 0, A0v ∈ L2(0, T ;H); and
(iv) e0 ∈ D0.

Then there exists a constant C > 0 such that if |A0e0| + |r0|Q < C, then the ini-
tial value problem (2.64)–(2.66) has a unique solution (e, r) with e ∈ L∞(0, T ;V ) ∩
H1(0, T ;H) and r ∈ L∞(0, T ;Q) ∩W 1,1(0, T ;Q). Moreover, e(t) ∈ D0, a.e. t > 0,
and A0e ∈ L2(0, T ;H).

Proof. Let D0 be endowed with the graph norm. Then the proof is completely
analogous to the one given above for Theorem 2.9 based upon the implicit function
theorem. However, in this case we take the Banach spaces X, Y , and Z to be X =
D0 × Q, Y = {L2(0, T ;D0) ∩ H1

L(0, T ;H)} × {L∞(0, T ;Q) ∩ W 1,1
L (0, T ;Q)}, and

Z = L2(0, T ;H) × L1(0, T ;Q), respectively. The norms on these spaces are chosen
analogously to (2.68), (2.69), and (2.70).
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It is worth noting that conditions sufficient to guarantee that hypothesis (iii) in
the statement of Theorem 2.10 above holds are given in Theorem 2.2(iv).

Example 2.11. As an example of the kinds of systems to which the theory in
this section applies, let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Let
H = L2(Ω), V = H1

0 (Ω), and let Q be a closed subspace of Hs(Ω)n
2×Hs(Ω)n×Hs(Ω)

with s > n/2. Let V̂ ∗ = V ∗ = H−1(Ω). Let A0 ∈ L(V, V ∗) be given by

A0ϕ = −
n∑

i,j=1

Dj {ai,jDiϕ}+
n∑
i=1

biDiϕ+ cϕ, ϕ ∈ V,

where ai,j ∈ L∞(Ω), ai,j(x) = aj,i(x), a.e. x ∈ Ω, i, j = 1, 2, . . . , n,

ρ0|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤ ρ1|ξ|2, ξ ∈ Rn, a.e. x ∈ Ω,

for some constants ρ0, ρ1 > 0, bi ∈ W 1,n2 (Ω), i = 1, 2, . . . , n with
∑n
i=1Dibi(x) ≤ 0,

a.e. x ∈ Ω, and c ∈ Ln
2 (Ω) with c(x) ≥ 0, a.e. x ∈ Ω.

For q = ({qi,j}, {qi}, q0) ∈ Q, let A1(q) ∈ L(V, V ∗) be given by

A1(q)ϕ = −
n∑

i,j=1

Dj {qi,jDiϕ}+
n∑
i=1

qiDiϕ+ q0ϕ, ϕ ∈ V.

Note that these are not the most general conditions possible to guarantee that as-
sumptions (A1)–(A5) hold for the general class of second-order elliptic plants and
reference models.

3. Tracking and parameter error convergence. In this section we argue
that the control objective is achieved (i.e., that the tracking error e(t) converges to
zero as t→∞ and that the feedback control f is, in some sense, bounded), and that
under an additional richness condition on the reference model, parameter convergence
is obtained (i.e., that q(t)→ q as t→∞). We require that our standing assumptions
(A1)–(A5) continue to hold, and that the error equations (2.31)–(2.34) admit a unique
solution (e, v, r), with e, v ∈ L2(0, T ;V ) ∩ H1(0, T ;V ∗) (⊂ C([0, T ];H)!) and r ∈
H1(0, T ;Q) (⊂ C([0, T ];Q)!) for all T > 0.

Define E : [0,∞)→ R+ by

E(t) =
1
2
{|e(t)|2 + |r(t)|2Q}, t ≥ 0.(3.1)

LEMMA 3.1. For (e, v, r) the solution to the initial value problem (2.31)–(2.34),
the function E : [0,∞)→ R+ given by (3.1) is nonincreasing, and we have that

E(t) + ρ0

∫ t

0
‖e(s)‖2ds ≤ ξ0, t ≥ 0,(3.2)

where ξ0 = E(0) = 1
2{|e0|2 + |r0|2Q}.

Proof. Using (2.31), (2.33), and assumption (A4), we obtain

DtE(t) = 〈Dte(t), e(t)〉+ 〈Dtr(t), r(t)〉Q(3.3)
= −〈A0e(t), e(t)〉
≤ −ρ0‖e(t)‖2, a.e. t > 0.

The estimate in (3.3) implies that E is nonincreasing. Integrating this expression
from 0 to t, t > 0, we obtain the result given in (3.2).

The above lemma yields the following immediate corollary.
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COROLLARY 3.2. For (e, v, r) the solution to the initial value problem (2.31)–
(2.34), we have e ∈ L∞(0,∞;H) ∩ L2(0,∞;V ) and r ∈ L∞(0,∞;Q). Consequently,
e ∈ BC([0,∞);H) and r ∈ BC([0,∞);Q).

LEMMA 3.3. Let (e, v, r) be the solution to the initial value problem (2.31)–(2.34).
Then, if g ∈ L∞(0,∞;H), it follows that

∫ t2
t1
‖v(t)‖2dt ≤ c1 + c2(t2 − t1) for all

t2 ≥ t1 ≥ 0, where c1 and c2 are positive constants which do not depend on t1 and
t2.

Proof. It follows from (2.10) and (2.12) that if g ∈ L∞(0,∞;H) then v ∈
L∞(0,∞;H). Then, integrating (2.15) from t1 to t2, we obtain

|v(t2)|2 + ρ0

∫ t2

t1

‖v(t)‖2dt ≤ |v(t1)|2 +
∫ t2

t1

‖g(t)‖2∗dt.(3.4)

Recalling (2.2), it follows from (3.4) that∫ t2

t1

‖v(t)‖2dt ≤ 1
ρ0
|v|2L∞(0,∞;H) +

K2

ρ0
|g|2L∞(0,∞;H)(t2 − t1).

In the theorem that follows, we establish that the desired control objective is
achieved. The proof we provide is in the spirit of the argument used to verify
Barbălat’s lemma in [34].

THEOREM 3.4. For (e, v, r) the solution to the initial value problem (2.31)–(2.34)
and f the adaptive feedback control law given by (2.22) or (2.23), we have the following
results.

(i) If g ∈ L2(0,∞;V ∗) ∪ L∞(0,∞;H), then limt→∞ |e(t)| = 0.
(ii) If g ∈ L2(0,∞;V ∗), then u ∈ L∞(0,∞;H)∩L2(0,∞;V ) and f ∈ L2(0,∞;V ∗).

(iii) If the operator A0 is symmetric in the sense of (2.14), u0, v0 ∈ V , g ∈
L2(0,∞;H) and satisfies (2.13), and for ϕ ∈ D0 and q ∈ Q, we have A(q)ϕ ∈
H and |A1(q)ϕ| ≤ γ1|q|Q|A0ϕ|, for some γ1 > 0 for which γ1|r|L∞(0,∞;Q) < 1,
then u(t) ∈ D0, a.e. t > 0, u ∈ L∞(0,∞;V ), A0u ∈ L2(0,∞;H). If, in addi-
tion,
(a) g ∈ L∞(0,∞;V ∗), then f ∈ L∞(0,∞;V ∗),

or if, in addition,
(b) for ϕ ∈ D0 we have A2ϕ ∈ H and |A2ϕ| ≤ γ2|A0ϕ|, for some γ2 > 0,

then f ∈ L2(0,∞;H).
Proof. Let t2 ≥ t1 ≥ 0 and note that assumptions (A1) and (A4), (2.31), and

Lemma 3.1 imply that

|e(t2)|2 − |e(t1)|2 =
∫ t2

t1

d

dt
|e(t)|2dt = 2

∫ t2

t1

〈Dte(t), e(t)〉dt

= −2
∫ t2

t1

〈A0e(t), e(t)〉dt

−2
∫ t2

t1

〈A1(r(t)){e(t) + v(t)}, e(t)〉dt

≤ −2ρ0

∫ t2

t1

‖e(t)‖2dt

+2α1

∫ t2

t1

|r(t)|Q{‖e(t)‖+ ‖v(t)‖}‖e(t)‖dt

(3.5)
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≤ 2α1

∫ t2

t1

|r(t)|Q{‖e(t)‖+ ‖v(t)‖}‖e(t)‖dt

= 2α1

∫ t2

t1

|r(t)|Q‖e(t)‖2dt+ 2α1

∫ t2

t1

|r(t)|Q‖v(t)‖‖e(t)‖dt

≤ 2α1
√

2ξ
1
2
0

∫ t2

t1

‖e(t)‖2dt

+2α1
√

2ξ
1
2
0

(∫ t2

t1

‖v(t)‖2dt
) 1

2
(∫ t2

t1

‖e(t)‖2dt
) 1

2

.

If g ∈ L2(0,∞;V ∗), then Theorem 2.2 implies that
∫ t2
t1
‖v(t)‖2dt ≤ ζ0, for some

ζ0 > 0, for all t2 ≥ t1 ≥ 0. It then follows from (3.5) that

|e(t2)|2 − |e(t1)|2 ≤ κ0

∫ t2

t1

‖e(t)‖2dt+ κ1

(∫ t2

t1

‖e(t)‖2dt
) 1

2

,(3.6)

where κ0 = 2
√

2α1ξ
1
2
0 and κ1 = 2

√
2α1ξ

1
2
0 ζ

1
2
0 . On the other hand, if g ∈ L∞(0,∞;H),

then Lemma 3.3 and (3.5) imply that

|e(t2)|2−|e(t1)|2 ≤ κ0

∫ t2

t1

‖e(t)‖2dt+κ0 (c1 + c2(t2 − t1))
1
2

(∫ t2

t1

‖e(t)‖2dt
) 1

2

.(3.7)

Now suppose that limt→∞ |e(t)| 6= 0. Then there exist ε > 0 and a sequence
{ti}∞i=1 with limi→∞ ti =∞ for which

|e(ti)|2 > ε, i = 1, 2, . . . .(3.8)

If g ∈ L2(0,∞;V ∗), then (3.6) and (3.8) imply that for δ > 0 and i = 1, 2, . . ., we
have∫ ti

ti−δ
|e(t)|2dt =

∫ ti

ti−δ
|e(ti)|2dt−

∫ ti

ti−δ
{|e(ti)|2 − |e(t)|2}dt

> εδ − κ0

∫ ti

ti−δ

∫ ti

t

‖e(s)‖2dsdt− κ1

∫ ti

ti−δ

(∫ ti

t

‖e(s)‖2ds
) 1

2

dt

≥ εδ − κ0δ

∫ ti

ti−δ
‖e(t)‖2dt− κ1δ

(∫ ti

ti−δ
‖e(t)‖2dt

) 1
2

.

Recalling (2.2), it then follows that

K2
∫ ti

ti−δ
‖e(t)‖2dt ≥

∫ ti

ti−δ
|e(t)|2dt

> εδ − κ0δ

∫ ti

ti−δ
‖e(t)‖2dt− 1

2
κ2

1δ
2 − 1

2

∫ ti

ti−δ
‖e(t)‖2dt,

and therefore that
(
K2 + κ0δ + 1

2

) ∫ ti
ti−δ ‖e(t)‖

2dt > εδ − 1
2κ

2
1δ

2. Choosing δ = ε
κ2

1

and replacing the sequence {ti}∞i=1 by a subsequence {tij}∞j=1 for which tij+1− tij > δ,
j = 1, 2, . . ., we obtain∫ tij

tij−δ
‖e(t)‖2dt ≥ εδ

2
(
K2 + κ0δ + 1

2

) , j = 1, 2, . . . .(3.9)
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Similarly, if g ∈ L∞(0,∞;H), then (3.7) and (3.8) imply that for δ > 0 and
i = 1, 2, . . ., we have∫ ti

ti−δ
|e(t)|2dt =

∫ ti

ti−δ
|e(ti)|2dt−

∫ ti

ti−δ
{|e(ti)|2 − |e(t)|2}dt

> εδ − κ0

∫ ti

ti−δ

∫ ti

t

‖e(s)‖2dsdt

−κ0

∫ ti

ti−δ
(c1 + c2(ti − t))

1
2

(∫ ti

t

‖e(s)‖2ds
) 1

2

dt

≥ εδ − κ0δ

∫ ti

ti−δ
‖e(t)‖2dt− κ0δ (c1 + c2δ)

1
2

(∫ ti

ti−δ
‖e(t)‖2dt

) 1
2

.

It follows that
(
K2 + κ0δ + 1

2

) ∫ ti
ti−δ ‖e(t)‖

2dt > εδ − 1
2κ

2
0 (c1 + c2δ) δ2. Then, if we

choose δ =
√
c21κ

2
0+4c2ε−c1κ0

2c2κ0
> 0, we again obtain (3.9). But (3.9) contradicts the fact

that Lemma 3.1 implies that
∫∞

0 ‖e(t)‖
2dt ≤ ξ0

ρ0
<∞. Consequently, limt→∞ |e(t)|2 =

0, and therefore, limt→∞ |e(t)| = 0, which establishes (i).
Corollary 3.2 above implies that e ∈ L∞(0,∞;H) ∩ L2(0,∞;V ), and if g ∈

L2(0,∞;V ∗), then Theorem 2.2 implies that v ∈ L∞(0,∞;H) ∩ L2(0,∞;V ) as well.
Consequently, it follows that u = e + v ∈ L∞(0,∞;H) ∩ L2(0,∞;V ). To establish
that f ∈ L2(0, T ;V ∗), we note that (2.23), assumptions (A1) and (A3), and (2.30)
imply that for a.e. t > 0

‖f(t)‖∗ = sup
‖ϕ‖≤1

|〈f(t), ϕ〉|

= sup
‖ϕ‖≤1

|〈A(q(t))u(t)−A0u(t) + g(t), ϕ〉|

= sup
‖ϕ‖≤1

|〈A1(q(t))u(t) +A2u(t)−A0u(t) + g(t), ϕ〉|

≤ {α1|q(t)|Q + α2 + α0}‖u(t)‖+ ‖g(t)‖∗
≤ {α1{|r(t)|Q + |q|Q}+ α2 + α0}‖u(t)‖+ ‖g(t)‖∗
≤ σ‖u(t)‖+ ‖g(t)‖∗,

where σ = α1{
√
ξ0 + |q|Q}+ α2 + α0. It follows that

‖f(t)‖2∗ ≤ 2σ2‖u(t)‖2 + 2‖g(t)‖2∗ a.e. t > 0.(3.10)

The estimate (3.10) together with the fact that g ∈ L2(0,∞;V ∗) and u ∈ L2(0,∞;V )
immediately yields (ii).

To establish (iii), we first note that under the present assumptions, Theorem 2.2
implies that v ∈ L∞(0,∞;V ), v(t) ∈ D0, a.e. t > 0, and A0v ∈ L2(0,∞;H). Also,
Corollary 3.2 implies that r ∈ L∞(0,∞;Q). Now, recalling the definition of the norm
‖ · ‖0 on V from section 2, (2.31) with ϕ = A0e(t) (recall Remark 2.1) implies that

〈Dte(t), A0e(t)〉+ |A0e(t)|2 = 〈A1(r(t)){e(t) + v(t)}, A0e(t)〉, a.e. t > 0,
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and therefore, for any ε > 0, that
1
2Dt‖e(t)‖20 + |A0e(t)|2 ≤ |A1(r(t)){e(t) + v(t)}||A0e(t)|

≤ γ1|r(t)|Q|A0e(t) +A0v(t)||A0e(t)|

≤ γ1|r|L∞(0,∞;Q)|A0e(t)|2 + γ1|r|L∞(0,∞;Q)
ε

2
|A0e(t)|2

+γ1|r|L∞(0,∞;Q)
1
2ε
|A0v(t)|2 a.e. t > 0.

(3.11)

Integrating (3.11) from 0 to t, recalling (2.34), (2.16), and our assumption that
γ1|r|L∞(0,∞;Q) < 1, and choosing ε > 0 sufficiently small, we find that

ρ0‖e(t)‖2 + σ0

∫ t

0
|A0e(s)|2ds

≤ α0‖e0‖2 + γ1|r|L∞(0,∞;Q)
1
2ε

∫ t

0
|A0v(s)|2ds, t ≥ 0

(3.12)

for some σ0 > 0. It follows from (3.12) that e ∈ L∞(0,∞;V ), e(t) ∈ D0, a.e. t > 0,
and A0e ∈ L2(0,∞;H). Consequently, u = e + v ∈ L∞(0,∞;V ), u(t) ∈ D0, a.e.
t > 0, and A0u ∈ L2(0,∞;H). This, together with (3.10) establishes the claim in (a).
To establish the claim in (b), we have the estimate

|f(t)| = sup|ϕ|≤1 |〈f(t), ϕ〉|

= sup|ϕ|≤1 |〈A(q(t))u(t)−A0u(t) + g(t), ϕ〉|

= sup|ϕ|≤1 |〈A1(q(t))u(t) +A2u(t)−A0u(t) + g(t), ϕ〉|

≤ {γ1|q(t)|Q + γ2 + 1}|A0u(t)|+ |g(t)|

≤ {γ1{|r|L∞(0,∞;Q) + |q|Q}+ γ2 + 1}|A0u(t)|+ |g(t)|, a.e. t > 0,

from which the desired result immediately follows.
We note that the condition that γ1|r|L∞(0,∞;Q) < 1 can be satisfied with an

appropriate choice of the reference model dynamics A0, the initial estimate of the
unknown parameters q0 (i.e., that it be sufficiently close to the true parameters q),
and the initial state of the reference model v0 (i.e., that it be sufficiently close to the
initial state of the plant u0). The last two sufficient conditions are a consequence of
Lemma 3.1.

In addition to meeting the designated control objective, it is also desirable to
have an adaptive control scheme provide parameter convergence as well. In order
to establish that the scheme we consider here yields convergence of the parameters
q(t) to the true parameters q as t → ∞, we require the following additional richness
condition on the reference model.

DEFINITION 3.5. The reference model (2.8), (2.9) or the triple {A0, g, v0} consist-
ing of the reference model dynamics operator A0, the input reference signal, g, and
the initial state of the reference model v0, will be said to be persistently exciting, or,
sufficiently rich, if there exist positive constants τ0, δ0, and ε0, such that for each
p ∈ Q with |p|Q = 1 and t ≥ 0 sufficiently large, there exists t̃ ∈ [t, t+ τ0] for which∥∥∥∥∥

∫ t̃+δ0

t̃

A1(p)u(τ)dτ

∥∥∥∥∥
∗

≥ ε0,

where u is the closed loop state of the plant as given by the system (2.26)–(2.29).
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THEOREM 3.6. If either g ∈ L2(0,∞;V ∗) or g ∈ L∞(0,∞;V ) and v0 ∈ V , and
if the reference model, (2.8), (2.9), is persistently exciting, then limt→∞ |r(t)|Q = 0.

Proof. If g ∈ L2(0,∞;V ∗), then Theorem 3.4 implies that u ∈ L2(0,∞;V ).
Corollary 3.2 implies that r ∈ BC([0,∞);Q), and Lemma 3.1 together with Theorem
3.4 imply that limt→∞ |r(t)|Q exists. If we assume that limt→∞ |r(t)|Q 6= 0, then there
exists {tk}∞k=1, an increasing sequence of positive numbers for which limk→∞ tk =∞
and

|r(tk)|Q ≥ δ, k = 1, 2, . . . ,(3.13)

for some δ > 0. If the reference model (2.8), (2.9) is persistently exciting, it then
follows from assumption (A1) that for each k = 1, 2, . . . and some t̃k ∈ [tk, tk + τ0],
we have

0 < δε0 ≤ |r(tk)|Q

∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1(
r(tk)
|r(tk)|Q

)u(t)dt

∥∥∥∥∥
∗

=

∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1(r(tk))u(t)dt

∥∥∥∥∥
∗

≤ α1|r|L∞(0,∞;Q)

√
δ0

{∫ t̃k+δ0

t̃k

‖u(t)‖2dt
} 1

2

.

(3.14)

Letting k →∞ in (3.14), and using the fact that u ∈ L2(0,∞;V ) implies that

lim
k→∞

∫ t̃k+δ0

t̃k

‖u(t)‖2dt = 0,

we obtain a contradiction.
Now suppose that g ∈ L∞(0,∞;V ) and v0 ∈ V . We first recall that Theorem 2.2

implies that v ∈ L∞(0,∞;V ). Now, for t2 > t1, (2.31), assumption (A3), and (2.2)
imply that ∥∥∥∥∫ t2

t1

A1(r(t))u(t)dt
∥∥∥∥
∗

=
∥∥∥∥∫ t2

t1

A1(r(t)){e(t) + v(t)}dt
∥∥∥∥
∗

≤
∥∥e(t2)‖∗ + ‖e(t1)‖∗ +

∫ t2

t1

‖A0e(t)
∥∥
∗dt

≤ K|e(t2)|+K|e(t1)|

+α0(t2 − t1)
1
2

{∫ t2

t1

‖e(t)‖2dt
} 1

2

.

(3.15)

Also, from (2.33), assumption (A1), and Lemma 3.1 it follows that

|r(t2)− r(t1)|Q = sup
|p|Q≤1

|〈r(t2)− r(t1), p〉Q|

= sup
|p|Q≤1

∣∣∣∣∣
〈∫ t2

t1

Dtr(t)dt, p
〉
Q

∣∣∣∣∣
≤

∫ t2

t1

sup
|p|Q≤1

|〈A1(p){e(t) + v(t)}, e(t)〉| dt

(3.16)
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≤ α1

∫ t2

t1

{‖e(t)‖+ ‖v(t)‖} ‖e(t)‖dt

≤ α1

∫ t2

t1

‖e(t)‖2dt+ α1‖v‖L∞(0,∞;V )

∫ t2

t1

‖e(t)‖dt

≤ α1

∫ t2

t1

‖e(t)‖2dt

+α1‖v‖L∞(0,∞;V )(t2 − t1)
1
2

{∫ t2

t1

‖e(t)‖2dt
} 1

2

.

Once again assume that limt→∞ |r(t)|Q 6= 0, and let {tk}∞k=1 be an increasing
sequence of positive numbers for which limk→∞ tk = ∞ and for which (3.13) holds
for some δ > 0. Assume further that the reference model (2.8), (2.9) is persistently
exciting, and for each k = 1, 2, . . ., let t̃k ∈ [tk, tk + τ0] be such that∥∥∥∥∥

∫ t̃k+δ0

t̃k

A1

(
r(tk)
|r(tk)|Q

)
u(t)dt

∥∥∥∥∥
∗

≥ ε0.(3.17)

Then, using (3.13), (3.15), (3.16), (3.17), and assumptions (A1) and (A2), we obtain
the estimate

0 < δε0 ≤ |r(tk)|Q

∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1

(
r(tk)
|r(tk)|Q

)
u(t)dt

∥∥∥∥∥
∗

=

∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1(r(tk))u(t)dt

∥∥∥∥∥
∗

≤
∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1(r(t))u(t)dt

∥∥∥∥∥
∗

+

∥∥∥∥∥
∫ t̃k+δ0

t̃k

A1(r(tk)− r(t)){e(t) + v(t)}dt
∥∥∥∥∥
∗

≤ K|e(t̃k + δ0)|+K|e(t̃k)|+ α0

√
δ0

∫ t̃k+δ0

t̃k

‖e(t)‖2dt

+α1

∫ t̃k+δ0

t̃k

|r(t)− r(tk)|Q {‖e(t)‖+ ‖v(t)‖} dt

≤ K|e(t̃k + δ0)|+K|e(t̃k)|+ α0

√
δ0

∫ t̃k+δ0

t̃k

‖e(t)‖2dt

+α2
1

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt+ ‖v‖L∞(0,∞;V )

√
(τ0 + δ0)

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt


×
∫ t̃k+δ0

t̃k

{‖e(t)‖+ ‖v(t)‖} dt

≤ K|e(t̃k + δ0)|+K|e(t̃k)|+ α0

√
δ0

∫ t̃k+δ0

t̃k

‖e(t)‖2dt

(3.18)
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+α2
1

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt+ ‖v‖L∞(0,∞;V )

√
(τ0 + δ0)

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt


×

√δ0 ∫ t̃k+δ0

t̃k

‖e(t)‖2dt+ δ0‖v(t)‖L∞(0,∞;V )

 .

Now Lemma 3.1 implies that for any L > 0 limt→∞
∫ t+L
t
‖e(s)‖2ds = 0. Therefore,

letting k →∞ in (3.18), Lemma 3.1 and Theorem 3.4 imply that

0 < δε0

≤ K lim
k→∞

|e(t̃k + δ0)|+K lim
k→∞

|e(t̃k)|+ α0

√
δ0 lim

k→∞

√∫ tk+τ0+δ0

tk

‖e(t)‖2dt

+α2
1

(
lim
k→∞

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt

+‖v‖L∞(0,∞;V )

√
(τ0 + δ0) lim

k→∞

∫ t̃k+τ0+δ0

t̃k

‖e(t)‖2dt


×

√δ0 lim
k→∞

∫ t̃k+δ0

t̃k

‖e(t)‖2dt+ δ0‖v(t)‖L∞(0,∞;V )


= 0,

which is a contradiction, and the theorem is proved.
We note that the persistence of excitation condition defined in Definition 3.5 is, in

practice, difficult, if not impossible, to verify. However, this condition is analogous to a
similar condition used to establish parameter convergence in an on-line identification
scheme developed in [7]. In [9] a careful study and analysis of the persistence of
excitation condition was carried out yielding valuable insight into how to recognize
(based upon its performance) whether an adaptive scheme such as the one we treat
here is either overdamped (i.e., the operator −A0 is too stable) or underdamped (i.e.,
the persistence of excitation is insufficient). This information can then be used to
tune the scheme (i.e., tune the reference model and reference input signal g) so as
to achieve a balance between the tracking error convergence (i.e., limt→∞ |e(t)| = 0)
and parameter convergence (i.e., limt→∞ |q(t)− q|Q = limt→∞ |r(t)|Q = 0). We note
also that it is possible to establish a weaker parameter convergence result in either the
absence of persistence of excitation or the presence of partial persistence of excitation.
The result and its proof are analogous to the corresponding notions in the case of a
strict identification scheme (see [7] and [9]).

4. Finite-dimensional approximation. The reference model (2.8), (2.9) and
the estimator, or adaptation law for q, (2.24), (2.25), reside in the memory of a
computer. Moreover, they are both, in general, infinite-dimensional evolution equa-
tions. Consequently their real-time, or on-line, integration requires some form of
finite-dimensional approximation. This results in an approximating closed-loop sys-
tem. In this section we consider the finite-dimensional approximation of the reference
model and the adaptation law and establish well-posedness and convergence results
for the resulting approximating closed-loop systems.
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For each n = 1, 2, . . ., let Hn be a finite-dimensional subspace of H with Hn ⊂ V ,
and let Qn be a finite-dimensional subspace of Q. Let Pn : H → Hn denote the
orthogonal (with respect to the standard inner product on H) projection of H onto
Hn. We then use a Galerkin approach to approximate (2.8), (2.9) and (2.24), (2.25).
For each n = 1, 2, . . ., we consider the approximating reference model

〈Dtv
n(t), ϕn〉+ 〈A0v

n(t), ϕn〉 = 〈g(t), ϕn〉, ϕn ∈ Hn, a.e. t > 0,(4.1)

vn(0) = vn0 ,(4.2)

where vn(t), vn0 ∈ Hn, and the approximating adaptation law

〈Dtq
n(t), pn〉Q + 〈A1(pn)u(t), u(t)− vn(t)〉 = 0, pn ∈ Qn, a.e. t > 0,(4.3)

qn(0) = qn0 ,(4.4)

where qn(t), qn0 ∈ Qn. Recalling the definition of the adaptive control law given in
(2.22) or (2.23), for each n = 1, 2, . . ., we define an approximating adaptive feedback
control law fn by

fn(t) = A(qn(t))u(t)−A0u(t) + g(t), a.e. t > 0,(4.5)

or

〈fn(t), ϕ〉 = 〈A(qn(t))u(t), ϕ〉 − 〈A0u(t), ϕ〉+ 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,(4.6)

where qn is determined by the system (4.1)–(4.4). Combining (4.1)–(4.4) and either
(4.5) or (4.6) together with the plant, (2.4), (2.5), or (2.6), (2.7), we obtain what we
will refer to as the approximating closed-loop system

〈Dtu
n(t), ϕ〉+ 〈A0u

n(t), ϕ〉+ 〈A1(q − qn(t))un(t), ϕ〉

= 〈g(t), ϕ〉, ϕ ∈ V, a.e. t > 0,
(4.7)

〈Dtv
n(t), ϕn〉+ 〈A0v

n(t), ϕn〉 = 〈g(t), ϕn〉, ϕn ∈ Hn, a.e. t > 0,(4.8)

〈Dtq
n(t), pn〉Q + 〈A1(pn)un(t), un(t)− vn(t)〉 = 0, pn ∈ Qn, a.e. t > 0,(4.9)

un(0) = u0, vn(0) = vn0 , qn(0) = qn0 .(4.10)

We begin by establishing a well-posedness result for the system (4.7)–(4.10). Our
approach is similar to the one taken earlier in section 2 when we considered the
well-posedness of the closed-loop system (2.26)–(2.29). We assume that assumptions
(A1)–(A9) are satisfied, and we first note that the equation for the reference model
(4.8) can be solved independently of equations (4.7) and (4.9). The solution vn ∈
C([0,∞);H) ∩ C1((0,∞);H) is given by (see, for example, [20])

vn(t) = Tn0 (t)vn0 +
∫ t

0
Tn0 (t− s)Png(s)ds, t ≥ 0,(4.11)

{Tn0 (t) : t ≥ 0} is the uniformly exponentially stable analytic semigroup of bounded
linear operators on Hn generated by the Galerkin approximation, −An0 ∈ L(Hn, Hn),
to the operator −A0. That is, for each n = 1, 2, . . ., An0 ∈ L(Hn, Hn) is the operator
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defined by An0ϕ
n = ψn, for ϕn ∈ Hn, where ψn ∈ Hn is the unique element in

Hn satisfying 〈A0ϕ
n, χn〉 = 〈ψn, χn〉, χn ∈ Hn, guaranteed to exist by the Riesz

representation theorem. Since Hn was assumed to be finite dimensional, we have
that Tn0 (t) = exp(−An0 t) = e−A

n
0 t, t ≥ 0.

Let X̂ = H × Q be endowed with the inner product 〈(ϕ, q), (ψ, p)〉X̂ = 〈ϕ,ψ〉 +
〈q, p〉Q, (ϕ, q), (ψ, p) ∈ X̂, and let | · |X̂ denote the corresponding induced norm.
It follows that {X̂, 〈·, ·〉X̂ , | · |X̂} is a Hilbert space. Moreover, as was done in the
proof of Theorem 2.4, for the α ∈ (0, 1) in assumption (A6), define the Banach space
{X̂α, | · |X̂α} by X̂α = Hα ×Q with |(ϕ, q)|X̂α = |ϕ|α + |q|Q for (ϕ, q) ∈ X̂α.

For λ > 0 and ψ ∈ C([0,∞);H) define the mapping Ĝλ(·, ·;ψ) : [0,∞)× X̂α → X̂
by

Ĝλ(t, (ϕ, q);ψ) = (g(t)−B(ϕ){q − q}, λq −B(ϕ)′{ϕ− ψ(t)}),(4.12)

for t ≥ 0, (ϕ, q) ∈ X̂α, where for ϕ ∈ V the operators B(ϕ) ∈ L(Q,V ∗) and its
Banach space adjoint B(ϕ)′ ∈ L(V,Q) are defined in (2.36) and (2.37), respectively.
We note that in the above definition, since ϕ ∈ Hα, assumption (A6) implies that
the operator B(ϕ) in fact has range in H and that the operator B(ϕ)′ is well defined
on H. Consequently the mapping Ĝλ(·, ·;ψ) given by (4.12) above is well defined on
[0,∞)× X̂α with range in X̂.

For λ > 0, define the operator Âλ : Dom(Âλ) ⊂ X̂ → X̂ by

Dom(Âλ) = D0 ×Q,(4.13)

Âλ(ϕ, q) = (A0ϕ, λq), (ϕ, q) ∈ Dom(Âλ).(4.14)

The operator −Âλ is the infinitesimal generator of a uniformly exponentially stable
analytic semigroup, {T̂λ(t) : t ≥ 0}, on X̂, and 0 ∈ ρ(−Âλ). For n = 1, 2, . . ., let
X̂n = H × Qn, and let PnQ : Q → Qn denote the orthogonal (with respect to the
standard inner product on Q, 〈·, ·〉Q) projection of Q onto Qn. For n = 1, 2, . . ., λ > 0
and ψ ∈ C([0,∞);H) define the mapping Ĝnλ(·, ·;ψ) : [0,∞)× X̂α → X̂n by

Ĝnλ(t, (ϕ, q);ψ) = (g(t)−B(ϕ){q − q}, λPnQq − PnQB(ϕ)′{ϕ− ψ(t)}),(4.15)

for t ≥ 0, (ϕ, q) ∈ X̂α. For n = 1, 2, . . . and t ≥ 0, let x̂n(t) = (un(t), qn(t)) and
consider the system (4.7), (4.9), and (4.10) written in the form of an initial value
problem in X̂n as

Dtx̂
n(t) + Âλx̂

n(t) = Ĝnλ(t, x̂n(t); vn), a.e. t > 0,(4.16)

x̂n(0) = x̂n0 ,(4.17)

where λ > 0, Ĝnλ is given by (4.15), Âλ is given by (4.13) and (4.14), vn is given by
(4.11), and x̂n0 = (u0, q

n
0 ) ∈ X̂n.

In Theorem 4.1 to follow, we establish that the initial value problem (4.16), (4.17)
has a unique local strong solution.

THEOREM 4.1. If u0 ∈ Dom(Aα0 ), then for each n = 1, 2, . . ., there exists a T > 0
and a unique function x̂n ∈ C([0, T ); X̂) ∩ C1((0, T ); X̂) satisfying (4.16) and (4.17).
Moreover, x̂n satisfies the integral equation

x̂n(t) = T̂λ(t)x̂n0 +
∫ t

0
T̂λ(t− s)Ĝnλ(s, x̂n(s); vn)ds, 0 ≤ t < T.(4.18)
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Proof. For each n = 1, 2, . . ., let X̂n
α = Dom(Aα0 ) × Qn be considered as a

subspace of X̂α, and let Ûn ⊂ X̂n
α be the neighborhood of x̂n0 given by Ûn = {x̂n ∈

X̂n
α : |x̂n − x̂n0 |X̂α < ε}. Let T > 0 and λ > 0 be fixed. We show that there exists a

constant L̂n = L̂n(ε, x̂n0 , λ, T ) > 0, such that

|Ĝnλ(t, Φ̂n; vn)− Ĝnλ(s, Ψ̂n; vn)|X̂ ≤ L̂
n{|t− s|ν + |ϕ− ψ|α + |qn − pn|Q},(4.19)

for 0 ≤ t, s ≤ T , and Φ̂n = (ϕ, qn), Ψ̂n = (ψ, pn) ∈ Ûn. The desired result will then
follow as in the proof of Theorem 6.3.1 in [33].

Let 0 ≤ t, s ≤ T , and let Φ̂n = (ϕ, qn), Ψ̂n = (ψ, pn) ∈ Ûn. Then

|Ĝnλ(t, Φ̂n; vn)− Ĝnλ(s, Ψ̂n; vn)|2
X̂

≤ 2|g(t)− g(s)|2 + 2|B(ϕ){q − qn} −B(ψ){q − pn}|2

+2λ2|qn − pn|2Q + 2|B(ϕ)′{ϕ− vn(t)} −B(ψ)′{ψ − vn(s)}|2Q.

(4.20)

Assumptions (A7) and (A8) imply that

|B(ϕ){q − qn} −B(ψ){q − pn}|

≤ |B(ϕ)q −B(ψ)q|+ |B(ϕ)qn −B(ϕ)pn|+ |B(ϕ)pn −B(ψ)pn|

≤ γ1|q|Q|ϕ− ψ|α + β1|ϕ|α|qn − pn|Q + γ1|pn|Q|ϕ− ψ|α.
(4.21)

Now

|B(ϕ)′{ϕ− vn(t)} −B(ψ)′{ψ − vn(s)}|Q
≤ sup|q|Q≤1 |〈B(ϕ)′ϕ−B(ψ)′ψ, q〉Q|

+ sup|q|Q≤1 |〈B(ϕ)′vn(t)−B(ψ)′vn(s), q〉Q|.
(4.22)

Assumptions (A7) and (A8) imply that

|〈B(ϕ)′ϕ−B(ψ)′ψ, q〉Q|

≤ |〈B(ϕ)′ϕ−B(ϕ)′ψ, q〉Q|+ |〈B(ϕ)′ψ −B(ψ)′ψ, q〉Q|

≤ κα{β1|ϕ|α + γ1|ψ|α}|ϕ− ψ|α|q|Q,
(4.23)

where, recalling that the space {Hα, | · |α} is densely and continuously embedded in
H, κα is such that |ξ| ≤ κα|ξ|α, for ξ ∈ Hα. Assumptions (A7) and (A8) also imply
that

|〈B(ϕ)′vn(t)−B(ψ)′vn(s), q〉Q|

≤ |〈B(ϕ)′vn(t)−B(ϕ)′vn(s), q〉Q|+ |〈B(ϕ)′vn(s)−B(ψ)′vn(s), q〉Q|

≤ β1|ϕ|α|vn(t)− vn(s)||q|Q + γ1|vn(s)||ϕ− ψ|α|q|Q
≤ κ1|ϕ|α|t− s|ν |q|Q + κ2|ϕ− ψ|α|q|Q,

(4.24)

for some positive constants κ1 and κ2, where in the final estimate in (4.24) above,
we have applied a regularity result for mild solutions to systems governed by analytic
semigroups given in Theorem 4.3.1 in [33] and the fact that vn ∈ C([0, T ];H) and is
therefore H-bounded uniformly on [0, T ].
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Combining (4.20)–(4.24) and assumption (A9), we obtain (4.19), and the theorem
is proved.

It is also possible to establish a global existence result for the solution to the system
(4.16), (4.17). However, to do this we require the following additional assumption.

(A12) The operator A1(q) : V → V ∗ is monotone in the sense that 〈A1(q)ϕ −
A1(q)ψ,ϕ− ψ〉 ≥ 0, ϕ,ψ ∈ V .

We note that assumption (A12) is not excessively restrictive in that monotonicity
can be demonstrated for relatively large classes of nonlinear operators. It corresponds
physically to some form of energy dissipation in the plant. In particular, we note
that the operator A1(q) appearing in the example presented in section 2.1 satisfies
assumption (A12) (see (2.61)).

THEOREM 4.2. Suppose that assumptions (A1)–(A9) and (A12) hold and that
u0 ∈ Dom(Aα0 ). Then for each n = 1, 2, . . ., the initial value problem (4.16), (4.17)
has a unique solution x̂n = (un, qn) which exists for all t ≥ 0.

Proof. As in the proof of Theorem 2.6, we show that for each n = 1, 2, . . ., the local
solution x̂n to the initial value problem (4.16), (4.17) shown to exist in Theorem 4.1
can be continued by arguing that |x̂n(t)|X̂α remains bounded as t ↑ T . For t ∈ [0, T )
we have |x̂n(t)|X̂α = |un(t)|α + |qn(t)|Q.

We begin by determining a bound for |qn(t)|Q as t ↑ T . From (4.7) and (4.9) and
assumptions (A1), (A2), (A4), and (A12), for t ∈ (0, T ), and θ the zero vector in V ,
we obtain the estimate

1
2
{
Dt|un(t)|2 +Dt|qn(t)|2Q

}
= 〈Dtu

n(t), un(t)〉+ 〈Dtq
n(t), qn(t)〉Q

= −〈A0u
n(t), un(t)〉 − 〈A1(q)un(t), un(t)〉

+〈g(t), un(t)〉+ 〈A1(qn(t))un(t), vn(t)〉

= −〈A0u
n(t), un(t)〉 − 〈A1(q)un(t)

−A1(q)θ, un(t)〉 − 〈A1(q)θ, un(t)〉

+〈g(t), un(t)〉+ 〈A1(qn(t))un(t), vn(t)〉

≤ −〈A0u
n(t), un(t)〉+ |〈A1(q)θ, un(t)〉|

+〈g(t), un(t)〉+ 〈A1(qn(t))un(t), vn(t)〉

≤ −ρ0‖un(t)‖2 + ‖g(t)‖∗‖un(t)‖

+α1|qn(t)|Q‖un(t)‖‖vn(t)‖.

(4.25)

Now vn ∈ C([0, T ];H). But vn(t) ∈ Hn, t ∈ [0, T ], and Hn ⊂ V finite dimensional
imply that vn ∈ C([0, T ];V ) and, therefore, that ‖vn(t)‖ is bounded for t ∈ [0, T ].
Consequently, for ε > 0, (4.25) yields

1
2
{
Dt|un(t)|2 +Dt|qn(t)|2Q

}
≤ −ρ0‖un(t)‖2 +

1
2ε
‖g(t)‖2∗

+
ε

2
‖un(t)‖2 +

κn

2ε
|qn(t)|2Q +

κnε

2
‖un(t)‖2

or

1
2
{Dt|un(t)|2 +Dt|qn(t)|2Q}+

{
ρ0 − (1 + κn)

ε

2

}
‖un(t)‖2 ≤ 1

2ε
‖g(t)‖2∗ +

κn

2ε
|qn(t)|2Q
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for some κn > 0. Choosing ε = εn = 2ρ0/(1 + κn), we obtain

Dt|un(t)|2 +Dt|qn(t)|2Q ≤ µ1‖g(t)‖2∗ + µn2 |qn(t)|2Q, 0 ≤ t < T,(4.26)

for some µ1, µ
n
2 > 0. Integrating both sides of the estimate in (4.26) from 0 to t, we

find that for 0 ≤ t < T ,

|un(t)|2 + |qn(t)|2Q ≤ |u0|2 + |qn0 |2Q + µ1

∫ t

0
‖g(s)‖2∗ds+ µn2

∫ t

0
|qn(s)|2Qds.(4.27)

Applying the generalized Gronwall inequality (see, for example, [15]) to (4.27) above,
we obtain

|un(t)|2 + |qn(t)|2Q ≤ ζn(t) + µn2
∫ t

0 e
µn2 (t−s)ζn(s)ds

≤ (1 + µn2Te
µn2 T )ζn(T )

= κnT , 0 ≤ t < T,

(4.28)

where for each n = 1, 2, . . ., ζn is the monotone increasing function on [0, T ] given by

ζn(t) = |u0|2 + |qn0 |2Q + µ1

∫ t

0
‖g(s)‖2∗ds, 0 ≤ t ≤ T.

Now for t ∈ [0, T ), from (4.18) we obtain

Aα0 u
n(t) = Aα0T0(t)u0 +

∫ t

0
Aα0T0(t− s){g(s)−B(un(s)){q − qn(s)}}ds.(4.29)

It follows from (4.29) and assumptions (A4) and (A7) that for t ∈ [0, T ) we have

|un(t)|α ≤ e−ρ0K
−2t|u0|α +

∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s)|g(s)|ds

+
∫ t

0
Mα(t− s)−αe−ρ0K

−2(t−s)β1 {|q|Q + |qn(s)|Q} |un(s)|αds

for some positive constant Mα (see [33]). Assumption (A9) and (4.28) then imply
that

|un(t)|α ≤ |u0|α +Mα‖g‖C([0,T ];H)
T 1−α

1− α

+Mαβ1{|q|Q +
√
κnT }

∫ t

0
(t− s)−α|un(s)|αds

(4.30)

for 0 ≤ t < T . An application of Lemma 5.6.7 in [33] to the estimate given in (4.30)
above then yields the existence of a constant λnT > 0 for which

|un(t)|α ≤ λnT , 0 ≤ t < T.(4.31)

Combining estimates (4.28) and (4.31), we obtain the desired result, and the theorem
is proved.

Before we present our convergence result, we discuss some computational con-
siderations and, in particular, the matrix representations for the finite-dimensional
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approximating reference model (4.1), (4.2) and adaptation law (4.3), (4.4). For each
n = 1, 2, . . . let {ϕnj }k

n

j=1 be a basis for Hn and let {pnj }`
n

j=1 be a basis for Qn. Let

vn(t) =
kn∑
j=1

ṽnj (t)ϕnj and qn(t) =
`n∑
j=1

q̃nj (t)pnj , t ≥ 0.(4.32)

That is, for each t ≥ 0, let ṽn(t) ∈ Rkn and q̃n(t) ∈ R`n be, respectively, the vector
representations for vn(t) ∈ Hn and qn ∈ Qn with respect to the bases {ϕnj }k

n

j=1 and
{pnj }`

n

j=1. We choose vn0 = Pnv0 ∈ Hn and qn0 = PnQq0 ∈ Qn.
The matrix form of the approximating reference model (4.1), (4.2) then becomes

MnDtṽ
n(t) +Knṽn(t) = gn(t), t > 0,(4.33)

Mnṽn(0) = ṽn0 ,(4.34)

where the kn × kn matrices Mn and Kn are given by [Mn]i,j = 〈ϕnj , ϕni 〉 and
[Kn]i,j = 〈A0ϕ

n
j , ϕ

n
i 〉, i, j = 1, 2, . . . , kn, respectively, and [ṽn0 ]i = 〈v0, ϕ

n
i 〉 and

[gn(t)]i = 〈g(t), ϕni 〉, i = 1, 2, . . . , kn, t ≥ 0. Note that since {ϕnj }k
n

j=1 is a basis
for Hn, the matrix Mn is nonsingular.

For u(t) ∈ V , the output of the plant, (2.4), (2.5), or (2.6), (2.7), at time t ≥ 0,
the matrix form of the approximating adaptation law (4.3), (4.4) is given by

Mn
QDtq̃

n(t)− Ln(u(t))ṽn(t) = −hn(u(t)), t > 0,(4.35)

Mn
Qq̃

n(0) = q̃n0 ,(4.36)

where the `n × `n matrix Mn
Q is given by [Mn

Q]i,j = 〈pnj , pni 〉Q, i, j = 1, 2, . . . , `n, for
ϕ ∈ V , the `n × kn matrix Ln(ϕ) and the `n-vector hn(ϕ) are given by [Ln(ϕ)]i,j =
〈A1(pni )ϕ,ϕnj 〉 and [hn(ϕ)]i = 〈A1(pni )ϕ,ϕ〉, i = 1, 2, . . . , `n, j = 1, 2, . . . , kn, respec-
tively, and the `n-vector q̃n0 is given by [q̃n0 ]i = 〈q0, p

n
i 〉Q, i = 1, 2, . . . , `n. Once again,

since {pnj }`
n

j=1 is a basis for Qn, the matrix Mn
Q is nonsingular.

Combining (4.33), (4.34) and (4.35), (4.36), for u(t) ∈ V , the output of the plant,
(2.4), (2.5), or (2.6), (2.7), at time t ≥ 0, the kn + `n-dimensional linear system[
Dtṽ

n(t)
Dtq̃

n(t)

]
+
[

(Mn)−1Kn 0
−(Mn

Q)−1Ln(u(t)) 0

] [
ṽn(t)
q̃n(t)

]
=
[

(Mn)−1gn(t)
−(Mn

Q)−1hn(u(t))

]
, t > 0,

[
ṽn(0)
q̃n(0)

]
=
[

(Mn)−1ṽn0
(Mn

Q)−1q̃n0

]
must be integrated to determine the state of the approximating reference model, vn(t),
and the approximating parameter estimator, qn(t), at time t > 0. The estimate for
the parameters is given by (4.32), and the control input is given by

fn(t) = A

 `n∑
j=1

q̃nj (t)pnj

u(t)−A0u(t) + g(t), t ≥ 0.

We are now ready to turn to our convergence result. We require the following
rather standard assumptions on the approximation properties of the finite-dimensional
subspaces Hn and Qn.
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(A13) The subspace Hn is such that for each n = 1, 2, . . . there exists a mapping
πn ∈ L(V, V ) for which πnϕ ∈ Hn, ϕ ∈ V , and limn→∞ ‖πnϕ − ϕ‖ = 0,
ϕ ∈ V .

(A14) The subspace Qn is such that limn→∞ |PnQq − q|Q = 0, q ∈ Q.
We note that assumption (A13) together with the dense and continuous embed-

ding of V in H is sufficient to conclude that limn→∞ |Pnϕ−ϕ| = 0, ϕ ∈ H. We note
further that in many cases it is possible to choose πn = Pn. Indeed, this is in fact the
case for polynomial spline-based subspaces. Assumption (A13) can then be verified
using the estimates found in, for example, [36].

The following theorem concerning the convergence of the approximating semi-
groups {Tn0 (t) : t ≥ 0} to the semigroup {T0(t) : t ≥ 0} is established in [3] using the
well-known Trotter–Kato theorem (see, for example, [20] and [33]).

THEOREM 4.3. Under assumptions (A3), (A4), and (A13), for each T > 0 we
have the following results.

(i) There exists a constant M0 > 0, independent of n, for which ‖Tn0 (t)ϕn‖ ≤
M0‖ϕn‖, ϕn ∈ Hn.

(ii) For ϕ ∈ H and t ∈ [0, T ], limn→∞ |Tn0 (t)Pnϕ − T0(t)ϕ| = 0, uniformly in t
for t in compact subintervals of [0, T ].

(iii) For ϕ ∈ V and t ∈ [0, T ], limn→∞ ‖Tn0 (t)πnϕ − T0(t)ϕ‖ = 0, uniformly in t
for t in compact subintervals of [0, T ].

(iv) For ϕ ∈ H and t ∈ (0, T ], limn→∞ ‖Tn0 (t)Pnϕ− T0(t)ϕ‖ = 0, uniformly in t
for t in compact subintervals of (0, T ].

Once (i) has been established, the essence of the proof of (ii)–(iv) is demonstrating
resolvent convergence in V . Let λ > 0 and ϕ ∈ V , and set ψ = (λI + A0)−1ϕ and
ψn = (λI +An0 )−1πnϕ, n = 1, 2, . . .. The triangle inequality yields

‖ψ − ψn‖ ≤ ‖ψ − πnψ‖+ ‖πnψ − ψn‖.(4.37)

Assumption (A13) implies that the first term on the right-hand side of the estimate
in (4.37) tends to zero as n→∞. With regard to the second term, using assumptions
(A3) and (A4) we obtain, for any ε > 0,

ρ0‖ψn − πnψ‖2 ≤ 〈A0{ψn − πnψ}, ψn − πnψ〉

= 〈(λI +An0 )ψn − (λI +A0)ψ,ψn − πnψ〉+ λ〈ψ − πnψ,ψn − πnψ〉

−λ〈ψn − πnψ,ψn − πnψ〉+ 〈A0{ψ − πnψ}, ψn − πnψ〉

≤ K‖ϕ− πnϕ‖‖ψn − πnψ‖+ λ‖ψ − πnψ‖‖ψn − πnψ‖ − λ|πnψ − ψn|2

+α0‖ψ − πnψ‖‖ψn − πnψ‖

≤ K

2ε
‖ϕ− πnϕ‖2 +

λ+ α0

2ε
‖ψ − πnψ‖2 +

1
2
{K + λ+ α0}ε‖ψn − πnψ‖2.

Choosing ε > 0 sufficiently small, we find that

‖ψn − πnψ‖2 ≤ ν1‖ϕ− πnϕ‖2 + ν2‖ψ − πnψ‖2

for some constants ν1, ν2 > 0. Invoking assumption (A13) and recalling (4.37), we
obtain

lim
n→∞

‖(λI +An0 )−1πnϕ− (λI +A0)−1ϕ‖ = 0, ϕ ∈ V.

We will require the following corollary to Theorem 4.3 above.
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COROLLARY 4.4. If v0 ∈ V and vn0 = πnv0, then under assumptions (A3), (A4),
(A9), and (A13), for each T > 0 we have the following results.

(i) For each t ∈ [0, T ], limn→∞ ‖vn(t)− v(t)‖ = 0.
(ii) There exists a constant κvn = κvn(T ) > 0, for which ‖vn(t)‖ ≤ κvn , 0 ≤ t ≤

T , with κ = supn κvn <∞.
Proof. From (2.12) and (4.11) for t ∈ [0, T ], we obtain

‖vn(t)− v(t)‖ ≤ ‖Tn0 (t)πnv0 − T0(t)v0‖

+
∫ t

0
‖Tn0 (t− s)Png(s)− T0(t− s)g(s)‖ds.

Statement (iii) of Theorem 4.3 implies that the first term on the right-hand side of the
above expression tends to zero as n→∞. Statement (iv) of Theorem 4.3 implies that
the term under the integral sign tends to zero for almost every s ∈ [0, T ]. Moreover,
Lemma 3.6.2 in [39] implies that

‖Tn0 (t− s)Png(s)− T0(t− s)g(s)‖ ≤ C

(t− s) 1
2
|g(s)|, 0 ≤ s < t,

where the constant C > 0 is independent of n. That the constant C is independent of
n follows from the fact that the operators An0 are defined via Galerkin approximation
and, consequently, the estimates given in Lemma 3.6.1 in [39] for the resolvent of −A0
continue to hold for the resolvent of −An0 with all constants independent of n (see
also [4]). An application of the Lebesgue dominated convergence theorem then yields
(i).

Statement (ii) is established analogously. Indeed, for t ∈ [0, T ], (4.11) yields

‖vn(t)‖ ≤ ‖Tn0 (t)πnv0‖+
∫ t

0
‖Tn0 (t− s)Png(s)‖ds

≤ M0κπ‖v0‖+
∫ t

0

C

(t− s) 1
2
|g(s)|ds

≤ M0κπ‖v0‖+ 2C‖g‖C([0,T ];H)

√
T = κvn(T ),

where κπ > 0 is the uniform bound on the operators πn ∈ L(V, V ), n = 1, 2, . . .,
guaranteed to exist by assumption (A13) and the uniform boundedness principle.
This proves the theorem.

Using Corollary 4.4, the next corollary follows immediately by inspection.
COROLLARY 4.5. Suppose that the assumptions (A1)–(A9) and (A12)–(A14) are

satisfied, and that u0 ∈ Dom(Aα0 ). Suppose further that v0 ∈ V , vn0 = πnv0, and that
qn0 = PnQq0. Then the constants κnT and λnT defined in the proof of Theorem 4.2 above
are in fact independent of n.

The implication of Corollary 4.5 is that for T > 0 fixed, |un(t)|α and |qn(t)|Q are
bounded uniformly in n and t for t ∈ [0, T ], where for each n = 1, 2, . . . un and qn

satisfy (4.7)–(4.10). That is there exist constants κT > 0 and λT > 0, independent of
n for which

|x̂n(t)|X̂α = |un(t)|α + |qn(t)|Q ≤ λT +
√
κT , 0 ≤ t ≤ T,(4.38)

where for each n = 1, 2, . . . x̂n, is the solution to the initial value problem (4.16),
(4.17).
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Our convergence result is given in Theorem 4.7 below. Its proof requires the
following lemma.

LEMMA 4.6. If Dom(Aα0 ) ⊂ V for some α ∈ (0, 1), then the Banach space {Hα,
| · |α} defined by Hα = Dom(Aα0 ) and |ϕ|α = |Aα0ϕ|, ϕ ∈ Dom(Aα0 ) is continuously
embedded in V . That is, there exists a constant KV > 0 for which ‖ϕ‖ ≤ KV |ϕ|α,
ϕ ∈ Dom(Aα0 ).

Proof. It can be shown (see [28, page 11]) that there exists a linear, self-adjoint,
and positive operator Λ : Dom(Λ) ⊂ H → H for which Dom(Λ) = V and for which

the norm ‖ · ‖Λ on V given by ‖ϕ‖Λ =
{
|ϕ|2 + |Λϕ|2

} 1
2 , ϕ ∈ V , is equivalent to the

standard norm, ‖ · ‖, on V . Then, for ϕ ∈ Dom(Aα0 ), Corollary 2.6.11 in [33] implies
that

‖ϕ‖2 ≤ K1
{
|ϕ|2 + |Λϕ|2

}
≤ K2

{
|ϕ|2 + |Aα0ϕ|2

}
≤ K2‖ϕ‖2α ≤ K2

V |ϕ|2α
for some constants K1,K2,KV > 0, where the norm ‖ · ‖α on Hα was defined and
discussed in the proof of Theorem 2.4.

THEOREM 4.7. Suppose that assumptions (A1)–(A9) and assumptions (A12)–
(A14) hold, that u0 ∈ Dom(Aα0 ), α ∈ (0, 1) as in assumption (A6), and that vn0 = πnv0
and qn0 = PnQq0. Then

lim
n→∞

|un(t)− u(t)|α = lim
n→∞

|Aα0un(t)−Aα0u(t)| = 0(4.39)

and

lim
n→∞

|qn(t)− q(t)|Q = 0,(4.40)

uniformly in t, for t ∈ [0, T ], where un, qn satisfy (4.7)–(4.10), and u and q satisfy
(2.26)–(2.29). Moreover, if, in addition, the operator A2 satisfies a Lipschitz condition
of the form

‖A2ϕ−A2ψ‖∗ ≤ γ2|ϕ− ψ|α, ϕ, ψ ∈ Dom(Aα0 ),(4.41)

for some γ2 > 0, where α ∈ (0, 1) is as in assumption (A6), then we have

lim
n→∞

fn(t) = f(t)(4.42)

in V ∗ uniformly in t, for t ∈ [0, T ], and therefore limn→∞ fn = f in L2(0, T ;V ∗), for
each T > 0, where for each n = 1, 2, . . ., fn is given by (4.5) or (4.6), and f is given
by (2.22) or (2.23). Before we prove Theorem 4.7, we note that (4.39) implies that

lim
n→∞

|un(t)− u(t)| ≤ lim
n→∞

‖un(t)− u(t)‖α ≤ κα lim
n→∞

|un(t)− u(t)|α = 0,

uniformly in t for t ∈ [0, T ]. Moreover, (4.39) together with Lemma 4.6 also imply
that

lim
n→∞

‖un(t)− u(t)‖ ≤ KV lim
n→∞

|un(t)− u(t)|α = 0,(4.43)

uniformly in t for t ∈ [0, T ].
Proof of Theorem 4.7. For each t ≥ 0, let x̂(t) = (u(t), q(t)), where u and q satisfy

(2.26)–(2.29). Then for each λ > 0, x̂ satisfies

x̂(t) = T̂λ(t)x̂0 +
∫ t

0
T̂λ(t− s)Ĝλ(s, x̂(s); v)ds, t ≥ 0,(4.44)
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where Ĝλ is given by (4.12), {T̂λ(t) : t ≥ 0} is the uniformly exponentially stable
semigroup of bounded linear operators on X̂ generated by the operator −Âλ defined
in (4.13) and (4.14), and v satisfies (2.8), (2.9) and is given by (2.12). Subtracting
(4.44) from (4.18) and taking norms in X̂α, for each t ≥ 0, we find that

|x̂n(t)− x̂(t)|X̂α ≤ e−λt|PnQq0 − q0|Q

+
∫ t

0
|Aα0T0(t− s) {B(un(s)){qn(s)− q(s)}

+B(u(s)){q − q(s)}}|

+e−λ(t−s)|λ{qn(s)− q(s)}+B(u(s))′{u(s)− v(s)}

−PnQB(un(s))′{un(s)− vn(s)}|Qds

≤ |PnQq0 − q0|Q +
∫ t

0
Mα(t− s)−α

{
γ1|qQ|un(s)− u(s)|α

+γ1|qn(s)|Q|un(s)− u(s)|α
+β1|qn(s)− q(s)|Q|u(s)|α}+ λ|qn(s)− q(s)|Q
+γ1|un(s)− u(s)|α|un(s)|+ γ1|un(s)− u(s)||u(s)|α
+γ1|un(s)− u(s)|α|vn(s)|+ γ1|u(s)|α|vn(s)− v(s)|

+|{I − PnQ}B(u(s))′{u(s)− v(s)}|Qds,

(4.45)

where in the above estimate we have invoked assumptions (A7) and (A8). Assumption
(A14), Corollary 4.4, (2.54), and (4.38) then imply that

|x̂n(t)− x̂(t)|X̂α ≤ ε
n + κ

∫ t

0
(t− s)−α|x̂n(s)− x̂(s)|X̂αds,(4.46)

where κ > 0 and limn→∞ εn = 0. The estimate given in (4.46) together with a careful
inspection of the proof of Lemma 5.6.7 in [33] then yield that |x̂n(t)−x̂(t)|X̂α ≤ ε

nKT ,

0 ≤ t ≤ T , where KT = T 1−α

1−α > 0. This establishes (4.39) and (4.40).
We now turn our attention to establishing (4.42). For t ∈ [0, T ] and ϕ ∈ V ,

Assumptions (A2), (A3), (A6), (A7), and (A8), (2.2), (4.41), and Lemma 4.6 (or,
equivalently, (4.43)) imply that

|〈fn(t)− f(t), ϕ〉| = |〈A(qn(t))un(t)−A0u
n(t)−A(q(t))u(t) +A0u(t), ϕ〉|

≤ |〈A1(qn(t))un(t)−A1(q(t))un(t), ϕ〉|

+|〈A1(q(t))un(t)−A1(q(t))u(t), ϕ〉|

+|〈A2u
n(t)−A2u(t), ϕ〉|+ |〈A0u

n(t)−A0u(t), ϕ〉|

≤ Kβ1|qn(t)− q(t)|Q|un(t)|α‖ϕ‖

+Kγ1|q(t)|Q|un(t)− u(t)|α‖ϕ‖

+‖A2u
n(t)−A2u(t)‖∗‖ϕ‖+ α0‖un(t)− u(t)‖‖ϕ‖

≤ Kβ1|qn(t)− q(t)|Q|un(t)|α‖ϕ‖

+Kγ1|q(t)|Q|un(t)− u(t)|α‖ϕ‖

+γ2|un(t)− u(t)|α‖ϕ‖+ α0KV |un(t)− u(t)|α‖ϕ‖.
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Recalling (2.54), (4.38), (4.39), and (4.40), we obtain limn→∞ ‖fn(t) − f(t)‖∗ = 0,
uniformly in t for t ∈ [0, T ], and the theorem is proved.

5. Examples and numerical results. In this section we describe and discuss
four different examples which illustrate the application of the general theory developed
in the previous sections. We consider the example involving a first-order hyperbolic
plant and a diffusion equation reference model discussed in section 2.1, an example in-
volving the identification of a spatially varying thermal conductivity in a heat equation
plant, an example involving the identification of a damped wave equation (a parabolic
regularized hyperbolic system; see [27]), and an example in which we identify the non-
linearity in a quasi-linear heat equation. All of the computations to be described below
were carried out via codes written in Fortran and run on either a Sun SPARCstation
10 in the Department of Mathematics at the University of Southern California or an
IBM RISCSystem 6000 at the Center for Research in Scientific Computation at North
Carolina State University. The closed-loop system (2.26)–(2.29) was discretized using
a spline-based Galerkin scheme. The resulting finite-dimensional system of nonlinear
ordinary differential equations was integrated using either the stiff ordinary differential
equation solver from the NAG Library, routine D02NBF (at USC), or a fourth-order
Runge–Kutta scheme (at NCSU). All required integrals were computed numerically
via a composite two-point Gauss–Legendre quadrature rule.

We note that the plants and reference models in all of the examples to follow
satisfy our basic assumptions (A1)–(A5). In Example 5.1, assumptions (A6)–(A9),
which are required by the analytic semigroup approach to well-posedness presented
in section 2.1, are satisfied as well. In Examples 5.2 and 5.3, assumptions (A10)
and (A11), which are required by the implicit function theorem based well-posedness
theory in section 2.2, are also satisfied. As we pointed out earlier, the theory in section
2.2 can probably be extended so as to be applicable to the nonlinear plant treated
in Example 5.4 as well. The basic assumptions required for the finite-dimensional
approximation and convergence theory discussed in section 4, assumptions (A12)–
(A14), are satisfied in all four of the examples below.

Regarding the regularity assumptions on the input reference signal g (e.g., g ∈
L2(0,∞;V ∗), etc.), the symmetry of the reference model operator A0, and the per-
sistence of excitation condition, all of which form the core of the hypotheses for our
stability and convergence results in sections 2 and 3, we do not explicitly address
these hypotheses in the context of the particular examples presented below. There
are a number of reasons for this. First, our computational results are necessarily on a
finite time interval, while our stability and convergence results are asymptotic results
as t → ∞. Consequently, the reconciling of our theoretical and numerical results is,
in some sense, ill posed. More precisely, if g ∈ L2(0, T ;V ∗) for some T ∈ (0,∞), then
g can be extended to a function in L2(0,∞;V ∗) by simply defining it to be identically
zero on (T,∞). Second, with regard to the persistence of excitation condition, for most
systems this condition is difficult, if not impossible, to verify. However, indication of
the presence or absence of persistence of excitation and the degree thereof is immedi-
ately evident from the parameter estimator trajectories (see [9]). These observations
can then be used to tune the scheme, either manually or autonomously, to obtain
parameter convergence and optimal performance. In fact, we did just that in carrying
out the computations in the examples below. And, finally, and most significantly, we
point out that as is the case with virtually all theoretical and analytical studies of
the type we have presented here, the assumptions we make are the ones minimally
required to allow us to establish our stability and convergence results. Whether or



ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 71

not the examples we present satisfy these assumptions is essentially irrelevant. In-
deed, the fact that in these cases the scheme performs satisfactorily illustrates that
our results are robust and that our approach appears to be applicable to a far broader
class of problems than those that satisfy the hypotheses of our theorems.

Example 5.1. We consider Example 2.8 discussed in section 2.1. In particular,
we use this example to illustrate the approximation results obtained in section 4.
Recall from section 2.1 that H = L2(0, 1), V = H1

L(0, 1) = {ϕ ∈ H1(0, 1) : ϕ(0) = 0},
V̂ ∗ = V ∗, and Q = R1. The inner product on Q was chosen to be 〈q, p〉Q = ω q · p for
q, p ∈ R1. The weighting factor ω > 0 serves as an adaptive gain which can be used
to tune the estimator. The plant is given by

∂u

∂t
(t, x) + q

∂u

∂x
(t, x) = f(t, x), 0 < x < 1, t > 0,

u(t, 0) = 0, t > 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

where q > 0, u0 ∈ L2(0, 1), and t → f(t, ·) ∈ L2(0, T ;H) for each T > 0. The
reference model is given by

∂v

∂t
(t, x)− a0

∂2v

∂x2 (t, x) = g(t, x), 0 < x < 1, t > 0,

v(t, 0) = 0, and
∂v

∂x
(t, 1) = 0, t > 0,

v(0, x) = v0(x), 0 ≤ x ≤ 1,

where a0 > 0, v0 ∈ L2(0, 1), and t→ g(t, ·) ∈ L2(0, T ;V ∗) for each T > 0.
We approximate using linear B-splines. For n = 1, 2, . . ., let {ϕnj }nj=0 be the

standard linear B-splines on the interval [0, 1] defined with respect to the uniform
mesh {0, 1

n ,
2
n , . . . , 1}. That is, for i = 0, 1, 2, . . . , n,

ϕni (x) =
{

1− |nx− i|, x ∈ [ i−1
n , i+1

n ],
0 elsewhere on [0, 1].(5.1)

Set Hn = span {ϕnj }nj=1 ⊂ V . Since Q is finite dimensional, we simply set Qn = Q =
R1, n = 1, 2, . . .. For each n = 1, 2, . . . , let Pn denote the orthogonal projection of H
onto Hn and setting πn = Pn, standard approximation results for spline functions (see
[36]) can be used to establish that assumption (A13) is satisfied. Thus the conclusions
of Theorem 4.7 hold.

We set q = 1.0, a0 = .1, ω = .02, and q0 = 0.0. We also set u0(x) = 0.0,
v0(x) = sin(π2x), 0 ≤ x ≤ 1, and g(t, x) = 5 sin

(
π
2 t
)
χ[.215,.315](x), 0 < x < 1,

t > 0. We simulated the plant using a 64 linear spline based Galerkin scheme and
approximated the reference model in Hn with n = 8, 16, and 32. In Figure 5.1a we
have plotted the parameter estimator trajectories, qn(t), along with the trajectory of
the infinite-dimensional estimator (i.e., n = 64), q(t), for 0 ≤ t ≤ 100. In Figure 5.1b
we plot the L2 norms of the corresponding state tracking errors, |en(t)| = |u(t)−vn(t)|,
for 0 ≤ t ≤ 100. It is clear from the figures that the scheme performed well for n
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FIG. 5.1. Results for Example 5.1 for various choices of n: (a) the parameter estimates versus
time; (b) the tracking error versus time.

as small as 8. We note that the scheme even performed reasonably well for n = 4,
although we have not plotted these results here.

Example 5.2. In this example we consider the control of the one-dimensional
heat or diffusion equation

∂u

∂t
(t, x) =

∂

∂x

{
q(x)

∂u

∂x
(t, x)

}
+ f(t, x), t > 0, 0 < x < 1,

together with the Dirichlet boundary conditions u(t, 0) = 0 = u(t, 1), t > 0. We take
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the reference model to be given by

∂v

∂t
(t, x)− a0

∂2v

∂x2 (t, x) = g(t, x) 0 < x < 1, t > 0,(5.2)

v(t, 0) = 0, and v(t, 1) = 0, t > 0,(5.3)

v(0, x) = v0(x), 0 ≤ x ≤ 1,(5.4)

where a0 > 0, v0 ∈ L2(0, 1), and t→ g(t, ·) ∈ L2(0, T ;V ∗) for each T > 0.
In this case we have H = L2(0, 1) and V = H1

0 (0, 1), each endowed with its
usual inner product and corresponding induced norm. We set V̂ ∗ = V ∗, and we let
Q = H1(0, 1) and take it to be endowed with the weighted inner product

〈q, p〉Q = ω1

∫ 1

0
q(x)p(x)dx+ ω2

∫ 1

0
Dq(x)Dp(x)dx, p, q ∈ H1(0, 1),

where the weights ω1 and ω2, assumed to be positive, serve as adaptive gains or tuning
parameters. For q ∈ Q, the operator A(q) = A1(q) ∈ L(V, V ∗) is given by

〈A(q)ϕ,ψ〉 = 〈A1(q)ϕ,ψ〉 =
∫ 1

0
q(x)Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ H1(0, 1).

The operator A0 ∈ L(V, V ∗) is given by

〈A0ϕ,ψ〉 = a0

∫ 1

0
Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ H1

0 (0, 1).(5.5)

It is easily verified that assumptions (A1)–(A5) are satisfied and that the theory in
section 2.2 applies.

To simulate the closed-loop system, we discretized equations (2.26)–(2.29) using a
linear spline based Galerkin scheme. We approximated the plant and reference model
state space H by Hn = span {ϕnj }n−1

j=1 , where the linear B-splines ϕnj are given by
(5.1). We also used linear B-splines to discretize the parameter space Q. We set
Qm = span{ϕmj }mj=0, where the linear spline basis {ϕmj }mj=0 is again given by (5.1)
with n replaced by m. Note that dim Hn = n−1 and dim Qm = m+1. Consequently,
the dimension of the approximating estimator is n− 1 +m+ 1 = n+m.

We set a0 = 0.1, ω1 = 0.1, ω2 = 0.0001, q(x) = 1
10

{
1− 1

2 sin
(
2π{x− 1

4}
)}

,
0 < x < 1, q0(x) = 0.1, u0(x) = 0.3(0.5 − |0.5 − x|), and v0(x) = −0.1 sin(πx) for
0 ≤ x ≤ 1. We chose the input reference signal g to be given by

g(t, x) = .1
{

sin
( π

24
t
)

+ cos
( π

50
t
)

+
1
2

cos
( π

30
t
)}

χ[.4,.6](x), 0 < x < 1, t > 0.

The results of our numerical study with n = 24 and m = 16 are displayed in Figures
5.2a and 5.2b. In Figure 5.2a we have plotted q0, q, and the estimate for q, q(t),
at t = 25. In Figure 5.2b we have plotted the L2 norm of the state tracking error
|e(t)| = |u(t)− v(t)| for 0 ≤ t ≤ 50. It is clear that the control objective has been met
and that an excellent estimate for q has been obtained.
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FIG. 5.2. Results for Example 5.2: (a) the parameter estimate versus time; (b) the tracking
error versus time.

Example 5.3. In this example we consider the control of the one-dimensional
wave equation with Kelvin–Voigt viscoelastic damping given by

∂2u1

∂t2
(t, x)− q2

∂2

∂x2

∂u1

∂t
(t, x)− q1

∂2u1

∂x2 = f1(t, x), 0 < x < 1, t > 0,(5.6)

with the Dirichlet (fixed endpoint) boundary conditions

u1(t, 0) = 0 = u1(t, 1), t > 0,(5.7)
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and the initial conditions

u1(0, x) = u01(x), and
∂u1

∂t
(0, x) = u02(x), 0 ≤ x ≤ 1.(5.8)

We take the reference model to be given by

∂2v1

∂t2
(t, x)− b0

∂2

∂x2

∂v1

∂t
(t, x)− a0

∂2v1

∂x2 = g1(t, x), 0 < x < 1, t > 0,(5.9)

v1(t, 0) = 0 = v1(t, 1), t > 0,(5.10)

v1(0, x) = v01(x), and
∂v1

∂t
(0, x) = v02(x), 0 ≤ x ≤ 1,(5.11)

where a0, b0 > 0. To apply our theory in this case requires rewriting the plant and
reference model as equivalent first-order systems. Let H1 = L2(0, 1) be endowed with
the standard inner product and corresponding induced norm denoted by 〈·, ·〉1 and |·|1,
respectively. Let V1 = H1

0 (0, 1) be endowed with the inner product (and corresponding
induced norm) given by [ϕ,ψ]1 = 〈Dϕ,Dψ〉1 for ϕ,ψ ∈ V1. Let H = V1 × H1 and
V = V1 × V1. We endow V with the usual product inner product, but we endow H
with the inner product given by

〈ϕ,ψ〉 = γ {a0[ϕ1, ψ1]1 + 〈ϕ2, ψ2〉1}+ 〈ϕ1, ψ2〉1 + 〈ϕ2, ψ1〉1 + b0[ϕ1, ψ1]1,

for ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ H, where γ > 0. It is not difficult to argue that
if γ > max{1, a−1

0 , b−1
0 }, then the norm induced by this inner product is equivalent

to the standard norm on H. The inner product on H is chosen in this way so that
assumption (A4) will be satisfied by the operator A0 to be defined below. We note
that this choice of an inner product affects the form of the estimator equation (2.24).
Thus, in practice, γ serves as an additional tuning parameter or adaptive gain.

We let Q = R2 with the weighted inner product given by 〈q, p〉 = qTΩp, q, p ∈ R2,
where Ω is the 2× 2 matrix given by Ω = diag(ω1, ω2), with ω1, ω2 > 0.

For q = (q1, q2)T ∈ Q, we define the operator A(q) ∈ L(V, V ) by A(q) = A1(q) +
A2, where 〈A1(q)ϕ,ψ〉 = q2〈Dϕ2, Dψ2〉+q1〈Dϕ1, Dψ2〉, ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈
V , and 〈A2ϕ,ψ〉 = −a0〈Dϕ2, Dψ1〉, ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ V . We take the
operator A0 ∈ L(V, V ∗) to be given by A0 = A(q∗), where q∗ = (a0, b0) ∈ Q. We set
f = (0, f1), g = (0, g1), u0 = (u01, u02), and v = (v01, v02). Thus we have rewritten
the plant (5.6)–(5.8) in the form (2.6), (2.7) and the reference model (5.9)–(5.11) in
the form (2.8), (2.9) with u = (u1, Dtu1) and v = (v1, Dtv1). It can be verified that
assumptions (A1)–(A5) are satisfied with V̂ ∗ = {(0, ϕ) : ϕ ∈ H−1(0, 1)} ⊂ V ∗ =
H1

0 (0, 1)×H−1(0, 1).
To simulate the closed-loop system, we again approximate using the linear spline

basis given in (5.1) and a Galerkin scheme. We set Hn
1 = span{ϕnj }n−1

j=1 and set
Hn = Hn

1 × Hn
1 . We took q = (0.0308, 0.01), q∗ = (a0, b0) = (0.0056, 0.0028), and

q0 = (0.02, 0.005). We set u01(x) = 0.01 sin(πx), u02(x) = 0.001 sin(4πx), 0 ≤ x ≤ 1,
v01(x) = 0, v02(x) = 0, 0 ≤ x ≤ 1, and

g1(t, x) = {4 sin(4πt) + cos(πt) + 2}χ[.215,.315](x), t > 0, 0 < x < 1.

We chose the adaptive gains to be ω1 = ω2 = 1600/3 and γ = 100 + 1/b0 = 457.15.
We then simulated the closed-loop system with n = 16. In Figure 5.3 we have plotted
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FIG. 5.3. Results for Example 5.3: (a) the parameter estimate q1(t) versus time; (b) the pa-
rameter estimate q2(t) versus time.

the estimate for q1 q1(t), and the estimate for q2, q2(t), for t ∈ [0, 20]. In Figure 5.4 we
have plotted the V1 norm of the displacement tracking error ‖e(t)‖1 = ‖u1(t)−v1(t)‖1
and the H1 norm of the velocity tracking error |Dte(t)|1 = |Dtu1(t) − Dtv1(t)|1 for
t ∈ [0, 100].

Example 5.4. In this example we consider the control of the one-dimensional
nonlinear (strictly speaking, quasi-linear) heat equation

∂u

∂t
(t, x)− ∂

∂x

{
q

(
min

{
M,

∣∣∣∣∂u∂x (t, x)
∣∣∣∣}) ∂u

∂x
(t, x)

}
= f(t, x),(5.12)
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FIG. 5.4. Results for Example 5.3: (a) the V1-norm of the displacement tracking error; (b) the
H1-norm of the velocity tracking error.

for 0 < x < 1, t > 0, together with the Dirichlet boundary conditions

u(t, 0) = 0 and u(t, 1) = 0, t > 0,(5.13)

and the initial conditions

u(0, x) = u0(x), 0 ≤ x ≤ 1.(5.14)

We assume that M ∈ [0,∞), u0 ∈ L2(0, 1), and f(t, · ) ∈ L2(0, 1) for t ≥ 0. We
assume that the nonlinearity q is unknown and is to be identified as the system
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(5.12)–(5.13) is being adaptively controlled. Once again, we take the reference model
to be given by (5.2)–(5.4).

We let H = L2(0, 1) be endowed with the standard inner product, we let V =
H1

0 (0, 1) be endowed with the usual norm, and we define the Hilbert space Q as
follows. Let Q̂ = H1(R+) and define the inner product, 〈·, ·〉Q, on Q̂ by

〈q, p〉Q =
∫ ∞

0
ω0(θ)q(θ)p(θ)dθ +

∫ ∞
0

ω1(θ)Dq(θ)Dp(θ)dθ, q, p ∈ Q̂,(5.15)

where ω0, ω1 ∈ L1(R+) are positive weighting functions. Let | · |Q denote the norm
induced by the inner product given in (5.15), and define the Hilbert space Q to be
the completion of the inner product space {Q̂, 〈·, ·〉Q, | · |Q}. For q ∈ Q, the operator
A(q) : V → V ∗ is given by A(q) = A1(q), where A1(q) : V → V ∗ is defined by

〈A1(q)ϕ,ψ〉 =
∫ 1

0
q (min {M, |Dϕ(x)|})Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ V.

The operator A0 ∈ L(V, V ∗) is once again given by (5.5). We set V̂ ∗ = V ∗ =
H−1(0, 1). It is not difficult to verify that assumptions (A1)–(A5) are satisfied.

To simulate the closed-loop system, we again approximate the plant and reference
model state space H and the parameter space Q using linear B-spline functions.
We approximate H by Hn = span{ϕnj }n−1

j=1 , where for each n = 2, 3, . . . and j =
1, 2, . . . n − 1, ϕnj is given by (5.1). For each m = 1, 2, . . . and each r > 0, let
{ψ̂m,rj }mj=0 be the standard linear B-splines on the interval [0, r] defined with respect
to the uniform mesh {0, rm ,

2r
m , . . . , r}. We approximate Q by Qm,r = span{ψm,rj }mj=0,

where

ψm,rj =

{
ψ̂m,rj , j = 0, 1, 2, . . . ,m− 1,

ψ̂m,rm + χ[r,∞), j = m,

with χJ denoting the characteristic function for the interval J . In the simulations to
be described below, only q is discretized. The true value of q, q(θ) = 0.9(1− 1

2e
− 1

2 θ
2
),

θ ≥ 0, is used. We chose g to be given by

g(t, x) = 1× 10−4 {sin(100πt) + sin(250πt) + sin(450πt) + sin(550πt)

+ sin(650πt) + sin(850πt) + cos(150πt) + cos(350πt)

+ cos(500πt) + cos(700πt)}χ[0.6,0.8](x), 0 < x < 1, t > 0,

and set u0(x) = 5 × 10−5 and v0(x) = −0.1 (0.5− |0.5− x|), 0 < x < 1. We set
a0 = .1, r = 3.5, M = 10.0,

ω0(θ) = ω1(θ) =
{

1, 0 ≤ θ < r,
1
2e
−20θ, r < θ <∞,

and q0(θ) = 1, 0 < θ <∞. We simulated the closed-loop system over the time interval
[0, 20] using n = 32 and m = 24. In Figure 5.5a we have plotted our final (i.e., at
time t = 20) estimate for q, and in Figure 5.5b we have plotted the H-norm of the
tracking error, |e(t)| = |u(t) − v(t)|, for t ∈ [0, 20]. We note that convergence of the
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FIG. 5.5. Results for Example 5.4: (a) the parameter estimate q(θ) versus θ; (b) the tracking
error versus time.

parameter estimates actually occurred at about t = 5. Our estimate for q in this
example is not quite as good as the estimate obtained in Example 5.2. However, both
the nonlinearity and the infinite domain of q (and therefore the need for an additional
degree of approximation in the form of truncation) contribute to making this example
a far more significant challenge for our scheme than the linear example discussed in
Example 5.2.
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Abstract. As in the finite-dimensional case, the appropriate state feedback for the infinite-
dimensional H∞ disturbance-attenuation problem may be calculated by solving a Riccati equation.
This operator Riccati equation can rarely be solved exactly. We approximate the original infinite-
dimensional system by a sequence of finite-dimensional systems and consider the corresponding
finite-dimensional disturbance-attenuation problems. We make the same assumptions required in
approximations for the classical linear quadratic regulator problem and show that the sequence of
solutions to the corresponding finite-dimensional Riccati equations converge strongly to the solu-
tion to the infinite-dimensional Riccati equation. Furthermore, the corresponding finite-dimensional
feedback operators yield performance arbitrarily close to that obtained with the infinite-dimensional
solution.

Key words. H∞, approximations, partial differential equation, optimal control, infinite dimen-
sional
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1. Introduction. In this paper we discuss H∞ control problems for the linear
system in a Hilbert space X:

(1.1)
d

dt
x(t) = Ax(t) +Bu(t) +Dv(t), x(0) = x ∈ X,

where the linear closed operator A generates the C0-semigroup S(t) on X. Let W ,
U , and Y be separable Hilbert spaces. The signal v(t) ∈ L2(0,∞;W ) is a W -valued
disturbance and u(t) ∈ L2(0,∞;U) is the control input. We assume that the dis-
turbance operator D and the input operator B are bounded, i.e., D ∈ L(W,X) and
B ∈ L(U,X). Let C ∈ L(X,Y ) be the reference output operator. For control cost
ε > 0, define the output

(1.2) z(t) = col (Cx(t),
√
ε u(t))

and the performance index

ρ(u, v;x) = |z|2L2(0,∞;Y ) =
∫ ∞

0
|Cx(t)|2 + ε|u(t)|2 dt.

Let

U = L2(0,∞;U), W = L2(0,∞;W ).

This paper is concerned with the problem of constructing a stabilizing feedback control
law u(t) = −Kx(t) such that for each disturbance w ∈ W, the closed-loop solution of

∗Received by the editors September 19, 1994; accepted for publication (in revised form) October
8, 1996.

http://www.siam.org/journals/sicon/36-1/27442.html
†Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC

27695-8205 (kito@crsc1.math.ncsu.edu).
‡Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(kmorris@riccati.uwaterloo.ca).

82



APPROXIMATION OF SOLUTIONS TO RICCATI EQUATIONS 83

(1.1) with x(0) = 0 satisfies

(1.3) ρ(−Kx(t), v; 0) ≤ (γ2 − δ) |v|2L2(0,∞;W )

for given attenuation bound γ > 0 and some δ > 0. The problem described above
is equivalent to so-called H∞-disturbance attenuation: for given γ > 0 construct an
exponentially stabilizing linear feedback u(t) = −Kx(t) such that the attenuation
bound

(1.4) sup
ω∈R

∣∣∣∣( C√
εK

)
(iωI − (A−BK))−1D

∣∣∣∣ < γ

is satisfied. Such problems arise in a variety of contexts; robust stabilization is one of
the most important.

DEFINITION 1.1. If there is δ > 0 such that for each v ∈ W there exists a control
u ∈ U with

ρ(u, v; 0) ≤ (γ2 − δ) |v|2W ,

the problem is said to be stabilizable with attenuation γ.
As in the finite-dimensional case, the H∞ disturbance-attenuation problem is

solvable if and only if the problem is stabilizable with attenuation γ (Theorem 2.2).
Furthermore, in this case an appropriate state feedback may be calculated by solv-
ing an operator Riccati equation. Unfortunately, this Riccati equation can rarely
be solved exactly. In this paper we approximate the original system (1.1)−(1.2)
by a sequence of finite-dimensional systems and consider the corresponding finite-
dimensional disturbance-attenuation problems.

The classical linear quadratic regulator (LQR) problem may be regarded as a lim-
iting case of the H∞ disturbance-attenuation problem, with the required disturbance
attenuation γ →∞. The approximation theory for the linear quadratic case is fairly
complete (e.g., see [GI, BK, IT1, IT2]). We make the same assumptions required in
the linear quadratic case and show that a sequence of solutions to finite-dimensional
Riccati equations converges strongly to the solution to the infinite-dimensional Riccati
equation required to solve the H∞ disturbance-attenuation problem. Furthermore,
and more importantly, the corresponding finite-dimensional feedback control opera-
tors yield performance arbitrarily close to that obtained with the infinite-dimensional
solution. A key step of the proof of these results is the game-theoretic representation
([KE, (2.10) in the proof of Theorem 2.2]) of the solution to the H∞ Riccati equation
in terms of the closed-loop solution to the standard LQR problem.

The notation that is used in this paper is standard as in [PA]. Background
on linear semigroup theory may also be found in [PA]. An outline of the paper is as
follows. In section 2 the solution to the H∞ disturbance-attenuation problem in terms
of the operator Riccati equation (2.1) is described, and an approximation theory of
solutions to (2.1) is developed. Our theoretical results are demonstrated numerically
in section 3 using a Euler–Bernoulli beam example.

2. Approximation theory. In this section we develop an approximation theory
for the H∞ disturbance-attenuation problem.

DEFINITION 2.1. (1) The pair (A,B) is stabilizable if there exists a bounded linear
operator F : X → U such that A − BF generates an exponentially stable semigroup
on X.
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(2) The pair (A,C) is detectable if there exists a bounded linear operator G : Y →
X such that A−GC generates an exponentially stable semigroup on X.

(3) The state feedback K ∈ L(X,U) is γ-admissible if it is exponentially stabilizing
and the linear feedback u(t) = −Kx(t) is such that the attenuation bound (1.3) is
achieved.

A key result in the finite-dimensional and the infinite-dimensional theory is that if
the problem is stabilizable with attenuation γ, then it is stabilizable by state feedback.

THEOREM 2.2 (see, e.g., [KE, Thm. 4.4]). Assume that (A,B) is stabilizable and
(A,C) is detectable. For γ > 0 the following are equivalent:

• there exists a γ-admissible state feedback;
• the system is stabilizable with disturbance attenuation γ;
• there exists a nonnegative, self-adjoint operator Σ on X satisfying the Riccati

equation

(2.1)
(
A∗Σ + ΣA− 1

ε
ΣBB∗Σ +

1
γ2 ΣDD∗Σ + C∗C

)
x = 0

for all x ∈ dom(A), and A− 1
εBB

∗Σ + 1
γ2DD

∗Σ generates an exponentially
stable semigroup on X.

Moreover, in this case a γ-admissible state feedback is given by K̂ = 1
εB
∗Σ.

An approximation theory for solutions to (2.1) which numerically approximate the
feedback operator K̂ = B∗Σ/ε is developed below. Let XN be a finite-dimensional
subspace of X, and let PN be the orthogonal projection of X onto XN . The space
XN is equipped with the induced norm from X. Consider a sequence of opera-
tors AN ∈ L(XN , XN ), BN = PNB ∈ L(U,XN ), DN = PND, and CN =
the restriction of C onto XN . The operator AN can be extended to all of X by
ANPNx.

Approximation Assumptions.
(A1) For each x ∈ X we have

(i) eA
N tPNx→ S(t)x,

(ii) (eA
N t)∗PNx→ S∗(t)x,

uniformly in t on bounded intervals.
(A2) (i) The family of pairs (AN , BN ) is uniformly exponentially stabilizable; i.e.,

there exists a uniformly bounded sequence of operators KN ∈ L(XN , U) such that

(2.2)
∣∣∣e(AN−BNKN )tPN x

∣∣∣
X
≤M1 e

−ω1t |x|X

for some positive constants M1 ≥ 1 and ω1.
(ii) The family of pairs (AN , CN ) is uniformly exponentially detectable; i.e., there

exists a uniformly bounded sequence of operators GN ∈ L(Y,XN ) such that

(2.3)
∣∣∣e(AN−GNCN )tPN x

∣∣∣
X
≤M2 e

−ω2t, t ≥ 0,

for some positive constants M2 ≥ 1 and ω2.
(A3) The input operator B and disturbance operator D are compact.
Remarks. (1) Note that (A1) implies that PNx→ x for x ∈ X.
(2) Assumption (A1) and the uniform boundedess theorem imply the boundedness

of |eAN tPN |L(X,X) uniformly in t ∈ [0, 1] and N . Then the standard semigroup
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theorem, e.g., [PA, Chapter 1, Theorem 2.2], implies that |eAN tPNx|X ≤M0 e
ω0t|x|X

for some M0 ≥ 1 and ω0 ∈ R.
(3) For an important equivalent statement of (A1)(i) we note the Trotter–Kato

theorem.
THEOREM 2.3 (Trotter–Kato Theorem; see, e.g., [PA, Chapter 3, Theorem 4.2]).

Assume the stability of approximation

|eAN tPNx|X ≤M0 e
ω0t|x|X for some M0 ≥ 1 and ω0 ∈ R.

Then the convergence (A1)(i)

eA
N tPNx→ S(t)x for every x ∈ X and uniformly on bounded t intervals

is equivalent to the consistency: for some λ ∈ ρ(A)∣∣(λI −AN )−1PNx− (λI −A)−1x
∣∣
X
→ 0

as N →∞ for all x ∈ X.
(4) The convergence (A1)(ii) of the adjoint semigroup sequence (eA

N t)∗ is required
for the strong convergence of the approximating feedback gain operators. A counter-
example may be found in [BIP].

(5) In (A2)(i) if we let KN = KPN , then condition (2.2) becomes the preservation
of exponential stability under approximation of the semigroup T (t) generated by A−
BK.

(6) Assumption (A3) is equivalent to

lim |PND −D| = 0, lim |PNB −B| = 0 as N →∞

since XN is finite dimensional.
Assumptions (A1)–(A2) are identical to those required to show that the solu-

tions to the Riccati equations arising in the approximation theory for linear quadratic
problem converge, e.g., [IT1]. Assumption (A3) is not required in the standard LQR
problem for the existence of solutions to a family of approximating finite-dimensional
Riccati equations. However, this assumption is required to ensure continuity of per-
formance measure and to guarantee that the approximating controllers stabilize the
infinite-dimensional system [IT2, MO1, MO2].

Before presenting the approximation result and its proof we state a technical
lemma which plays an important role in the proof.

LEMMA 2.4 (Datko lemma; see, e.g., [SA, Theorem 6.2]). Let S(t), t ≥ 0 be a
linear C0-semigroup on a Banach space X satisfying the exponential bound

|S(t)| ≤Meωt

for some constants M ≥ 1, ω ≥ 0. Moreover, let 1 ≤ p < ∞, and suppose that there
exists a constant c > 0 such that∫ ∞

0
|S(t)x|pX dt ≤ cp |x|

p
X , x ∈ X.

Then, for every

α > − 1
pcpMp

,
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there exists a γ = γ(α, ω,M, c, p) ≥ 1 such that

|S(t)| ≤ γ eαt, t ≥ 0.

Now we state our main approximation result.
THEOREM 2.5. Assume that (A,B) is stabilizable, (A,C) is detectable, and (A1)–

(A3) are satisfied. If the original problem is stabilizable with attenuation γ, then so are
the approximating systems for sufficiently large N . For such N , the Riccati equation

(2.4) (AN )∗ΣN +ΣNAN− 1
ε

ΣNBN (BN )∗ΣN +
1
γ2 ΣNDN (DN )∗ΣN +(CN )∗CN = 0

has a nonnegative, self-adjoint solution ΣN and ΣNPN x → Σx strongly in X as
N → ∞. Moreover, K̂N = 1

ε (BN )∗ΣN converges to K̂ = 1
εB
∗Σ in norm. For N

sufficiently large, K̂N is γ-admissible for the infinite-dimensional problem.
Proof. The proof is given in several steps. First, we give a brief description of the

representation of Σ. This is used to show that for large N the approximating systems
are stabilizable with attenuation γ and so for such N the finite-dimensional Riccati
equation (2.4) has a solution ΣN . We show that ΣN → Σ and K̂N → K̂. Finally, we
show that the approximating finite-dimensional feedback K̂N is γ-admissible for the
original system.

Step 1. First we briefly review the representation of Σ. Details may be found in
[KE, Theorem 4.4] or [BB]. Since (A,B) is stabilizable and (A,C) is detectable, the
(LQR) Riccati equation

(2.5)
(
A∗Π + ΠA− 1

ε
ΠBB∗Π + C∗C

)
x = 0 for all x ∈ dom(A)

has the unique nonnegative, self-adjoint solution Π. Let Sc(t) be the exponentially
stable semigroup generated by A− 1

εBB
∗Π.

Consider the quadratic differential game

max
v∈W

min
u∈U

ρ(u, v;x)− γ2 |v|2W

subject to (1.1).
Define L ∈ L(W, L2(0,∞;X)) by

(2.6) (Lv)(t) =
∫ ∞
t

S∗c (τ − t)ΠDv(τ) dτ.

For a disturbance v and x ∈ X

(2.7) u∗(t) = −1
ε
B∗ [Πx(t) + (Lv)(t)]

minimizes ρ(u, v;x) over u ∈ U subject to (1.1).
For x ∈ X, v ∈ W, write r(t) = (Lv)(t) and define the quadratic form

J(v;x) = ρ(u∗, v;x)− γ2 |v|2W

= (x,Πx+ 2 r(0)) +
∫ ∞

0
2 (Dv(t), r(t))− 1

ε
|B∗r(t)|2 − γ2 |v(t)|2 dt.

Defining the self-adjoint operator Q on W by

(2.8) Q = γ2 I +
1
ε
L∗BB∗L−D∗L− L∗D,
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we have

J(v;x) = −(Qv, v)W + 2 (D∗ΠSc(·)x, v)W + (Πx, x).

If the system (1.1)−(1.2) is stabilizable with attenuation γ, then for some δ > 0

J(v; 0) = ρ(u∗, v; 0)− γ2 |v|2W ≤ −δ |v|2W .

Thus Q ≥ δI and maximization of J(v;x) over v ∈ W is well posed. The solution to
this problem, the worst disturbance v∗, is the unique solution to

(2.9) Qv∗ −D∗ΠSc(·)x = 0, x ∈ X.

We define the self-adjoint operator Σ on X by

(Σx, x) = max J(v, x) = (D∗ΠSc(·)x, v∗)W + (Πx, x)

for x ∈ X. This implies

(2.10) Σx = Πx+
∫ ∞

0
S∗c (t)ΠDv∗(t) dt.

It is shown in [KE, BB] that Σ satisfies the Riccati equation (2.1) and is unique
within the class of nonnegative, self-adjoint solutions to (2.1) such that the
closed-loop semigroup generated by A − 1

εBB
∗Σ + 1

γ2DD
∗Σ is exponentially

stable on X.
Moreover, the optimal pair (u∗, v∗) to the differential game is of feedback form:

u∗(t) = −1
ε
B∗Σx(t), v∗(t) =

1
γ2 D

∗Σx(t).

Step 2. Next, we show that the finite-dimensional Riccati equation (2.4) has
a nonnegative solution by showing that the finite-dimensional system is stabilizable
with attenuation γ.

Under assumptions (A1)−(A2) it is shown in [IT1] that the (LQR) Riccati equa-
tion on XN

(2.11) (AN )∗Π + ΠNAN − 1
ε

ΠNBN (BN )∗ΠN + (CN )∗CN = 0

has the unique nonnegative, self-adjoint solution ΠN and also that ΠNPN x → Πx

strongly in X as N → ∞. Define SNc (t) = e(AN− 1
εB

NBN
∗ΠN )t. It is also shown in

[IT1] that there exist constants M3 ≥ 1 and ω3 > 0 such that

(2.12) |SNc (t)PNx| ≤M3e
−ω3t |x|X .

Let K̄N = 1
εB

N ∗ΠN and K̄ = 1
εB
∗Π. Then, since B is compact, |K̄NPN −K̄| →

0 as N →∞. Assumption (A1) implies∣∣(λI − (AN −BNK̄N ))−1PNx− (λI − (A−BK̄))−1x
∣∣
X
→ 0

for all x ∈ X and also the similar statement for the sequence of adjoint operators. It
thus follows from the Trotter–Kato theorem that

(2.13) SNc (t)PNx→ Sc(t)x and (SNc )∗(t)PNx→ S∗c (t)x

for all x ∈ X, uniformly on bounded t-intervals.
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Since D is compact,

(2.14) |(SNc )∗(t)ΠNDN − S∗c (t)ΠD| → 0

uniformly in any bounded t-interval. For τ > 0 and p ∈ [1,∞),∫ ∞
0
|(SNc )∗(t)ΠNDN − S∗c (t)ΠD|p dt

≤
∫ τ

0
|(SNc )∗(t)ΠNDN − S∗c (t)ΠD|p dt

+
∫ ∞
τ

(|SNc (t)|p|ΠN |p + |S∗c (t)|p|Π|p)|D|p dt.

Since from (2.12) the second term of the right-hand side is bounded by Me−ω τ for
some positive constants M and ω, it follows from (2.13) that

(2.15)
∫ ∞

0
|(SNc )∗(t)ΠNDN − S∗c (t)ΠD|p dt→ 0

as N →∞ for all p ∈ [1,∞).
Define the linear operators LN and QN on W for the approximate problem that

corresponds to L and Q defined in (2.6) and (2.8), respectively. It then follows from
(2.15) that

(2.16) |LN − L| and |QN −Q| → 0

as N →∞.
Define

zN (u, v;x) = col (CNxN (t),
√
εu(t)),

where xN is the state of the approximating system with control u, disturbance v, and
initial condition x. Also define the finite-dimensional cost

ρN (u, v, x) = |zN |2L2(0,∞;Y ).

As in (2.7) define the control

(2.17) uN (t) = −1
ε

(BN )∗[ΠNxN (t) + LNv(t)].

Then, with initial condition x = 0,

(2.18) xN (t) =
∫ t

0
SNc (t− s)

(
−1
ε
BN (BN )∗(LNv)(s) +DNv(s)

)
ds.

Define the linear operators L̃N , L̃ ∈ L(L2(0,∞;X), L2(0,∞, X)) by

(L̃Nf)(t) =
∫ t

0
SNc (t− s)

(
1
ε
BN (BN )∗f(s)

)
ds
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and

(L̃f)(t) =
∫ t

0
Sc(t− s)

(
1
ε
BB∗f(s)

)
ds

Using the same arguments as above we can show that |L̃N − L̃| → 0 as N →∞. Since
from (2.7)

x∗(t) =
∫ t

0
Sc(t− s)

(
−1
ε
BB∗(Lv)(s) +Dv(s)

)
ds,

it follows from (2.16) and (2.18) that

|xN − x∗|2L2(0,∞;X) ≤ ε1(N) |v|2W ,

where ε1(N)→ 0 as N →∞. Since CN is the restriction of C on XN it follows that

|ρN (uN , v; 0)− ρ(u∗, v; 0)| ≤ ε(N) |v|2W ,

where ε(N) → 0 as N → ∞. Therefore, for sufficiently large N , the approximating
problems are stabilizable with attenuation γ.

This implies that the finite-dimensional Riccati equation (2.4) has a self-adjoint
solution ΣN on XN

(2.19) ΣNPNx = ΠNPNx+
∫ ∞

0
(SNc )∗(t)ΠNDNvN (t) dt,

where vN (t) ∈ W is the unique solution of

(2.20) QNvN − (DN )∗ΠNSNc (·)PNx = 0.

Furthermore, AN− 1
εB

N (BN )∗ΣN+ 1
γ2D

N (DN )∗ΣN generates an exponentially stable

semigroup on XN , and K̂N = 1
ε (BN )∗ΣN is γ-admissible for the approximating

problem.
Step 3. We now show that ΣN converges strongly to Σ and K̂N converges uni-

formly to K̂.
The uniform convergence of QN to Q implies that QN is coercive with QN ≥ δ

2
for N sufficiently large. Also, (2.15) implies that∫ ∞

0
|(DN )∗ΠNSNc (t)PN −D∗ΠSc(t)|2dt→ 0

as N →∞. Therefore, the solution to (2.20) satisfies

(2.21) |vN |W ≤M |x|X

for some constant M . Note that

Q(vN − v∗) = (Q−QN )vN + (DN )∗ΠNSNc (t)PNx−D∗ΠSc(t)x.

Hence, from (2.16) and (2.21) vN converges strongly to v∗ in W as N →∞ for each
x ∈ X.
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It now follows from (2.10), (2.15), and (2.19) that

ΣNPNx→ Σx for all x ∈ X.

Since B is compact, we have that |(BN )∗ΣNPN −B∗Σ| → 0. That is, K̂N converges
uniformly to K̂.

Step 4. To prove that for large N the approximating feedback operators K̂N are
γ-admissible for the system (1.1)−(1.2), first note that by the Trotter–Kato theorem
the convergence of K̂N to K̂ in norm implies that the semigroup SK̂N generated by
A − BK̂N converges to the semigroup SK̂ generated by A − BK̂, strongly in X,
uniformly in bounded intervals of time. Also, there exists M̃ ≥ 1, ω̃ > 0 such that for
sufficiently large N ,

|SK̂N (t)|X ≤ M̃e−ω̃t.

The output (1.2) with a disturbance v, feedback control u(t) = −K̂Nx(t), and initial
condition x(0) = 0 is

z̄N (t) =
[

C

−
√
εK̂N

] ∫ t

0
SK̂N (t− s)Dv(s) ds.

The convergence of the semigroups and the compactness of D imply, as in equation
(2.15), that for any p ∈ [1,∞),∫ ∞

0
|SK̂N (t)D − SK̂(t)D|p dt→ 0.

Let z̄ indicate the output (1.2) obtained with the same disturbance v but with feedback
control −K̂x(t). Then ∫ ∞

0
|z̄N (t)− z̄(t)|2Y dt ≤ ε(N) |v|2W ,

where ε(N) → 0 as N → ∞. This implies that for large N , K̂N is γ-admissible for
the original system.

COROLLARY 2.6. Under the same assumptions as in Theorem 2.3, we have

|vN (t)− v∗(t)|W = 0,

|uN (t)− u∗(t)|U = 0,

and there exist positive constants M4, ω4,M5, and ω5 such that

(2.22) |e(AN− 1
εB

N (BN )∗ΣN+ 1
γ2D

N (DN )∗ΣN )t
PNx| ≤M4e

−ω4 t |x|X ,

(2.23) |e(AN−BN K̂N )tPNx| ≤M5e
−ω5 t |x|X .

Proof. The convergence of the worst disturbance vN follows from the proof of
Theorem 2.3.
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We show that for large N , AN − 1
εB

N (BN )∗ΣN + 1
γ2D

N (DN )∗ΣN generates a
uniformly stable semigroup TN (t). Note that

vN (t) =
1
γ2 (DN )∗ΣNxN (t), uN (t) = −1

ε
(BN )∗ΣNxN (t)

and

(2.24)
∫ ∞

0
|CNxN (t)|2 + ε|uN (t)|2 dt = (ΣNPNx, x) + γ2|vN (t)|2W ,

where

xN (t) = TN (t)x = e
(AN− 1

εB
N (BN )∗ΣN+ 1

γ2D
N (DN )∗ΣN )t

PNx, x ∈ X.

Let GN be as in (A2)(ii) so that e(AN−GNCN )t is uniformly exponentially stable. Then
we have

xN (t) = e(AN−GNCN )tPNx

+
∫ t

0
e(AN−GNCN )(t−s)(GNCNxN (s) +BNuN (t) +DNvN (t)) dt.

Note that from Hölder’s inequality and the Fubini theorem∫ ∞
0

∣∣∣∣∫ t

0
f(t− s)g(s) ds

∣∣∣∣2 dt ≤ ∫ ∞
0

∫ t

0
|f(t− s)| ds

∫ t

0
|f(t− s)||g(s)|2 ds

≤
∫ ∞

0
|f(σ)| dσ

∫ ∞
0

(∫ ∞
s

|f(t− s)| dt
)
|g(s)|2 ds

≤
(∫ ∞

0
|f(σ)| dσ

)2 ∫ ∞
0
|g(t)|2 dt

for f ∈ L1(0,∞) and g ∈ L2(0,∞). It thus follows from (A2)(ii), (2.21), (2.24) that∫ ∞
0
|xN (t)|2 dt ≤ M2

2

ω2
|x|2

+
2M2

ω2

∫ ∞
0

(|GN |2|CNxN (t)|2 + |BN |2|uN |2 + |DN |2|vN (t)|2) dt

≤ β |x|2X for some β > 0.

Hence, (2.22) follows from the Datko lemma. The proof of (2.23) is identical.
Let T (t) be the semigroup generated by A− 1

εBB
∗Σ+ 1

γ2DD
∗Σ on X. The above

implies that xN (t) converges in L2(0,∞;X) to T (t)x (see the proof of Theorem 2.3)
and so uN (t)→ u∗(t) in L2(0,∞;X).

Conversely, we have the following theorem.
THEOREM 2.7. Suppose the Riccati equation (2.4) has uniformly bounded nonneg-

ative self-adjoint solutions ΣN on XN for N sufficiently large with

(2.25) |vN (t)|W ≤M |x|2X for some M > 0,
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where

vN (t) =
1
γ2 (DN )∗ΣNe(AN− 1

εB
N (BN )∗ΣN+ 1

γ2D
N (DN )∗ΣN )t

PNx.

Assume that (A1), (A2)(ii), and (A3) hold. Then, the system (1.1) is stabilizable with
attenuation γ.

Proof. It follows from [GI] that there exist a nonnegative self-adjoint operator
Σ on X and a subsequence of ΣN such that ΣNPNx converges weakly to Σx in X
for x ∈ X. It follows from (A3) that (BN )∗ΣNPNx and (DN )∗ΣNPNx converge
strongly to B∗Σx and D∗Σx, respectively. Let

TN (t) = e
(AN− 1

εB
N (BN )∗ΣN+ 1

γ2D
N (DN )∗ΣN )t

and T (t) be the semigroup generated by A− 1
εBB

∗Σ+ 1
γ2DD

∗Σ on X. It then follows
from (A1) and the Trotter–Kato theorem that

TN (t)PNx→ T (t)x for each x ∈ X,

uniformly on bounded t-intervals.
Note that

ΣNPNx = e(AN )∗tΣNTN (t)PNx+
∫ t

0
e(AN )∗(t−s)(CN )∗CNTN (t− s)PNx ds, x ∈ X.

Taking the limit as N →∞, we obtain

Σx = S∗(t)ΣT (t)x+
∫ t

0
S∗(t− s)C∗CT (t− s)x ds,

which implies that Σ is a solution to (2.4).
Moreover, it follows from (2.25) and the proof of Corollary 2.6 that

|TN (t)PNx| ≤M4e
−ω4 t |x|X

for some positive constants M4, ω4, provided that (A2)(ii) holds. Hence, the semi-
group T (t) is exponentially stable.

It follows from Theorem 2.2 that the system (1.1) is stabilizable with attenu-
ation γ.

The optimal disturbance attenuation problem for the infinite-dimensional system
(1.1) is to find

γ̂ = inf γ

over all γ such that (1.2) is stabilizable with attenuation γ. Let {γ̂N} indicate the
corresponding optimal disturbance attenuation for the approximating problems. The-
orem 2.3 implies that

(2.26) lim sup
N→∞

γ̂N ≤ γ̂.

However, we have a stronger result.
THEOREM 2.8. Assume that (A1)–(A3) hold, (A,B) is stabilizable, and (A,C) is

detectable. Then

lim
N→∞

γ̂N = γ̂.
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Proof. Because of (2.26), it is sufficient to show that

lim inf
N→∞

γ̂N ≥ γ̂.

Assume that this statement is false. Then there is an δ > 0 such that for all N there
is M > N with γ̂M < γ̂− δ. In this way we can construct a subsequence {γ̂M} of the
sequence {γ̂N} with

γ̂M < γ̂ − δ.

Thus, the approximating system is stabilizable with attenuation γ̂ − δ/2 and

ρM (uM , v; 0) ≤ (γ̂ − δ/2) |v|2W ,

where for any v ∈ W, uM (t) is defined by (2.17). Moreover, we have

|ρM (uM , v; 0)− ρ(u∗, v; 0)| ≤ ε(M) |v|2W ,

where ε(M) → 0 as M → ∞ and u∗(t) ∈ U is given by (2.7). Hence the original
problem is stabilizable with attenuation γ̂ − δ/2. This contradicts the optimality of
γ̂ and thus (2.26) holds.

The above theorem implies that if a sequence of approximating problems that
satisfy assumptions (A1)–(A3) are stabilizable with attenuation γ, then so is the
infinite-dimensional problem. Thus, Theorem 2.7 can be regarded as a partial converse
of Theorem 2.3. The difference between this theorem and Theorem 2.5 is that the
assumption of uniform stabilizability (A2)(i) in Theorem 2.5 is replaced by uniform
boundedness of ΣN and vN .

3. Example. Consider a Euler–Bernoulli beam clamped at one end and let
w(r, t) denote the deflection of the beam from its rigid body motion at time t and
position r. The deflection can be controlled by applying a torque at the clamped end
(r = 0). We assume that the hub inertia Ih is much larger than the beam inertia, so
that, letting θ(t) indicate the rotation angle, u(t) = Ihθ̈(t) is a reasonable approxima-
tion to the applied torque. The disturbance v(t) induces a uniformly distributed load
ρdv(t). Use of the Kelvin–Voigt damping model leads to the following description of
the beam vibrations:

ρ
∂2w

∂t2
+ Cv

∂w

∂t
+

∂2

∂r2

[
EI

∂2w

∂r2 + CdI
∂3w

∂r2∂t

]
=
ρr

Ih
u(t) + ρ d v(t), 0 < r < L.

The boundary conditions are

w(0, t) = 0,
∂w

∂r
(0, t) = 0,

[
EI

∂2w

∂r2 + CdI
∂3w

∂r2∂t

]
r=L

= 0,
[
EI

∂3w

∂r3 + CdI
∂4w

∂r3∂t

]
r=L

= 0.

The values of the physical parameters in this example are listed in Table 1. Let
x(t) = (w(·, t), ∂∂tw(·, t)), H be the closed linear subspace of H2(0, 1) defined by

H =
{
w ∈ H2(0, 1) : w(0) =

dw

dr
(0) = 0

}
,
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TABLE 1
Physical constants.

E 2.1 ∗ 1011 N/m2

I 1.167× 10−10 m4

ρ 2.975 kg/m
Cv .001Ns/m2

Cd .01Ns/m2

L 7m
Ih 121.9748 kgm2

d .04 1/kg

and X = H × L2(0, 1). Here H2(0, 1) is the Hilbert space defined by

H2(0, 1) =
{
φ ∈ C1(0, 1) :

d

dr
φ is absolutely continuous and

d2

dr2φ ∈ L
2(0, 1)

}
.

If the tip deflection is measured, a state-space formulation of the above partial differ-
ential equation problem is

d

dt
x(t) = Ax(t) +Bu(t) +Dv(t),

y(t) = Cx(t) = w(L, t),

where

A =


0 I

−EI
ρ

d4

dr4 −CdI
ρ

d4

dr4 −
Cv
ρ

 , B =

 0

r

Ih

 , D =

 0

d


with domain

dom (A) =
{

(φ, ψ) ∈ X : ψ ∈ H and

M = EI
d2

dr2φ+ CdI
d2

dr2ψ ∈ H
2(0, 1) with M(L) =

d

dr
M(L) = 0

}
.

Define V = H ×H. Then A can be defined by

〈Ax, z〉V ∗×V = −a(x, z) for x, z ∈ V,

where the sesquilinear form a(·, ·) on V × V is given by

a((φ1, ψ1), (φ2, ψ2)) = −σ(ψ1, φ2) + σ

(
φ1 +

Cd
E
ψ1, ψ2

)
+
(
Cv
ρ
ψ1, ψ2

)
L2

for (φi, ψi) ∈ V, i = 1, 2. Here,

σ(φ, ψ) =
∫ L

0

EI

ρ

d2

dr2φ(r)
d2

dr2ψ(r) dr .
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FIG. 1. Response of open (..) and closed loop (–) to v(t) = 1, t ≤ 100s: 10 elements.

The sesquilinear form a is continuous on V × V and coercive; i.e.,

Re a(z, z) ≥ ω |z|2V − β |z|2X for z ∈ V

for appropriately chosen positive constants ω, β. It thus follows that A generates
an exponentially stable analytic semigroup on X [SH, section 4]. The operators B
and D are clearly bounded operators from R to X. Sobolev’s inequality implies that
evaluation at a point is bounded on H, and so the output operator C is bounded from
X to R.

Let HN ⊂ H be a sequence of finite-dimensional subspaces. The approximating
generator AN on XN = HN ×HN is defined by

〈−ANxN , zN 〉 = a(xN , zN ) ∀xN , zN ∈ XN ,

and PN , BN , CN are as defined at the beginning of section 2. This type of ap-
proximation is generally referred to as a Galerkin approximation. Suppose that the
approximating subspaces HN satisfy the H-approximation property: for all φ ∈ H
there exists a sequence φN ∈ HN with

(H1) lim
N→∞

|φN − φ|H = 0.

It is shown in [IT2, MO2] that as long as the approximating spaces satisfy the H-
approximation property, assumptions (A1)–(A3) are satisfied. The standard finite-
element cubic B-spline approximations [OP] do satisfy the H-approximation property,
and so all the assumptions of Theorem 2.3 are satisfied by this problem.
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FIG. 2. Response of open (..) and closed loop (–) to v(t) = sin(ωt) : 10 elements.

Our numerical calculations were carried out using a series of cubic B-spline ap-
proximations for HN , and the corresponding series of finite-dimensional Riccati equa-
tions were solved with ε = .1 and γ = 2.3. Figure 1 compares the open- and closed-loop
responses Cx(t) = w(L, t) with a temporary step disturbance for the approximation
with 10 elements. The feedback controller leads to a closed loop which is able to
almost entirely reject this disturbance. Figure 2 compares the open- and closed-loop
responses to the periodic disturbance sin(ωt) where ω is the first resonant frequency:
ω = mini |Im(λi(A10)|. The resonance in the open loop is not present in the closed
loop.

Since the input space U = R, the feedback operator K̂N is a bounded linear
functional on XN and hence can be uniquely identified with an element of XN ,
usually called the gain. Figure 3 displays the convergence of the feedback gains
predicted by Theorem 2.3. Since XN is a product space, the first and second com-
ponents of the gains are displayed separately as displacement and velocity gains,
respectively.

The sequence of operators AN −BNK̂N is uniformly exponentially stable, and so

max
1≤i≤N

Reλi(AN −BNK̂N )

converges to a nonzero number as N → ∞, which can be verified theoretically. This
convergence is displayed in Figure 4 for several different values of ε and γ = 2.3.
Notice that as ε is decreased, the convergence becomes slower. A robust stability
theorem provides some insight into this behavior.
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FIG. 3. Convergence of the feedback gains: 2 elements *, 4 elements ..., 6 elements . .,
8 elements , 10 elements, .

Let the functionsH,Go, andG in the following theorem indicate transfer functions
of systems with a finite number of inputs and outputs. For a given nominal plant Go
and weighting function r ∈ H∞, the class A(Go, r) consists of all plants G that have
the same number of right-hand-plane poles as Go and that satisfy

|G(iω)−Go(iω)| < |r(iω)|.

That is, A(Go, r) contains the systems whose frequency response is within r(iω) at
each frequency ω of that of the nominal system Go.

THEOREM 3.1 (see [CD]). Suppose that a controller H stabilizes the system Go.
For any r ∈ H∞ the controller H stabilizes all G ∈ A(Go, r) if and only if, for all ω,

(3.1) |H(1 +GoH)−1(iω)| |r(iω)| ≤ 1.

For any approximation N , we have the nominal plant

Go = (sIN −AN )−1[BN DN ]

and the controller

H =
[
K̂N

0

]
.

Thus, we have

H(I +GoH)−1 = K̂N (sIN −AN +BNK̂N )−1(sIN −AN )
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FIG. 4. Convergence of max1≤i≤N Re(λi): ε = .1 (—), .001 (- -), .00001.(...).

and

H(I +GoH)−1Go

[
0
v

]
= K̂N (sIN −AN +BNK̂N )−1DNv.

The second row in the attenuation bound (1.4) is commonly interpreted as a con-
straint on the control effort. However, it can also be interpreted as a robust stability
constraint. If the inequality (1.4) is satisfied, then the robustness criterion (3.1) is
satisfied with

r(iω) =
√
ε

γ
Go(iω)

[
0
I

]
.

This interpretation explains why convergence is slower for smaller ε. The stability
margin for the approximation N is affected by the constraint that the higher-order
approximations also be stabilized. Increasing ε while holding all other parameters
such as γ constant means that the computed controller must stabilize a larger family
of systems. Hence the stability margin is less sensitive to change in the approximation
index N .
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Abstract. Let f(·) be an unknown function whose root x0 is sought by stochastic approximation
(SA). Convergence rate and asymptotic normality are usually established for the nondegenerate case
f ′(x0) 6= 0. This paper demonstrates the convergence rate of SA algorithms for the degenerate
case f ′(x0) = 0. In comparison with the previous work, in this paper no growth rate restriction is
imposed on f(·), no statistical property is required for the measurement noise, the general step size
is considered, and the result is obtained for the multidimensional case, which is not a straightforward
extension of the one-dimensional result. Although the observation noise may be either deterministic
or random, the analysis is purely deterministic and elementary.

Key words. stochastic approximation, convergence rate
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1. Introduction. The topic of SA is to search the roots or extremes of an un-
known function f(·) : Rl → Rl which can be observed with noise. Since its pioneer
work by Robbins and Monro [1], SA has obtained much attention from researchers [2,
3] and is applied in various areas, such as parameter identification, adaptive control,
optimization, pattern recognition, and others [4].

In many applications not only convergence but also convergence rate of the al-
gorithm is of interest. Intuitively, the rate of convergence depends on the derivative
f ′(x0) of the function at its root x0; the rate in the nondegenerate case (f ′(x0) 6= 0)
should be faster than it is in the degenerate case (f ′(x0) = 0). To be precise, the
Robbins–Monro algorithm is defined by

xn+1 = xn + anyn+1,(1.1)

yn+1 = f(xn) + εn+1,(1.2)

where yn+1 is the observation and εn+1 is the noise. {an} is the step size and is
selected to have the following properties:

an > 0, an−−−−→
n→∞

0 and
∞∑
i=1

ai =∞.

Under certain conditions [1–4, 7] imposed on f(·) and εn, xn defined by (1.1),
(1.2) converges to the root x0 of f(·), i.e.,

xn−−−−→
n→∞

x0, f(x0) = 0.

Further, in the nondegenerate multidimensional case assume

f(x) = H(x− x0) + ∆(x), H < 0,(1.3)
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∆(x) = O(‖x− x0‖2) as x→ x0.(1.4)

Then under some conditions on the observation noise

‖xn − x0‖ = o(aδn) ∀δ ∈
(

0,
1
2

)
,(1.5)

provided H + qδI is a stable matrix where α by assumption is defined by

a−1
n+1 − a−1

n −−−−→
n→∞

q ≥ 0.

The convergence rate in the case f ′(x0) = 0 was addressed in [5] for the special case
where (i) f(·) is a scalar function, i.e., l = 1, and f(x) grows not faster than linearly as
|x| → ∞; (ii) (x−x0)f(x) < 0 ∀x 6= x0; (iii) f(x) = f0|x−x0|1+γsign(x−x0)·(1+o(1))
as x → x0, γ > 0; (iv) the conditional variance of εn+1 given xn is bounded, i.e.,
Var(εn+1|xn) ≤ σ2; (v) εn+1 is conditionally independent of x0, . . . , xn−1 given xn;
and (vi) the step size is special: an = 1

n . In comparison with [5] this paper derives
the convergence rate for the general case. To be precise, we do not impose any
growth rate restriction on f(·); we do not require any statistical property of the noise,
which is allowed to be stochastic or deterministic; we consider the general step size
an and, finally, we give the convergence rate for both multidimensional and one-
dimensional cases. The approach used here is completely different from that used
in [5] and is purely deterministic. A purely deterministic approach in a discrete
setting was used in [9, 10] as an alternative means for obtaining convergence results,
and the approach used here is similar in flavor. We further show the power of an
elementary deterministic analysis by obtaining convergence rates. It is worth noting
that extension from the one-dimensional result to the multidimensional case is not
straightforward. As will be seen in section 2, in the multidimensional case only the
upper bound is obtained, while in the one-dimensional case it is shown that the upper
bound is attainable.

2. Main results. Before describing the main results of the paper we present
a convergence result, proved in [4, 6]. The algorithm considered in this paper is a
modified version of (1.1), (1.2) and is defined as follows.

Let {Mk} be a sequence of real numbers, Mi > 0, Mi ↑ ∞ and let x∗ be a fixed
point in Rl. The estimate xn is recursively given by

x̂k+1 = xk + akyk+1, x0 arbitrary,(2.1)

xk+1 = x̂k+1I[‖x̂k+1‖≤Mσk
] + x∗I[‖x̂k+1‖>Mσk

],(2.2)

σk =
k−1∑
i=0

I[‖x̂i+1‖>Mσi
],(2.3)

yk+1 = f(xk) + εk+1.(2.4)

Since Mi diverges, algorithm (2.1)–(2.4) coincides with the Robbins–Monro al-
gorithm (1.1), (1.2) starting from some time, if we can prove that {xk} defined by
(2.1)–(2.4) is bounded.

Let us list conditions which will be used later on.
A1. f(·) is an Rl → Rl measurable and locally bounded function, and f(x) = 0

∀x ∈ J ; i.e., J is the root set of f(·).
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A2. ak > 0, ak −−−−→
k →∞

0,
∑∞
i=1 ai =∞.

A3. There is a differentiable function v(·) : Rl → R such that

d(v(x), v(J)) > 0 if d(x, J) > 0

and
sup

δ≤d(x,J)≤∆
fτ (x)vx(x) < 0 ∀ 0 < δ < ∆,

where vx(x) denotes the gradient of v(x):

d(x, J) = inf{‖x− y‖ : ∀y ∈ J}, and v(J) = {v(x) : x ∈ J}.

A4. As x→ x0 the function f(x) is expressed as

f(x) = H(x− x0)‖x− x0‖γ + r(x), γ > 0,(2.5)

where H is a stable matrix (i.e., all its eigenvalues have negative real parts) and

r(x) ∈ Rl, r(x)/‖x− x0‖1+γ → 0 as x→ x0.(2.6)

A5.

qn
4
= a−1

n+1 − a−1
n , 0 ≤ qn, lim sup

n→∞
qn = q, 0 ≤ q <∞,(2.7)

∞∑
i=1

bi =∞, where bi =
ai

log a−1
i

.(2.8)

PROPOSITION. Assume A1–A3 hold. If there is a constant c0 such that ‖x∗‖ < c0,
v(x∗) < inf‖x‖ = c0v(x) and if v(J) is not dense in any interval, then {xk} defined
by (2.1)–(2.4) converges to J

lim
k→∞

d(xk, J) = 0

whenever {εi} satisfies the following condition:

lim
T→0

lim sup
k→∞

1
T

∥∥∥∥∥∥
m(k,t)∑
i=k

aiεi+1

∥∥∥∥∥∥ = 0 ∀t ∈ [0, T ],(2.9)

where

m(k, t) = max

{
m :

m∑
i=k

ai ≤ t
}
.

Remark 1. An obvious condition which guarantees (2.9) is the convergence of the
series

∞∑
i=1

aiεi+1.

Condition (2.9) is also necessary for convergence of xn to the root of f(x). This is
discussed in the recent paper [8], which also shows that (2.9) is equivalent to the
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standard Kushner–Clark condition [3]. However, when εk depends on {x0, . . . , xk−1},
it is difficult to directly verify (2.9). In [4, 6] it is shown that it suffices to verify (2.9)
not along the whole sequence {k} but along the subsequence {nk} whenever {xnk}
converges. In [4, 6] it is also demonstrated that this verification can be done in many
practically important problems.

Remark 2. If {xk} given by (1.1), (1.2) is a priori known to be bounded, then
under conditions A1–A3 and (2.9)

lim
k→∞

d(xn, J) = 0;(2.10)

i.e., in this case the truncations introduced in (2.1)–(2.4) are not necessary.
In A4 the matrix H is stable. By the Lyapunov equality there is a positive definite

matrix P > 0 such that

PH +HτP = −I.(2.11)

Denote by λmax and λmin the maximum and minimum eigenvalue of P , respec-
tively, and by K the condition number λmax/λmin.

THEOREM. (i) If conditions A1–A5 are satisfied and x0 is the unique root of
f(·), then for {xn} defined by (2.1)–(2.4)

lim sup
n→∞

(log a−1
n )

1
γ ‖xn − x0‖ ≤

√
K

(
2qλmax

γ

) 1
γ

(2.12)

if {εi} satisfies the following condition:

∞∑
i=1

ai(log a−1
i+1)

1
γ εi+1 <∞,(2.13)

where γ and q are given by (2.5), (2.7), respectively.
(ii) If, in addition, H is symmetric, then

lim sup
n→∞

(log a−1
n )

1
γ ‖xn − x0‖ ≤

(
q

λlγ

) 1
γ

,(2.14)

where λl is the smallest eigenvalue of −H and γ and q are given by (2.5), (2.7),
respectively.

(iii) Further, in the one-dimensional case, i.e., l = 1, under the conditions stated
in (i) except A3, the upper bound in (2.14) is attainable if qn → q > 0.

The proof of the theorem is given in section 3.
Remark 3. From the theorem it is seen that the convergence rate of (xn − x0)

depends upon the decreasing rate of an. However, it is interesting to note that this de-
pendence in the degenerate case is completely different from that in the nondegenerate
case.

From (1.5) it is seen that for the nondegenerate case, if an = 1
nα , 0 < α ≤ 1, then

the convergence rate of (xn−x0) is improving as α increases from 0 to 1. However, in
the degenerate case the picture is different. By the theorem, limn→∞(α logn)

1
γ |xn −

x0| equals 0 for all α ∈ (0, 1), while it may attain ( 1
|H|γ )

1
γ if α = 1. This means that in

contrast to the nondegenerate case, the convergence rate of |xn − x0| for α ∈ (0, 1) is
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better than that for α = 1. This fact is verified by simulation of the following simple
example:

f(x) = −x|x|, x0 = 0, f ′(x0) = 0, γ = 1, H = −1,
εi ≡ 0,

x
(1)
n+1 = x

(1)
n − x(1)

n |x(1)
n |

n , x
(1)
0 = 0.5,

x
(2)
n+1 = x

(2)
n − x(2)

n |x(2)
n |√
n

, x
(2)
0 = 0.5.

The simulation shows that

x(1)
n logn−−−−→

n→∞
1, while x(2)

n logn−−−−→
n→∞

0,

which are reconciled with results stated in the theorem.
It is also worth noting that the right-hand sides of (2.14) depend upon the smallest

eigenvalue λl of −H when H is symmetric. As λl decreases the upper bound in
(2.14) increases. In other words, the faster f(x) leaves the abscissa, the faster xn
converges to x0. This phenomenon is consistent with the convergence rate change
from (1.5) for the nondegenerate case to (2.12) for the degenerate case. This is also
verified by computation: if in the example considered above “H = −1” is replaced
by “H = −1

2”, i.e., if f(x) = −1
2x|x|, then the recursion with an = 1

n becomes
xn+1 = xn − xn|xn|

2n , x0 = 0.5. The computation shows

xn logn−−−−→
n→∞

2,

which is larger than the limit of x(1)
n logn.

Remark 4. In the case q > 0, the convergence rate given in the theorem cannot
be improved. However, when q = 0, i.e., when a slowly decreasing gain is applied,
we have only established ‖xn − x0‖ = o(log a−1

n )−
1
r . The estimate may be not sharp,

but the computation shows that x(2)
n logn in Remark 3 converges to zero very slowly.

This means that we should not expect a much faster rate than (2.15).

3. Order of estimation error. In this section we establish the order of esti-
mation error when the estimation algorithm (2.1)–(2.4) is applied. As a matter of

fact, we intend to show that ‖zn‖
4
= ‖(log a−1

n )
1
γ (xn − x0)‖ is bounded. This is an

intermediate step toward proving the theorem which gives either upper bound or an
exact limit of ‖zn‖.

LEMMA 1. If A5 holds, then (2.13) implies (2.9).
Proof. Let (2.13) be held. Setting

sn =
n∑
i=1

ai(log a−1
i+1)

1
γ εi+1, s0 = 0,

we have
n∑

i=m

aiεi+1 =
n∑

i=m

(si − si−1)(log a−1
i+1)−

1
γ

=sn(log a−1
n+1)−

1
γ +

n−1∑
i=m

si[(log a−1
i+1)−

1
γ − (log a−1

i+2)−
1
γ ].(3.1)
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Since sn converges, the first term on the right-hand side of (3.1) tends to zero as
n→∞, while the last term is dominated by

sup
m≤i≤n

|si|
n−1∑
i=m

|(log a−1
i+1)−

1
γ−(log a−1

i+2)−
1
γ | = sup

m≤i≤n
|si|[(log a−1

m+1)−
1
γ−(log a−1

n+1)−
1
γ ],

which tends to zero as n→∞ and m→∞.
Hence,

∑∞
i=1 aiεi+1 converges and (2.9) holds by Remark 1.

LEMMA 2. Under the conditions stated in (i) or in (iii) of the theorem, xk defined
by (2.1)–(2.4) converges to x0 as k →∞.

Proof. By Lemma 1 and the Proposition presented in section 2, under the condi-
tions stated in (i) we see xk −−−−→

k →∞
x0. For the one-dimensional case stated in (i) we

also have xk −−−−→
k →∞

x0 if we can verify A3.

Since x0 is the unique root of f(·) by A1, we have by A4

(x− x0)f(x) < 0 ∀x 6= x0.

Then the function v(x) = (x− x0)2 satisfies A3.
Define

zn = (log a−1
n )

1
γ (xn − x0),(3.2)

h(z) = Hz‖z‖γ +
q + ∆
γ

z, z ∈ Rl, ∆ > 0.(3.3)

LEMMA 3 (key lemma). Under the conditions stated in (i) of the theorem, {zn}
is bounded if (2.13) holds.

Proof. To prove boundedness of {zn} we first express zn in the recursive form.
For any ∆ > 0 and sufficiently large n by (2.7), we have qn ≤ q + ∆ and

(
log a−1

n+1

log a−1
n

) 1
γ

=


log a−1

n + log
a−1
n+1

a−1
n

log a−1
n


1
γ

=
(

1 +
log(1 + anqn)

log a−1
n

) 1
γ

=
(

1 +
anqn +O(a2

n)
log a−1

n

) 1
γ

=1 +
an(q + ∆ + o(1))

γ log a−1
n

.(3.4)

By Lemma 2 {xn} is bounded, and hence xk is defined by the Robbins–Monro
algorithm starting from some n0. Consequently, by (3.4) for n ≥ n0 we derive the
recursive formula for {zn}:



106 HAN-FU CHEN

zn+1 =
(

1 +
an

γ log a−1
n

(q + ∆ + o(1))zn

)

+
an

log a−1
n

(
1 +

an

γ log a−1
n

(q + ∆ + o(1))
)

(log a−1
n )1+ 1

γ

·[H(xn − x0)‖xn − x0‖γ + r(xn)] + an(log a−1
n+1)

1
γ εn+1

=
(

1 +
an

γ log a−1
n

(q + ∆ + o(1))
)
zn

+
an

log a−1
n

(
1 +

an

γ log a−1
n

(q + ∆ + o(1))
)[

Hzn‖zn‖γ +
‖zn‖1+γr(xn)
‖xn − x0‖1+γ

]
+an(log a−1

n+1)
1
γ εn+1

=zn + bnhn(zn) + an(log a−1
n+1)

1
γ εn+1(3.5)

=zn + bnHnzn + an(log a−1
n+1)

1
γ εn+1,(3.6)

where

hn(z) =
(
Hz‖z‖γ +

‖z‖1+γr(xn)
‖xn − x0‖1+γ

)(
1 +

an

γ log a−1
n

(q + ∆ + o(1))
)

+
q + ∆ + o(1)

γ
z = Hnz(3.7)

and

Hn =
[(
H +

r(xn)
‖xn − x0‖1+γ ·

zτn
‖zn‖

)
(1 + o(1)) +

q + ∆ + o(1)
γ‖zn‖γ

· I
]
‖zn‖γ .(3.8)

Assume that the converse is true, i.e., assume {‖zn‖} is unbounded.
Let us fix a large enough constant c > 1 such that

q + ∆
γcγ

λmax <
1
5
.(3.9)

Denote by {zli}, i = 1, 2, . . . , nc, those of {zn, n ≥ n0} for which ‖zli‖ ≤ c and
‖zi‖ > c ∀i : i 6∈ {1, . . . , nc} where nc may be infinite. For both cases nc < ∞
and nc =∞ from the unboundedness of {‖zn‖} we will obtain a contradiction. This
implies the conclusion of the lemma.

Case 1. If nc <∞, then ‖zi‖ > c ∀i ≥ nc.
We now show that by selection (3.9) for c the difference equation (3.5) in Case 1 is

asymptotically stable and zn−−−−→
i→∞

0. This implies impossibility of ‖zi‖ > c ∀i ≥ nc.
Define

Φn,j = (I + bnHn)(I + bn−1Hn−1) · · · (I + bjHj), Φj,j+1
4
= I,(3.10)

Φτn,jPΦn,j = Φτn−1,j(P + bn(Hτ
nP + PHn) + b2nH

τ
nPHn)Φn−1,j ,(3.11)

where Hn is defined by (3.8).
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From A4 and Lemma 2, notice that r(xn)/‖xn− x0‖1+γ −−−−→
n→∞

0 and for n ≥ nc,

bn‖Hτ
nPHn‖ ≤ c1bn‖zn‖2γ = c1

an

log a−1
n

(log a−1
n )2‖xn − x0‖2γ −−−−→

n→∞
0,(3.12)

where c1 is a constant. Then by (2.11), (3.9), (3.12) for sufficiently large n we have

(Hτ
nP + PHn) + bnH

τ
nPHn < −

1
2
‖zn‖γI.(3.13)

Without loss of generality we may assume that n0 is large enough so that (3.13) is
valid for n ≥ n0. By (3.11), (3.13) for j ≥ nc we see that

Φτn,jPΦn,j ≤ Φτn−1,j

(
P − 1

2
bn‖zn‖γI

)
Φn−1,j ≤

(
1− bn‖zn‖γ

2λmax

)
Φτn−1,jPΦn−1,j ,

where as defined in section 2 λmax is the maximum eigenvalue of P .
This implies that

Φτn,ncPΦn,nc ≤(1− µbn‖zn‖γ)Φτn−1,ncPΦn−1,nc

<e−µbn‖zn‖
γ

Φτn−1,ncPΦn−1,nc < λmaxe
−µ

∑n
i=nc

bi‖zi‖γ I,

where µ = 1
2λmax

.
Consequently, we have

‖Φn,nc‖ <
√
Ke−

µ
2

∑n
i=nc

bi‖zi‖γ .(3.14)

We remind the reader that K = λmax/λmin and λmin is the minimum eigenvalue of
P .

From (3.6) it follows that

zn+1 = Φn,ncznc +
n∑

j=nc

Φn,j+1aj(log a−1
j+1)

1
γ εj+1.(3.15)

Since ‖zi‖ > c ∀i ≥ nc and
∑∞
i=nc bi = ∞, by (3.14) the first term on the

right-hand side of (3.15) tends to zero as n→∞. Let us now estimate the last term
of (3.15).

Set

ξn =
n∑

j=nc

aj(log a−1
j+1)

1
γ εj+1.

By (2.13) it follows that ξn−−−−→
n→∞

ξ <∞. We now have

n∑
j=nc

Φn,j+1aj(log a−1
j+1)

1
γ εj+1

=
n∑

j=nc

Φn,j+1(ξj − ξj−1)

= ξn −
n∑

j=nc+1

(Φn,j+1 − Φn,j)ξj−1 − Φn,nc+1ξnc−1
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= ξn −
n∑

j=nc+1

(Φn,j+1 − Φn,j)ξ

−
n∑

j=nc+1

(Φn,j+1 − Φn,j)(ξj−1 − ξ)− Φn,nnc+1ξnc−1

= (ξn − ξ) + Φn,nc+1ξ −
n1∑

j=nc+1

(Φn,j+1 − Φn,j)(ξj−1 − ξ)

+
n∑

j=n1+1

Φn,j+1bjHj(ξj−1 − ξ)− Φn,nnc+1ξnc−1.(3.16)

By (3.14) it is clear that on the right-hand side of (3.16) all terms except the
second-to-last one tend to zero as n → ∞ for any fixed n1. We now show that the
second-to-last term of (3.16) can be made arbitrarily small by choosing n1 sufficiently
large. For any ε > 0, take sufficiently large n1 such that

|ξj − ξ| < ε and 1 ≥ µbj‖zj‖γ
2

∀j ≥ n1,

which is possible because

bj‖zj‖γ =
aj

log a−1
j

· [(log a−1
j )

1
γ ‖xj − x0‖]γ = aj‖xj − x0‖γ → 0.(3.17)

Using (3.14), (3.17), and noticing that ‖Hn‖ ≤ c2‖zn‖γ ∀n ≥ nc for some constant
c2 > 0 we derive∥∥∥∥∥∥

n∑
j=n1+1

Φn,j+1bjHj(ξj−1 − ξ)

∥∥∥∥∥∥ ≤ εc2√K
n∑

j=n1+1

e−
µ
2

∑n
i=j+1 bi‖zi‖

γ

bj‖zj‖γ

≤ 4εc2
√
K

µ

n∑
j=n1+1

e−
µ
2

∑n
i=j+1 bi‖zi‖

γ

(1− e−
µ
2 bi‖zj‖

γ

) ≤ 4εc2K
µ

,

where we use the fact that x
2 ≤ 1− e−x for x ∈ [0, 1].

Consequently, the left-hand side of (3.16) tends to zero as n → ∞, and hence
zn−−−−→

n→∞
0. This contradicts ‖zi‖ > c, ∀i ≥ nc. Therefore, nc must be ∞.

Case 2. Assume nc =∞. In this case {zi} will come back to the ball {‖z‖ ≤ c}
infinitely many times and at the same time {zi} is unbounded. From this we can
conclude that {‖zi‖} crosses a nonempty interval infinitely often. To be precise, let
zτliPzli ≤ λmaxc

2, i = 1, . . . , nc, where P is given in (2.11). Starting from any zli ,
i ∈ {1, 2, . . . , nc}, there exists an mi > li such that zτmiPzmi > 4c2λ2

max/λmin since
{‖zn‖} is unbounded. Further, noticing nc =∞ we can find an integer ni+1 in the set
{li, i = 1, 2, . . . , nc} such that ni+1 > mi. This procedure can be continued infinitely
many times. Without loss of generality, we may assume

zτniPzni ≤ λmaxc
2, zτmiPzmi ≥ 4c2λ2

max/λmin,

λmaxc
2 < zτj Pzj < 4c2λ2

max/λmin,
(3.18)

ni < j < mi, i = 1, 2, . . . .
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This implies the crossing property of {‖zi‖}:

‖zni‖ ≤
√
Kc, ‖zmi‖ ≥ 2c

√
K, c < ‖zj‖ < 2cK,(3.19)

ni < j < mi, i = 1, 2, . . . .

We now show that
∑mi−1
j=ni bj ≥ T > 0 and ‖zs − zni‖ = O(T ) as T → 0 for all

large i and s:
∑s
j=ni bj ≤ T . This implies a contradiction to (3.19). We now prove

this in detail.
Noticing that there are constants c3 and c4 such that

bn‖Hnzn‖≤
an

log a−1
n

[c3‖zn‖1+γ + c4‖zn‖](3.20)

≤ an

log a−1
n

[c3(log a−1
n )

γ+1
γ ‖xn − x0‖1+γ

+c4(log a−1
n )

1
γ ‖xn − x0‖]−−−−→

n→∞
0,

by (2.13) from (3.6) we see that

zn+1 − zn−−−−→
n→∞

0.(3.21)

Summing up both sides of (3.6) from ni to mi we derive

zmi = zni +
mi−1∑
j=ni

bjHjzj +
mi−1∑
j=ni

aj(log a−1
j+1)

1
γ εj+1.(3.22)

From (3.22) using (3.18), (3.19), (3.20) we obtain

2c
√
K ≤
√
Kc+

mi−1∑
j=ni

bj(c3‖zj‖1+γ + c4‖zj‖) +

∥∥∥∥∥∥
mi−1∑
j=ni

aj(log a−1
j+1)

1
γ εj+1

∥∥∥∥∥∥
≤
√
Kc+

mi−1∑
j=ni

bj(c3(2cK)1+γ + c42cK) +

∥∥∥∥∥∥
mi−1∑
j=ni

aj(log a−1
j+1)

1
γ εj+1

∥∥∥∥∥∥ .(3.23)

Since (2.13) the last term of (3.23) can be made arbitrarily small, say, less than
ε (<

√
Kc) if i is sufficiently large. Then from (3.23) it follows that

mi−1∑
j=ni

bj ≥
√
Kc− ε

c3(2cK)1+γ + 2cc4K
4
= T > 0

for all large enough i. This means that l(ni, T ) ≤ mi − 1, where

l(n, t) = max

{
l :

l∑
i=n

bi ≤ t
}
, bi =

ai

log a−1
i

.(3.24)
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Consequently, we have

‖zj − zni‖ ≤
∥∥∥∥∥
j−1∑
s=ni

bsHszs +
j−1∑
s=ni

as(log a−1
s+1)

1
γ εs+1

∥∥∥∥∥
≤ (c3(2cK)1+γ + 2c4cK)T + o(1) ≤ αT, α > 0,(3.25)

∀j ∈ [ni, . . . , l(ni, T )],

where α is a constant
Therefore, by Taylor’s formula there exists z̃ ∈ Rl such that

‖z̃ − zni‖ ≤ αT(3.26)

and

zτl(ni,T )Pzl(ni,T ) − zτniPzni =z̃τP

l(ni,t)∑
j=ni

bjHjzj +
l(ni,T )∑
j=ni

aj(log a−1
j+1)

1
γ εj+1



=
l(ni,t)∑
j=ni

bjz
τ
j PHjzj +

l(ni,T )∑
j=ni

bj(z̃ − zj)τPHjzj

+z̃τP
l(ni,T )∑
j=ni

aj(log a−1
j+1)

1
γ εj+1.(3.27)

Using (3.20), (3.25), and (3.26) we see that∥∥∥∥∥∥
l(ni,T )∑
j=ni

bj(z̃ − zj)τPHjzj

∥∥∥∥∥∥ ≤ 2αT 2λmax(c3(2cK)1+γ + c42cK).

By (2.13), the last term of (3.27) can be made arbitrarily small. Hence, by (3.12),
(3.13), (3.19), (3.21) we have

zτj PHjzj =
1
2
zτj (PHj +Hτ

j P )zj < −
1
4
‖zj‖2+γ ≤ −1

4
c2+γ ∀j = ni, . . . , l(ni, T ).

From (3.27) we can conclude that

zτl(ni,T )Pzl(ni,T ) − zτniPzni

≤−1
4
c2+γT + 2αT 2(c3(2cK)1+γ + 2cc4K) + o(1) ≤ −1

5
c2+γT,(3.28)

if i is large enough and T is sufficiently small. By (3.18) inequality (3.28) implies that

λmaxc
2 < zτl(ni,T )Pzl(ni,T ) ≤ zτniPzni −

1
5
c2+γT → λmaxc

2 − c2+γT

5
,

which is impossible. The obtained contradiction shows that {zn} is bounded.
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4. Proof of the theorem. We are now in a position to prove our theorem.
Proof of the theorem. (i) For assertion (2.12) of the theorem it suffices to show

lim sup
n→∞

zτnPzn ≤ λmax

(
2(q + ∆)λmax

γ

) 2
γ 4

= a(4.1)

for arbitrarily small ∆ > 0. Let us fix ∆ > 0.
The idea of proof for (4.1) is that we show that zτnPzn crosses a nonempty interval

infinitely often if (4.1) is not true and, at same time, zτnPzn is decreasing in a certain
sense. This contains a contradiction.

By Lemma 3 {zn} is bounded; i.e.,

‖zn‖ ≤ ζ <∞ ∀n.(4.2)

Hence, from (3.8) we see that

Hn = H‖zn‖γ +
q + ∆
γ

I + o(1).(4.3)

From (3.3), (3.6), and (4.3) it follows that

zn+1 = zn + bnh(zn) + bno(1) + an(log a−1
n+1)

1
γ εn+1.(4.4)

Fix any small ε > 0 consider z ∈ Rl for which

zτPz ≥ λmax

(
2(q + ∆)λmax + ε

γ

) 2
γ 4

= b.(4.5)

This implies that

‖z‖ ≥
(

2(q + ∆)λmax + ε

γ

) 1
γ

.

Then by (2.11) and (4.4) we have

zτ
(

(PH +HτP )‖z‖γ +
2(q + ∆)

γ
P

)
z

≤ zτ
(
−‖z‖γI +

2(q + ∆)λmax

γ
I

)
z ≤ − ε

γ
‖z‖2.(4.6)

Assume (4.1) is not true. Then there is a small δ > 0 such that

lim sup
n→∞

zτnPzn > a+ δ.(4.7)

Therefore, there is a subsequence

zτnkPznk > a+ δ, k = 1, 2, . . . .(4.8)

Let ε > 0 be small enough so that

a+ δ > b,(4.9)

where b is given by (4.5).
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We now show that from any nk, k = 1, 2, . . ., {zn} will enter the ellipsoid {z :
zτPz ≤ b}. Assume the converse, i.e.,

‖zτi Pzi‖ ≥ b ∀i ≥ nk(4.10)

for some nk.
By the boundedness of {zn} we have

‖zj − zn‖ ≤ c5T, j = n, . . . , l(n, T ) ∀n,(4.11)

and hence

|zτj Pzj − zτnPzn| ≤ c6T, j = n, . . . , l(n, T ) ∀n,(4.12)

where c5 and c6 are constants. Similar to (3.27), by (4.2), (4.11) we obtain

zτl(nk,T )Pzl(nk,T ) − zτnkPznk ≤
l(nk,T )∑
j=nk

bjz
τ
j PHjzj + c7T

2 + o(1)

=
l(nk,T )∑
j=nk

bjz
τ
j

(
PH

(
‖zj‖γ +

q + ∆
γ

P

))
zj + c7T

2 + o(1).

(4.13)

Using (2.11) leads to

zτl(nk,T )Pzl(nk,T )−zτnkPznk =
1
2

l(nk,T )∑
j=nk

bjz
τ
j

(
−‖zj‖γI +

2(q + ∆)
γ

P

)
zj+c7T 2 +o(1).

From this by (4.6), (4.10) we obtain

zτl(nk,T )Pzl(nk,T ) − zτnkPznk< −
1
2

l(nk,T )∑
j=nk

bj
ε

2γ
‖zj‖2 + c7T

2 + o(1)

< − ε

2γ

(
2(q + ∆)λmax + ε

γ

) 2
γ

T + c7T
2 + o(1)

≤ − ε

3γ

(
2(q + ∆)λmax + ε

γ

) 2
γ

T(4.14)

for sufficiently small T and large enough k. This means that after a finite number of
steps (4.10) will not be satisfied; i.e., zn will enter the ellipsoid {z : zτPz ≤ b}. This
together with (4.8) implies that {zτnPzn} will cross the interval [b, a + δ] infinitely
often; i.e., there are two subsequences {zlk} and {zmk} such that

zτlkPzlk ≤ b, zτmkPzmk ≥ a+ δ,

b < zτi Pzi < a+ δ ∀i : lk < i < mk.

Take T sufficiently small such that c6T < a + δ − b. Then by (4.12) we see
l(li, T ) < mi ∀i and

zτl(lk,T )Pzl(lk,T ) ∈ (b, a+ δ),
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which combined with (4.14) leads to a contradiction:

0 < zτl(lk,T )Pzl(lk,T ) − zτlkPzlk ≤ −
ε

3γ

(
2(q + ∆)λmax + ε

γ

) 2
γ

T.

Therefore, (4.8) is impossible or (4.7) is impossible. Since δ may be arbitrarily
small, the impossibility of (4.7) implies (4.1). Tending ∆ to zero, from (4.1) we derive
(2.12).

(ii) Now, let H be symmetric. We simply consider ‖z‖2 instead of zτPz and set
in (4.1) and (4.5)

a =
(
q + ∆
λlγ

) 2
γ

, b =
(
q + ∆ + ε

λlγ

) 2
γ

.

The proof can be carried out along the lines of that given for the general case.
For example, corresponding to (4.5), (4.6) we now have

‖z‖2 ≥ b, and zτ
(
H‖z‖γ +

q + ∆
γ

I

)
z ≤ zτ

(
−λl

q + ∆ + ε

λlγ
+
q + ∆
γ

)
z = − ε

γ
‖z‖2,

respectively, while (4.13) becomes

‖zl(nk,T )‖2 − ‖znk‖2 ≤ −
l(nk,T )∑
j=nk

bjz
τ
j

(
H

(
‖zj‖γ +

q + ∆
γ

I

)
zj + c7T

2 + o(1)
)
.

(iii) Since q > 0, we may set ∆ = 0 in (3.3) and in the proofs of Lemma 3 and
part (i) of the theorem.

In the one-dimensional case H in (2.5) is a negative number, and λl in (2.14)
equals |H|. The root set of h(z) defined by (3.3) with ∆ = 0 is J = {0,±( q

−Hγ )
1
γ }.

It is easy to define a twice differentiable function v(z) such that

v(z) = v(−z), 0 < v(z) < v(0) ∀z : |z| ≤ ζ,

v′(z)h(z) < 0 ∀z 6∈
{

0,±
(

q

−Hγ

) 1
γ

}
,

where ζ is given in (4.2).
For ∀t ≤ T we find that

lim
T→0

lim sup
k→∞

1
T

∥∥∥∥∥∥
l(k,t)∑
i=k

(bio(1) + ai(log a−1
i+1)

1
γ εi+1)

∥∥∥∥∥∥
≤ lim
T→0

lim sup
k→∞

1
T
{t · o(1)}+ lim

T→0
lim sup
k→∞

1
T

∥∥∥∥∥∥
l(k,t)∑
i=k

ai(log a−1
i+1)

1
γ εi+1

∥∥∥∥∥∥
=0.(4.15)

Applying Remark 2 in section 2 to (4.4) leads to

lim
k→∞

d(zk, J) = 0.
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This is valid for any {εi} satisfying (4.15). In particular, if {εi} is such that
bio(1) + ai(log a−1

i+1)
1
γ εi+1 = 0 ∀i ≥ 1, then (4.4) becomes the following recursion:

zn+1 = zn + bnh(zn).(4.16)

Note that h′(0) = q
γ > 0, and hence 0 is not stable for the equation

żt = h(zt).

It is clear that 0 cannot be the limit point of (4.16).
Therefore, in this case zn can converge either to ( q

|H|γ )
1
γ or to −( q

|H|γ )
1
γ . This

verifies the attainability of the upper bound in (2.14).

5. Concluding remarks. By using a deterministic analysis we have shown the
pathwise convergence rate of SA when f(x0) = 0 and f ′(x0) = 0. Some problems
are still open and belong to further research. First, it might be possible to obtain
more precise results. For example, as a conjecture, the limit of the left-hand side
of (2.14) is one of ( q

λiγ
)

1
γ , i = 1, . . . , l, depending upon the initial value where λi,

i = 1, . . . , l are the eigenvalues of H. Second, it is not clear what happens if f(·) has
more complicated behavior as x→ x0.
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Abstract. We study the regularity properties of the value function of a quadratic regulator
problem for a linear distributed parameter system with distributed control action. No definiteness
assumption on the cost functional is assumed. We study the regularity in time of the value function
and also the space regularity in the case of a holomorphic semigroup system.
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1. Introduction. In this paper we are concerned with a general class of fi-
nite horizon linear-quadratic optimal control problems for evolution equations with
distributed control and nondefinite cost. More precisely, we consider the following
abstract differential equation over a finite interval [τ, T ], 0 ≤ τ < T < +∞:

ẋ = Ax+Bu, x(τ) = x0 ∈ X,(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup eAt on a
Hilbert space X, B is a linear bounded operator from the control space U to X. With
the dynamics (1.1), we associate the cost functional

Jτ (x0, u) =
∫ T

τ

F (x(t), u(t))dt+ 〈x(T ), P0 x(T )〉,(1.2)

where x(·) = x(·, τ, x0, u) is the mild solution to equation (1.1) and F is the quadratic
form

F (x, u) = 〈x,Qx〉+ 〈x, Su〉+ 〈Su, x〉+ 〈u,Ru〉(1.3)

(we denoted by 〈·, ·〉 inner products in both the spaces X and U). All the operators
Q, S, R, and P0 contained in the functional (1.2) are linear bounded operators in the
proper spaces, with Q = Q∗, R = R∗, P0 = P ∗0 . We define as usual the value function
of the problem:

V (τ, x0) := inf
u∈L2(τ,T ;U)

Jτ (x0, u).

The goal of this work is
• to characterize the property

V (τ, x0) > −∞ ∀x0 ∈ X, ∀τ ∈ [0, T ];(1.4)
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• to study the regularity properties of the map

τ → V (τ, x0)

on the interval [0, T ], when x0 is fixed.
We shall consider also the map x0 → V (τ, x0) in a special case; see section 6. It is
well known that if the regulator problem is standard, i.e.,

Q ≥ 0, S = 0, R ≥ α > 0, P0 ≥ 0,(1.5)

then the solution to the operator Riccati equation corresponding to problem (1.1)–
(1.2) provides the synthesis of the unique optimal control. This problem is well
understood, both in finite and in infinite dimensions, over a finite or infinite time
horizon (compare [10], [2], [3]).

The purpose of this paper is to examine the case when (1.5) fails, with special
interest in noncoercive R. We shall see that in this case the function τ → V (τ, x0)
has some mild regularity properties; see section 4. More regularity is obtained in the
coercive case; see section 5.

The study of linear quadratic regulator (LQR) problems with nondefinite cost is
related to a large variety of problems. Among them, we recall the study of dissipative
systems (see [20]), the analysis of the stability of feedback systems [14], the analysis
of second variations of nonlinear optimization problems (see [5], [15]). When game
theory is studied for linear systems then the quadratic form (1.3) is nonpositive. In
particular, the suboptimal H∞-problem can be recast in this setting [1]. Finally, very
recently, singular control theory has been used to obtain new results on regular control
problems for some class of boundary control systems: systems with input delays first
[16], and later systems described by wave- or plate-like equations with high internal
damping [9].

We recall that the existing results for finite-dimensional systems over an infinite
time interval ([19], [21]; see also [4]) were extended to distributed systems in [22], [23],
[12], [13], [8]. If T < +∞, the only work we know in an infinite-dimensional context,
in which a nonpositive cost functional is studied, is [6]. This paper considers even
time-varying systems but under the restriction R = I.

2. A simple example. The interest of the results presented in this paper is
justified by the possible applications that we already quoted, for instance to H∞-
control theory over a finite time interval, or to the analysis of the second variation
of general cost functionals. However, the following example may help the reader to
understand our problem. The example is a bit artificial, since we want to present
a very simple one. Nevertheless it is suggested by nontrivial problems in network
theory.

A delay line in its simpler form is described by an input-output relation,

v(t, x) = v(t+ x) =
∫ 0

−1
u(t+ s+ x) dη(s),(2.1)

where t > 0, x ∈ (−1, 0) and the integral is a Stieltjes integral.
For simplicity we assume that the input u(·) is continuous, a condition that can

be very much relaxed.
The simplest case described by (2.1) is

v(t, x) = u(t+ x− 1)(2.2)
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and corresponds to a jump function η, with jump at −1. If the system is started at
t = 0 then the input (2.1) is read only for t > 0, so that the output v(·) from (2.1) is
given by

v(t, x) =

{
φ(x+ t), −1 < x+ t < 0,∫ 0
−1 u(t+ s+ x) dη(s) otherwise.

The function φ describes the “initial state” of the system (quite often it will be φ = 0).
In the case of equation (2.2) we have in particular

v(t, x) =

{
u(t+ x− 1), t+ x > 1,

φ(t+ x− 1), t+ x < 1.

Notice that if φ(·) and u(·) are regular then v(t, x) = v(t + x) solves the first-order
hyperbolic equation

vt = vx, v(0, x) = φ(x), v(t, 0) = u(t− 1).

The function v can be interpreted as a delayed potential at the output of the network
produced by the potential u(·) at the input. If the delay line is connected to a resistive
load, it produces a current i(t) = 1

Rv(t− 1), and the energy dissipated by the load in
time T is given by

−
∫ T

0
i(t)v(t− 1) dt = −

∫ T

0

1
R
|v(t− 1)|2 dt.

Since

v(t,−1) =

{
φ(t− 1), 0 < t < 1,

u(t− 1), t > 1,

then

−
∫ T

0
i(t)v(t− 1) dt =

 −
∫ T

0
1
R |φ(t− 1)|2 dt if T < 1,

−
∫ 1

0
1
R |φ(t− 1)|2 dt−

∫ T
1

1
R |u(t− 1)|2 dt if T > 1.

The energy that the load can dissipate is at most

inf
u(·)
−
∫ T

0
i(t)v(t− 1) dt.

We see from this that the load dissipates a finite amount of energy V (φ) if T < 1,
described by the quadratic functional

V (φ) = −
∫ T

0

1
R
|φ(t− 1)|2 dt.(2.3)

Otherwise, the load can dissipate as much energy as we want.
Hence it makes sense to study the energy function E(T ):

E(T ) = inf
u∈L2(0,T )

−
∫ T

0
i(t)v(t− 1) dt.

In this example the function E(T ) is finite only if T < 1, and in this case E(T ) is the
quadratic functional (2.3).

In this paper we consider an analogous problem in more generality: we study the
dependence on the interval [τ, T ] of the “energy” dissipated by a certain linear time
invariant system.
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3. Preliminary results. We recall that the solution to (1.1) is

x(t) = eA(t−τ)x0 + (Lτu)(t),(3.1)

with

(Lτu)(t) =
∫ t

τ

eA(t−s)Bu(s) ds,

: continuous L2(τ, T ;U)→ L2(τ, T ;X).(3.2)

Note that t→ (Lτu)(t) is an X-valued continuous function.
The adjoint L∗τ of Lτ : 〈Lτu, f〉L2(τ,T ;X) = 〈u, L∗τf〉L2(τ,T ;U) is given by

(L∗τf)(t) = B∗
∫ T

t

eA
∗(s−t) f(s) ds,

: continuous L2(τ, T ;X)→ L2(τ, T ;U).

Introduce also the bounded operator from U to X:

Lτ,Tu =
∫ T

τ

eA(T−s)Bu(s) ds

(which describes the map (3.1) from the input u to the solution of (1.1) at time t = T ,
with initial time τ and x0 = 0). The adjoint of Lτ,T is the map given by

(L∗τ,T y)(t) = B∗ eA
∗(T−t)y.

Using (3.1), one can easily show the following lemma.
LEMMA 3.1. The cost functional (1.2) can be rewritten as

Jτ (x0, u) = 〈Mτx0, x0〉+ 2Re 〈Nτx0, u〉+ 〈Rτu, u〉,(3.3)

with Mτ ∈ L(X), Nτ ∈ L(X,L2(τ, T ;U)), and Rτ ∈ L(L2(τ, T ;U)), Mτ and Rτ
self-adjoint, defined as follows:

Mτx = eA
∗(T−τ) P0 e

A(T−τ)x+
∫ T

τ

eA
∗(t−τ)QeA(t−τ)x dt,(3.4)

(Nτx)(t) = (L∗τQe
A(·−τ)x)(t) + S∗eA(t−τ)x + (L∗τ,TP0 e

A(T−τ)x)(t),(3.5)

(Rτu)(t) = (L∗τQ (Lτu))(t) + S∗(Lτu)(t) + (L∗τSu)(t)

+ Ru(t) + (L∗τ,TP0 Lτ,Tu)(t).(3.6)

We first state a lemma, which will be useful later.
LEMMA 3.2. If there exists τ0 and a constant γ such that

Rτ0 ≥ γ I,(3.7)

then Rτ ≥ γ I for any τ > τ0.
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Proof. It is sufficient to notice that if τ > τ0 we can write

〈Rτu, u〉L2(τ,T ;U) = 〈Rτ0v, v〉L2(τ0,T ;U),

where v(·) is given by v(t) = 0 if τ0 ≤ t < τ and u(t) when t ≥ τ . Hence, from (3.7)
it follows that Rτ ≥ γ I for any τ ∈ [τ0, T ].

We shall use the following general result pertaining to continuous quadratic forms
in Hilbert spaces, whose proof is given for the sake of completeness.

LEMMA 3.3. Let X and U be two Hilbert spaces, and consider

f(x, u) = 2Re〈Nx, u〉+ 〈Ru, u〉

with N ∈ L(X,U), R ∈ L(U), R = R∗.
1. If there exists x ∈ X such that

V (x) := inf
u∈U

f(x, u) > −∞,

then R ≥ 0.
2. The infimum of f(x, ·) is attained if and only if the equation

Ru = −Nx(3.8)

is solvable, and in this case any solution u of (3.8) gives a minimum.
3. If for each x ∈ X there exists a unique ux such that

f(x, ux) = min
u
f(x, u),

then R is invertible (the inverseR−1 may not be bounded) and ux = −R−1Nx
so that the transformation x→ ux is linear and continuous from X to U .

4. Let us assume that V (x) > −∞ for each x ∈ X. Then there exists a linear
bounded operator P ∈ L(X) such that

V (x) = 〈x, Px〉 ∀x ∈ X .(3.9)

Proof. If there exists v such that 〈Rv, v〉 < 0 then f(x, λv) → −∞ as λ → +∞.
This proves Lemma 3.3(1). The second item is well known [23, Lemma 2.3]. To
prove the third item we use item 2: the minimum ux is characterized by (3.8). This
equation is uniquely solvable for every x by assumption. Hence, kerR = {0} and
im N ⊆ im R. Consequently, ux = −R−1Nx where R−1 acts from the closure of the
image of R. Hence, R−1N is bounded since R−1 is closed and N is bounded.

The proof of the fourth item follows an approach in [7]. If R is coercive, then
it is boundedly invertible, so that f(x, ·) admits a unique minimum, namely, u+ =
−R−1Nx, and

V (x) = f(x, u+) = −〈x,N ∗R−1Nx〉.

Hence, (3.9) holds true and we have obtained an explicit expression for P , i.e.,

P = −N ∗R−1N .

If we simply have R ≥ 0, we consider the function

fn(x, u) = f(x, u) +
1
n
|u|2.
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Now Rn = R+ 1
nI is coercive; hence

Vn(x) = min
u
fn(x, u) = 〈x, Pnx〉,

with Pn ∈ L(X). By construction

n→ 〈x, Pnx〉

is a decreasing numerical sequence for any x ∈ X, and

V (x) ≤ 〈x, Pnx〉 ≤ 〈x, P1x〉;(3.10)

hence there exists P ∈ L(X) such that

〈x, Px〉 = lim
n→+∞

〈x, Pnx〉 = inf
n
〈x, Pnx〉 ≥ V (x) ∀x ∈ X.

To conclude, it remains to show that V (x) coincides with 〈x, Px〉 for any x ∈ X.
Assume by contradiction that V (x) < 〈x, Px〉 for a given x ∈ X, and let α > 0 such
that

〈x, Px〉 = V (x) + α .

Since V (x) = infu f(x, u) there exists u ∈ U such that

f(x, u) < V (x) +
α

2
.(3.11)

Correspondingly, there exists an integer n0 ∈ N such that

0 ≤ fn0(x, u)− f(x, u) =
1
n0
|u|2 < α

2
.(3.12)

From (3.11) and (3.12) it follows that

V (x) ≤ 〈x, Pn0x〉 ≤ fn0(x, u) < V (x) + α,

which is a contradiction; compare (3.10).
The above lemma and (3.3) imply a first necessary condition for finiteness of the

value function.
LEMMA 3.4. If there exists x0 such that V (τ, x0) > −∞, then

Jτ (0, u) = 〈Rτu, u〉 ≥ 0 ∀u ∈ L2(τ, T ;U).(3.13)

This observation is now used to obtain a necessary condition of more practical
interest, which is well known in the finite-dimensional case. The symbol I denotes
the identity operator acting on a space which will be clear from the context.

PROPOSITION 3.5. If there exists τ0 ∈ [0, T ) and a constant γ ≥ 0 such that
Rτ0 ≥ γ I, then R ≥ γI.

Consequently,

if there exists x0 and τ0 such that V (τ0, x0) > −∞, then R ≥ 0.(3.14)

Proof. We first consider the case γ = 0; hence by assumption Rτ0 ≥ 0. By
contradiction, suppose that there exists a control u0 ∈ U and a constant α > 0 such
that 〈Ru0, u0〉 = −α. Given a small ε > 0, choose a control u as follows:

u(t) =
{

0, τ0 ≤ t < T − ε,
u0, T − ε ≤ t ≤ T,
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and compute

〈Rτ0u, u〉 =
∫ T

T−ε

〈
Q

∫ t

T−ε
eA(t−s)Bu0 ds,

∫ t

T−ε
eA(t−s)Bu0 ds

〉
dt

+ ε〈Ru0, u0〉+ 2Re
∫ T

T−ε

〈∫ t

T−ε
eA(t−s)Bu0 ds, Su0

〉
dt

+
∫ T

T−ε

〈
P0

∫ T

T−ε
eA(T−s)Bu0 ds,

∫ T

T−ε
eA(T−s)Bu0 ds

〉
dt

= −εα+ o(ε) + o(ε2) as ε tends to zero.(3.15)

Since ε can be taken arbitrarily small, (3.15) yields 〈Rτ0u, u〉 < 0, and this con-
tradicts the assumption.

Assume instead Rτ0 ≥ γ I > 0. By choosing u(t) = 0 for t ∈ [τ0, T − ε[, u(t) =
u0 ∈ U arbitrary when t ∈ [T − ε, T ], a direct computation yields

γε‖u0‖2 ≤ ε〈Ru0, u0〉+ o(ε)‖u0‖2,

which implies 〈Ru0, u0〉 ≥ γ‖u0‖2 for any u0 ∈ U .
Finally, if V (τ0, x0) > −∞ for some τ0 ∈ [0, T ) and x0 ∈ X, then from Lemma 3.4

it follows that Rτ is a nonnegative operator for τ ≥ τ0. Therefore, from the previous
part of the proof, R ≥ 0.

We now show that the value function satisfies Bellman’s optimality principle,
which is known, in the context of linear-quadratic problems, as linear operator in-
equality (LOI) or dissipation inequality (DI).

We begin with the following lemma.
LEMMA 3.6. If for some number τ and some x0 ∈ X we have V (τ, x0) > −∞,

then we have also V (t, x(t)) > −∞ for each t ∈ [τ, T ]. Here, x(t) denotes the value
at time t of the function given by (3.1) for any fixed control u(·) on [τ, t].

Proof. Let t ∈ (τ, T ). Then

Jτ (x0, u) =
∫ t

τ

F (x(s), u(s)) ds +
∫ T

t

F (x(s), u(s)) ds

+ 〈x(T ), P0x(T )〉 =
∫ t

τ

F (x(s), u(s))ds + Jt(x(t), u),

where x(·) = x(·, τ, x0, u) for any u ∈ L2(τ, T ;U). Now take a control v ≡ 0 on [τ, t);
then

Jτ (x0, u+ v) =
∫ t

τ

F (x(s), u(s)) ds+ Jt(x(t), u+ v)

and

inf
v
Jτ (x0, u+ v) =

∫ t

τ

F (x(s), u(s)) ds+ inf
v
Jt(x(t), u+ v).(3.16)

The conclusion immediately follows since in fact infv Jt(x(t), u+v) = V (t, x(t)).
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THEOREM 3.7. Let τ ∈ [0, T ] and x0 ∈ X be given. Let V be the value function
of problem (1.1), (1.2) and assume that V (τ, x0) > −∞. Then∫ t

τ

F (x(s), u(s)) ds + V (t, x(t))− V (τ, x0) ≥ 0(3.17)

for any u(·) ∈ L2(τ, T ;U) and any t ∈ (τ, T ), with x(·) = x(·, τ, x0, u). Moreover, the
equality holds true if and only if the control u in (3.17) is optimal.

Proof. We return to the conclusion of Lemma 3.6 and observe again that

inf
v
Jt(x(t), u+ v) = inf

u
Jt(x(t), u) = V (t, x(t)),(3.18)

while

inf
v
Jτ (x0, u+ v) ≥ V (τ, x0);(3.19)

hence plugging (3.18) into (3.16) and taking into account (3.19), we get

V (τ, x0) ≤
∫ t

τ

F (x(s), u(s))ds + V (t, x(t)),(3.20)

which is nothing but (3.17). Thus, if for a given initial datum x0 there exists an
optimal control u+(·, τ, x0) minimizing Jτ (x0, u), then we can rewrite (3.16) and (3.19)
with u = u+(·, τ, x0), and (3.19) is in fact an equality. Therefore, (3.20) becomes an
equality as well. For these arguments compare also [11].

Vice versa, assume that (3.17) is satisfied for any control u ∈ L2(τ, T ;U) and it
is an equality for a given u∗. Then, passing to the limit, as t → T−, in (3.17) with
u = u∗ and x = x∗ = x(· , τ, x0, u

∗) and assuming for the moment that

lim
t→T−

V (t, x∗(t)) = 〈x∗(T ), P0x
∗(T )〉,(3.21)

we readily get

V (τ, x0) =
∫ T

τ

F (x∗(s), u∗(s)) ds + 〈x∗(T ), P0x
∗(T )〉;

that is,

V (τ, x0) = Jτ (x0, u
∗);

hence by definition u∗ is optimal.
To conclude, it remains to show that if (x∗, u∗) satisfies∫ t

τ

F (x∗(s), u∗(s)) ds + V (t, x∗(t))− V (τ, x0) = 0,(3.22)

then (3.21) holds true. From (3.22) it follows that there exists

lim
t→T−

V (t, x∗(t)) = V (τ, x0)−
∫ T

τ

F (x∗(s), u∗(s)) ds,

and by the very definition of the value function it follows that

lim
t→T−

V (t, x∗(t)) ≤ 〈x∗(T ), P0x
∗(T )〉.
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To see this rewrite the above limit as

lim
t→T−

V (t, x∗(t)) = V (τ, x0)−
∫ T

τ

F (x∗(s), u∗(s)) ds− 〈x∗(T ), P0x
∗(T )〉

+ 〈x∗(T ), P0x
∗(T )〉.

By contradiction, assume now that

lim
t→T−

V (t, x∗(t)) = 〈x∗(T ), P0x
∗(T )〉 − γ,

where γ is a suitable positive constant. Then there exists δ > 0 such that

V (t, x∗(t)) < 〈x∗(T ), P0x
∗(T )〉 − γ

2
(3.23)

for any t ∈ (T − δ, T ). Recall now that

x∗(T ) = x(T, τ, x0, u
∗) = x(T, t, x∗(t), u∗|s≥t);

hence we can rewrite

〈x∗(T ), P0x
∗(T )〉 = 〈eA(T−t)x∗(t), P0 e

A(T−t)x∗(t)〉︸ ︷︷ ︸
A1

+ 2Re
∫ T

t

〈u∗(s), B∗eA∗(T−s)P0 e
A(T−t)x∗(t)〉 ds︸ ︷︷ ︸

A2

+
∫ T

t

〈u∗(s), B∗e(T−s)A∗P0 Lt,Tu
∗〉 ds︸ ︷︷ ︸

A3

.

Take a possibly smaller δ, in order to get

A2 + A3 <
γ

4
,(3.24)

so that (3.23) yields

V (t, x∗(t)) < A1 −
γ

4
.(3.25)

Finally, let δ such that∣∣∣∣∣
∫ T

t

〈QeA(s−t)x∗(t), eA(s−t)x∗(t)〉ds
∣∣∣∣∣ < γ

8
.(3.26)

Now fix t ∈ (T − δ, T ) so that (3.24) and (3.26) hold true. From (3.25) it follows that
there exists a control v = vt ∈ L2(t, T ;U) such that

Jt(x∗(t), vt) < A1 −
γ

4
;
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that is, by means of (3.3),

〈Mtx
∗(t), x∗(t)〉+ 2Re 〈Ntx∗(t), vt〉+ 〈Rtvt, vt〉 < A1 −

γ

4
,

with Mt, Nt, Rt defined in (3.4), (3.5), and (3.6), respectively. We know that
〈Mtx

∗(t), x∗(t)〉 is A1 +
∫ T
t
〈 eA∗(s−t)QeA(s−t)x∗(t), x∗(t)〉 ds. Thus we cancel the

term A1, we take into account (3.26), and we obtain

2Re 〈Ntx∗(t), vt〉+ 〈Rtvt, vt〉 < −
γ

8
.(3.27)

In particular this implies that vt 6= 0. Notice now that

|〈Ntx∗(t), vt〉| ≤ ε (T − t) · |vt(·)|L2(t,T ;U), |〈Rt,T vt, vt〉| ≤ const ·|vt(·)|2L2(t,T ;U),

and therefore

lim inf
t→T−

|vt(·)|L2(t,T ;U) = β > 0 (possibly β = +∞).

Hence there exists a sequence tn such that

1
|vtn(·)|2 〈Ntnx

∗(t), vtn〉 → 0,

so that we see from (3.27) for n large

1
|vtn(·)|2 〈Rtnvtn , vtn〉 < 0.

In other words Jtn(0, vtn) < 0 and this is a contradiction since by assumption Jτ (0, u)
is nonnegative for any u ∈ L2(τ, T ;U).

The next proposition is an immediate consequence of Lemmas 3.1 and 3.3. We
omit the proof.

PROPOSITION 3.8. Let τ ∈ [0, T ]. If

V (τ, x0) > −∞ ∀x0 ∈ X,(3.28)

there exists a self-adjoint operator W (·) ∈ L(X) such that W (T ) = P0 and

V (τ, x0) = 〈x0,W (τ)x0〉.(3.29)

4. Time regularity of the value function: The noncoercive case. In this
section we investigate the regularity properties of V (τ, x0) with respect to the initial
time τ .

We note that several regularity results are known for the value function even
of nonlinear systems, and with more general cost but under special boundedness
properties, which are not satisfied in the present case, compare [11, Chapter 6].

Our first result is Lemma 4.1.
LEMMA 4.1. Let τ0 ∈ [0, T ] and x0 be such that V (τ0, x0) is finite. Then τ →

V (τ, x0) is upper semicontinuous at τ0.
Proof. Fix x0 ∈ X, and let τ0 ∈ [0, T ]. In order to show that

lim sup
τ→τ0

V (τ, x0) ≤ V (τ0, x0),
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we shall show that for any real number α > V (τ0, x0) we have α > V (τ, x0) if |τ − τ0|
is taken small enough. We first consider the case when τ > τ0. Let u be an admissible
control such that

Jτ0(x0, u) < α,(4.1)

and define

xτ (t) = eA(t−τ)x0 +
∫ t

τ

eA(t−s)Bu(s) ds.

It is readily verified that

1. lim
τ→τ0

xτ (T ) = xτ0(T ),

2. lim
τ→τ0

∫ T

τ

F (xτ (s), u(s)) ds =
∫ T

τ0

F (xτ0(s), u(s)) ds

so that if |τ − τ0| is small enough,

V (τ, x0) ≤ Jτ (x0, u) < α.

Finally, if τ < τ0, choose once more u ∈ L2(τ0, T ;U) in such a way that (4.1) holds
true. It is now sufficient to repeat the same arguments used before, after replacing u
with û defined as follows:

û(t) :=

{
0, t < τ0,

u(t), t ≥ τ0.

The proof is complete.
As to lower semicontinuity, the following result holds true.
LEMMA 4.2. Let x0 be such that τ → V (τ, x0) is finite on [0, T ]. Then
• the map τ → V (τ, x0) is lower semicontinuous at τ0 provided that for each

element τn of a sequence {τn} which tends monotonically to τ0 there exists a
control uτn ∈ L2(τn, T ;U) such that

(i) V (τn, x0) ≤ Jτn(x0, uτn) ≤ V (τn, x0) + 1
n ;

(ii) there exists γ0 > 0 for which |uτn(·)|L2(τn,T ;U) ≤ γ0.
(4.2)

Proof. Let τ0 ∈ [0, T ] be given, and consider a sequence {τn}n∈N such that τn ↓ τ0.
Introduce the inputs

ûτn(t) :=

{
0, τ0 < t < τn,

uτn(t), t ≥ τn,

and define

xτn(t) := x(t; τn, x0, uτn), x̂τn(t) := x(t; τ0, x0, ûτn).

Notice that xτn(t)− x̂τn(t)→ 0, as n→∞, for any t, and that its norm is uniformly
bounded in L2(τ0, T ;U); hence

lim
n→∞

[Jτ0(x0, ûτn)− Jτn(x0, uτn)] = 0.
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Therefore,

lim inf
n→∞

Jτ0(x0, ûτn) = lim inf
n→∞

Jτn(x0, uτn) = lim inf
n→∞

V (τn, x0),

where the last equality is due to (i). On the other hand (ii) implies the existence of
an admissible control v ∈ L2(τ0, T ;U) such that

ûτn ⇀ v

as n→∞. Now the map

u(·)→ Jτ0(x0, u)

is convex continuous, hence weakly lower semicontinuous, so that

V (τ0, x0) ≤ Jτ0(x0, v) ≤ lim inf
n→∞

Jτ0(x0, ûτn) = lim inf
n→∞

V (τn, x0).(4.3)

To conclude the proof, we need to consider a sequence {rn}n∈N such that rn ↑ τ0. In
this case, we introduce

ũrn(t) :=
{
urn(t), t ≥ τ0,
0 otherwise.

Again from (ii) it follows that there exists an input v ∈ L2(τ0, T ;U) such that ũrn ⇀ v
in L2(τ0, T ;U). A similar argument gives

V (τ0, x0) ≤ lim inf
n→∞

V (rn, x0),

which finally yields

V (τ0, x0) ≤ lim inf
τ→τ−0

V (τ, x0).

Consequently, we can deduce Theorem 4.3.
THEOREM 4.3. Under the same assumptions as Lemma 4.2, the map τ → V (τ, x0)

is continuous for any τ ∈ [ 0, T ].
In the case that an optimal control exists for each τ near τ0, Lemma 4.2 takes a

simpler form. We state this form under the assumption that an optimal control exists
for each τ .

COROLLARY 4.4. Let x0 ∈ X be fixed. Assume that
(i) for any τ ∈ [ 0, T ] there exists an optimal control u+

τ ∈ L2(τ, T ;U);
(ii) there exists a constant γ > 0, independent of τ , such that

|u+
τ |L2(τ,T :U) ≤ γ ∀τ ∈ [ 0, T ].(4.4)

Under these conditions, the map τ → V (τ, x0) is continuous.
We note explicitly that if there exists an optimal control u∗ for Jτ (x0, v) then for

each τ ′ > τ there exists an optimal control for Jτ ′(x(τ ′; τ, x0, u
∗), v).

It has some interest to see that if the operator A generates a strongly continuous
group then we can prove more in Theorem 4.5.

THEOREM 4.5. Let us assume that for each τ ∈ [0, T ) and each x0 ∈ X there
exists a unique optimal control u+(·, τ, x0) which minimizes Jτ (x0, u). If eAt is a
strongly continuous group then the value function is continuous from the right.
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Proof. We prove continuity from the right at a fixed τ0 ∈ [0, T ). We know from
Lemma 3.3(2) that x0 → u+

τ (·, x0) is linear and continuous from X to L2(τ, T ;U) for
each τ ∈ [0, T ).

Now we consider points τ > τ0. We show that for each fixed τ > τ0 there exists
x1 = x1(x0) such that

u+(·, τ0, x1(x0))|[τ,T ] = u+(·, τ, x0) .(4.5)

It is sufficient to see for this that there exists a solution x1 of

x+(τ, τ0, x1) = eA(τ−τ0)x1 +
∫ τ

τ0

eA(τ−s)Bu+(s, τ0, x1) ds = x0 .(4.6)

If this is true, unicity of the optimal control shows that (4.5) holds.
We noted above that ‖u+(·, τ0, x1)‖L2(τ0,T ) ≤ M‖x1‖ so that the norm of the

operator

T x1 =
∫ τ

τ0

eA(τ−s)Bu+(s, τ0, x1) ds

can be estimated as follows: ‖T x1‖ ≤ (τ − τ0)Mk‖x1‖.
We write (4.6) in the form

x1 + e−A(τ−τ0)T x1 = e−A(τ−τ0)x0 .(4.7)

If τ − τ0 is sufficiently small, ‖e−A(τ−τ0)T ‖ is less then 1; hence (4.7) can be continu-
ously solved for x1 and gives a linear continuous transformation x1 = x1(x0), which,
of course, depends upon τ . The element x1,

x1 = x1(x0) = [I + e−A(τ−τ0)T ]−1e−A(τ−τ0)x0

is continuous with respect to x0 and also with respect to τ if τ is close to τ0. In
particular, τ → x1(x0) is bounded in a neighborhood of τ0. Therefore,

‖u+
τ (·, x0)‖ = ‖u+

τ0(·, x1)|[τ,T ]
‖L2(τ,T )

≤ ‖u+
τ0(·, x1)‖L2(τ0,T ) ≤ c · ‖x1(x0)‖ ≤ γ‖x0‖ .

Right continuity follows from Lemma 4.2.
The previous theorem presents a case in which the quite involved condition of

Lemma 4.2 is satisfied. The next example shows that the condition in that lemma
cannot be avoided if we are to obtain continuity of the value function.

We note first that the value function is not continuous in general, even for finite-
dimensional systems: if the cost is |x(T )|2 and the system is controllable then the
value function has a jump at T . The following example shows that the value function
may be discontinuous even at points τ < T .

Example 4.6. Consider the delay system given by{
ẋ = y(t− 1),

ẏ = u(t),
(4.8)

with initial datum φ0 =col[x0, y0(·)] ∈ R× L2(−1, 0). The quadratic functional is

Jτ (φ0, u) =
∫ 2

τ

|x(t)|2 dt+ 3|x(2)|2 .
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Take φ0 =col(1, 0). When τ ∈ [1, 2], then y(t − 1) = 0; hence x(t) = 1 on [τ, 2].
Consequently,

Jτ (φ0, u) = (2− τ) + 3 ∀u , ∀τ ∈ [1, 2] .

In particular J1(φ0, u) = 4 and

V (1, φ0) = 4.

On the other hand, if τ ∈ [0, 1[, then y(t − 1) 6= 0 when t > τ + 1, and it can be
arbitrarily fixed, by means of suitable choices of the control u, within the class of
W 1,2 functions which are zero at t = τ + 1. This set is dense in L2(1 + τ, 2); hence
suitable functions y can be found in order to drive x(t) to zero in time ε > 0, namely,
from 1 + τ to 1 + τ + ε, while remaining uniformly bounded. Therefore, we have that
x(t) = 1 in (τ, 1 + τ), and ∫ 1+τ+ε

1+τ
x2(t)dt→ 0

as ε→ 0. In conclusion, if τ < 1, V (τ, φ0) = 1 and the value function is not continuous
at τ = 1.

REMARK 4.7. The previous example shows that in the statement of Lemma 4.2—
which concerns lower semicontinuity of V (τ, x0)—assumption (ii) cannot be dispensed
with. In fact that assumption holds in the previous example for τ → 1+ but not for
τ → 1−.

5. Time regularity of the value function: The coercive case. Let τ̂ ∈
[0, T ] be given, and consider the operator Rτ̂ as defined in (3.6). Throughout this
section we shall assume that Rτ̂ is coercive, i.e.,

∃ γ > 0 : Rτ̂ ≥ γ.(5.1)

Our current goal is to show that under assumption (5.1) the value function V (τ, x0)
displays better regularity properties with respect to τ . We start by showing that the
map

τ → V (τ, x0)

is continuous for any τ ∈ [τ̂ , T ], with x0 ∈ X fixed.
We recall that from (5.1), by virtue of Lemma 3.2, it follows that Rτ ≥ γ for any

τ ∈ [τ̂ , T ], and by continuity also on an interval (τ ′, T ] ⊃ [τ̂ , T ]. Hence there exists a
constant γ′ such that

‖R−1
τ ‖ ≤

1
γ′

∀τ ∈ (τ ′, T ] ⊇ [τ̂ , T ].(5.2)

Moreover (5.1) implies that for any initial time τ ∈ [τ̂ , T ] there exists a unique
optimal control u+

τ (t) = u+(· ; τ, x0) (u+
τ (·) for short ), explicitly given in terms of the

initial state by

u+(t; τ, x0) = −
(
R−1
τ (Nτx0)(·)

)
(t)(5.3)

(compare item 3 of Lemma 3.3); and from (5.2) it follows

|u+
τ (·)|L2(τ,T ;U) ≤ kτ̂ |x0|, with kτ̂ independent of τ .(5.4)
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The following theorem provides a simple explicit expression of the value function in
terms of the optimal pair which will be useful in the next section.

THEOREM 5.1. Let Rτ be coercive, and let (x+(·, τ, x0), u+(·, τ, x0)) the optimal
pair for problem (1.1)–(1.2). Then

W (τ)x0 = eA
∗(T−τ)P0x

+(T, τ, x0)

+
∫ T

τ

eA
∗(t−τ) (Qx+(t, τ, x0) + Su+(t, τ, x0)

)
dt.(5.5)

Proof. Since the infimum of the cost is attained at u+(·, τ, x0) (u+
τ for short),

plugging (5.3) into (3.3) we easily obtain

W (τ)x0 =Mτx0 +N ∗τ u+
τ .(5.6)

The adjoint operator N ∗τ : L2(τ, T ;U)→ X maps any L2(τ, T )-function v in

N ∗τ v = eA
∗(T−τ)P0Lτ,T v +

∫ T

τ

eA
∗(t−τ) ((QLτ + S)v) (t) dt;

hence (5.5) follows from (5.6) by a direct computation.
As a consequence of Corollary 4.4, we first have Theorem 5.2.
THEOREM 5.2. Let x ∈ X be given. Assume that (5.1) is satisfied. Then τ →

V (τ, x) is continuous on [τ̂ , T ].
Actually we are able to show that the value function satisfies a further regularity

property. Before we state a preliminary result, see Lemma 5.3.
LEMMA 5.3. Assume that Rτ̂ is coercive. If w(·) is a continuous function, then

the function

s→ φ(s) := (R−1
τ w)(s)(5.7)

is continuous for any τ ≥ τ̂ .
In particular, if Rτ is coercive then the optimal control is continuous.
Proof. Since Rτ̂ is coercive, R is coercive, so that we can assume that R = I.

Moreover, for any τ > τ̂ , Rτ is coercive, hence invertible.
Let φ(t) := (R−1

τ w)(t), with w(·) continuous: we know that φ(·) is at least a
U -valued L2 function. But

φ(t) = w(t)−B∗
∫ T

t

eA
∗(s−t)Q

∫ s

τ

eA(s−r)Bφ(r) dr ds

− S∗
∫ t

τ

eA(t−s)Bφ(s) ds−B∗
∫ T

t

eA
∗(s−t)Sφ(s) ds

− B∗ eA∗(T−t) P0

∫ T

τ

eA(T−s)Bφ(s) ds,

and the right-hand side is apparently a U -valued continuous function.
The second statement follows from (5.3) since (Nτx0)(·) is a continuous function;

compare (3.5).
THEOREM 5.4. Let x ∈ D(A) be given. Assume that (5.1) is satisfied. Then the

map τ → V (τ, x) is differentiable in [τ̂ , T ].
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Proof. Let x0 ∈ D(A) and let u+
τ = u+(·, τ, x0) the unique optimal control of

problem (1.1)–(1.2), τ ≥ τ̂ . As in (5.6)

V (τ, x0) = 〈x0,W (τ)x0〉 = 〈Mτx0, x0〉+ 〈Nτx0, u
+
τ 〉 ,(5.8)

with Mτ and Nτ given by (3.4), (3.5), respectively.
From the very definition ofMτ it readily follows that the derivative ∂

∂τ 〈Mτx0, x0〉
exists for any x0 ∈ D(A). In order to show that the second summand in (5.8), namely,∫ T

τ

(Nτx0)(t) · u+
τ (t) dt,(5.9)

is differentiable with respect to τ , we first observe that the factor (Nτx0)(·) is differ-
entiable, with

∂

∂τ
(Nτx0)(t) = −(Nτ (Ax0))(t).(5.10)

Moreover, again from (3.5) it follows that (5.10) is a continuous function.
We next want to show that for each t > τ the U -valued function τ → u+

τ (t)
admits the first derivative with respect to τ and that this is continuous. Fix τ0 and
first consider the case τ > τ0. Introduce the operator N̂τ ∈ L(X,L2(τ0, T ;U)) defined
as follows:

(N̂τx0)(t) =

{
(Nτx0)(t), t ∈ [τ, T ],

(Nτ0x0)(t), t ∈ [τ0, τ [.

By construction

N̂τx0|t≥τ ≡ Nτx0,

and for instance

R−1
τ (Nτx0) = R−1

τ (N̂τx0).

Moreover, we take into account (5.10) and we see that

lim
τ→τ+

0

(N̂τx0)(t)− (Nτ0x0)(t)
τ − τ0

= −Nτ0Ax0 ∀x0 ∈ D(A).(5.11)

In fact it is sufficient to observe that

(N̂τx0)(t)− (Nτ0x0)(t) =

{
0, t ∈ [τ0, τ [,

(Nτx0)(t)− (Nτ0x0)(t), t ∈ [τ, T ].

Now we compute, via (5.3),

1
τ − τ0

(u+
τ − u+

τ0)(t)

=
1

τ − τ0
[(
R−1
τ0 (Nτ0x0)(·)

)
(t)−

(
R−1
τ (Nτx0)(·)

)
(t)
]

= −R−1
τ0

[
(N̂τx0 −Nτ0x0)(·)

τ − τ0

]
(t) +R−1

τ

[Rτ0 −Rτ ]
τ − τ0

R−1
τ0 (N̂τx0)(t).(5.12)
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The first summand in (5.12) tends to

−
[
R−1
τ0

(
∂

∂τ0
(Nτ0x0)(·)

)]
(t) =

(
R−1
τ0 (Nτ0Ax0)(·)

)
(t) = −u+

τ0(t, Ax0),(5.13)

when τ → τ+
0 , due to (5.11).

As for the second summand, it can be rewritten in the following way:

R−1
τ

[Rτ0 −Rτ ]
τ − τ0

R−1
τ0 (N̂τx0)(t)

= R−1
τ B∗

∫ T

t

eA
∗(s−t)Q

1
τ − τ0

[∫ τ

τ0

eA(s−r)B(R−1
τ0 N̂τx0)(r)dr

]
︸ ︷︷ ︸

a(τ,s)

ds

+R−1
τ S∗

1
τ − τ0

∫ τ

τ0

eA(t−s)B(R−1
τ0 N̂τx0)(s)ds

+R−1
τ B∗ eA

∗(T−t)P0
1

τ − τ0

∫ τ

τ0

eA(T−s)B(R−1
τ0 N̂τx0)(s)ds

= 1 + 2 + 3 .

We rewrite, in turn,

a(τ, s) =
1

τ − τ0

∫ τ

τ0

eA(s−r)B(R−1
τ0 Nτ0x0)(r)dr︸ ︷︷ ︸

b(τ,s)

+
∫ τ

τ0

eA(s−r)B

(
R−1
τ0

(
N̂τx0 −Nτ0x0

τ − τ0

))
(r)dr︸ ︷︷ ︸

c(τ,s)

.

Observe now that as a consequence of Lemma 5.3 we have

lim
τ→τ+

0

b(τ, s) = eA(s−τ0)B(R−1
τ0 Nτ0x0)(τ0) = −eA(s−τ0)Bu+

τ0(τ0, x0),

while limτ→τ+
0
c(τ, s) = 0; hence

a(s) := lim
τ→τ+

0

a(τ, s) = −eA(s−τ0)Bu+
τ0(τ0, x0).

Finally, since (τ, s)→ a(τ, s) is bounded, we can conclude that 1 converges to

−R−1
τ0 B

∗
∫ T

t

eA
∗(s−t)QeA(s−τ0)B u+

τ0(τ0, x0)ds

as τ tends to τ+
0 . The convergence of the terms 2 and 3 can be proved even more

easily.
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If τ < τ0 we define instead

(N̂τ0x0)(t) =

{
(Nτ0x0)(t), t ∈ [τ0, T ],

(Nτx0)(t), t ∈ [τ, τ0[,

and rewrite the term R−1
τ Nτ −R−1

τ0 Nτ0 as

R−1
τ (Nτ − N̂τ0) + (R−1

τ −R−1
τ0 )N̂τ0

= R−1
τ (Nτ − N̂τ0) +R−1

τ0 (Rτ0 −Rτ )R−1
τ N̂τ0 .

The rest of the proof is completely similar.
Therefore we have proved that for each τ there exists ∂

∂τ u
+
τ (t) and that

∂

∂τ
u+
τ (t) = u+

τ (t, Ax0)−R−1
τ B∗

∫ T

t

eA
∗(s−t)QeA(s−τ)Bu+

τ (τ, x0) ds

−R−1
τ S∗eA(t−τ)Bu+

τ (τ, x0)−R−1
τ B∗eA

∗(T−t)P0e
A(T−τ)Bu+

τ (τ, x0).

In conclusion we saw that the function (Nτx0)(t)u+
τ (t) is differentiable with re-

spect to τ , and moreover its derivative is a continuous function in [τ̂ , T ] × [τ̂ , T ].
Therefore, (5.9) is differentiable, and

∂

∂τ

∫ T

τ

(Nτx0)(t) · u+
τ (t) dt

= −(Nτx0)(τ)u+
τ (τ)−

∫ T

τ

(NτAx0)(t)u+
τ (t) dt+

∫ T

τ

(Nτx0)(t)
∂

∂τ
u+
τ (t) dt.

We are now able to deduce a differential form of the DI.
PROPOSITION 5.5. Assume that (5.1) holds true. Then there exists a self-adjoint

operator W (·) ∈ L(X) such that
(i) W (T ) = P0;

(ii) W (·) satisfies

d

dτ
〈a,W (τ) a〉+ 2Re〈Aa+Bv,W (τ)a〉+ F (a, v) ≥ 0(5.14)

for any (a, v) ∈ D(A)× U for any τ ∈ [τ̂ , T ].
Proof. We fix a ∈ D(A), v ∈ U , and take a control u(·) ∈ C1([τ, T ];U) such that

u(τ) = v. We define x(t) = x(t, τ, a, u). It is well known (see, for instance, [2]) that
in this case x is a strict solution to (1.1); that is, x ∈ C1([τ, T ];X) ∩ C([τ, T ];D(A))
and it satisfies (1.1) on [τ, T ].

We write the DI (3.17) for (x(t), u(t)), t ∈ [τ, T ]; namely,∫ t

τ

F (x(s), u(s))ds + 〈x(t),W (t)x(t)〉 − 〈x(τ),W (τ)x(τ)〉 ≥ 0.(5.15)

If we divide in (5.15) by t− τ and let t→ τ , we have

d

ds
〈x(τ),W (s)x(τ)〉|s=τ + 2Re〈Ax(τ) +Bu(τ),W (τ)x(τ)〉+ F (x(τ), u(τ)) ≥ 0.

To conclude, substitute x(τ) = a and u(τ) = v.
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We proved that if we replace an optimal pair in the left-hand side of the DI in
integral form, then we get an equality. Hence we get an equality also in the differential
form (5.14). In particular, we fix a ∈domA and we see that u+(τ, τ, a) is a minimum
of the left-hand side of inequality (5.14). Hence we find that u = u+(τ, τ, a) satisfies

Ru+ S∗a+B∗W (τ)a = 0 .

Since R is coercive then R is coercive too and we see that the optimal control has the
well-known feedback form

u = u+(τ, τ, a) = −R−1[S∗ +B∗W (τ)] a

(if a ∈ D(A) and, by continuity, for each a ∈ X, see item 3 of Lemma 3.3). Moreover,
as u+(t, τ, a) = u+(t, t, x+(t, τ, a)), the previous equality gives the feedback form of
the optimal control on the interval [0, T ]. We replace this expression for the unique
optimal control in the left-hand side of (5.14) and find a quadratic differential equation
for W (τ) which is the usual Riccati equation.

Of course, the Riccati equation can be written provided that R−1 is a bounded
operator. But, an example in [6] shows that if R is not coercive then the minimum of
the cost may exist and be unique, in spite of the fact that the corresponding Riccati
equation is not solvable on [τ, T ].

6. Space regularity of the value function. This section is devoted to the
study of some space regularity properties of the value function in the case that the
optimal control problem is driven by an abstract equation of parabolic type. See [17]
for analogous arguments. More precisely, we shall make the following assumption.

H1. A is the generator of an analytic semigroup etA on X.
It is well known (see for instance [18]) that in this case there exists an ω ∈ R such

that the fractional powers (ωI−A)α are well defined for any α ∈ (0, 1), and moreover
there exist constants Mα, β such that the following estimates hold true

‖tα(ωI −A)α eAt‖L(X) ≤Mαe
βt, t > 0.(6.1)

For the sake of simplicity we assume that the semigroup is exponentially stable, i.e.,
that we can choose ω = 0.

We associate the following output to system (1.1):

y = Cx+Du,

where y belongs to a third Hilbert space Y and C ∈ L(X,Y ), D ∈ L(U, Y ). We
assume that the cost penalizes the output y, i.e., that the quadratic functional F in
(1.3) is given by

F (x, u) = ‖y‖2Y + 〈u,R1u〉

so that Q = C∗C, S = C∗D, R = R1 + D∗D. (A special and important case is
D = 0.) We make the following assumption.

H2. R1 ≥ 0, P0 ≥ 0.
We now use similar arguments as in Lemma 3.3. Introduce a regularized optimal
control problem with cost given by

Jτ,n(x0, u) = Jτ (x0, u) +
1
n
‖u‖2L2(τ,T ;U), n ∈ N(6.2)
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and observe that since the operator Rn = R + 1
nI is coercive for each n, then there

exists a unique optimal control u+
n and

Vn(τ, x0) := inf
u
Jτ,n(x0, u) = Jτ,n(x0, u

+
n ) = 〈x0,Wn(τ)x0〉.

Arguing as in the proof of statement 4 in Lemma 3.3 we know that

Wn(τ)x0 →W (τ)x0 ∀x0 ∈ X.

Let x+
n (·) = xn(·, τ, x0, u

+
n ) and y+

n (·) = Cx+
n (·)+Du+

n (·). Then we have the following
lemma.

LEMMA 6.1. Let γ0 ≥ 0 such that (−A∗)γ0C∗ ∈ L(X), and assume that there
exists a number γ ∈ (0, γ0 + 1

2 ) such that

(−A∗)γP 1/2
0 ∈ L(X).(6.3)

Then there exists a constant c such that

‖y+
n (·)‖2L2(τ,T ) + ‖P 1/2

0 x+
n (T )‖2X ≤ c ‖(−A)−γx0‖2 ∀n ∈ N.(6.4)

Proof. The estimate is easily obtained as follows (note that 0 ∈ ρ(A) since we
assumed ω = 0):∫ T

τ

‖y+
n (t)‖2 dt+ ‖P 1/2

0 x+
n (T )‖2 ≤ Jτ,n(x0, u

+
n ) ≤ J1(x0, u

+
1 )

≤ J1(x0, 0) =
∫ T

τ

‖CeA(t−τ)x0‖2 dt+ ‖P 1/2
0 eA(T−τ)x0‖2

≤ ‖C(−A)γ0‖2 ·M2 T 1−2(γ−γ0)

1− 2(γ − γ0)
‖(−A)−γx0‖2

+ ‖P 1/2
0 (−A)γ‖2 ‖(−A)−γx0‖2.

REMARK 6.2. We stress that since

c = max
(
‖C(−A)γ0‖2 ·M2 T 1−2(γ−γ0)

1− 2(γ − γ0)
, ‖P 1/2

0 (−A)γ‖2
)
,

the estimate (6.4) is uniform with respect to n and τ .
LEMMA 6.3. Under the same assumptions of Lemma 6.1 there exists a constant

k such that

‖(−A∗)γWn(τ)(−A)γ‖ ≤ k ∀n ∈ N.(6.5)

Proof. Let ξ0 ∈ X. We recall that since by construction the operatorRτ,n relative
to Jn(ξ0, u) is coercive for each fixed n, then the regularized control problem admits
a unique optimal pair (x+

n (·, ξ0), u+
n (·, ξ0)), and Theorem 5.1 yields

Wn(τ)ξ0 = eA
∗(T−τ)P0x

+
n (T, ξ0) +

∫ T

τ

eA
∗(t−τ)C∗y+

n (t, ξ0) dt.
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The regularity assumptions on C and P0 imply that Wn(τ)ξ0 ∈ D((−A∗)γ) and

(−A∗)γWn(τ)ξ0 = eA
∗(T−τ)[(−A∗)γP 1/2

0 ][P 1/2
0 x+

n (T, ξ0)]

+(−A∗)γ−γ0

∫ T

τ

eA
∗(s−τ)[(−A∗)γ0C∗][y+

n (s, ξ0)] ds.

Now, as a consequence of (6.4) there exists k such that

‖(−A∗)γWn(τ)ξ0‖ ≤ k ‖(−A)−γξ0‖

uniformly in n. The conclusion follows immediately by choosing ξ0 = (−A)γx0 with
x0 ∈ D((−A)γ).

Consequently we have the following theorem.
THEOREM 6.4. Under the same assumptions of Lemma 6.1 the operator

(−A∗)γW (τ)(−A)γ

admits a bounded extension to X for any γ < γ0 + 1
2 .
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Abstract. We show that the minimal dimension of a linear realization over the (max,+) semiring
of a convex sequence is equal to the minimal size of a decomposition of the sequence as a supremum
of discrete affine maps. The minimal-dimensional realization of any convex realizable sequence can
thus be found in linear time. The result is based on a bound in terms of minors of the Hankel matrix.
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1. Introduction. A classical problem consists in studying infinite sequences
h0, h1, . . . with values in a semiring (S,⊕,⊗), generated by a finite device. The
simplest and most studied class is probably that of realizable or recognizable sequences,
obtained as the scalar output of finite-dimensional recurrent S-linear systems:

x0 = b, xk+1 = Axk, hk = cxk, k = 0, 1, . . . ,(1.1)

where A ∈ Sn×n, b, x0, x1, . . . ∈ Sn×1, c ∈ S1×n for some positive integer n, and where
concatenation denotes the matrix product as usual.1 Equivalently,

hk = cAkb, k = 0, 1, . . . .(1.2)

The triple (A, b, c) is called a linear realization or representation of the sequence h, and
n is called the dimension of the realization (A, b, c). By the Kleene–Schützenberger
theorem [3], realizable sequences coincide with rational sequences (sequences of coef-
ficients of rational series). The theory of these sequences is much developed in the
case of fields (particularly S = R or C). The case of realizable sequences over the
semiring of nonnegative reals (R+,+,×) is also much studied in connection with prob-
ability measures and Markov chains [13, 22]. Here, we are concerned with realizable
sequences over the “(max,+)” semiring Rmax

def= (R∪{−∞},⊕,⊗), with max as addi-
tion (a⊕ b def= max(a, b)) and + as product (a⊗ b def= a+ b). The interest in realizable
sequences over Rmax arises from at least two fields.

a) In discrete-event systems theory, it is known that an important subclass of
man-made systems with synchronization features (manufacturing systems, transporta-
tions networks, etc.) can be modeled by input-output variants of the dynamics (1.1),
namely,

xk+1 = Axk ⊕ buk+1, yk = cxk, k ∈ Z,(1.3)

where uk, yk ∈ R ∪ {−∞}. In the case of manufacturing systems, typically, the input
uk represents the availability date of the kth unit of raw material, and yk represents

∗Received by the editors April 28, 1995; accepted for publication (in revised form) October 17,
1996.

http://www.siam.org/journals/sicon/36-1/28534.html
†INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay cédex, France (Stephane.
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the availability date of the kth finished part, while the vector xk represents the dates
of completion of internal events. It is not difficult to see that the minimal output
y of (1.3) corresponding to the earliest behavior of the system is given by the sup-
convolution

yk =
⊕
p∈N

hp ⊗ uk−p = sup
p∈N

[hp + uk−p],(1.4)

so that the realizable sequence h determines the input-output relation of (1.3). As in
the case of conventional linear systems, the sequence h0, h1, . . . is called the impulse
response of the system, for it coincides with the output y associated with the impulse
input u: uk = 0 if k = 0, uk = −∞ otherwise. See [1] for a complete presentation.

b) In dynamic programming, the simplest stationary deterministic Markovian
decision problem with finite state space Q = {1, . . . , n}, transition reward A : Q×Q→
R ∪ {−∞}, initial reward c : Q → R ∪ {−∞}, final reward b : Q → R ∪ {−∞}, and
horizon k, writes

max
q0,...,qk

[
c(q0) +

k∑
i=1

A(qi−1, qi) + b(qk)

]
.(1.5)

Identifying A, b, c with matrices of appropriate sizes, it is immediately seen that the
optimal reward in horizon k, given by (1.5), coincides with hk = cAkb.

In this paper, we are concerned with the minimal realization problem, which, given
a sequence h, consists in finding a (linear) realization (A, b, c) with minimal dimension.
For instance, in the Markov decision context, the minimal realization problem asks
whether or not there exists another decision problem (A′, b′, c′) of type (1.5), with
state space Q′ of strictly smaller cardinality but the same reward history h0, h1, . . .
as (A, b, c). In the context of discrete-event systems, this is a natural problem, which
consists in finding a minimal internal realization of the system (1.4), known only by
its input-output relation u → y. This has often interesting practical interpretations:
loosely speaking, the nonminimality of the triple (A, b, c) arises from the existence
of nontrivial temporal relations between the different physical events in the system.
Particularly, nonminimalities occur when some component of the system (a particular
machine or process) which plays a physical role in the production process is invisible
from the performance evaluation point of view, i.e., when the normal functioning of
this process will never delay the output dates due to the existence of margins. This
striking phenomenon is illustrated on the cover page of the book [1], to which the
reader is referred for more motivation.

Unlike in the field’s case, the minimal realization problem over Rmax is not solved
by rank arguments. It is indeed very much analogous to that of the nonnegative
realization (over the usual algebra) [14] for which only partial solutions are known. We
refer the reader to Olsder [29, 28], Cuninghame-Green [6], Qi and Chen [31], Gaubert
[15, Chap. VI], De Schutter and De Moor [10, 11, 12, 9] for existing results (realization
procedures, bounds, heuristics, reduction of the partial realization problem to an
extended linear complementarity problem). See also [1, sections 1.3 and 9.2.3]. In the
present paper, we characterize the minimal dimension of a realization for the subclass
of convex realizable sequences, extending a result given by Cuninghame-Green and
Butkovič [7] for the strictly convex case. The proof requires the minor bound given
by Gaubert in [15, Chapter VI; 16], together with a classical majorization result [26].

It is worth noting that the convexity assumption, although restrictive, is natural
with respect to a subclass of discrete-event systems. Input-output systems (1.4) with
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affine realizable impulse response, hk = α + β × k, can be interpreted as (delayed)
flow limiters [1, section 6.2.2], i.e., as periodic systems, with minimal interevent delay
β and transfer delay α. When building complex discrete-event systems from simple
ones, one uses in particular the synchronization (or parallel composition) operation
[1], which corresponds to the pointwise max of the impulse responses. Since a convex
map is the upper envelope of its tangent lines, it is not difficult to see that realizable
convex responses correspond exactly to parallel composition of finitely many delayed
flow limiters.

Finally, we refer the reader interested in an overview of the theory and applications
of the (max,+) semiring to [5, 19, 1, 27, 21]. General results on semirings can be found
in [18].

2. Statement of the result. A sequence h0, h1, . . . ∈ R is convex if

k ≥ 1⇒ hk+1 − hk ≥ hk − hk−1.

It follows from the well-known periodicity property of (max,+) realizable sequences
(see [5], [1, Theorem 3.112], [17, Theorem 7]) that a realizable convex sequence is
eventually periodic of period one; that is, there exists N ∈ N and λ ∈ R such that

k ≥ N ⇒ hk+1 = λ+ hk.(2.1)

In what follows, N will always stand for the least natural number satisfying (2.1) and
will be called the length of the transient of the sequence. A max-polynomial [8] is the
function

p(x) = max
1≤i≤r

(αi + βix),(2.2)

with αi ∈ R, βi ∈ R. The name “polynomial” refers to the notation of the semiring
Rmax: a ⊕ b = max(a, b), a ⊗ b = a + b, and, for n ∈ N, an = a⊗ · · · ⊗ a︸ ︷︷ ︸

n times

(= n × a).

Then, (2.2) becomes

p(x) =
r⊕
i=1

αi ⊗ xβi .(2.3)

Note that we extend the exponent notation and use xβi for x×βi, even when βi 6∈ N:
unlike in the conventional case, maxpolynomials may have real (nonintegral) expo-
nents. We say that p is a polynomial realization of h if for all nonnegative integers k,
p(k) = hk. We denote by mpr(h) the minimal number of monomials of a polynomial
realization of h (i.e., the minimal value of r). By convention, mpr(h) = +∞ when h
does not admit a polynomial realization. Denote by mlr(h) the minimal dimension of
a linear realization (with mlr(h) = +∞ if h is not realizable). The main result of this
paper is the following characterization which solves the minimal realization problem
for convex sequences.

THEOREM 2.1. For every convex sequence h there holds

mpr(h) = mlr(h).(2.4)

Note that the theorem states in particular that the existence of a polynomial
realization is equivalent to that of a linear one, for convex sequences.

Efficient computation of mpr(h) is not difficult: given a convex sequence h with
the length of the transient N , the algorithm given in the Appendix provides a minimal
polynomial realization in time O(N).
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The inequality mlr(h) ≤ mpr(h) is immediate: if p is a polynomial realization of h
of type (2.3), then hk = c diag(β)k b, where b denotes the r×1 matrix with entries 0, c
the 1× r matrix with entries α1, . . . , αr, and diag(β) the r × r matrix with diagonal
entries β1, . . . , βr and off-diagonal elements equal to −∞. The proof of the reverse
inequality will use a bound in terms of determinants and Hankel matrices, which we
introduce next.

3. Minor bound for the minimal dimension of realization. Recall that
the Hankel matrix [13, 3] associated with the sequence h0, h1, . . . is the N×N-matrix

H = (Hij),Hij = hi+j for all i, j = 0, 1, . . . .

A classical result for the minimal realization problem over fields states that the min-
imal dimension of any realization of a sequence h is equal to the rank of its Hankel
matrix, which can be defined equivalently as the cardinality of a basis of the vector
space generated by the rows (or columns) of H or as the maximal size of a square
submatrix of H with nonzero determinant.

Over a general (commutative) semiring S, several nonequivalent rank notions
exist,2 which do not characterize the minimal dimension of realization but only pro-
vide bounds. Here, we will need the rank notion originating from determinants and
bideterminants over semirings.

Given a positive integer n, let S+
n , S−n , respectively, denote the sets of even and

odd permutations on {1, . . . , n} (we use the concepts of even and odd permutations
in the conventional sense [4]). The positive and negative determinants of an n × n
matrix A with entries from a (commutative) semiring S are defined as follows:

det+A =
⊕
σ∈S

+
n

n⊗
i=1

Aiσ(i),

det−A =
⊕
σ∈S

−
n

n⊗
i=1

Aiσ(i).

The bideterminant [20] or, equivalently, the determinant in the symmetrized semiring
S2 [30, 15] of a square matrix A is the ordered pair

detA def= (det+A,det−A).

We say that the determinant is balanced if det+A = det−A, otherwise it is unbal-
anced. Let I, J ⊆ N denote (possibly infinite) sets of row and column indices. Given
an I × J matrix A and two subsets I ′ = {i1, . . . , ir} ⊆ I, J ′ = {j1, . . . , js} ⊆ J , with
i1 < · · · < ir, j1 < · · · < js, we denote by A[I ′|J ′] or A[i1, . . . , ir|j1, . . . , js] the r × s
submatrix (Aimjt)1≤m≤r,1≤t≤s. Let ‖ X ‖ denote the cardinality of a set X. The
minor rank rkmA of a matrix A is the supremum of the order of the finite square
submatrices of A with unbalanced determinant

rkmA = sup
{
r > 0 ;

∃I ′ ⊆ I, ∃J ′ ⊆ J, ‖I ′ ‖=‖J ′ ‖= r
and det+A[I ′|J ′] 6= det−A[I ′|J ′]

}
,

2 Row rank, column rank, Schein rank are distinct standard notions for Boolean matrices [24],
which can also be defined in general semirings. Moreover, in the Rmax case, other rank notions have
been used in relation to the uniqueness of solutions of linear systems [5], [15, Chapter 3, section 10].
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and rkmA = 0 if no submatrix of A with unbalanced determinant exists. The following
result taken from [15, 16] is a semiring weak version of a well-known result over fields
[13, 3].

THEOREM 3.1 (minor bound). The dimension of a linear realization of a sequence
h is not less than the minor rank of its Hankel matrix.

Hence,

rkmH ≤ mlr(h).(3.1)

This result holds in an arbitrary commutative semiring S (and not only in Rmax). It
is purely combinatorial in nature. We will prove it as a consequence of the following
semiring version [15, 16] of the classical Binet–Cauchy identity [25, section 2.4.14].

LEMMA 3.2 (Binet–Cauchy formula). Let S be an arbitrary commutative semiring.
Let A ∈ Sn×r, B ∈ Sr×p. For all subsets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , p} of k elements,
we have

det+(AB)[I|J ]⊕
⊕
K′

(
det+A[I|K ′] det−B[K ′|J ]⊕ det−A[I|K ′] det+B[K ′|J ]

)
(3.2)

= det−(AB)[I|J ]⊕
⊕
K

(
det+A[I|K] det+B[K|J ]⊕ det−A[I|K] det−B[K|J ]

)
;

where the sums are taken over all the k-element subsets K,K ′ ⊆ {1, . . . , r}. By
convention, these two sums are equal to the zero element of S if k > r.

More generally, a folklore “transfer principle” [15, Chapter 1] asserts that usual
ring identities admit semiring analogues whenever written without minus sign. Such
semiring analogues can be obtained by direct combinatorial means (Zeilberger [33]
proves the case n = p = r of (3.2); the general case can be proved along the same
lines). They can also be deduced formally from their classical ring versions, following
an algebraic argument due to Reutenauer and Straubing [32], which we reproduce
here for the sake of completeness. Note also that a different Binet–Cauchy identity in
the (max,+) semiring (valid for permanents) has been given by Bapat [2].

Proof of Lemma 3.2. Let X = {a′ij , b′kl; 1 ≤ i ≤ n; 1 ≤ j, k ≤ r; 1 ≤ l ≤ p}
denote a family of distinct commuting indeterminates, and consider the semiring of
(formal) commutative polynomials with coefficients in N and indeterminates x ∈ X:
S ′ = N[X] ⊆ Z[X]. Introduce the two matrices A′ = (a′ij), B

′ = (b′kl) with entries
in S ′. We first note that the identity (3.2) holds for A′ and B′. Indeed, using the
invertibility of the addition of Z[X], the identity (3.2) for A′ and B′ is equivalent to
the conventional Binet–Cauchy identity which is known to be valid in the ring Z[X]:

detA′B′[I|J ] =
∑
K

detA′[I|K] detB′[K|J ].(3.3)

Now, there is a unique morphism of semirings ϕ : S ′ → S, such that ∀i, j, k, l, ϕ(a′ij) =
aij , ϕ(b′kl) = bkl. This morphism transforms the identity (3.2), applied to the matrices
A′, B′ with entries in S ′, to the required identity for the matrices A,B with entries
in S.

Proof of Theorem 3.1. Consider a linear realization (A, b, c) of h of dimension
r. Let O = [c, cA, cA2, . . .]T and C = [b, Ab,A2b, . . .], and consider two finite subsets
I, J ⊆ N. Applying the Binet–Cauchy identity to the finite size factorization H[I|J ] =
O[I|1 . . . r]C[1 . . . r|J ] following from H = OC, we get det+(H[I|J ]) = det−(H[I|J ]) if
|I| = |J | > r. Hence, rkmH ≤ r.
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4. Preliminary majorization results. The proof of Theorem 2.1 will use stan-
dard convexity results that we recall here. The following famous result, due to Hardy,
Littlewood, and Pólya, states the equivalence of two possible definitions of the relation
of majorization.

THEOREM 4.1 (see [23, section 2.20], [26]). Let α1 ≤ α2 ≤ · · · ≤ αk and α′1 ≤
α′2 ≤ · · · ≤ α′k be real nonnegative numbers. The following two statements are equiv-
alent:

1. α1 + · · ·+ αk = α′1 + · · ·+ α′k and
αν + · · ·+ αk ≥ α′ν + · · ·+ α′k for all ν, 2 ≤ ν ≤ k.

2. There exists a doubly stochastic3 matrix P such that α′ = Pα where
α = (α1, . . . , αk)T , α′ = (α′1, . . . , α

′
k)T .

We write α′ ≺ α and say that α′ is majorized by α when these two equivalent state-
ments hold.

The following majorization inequality is standard [23, 26]. We single out the
strict-inequality case for further use.

THEOREM 4.2. Let g be a convex function R→ R.
1. If α′ ≺ α, then ∑

i

g(α′i) ≤
∑
i

g(αi).(4.1)

2. Take P = (Pjm) such that α′ = Pα as in Theorem 4.1. If for some j the
restriction of g to the set {αm | Pjm 6= 0} does not coincide with an affine
function, then the strict inequality holds in (4.1).

Proof. Classically, (4.1) is obtained by summing up the convexity inequalities

∀j, g(α′j) ≤
∑
m

Pjmg(αm).(4.2)

The strict inequality in (4.1) follows from the strict inequality in (4.2), as soon as j
satisfies condition 4.2 of the theorem.

5. Proof of Theorem 2.1. Suppose that the sequence h0, h1, . . . is convex. To
prove Theorem 2.1, it remains to show that mlr(h) ≥ mpr(h). We will assume that
mlr(h) <∞ (otherwise, there is nothing to prove). Then, the existence of a polynomial
realization follows readily from the convexity of h together with (2.1). Let p be such
a polynomial realization satisfying

∀x ∈ R, p(x) = max
1≤i≤r

`i(x) = max
1≤i≤r

(αi + βix),(5.1)

with

β1 < β2 < · · · < βr and r = mpr(h).(5.2)

We set

I0 = [x0, z0] def= {x ∈ N | p(x) = `1(x)} and
Ii = [xi, zi]

def= {x ∈ N | p(x) = `i+1(x) > `i(x)} for i = 1, . . . , r − 1,
(5.3)

3“Doubly stochastic” refers, as usual, to a matrix with nonnegative entries in which both the
row and column sums are equal to 1.
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with xi, zi ∈ N, except the last value zr−1 = ∞. (The fact that Ii is nonempty
follows from the minimality of r. The fact that it is an interval is immediate due
to the convexity of maxi `i.) Note that α1 > αi for i = 2, . . . , r (otherwise, using
(5.2), we get `1(k) ≤ `i(k)∀k ≥ 0, which contradicts the minimality or r). Hence,
p(0) = α1 = `1(0), and thus x0 = 0. To summarize,

0 = x0 ≤ z0 < x1 ≤ z1 · · · ≤ zr−2 < xr−1.(5.4)

The following elementary lemma states the existence of a minimal polynomial real-
ization in which each line passes through at least two consecutive points.

LEMMA 5.1. There exists a minimal polynomial realization (5.1) such that

xi+1 ≥ xi + 2 for i = 0, . . . , r − 2.(5.5)

The proof of the lemmas is at the end of this part.
COROLLARY 5.2. If p is the polynomial realization in Lemma 5.1, then p does not

coincide with an affine function on [xi, xi+1] for i = 0, . . . , r − 2.
Without loss of generality, we suppose that the polynomial realization p satisfies

the conditions of Lemma 5.1 and Corollary 5.2. We set

ui
def= xi − i for i = 0, . . . , r − 1.(5.6)

We get from (5.5) that

u0 < u1 < · · · < ur−1.

LEMMA 5.3. Let M = H[0, 1, . . . , r − 1|u0, u1, . . . , ur−1]. We have

det+M =
r−1⊗
i=0

p(xi) > det−M.(5.7)

Thus,H contains an r×r submatrix with unbalanced minor, i.e., rkmH ≥ r, which
together with the minor bound gives mlr(h) ≥ rkmH ≥ r = mpr(h), and Theorem 2.1
follows.

Proof of Lemma 5.1. We show that there exists a minimal polynomial realization
of the form (5.1) with

zi ≥ xi + 1 for i = 0, . . . , r − 1.(5.8)

We start from an arbitrary minimal realization (5.1). Let i0 = min{i | xi = zi}. By
replacing `i0+1 with the affine map ` passing through the two points (xi0 , hxi0 ), (xi0 +
1, hxi0+1), we obtain a new decomposition of the form (5.1) with i0 < i′0 = min{j |
x′j = z′j}, where x′j , z

′
j are points defined by (5.3) for the new polynomial realization.

Indeed, x′i = xi, z
′
i = zi for all i < i0 and x′i0 = xi0 , z

′
i0
≥ xi0 + 1 > xi0 = x′i0 . Note

that ` 6= `i0+2; otherwise `i0+1 could be removed from p and the arising function
would still be a polynomial realization of h which contradicts the minimality of p.
After a finite number of such replacements, we get zi > xi for all i, so that (5.5)
becomes satisfied.

Proof of Lemma 5.3. From the definition of M we have

M = (hi+uj ) = (p(i+ uj))i,j=0,...,r−1.
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We prove that for all permutations σ of 0, . . . , r − 1 such that σ 6= Id ,

r−1⊗
i=0

p(i+ ui) >
r−1⊗
i=0

p(i+ uσ(i)).(5.9)

Clearly, it is sufficient to show that for all elementary cycles c = (i1, . . . , ik) (k ≥ 2),

p(i1 + ui1)⊗ p(i2 + ui2)⊗ · · · ⊗ p(ik + uik)
> p(i1 + ui2)⊗ p(i2 + ui3)⊗ · · · ⊗ p(ik + ui1)(5.10)

or with the conventional notation

p(i1 + ui1) + p(i2 + ui2) + · · ·+ p(ik + uik)
> p(i1 + ui2) + p(i2 + ui3) + · · ·+ p(ik + ui1).(5.11)

Let α1, . . . , αk, with α1 < · · · < αk, denote the sequence obtained by reordering the
xl = il + uil (since xt < xs ⇔ t < s ⇔ ut < us, il and uil are ordered in the
same way), and let α′1, . . . , α

′
k with α′1 ≤ · · · ≤ α′k denote the sequence obtained by

reordering the il + uil+1 .
We claim that α′ ≺ α. Indeed, condition 1 of Theorem 4.1 is satisfied, because

αν + · · ·+αk is equal to the sum of the k− ν+ 1 highest possible values of il and uil ;
hence, it is greater than α′ν + · · ·+ α′k which is also the sum of k − ν + 1 values of il
and uil .

Moreover, take P such that α′ = Pα as in Theorem 4.1. Since P is doubly
stochastic, there is at least one j ∈ {1, 2, . . . , k} such that Pjk 6= 0. Since α′j ≤
α′k < αk, we have Pjk 6= 1; thus there is at least one m ∈ {1, 2, . . . , k − 1} such that
Pjm 6= 0. It remains to apply Corollary 5.2 together with the strict inequality case in
Theorem 4.2 to get (5.11).

Example 1. The function p(x) = max(0,−3+x,−8+2x,−22+4x) is a polynomial
realization of the sequence h = 0, 0, 0, 0, 1, 2, 4, 6, 10, 14, . . . . From (5.3) we have

x0 = 0, x1 = 4, x2 = 6, x3 = 8,

u0 = 0, u1 = 3, u2 = 4, u3 = 5,

detH[0, 1, 2, 3|0, 3, 4, 5] = det


0 0 1 2
0 1 2 4
0 2 4 6
0 4 6 10

 = (15, 14),

which is unbalanced. Hence, mlr(h) = 4 and a minimal linear realization of h is
(A, b, c), where A = diag(0, 1, 2, 4), c = (0,−3,−8,−22), b = (0, 0, 0, 0)T . Note that
this minimal realization is not unique.

6. Appendix. Now we develop a method for finding a polynomial realization of
the minimal dimension.

Suppose that h0, h1, . . . is a convex sequence satisfying (2.1). Consider the points
Pj = [j, hj ], j = 0, 1, . . . ,M , in the plane with Cartesian coordinate system. If
M = N + 1, then p is a polynomial realization of h iff p(j) = hj for j = 0, . . . ,M ,
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so that we may restrict our investigation to a method for finding a polynomial re-
alization of the finite sequence P0, . . . , PM . It is evident that to every polynomial
realization (which in general may contain redundant monomials) we can assign an-
other polynomial realization of no greater dimension in which every line (monomial)
passes through at least two points of the set {P0, . . . , PM}. Indeed, in what follows
we consider only polynomial realizations which possess this property.

A subset T of the set

S = {[j, hj ] | j = 0, 1, . . . ,M}

is called aligned if ‖T ‖≥ 3 and there exists a line q such that
1. T ⊆ q,
2. (S − T ) ∩ q = ∅.

Note that an aligned subset of S may not exist and that two different aligned subsets
are either disjoint or have exactly one common point.

Let T be a fixed aligned set of points lying on a line q. Since ‖ T ‖≥ 3, [j −
1, hj−1], [j, hj ], [j + 1, hj+1] ∈ q for some j.

Let s(t) represent a line of an arbitrary polynomial realization which passes
through [j, hj ]. Since

hj−1 ≥ s(j − 1), hj+1 ≥ s(j + 1),

and [j − 1, hj−1], [j, hj ], [j + 1, hj+1] are collinear, we have that q coincides with s.
Hence every polynomial realization contains each line passing through all points of an
aligned subset, and thus in the construction of the minimal polynomial realization we
must always include these lines. This concerns also the two special lines: one covering
[0, h0], [1, h1] and the other passing through [M − 1, hM−1], [M,hM ], which by trivial
reasons must be involved too.

The point [j, hj ] (0 < j < M) is called a breaking point if [j − 1, hj−1], [j, hj ], [j +
1, hj+1] are not collinear. Clearly, the first and last points of every aligned set are
breaking points (except [0, h0], [M,hM ]).

Consider a fixed set

B = {[r, hr], [r + 1, hr+1], . . . , [s, hs]}

of consecutive breaking points which is maximal; i.e., both [r, hr] belongs to an aligned
set or r = 1 and [s, hs] belongs to an aligned set or s = M − 1. Hence both [r, hr]
and [s, hs] can be assumed to belong already to a line of the realization. Clearly, a
line cannot pass through more than two consecutive breaking points. If B consists of
k points, then the minimal number of lines joining pairs of consecutive points which
contain all the points in B (except for the extreme points [r, hr], [s, hs]) is⌈

k

2

⌉
− 1.

A self-evident strategy to achieve this lower bound is to take alternatively every other
line consecutively joining the pairs of adjacent points starting by the line passing
through

[r + 1, hr+1], [r + 2, hr+2].

The foregoing discussion justifies the following algorithm, which starts from [0, h0].
(Note that ` ≡ (P,Q) reads, “line ` determined by the points P and Q.”)



146 S. GAUBERT, P. BUTKOVIČ, AND R. CUNINGHAME-GREEN

Algorithm. MINIMAL POLYNOMIAL REALIZATION (MPR)
Input: Finite sequence h0, . . . , hM of real numbers, with M ≥ 3.
Output: Polynomial realization of h of minimal dimension represented by the lines

`1, `2, . . .; “no” if h is not convex.
(1) r := 1, s := 0, j := 0, Pi = [i, hi], (i = 0, 1, . . . ,M).
(2) Accept `r ≡ (Pj , Pj+1).
(3) r := r + 1.
(4) Let j (j > s) be the least index for which `r−1 does not pass through Pj (if

no such exists then stop).
(5) If Pj is below `r−1 then stop (“no”).
(6) If j = M then go to (8).
(7) s := j and go to (2).
(8) Accept `r ≡ (Pj−1, Pj), stop.
Example 2. Input: h = 1, 0,−1,−1, 0, 2, 5, 8. (M = 7)

P0 = (0, 1), P1 = (1, 0), P2 = (2,−1), P3 = (3,−1), P4 = (4, 0), P5 = (5, 2),
P6 = (6, 5), P7 = (7, 8).
The algorithm MPR produces the following:
r = 1, s = 0
accept `1 ≡ (P0, P1) accept `2 ≡ (P3, P4) accept `3 ≡ (P5, P6)
r = 2 r = 3 r = 4
j = 3 j = 5
s = 3 s = 5

stop
p1(t) = −t+ 1 (line `1)
p2(t) = t− 4 (line `2)
p3(t) = 3t− 13 (line `3)
A = diag(−1, 1, 3), c = (1,−4,−13), b = (0, 0, 0)T .
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Abstract. We consider a hybrid system composed of a plate equation and two ordinary differ-
ential equations. We prove that the system is strongly but not uniformly stable. By a new approach,
we show that the smooth solution has a rational decay rate. Finally we establish the uniform energy
decay rate for a simplified hybrid system.
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1. Introduction. The purpose of this work (the results of which were announced
in Rao [18]) is to investigate the stabilization of a thin elastic plate, which is clamped
on one part of the edge and rimmed along the other part with a flange that has mass
and moment of inertia of the boundary. Let Ω ⊂ R2 denote a bounded domain, with
smooth boundary Γ consisting of two disjoint pieces: Γ0, the clamped part, and Γ1,
the rimmed part. Following the linear elasticity theory (see Lagnese and Lions [6]),
the vibration y of the plate is governed by the plate equation associated with two
dynamical boundary conditions:

(1.1)


y′′ + ∆2y = 0 in Ω×]0,+∞[,

y = ∂νy = 0 on Γ0×]0,+∞[,

J∂νy
′′ + ∆y + (1− µ)B1y = m on Γ1×]0,+∞[,

ρy′′ − ∂ν∆y − (1− µ)∂τB2y = f on Γ1×]0,+∞[,

where ν = (ν1, ν2) is the unit outer normal vector and τ = (−ν2, ν1) is the unit tangent
vector. The inertial properties of the boundary are supported along the rimmed part
Γ1 whereon the boundary feedback controls m, f are applied. 0 < µ < 1/2 is the
Poisson coefficient. ρ > 0 is the linear boundary density; J > 0 is the bending moment
of inertia of the boundary. B1, B2 are the usual boundary operators associated with
the plate equation:

B1y = 2ν1ν2
∂2y

∂x1∂x2
− ν2

1
∂2y

∂x2
2
− ν2

2
∂2y

∂x2
1
,(1.2)

B2y = (ν2
1 − ν2

2)
∂2y

∂x1∂x2
+ ν1ν2

(∂2y

∂x2
1
− ∂2y

∂x2
2

)
.(1.3)

In the present work, we use the following boundary feedback controls:

(1.4) m = −L∂νy′, f = −Ly′,

∗Received by the editors March 25, 1996; accepted for publication (in revised form) October 30,
1996.

http://www.siam.org/journals/sicon/36-1/30097.hmtl
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where L is the canonical isomorphism from H−s(Γ1) onto Hs(Γ1). If we consider
the usual initial data, y(0) ∈ H2(Ω), yt(0) ∈ L2(Ω), then the regularity of the weak
solution is insufficient for defining the dynamical terms J∂νy′′ and ρy′′ on the bound-
ary Γ1. Following an idea of Slemrod [21], the dynamical boundary conditions have
to be treated as ordinary differential equations in the time variable. Therefore, in-
deed we have a system made up of one partial differential equation and two ordinary
differential equations, called a hybrid system.

For these kinds of problems, a classical method developed in Littman and Markus
[11] is based on the spectrum theory. Roughly speaking, if the spectrum of the sys-
tem approaches asymptotically the imaginary axis, then the system loses the uniform
energy decay rate. Further, if the eigenvectors of the system form a Riesz basis, then
the smooth solution has a rational decay rate. Because of the essential difficulty inter-
vening in the determination of the spectrum of the system, this method is obviously
limited to one-dimensional problems (Lee and You [8], Littman and Markus [11, 12]).

In [17], we considered the well-known SCOLE model (Euler–Bernoulli beam equa-
tion associated with dynamical boundary conditions). We introduced a new method,
which is based on a result of compact perturbation due to Russell [20]. We established
the uniform stability in the case of hinged beam with the usual boundary feedback
controls, as well as in the case of a clamped beam with the boundary feedback con-
trols of high order. In the case of a clamped beam with the usual boundary feedback
controls, we proved that the system loses the uniform energy decay rate. Unlike the
usual method, this method does not require any knowledge of the spectrum of the
system. For other applications, we refer to Rao [19] for the Rayleigh beam equation
and Komornik and Rao [4] for compactly coupled waves equations.

Now we outline briefly the content of this work. In section 2, we formulate the
system (1.1)–(1.4) into an evolutionary equation,

(1.5) u′ +Au+Bu = 0,

where A is a maximal monotone operator and B is the canonical isomorphism from
H−s(Γ1) × H−s(Γ1) onto Hs(Γ1) × Hs(Γ1). Therefore, we can give a semigroup
approach of the system (1.1)–(1.4). In section 3, we prove the strong stability of the
system (1.5) for all s ≥ 0. Therefore, we improve a recent result of Markus and You
[13], which asserts the strong stability of the system (1.5) in the case s = 0. Further,
we show that the system (1.5) actually loses the uniform energy decay rate if s > 0.
Notice that in this case the control operator B is compact. In section 4, we establish
the rational energy decay rate for the smooth solution. To this end, we introduce
a new multiplier method which is based on a nonlinear technique. Once again, this
method does not require any knowledge of the spectrum of the system. In section 5,
we consider a simplified plate model in which we have taken J = 0. We prove that
the usual multiplier method can be applied for obtaining the uniform energy decay
rate of the system.

2. Well-posedness. Throughout this paper, we assume that Ω ⊂ R2 is a bounded
domain with smooth boundary Γ = Γ0 ∪ Γ1. We assume that Γ0 and Γ1 are of class
C2 and Γ̄0 ∩ Γ̄1 = {∅}.

Let us denote by L the canonical isomorphism from H−s(Γ1) onto Hs(Γ1):

(2.1) 〈Lη, ζ〉Hs(Γ1)×H−s(Γ1) = 〈η, ζ〉H−s(Γ1), s ≥ 0.

If s = 0, then L is the identity of L2(Γ1); we find again the usual boundary feedback
controls used in Markus and You [13].
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Now let y be a smooth solution of the closed-loop hybrid system

(2.2)


y′′ + ∆2y = 0 in Ω×]0,+∞[,

y = ∂νy = 0 on Γ0×]0,+∞[,

J∂νy
′′ + ∆y + (1− µ)B1y + L∂νy

′ = 0 on Γ1×]0,+∞[,

ρy′′ − ∂ν∆y − (1− µ)∂τB2y + Ly′ = 0 on Γ1×]0,+∞[.

Setting

(2.3) z = y′, ξ = ∂νy
′|Γ1 , η = y′|Γ1 ,

then we transform the hybrid system (2.2) into a system of first order

(2.4)


y

z

ξ

η


′

+


−z

∆2y

1
J

(
∆y + (1− µ)B1y

)
− 1
ρ

(
∂ν∆y + (1− µ)∂τB2y

)

+


0

0
1
JLξ

1
ρLη

 = 0.

Denoting the columns by u′, Au, and Bu, we get an abstract evolutionary equation

(2.5) u′ +Au+Bu = 0, u(0) = u0 ∈ H.

According to the formulation (2.4), we are led to introduce the following energy
space:

(2.6) H = H2
Γ0

(Ω)× L2(Ω)× L2(Γ1)× L2(Γ1),

where we have put

(2.7) H2
Γ0

(Ω) = {y ∈ H2(Ω) : y = ∂νy = 0 on Γ0}.

For u = (y, z, ξ, η), ũ = (ỹ, z̃, ξ̃, η̃) ∈ H, we define the inner product by

(2.8) (u, ũ)H =
∫

Ω

(
a(y, ỹ) + zz̃

)
dx+ J

∫
Γ1

ξξ̃dΓ + ρ

∫
Γ1

ηη̃dΓ,

where the bilinear form a(·, ·) is defined by

a(y, z) :=
∂2y

∂x2
1

∂2z

∂x2
1

+
∂2y

∂x2
2

∂2z

∂x2
2

(2.9)

+µ
(∂2y

∂x2
1

∂2z

∂x2
2

+
∂2y

∂x2
2

∂2z

∂x2
1

)
+ 2(1− µ)

∂2y

∂x1∂x2

∂2z

∂x1∂x2
.

We next introduce the linear bounded operator B and the linear unbounded
operator A as follows:

(2.10) Bu =


0

0
1
ρLξ

1
JLη

 , Au =


−z

∆2y

1
ρ

(
∆y + (1− µ)B1y

)
− 1
J

(
∂ν∆y + (1− µ)∂τB2y

)

 .
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The domain D(A) is defined by

(2.11) D(A) =

(
u = (y, z, ξ, η) ∈W ×H2

Γ0
(Ω)× L2(Γ1)× L2(Γ1)

such that ξ = ∂νz|Γ1 and η = z|Γ1

)
,

where the subspace W is defined as

(2.12) W =


y ∈ H2

Γ0
(Ω), ∆2y ∈ L2(Ω)

∆y + (1− µ)B1y ∈ L2(Γ1) = v1

∂ν∆y + (1− µ)∂τB2y = v2 ∈ L2(Γ1)

 .

The trace functions in (2.12) are defined by means of the following Green formula:

(2.13)
∫

Ω
∆2yφdx =

∫
Ω
a(y, φ)dx+

∫
Γ1

v2φdΓ−
∫

Γ1

v1φdΓ ∀φ ∈ H2
Γ0

(Ω).

LEMMA 2.1. The operator B is self-adjoint nonnegative definite and compact if
s > 0.

Proof. Let u = (y, z, ξ, η) ∈ H. Then using (2.8) and (2.10) we have

(2.14) (Bu, u)H = (Lξ, ξ)L2(Γ1) + (Lη, η)L2(Γ1).

Since ξ ∈ L2(Γ1), Lξ ∈ Hs(Γ1), we have

(Lξ, ξ)L2(Γ1) = 〈Lξ, ξ〉Hs(Γ1)×H−s(Γ1) = ‖ξ‖2H−s(Γ1).

It follows from (2.14) that

(2.15) (Bu, u)H = ‖ξ‖2H−s(Γ1) + ‖η‖2H−s(Γ1) ≥ 0.

Since L is self-adjoint and compact for s > 0, so is B. The proof is com-
plete.

LEMMA 2.2. The operator A is maximal monotone and skew adjoint. Moreover
the resolvent (I +A)−1 is compact in H.

Proof. Let u = (y, z, ξ, η) ∈ D(A). Using (2.8) and (2.10) we have

(Au, u)H =
∫

Ω
a(−z, y)dx+

∫
Ω

∆2yzdx

−
∫

Γ1

(∂ν∆y + (1− µ)∂τB2y)zdΓ1 +
∫

Γ1

(∆y + (1− µ)B1y)∂νzdΓ.

Since y ∈W and z ∈ H2
Γ0

(Ω), it follows from (2.13) that

(2.16) (Au, u)H = 0 ∀u ∈ D(A).

Now given u0 ∈ H, we solve the equation u+Au = u0. This means that

(2.17)


y − z = y0,

z + ∆2y = z0,

J∂νz + ∆y + (1− µ)B1y = Jξ0,

ρz − ∂ν∆y − (1− µ)∂τB2y = ρη0.
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Then eliminating z and using ξ = ∂νz|Γ1 , η = z|Γ1 , we find that y satisfies the system

(2.18)


y + ∆2y = y0 + z0 ∈ L2(Ω),

y = ∂νy = 0 on Γ0,

J∂νy + ∆y + (1− µ)B1y = J(ξ0 + ∂νy0) on Γ1,

ρy − ∂ν∆y − (1− µ)∂τB2y = ρ(η0 + y0) on Γ1.

Using the Green formula (2.13), we prove that the system (2.18) is equivalent to the
following variational equation:∫

Ω

(
yφ+ a(y, φ)

)
dx+ ρ

∫
Γ1

yφdΓ + J

∫
Γ1

∂νy∂νφdΓ(2.19)

=
∫

Ω

(
y0 + z0

)
φdx+ ρ

∫
Γ1

(η0 + y0)φ+ J

∫
Γ1

(ξ0 + ∂νy0)∂νφdΓ

for all φ ∈ H2
Γ0

(Ω). Thanks to the Lax–Milgram theorem, equation (2.19) admits a
unique solution y ∈ H2

Γ0
(Ω). Then defining

z = y − y0 ∈ H2
Γ0

(Ω), ξ = ∂νz|Γ1 , η = z|Γ1 ,

we see that u = (y, z, ξ, η) ∈ D(A) and solves the equation u + Au = u0. Therefore,
we conclude that A is maximal monotone in the energy space H.

On the other hand, thanks to the elliptic theory (Lions and Magenes [9]), we see
that y ∈ H5/2(Ω). It follows that

(2.20) ‖(y, z, η, ξ)‖H5/2(Ω)×H2
Γ0

(Ω)×H3/2(Γ1)×H1/2(Γ1) ≤ C‖u0‖H .

In particular, we obtain the compactness of the resolvent (I +A)−1.
Finally, since A is antisymmetric and maximal monotone with compact resolvent,

A is therefore skew adjoint in H (see Brezis [1]). The proof is thus complete.
THEOREM 2.3. Assume that s ≥ 0. Then
(i) for any u0 ∈ D(A), equation (2.5) admits a unique strong solution u(t) =(

y(t), z(t), ξ(t), η(t)
)

such that

y(t) ∈ C0(R+;H5/2(Ω)
)
∩ C1(R+;H2

Γ0
(Ω)
)
∩ C2(R+;L2(Ω)

)
,(2.21)

y|Γ1 ∈ C2(R+;L2(Γ1)
)
, ∂νy|Γ1 ∈ C2(R+;L2(Γ1)

)
.(2.22)

(ii) for any u0 ∈ H, equation (2.5) admits a unique weak solution u(t) =(
y(t), z(t), η(t), ξ(t)

)
such that

y(t) ∈ C0(R+;H2
Γ0

(Ω)
)
∩ C1(R+;L2(Ω)

)
,(2.23)

y|Γ1 ∈ C1(R+;L2(Γ1)
)
, ∂νy|Γ1 ∈ C1(R+;L2(Γ1)

)
.(2.24)

Proof. Since A is maximal monotone and B is nonnegative definite, the operator
A + B with the domain D(A + B) = D(A) is maximal monotone. Applying the
Hille–Yosida theorem (see Brezis [1] and Pazy [14]), we know that for any u0 ∈ D(A)
equation (2.5) admits a unique strong solution:

(2.25) u(t) =
(
y(t), z(t), ξ(t), η(t)

)
∈ C0(R+;D(A)

)
∩ C1(R+;H

)
.
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On the other hand, thanks to (2.20), we have D(A) ⊂ H5/2(Ω) × H2
Γ0

(Ω) ×
H3/2(Γ1)×H1/2(Γ1). It follows that

(2.26)



y(t) ∈ C0
(
R+;H5/2(Ω)

)
∩ C1

(
R+;H2

Γ0
(Ω)
)
,

yt(t) ∈ C0
(
R+;H2

Γ0
(Ω)
)
∩ C1

(
R+;L2(Ω)

)
,

y(t)|Γ1 ∈ C0
(
R+;H3/2(Γ1)

)
∩ C1

(
R+;L2(Γ1)

)
,

∂νy(t)|Γ1 ∈ C0
(
R+;H1/2(Γ1)

)
∩ C1

(
R+;L2(Γ1)

)
.

This gives (2.21)–(2.22).
Now let u0 ∈ H; then equation (2.5) admits a unique weak solution given by

u(t) = SA+B(t)u0, where SA+B(t) is the semigroup of contractions generated by the
operator −(A+B) on the energy space H. Moreover we have

(2.27) u(t) =
(
y(t), z(t), ξ(t), η(t)

)
∈ C0(R+;H

)
.

Interpreting (2.27) gives (2.23)–(2.24). The proof is complete.
Notice that for a general function y possessing only the smoothness property

(2.21), the trace functions y′′|Γ1 and ∂νy′′|Γ1 don’t make sense. Here they are defined
by means of the equations

(2.28)

{
y′′ = 1

ρ

(
∂ν∆y + (1− µ)∂τB2y

)
on Γ1,

∂νy
′′ = − 1

J

(
∆y + (1− µ)B1y

)
on Γ1.

From (2.21), we see that the right-hand sides of these equations are continuous func-
tions.

3. Strong stability and lack of uniform energy decay rate. Let u =
(y, z, ξ, η) be a solution of equation (2.5). We define the associated energy by

(3.1) E(t) =
1
2

{∫
Ω

(
|y′|2 + a(y, y)

)
dx+

∫
Γ1

(
ρ|y′|2 + J |∂νy′|2

)
dΓ
}
.

Then using (2.15)–(2.16) we have

(3.2)
d

dt
E(t) = −‖y′‖2H−s(Γ1) − ‖∂νy′‖2H−s(Γ1) ≤ 0.

Therefore, E(t) is a nonincreasing function. Moreover, we have the following strong
stability result.

THEOREM 3.1. For any initial data u0 ∈ H, the energy E(t) of system (2.5)
satisfies

(3.3) lim
t→+∞

E(t) = 0.

Proof. Since B is self-adjoint and nonnegative definite, there exists a linear op-
erator B̃ such that B = B̃B̃∗. Then indeed we have

(3.4) (Bu, u)H = (B̃∗u, B̃∗u)H ,

which, together with (2.15), implies that

(3.5) Bu = 0⇔ B̃∗u = 0.
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Applying LaSalle’s invariance principle (see Slemrod [21]), it is sufficient to prove
that the equation B̃∗SA(t)u0 = 0 has only trivial solution u0 = 0, where SA(t) denotes
the semigroup generated by the operator A on the space H. Thanks to (3.5), this is
equivalent to proving that the equation BSA(t)u0 = 0 has only trivial solution u0 = 0.
Assume that u0 ∈ D(A). Then indeed writing SA(t)u0 =

(
y(t), z(t), η(t), ξ(t)

)
, we

see that y satisfies the system

(3.6)


y′′ + ∆2y = 0 in Ω×]0,+∞[,

J∂νy
′′ + ∆y + (1− µ)B1y = 0 on Γ1×]0,+∞[,

ρy′′ − ∂ν∆y − (1− µ)∂τB2y = 0 on Γ1×]0,+∞[,

with the supplementary conditions

(3.7) y′ = ∂νy
′ = 0 on Γ1×]0,+∞[.

A straightforward computation shows that z satisfies the following conditions (see
Lasiecka [7]):

(3.8)

{
z′′ + ∆2z = 0 in Ω×]0,+∞[,

z = ∂νz = ∆z = ∂ν∆z = 0 on Γ1×]0,+∞[.

Applying the Holmgren theorem (see Lions [10]), it follows that z = 0. This, together
with (3.6)–(3.7), implies that y satisfies the following conditions:

(3.9)


∆2y = 0 in Ω×]0,+∞[,

y = ∂νy = 0 on Γ0×]0,+∞[,

∆y + (1− µ)B1y = 0 on Γ1×]0,+∞[,

∂ν∆y + (1− µ)∂τB2y = 0 on Γ1×]0,+∞[.

Multiplying the first equation by y and using the Green formula (2.13), we obtain∫
Ω
a(y, y)dx = 0⇒ y = 0.

This yields that u0 = 0. We complete the case u0 ∈ H by a standard argument of
density of D(A) in H and the continuity of the semigroup SA(t). The proof is thus
complete.

LEMMA 3.2. Let A = −A∗ be the infinitesimal generator of a C0 group, and let
B be a compact operator in the Hilbert space H. Then the group SA+B(t), generated
by the operator −(A+B), has no uniform energy decay rate for t > 0.

Proof. We first notice that SA−B∗(t) is also a group in H. Since (A + B)∗ =
−(A−B∗), we have

(3.10) ‖SA+B(t)‖ = ‖S−(A−B∗)(t)‖ = ‖SA−B∗(−t)‖ ∀t ∈ R.

Since B and B∗ are compact, thanks to a result of compact perturbation due
to Russell [20], we know that for any t > 0 the following two conditions can’t be
simultaneously held

(3.11) ‖SA+B(t)‖ < 1 and ‖SA−B∗(−t)‖ < 1.



STABILIZATION OF ELASTIC PLATES 155

It follows from (3.10) and (3.11) that ‖SA+B(t)‖ ≥ 1 for any t > 0. The proof is
complete.

Remark. Lemma 3.2 has been formulated in another form in Gibson [2]. But the
present version seems to adapt well to the first-order evolutionary equations.

THEOREM 3.3. Assume that s > 0. Then the energy E(t) of system (2.5) has no
uniform decay rate.

Proof. Since A is maximal monotone and skew adjoint (Lemma 2.2), and since
B is compact (Lemma 2.1), then applying Lemma 3.2 we conclude that the group
SA+B(t) has no uniform decay rate for t > 0.

Remark. If s = 0, then L becomes the identity of L2(Γ1), and the control operator
B is not compact. Therefore Lemma 3.2 does not apply directly to the system (2.5).
Let us consider an example where Ω is the unit disc and Γ1 is the whole circle.
Considering the radial solutions of the system (2.5), then the control space L2(Γ1)×
L2(Γ1) will be reduced into R2 and the control operator B becomes again compact.
Consequently, system (2.5) actually loses the uniform energy decay rate, even in this
geometrically favorable case (see Lagnese [5]). Of course, the uniform stability of
system (2.5) remains an open problem in the general case.

4. Rational energy decay rate. In this section, we will establish the rational
energy decay rate for the smooth solution of system (2.5). We first recall the following
classical result (Komornik [3] and Lagnese [5]).

LEMMA 4.1. Let E : R+ → R+ be a nonincreasing function. Assume that there
exists a positive constant M such that

(4.1)
∫ ∞
T

E2(t)dt ≤ME(0)E(T ) ∀T > 0.

Then we have

(4.2) E(t) ≤ E(0)
2M
M + t

∀t ≥ 0.

In sections 4 and 5, we assume that there exists a point x0 ∈ R2 such that, setting
m = x− x0, we have

(4.3) Γ0 = {x ∈ Γ : (m · ν) ≤ 0}, Γ1 = {x ∈ Γ : (m · ν) > 0}.

LEMMA 4.2. Let y satisfy the following conditions:

(4.4)


y ∈ H2

Γ0
(Ω), ∆2y ∈ L2(Ω),

∆y + (1− µ)B1y = v1 ∈ L2(Γ1),

∂ν∆y + (1− µ)∂τB2y = v2 ∈ L2(Γ1).

Then we have

(4.5) −
∫

Ω
m · ∇y∆2ydx ≤ −1

2

∫
Ω
a(y, y)dx+ C0

∫
Γ1

(|v1|2 + |v2|2)dΓ,

where C0 is a positive constant depending only on the domain Ω.
Proof. We start with v1 ∈ H3/2(Γ1) and v2 ∈ H1/2(Γ1). In that case, since

y ∈ H4(Ω) we have the following Green formula (see Lagnese [5]):
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Ω

∆2y (m · ∇y)dx(4.6)

=
∫

Ω
a(y, y)dx+

∫
Γ
v2(m · ∇y)dΓ−

∫
Γ
v1∂ν(m · ∇y)dΓ

+
1
2

∫
Γ
(m · ν)

{(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2µ

∂2y

∂x2
1

∂2y

∂x2
2

+ 2(1− µ)
( ∂2y

∂x1∂x2

)2}
dΓ.

Since y = ∂νy = 0 on Γ0, it follows that

∇y = 0, B1y = 0, ∂ν(m · ∇y) = (m · ν)∆y,(4.7) (∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2µ

∂2y

∂x2
1

∂2y

∂x2
2

+ 2(1− µ)
( ∂2y

∂x1∂x2

)2
= (∆y)2.(4.8)

On the other hand, we have(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2µ

∂2y

∂x2
1

∂2y

∂x2
2

+ 2(1− µ)
( ∂2y

∂x1∂x2

)2

≥ (1− µ)
{(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2
( ∂2y

∂x1∂x2

)2
}
.(4.9)

Inserting (4.7)–(4.9) into (4.6) gives∫
Ω

∆2y(m · ∇y)dx(4.10)

≥
∫

Ω
a(y, y)dx+

∫
Γ1

v2(m · ∇y)dΓ−
∫

Γ1

v1∂ν(m · ∇y)dΓ

+
δ

2
(1− µ)

∫
Γ1

{(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2
( ∂2y

∂x1∂x2

)2}
dΓ,

where δ is positive constant such that (m · ν) ≥ δ for all x ∈ Γ1.
Now a direct computation gives

(4.11) 2
∣∣∂ν(m · ∇y)

∣∣2 ≤ |∂νy|2 +R2
{(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2
( ∂2y

∂x1∂x2

)2
}
,

where R = ‖m‖L∞(Γ1) is the diameter of Ω. For any λ > 0, it follows that∫
Γ1

v1∂ν(m · ∇y)dΓ ≥ −λ
∫

Γ1

|v1|2dΓ− 1
8λ

∫
Γ1

|∂νy|2dΓ(4.12)

− R2

8λ

∫
Γ1

{(∂2y

∂x2
1

)2
+
(∂2y

∂x2
2

)2
+ 2
( ∂2y

∂x1∂x2

)2
}
dΓ,

∫
Γ1

v2(m · ∇y)dΓ ≥ −λ
∫

Γ1

|v2|2dΓ− R2

4λ

∫
Γ1

|∇y|2dΓ.(4.13)
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Inserting (4.12)–(4.13) into (4.10), we obtain∫
Ω

∆2y(m · ∇y)dx ≥
∫

Ω
a(y, y)dx(4.14)

−λ
∫

Γ1

(|v1|2 + |v2|2)dΓ− 1
4λ

∫
Γ1

(
|∂νy|2 +R2|∇y|2

)
dΓ

provided

(4.15) λ ≥ R2

4δ(1− µ)
.

We obtain (4.3) by taking λ > 0 sufficiently large in (4.14):

(4.16)
∫

Γ1

(
|∂νy|2 +R2|∇y|2

)
dΓ ≤ λ

∫
Ω
a(y, y)dx ∀y ∈ H2

Γ0
(Ω).

The case v1, v2 ∈ L2(Γ1) can be easily completed by a standard argument of
density (see Lemma 3.1 in Rao [16]). The proof is complete.

THEOREM 4.3. Assume that s = 0. Then given any u0 ∈ D(A), there exists a
constant M > 0 depending only on u0 such that the following rational energy decay
rate holds:

(4.17) E(t) ≤ E(0)
2M
M + t

∀t > 0

for all smooth solution u of system (2.5).
Proof. Let 0 ≤ T < S < +∞, we multiply the plate equation by E(t)(m · ∇y)

and integrate over Ω× [T, S]:

(4.18)
∫ S

T

∫
Ω
E(t)(m · ∇y)y′′dxdt = −

∫ S

T

∫
Ω
E(t)(m · ∇y)∆2ydxdt.

In the left-hand side of (4.18), one integration by parts gives∫ S

T

∫
Ω
E(t)(m · ∇y)y′′dxdt(4.19)

=
∫

Ω

[
E(t)(m · ∇y)y′dx

]S
T
−
∫ S

T

∫
Ω
E′(t)(m · ∇y)y′dxdt

+
∫ S

T

∫
Ω
E(t)|y′|2dxdt− 1

2

∫ S

T

∫
Γ1

E(t)(m · ν)|y′|2dΓdt.

Next using the Cauchy–Schwarz inequality we have

(4.20)
∣∣∣ ∫

Ω
(m · ∇y)y′dx

∣∣∣ ≤ C1E(t).

Then it follows that∫
Ω

[
E(t)(m · ∇y)y′dx

]S
T
−
∫ S

T

∫
Ω
E′(t)(m · ∇y)y′dxdt(4.21)

≥ −C1(E2(T ) + E2(S)) + C1

∫ S

T

E′(t)E(t)dt ≥ −2C1E
2(T ).
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Inserting (4.21) into (4.19) gives ∫ S

T

∫
Ω
E(t)(m · ∇y)y′′dxdt(4.22)

≥
∫ S

T

∫
Ω
E(t)|y′|2dxdt− R

2

∫ S

T

∫
Γ1

E(t)|y′|2dΓdt− 2C1E
2(T ).

Because of (2.21)–(2.22), y satisfies conditions (4.4). Then applying Lemma 4.2
in the right-hand side of (4.18) gives

−
∫ S

T

∫
Ω
E(t)(m · ∇y)dxdt ≤ −1

2

∫ S

T

∫
Ω
E(t)a(y, y)∆2ydxdt(4.23)

+ C0

∫ S

T

∫
Γ1

E(t)
(
|ρy′′ + y′|2 + |J∂νy′′ + ∂νy

′|2
)
dΓdt.

Inserting (4.22)–(4.23) into (4.18) gives that∫ S

T

E2(t)dt ≤ 2C1E
2(T )(4.24)

+C2

∫ S

T

∫
Γ1

E(t)
(
|y′|2 + |∂νy′|2 + |y′′|2 + |∂νy′′|2

)
dΓdt,

where we have put

(4.25) C2 = 2C0(1 + ρ2 + J2) +
R

2
.

Since the energy E(t) is nonincreasing, it follows that∫ S

T

E2(t)dt ≤ 2C1E
2(T )(4.26)

+C2E(T )
∫ S

T

∫
Γ1

(
|y′|2 + |∂νy′|2 + |y′′|2 + |∂νy′′|2

)
dΓdt.

On the other hand, from (3.2) we deduce that

(4.27)
∫ S

T

∫
Γ1

(
|y′|2 + |∂νy′|2

)
dΓdt ≤ E(T ).

Differentiating the system (2.5) with respect to the variable t gives

(4.28)
∫ S

T

∫
Γ1

(
|y′′|2 + |∂νy′′|2

)
dΓdt ≤ E1(T ),

where the energy of high-order E1(t) is defined by

(4.29) E1(t) =
1
2
‖u′(t)‖2 =

1
2
‖(A+B)u(t)‖2.
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Use of (4.27)–(4.28) in (4.26) gives

(4.30)
∫ S

T

E2(t)dt ≤ME(T )E(0),

where we have put

(4.31) M = 2C1 + C2 + C2
‖(A+B)u0‖2
‖u0‖2

.

Finally, thanks to Lemma 4.1 we deduce the rational energy decay rate (4.17)
from (4.30). The proof is thus complete.

Remark. For most linear problems we use the classical multiplier m · ∇y. The
idea of the proof of Theorem 4.3 consists in taking the multiplier E(t)m · ∇y which
is usually used in nonlinear problems. This method is very simple and can be easily
applied to other problems.

There is another natural approach based on the spectral theory (Littman and
Markus [11]). Roughly speaking, let λn = αn+ iβn be the eigenvalues of the operator
A + B. Assume that (i) αn ≥ 1/np (p > 0) and (ii) the associated eigenvectors φn
form a Riesz basis; then the trajectory SA+B(t)u0 has a rational decay rate for smooth
initial data u0. This method was applied to one-dimensional problems such as the
Euler–Bernoulli beam model (Littman and Markus [11]) and string/mass model (Lee
and You [8]) with very careful calculation of the eigenvalues. It seems to be impossible
to justify conditions (i) and (ii) for the plate model of general shape.

5. Uniform stability of a simplified model. In this section we consider a
simplified model in which the bending moment of inertia of the boundary J is ne-
glected. Therefore, we obtain the following hybrid system:

(5.1)


y′′ + ∆2y = 0 in Ω×]0,+∞[,

y = ∂νy = 0 on Γ0×]0,+∞[,

∆y + (1− µ)B1y = −∂νy′ on Γ1×]0,+∞[,

ρy′′ − ∂ν∆y − (1− µ)∂τB2y = −y′ on Γ1×]0,+∞[.

Let us first introduce the energy space H,

(5.2) H = H2
Γ0

(Ω)× L2(Ω)× L2(Γ1),

and the linear unbounded operator A,

(5.3) Au =


−z

∆2y

− 1
ρ

(
∂ν∆y + (1− µ)∂τB2y − z

)
 .

The domain of the operator A is defined as

(5.4) D(A) =

(
u = (y, z, η) ∈W ×H2

Γ0
(Ω)× L2(Γ1)

η = z|Γ1 , ∆y + (1− µ)B1y + ∂νz = 0 on Γ1

)
,
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where we have put

(5.5) W =


y ∈ H2

Γ0
(Ω), ∆2y ∈ L2(Ω)

∆y + (1− µ)B1y ∈ H1/2(Γ1)

∂ν∆y + (1− µ)∂τB2y ∈ L2(Γ1)

 .

Now let y be a smooth solution of the hybrid system (5.1). Setting

z = y′, η = y′|Γ1 ,

we transform the hybrid system (5.1) into an abstract evolutionary equation:

(5.6) u′ +Au = 0, u(0) = u0 ∈ H.

Given u0 ∈ D(A), using the definition (5.3)–(5.5) and the Green formula (2.13),
a straightforward computation gives

(5.7) (Au, u)H =
∫

Γ1

(
|z|2 + |∂νz|2

)
dΓ ≥ 0 .

Moreover by an argument analogous to that of Lemma 2.2, we can easily verify the
rank condition R(I+A) = H. This implies that the operator A is maximal monotone.
Therefore, equation (5.6) is well posed in the sense of a semigroup of contractions.
Similarly we have the following result.

THEOREM 5.1. (i) For any u0 ∈ D(A), equation (5.6) admits a unique strong
solution u(t) =

(
y(t), z(t), η(t)

)
∈ D(A) such that

y(t) ∈ C0(R+;H7/2(Ω)
)
∩ C1(R+;H2

Γ0
(Ω)
)
∩ C2(R+;L2(Ω)

)
,(5.8)

y|Γ1 ∈ C2(R+;L2(Γ1)
)
.(5.9)

(ii) For any u0 ∈ H, equation (5.6) admits a unique weak solution u(t) = SA(t)u0 =(
y(t), z(t), η(t)

)
∈ H such that

y(t) ∈ C0(R+;H2
Γ0

(Ω)
)
∩ C1(R+;L2(Ω)

)
,(5.10)

y|Γ1 ∈ C1(R+;L2(Γ1)
)
,(5.11)

where SA(t) is the semigroup of contractions generated by −A.
Now let u(t) = (y(t), z(t), η(t)) be a solution of equation (5.6); we define the

associated energy by setting

(5.12) E(t) =
1
2

{∫
Ω

(
|y′|2 + a(y, y)

)
dx+ ρ

∫
Γ1

|y′|2dΓ
}
.

Then using (5.7) we have

d

dt
E(t) = −

∫
Γ1

(
|y′|2 + |∂νy′|2

)
dΓ ≤ 0.

Hence for any T > 0 we have

(5.13)
∫ T

0

∫
Γ1

(
|y′|2 + |∂νy′|2

)
dΓdt ≤ E(0).
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By a slight modification, we can easily establish the following analogue of
Lemma 4.2.

LEMMA 5.2. Let y satisfy the following conditions:

(5.14)


y ∈ H2

Γ0
(Ω), ∆2y ∈ L2(Ω),

∆y + (1− µ)B1y = v1,

∂ν∆y + (1− µ)∂τB2y = v2 + v̂2

with v1, v2, v̂2 ∈ L2(Γ1). Then the following estimate holds:

−
∫

Ω
m · ∇y∆2ydx(5.15)

≤ −1
2

∫
Ω
a(y, y)dx−

∫
Γ1

v̂2(m · ∇y)dΓ + C0

∫
Γ1

(|v1|2 + |v2|2)dΓ,

where C0 is a positive constant depending only on Ω.
THEOREM 5.3. There exist two positive constants M and ω such that

(5.16) E(t) ≤ME(0)e−ωt ∀t > 0

for any solution u of equation (5.6).
Proof. Because of the density of D(A) into H and the continuity of the energy

E(t) with respect to the initial data u0, it is sufficient to consider the smooth initial
data u0 ∈ D(A). Then indeed, multiplying the plate equation (5.1) by (m · ∇y) and
integrating over Ω× [0, T ], we obtain

(5.17)
∫ T

0

∫
Ω

(m · ∇y)y′′dxdt = −
∫ T

0

∫
Ω

(m · ∇y)∆2ydxdt.

In the left-hand side, one integration by parts gives∫ T

0

∫
Ω

(m · ∇y)y′′dxdt =
∫

Ω

[
(m · ∇y)y′dx

]T
0(5.18)

+
∫ T

0

∫
Ω
|y′|2dxdt− 1

2

∫ T

0

∫
Γ1

(m · ν)|y′|2dΓdt.

Next using the Cauchy–Schwarz inequality we have

(5.19)
∫

Ω

[
(m · ∇y)y′dx

]T
0 ≥ −C1E(0),

where C1 > 0 is a constant depending only on Ω. Inserting (5.19) into (5.18) and
taking (5.13) into account gives

(5.20)
∫ T

0

∫
Ω

(m · ∇y)y′′dxdt ≥
∫ T

0

∫
Ω
|y′|2dxdt− C1E(0).

Using (5.8)–(5.9), we verify easily that y, v1 = −∂νy′, v2 = y′, and v̂2 = ρy′′

satisfy conditions (5.14). Applying Lemma 5.2 in the right-hand side of (5.17), we
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obtain that

−
∫ T

0

∫
Ω

(m · ∇y)∆2ydxdt ≤ −1
2

∫ T

0

∫
Ω
a(y, y)dxdt(5.21)

−ρ
∫ T

0

∫
Γ1

(m · ∇y)y′′dΓdt+ C0

∫ T

0

∫
Γ1

(
|y′|2 + |∂νy′|2

)
dΓdt.

One integration by parts gives

−
∫ T

0

∫
Γ1

(m · ∇y)y′′dΓdt(5.22)

=−
∫

Γ1

[
(m · ∇y)y′dΓ

]T
0 +

∫ T

0

∫
Γ1

(m · ∇y′)y′dΓdt.

Using the Cauchy–Schwarz inequality we have

(5.23) −
∫

Γ1

[
(m · ∇y)y′

]T
0 dΓ ≤ CE(0).

On the other hand, a straightforward computation gives∫
Γ1

(m · ∇y′)y′dΓ(5.24)

=
∫

Γ1

(
(m · ν)y′∂νy′ −

1
2
∂τ (m · τ)|y′|2

)
dΓ

≤(R+K)
∫

Γ1

(|y′|2 + |∂νy′|2)dΓ,

where we have put

(5.25) R = ‖m‖L∞(Γ), K = ‖∂τ (m · τ)‖L∞(Γ).

Inserting (5.22)–(5.24) into (5.21) and taking (5.13) into account, we get

(5.26)
∫ T

0

∫
Ω

(m · ∇y)∆2ydxdt ≤ −1
2

∫ T

0

∫
Ω
a(y, y)dxdt+ CE(0),

where C > 0 is a constant depending only on Ω.
Finally inserting (5.20) and (5.26) into (5.17), we obtain the integral inequality

(5.27)
∫ T

0
E(t)dt ≤ CE(0) ∀T > 0.

Thanks to the well-known result of Datko (Pazy [14]), this implies the uniform energy
decay rate (5.16). The proof is thus complete.

Remark. We have shown that the hybrid system (5.1) can be uniformly stabilized
by means of the usual boundary feedback controls. But if we take ρ = 0 and J > 0,
then contrary to the previous case the uniform stability of the corresponding hybrid
system remains an open problem. See also [15] for other uniformly stable hybrid
systems.
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Abstract. Lagrangian control systems that are differentially flat with flat outputs that depend
only on configuration variables are said to be configuration flat. We provide a complete characteri-
zation of configuration flatness for systems with n degrees of freedom and n−1 controls whose range
of control forces only depends on configuration and whose Lagrangian has the form of kinetic energy
minus potential. The method presented allows us to determine if such a system is configuration flat
and, if so, provides a constructive method for finding all possible configuration flat outputs. Our
characterization relates configuration flatness to Riemannian geometry. We illustrate the method
with two examples.

Key words. differential flatness, nonlinear control, Lagrangian mechanics
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1. Introduction. Roughly speaking, an underdetermined system of ODEs

F k(t, x1, . . . , xN , ẋ1, . . . , ẋN ) = 0, k = 1, . . . , n < N,

is differentially flat if there is a smooth locally one-to-one correspondence between
solutions x(t) of the system and arbitrary functions y(t) of the form

x(t) = g(t, y(t), . . . , y(l)(t)),

y(t) = h(t, x(t), . . . , x(q)(t)),

where (y1, . . . , yp) ∈ Rp and p = N − n. Here g, h are smooth maps, y(k) is the kth
derivative of y, and l, q are integers. The variables yj are referred to as flat outputs.
The special class of systems given by

ẋi = f i(t, x1, . . . , xn, u1, . . . , up), i = 1, . . . , n,

is more familiar to control theorists and the flat outputs depend on states, inputs,
and derivatives of inputs

yj = hj(t, x, u, u(1), . . . , u(q)), j = 1, . . . , p.

For a detailed discussion of differential flatness see Fliess et al. [3, 4], Martin [9],
Pomet [12], van Nieuwstadt, Rathinam, and Murray [21], and Rathinam and Sluis
[13].
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FIG. 1.1. Path planning for kinematic car.

The importance of flatness to control applications lies in the fact that it provides
a systematic and relatively simple way to generate solution trajectories between two
given states. One uses the maps g and h to transform between original system space
(states as well as inputs) and the smaller-dimensional flat output space. See van
Nieuwstadt and Murray [20] and Murray, Rathinam, and Sluis [11] for more details.

For example consider the “kinematic car” shown in Figure 1.1. Ignoring dynam-
ics we assume the velocity of the midpoint between the rear wheels and the steering
velocity are directly controlled. Then the system is differentially flat with the co-
ordinates of the midpoint between rear wheels providing the two flat outputs (see
Rouchon et al. [14] and Tilbury, Murray, and Sastry [19]). Given any trajectory for
this point one can determine the entire motion of the car: the tangent to the tra-
jectory determines the orientation of the car and the curvature (second derivative)
determines the orientation of the front wheels. Hence all feasible paths of the vehicle
can be parametrized in terms of the trajectories of the flat output point. A given set
of initial and final configurations of the car then determine two end points and first-
and second-order derivatives at these end points for feasible trajectories of the flat
output point. One could choose any trajectory for the flat output point that satisfies
these end conditions and obtain a feasible trajectory for the car that passes through
the given initial and final conditions. In this example, flat outputs are rather obvious.
This is not the case with many other examples, and one needs a theoretical tool to
provide a systematic way of finding them if they exist.

In the case of single input systems a complete characterization of differential
flatness is available; see, e.g., Shadwick [16]. In that case, flatness is the same as
static feedback linearizability. See also [2]. In the framework of exterior differential
systems, checking for flatness of a single input system reduces to calculating “derived
systems” and checking certain rank and integrability conditions. See van Nieuwstadt,
Rathinam, and Murray [21], Sluis [17], and Sluis and Tilbury [18]. For multi-input
systems no complete theory exists.

Many interesting examples of mechanical systems are differentially flat, and in
most known examples flat outputs have been found that depend only on the con-
figuration variables but not on their derivatives. We refer to such flat outputs as
“configuration flat outputs” and systems possessing such outputs as “configuration
flat.” For instance, the above example of the kinematic car is configuration flat.
All Lagrangian systems that are fully actuated (number of controls equals number
of degrees of freedom) are configuration flat with all the configuration variables as
flat outputs. See [11] for a catalogue of other examples. The reasons for studying
configuration flatness are as follows. First, it is a simpler case than the general case
of differential flatness and is possibly the first thing to study if one were to be able
to relate the mechanical structure with differential flatness. For instance, configura-
tion controllability of mechanical systems has already been studied and related to the
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mechanical structure (see Lewis and Murray [8]). Second, the smaller the number of
derivatives of configuration variables the flat outputs depend upon the simpler the
numerical implementation of the transformations involved in trajectory generation.
In this paper we completely characterize configuration flatness for a special class of
mechanical systems. The class under consideration involves systems whose dynamics
are described by Lagrangian mechanics with a Lagrangian function of the form “ki-
netic energy minus potential.” Also, the number of independent controls is assumed
to be one less than the number of degrees of freedom (the simplest case next to fully
actuated systems) and the possible range of control forces only depends on the con-
figuration and not on the velocity. We describe an algorithm for deciding if such a
system is configuration flat and if it is so, we describe a procedure for finding all
possible configuration flat outputs. We do not consider systems with nonholonomic
constraints. The kinematic car example hence does not fall into the class of systems
under our consideration.

The paper is organized as follows. Section 2 introduces some concepts from La-
grangian control systems theory and also provides a definition of configuration flatness.
Section 3 introduces some concepts from Riemannian geometry that are necessary for
our theory and also states and proves the main proposition and outlines an algorithm
for coordinate calculations to check configuration flatness. Section 4 explores how
system symmetries relate to symmetries of the flat outputs. Finally, section 5 gives
two examples to illustrate the theory.

2. Lagrangian control systems and configuration flatness. Consider a
Lagrangian system with configuration manifold Q of dimension n and a Lagrangian
L : TQ → R. When no external (generalized) forces are applied, the motion of this
system satisfies the Euler–Lagrange equations, written in coordinates (q1, . . . , qn) as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n.(2.1)

In a control situation external control forces are applied and it is natural to think
of forces as covectors on the manifold Q. In other words, for a configuration q ∈ Q
the total external force acting on the system can be represented by an element of
T ∗qQ. This is because forces naturally pair with velocities, which can be thought of
as elements of TqQ, to give instantaneous power. The possible range of control forces
lies in a subspace of T ∗qQ which may depend on position q as well as velocity vq. In
other words the control forces can be described by a horizontal-valued codistribution
P̄ ⊂ T ∗(TQ), and p = dim P̄ is the number of independent controls. For an interesting
and wide class of systems this subspace depends only on configuration q and hence
can be described by a codistribution P ⊂ T ∗Q of dimension p. For the rest of the
discussion we shall consider only this case. All feasible paths (solutions) of such
a system are characterized by the following underdetermined system of ODEs in
coordinates (q1, . . . , qn):

aik

(
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

)
= 0, k = 1, . . . , n− p,(2.2)

where aik
∂
∂qi for k = 1, . . . , n− p span the annihilator of P , denoted annP .

It is useful to think in terms of the associated submanifold E ⊂ J2(R, Q) of the
second-order jet space (see [15]), which geometrically describes such a second-order
system of equations. E has codimension n − p and in local coordinates (t, q, q̇, q̈) is



CONFIGURATION FLATNESS OF LAGRANGIAN SYSTEMS 167

cut out by the common zeros of the functions

aik

(
∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j − ∂L

∂qi

)
, k = 1, . . . , n− p.

Let q ∈ Q be a point and let y : U ⊂ Q → Rp be a submersion locally defined
around q. Let y = (y1, . . . , yp). We say y1, . . . , yp are differentially independent around
q if y1, . . . , yp do not have to satisfy an ODE along solutions local to q. More precisely,
when restricted to E , dy1, . . . , dyp, dẏ1, . . . , dẏp, dÿ1, . . . , dÿp are linearly independent
for generic points on π−1

2 (V )∩E where V ⊂ U is an open neighborhood of q and π2 :
J2(R, Q) → Q is the standard projection. If dy1, . . . , dyp, dẏ1, . . . , dẏp, dÿ1, . . . , dÿp

are linearly dependent when restricted to E , for points on π−1
2 (V )∩E where V ⊂ U

is an open neighborhood of q, then y1, . . . , yp are differentially dependent around q.
Suppose y1, . . . , yp are differentially independent around q. If there are functions

f i and a neighborhood W of q such that along a generic solution c : R→W ⊂ Q,

(zi ◦ c)(t) = f i
(

(y ◦ c)(t), . . . , d
r

dtr
(y ◦ c)(t)

)
, i = 1, . . . , n− p,(2.3)

where z1, . . . , zn−p are any complementary coordinates to y1, . . . , yp, then y1, . . . , yp

are said to be configuration flat outputs around q and the system is configuration flat
around q. In other words, given y1(t), . . . , yp(t) we can determine a (locally) unique
trajectory for the Lagrangian system (2.2).

We present the following lemma which will be of use later.
LEMMA 2.1. Let q ∈ Q, U be an open neighborhood of q, and y : U → Rp be a

configuration flat output. Then generically the set of solutions c : R→ U that project
down to the same curve y ◦ c are all isolated.

Proof. By definition of flatness, along generic solutions, given y(t) the comple-
mentary coordinates z(t) are locally uniquely determined by equations (2.3).

3. Mechanical systems with n degrees of freedom and n − 1 controls.
Consider the mechanical system whose Lagrangian is given by

L(v) =
1
2
g(v, v)− V ◦ τQ(v),(3.1)

where g is the Riemannian metric (assumed to be nondegenerate) corresponding to
kinetic energy and V is the potential energy function on Q and τQ : TQ → Q is the
tangent bundle projection. Suppose the number of controls p = n− 1, in other words
dimP = n−1. In this section we shall present a method for determining if this system
is configuration flat. If the system is configuration flat our approach provides us with
a constructive method for finding all possible (configuration) flat outputs.

Before proceeding further we present some concepts from Riemannian geometry.
Given a metric g we have a notion of differentiation of objects on the manifold such
as functions, vector fields, differential forms, and tensors along a given vector field
Z. This is the covariant derivative ∇ given by the Levi–Cività connection (see [1]).
∇Z denotes covariant derivative along a vector field Z and is related to parallel (with
respect to metric) transport of objects along the integral curves of Z. The covariant
derivative of a function f along Z denoted ∇Zf is just the familiar directional deriva-
tive Z(f) or the Lie derivative. But the covariant derivative of a vector field X along
Z denoted ∇ZX is not the same as the Lie derivative [Z,X]. Some properties of ∇
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are

∇Z(X1 +X2) = ∇ZX1 +∇ZX2,(3.2)
∇Z(fX) = ∇ZX + Z(f)X,(3.3)
∇fZX = f∇ZX,(3.4)

∇ZX −∇XZ = [Z,X],(3.5)

where X,X1, X2, Z are arbitrary vector fields and f is an arbitrary function on the
manifold. In a coordinate system (q1, . . . , qn) on manifold Q the covariant derivatives
are calculated with the aid of Christoffel symbols Γijk, where i, j, k = 1, . . . , n and
Christoffel symbols are defined by

∇ ∂

∂qj

∂

∂qk
= Γijk

∂

∂qi
.(3.6)

From the properties (3.5) of ∇ it follows that Γijk = Γikj . The symbols Γijk can be
computed from metric g by the formula

Γmjk =
1
2

(
∂gik
∂qj

+
∂gij
∂qk

− ∂gjk
∂qi

)
gim, j,m = 1, . . . , n,(3.7)

where gikgkj = δij (gik are components of the inverse of matrix gik). Then the
covariant derivative of vector field X = Xk ∂

∂qk
along Z = Zj ∂

∂qj is given by

∇ZX = ZjXkΓijk
∂

∂qi
+ Zj

∂Xk

∂qj
∂

∂qk
.(3.8)

For the mechanical system under consideration let us define an associated distri-
bution D by

D = span{ξ,∇Zξ : Z ∈ X(Q)},(3.9)

where ξ is any vector field such that annP = span{ξ} and X(Q) is the set of all
smooth vector fields on Q.

It is easy to check that D doesn’t depend on the choice of ξ ∈ annP . By the
linearity of covariant derivative it follows that

D = span{ξ,∇ ∂

∂qi
ξ : i = 1, . . . , n},(3.10)

where (q1, . . . , qn) are any set of coordinates. Hence D is easily calculated using equa-
tions (3.7), (3.8), and (3.10). The following proposition characterizes configuration
flat outputs y1, . . . , yp by conditions on kerTy, which in coordinates is the null space
of the Jacobian of the map y.

PROPOSITION 3.1. Let q be a point on Q and U be an open neighborhood of q,
and suppose y : U ⊂ Q → Rp is a submersion. If y1, . . . , yp are configuration flat
outputs, then

g(kerTy,D) = 0.(3.11)

Conversely if g(kerTy,D) = 0 and if a certain regularity condition holds at q, then
y1, . . . , yp are configuration flat outputs around q.
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The regularity condition is that the ratios of functions in the following set should
not all be the same at q:

{∇η(g(ξ, Z)) : g(ξ, Z),∇η(g(∇Z1Z2, ξ)) : g(∇Z1Z2, ξ),∇η(ξ(V )) : ξ(V )},(3.12)

where Z,Z1, Z2 are arbitrary vector fields around q that are y-related to some vector
field on Rp and ξ, η are fixed nonvanishing vector fields such that annP = span{ξ}
and kerTy = span{η}.

REMARK 3.2. Proposition 3.1 states the conditions for configuration flatness in
intrinsic geometric terms. In coordinates the algorithm for deciding if the system
is configuration flat is as follows. Calculate D using equation (3.10). If D = TQ,
then system is not configuration flat, since for any y, one can find some vector field
Z ∈ D = TQ, such that g(kerTy, Z) 6= 0. Suppose dimD ≤ n − 1. Then choose
a one-dimensional distribution, say spanned by a vector field η, that is orthogonal to
D. Since a one-dimensional distribution is integrable locally, one can find independent
functions y1, . . . , yp (p = n−1) around q that “cut out” the leaves of the corresponding
foliation. These will be flat outputs provided the regularity conditions are met.

The regularity conditions can be checked in coordinates as follows. Choose a
function z that completes y1, . . . , yp to a coordinate system. Then y1, . . . , yp will be
flat outputs if the following ratios of functions are not all identically equal in a local
neighborhood:

∂

∂z

(
g

(
ξ,

∂

∂yj

))
: g
(
ξ,

∂

∂yj

)
, j = 1, . . . , p,

∂

∂z

(
g

(
∇ ∂

∂yk

∂

∂yj
, ξ

))
: g
(
∇ ∂

∂yk

∂

∂yj
, ξ

)
, j, k = 1, . . . , p,(3.13)

∂

∂z
(ξ(V )) : ξ(V ).

If these are all identically equal that means y1, . . . , yp are differentially dependent and
another one-dimensional distribution must be tried.

REMARK 3.3. It is readily seen that configuration flatness is determined primarily
by the kinetic energy metric g since the role of potential function V only enters via
the regularity conditions. This explains why in many known examples (see [11]) the
presence or absence of gravity does not alter the configuration flat outputs but only the
solution curves where singularities occur. However, we present an example in the next
section where the potential function plays a crucial role via the regularity conditions.

Proof of Proposition 3.1. Given a submersion y : Q → Rp, one can choose
a local coordinate chart on Q such that y is the canonical submersion of Rn onto
Rp. Let the corresponding coordinates on Q be (q1, . . . , qn). Then, yj(q) = qj for
j = 1, . . . , p = n − 1. Let ξ = ai ∂

∂qi span annP . Then all solutions of the system
satisfy the single ODE

ai
(
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

)
= 0.(3.14)

Suppose in these coordinates g is given by gij . Then we can rewrite equation
(3.14) as

ai
(
gij q̈

j +
∂gik
∂qj

q̇j q̇k − 1
2
∂gjk
∂qi

q̇j q̇k +
∂V

∂qi

)
= 0.(3.15)
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Using the formula (3.7) for the Christoffel symbols and using qj = yj for j = 1, . . . , p
to separate the terms involving q̇n and q̈n, we rewrite equation (3.15) as

ai
(
gij ÿ

j + Γmjkgmiẏ
j ẏk +

∂V

∂qi
+ ginq̈

n + Γmnngmi(q̇
n)2 + Γmjngmiẏ

j q̇n
)

= 0,(3.16)

where the range of summation of various indices is clear.
Necessity. Suppose that y are flat outputs. Then it follows that the coefficient of

q̈n in the above ODE must to be zero. Otherwise we can rewrite the equation as

dq̇n

dt
= f(y, ẏ, ÿ, qn, q̇n)

for some smooth function f , and by the existence theorem of solutions to ODEs, given
any curve y(t) we get a 2-parameter family of solutions q(t) (parametrized by initial
conditions qn(t0), q̇n(t0)) that project to y(t), and they are not isolated from each
other and hence by Lemma 2.1 y cannot be flat, contradicting our assumption. So
aigin = 0 and this leaves us with an ODE of the form

A(y)(q̇n)2 +B(y, ẏ)q̇n + C(y, ẏ, ÿ, qn) = 0.

A similar reasoning tells us that the term q̇n should be absent; in other words, A(y) = 0
and B(y, ẏ) = 0. Here A and B are given by

A = aiΓmnngmi, B = aiΓmjn gmiẏ
j .

Observe that B is linear in terms ẏ with coefficients that are functions only of (y, qn).
Hence the condition B = 0 can be written as n− 1 equations that set the coefficients
of ẏj to be zero. The equation A = 0 has the same form as these, and we get the
following n equations:

aiΓmjngim = 0, j = 1, . . . , n.

So, all together, flatness of y implies the following equations:

aigin = 0,
aiΓmjngim = 0, j = 1, . . . , n.(3.17)

If kerTy = span{η}, then in our choice of coordinates η = λ ∂
∂qn where λ is some

nonvanishing function on Q. Hence, g(ξ, η) = aigin = 0 by the first condition, where
ξ = ai ∂

∂qi spans annP . Also since

∇ ∂

∂qj
η = λΓmjn

∂

∂qm
+
∂λ

∂qj
∂

∂qn
,

it follows that

g(∇ ∂

∂qj
η, ξ) = λaiΓmjngim +

∂λ

∂qj
aigin = 0.

But, by the derivation property,

∇Z(g(ξ, η)) = (∇Zg)(ξ, η) + g(∇Zξ, η) + g(ξ,∇Zη)
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and since ∇Zg = 0 for any Z ∈ X(Q) (by the property of Levi–Cività connection)
and since g(η, ξ) = 0 it follows that

g(∇ ∂

∂qj
ξ, η) = 0, j = 1, . . . , n.

By linearity of ∇ it follows that

g(∇Zξ, η) = 0 ∀Z ∈ X(Q).

Hence, kerTy is orthogonal to D.
Sufficiency. Conversely, if kerTy is orthogonal to D, previous reasoning shows

that in the same coordinate system equations (3.17) hold. As seen before these imply
that the solution curves of the system are given by the ODE

E(qn, y, ẏ, ÿ) = 0,

where

E = aigij ÿ
j + aigimΓmjkẏ

j ẏk + ai
∂V

∂qi
.

This is not sufficient for flatness of y1, . . . , yp since it is possible that y1, . . . , yp are
differentially dependent and this happens when E does not depend on qn. More
precisely y1, . . . , yp are differentially dependent around q when there exists a neigh-
borhood V of q such that ∂E

∂qn is identically zero on (π−1
2 (V ) ∩ {E = 0}) ⊂ J2(R, Q)

where π2 : J2(R, Q) → Q is the standard projection. The functions E and ∂E
∂qn are

both affine in ÿ and quadratic in ẏ with the coefficients functions only of (y, qn), and E
depends on ÿ nontrivially since metric g is nondegenerate. Hence either ∂E

∂qn is identi-
cally zero on π−1

2 (q)∩{E = 0} or it is non zero for generic points on π−1
2 (q)∩{E = 0}.

Furthermore, ∂E
∂qn is identically zero on π−1

2 (q)∩{E = 0} if and only if it is a multiple
of E as a polynomial in ẏ and ÿ for points on π−1

2 (q). Hence the regularity condition
we impose is that ∂E

∂qn is a not a multiple of E as a polynomial in ÿ and ẏ for points
on π−1

2 (q). Then it would follow from continuity and the implicit function theorem
that for generic points on π−1

2 (V ) ∩ {E = 0} where V is some neighborhood of q, qn

can be locally solved for in terms of y, ẏ, ÿ, implying flatness around q.
The rest of the proof is concerned with showing that this condition translates to

the regularity condition stated in the proposition. It is sufficient to show that ∂E
∂qn

is a multiple of E as a polynomial in ẏ, ÿ with the ratio being a smooth function on
Q in a neighborhood of q if and only if the set of ratios of functions (3.12) are all
identically equal in a neighborhood of q.

Let η span kerTy. Then η = λ ∂
∂qn for some nonvanishing function λ. Also

let ξ = ai ∂
∂qi span annP . Suppose ∂E

∂qn = fE for some function f defined in a
neighborhood of q on Q. Considering coefficients of ÿj terms we get

∂

∂qn
(aigij) = faigij , j = 1, . . . , p.(3.18)

Also observe that any vector field Z on Q is y-related if and only if it has the form
Zj(y) ∂

∂yj + Zn(y, qn) ∂
∂qn . Hence

∇η(g(ξ, Z)) = λ
∂

∂qn
(Zjaigij)

= λZj
∂

∂qn
(aigij) = λfZjaigij ,
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where we have used aigin = 0 and equation (3.18). Hence equation (3.18) is equivalent
to

∇η(g(ξ, Z)) = λfg(ξ, Z),(3.19)

where Z is any arbitrary y-related vector field.
Considering coefficients of ẏj ẏk we get

∂

∂qn
(aigimΓmjk) = faigimΓmjk, j, k = 1, . . . , p.(3.20)

Assuming equation (3.18), this is equivalent to

∇η(g(∇Z1Z2, ξ)) = fλg(∇Z1Z2, ξ),(3.21)

where Z1, Z2 are arbitrary y-related vector fields. This is because substituting Zl =
Zjl (y) ∂

∂yj + Znl (y, qn) ∂
∂qn for l = 1, 2 we get

g(∇Z1Z2, ξ) = Zj1Z
k
2 g

(
Γmjk

∂

∂ym
, ξ

)
+ Zj1

∂Zk2
∂yj

g

(
∂

∂yk
, ξ

)
,

where we have used aigin = 0, aiΓmkngim = 0 (since kerTy is orthogonal to D) and
∂Zk2
∂qn = 0 for k = 1, . . . , p. Hence

∇η(g(∇Z1Z2, ξ))

= λZj1Z
k
2
∂

∂qn
(aigimΓmjk) + λZj1

∂Zk2
∂yj

∂

∂qn
(aigik)

= λfZj1Z
k
2 a

igimΓmjk + λfZj1
∂Zk2
∂yj

aigik,

where we have used equations (3.18) and (3.20). This simplifies to

∇η(g(∇Z1Z2, ξ)) = λfg(∇Z1Z2, ξ).(3.22)

Finally considering the coefficients of the terms independent of ẏ and ÿ we get

∂

∂qn

(
ai
∂V

∂qi

)
= fai

∂V

∂qi
.

Clearly this is equivalent to

∇η(ξ(V )) = λfξ(V ),(3.23)

completing the proof.

4. Systems with n degrees of freedom, n−1 controls, and symmetry. In
this section we shall consider systems of the type considered in the previous section
that also exhibit symmetries. We shall suppose that a Lie group G acts on our
configuration space Q with action Φh corresponding to h ∈ G and that

Φ∗hg = g, Φ∗hP = P ∀h ∈ G.(4.1)

In other words the kinetic energy of the system as well as the range of control forces
both are invariant under the group action. However, we do not assume that V is
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invariant under the group action. Many mechanical systems fall under this category.
Rigid body systems moving in Euclidean space actuated by body fixed forces are
typical examples where the group is G = SE(3), even though the equations of motion
often do not have SE(3) as a symmetry group since potential forces due to gravity
break the symmetry. But since V plays a very limited role in configuration flatness
we may expect that when the system is configuration flat that it would be possible
to find flat outputs that reflect this symmetry. We believe this to be true and shall
prove it for the case dimD = n− 1. The general case dimD < n− 1 has not yet been
resolved completely (see Remark 4.4).

LEMMA 4.1. Consider a system satisfying (4.1). Let D be defined as in (3.9).
Then Φh∗D = D.

Proof. Let ξ span annP . Clearly Φh∗(annP ) = annP . Hence Φh∗ξ = λhξ ∈ D
where λh is some smooth function. Since Φh is an isometry by (4.1), it follows that
Φh∗(∇Zξ) = ∇Φh∗Z(Φh∗ξ) by properties of ∇ (see, for example, [5, p. 161]). Hence

Φh∗∇Zξ = ∇Φh∗Z(λhξ)
= λh∇Φh∗Zξ + (∇Φh∗Zλh)ξ ∈ D.(4.2)

So we have Φh∗D ⊂ D. Since Φh is a diffeomorphism, the result follows by dimension
count.

Let y : Q → Rp be a map defined locally around q ∈ Q. We shall say y1, . . . , yp

are G-equivariant if

Φh∗ kerTy = kerTy.

This means level sets of y are mapped to level sets by the group action.
PROPOSITION 4.2. Consider a system satisfying (4.1). Suppose dimD = n − 1

and that the system is configuration flat. Then the flat outputs are G-equivariant.
Proof. The proof follows from the fact that kerTy is the orthogonal complement

to D and Lemma 4.1.
REMARK 4.3. The case dimD = n − 1 is not as restrictive as it may seem.

Typically dimD = n, implying that the system is not configuration flat. When the
system is configuration flat (dimD ≤ n − 1), most likely dimD = n − 1. In fact,
many examples of systems that are configuration flat fall into this category including
the first example in next section as well as the “ducted fan with stand” in [20] and the
“planar coupled rigid bodies” example in [13].

REMARK 4.4. In the case when dimD < n− 1, given the system is flat with flat
outputs y : Q → Rp around q ∈ Q, it is possible to construct outputs ỹ : Q → Rp
around q that are G-equivariant and satisfy g(kerT ỹ,D) = 0. But it hasn’t been
resolved whether it is possible to construct ỹ in such a way that it also satisfies the
regularity conditions (3.12). The authors are currently trying to resolve this technical
issue but suspect that at least in typical cases this construction should work. The
second example in the next section falls into the case dimD = n− 2, and we see that
it possesses G-equivariant flat outputs.

5. Examples. In this section we shall consider some examples to illustrate the
theory developed in the previous section.

5.1. Underwater vehicle. We shall study a simple model of an underwater
vehicle (see Figure 5.1) that is controlled by a force applied through a fixed point P
on the body whose magnitude and direction can be independently controlled.
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FIG. 5.1. Underwater vehicle in R2.

Only the motion in the vertical plane is considered and hence our configuration
space is SE(2) = R2×S1. This is reasonable when the vehicle has symmetries about
three orthogonal planes. In addition if we assume that the center of buoyancy is
coincident with the center of mass, the kinetic energy is given by

1
2

(m+ δm)(ẋ1 cos θ − ẋ2 sin θ)2 +
1
2

(m− δm)(ẋ1 sin θ + ẋ2 cos θ)2 +
1
2
I(θ̇)2,(5.1)

where (x1, x2) are horizontal and vertical coordinates of the center of mass G, θ
is the orientation (measured clockwise) of line PG with respect to horizontal axis,
m = M + (m1 + m2)/2 and δm = (m1 −m2)/2, where M is the mass of the vehicle
and m1 and m2 are added mass terms that take into account inertia of the fluid, and
I is the effective moment of inertia taking into account the fluid. This model assumes
an incompressible, irrotational flow and neglects viscosity effects. It is assumed that
the motion of the fluid is entirely due to that of the solid. The body and the fluid
together are considered to form a dynamical system, and the kinetic energy is the
combined energy of body and fluid. See [7] and [6] for details. The analysis in [7]
assumes a neutrally buoyant model, but we need not make this assumption since this
only alters the form of the potential function but does not affect the kinetic energy. In
fact for the first part of the analysis we shall not assume any specific form for potential
V . If the vehicle is in air (strictly speaking vacuum) m1 = m2 = 0, so m = M and
δm = 0 and the kinetic energy takes the familiar form

1
2

(m(ẋ1)2 +m(ẋ2)2 + I(θ̇)2),

where I is the usual moment of inertia and the model is the same as that of VTOL
(see [10]).

The metric g in coordinates x1, x2, θ is given by the matrix m+ δm cos 2θ −δm sin 2θ 0
−δm sin 2θ m− δm cos 2θ 0

0 0 I

 .
The control forces lie in the codistribution

P = span{d(x1 +R cos θ), d(x2 −R sin θ)}
= span{dx1 −R sin θdθ, dx2 −R cos θ dθ}

and ξ = ∂
∂θ +R sin θ ∂

∂x1
+R cos θ ∂

∂x2
spans annP , where R is the length of PG.
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The Christoffel symbols Γijk can be computed from g using equation (3.7). Then
using formula (3.8) we see that

∇ ∂
∂x1

ξ = − mδm

m2 − (δm)2 sin 2θ
∂

∂x1
− δm

m2 − (δm)2 (δm+m cos 2θ)
∂

∂x2

+
Rδm cos θ

I

∂

∂θ
,

∇ ∂
∂x2

ξ = − δm

m2 − (δm)2 (−δm+m cos 2θ)
∂

∂x1
+

mδm

m2 − (δm)2 sin 2θ
∂

∂x2

− Rδm sin θ
I

∂

∂θ
,

∇ ∂
∂θ
ξ =

mR cos θ
m+ δm

∂

∂x1
− mR sin θ
m+ δm

∂

∂x2
.(5.2)

It can be seen by computation that the above vector fields together with ξ span the
full tangent space for generic points and generic parameter values m, δm, I,R. Since
by equation (3.10)

D = span{∇ ∂
∂x1

ξ,∇ ∂
∂x2

ξ,∇ ∂
∂θ
ξ, ξ},

it follows that D = TQ for generic points on Q and for generic parameter values and
hence the system is not configuration flat for generic parameter values regardless of
the potential energy function.

However, for the case δm = 0 we see that

D = span
{
R cos θ

∂

∂x1
−R sin θ

∂

∂x2
, R sin θ

∂

∂x1
+R cos θ

∂

∂x2
+

∂

∂θ

}
.

Hence dimD = 2 and η = ∂
∂θ −

I
mR sin θ ∂

∂x1
− I

mR cos θ ∂
∂x2

spans the orthogonal
complement to D. Since D has codimension 1, up to a diffeomorphism there is at
most 1 set of flat outputs. One set of functions that “cut out” the foliation due to η
is

y1 = x1 −
I

mR
cos θ, y2 = x2 +

I

mR
sin θ.

To ensure that y1, y2 are indeed flat outputs we must check the regularity conditions
(3.13). Let us choose z = θ as a complementary coordinate to y1, y2. Then,

∂

∂y1
=

∂

∂x1
,

∂

∂y2
=

∂

∂x2
,

∂

∂z
= − I

mR
sin θ

∂

∂x1
− I

mR
sin θ

∂

∂x1
+

∂

∂θ
.

Hence

∂

∂z

(
g

(
ξ,

∂

∂y1

))
: g
(
ξ,

∂

∂y1

)
= − sin z : cos z,

∂

∂z

(
g

(
ξ,

∂

∂y2

))
: g
(
ξ,

∂

∂y2

)
= cos z : sin z.(5.3)

So at any point q = (y1, y2, z) these two ratios are unequal. This ensures that y1, y2
are indeed flat outputs everywhere.
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When the vehicle is in air (strictly speaking vacuum) δm = 0, and in this case it
is already known to be flat (see [10, 11]). We have just shown that up to a diffeomor-
phism these are the only configuration flat outputs. Also we have covered the case
of an underwater vehicle of spherical shape (since then m1 = m2), and this result is
independent of any assumptions we make on the potential function V .

Now let us suppose that the system is moving under gravity in air and the po-
tential energy is given by V = mgx2, where g ≈ 9.8 m/s2 is the acceleration due to
gravity. Then the solutions of the system in coordinates y1, y2, z satisfy the ODE

ÿ1 sin z + ÿ2 cos z + g cos z = 0.

So along generic solution curves we get

z(t) = tan−1 ÿ2 + g

ÿ1

or

z(t) = tan−1 ÿ2 + g

ÿ1
+ π.

The exception being the singularity at ÿ1 = 0, ÿ2 + g = 0. Note that this singularity
is not a point on Q but corresponds to a submanifold in the jet space J2(R, Q), the
space with coordinates (t, q, q̇, q̈), and such singularities are very common in practical
examples. We still want to regard such systems as flat, and this is the reason why
our definition of flatness refers to generic curves as opposed to all curves. Also note
that although potential V does not affect the flat outputs of the system it influences
where the singularities occur.

We also see that the general system (no assumptions on δm) possesses an SE(2)
symmetry when the potential function is ignored. If we consider translating and
rotating our spatial frame of reference the expression for kinetic energy as well as the
expression for P are invariant. We may state this more precisely as follows. Consider
the following action of SE(2) on Q = SE(2). Given h = (α1, α2, φ) ∈ SE(2) the
action Φh corresponds to first rotating the spatial frame counterclockwise by φ about
its origin and then with respect to this frame translating the frame without rotation
by (−α1,−α2). Hence if q = (x1, x2, θ) ∈ Q then

Φh(q) = (x1 cosφ+ x2 sinφ+ α1,−x1 sinφ+ x2 sinφ+ α2, θ + φ).

The corresponding tangent map TΦh is given by

∂

∂x1
→ cosφ

∂

∂x1
+ sinφ

∂

∂x2
,

∂

∂x2
→ − sinφ

∂

∂x1
+ cosφ

∂

∂x2
,

∂

∂θ
→ ∂

∂θ
.(5.4)

It is easy to verify this preserves g. Recalling that ξ = ∂
∂θ + R sin θ ∂

∂x1
+ R cos θ ∂

∂x2
spans annP , we see that Φh∗ξ = ξ, implying Φ∗hP = P . In particular these statements
are true for the δm = 0 case as well. Hence by Proposition 4.2 the flat outputs are
G-equivariant. This is indeed true since η = ∂

∂θ −
I
mR sin θ ∂

∂x1
− I

mR cos θ ∂
∂x2

spans
kerTy and Φh∗η = η.
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5.2. Particle in the force field. This example does not necessarily correspond
to an engineering example but illustrates the regularity conditions. We consider a
particle of unit mass moving in three-dimensional Euclidean space in the presence
of a potential field V = x2x3. Hence the kinetic energy metric is given by the 3 × 3
identity matrix in orthogonal coordinates x1, x2, x3. Suppose that we control indepen-
dently the forces along x1 and x3 directions. Hence P = span{dx1, dx3} and ξ = ∂

∂x2
spans annP . We see that Christoffel symbols are all zero by (3.7) (which is a feature
of Euclidean space), and using (3.8) and (3.10) we obtain D = span{ ∂

∂x2
}; hence

the orthogonal complement to D is span{ ∂
∂x1

, ∂
∂x3
}, which is two dimensional. Hence

we have infinitely many “candidates” for flat outputs that are not equivalent via a
diffeomorphism. But these “candidates” may not satisfy the regularity conditions
(3.13). Following the method outlined in Remark 3.2 we pick some η, say η = ∂

∂x3
,

which is orthogonal to D. Then y1 = x1, y2 = x2 are possible choices of corresponding
“candidates” for flat outputs (since they cut out the one-dimensional foliation by η).
We may choose z = x3 to complete the coordinate system, and then we see that the
ratio of functions ∂

∂z (ξ(V )) : ξ(V ) in the set (3.13) is 1 : x3, whereas the ratio of
∂
∂z (g(ξ, ∂

∂y2 )) : g(ξ, ∂
∂y2 ) is 0 : 1. Hence x1, x2 are configuration flat outputs (glob-

ally). But alternatively another choice could have been η = ∂
∂x1

with corresponding
candidates y1 = x2, y2 = x3. Choosing z = x1 we see that all the ratios in (3.13)
are zero and hence equal. Hence x2, x3 are not flat outputs as they are differentially
dependent. This example is simple enough that the above conclusions can be reached
by inspecting the equations of motion for the system

ẍ1 −
∂V

∂x1
= F1,(5.5)

ẍ2 −
∂V

∂x2
= 0,(5.6)

ẍ3 −
∂V

∂x3
= F3,(5.7)

where F1, F3 are the forces along x1, x3 directions. Equation (5.6) alone characterizes
all solution trajectories of system and substituting V = x2x3 we obtain

ẍ2 − x3 = 0.(5.8)

It is clear from the equation that x2, x3 are differentially dependent and hence are not
flat outputs. However, it is also clear from the equations that x1, x2 are flat outputs
since along solution curves

x3(t) =
d2x2(t)
dt2

and x1, x2 do not satisfy an ODE.
Also note that the system is globally controllable since it is globally flat. However

if V = 0 then the system is not configuration flat and not even locally accessible.
It is easy to see that translations by the group R3 leave g and P invariant. But

Proposition 4.2 does not apply since dimD = n − 2. However, as mentioned in
Remark 4.4 we see that G-equivariant flat outputs exist. In fact y = (x1, x2) are
G-equivariant, although not all (configuration) flat outputs are G-equivariant, since
ỹ = (f(x1, x3), x2), where f is an arbitrary smooth function with ∂f

∂x1
6= 0, are not

G-equivariant for a typical f but are configuration flat outputs.
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6. Conclusions and future work. We have presented a method for determin-
ing configuration flatness of Lagrangian control systems with n degrees of freedom
and n − 1 controls. Our method is constructive and provides a way for finding con-
figuration flat outputs if they exist. We assumed a Lagrangian of the form “kinetic
energy minus potential.” We also assumed that the range of control forces depends
only on configuration. These assumptions are not unreasonable since a wide class of
systems falls into this category. However n − 1 controls is a special case and is the
simplest case next to fully actuated (n controls) systems which are always flat. In that
sense we regard this as a first step toward a general theory of configuration flatness
of Lagrangian systems. The authors are currently working on generalizing this result
to an arbitrary number of controls.
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Abstract. Complete disturbance rejection problems are equivalent to zeroing (cancelling) all the
Markov parameters of the closed loop system between the disturbance and the controlled output.
When this is not possible, one might consider partial disturbance rejection which can be defined
as zeroing the first, say k, Markov parameters. In this article, our objective is to present general
solvability conditions for the partial disturbance rejection problem by dynamic output feedback under
the constraint of internal stability. With this solution we also obtain a suitable parametrization for
the set of all solutions of the problem which is then used to obtain an H∞ norm bound on the
closed loop system. In the first part of the paper, a natural framework for the partial disturbance
rejection problem is introduced. This framework consists of the ring of stable and proper rational
functions and its quotient rings. Thus, the solvability conditions and the set of all solutions to the
problem are easily obtained. The parametrization of the set of all solutions provides an opportunity
to pursue further design goals. Along this line, H∞ minimization has been incorporated into the
problem. The upper and lower bounds on the H∞ norm of the closed loop transfer function is
obtained and compared with direct H∞ disturbance attenuation. The results are illustrated with a
simple example.

Key words. disturbance rejection, Markov parameters, internal stability, H∞ norm
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1. Introduction. In this work, linear, time-invariant systems described as[
y
z

]
=
[
Z1 Z2
Z3 Z4

] [
u
d

]
(1.1)

are considered. Here, y, z, u, and d take values from p-, q-, m-, and r-dimensional
linear spaces. Z1, Z2, Z3, and Z4 are proper transfer matrices of appropriate dimen-
sions. The literature contains a rich variety of control problems related to the system
given above. The essential motivation in these problems is to design the closed loop
transfer function Tzd between the disturbance d and the controlled output z. The
early attempts along this line were devoted to cancelling (zeroing) the effect of the
disturbance on the controlled output (Tzd = 0). This problem is usually referred
to as the disturbance rejection (or disturbance decoupling) problem and is abbrevi-
ated to DRP. The solvability conditions for DRP can be expressed as matching of
the zeros of certain subsystems. The reader may refer to Willems and Commault
(1981), Özgüler and Eldem (1985), and Eldem and Özgüler (1988) for the details of
the “zero-matching” conditions. Although DRP has been very useful from a purely
algebraic point of view, it did not have much to offer for a practical design, because
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the rigid algebraic solvability conditions for DRP are hardly met in practical cases.
This is probably one of the basic reasons why an alternative design procedure which
minimizes the H∞ norm of Tzd has been very popular during the last decade. The H∞
design techniques offer a breakaway from the rigid algebraic structure of DRP and at
the same time guarantee a certain disturbance attenuation level at all frequencies.

In this work, we consider yet another alternative design to DRP, which has not at-
tracted much attention in the literature, namely, partial disturbance rejection (PDR).
PDR can be defined as zeroing the first, say k, Markov parameters of Tzd. More specif-
ically, in PDR problems (PDRPs) a feedback control which makes the least infinite
zero order of Tzd greater then k is being sought. This problem was initially introduced
by Emre and Silverman (1980) as a dynamic cover problem. Later it has been con-
sidered by Malabre and Martinez Garcia (1993) and Martinez, Malabre, and Kucera
(1995). In the latter, dynamic state feedback together with disturbance feedthrough
was used to achieve PDR with internal stability. Thus, the controller has “full in-
formation” structure which is equivalent to the so-called “one-sided model matching”
problem. Here, we consider the case with dynamic measurement feedback, which is
equivalent to “two-sided model matching.” It turns out that the solvability condi-
tions of these problems are quite similar and can also be expressed as zero-matching
conditions. The first and an incomplete version of the results in this paper is given in
Eldem (1994).

An interesting feature of PDR is that it can be interpreted as optimization at in-
finity. In fact, increasing the infinite zero order of Tzd results in increased attenuation
levels at high frequencies. In H∞ design, on the other hand, all frequencies are taken
into account. This implies that PDR and H∞ can be used together. More specifically,
after obtaining a certain attenuation level at high frequencies via PDR, the remaining
flexibility can be used to minimize the response at low frequencies. This has been
first pointed out and illustrated by an example in Martinez, Malabre, and Kucera
(1995). Here, after characterizing the set of all solutions to PDR, we also emphasize
the incorporation of H∞ point of view to PDR and show that an upper bound on
‖ Tzd ‖∞ can be obtained in terms of the problem data. The results are illustrated
by simple examples.

It is true that attenuation at high frequencies (or high frequency rolloff as usually
called) can also be achieved by employing suitable weights on the disturbance in
standard H∞ optimization problems. Here, we exploit the algebraic structure of the
system to achieve the same goal. The assessment of the superiority of one method over
the other naturally calls for further study, and perhaps it depends on the particular
system being considered. If, for instance, the algebraic structure of the system allows
a partial disturbance rejecting design, then our method might at least give more
intuition and flexibility to pursue further design goals.

2. Notation and problem formulation. As usual R denotes the field of real
numbers. The ring of polynomials in the indeterminant s, with coefficients from R,
is denoted as R[s]. The field of fractions of R[s], i.e., the field of rational functions,
is represented by R(s). We will use Rp×m(s) to denote p ×m matrices with entries
from R(s). The Laurent series expansion of N(s) in Rp×m(s) is given as

N(s) =
∞∑

i=−k
Nis

−i,(2.1)

where Ni’s are p×m matrices over R. N(s) is called proper if N−k = N−(k−1) = · · · =
N−1 = 0. It is called strictly proper, if it is proper and N0 = 0. If N0 is square and
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nonsingular, it is called biproper. Strictly polynomial, strictly proper, polynomial,
and proper parts of N are denoted as N+, N−, N+, and N−, respectively. More
specifically,

N+ :=
−1∑
i=−k

Nis
−i, N+ :=

0∑
i=−k

Nis
−i,(2.2)

N− :=
∞∑
i=1

Nis
−i, N− :=

∞∑
i=0

Nis
−i.(2.3)

Rp(s) and Rps(s) will be used to denote the ring of proper rational functions and
the ring of proper and stable rational functions, respectively. If we let ∂(.) denote
the usual degree function for the polynomial ring, then Rp(s) and Rps(s) become
Euclidean domains with the following degree functions:

∂p(p/q) := ∂(q)− ∂(p),(2.4)
∂ps(p/q) := ∂(q)− ∂(p) + number of unstable zeros of p.(2.5)

∂(.)p is sometimes called “the relative degree.” Recall that Rm×m
p (s) and Rm×m

ps (s)
are rings with the usual definition of matrix addition and multiplication. An element
in a ring is called a unit if it has an inverse in the ring. The units in Rm×m

p (s) are
called biproper matrices. A similar terminology will be used for the units in Rm×m

ps (s),
and they will be called biproper and bistable. Let us now go back to the PDRP. The
objective in this problem, given the system (1.1), is to find a proper Zc such that
under the control law

u = −Zcy(2.6)

the closed loop transfer matrix between z and d, Tzd has first k Markov parameters
equal to zero. Note that Tzd can be written as

Tzd = Z4 − Z3Zc(I + Z1Zc)−1Z2.(2.7)

Thus, if we assume that Z1 is strictly proper, (1 + Z1Zc)−1 exists and it is proper.
In view of this, the partial disturbance rejection problem via measurement feedback
(PDRPM) can be defined as follows in Definition 2.1.

DEFINITION 2.1 (PDRPM). Given proper Z4, Z3, and Z2, find a proper X such
that

Z4 − Z3XZ2 =
1

sk+1P(2.8)

for some proper P.
For the case with internal stability, a similar definition can be used. Before doing

that, we shall assume without loss of generality, that Z4, Z3, and Z2 are both proper
and stable. (If not, Youla parametrization of internally stabilizing compensators could
be used to get a similar equation as above with Z4, Z3, Z2 stable and proper and with
X as the free parameter matrix over Rps(s). The reader is referred to Francis (1987)
for the details.) In view of this observation, the partial disturbance rejection problem
by measurement feedback with internal stability (PDRPMS) can be defined as follows
in Definition 2.2.
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DEFINITION 2.2 (PDRPMS). Given proper, stable matrices Z4, Z3, and Z2, find
a proper, stable Q such that

Z4 − Z3QZ2 =
1

π(s)
P(2.9)

for some stable, proper P and a stable polynomial π(s) of degree k + 1.
Observe that the solvability condition of PDRPMS is independent of the polyno-

mial π(s). More precisely, if Q is a solution for some polynomial π1(s) and a proper
P1, i.e., Z4 − Z3QZ2 = P1(s)/π1(s), then it is also a solution for an arbitrary stable
polynomial π2(s) of degree k + 1, i.e., Z4 − Z3QZ2 = P2(s)/π2, (P2 := π2P1/π1).
Therefore, we can fix π(s) and define PDRPMS accordingly in Definition 2.3.

DEFINITION 2.3 (PDRPMS). Given stable, proper matrices Z4, Z3, and Z2 and
a stable polynomial π(s) of degree k + 1, find a stable, proper Q such that

Z4 − Z3QZ2 =
1
π
P(2.10)

for some proper and stable P.
Also observe that the above definition, where the polynomial is fixed as π, gives

rise to a very natural algebraic setup for PDRPs. This consists of the ideal (1/π)Rps(s)
and the quotient ring Rps(s)/(1/π)Rps(s) which is extensively investigated in the next
section.

3. Preliminary results. In this section, a simple version of the problem is
introduced in order to give an insight for the algebraic setup behind the partial model
matching problems. More specifically, the problem to be considered can be defined in
Definition 3.1.

DEFINITION 3.1 (Problem P1). Given m and n in Rps(s) and a stable polynomial
π of degree k + 1, find q in Rps(s) such that

n−mq =
1
π
p(3.1)

for some p in Rps(s).
Consider the ideal (1/π)Rps(s). Using this ideal, let us define an equivalence

relation on Rps(s) as follows: n1 and n2 in Rps(s) are said to be equivalent if n1−n2
is in (1/π)Rps(s). This relation gives the quotient ring Rps(s)/(1/π)Rps(s). We will
denote this quotient ring by Rps(π).

LEMMA 3.2. Rps(π) is a (k + 1)-dimensional R-linear space. A basis for Rps(π)
can be given as

si

π
, i = 1, 2, ..., k + 1.(3.2)

Proof. The reader may refer to, for instance, Özgüler (1994).
For a given n1 in Rps(s), n1 mod (1/π)Rps(s) can be calculated easily as follows:

n1(π) := n1 mod
1
π

Rps(s) =
1
π

(πn1)+.(3.3)

It is clear from the above equation that {si/π, i = 1, ..., k+ 1} is a basis for Rps(π).
Furthermore, for any n1 in Rps(s) we have

n1 =
1
π

(πn1)+ +
1
π

(πn1)−.(3.4)
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LEMMA 3.3. P1 is solvable for given n, m, and a stable polynomial π(s) of degree
k + 1 iff it is solvable for n(π) and m(π).

Proof. The proof directly follows from the definition of n(π) and m(π) and equa-
tion (3.4).

For a given stable and proper m, let us now consider the set of equivalence classes
generated by mq as q ranges over Rps(s). It is clear that this set is equivalent to the
quotient ring mRps(s)/(1/π)Rps(s) which we denote as Rps(mπ).

LEMMA 3.4. Rps(mπ) is an R-linear subspace of Rps(π) of dimension k + 1 −
∂p(m) .

Proof. Let q be in Rps(s). Then mq mod 1/πRps(s) can be calculated as

mq mod
(

1
π
Rps

)
=

1
π

(πmq)+.(3.5)

Note that since q and m are proper ∂(πmq)+ ≤ k + 1 − ∂p(m) and the equality is
achieved if q is biproper. Consequently, Rps(mπ) has dimension k + 1− ∂p(m). Now
we have to show that for any given polynomial δ with ∂(δ) ≤ k + 1 − ∂p(m), there
exists a q in Rps such that

mq mod
(

1
π
Rps

)
=
δ

π
.(3.6)

To this end, let m = m1/m2 where m1 andm2 are in R[s]. Also let m̂1 be a Hurwitz
polynomial such that ∂(m̂1) = ∂(m1). Now we can choose q as q := m2β/πm̂1 where
β := ((m̂1/m1)δ)+. Note that q is stable and furthermore, since ∂(β) = ∂(δ) ≤
k + 1− ∂(m2) + ∂(m1), it follows that it is also proper. Then

(πmq)+ =
(
π
m1

m2

m2β

πm̂1

)+

=
(
m1β

m̂1

)+

= δ(3.7)

⇒ mq mod
1
π
Rps =

δ

π
.(3.8)

Hence the proof is complete.
LEMMA 3.5. P1 is solvable iff n(π) is in Rps(mπ).
Proof. The proof directly follows from the definition of n(π), Rps(mπ), and

Lemma 3.3.
Remark 3.6. Note that if ∂p(n) ≥ k + 1, then P1 is trivially solved by q = 0.

Therefore, assume that ∂p(n) < k + 1. Let n(π) = ψ/π and m(π) = φ/π where
ψ and φ are in R[s]. The above lemma implies that the inequality ∂(ψ) ≤ k + 1 −
∂p(m) (= ∂(φ)) is a necessary and sufficient condition for the solvability of P1. Thus,
an equivalent condition for the solvability of P1 is ∂p(n(π)) ≥ ∂p(m(π)), which, in
turn, is equivalent to ∂p(n) ≥ ∂p(m). This condition can be interpreted as a matching
condition for the infinite zero orders. Consequently, we have the following lemma.

LEMMA 3.7. P1 is solvable iff ∂p(n) ≥ min{∂p(m), k + 1}.
4. The solution of PDRPMS. In this section, the solvability conditions for

PDRPMS is presented. Since Z4, Z3, and Z2 are matrices with entries from Rps(s),
there exist biproper and bistable matrices B1, B2, C1, and C2 such that

B1Z3B2 :=
[

Λ 0
0 0

]
, C1Z2C2 :=

[
Γ 0
0 0

]
,(4.1)
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where Λ and Γ are diagonal matrices defined as

Λ := diag{λi}, Γ := diag{γi}.(4.2)

Clearly, λi and γi are in Rps(s). Also partition B1Z4C2 compatibly as

B1Z4C2 :=
[
Z41 Z42
Z43 Z44

]
.

Let π be a maximum-degree stable polynomial such that

π

[
0 Z42
Z43 Z44

]
(4.3)

is proper and denote the degree of π as ∂(π) = k∗ + 1. Then Theorem 4.1 holds.
THEOREM 4.1. PDRPMS is solvable for some integer k iff
1. k ≤ k∗,
2. min{∂p(λi) + ∂p(γj), k + 1} ≤ ∂p(Z41)ij,

where (.)ij denotes the ijth entry.
Proof. Suppose that the problem is solvable. Then, there exist stable and proper

Q and P such that Z4 − Z3QZ2 = (1/π)P . Using B1, B2, C1, and C2 defined by
equation (4.1) and defining

B−1
2 QC−1

1 :=
[
Q1 Q2
Q3 Q4

]
, B1PC2 :=

[
P1 P2
P3 P4

]
,(4.4)

we obtain the following equality:[
Z41 Z42
Z43 Z44

]
−
[

Λ 0
0 0

] [
Q1 Q2
Q3 Q4

] [
Γ 0
0 0

]
=

1
π

[
P1 P2
P3 P4

]
.(4.5)

Since [
0 Z42
Z43 Z44

]
=

1
π

[
0 P2
P3 P4

]
,(4.6)

it is clear that k ≤ k∗. Furthermore, since

(Z41)ij − λiγj(Q1)ij =
1
π

(P1)ij(4.7)

Lemma 3.7 implies Theorem 4.1(2).
For sufficiency, note that if min{∂p(λi) + ∂p(γj), k + 1} = k + 1, then (Q1)ij can

be chosen as zero. Otherwise, Lemma 3.3 can be used to construct (Q1)ij . Finally, Q
can be obtained from Q1 via equation (4.1).

In order to characterize the set of all solutions of PDRPMS, a different quotient
ring is employed. To this end, let σ(s) be a stable polynomial of degree equal to
∂(φ)(= k+1−∂p(m)) and consider the quotient ring Rps(σ). This quotient ring is also
an R-linear space of dimension k+1−∂p(m) with a basis si/σ, i = 1, 2, ..., k+1−∂p(m).

LEMMA 4.2. Let n and m be stable proper rationals and π be a stable polynomial
of degree k + 1. Suppose that ∂p(n) ≥ ∂p(m) (P1 is solvable for all k). Then, there
exists a unique solution q∗ of P1 in Rps(σ) and furthermore every solution q can be
represented as

q = q∗ +
1
σ
Rps(s).(4.8)
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Proof. Note that any solution q can be uniquely decomposed as in (3.4)

q = q∗ +
1
σ
q̂,(4.9)

where q∗ is in Rps(σ) and q̂ is stable and proper. This implies that

1
π
p = n−mq = n−mq∗ −m 1

σ
q̂ ⇒ n−mq∗ =

1
π

(
p+

mπ

σ
q̂
)
.(4.10)

Since mπ/σ is biproper, it follows that q∗ is a solution in Rps(σ). q∗ can be expressed
as α∗/σ for some polynomial α∗ of degree ≤ k + 1− ∂p(m). Note that

(πn)+ =
(
πm

α∗

σ

)+

⇒ α∗ =
(σn
m

)+
;(4.11)

i.e., α∗ is unique. Consequently, the set of all solutions can be obtained as q =
q∗ + (1/σ)q̂ as q̂ ranges over Rps.

Remark 4.3. Note that by the above result the order of the compensator increases
with k, the lower bound for the relative degree of the closed loop transfer function.
This can be seen by observing that the unique part q∗ of the solution q is expressed
as q∗ = α∗/σ, where ∂(σ) = k + 1 − ∂p(m). This increase basically comes from the
nature of the problem rather than the method being employed. In order to see this,
let n and m be as in the above lemma with m biproper and bistable; i.e., PDRPMS is
solvable for all k. Then it follows that (1/π)p/m = n/m − q. This implies that the
first k Markov parameters of n/m are cancelled with the first k Markov parameters
of q. This is only possible if q has order greater than k. The increase in the order
of the compensator could be taken as a disadvantage of the approach presented here.
However, it will be shown in Corollary 5.11 that if π is chosen to have real and negative
zeros which tend to −∞, then one can get arbitrarily close to the best achievable H∞
performance. This fact holds true regardless of the degree (k + 1) of π (provided of
course that the degree is high enough to yield a solution). Thus, one might not need
to increase k too much to get a better performance.

Using the above characterization and Theorem 4.1 we can also determine the set
of all solutions in the general case. Note that by equation (4.1) we have

(Z41)ij − λiγj(Q1)ij =
1
π

(P1)ij ,(4.12)

where (Q1)ij can be expressed as

(Q1)ij = (Q∗1)ij +
wj
τi

(Q̂1)ij ,(4.13)

where τi and wj are stable polynomials with degrees ∂(τi) = k+ 1− ∂p(λi), ∂(wj) =
∂p(γj). Let us now define the solution Q as follows:

Q = B2

[
Q∗1 + Ω1Q̂1Ω2 Q2

Q3 Q4

]
C1,(4.14)

where Ω1 := diag {1/τi}, Ω2 := diag {wj}, and B2 and C1 are stable, biproper
matrices defined in equation (4.1). Then, we have

Z4 − Z3QZ2 = Z4 −B−1
1

[
Λ 0
0 0

] [
Q∗1 + Ω1Q̂1Ω2 0

0 0

] [
Γ 0
0 0

]
C−1

2(4.15)

=
1
π
P ∗1 −B−1

1

[
ΛΩ1Q̂1Ω2Γ 0

0 0

]
C−1

2 ,(4.16)
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where

1
π
P ∗1 := Z4 −B−1

1

[
ΛQ∗1Γ 0

0 0

]
C−1

2 .(4.17)

Let

B̃1 := B−1
1

[
ΛΩ1

0

]
and C̃2 = [Ω2Γ 0]C−1

2 .(4.18)

Note that C̃2 is left biproper and πB̃1 is right biproper. Furthermore, the set of all
closed loop transfers Tzd of PDRPMS can be generated by

Tzd =
1
π

(P ∗1 − πB̃1Q̂1C̃2)(4.19)

as Q̂1 ranges over Rps.

5. A comparison of PDRPMS with H∞ disturbance attenuation. A very
natural question which can be raised about the parametrization of all possible closed
loop transfers Tzd given in the previous section is the infimum value of ‖ Tzd ‖∞
that can be obtained via PDRPMS. In the following discussion, this infimum will be
denoted by γ∗pdrs. That is to say,

γ∗pdrs := inf
Q̂1∈Rps

∥∥∥∥ 1
π

(P ∗1 − πB̃1Q̂1C̃2)
∥∥∥∥
∞
.(5.1)

We also define γ∗π by

γ∗π := inf
Q̂1∈Rps

‖ P ∗1 − πB̃1Q̂1C̃2 ‖∞ .(5.2)

Clearly,

γ∗pdrs ≤
∥∥∥∥ 1
π

∥∥∥∥
∞
γ∗π.(5.3)

As PDRPMS is nothing but a restricted model matching problem, it follows that

γ∗ ≤ γ∗pdrs,(5.4)

where γ∗ denotes the H∞ optimal model mismatch, i.e.,

γ∗ := inf
Q∈Rps

‖ Z4 − Z3QZ2 ‖∞ .(5.5)

Thus, it follows from equations (5.3) and (5.4) that

γ∗ ≤ γ∗pdrs ≤
∥∥∥∥ 1
π

∥∥∥∥
∞
γ∗π.(5.6)

In this section, we shall establish that, under a number of assumptions, γ∗pdrs tends
to γ∗ as the roots of π tend to infinity. The assumptions that we adopt to this end
are as follows.

A1. Z3 has full row rank.
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A2. Z2 has full column rank.
A3. Z2 and Z3 do not have any finite imaginary axis zeros.
Remark 5.1. Note that the assumptions above are adopted only for the comparison

of PDRPMS with H∞ disturbance attenuation and they have no relation to the solv-
ability conditions of the PDRPMS presented in the previous sections. The first two of
these assumptions are adopted to keep the comparison simple, because with these two
assumptions we would be dealing with a one-block problem which is the simplest case
in H∞ disturbance attenuation. Without these assumptions, we would be consider-
ing two-block or four-block problems, which would make the comparison quite lengthy
and complicated. We believe, however, that such a comparison is possible and would
probably yield results similar to those we obtain for the one-block case.

The third assumption above, on the other hand, is less restrictive than its coun-
terpart in H∞ disturbance attenuation. Assumption A3 allows for zeros at infinity
whereas in H∞ disturbance attenuation zeros at infinity are not usually allowed as
they give rise to improper compensators. This is then taken care of by employing high
gain feedback. Therefore, PDRPMS can be viewed also as an alternative way (to high
gain feedback) of dealing with zeros at infinity.

Now, we let Z3 := Z3,iZ3,0 and Z2 := Z2,coZ2,ci be inner-outer and co-inner-
co-outer factorizations of Z3 and Z2, respectively. Under the assumptions introduced
above, Z−1

3,i and Z−1
2,ci exist and are from L∞.

We first recall the following result from Francis (1987).
LEMMA 5.2. γ∗ =‖ Z−1

3,i Z4Z
−1
2,ci ‖H where ‖ (·) ‖H denotes the Hankel norm of

(·).
Similarly, we have Lemma 5.3.
LEMMA 5.3. γ∗π =‖ πZ−1

3,i Z4Z
−1
2,ci ‖H .

Proof. Recall that Z3 = B−1
1 [Λ : 0]B−1

2 . Thus,

Z−1
3,i Z3 = Z−1

3,iB
−1
1 [Λ : 0]B−1

2(5.7)

is outer. Since B2 is bistable and biproper and Ω1 is stable, it follows that

Z−1
3,iB

−1
1 [ΛΩ1](5.8)

is also outer. Also recall that Ω1 = diag{1/τi}, where τi’s are Hurwitz polynomials of
degree k + 1− ∂(λi). This implies that

πZ−1
3,i B̃1 := Z−1

3,iB
−1
1 [ΛΩ1](5.9)

is bistable and biproper. Using a similar argument, it is easy to see that C̃2Z
−1
2,ci is also

bistable and biproper. Then, it follows that γ∗π is the solution of a Nehari problem.
More specifically,

γ∗π := inf
Q̂1∈Rps

‖ P ∗1 − πB̃1Q̂1C̃2 ‖∞(5.10)

= inf
Q̂1∈Rps

‖ Z−1
3,i P

∗
1Z
−1
2,ci − πZ−1

3,i B̃1Q̂1C̃2Z
−1
2,ci ‖∞(5.11)

= ‖ Z−1
3,i P

∗
1Z
−1
2,ci ‖H=‖ πZ−1

3,i Z4Z
−1
2,ci ‖H .(5.12)

Furthermore, because πZ−1
3,i B̃1 and C̃2Z

−1
2,ci are bistable and biproper, we can solve

for Q̂1.
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Remark 5.4. In case Zi, i = 1, 2, 3, 4, are SISO transfer functions with distinct
unstable zeros, the Nevanlinna–Pick interpolation theory can be used to show that (see,
e.g., Foias, Özbay, and Tannenbaum (1996)) the Hankel norm above can be computed
as [λmax(S∗V ∗SV )]1/2 where Sij := 1/(ai + āj) and V = diag{αi} where αi’s and
ai’s come from the partial fraction expansion

Z−1
3,i Z4Z

−1
2,ci =

l∑
k=1

αk
(ak − s)

.(5.13)

However, to bypass the difficulties associated with the interpolation problem for mul-
tivariable systems, in the sequel we shall adopt a slightly different approach to the
problem.

Before computing γ∗π explicitly, we recall the computation of γ∗. Let (C,A,B)
be a minimal realization of (Z−1

3,i Z4Z
−1
2,ci)u, the strictly proper and antistable part of

Z−1
3,i Z4Z

−1
2,ci. Let Lc and Lo denote the controllability and observability Gramians

which are given as the unique solutions of

ALc + LcA
T = BBT ,(5.14)

ATLo + LoA = CTC.(5.15)

Then, we have (see Francis (1987))

γ∗ =‖ Z−1
3,i Z4Z

−1
2,ci ‖H= [λmax(LcLo)]

1
2 .(5.16)

To use this fact in computing γ∗π, we first note the following fact.
LEMMA 5.5. Let (C,A,B) be a minimal realization of (Z−1

3,i Z4Z
−1
2,ci)u with con-

trollability and observability Gramians Lc and Lo.
1. (C,A, π(A)B) is a minimal realization of (πZ−1

3,i Z4Z
−1
2,ci)u.

2. Controllability and observability Gramians of (C,A, π(A)B) are given by
π(A)Lcπ(AT ) and Lo, respectively.

Proof. Using the Laurent series expansion we have

(Z−1
3,i Z4Z

−1
2,ci)u =

∞∑
i=1

CAi−1Bs−i,(5.17)

(πZ−1
3,i Z4Z

−1
2,ci)u = [π(Z−1

3,i Z4Z
−1
2,ci)u]− =

[
π(s)

∞∑
i=1

CAi−1Bs−i

]−
(5.18)

=
∞∑
i=1

CAi−1π(A)Bs−i.(5.19)

Note that minimality of (C,A,B) implies minimality of (C,A, π(A)B) iff the set of
roots of π does not intersect the spectrum of A. In this case, A is antistable and π is
Hurwitz. Thus, (C,A, π(A)B) is minimal.

To prove Lemma 5.5(2), simply note that

A[π(A)]Lcπ(AT ) + π(A)Lcπ(AT )AT = π(A)BBTπ(AT ),(5.20)
ATLo + LoA = CTC.(5.21)

This completes the proof.
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Thus, we conclude from equation (5.16) and the lemma above that the following
corollary holds.

COROLLARY 5.6. γ∗π =‖ πZ−1
3,i Z4Z

−1
2,ci ‖H= [λmax(π(A)Lcπ(AT )Lo)]1/2.

COROLLARY 5.7. Let (C,A,B) be a balanced realization of (Z−1
3,i Z4Z

−1
2,ci)u so that

Lc = Lo = D, where D is a diagonal matrix. Then
1. γ∗ = λmax(D).
2. γ∗π = [λmax(π(A)Dπ(AT )D)]1/2.

In the sequel it will be assumed, without loss of generality, that (C,A,B) is a
balanced realization. This assumption together with the corollary above immediately
yield an upper bound for γ∗π as shown in the following lemma.

LEMMA 5.8. λmax(π(A)Dπ(AT )D) ≤ λmax(D2)λmax(π(A)π(AT )).
Proof. The proof depends on two simple observations:
1. For square nonsingular matrices X and Y , the eigenvalues of XY and Y X

are the same.
2. If P is positive semidefinite then λmax(QTPQ) ≤ λmax(P )λmax(QTQ) (see

Marcus and Minc (1992)).
Then, using the properties above successively, we get

λmax(π(A)Dπ(AT )D) = λmax(D
1
2π(A)Dπ(A)D

1
2 )(5.22)

≤ λmax(D)λmax(D
1
2π(A)π(AT )D

1
2 )(5.23)

= λmax(D)λmax(π(AT )Dπ(A))(5.24)
≤ λmax(D2)λmax(π(AT )π(A)).(5.25)

This completes the proof.
Thus, it follows from Corollary 5.6, Lemma 5.5, and the fact [λmax(D2)]1/2 =

λmax(D) that Corollary 5.9 holds.
COROLLARY 5.9. γ∗π ≤ γ∗[λmax(π(A)π(AT ))]

1
2 .

Let us assume without loss of generality that π(s) is a monic polynomial with
real distinct roots. We can now present the main result of this section.

THEOREM 5.10. Let δi denote the roots of π which are assumed to be distinct.
Then

γ∗ ≤ γ∗pdrs ≤ γ∗
λmax


k+1∏
i=1

(
AT

δi
+ I

)′ k+1∏
j=1

(
A

δi
+ I

)
 1

2

.

Proof. Note that ‖ 1/π ‖∞= (
∏k+1
i=1 δi)

−1. Then

γ∗pdrs ≤
(
k+1∏
i=1

δi

)−1

γ∗[λmax(π(A)π(AT ))]
1
2(5.26)

=

(
k+1∏
i=1

δi

)−1

γ∗

[
λmax

[(
k+1∏
i=1

(A+ δiI)
k+1∏
i=1

(AT + δiI)

)]] 1
2

(5.27)
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=

(
k+1∏
i=1

δi

)−1

γ∗

λmax
(k+1∏

i=1

δi

)2 k+1∏
i=1

(
A

δi
+ I

) k+1∏
i=1

(
AT

δi
+ I

) 1
2

(5.28)

=

(
k+1∏
i=1

δi

)−1

γ∗

(k+1∏
i=1

δi

)2

λmax

[
k+1∏
i=1

(
A

δi
+ I

) k+1∏
i=1

(
AT

δi
+ I

)] 1
2

.(5.29)

Thus, we conclude that

γ∗ ≤ γ∗pdrs ≤ γ∗
[
λmax

[
k+1∏
i=1

(
A

δi
+ I

) k+1∏
i=1

(
AT

δi
+ I

)]] 1
2

(5.30)

and this completes the proof.
Noting that the matrix on the right-hand side of the theorem above tends to

identity as δi →∞, we conclude that Corollary 5.11 holds.
COROLLARY 5.11. As δi →∞, i = 1, . . . , k + 1, γ∗pdrs → γ∗.
The same fact is also emphasized in Martinez, Malabre, and Kucera (1995), with-

out proof. We now illustrate this by the following example.
Example. Let N := Z4 = (s− 2)/(s+ 1)2 and M := Z2Z3 = (s− 1)/(s+ 1)2. Fix

k = 1, π = (s+ 1)2. Then Q∗1 = 1, which yields P ∗1 = −1. Now consider the problem
defined by (5.40) with σ = s+ a:

γ∗π = min
∥∥∥∥P ∗1 − πM

σ
Q̂1

∥∥∥∥
∞

= min
∥∥∥∥1 +

s− 1
s+ a

Q̂1

∥∥∥∥
∞

= 1.(5.31)

If we choose Q̂1 = −1, then we have the following parametric expression:∥∥∥∥P ∗1 − πM

σ
Q̂1

∥∥∥∥
∞

=
∥∥∥∥a+ 1
s+ a

∥∥∥∥
∞
⇒ ‖ Tzd ‖∞≤

∥∥∥∥ 1
(s+ 1)2

∥∥∥∥
∞

∥∥∥∥a+ 1
s+ a

∥∥∥∥
∞
.(5.32)

Thus, the limit, as a goes to infinity, of the H∞ norm of Tzd becomes 1 (note that
the optimal value for the H∞ norm of Tzd is 1/4). In this way, the parametrization
of σ as s + a yields a suboptimal solution for the problem defined by (5.39), where
at high frequencies attenuation is provided by the term 1/(s + 1)2 and for the lower
frequencies the parameter a could be used to minimize the response.

Now let us parametrize π as π = (s + a)2. Also let σ = s + a and choose
Q̂1 = d(s+ c)/(s+ a), where c and d are free parameters. Note that with the above
choice, P ∗1 = ((s+ a)/(s+ 1))2 which is independent of σ. Then

P ∗1 −
πM

σ
Q̂1 =

(s+ a)2

(s+ 1)2 −
d(s+ c)(s− 1)

(s+ 1)2 .(5.33)

Now if we choose d and c as d := (a2 +2a−3)/4 and c := (3a2−2a−1)/(a2 +2a−3),
we obtain

P ∗1 −
πM

σ
Q̂1 =

(a+ 1)2

4
⇒ ‖ Tzd ‖∞≤

∥∥∥∥ (a+ 1)2

4(s+ a)2

∥∥∥∥
∞

(5.34)

⇒ lim
a→∞

‖ Tzd ‖∞≤ lim
a→∞

∥∥∥∥ (a+ 1)2

4(s+ a)2

∥∥∥∥
∞

=
1
4
.(5.35)
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Therefore, optimal attenuation is obtained in the limit. Using this second parametriza-
tion, a trade-off value for the parameter a can be chosen. If a is small, then a good
attenuation at high frequencies is obtained, but there is sacrifice at the lower frequen-
cies. If a is large, then the low frequency attenuation level is close to the optimal
attenuation, but the response at high frequencies increases in magnitude.

6. Conclusions. In this work, partial disturbance rejection problems are inves-
tigated in a natural framework which consists of the subrings of Rps(s) of a given
relative degree and their quotient rings. First, the solvability conditions and the char-
acterization of the set of all solutions are obtained for the scalar case. It is shown
that these solvability conditions immediately imply the solvability condition in the
case when dynamic measurement feedback is used. Furthermore, it is demonstrated
by an example that partial disturbance rejection can be used together with H∞ de-
sign to get stronger attenuation at high frequencies while minimizing the response (as
much as possible) at lower frequencies. At this point, an upper bound for the infinity
norm of the closed loop transfer function is also calculated.

REFERENCES

V. ELDEM (1994), On partial disturbance rejection by measurement feedback with internal stability,
in Proceedings 33rd IEEE CDC Conference, Orlando, FL, pp. 853–854.
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Abstract. The bifurcations of control systems with a single input are studied. Based on the
normal forms of control systems, the equilibrium sets are classified. A set of quadratic invariants for
control systems is found. Sufficient conditions for a system to be linearly controllable or stabilizable
near a bifurcation point are given in terms of the quadratic invariants.

Key words. nonlinear systems, bifurcations, normal forms, invariants, linearly controllable,
stabilizable

AMS subject classifications. 93C10, 93C15

PII. S0363012995290288

1. Introduction. Bifurcation theory studies the changes in qualitative struc-
ture of the flow of a dynamic system as parameters are varied. Local bifurcation
theory focuses on the stability of the bifurcating solution [6], [15]. In this paper,
some bifurcation problems for control systems are addressed. Given a control system
with parameters and control inputs, the location of the equilibrium points depends
on the values of the parameters and control inputs. The set of equilibrium points is
not necessarily a smooth manifold in the state and parameter space. Furthermore,
the fundamental properties such as stabilizability and controllability change as the
equilibrium point is varied. Understanding the change of these properties is impor-
tant in feedback design. For instance, a bifurcation occurs in the system of axial
flow compressor (see [13]). On one branch of the equilibria, the system is linearly
controllable. On the other branch, the system is not stabilizable on one side of the
bifurcation point. In fact, feedback is found to achieve the desired stability pattern on
the controllable branch [12], [11]. The information about controllability and stabiliz-
ability along a set of equilibrium points is also helpful when gain scheduling methods
are applied to a nonlinear system. In this paper, local bifurcations of equilibrium sets
are classified based on the normal forms of control systems. The controllability and
stabilizability at points in the equilibrium set depend on the values of the quadratic
invariants. Recent research shows that the bifurcation in the Moore and Greitzer
model of the axial flow compressor is equivalent to the two branch bifurcation given
in Theorems 3.2 and 4.2.

The behavior of any Hopf bifurcation can be reduced to a few different cases. This
is possible because a nonlinear dynamic system can be transformed into a simplified
normal form based on Poincaré’s theory. Since the bifurcation phenomenon is invari-
ant under change of coordinates, one can study the bifurcation of dynamic systems
by focusing on their normal forms. This idea simplifies the problem. An affine control
system consists of two vector fields (the drift vector and the control vector). To study
the bifurcations of control systems, it is necessary to find normal forms in which both
vectors are simplified. For linear systems, a normal form is the controller form. In
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this paper, a set of nonlinear control system normal forms is found. All the results on
equilibrium sets, controllability, and stabilizability are proved based on these normal
forms and their invariants. The normal forms in this paper generalized the work in [8]
to parameter-dependent systems which are not linearly controllable. Since the control
system normal forms have the Brunovsky form in their linearization and the triangle
structure in the quadratic parts, the study of their controllability and stabilizability
is simple.

In general, a control system can have more than one equilibrium point even with-
out parameters. This is because of the existence of control inputs. In the presence of
parameters, the bifurcation of a control system has at least two-dimensional freedom.
This paper is organized in the following way. In Part I, we focus on control systems
without parameters. For single input systems, this is a one-dimensional bifurcation
problem. In Part II [16], the problem is addressed for control systems with one param-
eter, which is a two-dimensional bifurcation problem. In both parts, we only consider
systems with a single input, although the formulation of the problems are given for
general multi-input systems.

In section 1 of Part I, the problem is formulated from bifurcation viewpoint and
then an intuitive example is given. In section 2, the quadratic normal forms and
invariants of control systems are introduced; these play a key role in the proofs of the
main theorems. The problems formulated in section 1.1 are addressed in sections 3–5
for nonlinear systems without parameters. Sufficient conditions in terms of quadratic
invariants for controllability of linearization and local stabilizability are proved. In
[16], the problems formulated in this section will be addressed for systems with a
single parameter.

Some interesting problems related to control system in the presence of bifurcation
are addressed in [1], [2], and [5].

1.1. Problem formulation. Classic bifurcation theory studies the changes in
qualitative properties such as stability of a dynamic system about bifurcating constant
solutions as parameters are varied. More specifically, a system with parameters is
defined by

ẋ = fµ(x)(1.1)

where x ∈ Rn is the state variable and µ is the parameter. For different values of
µ, the behavior of the dynamic flows can be qualitatively different. For instance, the
equilibrium point x0 defined by fµ(x0) = 0 depends on the value of µ. Furthermore,
the stability of the system around x0 can be different if the value of µ is changed.

Consider a control system

ẋ = f(x, µ) + g(x, µ)u(1.2)

where x ∈ Rn is the state variable, u ∈ Rm is the control input, and µ is the parameter.
The performance of the system depends on the values of µ and u. For instance, the
equilibrium point x0 of the system defined by

f(x0, µ) + g(x0, µ)u = 0

changes if the values of µ and u are changed. Furthermore, more than one branch of
equilibrium points can occur. The controllability of the system at these equilibrium
points also changes. In this paper, we classify the bifurcations of equilibrium sets.
The change of properties such as controllability and stabilizability is also studied.
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Given a system (1.2), assume that

f(0, 0) = 0,

and we only consider local bifurcation around (x, u, µ) = (0, 0, 0). Assume the rank
of the matrix g(0, 0) is m. In a local neighborhood of (x, u, µ) = (0, 0, 0), if

f(x0, µ0) + g(x0, µ0)u0 = 0,(1.3)

then u0 is the unique value of u for which the vector field in (1.2) vanishes at (x0, u, µ0).
DEFINITION 1.1. The set

E = {(x, µ)|∃u0 ∈ R such thatf(x, µ) + g(x, µ)u0 = 0}(1.4)

is called the equilibrium set of (1.2).
In this definition of the equilibrium set, the parameter µ is treated as a variable

satisfying µ̇ = 0. A point in E is called an equilibrium point of system (1.2). It
is known that feedback of the form u = u(x) can change the closed-loop system
equilibria. The set E consists of all the possible closed-loop equilibria under state
feedbacks. Understanding the topology of E is fundamental in the study of control
of stationary bifurcations by state feedback. A special case of equilibrium set is given
by systems without parameters. Consider a system

ẋ = f(x) + g(x)u(1.5)

which is independent of the parameter µ. The equilibrium point x = 0, u = 0 is not
unique even if the matrix

∂f

∂x
(0)

has full rank. This is caused by the presence of input variable u.
DEFINITION 1.2. The equilibrium set of (1.5) is defined by

E = {x|∃u0 ∈ R such thatf(x) + g(x)u0 = 0}.

Dynamic bifurcation theory is always connected with the problem of stability,
in particular, the stability of the bifurcating solution. For control systems, it makes
more sense to study the controllability and stabilizability of control systems around the
equilibrium points in E. The general concept of controllability of nonlinear systems
is not addressed in this paper. We focus on the property of controllability of the
linearization. Given a point (x0, µ0) ∈ E. Suppose u = u0 is the unique value of
u satisfying (1.3). The linearization of (1.2) at (x0, µ0) is defined to be the pair
(Ax0µ0 , Bx0µ0) in which

Ax0µ0 =
∂f(x, µ) + g(x, µ)u0

∂x

∣∣∣∣
x=x0
µ=µ0

, Bx0µ0 = g(x0, µ0).

DEFINITION 1.3. Given a point (x0, µ0) in E, the control system (1.2) is called
linearly controllable at (x0, µ0) if its linearization (Ax0µ0 , Bx0µ0) defines a controllable
linear system.

In this paper, the term “controllability” is used for controllability of the lineariza-
tion. In the following, the problems addressed in this paper are formulated from the
bifurcation viewpoint.
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Question 1. Find a classification of equilibrium sets. This is similar to the problem
of finding all the “bifurcation diagrams” in the bifurcation theory of ODEs.

Question 2. Is the system linearly controllable at the equilibrium points in E?
Question 3. Is the system locally stabilizable by state feedback at the equilibrium

points in E?
Remark. In this paper, Questions 1–3 are addressed only for systems which are

not linearly controllable at the origin. In fact, if a system is linearly controllable at
(x0, µ0) = (0, 0), then the system is always linearly controllable at all points in E
near (x0, µ0) = (0, 0). So, the answers to Question 2 and 3 are trivial. For linearly
controllable systems, the solution of Question 1 is simple. For instance, if a system has
a single input and a single parameter, from the Brunovsky form of its linearization and
the implicit function theorem it can be proved that the equilibrium set E is (locally) a
smooth manifold of dimension two. Any small values of x1 and µ uniquely determine
a point in E. Therefore, all the equilibrium sets of such systems are diffeomorphic to
each other.

Questions 2 and 3 are closely related in the sense that a linearly controllable
system must be locally stabilizable by state feedback. As mentioned above, a control
system usually has more than one equilibrium point. Questions 1–3 are applicable to
a control system even if the system is independent of any parameter. In Part I, we
address these problems for systems without parameters. In Part II, systems with a
single parameter are considered.

1.2. An example of control system with bifurcation. In the following, an
example is given for which the equilibrium set is found. The answer to Question 2 is
given. The stabilizability at the origin is also proved. This example is a bifurcation
discussed in section 3. In fact, this system is in normal form.

Example. Consider a two-dimensional control system without parameter

ż = zx+ z2,
ẋ = u.

(1.6)

The origin (z, x) = (0, 0) is an equilibrium point of the system; however, it is certainly
not the only one. The system is not linearly controllable at the origin since the
linearization (A,B) is

A =
[

0 0
0 0

]
, B =

[
0
1

]
.

However, at the equilibrium points nearby, the system can be linearly controllable.
First of all, where are the equilibrium points? They are determined by zx + z2 = 0
and they have the following parametrization

E = {(z, x)|x = ν and either z = −ν or z = 0}.

The graph of E is shown in Figure 1.1. From Figure 1.1, it is obvious that a bifurcation
occurs at the origin. The equilibrium set E has two branches, which intersect at
(z, x) = (0, 0). In the following, the notation E− and E+ are used to represent the
subsets of E for z = −ν and z = 0, respectively.

To answer the second question, it is necessary to find the linearization and its
controllability matrix at any point in E. In fact, the controllability matrix is[

0 z
1 0

]
.
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FIG. 1.1. The equilibrium set in zx1-plane. On the solid line, the system is linearly controllable.
On the dotted line, the system is not linearly controllable.

Therefore, the system is linearly controllable at points in the branch E−\{(0, 0)}, and
the system is not linearly controllable at points in E+.

At points in E−, the system can be stabilized locally by state feedback because it
is linearly controllable. However, at a point in E+, the stabilizability depends on the
nonlinear part of the system. For instance, the system is stabilizable at the origin.
One stabilizing feedback is

u = −x− z − z2.

To show that the closed-loop system is asymptotically stable, one can check that the
reduced dynamic system on the center manifold is

ż = −z3 +O(z)4.

This implies that the closed-loop system is asymptotically stable at (z, x) = (0, 0).

2. Normal forms and invariants. The normal forms of control systems are
introduced in this section. They are a tool in the proofs of the main theorems on
bifurcation of control systems. Normal forms for linearly controllable systems have
been introduced in [8] and [10]. In [9], normal forms for control systems which are
not linearly controllable were introduced. The techniques and results in these papers
generalized Poincaré’s normal form of ODE to control systems. In this section, we
also introduce a set of quadratic invariants. The advantage of introducing invariants
is that the normal form of a given system can be found without finding the change of
coordinates and feedback. Furthermore, these invariants provide information about
the parametrization of equilibrium set E and the properties such as stabilizability or
controllability of the system. In fact, most conditions in the main theorems of this
paper are given in terms of the quadratic invariants.

2.1. Assumptions. In Part I of this paper we consider only control systems
without a parameter. A control system is defined by

ξ̇ = f(ξ) + g(ξ)v,(2.1)

where the variable ξ ∈ Rn is the state of the system. Assume that f(0) = 0 and
g(0) 6= 0. Also assume that v ∈ R; i.e., the system has a single input. All the vectors
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and functions in this paper are assumed to be Ck for some sufficiently large k. As
pointed out in the remark in section 1.1, we assume that the linearization of system
(2.1) at x = 0, u = 0,

(A,B) =
(
∂f

∂ξ
(0), g(0)

)
is not controllable. Furthermore, the controllability index of (A,B) is assumed to be
n− 1. Equivalently,

Assumption. We have that

rank(
[
B AB A2B · · · An−1B

]
) = n− 1.(2.2)

The origin is in the equilibrium set. Near the origin, there is a unique value u0
satisfying f(ξ) + g(ξ)u0 = 0 for any ξ ∈ E because g(0) 6= 0. So, given a point in E,
the linearization of the system at this point is unique. The transformations used in
this section are change of coordinates and feedback in the form

x = φ(ξ),
u = α(ξ) + β(ξ)v,(2.3)

in which φ(ξ) is a diffeomorphism near the origin ξ = 0 and β(0) 6= 0. Before we
introduce the normal forms and invariants, it is necessary to make sure that Questions
1–3 are well proposed under the transformations of form (2.3). In fact, it is well known
that changes of coordinates and state feedbacks do not change the controllability (of
the linearization) and the local stabilizability of a control system [14]. So if one system
is transformed into another by (2.3), the answers to Question 2 and 3 for these two
systems are the same. If (2.3) is considered as a map from (ξ, v) to (x, u), it is a local
diffeomorphism. Therefore, in a local neighborhood of ξ = 0, ξ0 ∈ E if and only if
x0 = φ(ξ0) is an equilibrium point for the resulting system. Here, the equilibrium
set is invariant under the transformations (2.3). So, if a class of nonlinear control
systems can be simplified into a normal form, the bifurcation problems for this class
of systems are equivalent to the same problems for a system in the normal form.

2.2. Normal forms. Given a system (2.1) satisfying assumption (2.2), it is well
known (see, for instance, [7], [9]) that the system can be transformed into the following
form by a linear change of coordinates and feedback:

ż = λz + f
[2]
1 (z, x) + g

[1]
1 (z, x)u+O(x, z, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x) + g

[1]
2 (z, x)u+O(x, z, u)3,

(2.4)

where z ∈ R and x ∈ Rn−1. The pair (A2, B2) is in the following (Brunovsky) form:

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0


(n−1)×(n−1)

, B2 =


0
0
...
0
1


(n−1)×1

.(2.5)

The superscripts of f [2]
i and g[1]

i , i = 1 or 2, denote that f [2]
i and g[1]

i are homogeneous
polynomials of second and first degree, respectively. Similar superscripts will also be
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applied to other vector fields and functions (e.g., α[2] or β[1]). The notation O(z, x, u)3

represents nonlinear terms of third and higher degrees. In (2.4) the linearization is
already in its normal form; the next step of finding normal form is to simplify the
quadratic part of (2.4) while leaving its linear part invariant. Following the idea in
[8] and [9], we use the quadratic transformation (or quadratic change of coordinates
and feedback) [

z
x

]
=
[
z̄
x̄

]
+ φ[2](z̄, x̄),

u = ū+ α[2](z̄, x̄) + β[1](z̄, x̄)ū

(2.6)

to simplify the quadratic part. In [9] it is proved that (2.4) can be transformed into the
following normal form. The coefficients in its normal form are uniquely determined
by the quadratic part of (2.4). For the reason of simplicity, we still use z, x, and u as
state and control variables.

If λ 6= 0,

ż = λz +
n−1∑
i=1

γxixix
2
i + γzx1zx1 +O(x, z, u)3,

ẋ = A2x+B2u+ f̃
[2]
2 (x) +O(x, z, u)3;

(2.7)

if λ = 0,

ż =
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 +O(x, z, u)3,

ẋ = A2x+B2u+ f̃
[2]
2 (x) +O(x, z, u)3.

(2.8)

In (2.7) and (2.8), the vector f̃ [2]
2 (x) is in the extended quadratic controller form

introduced in [8]

f̃
[2]
2 (x) = [f̃21(x), f̃22(x), . . . , f̃2n−1(x)]T , f̃2i(x) =

n−1∑
j=i+2

ai n−jx
2
j for 1 ≤ j ≤ n− 3,

f̃2n−2(x) = f̃2n−1(x) = 0.
(2.9)
The symbols γxixi , γzx1 and γzz denote the constant coefficients of the quadratic
terms. These normal forms will be used as a tool in the proofs of the theorems in
sections 3, 4, and 5.

Given a system, formulas for finding the coefficients in its normal form are given in
Definition 2.1. In fact, they are a complete set of invariants. A change of coordinates
transforming a system to its normal form can be found by solving a set of linear
algebraic equations, which are called homological equations [9].

2.3. Invariants. In the following, we introduce quadratic invariants. They are
the “intrinsic parameters” of a system which completely determine the equivalent
class of quadratic parts of a system under quadratic transformations of the form (2.6).
Conditions in many theorems of this paper will be given in terms of these invariants.
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Although the invariants are defined at an equilibrium point (we define them at (z, x) =
(0, 0)), they carry important information of controllability and stabilizability of a
system at all the equilibrium points near the origin.

Denote by Cx, Cz, and Xz the following n-dimensional row or column vectors:

Cx = [0 1 0 · · · 0], Cz = [1 0 0 · · · 0],

Xz = [1 0 0 · · · 0]T .
(2.10)

Given two vector fields X(x) and Y (x) defined in Rn, the operator adX is defined
by adX(Y ) = [X,Y ], where the right-hand side is the Lie bracket of two vector fields
which is defined by

∂Y

∂x
X − ∂X

∂x
Y .

The Lie operator LX is defined by

LX(φ(x)) =
∂φ

∂x
X

for C1 functions defined in Rn. In Definition 2.1, we use the notation f(z, x)+g(z, x)u
to represent the right side of a system (2.4). The notation A represents the matrix in
the linearization of f(z, x), i.e.,

A =
∂f

∂(z, x)

∣∣∣∣
z=0
x=0

=
[
λ 0
0 A2

]
.

DEFINITION 2.1. Given a system (2.4), the quadratic invariants are defined by

atr =
1
2
CxA

t−1[adrf (g), adr−1
f (g)]

∣∣∣∣
z=0,x=0

,
1 ≤ r ≤ n− 3,
1 ≤ t ≤ n− r − 2,

γxn−rxn−r =
1
2
Cz[adrf (g), adr−1

f (g)]
∣∣∣∣
z=0,x=0

, 1 ≤ r ≤ n− 1,

γzx1 = (−1)n−1Cz[Xz, ad
n−1
f (g)]

∣∣∣
z=0,x=0

,

γzz =
1
2
Czad

2
Xz (f)

∣∣∣∣
z=0,x=0

.

(2.11)

THEOREM 2.2. Given a control system satisfying assumption (2.2), assume that
its linearization is in the form of (2.4).

(i) The quadratic transformation (2.6) does not change the values of the quadratic
invariants.

(ii) The quadratic invariants (2.11) are equal to the coefficients of the quadratic
terms of the normal form (2.7), (2.8).

(iii) Given two systems in the form of (2.4) with the same linearization (i.e., they
have the same λ), the quadratic part of one system can be transformed into that of
another system by a suitable transformation (2.6) if and only if they have the same
quadratic invariants.
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Proof. (i) The proof of (i) has two parts. In the first part, we only consider changes
of coordinates without feedback, i.e., u = ū in the quadratic transformation (2.6). In
the second part, we prove that the invariants cannot be changed by any quadratic
feedback. Suppose that system (2.4) is transformed into the following system by a
quadratic change of coordinates:

˙̄z = λz̄ + f̄
[2]
1 (z̄, x̄) + ḡ

[1]
1 (z̄, x̄)ū+O(x̄, z̄, ū)3,

˙̄x = A2x̄+B2ū+ f̄
[2]
2 (z̄, x̄) + ḡ

[1]
2 (z̄, x̄)ū+O(x̄, z̄, ū)3.

(2.12)

Denote the invariants of (2.4) and (2.12) by atr, γxixi , γzx1 , γzz and ātr, γ̄xixi , γ̄zx1 ,
γ̄zz, respectively. Notice that if we treat Xz, f(z, x) and g(z, x) as vector fields in
Rn, then f and f̄ represent the same vector field. Similarly, g and ḡ represent the
same vector field. Since Lie bracket and Lie operators are independent of the choice
of coordinate systems, sometimes we use f and g to represent these two vector fields
without mentioning the coordinate system (z, x or z̄, x̄). The vectors Xz and Xz are
defined based on coordinate systems (see (2.10)). The invariants can be expressed in
the following way using Lie bracket and Lie operators:

atr =
1
2
L[adrf (g),adr−1

f (g)]L
t−1
f (x1)

∣∣∣
z=0
x=0

,

γxn−rxn−r =
1
2
L[adrf (g),adr−1

f (g)](z)
∣∣∣
z=0
x=0

,

γzx1 = (−1)n−1L[Xz,adn−1
f (g)](z).

(2.13)

Under the new coordinates, we have

x1 = x̄1 +O(z̄, x̄)2, z = z̄ +O(z̄, x̄)2, Xz = Xz +O(z̄, x̄).(2.14)

From (2.13) and (2.14),

atr =
1
2
L[adrf (g),adr−1

f (g)]L
t−1
f (x̄1)

∣∣∣
z=0
x=0

+
1
2
L[adrf (g),adr−1

f (g)]L
t−1
f (O(z̄, x̄)2)

∣∣∣
z=0
x=0

.

In this relation, the second term on the right side is zero. The first term on the right
side is ātr. This proves that atr = ātr. Similarly, we can prove that γxixi = γ̄xixi .

Now, let’s consider γzx1 . By (2.13) and (2.14), we have

γzx1 = L[Xz,adn−1
f (g)](z̄)

∣∣∣
z̄=0
x̄=0

+ L[Xz,adn−1
f (g)](O(z̄, x̄)2)

∣∣∣
z̄=0
x̄=0

+ L[O(z̄,x̄),adn−1
f (g)](z̄ +O(z̄, x̄)2)

∣∣∣
z̄=0
x̄=0

.
(2.15)

From (2.13), we know that

L[Xz,adn−1
f (g)](z̄)

∣∣∣
z̄=0
x̄=0

= γ̄zx1 .(2.16)

It is easy to check that

L[Xz,adn−1
f (g)](O(z̄, x̄)2)

∣∣∣
z̄=0
x̄=0

= 0(2.17)
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and

adrf (g) = (−1)r
[
λr 0
0 Ar2

] [
0
B2

]
+O(z̄, x̄).

Therefore,

adn−1
f (g) = O(z̄, x̄).

So

L[O(z̄,x̄),adn−1
f (g)](z̄ +O(z̄, x̄)2)

∣∣∣
z̄=0
x̄=0

= 0.(2.18)

Equations (2.16), (2.17), and (2.18) imply γzx1 = γ̄zx1 . If λ = 0, there is another
invariant γzz. By the separation principle in [9, Lemma 4.2], it is enough to show
that γzz is invariant under the change of coordinates z = z+ φ[2](z). However, this is
a well-known result in dynamic systems. In fact, z2 is a resonant term in the dynamic
system of z (the definition can be found in [3]). In Poincaré’s theory of normal forms
for dynamic systems, the coefficient of a quadratic resonant term cannot be changed
by quadratic change of coordinates. This shows that γzz is invariant under a quadratic
change of coordinates.

If feedback is applied to system (2.4), then the new vector fields in the resulting
system are

f̄(z, x) = f(z, x) + α[2](z, x)g(z, x), ḡ(z, x) = g(z, x) + β[1](z, x)g(z, x).

It is obvious that γzz will not be changed by the feedback. By mathematical induction,
it can be proved that

adr
f̄
(ḡ) = adrf (g) +

r∑
i=0

hri(z, x)adif (g) +O(z, x)2, hri(z, x) = O(z, x),[
adrf̄ (ḡ), adr−1

f̄
(ḡ)
]

= [adrf (g), adr−1
f (g)] +

r∑
i=1

qri(z, x)adif (g) +O(z, x),

CxA
t−1adif (g)|z=0,x=0 = 0 if t+ i ≤ n− 2,

Czad
i
f (g)|z=0,x=0 = 0 if 0 ≤ i ≤ n− 1.

Substituting these relations into the definition of invariants (2.11), it shows that ātr,
γ̄xixi , γ̄zx1 are equal to atr, γxixi , γzx1 .

(ii) The proof of the second part is based on calculation. By mathematical in-
duction, it can be proved that, if 1 ≤ r < n− 2,

adrf (g) = (−1)r





0
...
0
1
0
...
0



 = n− r

+



2γxn−rxn−rxn−r
2a1 rxn−r

...
2an−r−2 rxn−r

0
...
0



 = n− r − 1


+hr(xn−r+1, xn−r+2, . . . , xn−1) +O(x, z)2.

(2.19)
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Therefore,

[adrf (g), adr−1
f (g)] =

[
2γxn−rxn−r 2a1 r · · · 2an−r−2 r 0 · · · 0

]T +O(z, x)
(2.20)
for r < n− 2. Equations (2.20) and (2.11) imply

atr =
1
2
CxA

t−1[adrf (g), adr−1
f (g)]

∣∣∣
z=0,x=0

,

γxn−rxn−r =
1
2
Cz[adrf (g), adr−1

f (g)]
∣∣∣
z=0,x=0

for 1 ≤ r ≤ n− 3 and 1 ≤ t ≤ n− r − 2. Similarly, we can show that

adn−2
f (g) = (−1)n−2




0
1
0
...
0

+


2γx2x2x2

0
0
...
0



+ hn−2(x3, x4, . . . , xn−1) +O(x, z)2,

adn−1
f (g) = (−1)n−1


2γx1x1x1 + γzx1z

0
...
0

+ hn−1(x2, x3, . . . , xn−1) +O(x, z)2.

So, it is easy to check that

γx2x2 =
1
2
Cz[adn−2

f (g), adn−3
f (g)]

∣∣∣∣
z=0
x=0

, γx1x1 =
1
2
Cz[adn−1

f (g), adn−2
f (g)]

∣∣∣∣
z=0
x=0

,

γzx1 = (−1)n−1Cz[Xz, ad
n−1
f (g)]

∣∣∣
z=0
x=0

.

If λ = 0, then γzz is the coefficient of z2 because of Definition 2.1.
(iii) From the result in [9], we know that a system (2.4) can be transformed into

a normal form (2.7) or (2.8). Therefore, two systems can be transformed from one to
the other if and only if they have the same normal form. From (ii), the coefficients in
normal form and the invariants have one-to-one correspondence. So, the two systems
have the same normal form if and only if they have the same invariants. This concludes
the proof of the theorem.

Theorem 2.2 implies that the coefficients of the normal form can be computed
without finding the transformation. Furthermore, it will be shown in the next three
sections that the properties such as controllability and stabilizability are closely re-
lated to these invariants.

3. Classification of equilibrium sets. In this section, Question 1 is addressed.
Different systems have different equilibrium sets. However, the equilibrium sets of
systems with the same normal form are diffeomorphic to one other. Based on the
normal forms in section 2, the equilibrium sets of systems satisfying (2.2) are classified
to three different classes. For each class of equilibrium sets, a parametrization of the
equilibrium set is also found, which is a linear approximation of E.
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FIG. 3.1. The equilibrium set in zx1-plane.

Given a nonlinear control system, if its linearization has controllability index n−1,
then it can be transformed into a system in the form of (2.4). So, we only consider
system (2.4) in sections 3, 4, and 5.

THEOREM 3.1. Given a system of the form (2.4), if λ 6= 0, then there exists an
open neighborhood U of (z, x) = (0, 0) such that the points in E ∩ U satisfy

x1 = ν,
z = O(ν)2,
xi = O(ν)2 for i = 2, 3, . . . , n− 1.

(3.1)

Remark. This theorem shows that, in a neighborhood of the origin, there exists
a unique equilibrium point of the system for a given value of x1. The set E is a
smooth curve tangent to the x1-axis at the origin. Therefore, the equilibrium set
does not show an obvious bifurcation. However, in Theorem 4.1 it is proved that the
controllability of the system changes near the origin for different equilibrium points.
A typical graph of the equilibrium set for the systems with λ 6= 0 is shown in Figure
3.1 for the following system in normal form:

ż = z + x2
1 + x2

2,
ẋ1 = x2,
ẋ2 = u.

(3.2)

The equilibrium set E is x1 = ν, x2 = 0, z = −ν2.
Proof of Theorem 3.1. For a point (z, x) to be an equilibrium point of system

(2.4), it must satisfy

λz + f
[2]
1 + g

[1]
1 u+O(z, x, u)3 = 0,

A2x+B2u+ f
[2]
2 + g

[1]
2 u+O(z, x, u)3 = 0.

(3.3)

Denote the left side of the equations by G(z, x, u). This is a system of equations and

∂G

∂(z, x2, ..., xn−1, u)

∣∣∣∣
z=0,x=0,u=0

=
[
λ 0
0 I

]
where I is the (n − 1) × (n − 1) identity matrix. By the implicit function theo-
rem, in a local neighborhood of the origin there exists a unique set of functions
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z(x1), x2(x1), . . . , xn−1(x1), u(x1) satisfying equations (3.3). Since ∂G/∂x1 is the zero
matrix at the origin, these functions do not contain linear terms in x1. This proves
the theorem.

The topology of the equilibrium sets for systems with λ = 0 depends on the
quadratic part of its normal form. The quadratic function of z, x1 of the uncontrollable
dynamics in the normal form has an associated symmetric matrix, which is

Q =

 γzz
1
2
γzx1

1
2
γzx1 γx1x1

 .
Denote d1 and d2 the eigenvalues of this matrix. Then there is an orthonormal matrix
T , the column vectors of which are unit eigenvectors of Q, such that

Q = T

[
d1 0
0 d2

]
TT .(3.4)

THEOREM 3.2. Given a system (2.4) with λ = 0, the following hold.
(i) If

det(Q) > 0,(3.5)

then there is no equilibrium point other than (z, x) = (0, 0) near the origin.
(ii) If

det(Q) < 0,(3.6)

then the equilibrium set has the following parametrization

xi = O(ν)2, for i = 2, . . . , n− 1,

[
z
x

]
= T

 1

±
√
−d1

d2

 ν +O(ν)2
(3.7)

in an open neighborhood of the origin.
Remark. The relation (3.7) implies that if (3.6) holds, the equilibrium set has two

branches. At the origin, the two branches have tangent vectors

T

[
1 ±

√
−d1

d2

]T
.(3.8)

A typical example of such equilibrium set is given by the system (1.6) in section 1.2
which satisfies (3.6). The system is in normal form. The bifurcation diagram is shown
in Figure 1.1.

Proof of Theorem 3.2. A system (2.4) can be simplified to (2.8). A transformation
(2.6) does not change the linear part of the functions in (3.7). Therefore, it is sufficient
to prove the theorem for the normal form (2.8). In this case, the equilibrium point
(z, x) satisfies

x2 +O(z, x, u)2 = 0, . . . , xn−1 +O(z, x, u)2 = 0, u+O(z, x, u)2 = 0.
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TABLE 3.1
The classification of equilibrium sets.

Condition Equilibrium set Example

λ 6= 0 Smooth 1-d manifold tangent to x1-axis Figure 3.1

λ = 0, det(Q) > 0 Single point

λ = 0, det(Q) < 0 Two smooth curves Figure 1.1
tangent to vectors (3.8) at origin

This implies that xi = O(x1, z)2, for i = 2, . . . , n−1, and u = O(x1, z)2. Substituting
this into the relation

n−1∑
i=2

γxixix
2
i + γzx1zx1 + γzzz

2 +O(z, x, u)3 = 0

yields

γx1x1x
2
1 + γzx1zx1 + γzzz

2 +O(x1, z)3 = 0.(3.9)

If the left side of (3.9) is denoted by F (z, x1), then

F (z, x1) = [z, x1]Q
[
z
x1

]
+O(z, x1)3.

The condition (3.5) is equivalent to the fact that the matrix Q in (3.4) is sign definite.
Therefore, except for the point (z, x1) = (0, 0), the value of F (z, x1) is not zero near
the origin. This implies that (z, x) = (0, 0) is an isolated equilibrium point. The first
part of the theorem is proved.

If (3.6) holds, then the matrix (3.4) is not sign definite and it has full rank. By
the change of coordinates [

w1 w2
]

=
[
z x1

]
T,(3.10)

the equation F (z, x) = 0 becomes d1w
2
1 + d2w

2
2 +O(w1, w2)3 = 0. Therefore,

w2 = ±
√
−d1

d2
w1 +O(w1)2.

Substituting this into (3.10) and denoting ν as variable w1 yield equation (3.7). This
completes the proof of the second part.

We summarize the classification of equilibrium sets in Table 3.1. The uncontrol-
lable eigenvalue λ (a linear invariant) and the quadratic invariants determine the class
of the equilibrium set.

4. Controllability. In this section and the next section, we study problems
related to Question 2 and 3. Suppose we choose an equilibrium point in E. If it is
not the origin, then the controllability of its linearization depends on the quadratic
part of the system. Sufficient conditions for a system to be linearly controllable at
equilibrium points are given in this section.

THEOREM 4.1. Given a system in the form of (2.4) with λ 6= 0, if γx1x1 6= 0, then
there is a neighborhood U of (z, x) = (0, 0) such that the system is linearly controllable
at all the equilibrium points in U except the origin.
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Remark. Given a system with λ 6= 0, if λ > 0, then the system cannot be stabilized
at the origin by C1 state feedback. However, an interesting corollary of Theorem 4.1
is that, if γx1x1 6= 0, there is a neighborhood U of the origin such that the system is
locally stabilizable at all equilibrium points in U except (z, x) = (0, 0).

Proof. Given a system (2.4). It can be transformed into its normal form (2.7).
Since a change of coordinates and feedback does not change the controllability of
the linearization, it is enough to prove the theorem for normal forms. Denote the
linearization of the normal form at an equilibrium (3.1) by (Aν , Bν). Using (3.1) it is
easy to check that, at an equilibrium point in E, we have

Aν =
[
λ 0
0 A2

]
+
[
γzx1ν 2γx1x1ν 0

0 0 0

]
n×n

+O(ν)2,

Bν =
[

0 0 · · · 0 1
]T +O(ν)2.

Therefore,

AkνBν =
[

n−k︷ ︸︸ ︷
0 0 · · · 1 0 · · · 0]T +O(ν)2, 0 ≤ k ≤ n− 2,

An−1
ν Bν =

[
2γx1x1ν 0

... 0
]T

+O(ν)2.

(4.1)

Equations in (4.1) imply that the controllability matrix [Bν , AνBν , . . . , An−1
ν Bν ] has

full rank for small nonzero values of ν if γx1x1 6= 0. From the assumption in the
theorem, the system is linearly controllable near the origin.

System (3.2) satisfies the condition of Theorem 4.1. In fact, γx1x1 = 1. Therefore,
the system is linearly controllable at all points in E near z = 0, x = 0 except the
origin. The condition in Theorem 4.1 is sufficient but not necessary. If γx1x1 = 0, the
controllability of the system depends on both the quadratic and higher degree terms.

If λ = 0, then the equilibrium set may have two branches. The following theorem
studies the controllability of such systems.

THEOREM 4.2. Consider a system in the form of (2.4) with λ = 0. Assume that
inequality (3.6) holds. If γx1x1 6= 0, then the system is linearly controllable at all the
equilibrium points in E \ {(0, 0)} near the origin.

Proof. It is simpler to consider a system in normal form (2.8). The linearization
of (2.8) at an equilibrium point (z, x) ∈ E is

Aν =
[

0 0
0 A2

]
+
[
γzx1x1 + 2γzzz 2γx1x1x1 + γzx1z 0

0 0 0

]
n×n

+O(ν)2,

Bν =
[

0 0 · · · 0 1
]T +O(ν)2.

(4.2)
By calculation, it is easy to check that

ArνBν =
[

n−r︷ ︸︸ ︷
0 · · · 0 1 0 · · · 0]T +O(ν)2, 1 ≤ r ≤ n− 2,

An−1
ν Bν =

[
2γx1x1x1 + γzx1z 0 · · · 0

]T +O(ν)2.

From (ii) of Theorem 3.2, the controllability matrix at the equilibrium point is in the
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following form:

[Bν , AνBν , . . . , An−1
ν Bν ] =


0 0 · · · 0 pν
0 0 · · · 1 0
...

...
...

...
1 0 · · · 0 0

+O(ν)2,(4.3)

where

p =
[
γzx1 2γx1x1

]
T

 1

±
√
−d1

d2

 .
The result in the theorem follows the following claim.

Claim. If γx1x1 6= 0, then p 6= 0.
Proof of the claim. Assume that p = 0. Then

[
0 1

]
QT

[
1 ±

√
−d1

d2

]T
= 0.

By (3.4), this equation is equivalent to

[
0 1

]
T

[
d1 0
0 d2

] [
1 ±

√
−d1

d2

]T
= 0.

Without loss of generality we assume d1 < 0; then[
0 1

]
T

[
d1 0
0 d2

]
= s

[
−
√
−d1 ±

√
d2
]
,

[
0 1

]
T = s

[
1√
−d1

±1√
d2

](4.4)

for some s ∈ R. From (3.4) and (4.4),

γx1x1 =
[

0 1
]
T

[
d1 0
0 d2

]
TT
[

0
1

]
= s2

[
−
√
−d1 ±

√
d2
] [ 1√

−d1±1√
d2

]
= 0.

It is a contradiction. Therefore, p 6= 0. The claim is proved.
Remark. In the case of λ = 0 and det(Q) < 0, if γx1x1 = 0, one branch of the

equilibrium set E is tangent to z = 0. The controllability of the linearization at
points in this branch depends on the cubic and higher degree terms of the system.
If the system is not linearly controllable on this branch, it is proved in Part II that
the stabilizability of the system changes as the equilibrium point passing through the
origin along this curve. On the other branch of E, the system is linearly controllable if
this branch is not tangent to x1 = 0 (i.e., γzz 6= 0). This result can be proved by finding
the controllability matrix of the normal form. If γzz = 0, then the controllability of
the linearization at points in this branch depends on cubic and higher degree terms.

Example. Consider system (1.6) in the example of section 1.2. The invariants of
the system are γx1x1 = 0, γzx1 = 1, and γzz = 1. The matrix Q is

Q =

 1
1
2

1
2

0

 .(4.5)
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Since E− is not tangent to x = 0 (see Figure 1.1), the system is linearly controllable
in E− except the origin. The branch E+ is tangent to z = 0; the controllability in
E+ depends on higher degree terms. The system (1.6) is not linearly controllable at
points in E+ because there is no cubic term in the nonlinear system.

5. Stabilizability of control systems. In this section, we prove a sufficient
condition in terms of quadratic invariants for stabilizability of control systems. Con-
sider a system of form (2.4). The system is stabilizable when λ < 0, and it is not
stabilizable by C1 state feedback if λ > 0. So we consider only the case in which λ is
zero. If the system is nonlinear, its center manifold can have different shapes under
different feedback. In the following we prove that if the quadratic invariants satisfy
certain conditions, then there exists feedback so that the reduced dynamics on the
center manifold are asymptotically stable. The center manifold theory can be found
in [4]. Therefore, the feedback renders the closed-loop system locally asymptotically
stable. The following theorem is a partial answer to Question 3 in the sense that
the sufficient condition for stabilizability of a control system at a special equilibrium
point—the origin—is given.

THEOREM 5.1. Suppose λ = 0 in system (2.4). Suppose (3.6) holds. If γzx1 6= 0,
then there exists C1 state feedback which locally asymptotically stabilizes the system
at the origin.

Proof. Since the system can be transformed into its normal form (2.8), we only
prove the theorem for systems in normal form. Use the feedback

u(z, x) = F1x1 + F2x2 + · · ·+ Fn−1xn−1 + αz + βz2,(5.1)

where F = (F1, F2, . . . , Fn−1) stabilizes the controllable part; i.e.,

A2 +B2F(5.2)

is a Hurwitz matrix. Since F1 is the constant term in the characteristic polynomial
of the matrix (5.2), F1 6= 0. The center manifold of the closed-loop system is

x = π(z) =
[
π1(z) · · · πn−1(z)

]T(5.3)

such that[
π2 π3 · · · πn−1 Fπ

]T +
[

0 0 · · · 0 αz + βz2
]T + f̃ [2](π3, . . . , πn−1)

=
dπ

dz

(
n−1∑
i=1

γxixiπ
2
i + γzx1zπ1 + γzzz

2

)
+O(z)3.

(5.4)
Solving the equation for the linear part of π we get

π1 = − α

F1
z + π

[2]
1 (z) +O(z)3,

πi(z) = O(z)2 for i = 2, . . . , n− 1.

Substituting this result into (5.4), we get the equation for the quadratic part of π(z):

π2
π3
...

F1π
[2]
1 +

n−1∑
i=2

Fiπi

+


0
0
...
βz2

 =
(
γx1x1α

2

F 2
1
− γzx1α

F1
+ γzz

)
z2


− α

F1
0
...
0

+O(z)3.
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Therefore, πi(z) = O(z)3 for i = 3, . . . , n− 1. Furthermore,

π1(z) = − α

F1
z +

(
− β

F1
+
αF2

F 2
1

(
γx1x1α

2

F 2
1
− γzx1α

F1
+ γzz

))
z2 +O(z)3,

π2 = − α

F1

(
γx1x1α

2

F 2
1
− γzx1α

F1
+ γzz

)
z2 +O(z)3.

(5.5)

We can choose α so that

γx1x1α
2

F 2
1
− γzx1α

F1
+ γzz = 0.(5.6)

In fact, if γzz = 0, we take α = 0, if γzz 6= 0; the value of α is determined by

F1 =
γzx1 ±

√
γ2
zx1
− 4γx1x1γzz

2γzz
α.(5.7)

The sign “+” or “−” will be determined later. The condition det(Q) < 0 implies
γ2
zx1
− 4γx1x1γzz > 0. Therefore, F1 must be a real number. Substituting (5.6) into

(5.5), we get

π1(z) = − α

F1
z − β

F1
z2 +O(z)3,

πi(z) = O(z)3 for i = 2, . . . , n− 1.

Substituting this into the equation of z in (2.8), we get the reduced dynamic system
of the closed-loop system on the center manifold

ż = −β γzx1F1 − 2αγx1x1

F 2
1

z3 + ez3 +O(z)4(5.8)

where e is a constant depending on F1, α, and the coefficients of z3 in (2.8). However,
it is independent of β. The value of β is determined by the following method. If
γzz = 0, then α = 0. The number γzx1F1 − 2αγx1x1 is not zero because γzx1 6= 0 is
an assumption. By choosing β, we can make the coefficient of z3 be negative. The
dynamics are asymptotically stable. If γzz 6= 0, from (5.7)

γzx1F1 − 2αγx1x1 =
γzx1(γzx1 ±

√
γ2
zx1
− 4γx1x1γzz)− 4γx1x1γzz

2γzz
α.

From (5.7) and the fact F1 6= 0, we know that α 6= 0. Since γ2
zx1
− 4γx1x1γzz > 0, we

can always choose “+” or “-” in this expression so that this number does not equal
zero. Therefore, by a suitable choice of β, we can make the coefficient of z3 less than
zero. So, it is proved that there is feedback such that the reduced dynamic system
on the center manifold is asymptotically stable. By the center manifold theorem, the
closed-loop system is asymptotically stable.

Remark. The proof, in fact, shows a method of designing stabilizing feedback for
systems in normal form. It is given by

u(z, x) = Fx+ αz + βz2,
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where F stabilizes (A2, B2). The number α satisfies

α = 0 if γzz = 0,

α =
2γzzF1

γzx1 ±
√
γ2
zx1
− 4γx1x1γzz

if γzz 6= 0,

where the sign is chosen such that

γzx1 ±
√
γ2
zx1
− 4γx1x1γzz 6= 0,

γzx1(γzx1 ±
√
γ2
zx1
− 4γx1x1γzz)− 4γx1x1γzz 6= 0.

The number β satisfies

β(γzx1F1 − 2αγx1x1) > 0,

and the absolute value of β is sufficiently large.

6. Conclusion. Problems formulated from the bifurcation viewpoint concerning
equilibrium sets, controllability, and stabilizability of control systems are introduced.
Normal forms and invariants of control systems are employed in the analysis. The
topology of the equilibrium set and the properties such as controllability and stabi-
lizability of a control system point are proved to be closely related to the invariants.
The local bifurcations of equilibrium sets are classified, and the set is linearly ap-
proximated by a parametrization. Typical diagrams of bifurcation equilibrium sets
are shown by examples of systems in normal forms. Sufficient conditions given by
invariants for controllability and stabilizability at the points in equilibrium sets are
found.

In Part II, the same problems will be addressed for control systems with a single
parameter. The equilibrium set is two dimensional. More complex bifurcations occur
in this case.
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Abstract. The normal forms and invariants of control systems with a parameter are found.
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1. Introduction. In this paper, we continue the study of bifurcation problems
formulated in Part I [10]. We focus on systems with a parameter. Comparing with the
results in Part I, systems with a parameter have three types of normal forms instead
of two. Another difference is that, in the presence of a parameter, the equilibrium
sets are not curves. In fact, they are two-dimensional surfaces in the state-parameter
space. In general, there always exists a curve on the equilibrium set such that the
system is not linearly controllable at any point on it.

The following nonlinear system with parameter µ is considered:

ξ̇ = f(ξ, µ) + g(ξ, µ)v.(1.1)

The variable ξ ∈ Rn is the state, v ∈ R is the input variable, and the parameter is
µ ∈ R. The vector fields f(ξ, µ) and g(ξ, µ) are assumed to be Ck for some sufficiently
large k. Our attention is focused on local bifurcation near the origin (ξ, µ) = (0, 0).
Assume

f(0, 0) = 0, g(0, 0) 6= 0.

Following Part I, the equilibrium set E is defined to be

E = {(x, µ)|∃v0 such that f(x, µ) + g(x, µ)v0 = 0}.(1.2)

The linearization of the system at the origin is (A,B)

A =
∂f

∂x
(0, 0), B = g(0, 0).

If the system is linearly controllable at ξ = 0, µ = 0, then the system is linearly
controllable for all equilibrium points in E near (x, µ) = (0, 0). Therefore, Questions
1–3 formulated in Part I are interesting only if (1.1) is not linearly controllable at the
origin. Similar to Part I, we always assume

Assumption.

rank(
[
B AB A2B · · · An−1B

]
) = n− 1.(1.3)
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To classify the equilibrium sets and their bifurcations, it is necessary to introduce
normal forms and transformations. For systems with parameters, a transformation
consists of a change of coordinates and feedback. Both can be parameter related.
More specifically, a transformation is given by

x = φ(ξ, µ),
u = α(ξ, µ) + β(ξ, µ)v(1.4)

in which ∂φ
∂x (0, 0) is nonsingular and β(0, 0) 6= 0. If a transformation is applied to (1.1),

denote the equilibrium set of the resulting system by Ē. Then, in a neighborhood
of (ξ, µ) = (0, 0), a point (ξ, µ) is in E if and only if (x, µ) = (φ(ξ, µ), µ) is in Ē.
Therefore, in the sense of diffeomorphism, the transformation (1.4) does not change
the equilibrium set E (locally). Furthermore, the change of coordinates and feedback
(1.4) does not change the properties of our interest such as controllability (of the
linearization) or stabilizability [8].

Following the idea used in Part I, we simplify nonlinear control systems by the
transformations of form (1.4). This will be done in section 2. In sections 3–5 the
parametrization of equilibrium sets and the controllability at points in E are discussed
for systems with different normal forms. In section 6 the problem of stabilizability is
addressed for systems with a certain type of normal form. In this paper, the discussion
is focused on systems with a control input. For systems without control, the classical
bifurcation theory and some interesting applications can be found in [1], [2], [4],
and [9].

2. Normal forms and quadratic invariants. The first step of finding normal
forms is to simplify the linear part. Since the controllability index of (A,B) is n− 1,
there exists a linear change of coordinates and feedback independent of µ transforming
the system (1.1) into

ż = λz + γµ+O(z, x, µ, u)2,
ẋ = A2x+ Γµ+B2u+O(z, x, µ, u)2,

(2.1)

where Γ =
[
γ1 γ2 · · · γn−1

]T , x ∈ Rn−1, and z ∈ R. The pair (A2, B2) is in
Brunovsky form:

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


(n−1)×(n−1)

, B2 =


0
0
...
0
1


(n−1)×1

.

To further simplify the linearization of the system, consider another change of coor-
dinates

x̄1 = x1,
x̄i = xi + γi−1µ, i = 2, . . . , n,
ū = u+ γnµ,

(2.2)

which transforms system (2.1) into (2.3). For the reason of simplicity, we still use
(z, x) and u to represent the state variables and control input for the new system:

ż = λz + γµ+O(z, x, µ, u)2,
ẋ = A2x+B2u+O(z, x, µ, u)2.

(2.3)
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If λ 6= 0, the equation for z can be simplified by z̄ = z + γ
λµ. In the resulting system,

the equation for z̄ is

˙̄z = λz̄ +O(z̄, x, µ, u)2.

If λ = 0 and γ 6= 0, the change of coordinate z̄ = 1
γ z transforms the equation for z

into

˙̄z = µ+O(z̄, x, µ, u)2.

The normal forms for the linear part of (1.1) are summarized in the following lemma.
LEMMA 2.1. Given a system (1.1) satisfying assumption (1.3), there exists a linear

change of coordinates and feedback which transforms (1.1) into one of the following
forms:

λ 6= 0

ż = λz + f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, µ) + g

[1]
2 (z, x, µ)u+O(z, x, µ, u)3;

(2.4)

λ = 0, Jordan form

ż = µ+ f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, µ) + g

[1]
2 (z, x, µ)u+O(z, x, µ, u)3;

(2.5)

λ = 0, diagonal form

ż = f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, µ) + g

[1]
2 (z, x, µ)u+O(z, x, µ, u)3.

(2.6)

In the normal form, λ is an uncontrollable eigenvalue of the linearization at
(z, x, µ) = (0, 0, 0). If λ = 0 and if µ is considered as a state variable with µ̇ = 0, the
matrix of uncontrollable dynamic system is a zero matrix or it can be simplified into
a Jordan block. These two cases are shown in (2.5) and (2.6).

The following quadratic transformations are employed to simplify the quadratic
part of a system into its normal form while leaving the linear part invariant:[

z̄ x̄
]T =

[
z x

]T + φ[2](z, x, µ),

ū = u+ α[2](z, x, µ) + β[1](z, x, µ)u.
(2.7)

The normal forms are given in the following theorem. The notation f̃ [2](x) in the
theorem represents the extended controller form (see [10, equation (2.9)], [5], [7]).

THEOREM 2.2. Consider a control system satisfying assumption (1.3). Suppose
that its linearization is in the form given by (2.4), (2.5), or (2.6). Then there exists a
quadratic change of coordinates and feedback (2.7) which transforms the system into
one of the following normal forms.
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(i) For (2.4), the normal form is

ż = λz +
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1µx1µ+ γzµzµ+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) +O(z, x, µ, u)3.

(2.8)

(ii) For (2.5) the normal form is

ż = µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1µx1µ+ γzzz

2 +O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) +O(z, x, µ, u)3.

(2.9)

(iii) For (2.6), the normal form is

ż =
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1µx1µ+ γzµzµ+ γzzz

2 + γµµµ
2 +O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) +O(z, x, µ, u)3.

(2.10)

Proof. The theorem shows three quadratic normal forms for systems with different
linearizations. We prove them separately.

(i) Suppose the linearization has the same form as (2.4). We consider the following
extended system in which µ is treated as a state variable:

ż = λz + f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, µ) + g

[1]
2 (z, x, µ)u+O(z, x, µ, u)3,

µ̇ = 0.

By the result in [6], there exists a quadratic transformation

z = z̄ + φ
[2]
1 (z̄, x̄, µ̄), x = x̄+ φ

[2]
2 (z̄, x̄, µ̄),

µ = µ̄+ φ
[2]
3 (z̄, x̄, µ̄), u = ū+ α[2](z̄, x̄, µ̄) + β(z̄, x̄, µ̄)ū

so that, under the new coordinates, the dynamics of z̄ and x̄ are in their quadratic
normal forms given in [6], which are

˙̄z = λz̄ +
n−1∑
i=1

γxixi x̄
2
i + γzx1 z̄x̄1 + γx1µx̄1µ̄+ γzµz̄µ̄+O(z̄, x̄, µ̄, ū)2,

˙̄x = Ax̄+Bū+ f̃ [2](x̄) +O(z̄, x̄, µ̄, ū)3.

(2.11)

Since transformation (2.7) does not change the last variable µ, we substitute the
relation

µ = µ̄+ φ
[2]
3 (z̄, x̄, µ̄)

back into (2.11). It is obvious that this will not change the linear and quadratic parts
in the dynamics of z̄ and x̄. Notice that the system (2.11) is in the same form as
(2.8).
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(ii) If a system has the same linearization as (2.5), the results in [6] do not provide
a complete normal form for the system since the linearization of the uncontrollable
part (including the dynamics of z and µ) is not diagonal. To simplify the proof by
using results in [6], let’s assume that µ = 0. Then, system (2.5) is

ż = f
[2]
1 (z, x, 0) + g

[1]
1 (z, x, 0)u+O(z, x, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, 0) + g

[1]
2 (z, x, 0)u+O(z, x, u)3.

By a suitable transformation

z̄ = z + φ
[2]
1 (z, x), x̄ = x+ φ

[2]
2 (z, x),

ū = u+ α[2](z, x) + β[2](z, x)u,
(2.12)

the system can be transformed into the following normal form given in [6]. To simplify
the notation, we still use (z, x) instead of (z̄, x̄) as the state variables:

ż =
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 +O(z, x, u)3,

ẋ = A2x+B2u+ f̃ [2](x) +O(z, x, u)3.

So, transformation (2.12) transforms (2.5) into

ż = µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 + γzµzµ

+
n−1∑
i=1

bxiµxiµ+ γµµµ
2 + bµuµu+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) + dzµzµ+
n−1∑
i=1

dxiµxiµ+ dµµµ
2 + dµuµu+O(z, x, µ, u)3,

(2.13)
where dzµ, dxiµ, dµµ, and dµu are constant vectors of dimension n − 1. By a trans-
formation z̄ = z − bµuµxn−1, x̄ = x − dµuµxn−1 the quadratic part µu in (2.13) can
be cancelled. So, we focus on a system of the following form:

ż = µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 + γzµzµ+
n−1∑
i=1

bxiµxiµ+ γµµµ
2 +O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) + dzµzµ+
n−1∑
i=1

dxiµxiµ+ dµµµ
2 +O(z, x, µ, u)3.

(2.14)
Let’s consider a transformation

z̄ = z, x̄ = x+ φ[2](z, x, µ), ū = u+ α[2](z, x, µ) + β[1](z, x, µ)u,(2.15)

where φ[2](z, x, 0) = 0 and α[2](z, x, 0) = 0. To leave B2 invariant, we also assume

∂φ
[2]
i

∂xn−1
= 0(2.16)

for all 1 ≤ i ≤ n−2, where φ[2]
i is the ith component of φ[2]. By the separation principle

in [6], this transformation will not change the quadratic part of the uncontrollable
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dynamic system (the equation of z); it will not change the normal form f̃ [2]. Only
the quadratic part related to µ in the controllable dynamic system is affected by this
transformation. Denote by fµ(z, x, µ) the quadratic terms with µ in the dynamics of
x in (2.14)

fµ(z, x, µ) = dzµzµ+
n−1∑
i=1

dxiµxiµ+ dµµµ
2.(2.17)

Similarly, if the transformation (2.15) is applied to (2.14), the quadratic terms with
µ in the resulting dynamics of x̄ is denoted by f̄µ(z, x, µ). The relation between fµ
and f̄µ is defined by the following homological equation from [6]:

f̄µ + Π(φ[2], α[2]) = fµ,(2.18)

where Π is the linear operator

Π(φ[2], α[2]) =
∂φ[2]

∂x
A2x+

∂φ[2]

∂z
µ−A2φ

[2] −B2α
[2].

Define a linear space W to be the space consisting of quadratic vectors fµ in the form
of (2.17). Define V to be a linear space consisting of the elements (φ[2], α[2]) satisfying
(2.16). Then Π is a linear map from V to W . The kernel of Π is

ker(Π) =


(φ[2], α[2])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ
[2]
1 = a1zµ+ a2x1µ+ a3µ

2

φ
[2]
i =

∂φ
[2]
i−1

∂x
A2x+

∂φ
[2]
i−1

∂z
µ for i = 1, . . . , n− 1

α[2] =
∂φ

[2]
n−1

∂x
A2x+

∂φ
[2]
n−1

∂z
µ


.

Therefore, the dimension of ker(Π) is 3. The dimension of the image space under Π is
dim(Π(V )) = dim(V )− dim(ker(Π)) = n2 − 1 = dim(W ). This implies that the map
Π is onto. So, there exists a transformation given by (φ[2], α[2]) in V which solves
the homological equation (2.18) for f̄µ = 0. Therefore, the vector field fµ can be
cancelled. By the homological equations of g[1] in [6] and condition (2.16), a suitable
choice of β(z, x, µ) will avoid the quadratic terms involving u. Therefore, the system
can be simplified into the following form without fµ:

ż = µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 + γzµzµ+
n−1∑
i=1

bxiµxiµ+ γµµµ
2 +O(z, x, µ, u)3,

ẋ = A2x+B2u+ f̃ [2](x) +O(z, x, µ, u)3.
(2.19)
In the system, all quadratic parts are in normal forms except the terms with µ in the
equation of z. This part can be simplified by

z̄ = z +
n−2∑
i=1

cxiµxiµ+ czµzµ+ cµµµ
2 + czzz

2.(2.20)
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By the separation principle in [6], this transformation does not change the terms in
the controllable part. The equation of z is transformed into

˙̄z = µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γzzz

2 + γzµzµ+
n−1∑
i=1

bxiµxiµ+ γµµµ
2

+
n−1∑
i=2

cxi−1µxiµ+ czµµ
2 + 2czzzµ+O(z, x, µ)3.

(2.21)

By choosing the transformation such that bxiµ = −cxi−1µ for 2 ≤ i ≤ n − 1, γµµ =
−czµ, and γzµ = −2czz, the quadratic part of system (2.19) can be simplified into the
normal form (2.9).

(iii) The argument similar to the proof of (i) can be applied to (iii). Given a
system (2.6). If µ is considered as a state variable, the extended system is in the
following form:

ż = f
[2]
1 (z, x, µ) + g

[1]
1 (z, x, µ)u+O(z, x, µ, u)3,

ẋ = A2x+B2u+ f
[2]
2 (z, x, µ) + g

[1]
2 (z, x, µ)u+O(z, x, µ, u)3,

µ̇ = 0.

From [6], this system can be simplified into a normal form

˙̄z =
n−1∑
i=1

γxixi x̄
2
i + γzx1 z̄x̄1 + γx1µx̄1µ̄+ γzµz̄µ̄+ γzz z̄

2 + γµµµ̄
2 +O(z̄, x̄, µ̄, ū)3,

˙̄x = Ax̄+Bū+ f̃ [2](x̄) +O(z̄, x̄, µ̄, ū)3.
(2.22)
The quadratic transformation is

z̄ = z + φ
[2]
1 (z, x, µ), x̄ = x+ φ

[2]
2 (z, x, µ),

µ̄ = µ+ φ
[2]
3 (z, x, µ), ū = u+ α[2](z, x, µ) + β(z, x, µ)u.

Since the transformation for our purpose does not change µ, we substitute µ̄ = µ +
φ

[2]
3 (z, x, µ) back into (2.22). It is easy to see that this will not change the linear and

quadratic parts of the dynamics of z and x. Notice that the system (2.22) is in the
same form as (2.10).

In Part I, it is shown that the normal form of a system is completely determined
by the invariants. The computation of invariants is straightforward. This implies that,
given a control system, the normal form can be found without finding the change of
coordinates. A similar result holds for systems with parameters, which is proved in
the rest of the section. For the reason of simplicity, we assume that the linearization
of the system is in the form of (2.4)–(2.6). The parameter µ is treated as a state
variable such that µ̇ = 0. In the following, the extended system (including the original
system and µ̇ = 0) is denoted by

ẋe = fe(xe) + ge(xe)u.(2.23)

If a system is in one of the forms given by (2.4)–(2.6), then the extended system (2.23)
has state variables

xe =
[
z x µ

]T
.
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Denote by Cz, Cx, Xz, and Xµ the following row and column vectors in Rn+1:

Cz =
[

1 0 0 · · · 0
]
, Cx =

[
0 1 0 · · · 0

]
,

Xz =
[

1 0 0 · · · 0
]T
, Xµ =

[
0 0 · · · 0 1

]T
.

(2.24)

The linearization of the extended system at z = 0, x = 0, µ = 0 is denoted by (Ae, Be),

Ae =
∂fe
∂xe

∣∣∣∣
z=0,x=0,µ=0

, Be = ge(0).

DEFINITION 2.3. Given a control system satisfying (1.3). Suppose that its lin-
earization is in the form of (2.4)–(2.6). The quadratic invariants are defined to be

atr =
1
2
CxA

t−1
e [adrfe(ge), ad

r−1
fe

(ge)]
∣∣∣
z=0,x=0,µ=0

,
1 ≤ r ≤ n− 3,
1 ≤ t ≤ n− r − 2,

γxn−rxn−r =
1
2
Cz[adrfe(ge), ad

r−1
fe

(ge)]
∣∣∣
z=0,x=0,µ=0

, 1 ≤ r ≤ n− 1,

γzx1 = (−1)n−1 Cz[Xz, ad
n−1
fe

(ge)]
∣∣∣
z=0,x=0,µ=0

,

γx1µ = (−1)n−1 Cz[Xµ, ad
n−1
fe

(ge)]
∣∣∣
z=0,x=0,µ=0

,

(2.25)

and for (2.8)

γzµ = CzadXzadXµ(f)
∣∣
z=0,x=0,µ=0 ,(2.26)

for (2.9)

γzz =
1
2
Czad

2
Xz (f)

∣∣∣∣
z=0,x=0,µ=0

,(2.27)

for (2.10)

γzµ = CzadXzadXµ(f)
∣∣
z=0,x=0,µ=0 ,

γzz =
1
2
Czad

2
Xz (f)

∣∣∣∣
z=0,x=0,µ=0

,

γµµ =
1
2
Czad

2
Xµ(f)

∣∣∣∣
z=0,x=0,µ=0

.

(2.28)

THEOREM 2.4. Given a system satisfying (1.3), suppose its linearization is one
of (2.4)–(2.6).

(i) Quadratic transformations defined by (2.7) do not change the values of the
quadratic invariants.

(ii) The quadratic invariants of normal form (2.8)–(2.10) are the corresponding
coefficients of the quadratic terms.

Proof. (i) The quadratic invariants atr, γxixi , γzx1 , and γx1µ are defined in the
same way as the invariants for systems without parameters because the parameters
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in the system are treated as state variables. Following the same argument used in
the proof of Theorem 2.1 in Part I, one can prove that atr, γxixi , γzx1 , and γx1µ are
invariant under the quadratic change of coordinates and feedback (2.7). For systems
in the form of (2.4), γzµ is the coefficient of zµ in the uncontrollable dynamics, which is
a resonant term (see, for instance, [3]). It cannot be changed by change of coordinates
of the form

z̄ = z + φ[2](z, µ).

By the separation principle in [6], the coefficient of resonant term does not change
under any quadratic transformation of the form (2.7). Similarly, one can prove that,
for system (2.6), γzz, γzµ, and γµµ are invariant under the quadratic transformations
because they are the coefficients of resonant terms. If system (2.5) is under consider-
ation, (2.21) shows that γzz is invariant under (2.20). By the separation principle in
[6], transformations other than (2.20) do not change the coefficient γzz.

(ii) By the definition of invariants, it is obvious that γzµ, γzz, and γµµ are the
coefficients of zµ, z2, and µ2, respectively. For the other invariants, we will prove the
result for system (2.9). The other two cases are similar. Keep in mind that the state
variables are in the order of z, x, µ for the extended system. The Lie brackets of fe
and ge are

adrfe(ge) = (−1)r[

n−r︷ ︸︸ ︷
0 · · · 0 1 0 · · · 0]

+(−1)r[

n−r−1︷ ︸︸ ︷
2γxn−rxn−rxn−r 2a1 rxn−r · · · 2an−r−2 rxn−r 0 · · · 0]

+hr(xn−r+1, xn−r+2, . . . , xn−1) +O(z, x, µ)2

for 1 ≤ r < n− 2. Furthermore,

adn−2
fe

(ge) = (−1)n−2
([

0 1 0 · · · 0
]T +

[
2γx2x2x2 0 0 · · · 0

]T)
+hn−2(x3, x4, . . . , xn−1) +O(z, x, µ)2

and

adn−1
fe

(ge) = (−1)n−1


2γx1x1x1 + γzx1z + γx1µµ

0
...
0


+hn−1(x2, x3, . . . , xn−1) +O(z, x, µ)2.

Substituting these relations into the right side of (2.25), they are equal to the corre-
sponding coefficients.

Given a system satisfying assumption (1.3), the linear part of the system can be
transformed into a system in one of the forms given by (2.4), (2.5), or (2.6). They
have different bifurcation patterns which are addressed in the following sections.

3. Systems with λ 6= 0. In this section, we assume that the uncontrollable
mode λ is not zero. By a linear change of coordinates, such systems can be transformed
into (2.4). The main theorem in this section gives a parametrization of the equilibrium
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set and the answer to Question 2 in Part I, namely, the controllability of the system
at points in E.

THEOREM 3.1. Consider a system of form (2.4).
(i) The equilibrium set E satisfies

x1 = ν,
z = O(ν, µ)2,
xi = O(ν, µ)2, 2 ≤ i ≤ n− 1.

(3.1)

(ii) There exists a function c(x1, µ) in the following form:

c(x1, µ) = 2γx1x1x1 + γx1µµ+O(x1, µ)2(3.2)

such that the system is linearly controllable at (z, x, µ) ∈ E if and only if c(x1, µ) 6= 0.
Remark. The theorem implies that the equilibrium set is a two-dimensional mani-

fold. At the origin, the manifold is tangent to the x1µ-space. For any fixed µ0, the set
of equilibrium points with µ = µ0 is a smooth curve in the state space. Therefore, the
equilibrium set does not have bifurcation. However, part (ii) of Theorem 3.1 shows
that the controllability of the system changes as the equilibrium points are varied.
In fact, if γ2

x1x1
+ γ2

x1µ 6= 0, the system is linearly controllable at all the equilibrium
points in E except a one-dimensional submanifold. This submanifold is tangent to
the subspace

2γx1x1x1 + γx1µµ = 0

at the origin. If both γx1x1 and γx1µ are zero, the controllability of the system depends
on the higher degree terms.

Remark. If γx1x1 6= 0, then the submanifold c(x1, µ) = 0 is transversal to the
set E0 = {(x, 0) ∈ E}. Therefore, the system is always linearly controllable at any
equilibrium point in E0 except the origin. This is actually the result shown in Theorem
4.1 in Part I.

Example. To show a typical example, we consider the following system in normal
form:

ż = −z + 5x2
1 + x2

2 + zx1 + zµ− 10x1µ,
ẋ1 = x2,
ẋ2 = u.

The equilibrium set is

x2 = 0, z = −5x2
1 − 10x1µ

−1 + x1 + µ
.

This manifold is tangent to x1µ-plane at the origin. In zx1µ-space, the graph of E is
a saddle as shown in Figure 3.1. The curve on the surface E is the subset satisfying
the condition c(x1, µ) = 0, where

c(x1, µ) = 10x1 −
5x2

1 − 10x1µ

−1 + x1 + µ
− 10µ.

The system is not linearly controllable at the points on the curve.
Proof of Theorem 3.1. (i) Given any quadratic change of coordinates and feedback

(2.7), under the new coordinates, the equations in (3.1) are equivalent to

x̄1 = ν̄, z̄ = O(ν̄, µ)2, xi = O(ν̄, µ)2,



BIFURCATION AND NORMAL FORM II 223

-0.1
-0.05

0
0.05

0.1

x-0.1 -0.05 0 0.05 0.1mu

-0.05

0

0.05

0.1

0.15

z

FIG. 3.1. The equilibrium set in zx1µ-space.

which have the same form as (3.1). Therefore, property (i) of Theorem 3.1 is invariant
under quadratic transformations. To prove (i), it is enough to show the result for
systems in the normal form. Consider system (2.8); it is obvious that a point in the
equilibrium set satisfies

xi +O(z, x, µ)2 = 0, 2 ≤ i ≤ n− 1,
λz +O(z, x, µ)2 = 0.

The solution of these equations for xi, i = 2, . . . , n− 1 and z is in the form of (3.1).
(ii) Once again, we only prove the result for normal forms since the controllability

and the linear part of c(x1, µ) are invariant under quadratic transformations. Modulo
higher degree terms, the matrix A and B in the linearization of (2.8) at any point
(z, x, µ) ∈ E satisfies

A =
[
λ 0
0 A2

]

+



γzx1x1 + γzµµ 2γx1x1x1 + γzx1z + γx1µµ 2γx2x2x2 2γx3x3x3 · · · 2γxn−1xn−1xn−1
0 0 0 2a1n−3x3 · · · 2a1 1xn−1
...

...
...

...
. . .

...
0 0 0 0 · · · 2an−3 1xn−1
0 0 0 0 · · · 0
0 0 0 0 · · · 0


,

B =
[

0 0 · · · 1
]T +O(z, x1, µ)2.

From relation (3.1), the matrix A satisfies

A =
[
λ 0
0 A2

]
+
[
γzx1x1 + γzµµ 2γx1x1x1 + γx1µµ 0

0 0 0

]
n×n

+O(x1, µ)2 .

Therefore, the controllability matrix at an equilibrium point is

[
B AB · · · An−1B

]
=
[

0 2γx1x1x1 + γx1µµ
J 0

]
+O(x1, µ)2,
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where

J =


0 0 · · · 1
...

...
...

0 1 · · · 0
1 0 · · · 0

 .(3.3)

By suitable row and column operations, all the quadratic and higher degree terms
can be cancelled except the element at the up right corner; the resulting matrix is

R =
[

0 c(x1, µ)
J 0

]
,

and c(x1, µ) satisfies

c(x1, µ) = 2γx1x1x1 + γx1µµ+O(x1, µ)2.

It is obvious that the matrix R has full rank (i.e., the system is linearly controllable)
if and only if c(x1, µ) 6= 0. This proves the second part of the theorem.

4. Systems with λ = 0 and Jordan form in the uncontrollable dynam-
ics. In this section, we consider system (2.5). In this case, the values of x1 and z are
used as the parameters of the equilibrium set E. Furthermore, since the transforma-
tion (2.7) does not change µ, all the quadratic terms in the parametric equation of µ
can be found. The bifurcation addressed in the present section has a natural relation
with the saddle node bifurcation of dynamic systems. Consider system (2.9) without
cubic terms. Then x = 0 defines the zero dynamics of the system for output y = x1.
From the normal form (2.9), it is easy to show that its zero dynamics have a saddle
node bifurcation at the origin.

THEOREM 4.1. Given a system (2.5), we have the following conditions.
(i) Its equilibrium set satisfies

x1 = ν1,
z = ν2,
µ = −γx1x1ν

2
1 − γzx1ν1ν2 − γzzν2

2 +O(ν1, ν2)3,
xi = O(ν1, ν2)2, 2 ≤ i ≤ n− 1.

(4.1)

(ii) There exists a function c(z, x1) in the form

c(z, x1) = γzx1z + 2γx1x1x1 +O(z, x1)2(4.2)

such that the system is linearly controllable at a point (z, x, µ) ∈ E if and only if
c(z, x1) 6= 0.

Remark. The projection of E to zx1µ-space is approximately a quadratic surface.
It is a paraboloid or a saddle. In fact, if the matrix

Q1 =

 γx1x1

γzx1

2γzx1

2
γzz

(4.3)

is sign definite (det(Q1) > 0), E is approximately a paraboloid. If (4.3) is not sign
definite but it has full rank (det(Q1) < 0), E is approximately a saddle. In any case,
E has bifurcation near µ = 0. More specifically, we define

Eµ0 = {(x, µ) ∈ E|µ = µ0}.(4.4)
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FIG. 4.1. The equilibrium set in zx1µ-space.

Then the topology of Eµ changes as µ passing through zero. If E is approximately a
paraboloid, Eµ is empty for the values of µ on one side of zero, and it is a closed curve
if µ is on the other side. If E is approximately a saddle, then Eµ is approximately
two lines which meet at the origin for µ = 0. It is a connected set. However, Eµ is
approximately a hyperbola for µ 6= 0 which is not a connected set. In the following,
two examples are given to show the bifurcation diagrams of systems in normal form
with det(Q1) > 0 and det(Q1) < 0.

Example. Consider the system

z = µ+ x2
1 + x2

2 + zx1 + x1µ+ z2,
ẋ1 = x2,
ẋ2 = u.

(4.5)

It is easy to check that det(Q1) = 3/4. Therefore, the graph of E is a paraboloid. In
fact, the equilibrium set is

x2 = 0, µ = −x
2
1 + zx1 + z2

1 + x1
.

The function c(z, x1) is

c(z, x1) = 2x1 + z − x2
1 + zx1 + z2

1 + x1
.

The graph of E and the curve c(z, x1) = 0 on E is shown in Figure 4.1. The system
is linearly controllable at all points in E except the equilibria on the curve given by
c(z, x1) = 0.

From Figure 4.1, the bifurcation of E is obvious. If µ > 0, the set Eµ is empty.
If µ < 0, the set Eµ is a closed curve around the origin.

Example. Consider the system

z = µ− x2
1 + x2

2 + zx1 + x1µ+ z2,
ẋ1 = x2,
ẋ2 = u.

(4.6)

It is easy to check that det(Q1) = −5/4. Therefore, the graph of E is a saddle. In
fact, the equilibrium set is

x2 = 0, µ = −−x
2
1 + zx1 + z2

1 + x1
.
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FIG. 4.2. The equilibrium set in zx1µ-space.

The function c(z, x1) is

c(z, x1) = −2x1 + z − −x
2
1 + zx1 + z2

1 + x1
.

The graph of E and the curve c(z, x1) = 0 on E are shown in Figure 4.2. The system is
linearly controllable at all points in E except the equilibria on the curve c(z, x1) = 0.

The bifurcation of E is different from the previous example. In this case, Eµ
consists of two lines through the origin when µ = 0. If µ 6= 0, the set Eµ is a
hyperbola.

Proof of Theorem 4.1. (i) Modulo the higher degree terms in (4.1) (O(ν1, ν2)3

in the equation of µ and O(ν1, µ2)2 in the equations of xi, i = 2, . . . , n − 1), the
functions are invariant under transformation (2.7). Therefore, we consider only a
system in normal form, which is (2.9). Any point in the equilibrium set satisfies

u = O(x1, µ)2, xi = O(x1, µ)2, 2 ≤ i ≤ n− 1.(4.7)

Substituting this relation into the equation

µ+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1µx1µ+ γzzz

2 +O(z, x, µ, u)3 = 0

we get

µ+ γx1x1x1 + γzx1zx1 + γx1µx1µ+ γzzz
2 +O(z, x1, µ)3 = 0.

Define x1 = ν1 and z = ν2. The equation has a unique solution for µ near µ = 0, and
its solution is in the form of (4.1).

(ii) Based on (4.1), the linearization of system (2.9) at a point in E is

A =


γzx1x1 + 2γzzz 2γx1x1x1 + γzx1z 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0

+O(z, x1)2,

B =
[

0 0 · · · 1
]T +O(z, x1)2.

(4.8)
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The controllability matrix is

R =
[

0 γzx1z + 2γx1x1x1
J 0

]
+O(z, x1)2,(4.9)

where J is a matrix defined in (3.3). By elementary matrix operations, the rank of
the matrix equals the rank of a matrix in the following form:[

0 c(z, x1)
J 0

]
,

where the function c(z, x1) is in the form of (4.2). Therefore, the system is linearly
controllable if and only if c(z, x1) 6= 0.

5. Systems with λ = 0 and diagonal form in uncontrollable dynamics.
Comparing with the previous section, the systems considered in this section have
a fundamental difference. The linear part in the uncontrollable dynamic system is
zero. To find a parametrization for the set E, the matrix of the quadratic part in the
uncontrollable dynamics is very important. This matrix for normal form (2.10) is

Q =


γzz

1
2γzx1

1
2γzµ

1
2γzx1 γx1x1

1
2γx1µ

1
2γzµ

1
2γx1µ γµµ

 .(5.1)

The eigenvalues of Q are denoted by d1, d2, d3. Suppose T1, T2, T3 are three column
unit eigenvectors of Q associated with the eigenvalues d1, d2, d3, respectively. In the
parametrization of E, new variables w1, w2, w3 are used. Their relation with the state
variables and parameters are

[
w1 w2 w3

]T =
[
T1 T2 T3

]T  z
x1
µ

 .(5.2)

THEOREM 5.1. Given a system satisfying (1.3), suppose its linearization is in the
form of (2.6).

(i) If Q is positive definite or negative definite, then (z, x, ν) = (0, 0, 0) is an
isolated equilibrium point.

(ii) If Q is not sign definite and if it has full rank, then the equilibrium set satisfies

w3 = ±

√
−d1w

2
1 + d2w

2
2

d3
+O(w1, w2)2,

xi = O(w1, w2)2, 2 ≤ i ≤ n− 1
(5.3)

where d1 and d2 represent the two eigenvalues with the same sign and wi, i = 1, 2, 3,
is defined by (5.2).

(iii) If the conditions in (ii) are satisfied, then there exists a function c(z, x1, µ)
in the following form:

c(z, x1, µ) = γzx1z + 2γx1x1x1 + γx1µµ+O(z, x1, µ)2(5.4)

such that the system is linearly controllable at a point (z, x, µ) ∈ E if and only if
c(z, x1, µ) 6= 0.
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FIG. 5.1. The equilibrium set in zx1µ-space.

Remark. In case (ii), the graph of the equilibrium set in zxµ-plane is approximated
by a cone

d1w
2
1 + d2w

2
2 + d3w

2
3 = 0.

The center line of the cone is parallel to the eigenvector of d3. For any fixed value of
µ, the set of equilibrium points Eµ (defined in (4.4)) is approximately a conic curve.
The shape of Eµ depends on the orientation of the cone in zx1µ-space. Furthermore,
for small values of µ, the topology of Eµ at µ = 0 is always different from that of Eµ
at µ 6= 0.

The surface c(z, x1, µ) = 0 is tangent to the plane γzx1z + 2γx1x1x1 + γx1µµ = 0
in zx1µ-space. In general, the intersection of such plane with the cone has a single
point or it consists of two different lines. In the following, an example is shown in
which the center line of the cone is µ-axis. The subset of E satisfying c(z, x1, µ) = 0
consists of two lines through the origin.

If a system in normal form (2.10) has no cubic and higher degree terms, then x = 0
defines its zero dynamics for the output y = x1. Suppose that the eigenvectors of d3
are not normal to zµ-space, then the intersection between E and zx1-plane consists
of two lines when the bifurcation is a cone. This implies that the zero dynamics have
a transcritical bifurcation.

Example. Consider the system

ż = x2
1 + x2

2 + z2 − µ2,
ẋ1 = x2,
ẋ2 = u.

The equilibrium set is

x2 = 0, x2
1 + z2 − µ2 = 0.

The function c(z, x1, µ) is 2x1. In zx1µ-space, it is a cone shown in Figure 5.1. The
two lines on the cone are the set c(z, x1, µ) = 0. The system is linearly controllable
at all points in E except those on the two lines.

Proof of Theorem 5.1. (i) Consider the system (2.10). The points in equilibrium
set satisfy equation (4.7). Substituting (4.7) into the equation

n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1µx1µ+ γzµzµ+ γzzz

2 + γµµµ
2 +O(z, x1, µ)3 = 0
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we get

γx1x1x
2
1 + γzx1zx1 + γx1µx1µ+ γzµzµ+ γzzz

2 + γµµµ
2 +O(z, x1, µ)3 = 0.(5.5)

The matrix of the quadratic function in (5.5) is given by (5.1). Therefore, if the
matrix Q is positive definite or negative definite, so is the function on the left side of
(5.5). It has no nontrivial solution near (z, x1, µ) = (0, 0, 0).

(ii) If the matrix Q in (5.1) is not sign definite, and if it has full rank, then the
matrix has three nonzero eigenvalues d1, d2, and d3. Furthermore, we can assume
that d1d1 > 0. Then d3 has different sign from d1 and d2. By a change of coordinates
(5.2), equation (5.5) becomes

d1w
2
1 + d2w

2
2 + d3w

2
3 +O(w1, w2, w3)3 = 0,

solving the equation for w3. The solution is in the form of (5.3).
(iii) Given an equilibrium point (z, x, µ) in E, keep in mind that xi, i = 2, . . . , n−

1, has no linear terms of z, x1, µ. Therefore, the linearization of the system at the
point with respect to z, x is

A =


γzx1x1 + γzµµ+ 2γzzz 2γx1x1x1 + γzx1z + γx1µµ 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0


+O(z, x1, µ)2,

B =
[

0 0 · · · 1
]T +O(z, x1, µ)2.

The controllability matrix is[
0 2γx1x1x1 + γzx1z + γx1µµ
J 0

]
+O(z, x1, µ)2

where J is defined by (3.3). Using elementary row and column operations, it can be
proved that the matrix has the same rank as the following matrix R:

R =
[

0 2γx1x1x1 + γzx1z + γx1µµ+O(z, x1, µ)2

J 0

]
.

Define c(z, x1, µ) to be the nonconstant entry

c(z, x1, µ) = 2γx1x1x1 + γzx1z + γx1µµ+O(z, x1, µ)2.

In a neighborhood of the origin, the matrix R has full rank or, equivalently, the system
is linearly controllable at the equilibrium point if and only if c(z, x1, µ) 6= 0.

One conclusion from the results in sections 3–5 is that the topology and bifurcation
of E has five different cases. This is summarized in Table 5.1.

6. Stabilizability. In this section, we prove a theorem on stabilizability of con-
trol systems around an uncontrollable equilibrium point. Given a system with con-
trollability index n − 1 at the origin, if the uncontrollable mode is positive (i.e., the
case of λ > 0), then the uncontrollable mode will be positive at all uncontrollable
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TABLE 5.1
The classification of equilibrium sets.

Condition Equilibrium set Example

λ 6= 0 smooth 2-d manifold tangent to x1µ-plane Figure 3.1

λ = 0, Jordan form paraboloid Figure 4.1
det(Q1) > 0
λ = 0, Jordan form saddle Figure 4.2
det(Q1) < 0
λ = 0, diagonal form single point
Q is sign definite
λ = 0, diagonal form cone Figure 5.1
Q is indefinite, det(Q) 6= 0

equilibrium points near the origin. On the other hand, if λ < 0, the system is always
stabilizable at all the equilibrium points near the origin. Therefore, the interesting
case is λ = 0. In this section, we focus on the case in which the uncontrollable
dynamics have Jordan form, i.e., the case of paraboloid or saddle bifurcations.

If one or both of the quadratic invariants γx1x1 and γzx1 are not zero, there
is a curve c(z, x1) = 0 in the equilibrium set E such that the system is not lin-
early controllable at all the points on the curve. In the following, we focus on the
problem of feedback stabilization at the uncontrollable equilibrium, which is the set
E ∩ {c(z, x1) = 0}. This set is denoted by Eu = {(z, x, µ) ∈ E|c(z, x1) = 0}.

THEOREM 6.1. Consider a system (2.5). Suppose det(Q1) 6= 0. If γ2
x1x1

+ γ2
zx1
6=

0, then the origin divides the curve Eu into two pieces. The system is stabilizable by
C1 state feedback on one piece and it is not stabilizable by any C1 state feedback on
the other piece. More specifically, the system is stabilizable around a point (z, x, µ)
in Eu if γzx1x1 + 2γzzz < 0, and the system is not stabilizable at a point in Eu if
γzx1x1 + 2γzzz > 0.

Remark. The theorem shows that, in general, the property of stabilizability
switches from stabilizable to unstabilizable or vice versa as equilibrium points in Eu
pass through the origin. For instance, the system given in (4.5) satisfies γx1x1 = 1,
γzx1 = 1, and γzz = 1. The conditions in Theorem 6.1 are fulfilled. The stabilizable
(x1 + 2z < 0) and unstabilizable (x1 + 2z > 0) equilibrium points in Eu are shown in
Figure 6.1 by solid and dotted curves, respectively.

Proof of Theorem 6.1. It is sufficient to prove the theorem for the normal forms.
Consider a system (2.9). Given an equilibrium point (z, x, µ) in Eu, the linearization
of the system at the equilibrium point is given by (4.8). Since at least one of γx1x1

and γzx1 is not zero, we assume γx1x1 6= 0 (the proof for the case γzx1 6= 0 is similar).
From (4.2), the point (z, x, µ) in Eu satisfies

x1 = − γzx1

2γx1x1

z +O(z)2.(6.1)

Substituting this relation into (4.8), we get the linearization of the system at the given
equilibrium point:

A =

 − γ2
zx1

2γx1x1

z + 2γzzz 0

0 A2

+O(z)2, B =
[

0 0 · · · 1
]T +O(z)2.

(6.2)
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FIG. 6.1. The set Eu. Dotted line: unstabilizable equilibrium points. Solid line: stabilizable
equilibrium points.

The controllability matrix is in the following form

R(z) =
[

0 0
J 0

]
+O(z)2.

In Eu, the rank of the matrix R(z) is n − 1. There is a vector valued function
C(z) =

[
c1(z) · · · cn(z)

]
such that C(z)R(z) = 0, C(0) = [1, 0, . . . , 0]. It is easy

to check that the function C(z) has the form

C(z) =
[

1 0 · · · 0
]

+O(z).(6.3)

By the linear control theory, the vector C(z) is normal to the controllability subspace
of the linear system (A,B). The uncontrollable mode of the linearization at a point
in Eu is a number λ̄ satisfying

C(z)A = λ̄C(z).(6.4)

From (6.2) and (6.3), relation (6.4) is equivalent to

−
γ2
zx1

2γx1x1

z + 2γzzz +O(z)2 = λ̄(1 +O(z)).

Therefore, the uncontrollable mode of the linearization at equilibrium point (z, x, µ)
in Eu satisfies

λ̄ =
4γzzγx1x1 − γ2

zx1

2γx1x1

z +O(z)2.(6.5)

Except for z = 0, this number is nonzero near the origin because det(Q1) 6= 0. The
sign of the function changes as z passes through zero. From (6.1), on the curve Eu
we have

4γzzγx1x1 − γ2
zx1

2γx1x1

z = γzx1x1 + 2γzzz +O(z).

This implies that, near the origin, the uncontrollable mode λ of the system at an
equilibrium point in Eu has the same sign as γzx1x1 + 2γzzz. A nonlinear system
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is stabilizable by C1 feedback if the uncontrollable mode is less than zero, and it is
not stabilizable by any C1 state feedback if the uncontrollable mode is greater than
zero. Therefore, the system is stabilizable if γzx1x1 + 2γzzz < 0 and the system is
not stabilizable if γzx1x1 + 2γzzz > 0. Relation (6.5) implies that the property of
stabilizability by C1 feedback changes as z moving across zero.

7. Conclusion. For control systems satisfying assumption (1.3), their equilib-
rium sets are classified under changes of coordinates and feedback. There are five
different classes. They are summarized in Table 5.1. The equilibrium sets in different
classes have either a different topology or a different bifurcation.

Another topic addressed in the paper is the relationship between quadratic invari-
ants and controllability or stabilizability. In general, the uncontrollable equilibrium
points form a one-dimensional curve. The tangent line of the curve is uniquely de-
termined by quadratic invariants. Stabilizability at uncontrollable equilibrium points
is discussed in section 6. If E is a paraboloid or a saddle, then it is proved that
the stabilizability changes as an uncontrollable equilibrium point passes through the
origin.
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Abstract. Optimal control of perturbed Hamiltonian systems in <2 is studied. Systems are
considered with a control term scaling with the size of a small perturbing noise. The dynamics are
shown to converge in a certain sense to a diffusion on a graph. Using the approach developed in
[M. I. Freidlin and A. D. Wentzell, Mem. Amer. Math. Soc., 109 (1994), pp. 1–82] and [M. I.
Freidlin and A. D. Wentzell, Ann. Probab., 21 (1993), pp. 2215–2245] for random perturbations
of Hamiltonian systems, a convergence theorem is discussed. An optimal control theorem is then
developed to maximize the expected exit time from a domain. This control is asymptotically robust
for small noise. Several examples are provided.
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1. Introduction. Consider a Hamiltonian system in the plane

˙̃Xt = ∇H(X̃t),

X̃0 = (X̃1
0 , X̃

2
0 ) = x ∈ <2,

∇H(x) =
[
∂H
∂x2

(x),− ∂H
∂x1

(x)
]
.

(1)

Let H(x) → ∞ as |x| → ∞. The trajectories of this system describe a collection of
oscillations which may be grouped in families based on the specific extrema of H they
circle. For example, let H(x) be shown in Figure 1(a) and the corresponding state-
space trajectories be shown in Figure 1(b). The trajectories or oscillations in Figure
1(b) can be grouped into three families. The ∞-shaped curve Γ4 is the separatrix,
which goes through the Hamiltonian function’s saddle point. Two families are inside
the ∞-shaped curve Γ4: the family circling O1 (which includes the curve Γ1) and
the family circling O3 (which includes the curve Γ3). The third family of oscillations
encircles the entire ∞-shaped curve Γ4, including the points O1, O2, and O3. The
trajectory Γ2 is in this family.

Of course, if there is no noise, the system will preserve the oscillations determined
by the initial integral H(x). Our interest is in the situation with a small perturbing
noise and a similarly scaled control. Let the white noise

√
ε ˙̃W t perturb the system,

0 < ε� 1,

˙̃Xε
t = ∇H(X̃ε

t ) + ε1/2 ˙̃Wt,

X̃ε
0 = x ∈ <2.
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FIG. 1.

Then the perturbed trajectory will, with probability 1, sooner or later leave any
bounded domain. Suppose we would like to preserve the oscillations of not very large
and not very small amplitudes as long as possible. For example, a domain G is shown
in Figure 1(c) bounded by the unperturbed system trajectories Γ1, Γ2, and Γ3, and
our goal is to keep the trajectory of the perturbed system inside G as long as possible.
Suppose that to achieve this goal we can control the vector field in the dynamical
system, and the size of the control is also scaled by ε:

˙̃
Xε,c
t = ∇H(X̃ε,c

t ) + ε c(X̃ε,c
t ) + ε1/2 ˙̃Wt,

X̃ε,c
0 = x ∈ <2.

(2)

It can be shown that the exit time from the domain G is of order 1
ε . To make it

of order 1 as ε ↓ 0 we rescale time t
ε → t. Then the equation for Xε,c

t = X̃ε,c
t/ε has the

form

˙Xε,c
t =

1
ε
∇H(Xε,c

t ) + c(Xε,c
t ) + Ẇt,

Xε,c
0 = x ∈ <2.

(3)

We assume that the vector field c(x) is twice continuously differentiable (with
uniformly bounded derivatives) everywhere except possibly at points located on a
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finite number of trajectories of the nonperturbed system in equation (1). Krylov [13],
among others, discusses stochastic differential equations with coefficients with simple
discontinuities [14]. To bound the magnitude of the control, we allow only c such
that ct(x)M(x)c(x) ≤ K2 for some constant K > 0 and some matrix function M(x)
which is uniformly positive definite over G. M(x) may be taken as symmetric since
ct(x)M(x)c(x) = 1

2c
t(x)(M(x)+M t(x))c(x) for any matrix M . M(x) is also assumed

to be twice continuously differentiable with bounded derivatives. Such control vector
fields we call permissible, and we denote the class of permissible fields by ΠK . This
class ΠK is much narrower than is actually required but allows more direct application
of the results in [1, 2]. The concluding section addresses this issue.

Let τ ε,c be the exit time from the domain G; τ ε,c = min{t : Xε,c
t ∈/ G}. Our

goal is to make Exτ ε,c as big as possible by choosing the control c ∈ ΠK . One can, of
course, consider this problem for a fixed ε. If c∗,ε = c∗,ε(x) ∈ ΠK is the optimal control
and V ∗,ε(x) = Exτ

ε,c∗ , then one can write (for M(x) = I) the Bellman equation for
V ∗(x):

1
2

∆V ∗,ε(x) +
1
ε
∇H(x) · ∇V ∗,ε(x) +K|∇V ∗,ε(x)| = −1, x ∈ G,

V ∗,ε(x)|∂G = 0.
(4)

Then c∗,ε(x) = ∇V ∗,ε(x) and V ∗,ε(x) = Exτ
ε,c∗ ≥ Exτ

ε,c for all c ∈ ΠK . Equation
(4) requires the solution of a nonlinear boundary value problem in <2 for each value
of ε. We show in this paper how this problem may be replaced, for small ε, with an
ordinary differential equation that is independent of ε. If 0 < ε � 1, one can give a
more explicit answer which may be more useful in application. One can calculate a
control c∗(x) ∈ Πk such that for any c ∈ ΠK ,

Exτ
ε,c∗ ≥ Exτ ε,c

for x ∈ G and ε small enough. So the control c∗ may be considered optimal in an
asymptotic sense; c∗ will outperform any other control if the noise is small enough.

We should comment first on the relative scaling of the noise and control. Of
course, our theoretical result is a limit as ε → 0, but in applications we expect to
have a fixed noise size (which implies a fixed ε). If this noise is “small,” then the
appropriately normalized exit time should be well approximated by the theoretical
limit. This measure of “smallness” is in practice easy to recognize: the perturbed
dynamical system should make many oscillations (very nearly following the determin-
istic unperturbed trajectories) before the noise causes much change in the value of
the Hamiltonian H(X̃ε

t ). Thus, for short times, the Hamiltonian dynamics will clearly
dominate the noise perturbations.

The control is also scaled by ε in equation (2). Again, in applications we anticipate
a fixed (but “small”) value of ε to be in effect. Scaling both noise and control together
reflects the fact that they are both small and both approximately of the same order
of magnitude. Example 1 below provides an example of how our optimum control
performs for a fixed (but “small”) size for the noise and control.

Of course, other relative scalings of the noise and control are possible and in
some cases might be more appropriate. If the control is not small, then the un-
derlying Hamiltonian dynamics are corrupted. These asymptotic control problems
involving residence time and probability control have been considered before for non-
Hamiltonian systems. Freidlin and Wentzell used large deviation theory to analyze
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residence time control problems for non-Hamiltonian systems in [3, 4]. Results of this
type were also discussed by Fleming and Souganidis in [5] and extended by Dupuis
and Kushner [6] to minimizing escape probabilities in a special class of degenerate
noise. Minimizing expected escape time or probability using large deviations for the
linear, constant coefficient equation has been explored in detail by Meerkov, Runolf-
sson, and Kim in [7, 8, 9, 10, 11]. Kappos [12] also considered similar problems.
Nonasymptotic stochastic control problems in <N , allowing progressively measurable
controls and more general performance measures, have been discussed in detail by
Krylov [13] and in many other references. In general, difficult computations are in-
volved in solving two-dimensional optimal stabilization problems using any of these
methods, while the methods of this paper (applicable only in the Hamiltonian case)
are quite implementable. The notable exception is in case of linear dynamics which
is so effectively analyzed by Meerkov, Runolfsson, and Kim.

For Hamiltonian systems the exit from the domain is not a large deviation, and
the large deviation approach is too rough for such problems. A graph Γ can be
constructed that is homeomorphic to the set of connected components of the level
sets of the Hamiltonian. The vertices of the graph correspond to the critical points
of the Hamiltonian: exterior vertices correspond to extrema, interior vertices to the
saddle points and their associated∞-shaped trajectories. Interior points of the graph
segments correspond to the periodic trajectories of the system. Our example in Figure
1 illustrates the map. Associated with the three trajectory families is the graph shown
in Figure 1(d). The ∞-shaped separatrix Γ4 is mapped to the joint in the center
of the graph. The lower-left-hand segment corresponds to the family of trajectories
encircling O1, with the equilibrium O1 mapping to the lower segment endpoint. Hence
the curve Γ1 maps to a point on segment 1. Similarly, the lower right segment in Figure
1(d) corresponds to oscillations circling O3, with O3 mapping to the lower segment
endpoint. The curve Γ3 maps to a point on segment 3. The oscillations circling the
∞- shaped curve Γ4 map to the upper segment in the graph, so that Γ2 maps to
segment 2. Such a graph for description of the perturbed Hamiltonian system was
introduced by Freidlin and Wentzell [1, 2], and we refer to this paper for a rigorous
definition. Each point x ∈ <2 with H(x) = H belongs to a connected component
Ci(H) of the level set {x : H(x) = H}. Such a set can consist of one or several
connected components. Let Y (x) : x→ (i(x), H(x)) be the mapping from <2 into Γ.
Then, for x ∈ Ci(H), Y (x) is the point of the graph Γ corresponding to Ci(H).

As is shown in [1, 2], the stochastic process Y (Xε,0
t ) = Y ε,0t in the case c(x) = 0

converges weakly to a diffusion process on Γ. Inside each edge the process is defined
by averaging the diffusion in the plane along the periodic unperturbed Hamiltonian
trajectories. At the vertices some gluing conditions should be added (see below). Let
ΓG = Y (G) as shown, for example, in Figures 1(c) and 1(d). By a modification of
the proof given in [1] we show here that if the drift c(x) is added, as in equation (3),
Y ε,ct = Y (Xε,c

t ) also converges weakly to a Markov process Y ct on the graph Γ. Then
we can check that

lim
ε↓0

Exτ
ε,c = EY (x)τ

c,

where τ c is the exit time for Y ct from the set ΓG. The function EY (x)τ
c = v(x) is the

unique solution of a simple ordinary differential equation on Γ satisfying some natural
boundary conditions and gluing conditions at the vertices. Using this fact, one can
calculate explicitly the control c∗ maximizing the Ezτ c, z ∈ ΓG in c ∈ ΠK . It turns
out that in general |c∗| = K everywhere, and c∗ changes sign at a finite number of
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points on the graph Γ. The number of these change points is less than the number
of edges. A simple procedure to calculate these change points can be given in many
cases. Then one can prove that the control

c∗(x) = K sign(v′(i(x), H(x))) M−1(x)∇H(x)/(∇Ht(x)M−1(x)∇H(x))1/2

is asymptotically the best. Note, as expected, that this may be viewed as a “bang-
bang” control law because the control is always saturated with ctMc = K2. Here
v(i(x), H(x)) is the solution to a differential equation on the graph discussed below.
For each c ∈ ΠK there is an ε0 dependent on c with Exτ

ε,c∗ ≥ Exτ ε,c for any ε ≤ ε0.

2. The convergence theorem. Formulation of the control problem requires
an appropriate convergence theorem. The theorem here is a modification of the con-
vergence theorem in [1], allowing for the discontinuous drift term.

We use the following notation (see [1]):
Ii is the interior of a segment of the graph.
Ok is a vertex or joint on the graph.
Di is the set of all points x ∈ <2 such that Y (x) belongs to the interior of segment

Ii.
Ck = {x : Y (x) = Ok}.
Cki = Ck

⋂
∂Di.

C(H) = {x : H(x) = H} for H in the range of H(x).
Ci(H) = {x ∈ Di : H(x) = H}.
Di(H1, H2) = {x ∈ Di : H1 < H(x) < H2}.
Dk(±δ) is the connected component of {x : H(Ok) − δ < x < H(Ok) + δ}

containing Ck.
Cki(δ) = {x ∈ Di : H(x) = H(Ok)± δ}.
The time-scaled equation (3) is addressed in the theorem. Note that, for small

ε, the trajectory of Xε,c
t will circle many times before H(Xε,c

t ) will change signifi-
cantly. This leads to an averaging effect, which defines the limiting process inside the
edges. The limiting process is a diffusion process on the graph Γ corresponding to the
Hamiltonian.

This limiting diffusion will be described first. See [1, 2] for a technical description
of processes on graphs. Associated with each point on each segment Ii on Γ there is a
connected curve Ci(H) ⊂ <2. This curve is a portion of the level set {x : H(x) = H}.
With each segment Ii of the graph, associate a differential operator

Lcif(i,H) =
1
2
Aci (H)f ′′(i,H) +Bci (H)f ′(i,H)(5)

with

Aci (H) =

∮
Ci(H)

|∇H(x)|2
|∇H(x)| dl∮

Ci(H)
1

|∇H(x)|dl
(6)

and

Bci (H) =

∮
Ci(H)

1
2 ∆H(x)+∇H(x)·c(x)

|∇H(x)| dl∮
Ci(H)

1
|∇H(x)|dl

.(7)

Here f ′(i, ·) indicates the derivative with respect to the local coordinate H on the ith
segment.
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Associate with each graph joint a gluing condition∑
i:Ii∼Ok

(±βki)f ′(i,H(xk)) = 0.(8)

The sign ± of the coefficients is given by ±βki ≥ 0 if H ≥ H(xk) on Ii and ±βki ≤ 0
if H ≤ H(xk) on Ii. These coefficients are computed as

βki =
∫
Cki

|∇H(x)|dl

for curve Cki corresponding to the portion of Ck in the inverse image of graph segment
Ii. For example, in Figure 1 with the joint associated with the saddle point O2 called
joint 2, curve C21 is the left half of the ∞-shaped curve through O2, curve C22 is the
entire ∞-shaped curve, and curve C23 is the right half of the ∞-shaped curve.

The outer vertices must also be considered. If the integral∫
exp

[
−
∫

2Bci (H)
Aci (H)

dH

]
dH(9)

diverges at the end H(xk), then the vertex is inaccessible. Noting that

|∇H(x)|2/|∇H(x)| = |∇H(x)|

and the bound on the magnitude of c(x), for H ∈ Ii,

∫ 2
∮
Ci(H)

∇H(x)·c(x)
|∇H(x)| dl∮

Ci(H)
1

|∇H(x)|dl

Aci (H)
dH

is bounded. The article [1] establishes that the outer vertices for the uncontrolled
system are inaccessible. As a result, the integral in (9) diverges, and the addition of
control does not alter the accessibility of the outer vertices.

THEOREM 1. Let the Hamiltonian H(x), x ∈ <2, be four times continuously
differentiable; H(x) ≥ A1|x|2, |∇H(x)| ≥ A2|x|, ∆H(x) ≥ A3 for sufficiently large
|x|, where A1, A2, A3 are positive constants. Let H(x) have a finite number of
critical points x1, x2, . . ., xN at which the matrix of second derivatives (∂

2H(x)
∂xi∂xj ) is

nondegenerate. Also assume that each level curve, Ck = {x : Y (x) = Y (xk)}, contains
at most one critical point.

Let c(x), x ∈ <2, meet two conditions: c is twice continuously differentiable (with
uniformly bounded derivatives) except at points in a finite number of level sets of
H(x), and |c(x)| ≤ K for some positive constant K.

Let (Xε,c
t , P εx) be the diffusion process on <2 connected with problem (3), and

define Y ε,ct = Y (Xε,c
t ) as the corresponding process on graph Γ. Let Y ct be the process

on the graph corresponding to the differential operator on the graph Γ in problems (5)
through (8).

Then the process Y ε,ct converges weakly to the Markov process Y ct .
The proof of Theorem 1 is essentially the same as the proof of Theorem 2.2 in

[1], so the reader is directed to the reference for the proof. Note that, for a trajectory
in the interior of a segment, Xε,c

t rotates many times along the trajectories before
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H(Xε,t
t ) changes much. Consider Ito’s equation for the value of the Hamiltonian.

Since ∇H(Xε,t
t ) · ∇H(Xε,t

t ) = 0,

H(Xε,t
t ) = H(Xε,0

t ) +
∫ t

0
∇H(Xε,s

t ) · dWs

+
∫ t

0

(
1
2

∆H(Xε,s
t ) +∇H(Xε,t

t ) · c(H(Xε,s
t ))

)
ds.

(10)

The resulting averaging, in light of equation (10), will lead to the differential equation
for the interior of the segment. This is proved rigorously for c = 0 in [1]; the proofs
require little modification to handle the additional control term.

The joints provide more complications. The addition of the control does not
change the gluing conditions. This may also be shown following the proof in [1] but
noting that the proof uses a series of five lemmas, labeled 3.1 through 3.5. The last
four require some modification in the method of proof. The new proofs follow by
repeated application of the Girsanov–Cameron–Martin theorem relating the measure
induced by Xε

t and the uncontrolled trajectory Zεt with

Żεt =
1
ε
∇H(Zεt ) + Ẇt,

Zε0 = x,

(11)

and

dµZεx
dµXε,cx

(X.) = exp
{
−
∫ 1

0
c(Zεt ) · dWt −

1
2

∫ 1

0
|c(Zεt )|2dt

}
.(12)

Results for Zεt in equation (11) from [1] are then applied in the controlled case via
equation (12).

COROLLARY 1. Let the Hamiltonian and control c(x) meet the conditions in
Theorem 1.

Let GΓ be a closed and connected set on the graph Γ corresponding to the Hamilto-
nian H(x), and let G = Y −1(GΓ) be the corresponding inverse image in <2. Assume
G is a bounded set.

Then, for x ∈ G with

τ ε,c = inf{t : Xε,c
t ∈ ∂G},

and

τ c = inf{t : Y ct ∈ ∂GΓ},

lim
ε→0

Ex{τ ε,c} = EY (x){τ c}.

Proof. From Ito’s formula,

H(Xε,c
t ) = H(Xε,c

0 )+
∫ t

0
∇H(Xε,c

s )·dWs+
∫ t

0

(
1
2

∆H(Xε,c
s ) +∇H(Xε,c

s ) · c(Xε,c
s )
)
ds.

For a region U such that the closure of Y (U) contains no vertices, standard results
bound the exit time from U for all ε ∈ (0, 1] and x ∈ U (see Theorem 4 of Chapter
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2, [13]). Lemma 3.4 in [1] gives an upper bound for exit from a domain belonging to
a neighborhood of a vertex. These are used to establish Ex{τ ε,c} < A < ∞ for any
ε ∈ (0, 1], x ∈ G.

Now, from Theorem 1, for T > 0,

lim
ε→0

Ex

{
τ ε,c

∧
T
}

= Ex

{
τ c
∧
T
}
.

Also, using the Markov property through conditioning on Xε,c
T and Chebyshev’s in-

equality,

0 ≤ Ex{τ ε,c} − Ex{τ ε,c
∧
T} = Ex{(τ ε,c − τ ε,c

∧
T ) Iτε,c>T }

≤ A Px{τ ε,c > T}

≤ A2/T.

We see that

lim
T→∞

Ex

{
τ ε,c

∧
T
}

= Ex{τ ε,c}

uniformly in ε ∈ (0, 1]. Then immediately

lim
T→∞

lim
ε→0

Ex

{
τ ε,c

∧
T
}

= lim
ε→0

lim
T→∞

Ex

{
τ ε,c

∧
T
}
.

The corollary follows from Theorem 1 and the dominated convergence theorem.

3. Solving the control problem. Theorem 1 provides the needed tool for
solution of the control problem.

THEOREM 2. Let GΓ be a closed and connected set on the graph Γ corresponding
to the Hamiltonian H(x), and let G = Y −1(GΓ) be the corresponding inverse image
in <2. Assume G is a bounded set.

Let H(x), x ∈ <2, be four times continuously differentiable in G. Let H(x) have a
finite number of critical points x1, x2, . . ., xN in G at which the matrix of the second
derivatives is nondegenerate. Also assume that each level curve Ck = {x : Y (x) =
Y (xk)} contains at most one critical point.

Let v(i, y) be a solution, continuous and twice differentiable in the interior of the
graph segments, of

1
2
Aiv

′′(i, y) +Biv
′(i, y) +KEi|v′(i, y)|+ 1 = 0, (i, y) ∈ GΓ,∑

i:Ii∼Ok(±βki)v′(i,H(yk)) = 0 for all interior vertices,

v(i, y) = 0 on the boundary ∂GΓ

(13)

with

Ai(H) =

∮
Ci(H) |∇H(x)|dl∮
Ci(H)

1
|∇H(x)|dl

, Bi(H) =

∮
Ci(H)

1
2 ∆H(x)
|∇H(x)| dl∮

Ci(H)
1

|∇H(x)|dl
,

Ei(H) =

∮
Ci(H)

(∇Ht(x)M−1(x)∇H(x))1/2

|∇H(x)| dl∮
Ci(H)

1
|∇H(x)|dl

,
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and

βki =
∫
Cki

|∇H(x)|dl.

The sign ± of the coefficients meet ±βki ≥ 0 if H ≥ H(xk) on Ii and ±βki ≤ 0 if
H ≤ H(xk) on Ii.

Define the optimal control c∗(x) by

c∗(x) = K sign(v′(Y (x)))
M−1(x)∇H(x)

(∇Ht(x)M−1(x)∇H(x))1/2(14)

and the set of permissible controls ΠK as the set of functions c meeting two condi-
tions: c is twice continuously differentiable (with uniformly bounded derivatives) in G
except at points in a finite number of level sets of H(x); and ct(x)M(x)c(x) ≤ K2 for
constant K > 0, with M(x) twice continuously differentiable (with bounded deriva-
tives), M(x) uniformly positive definite on x ∈ G, and M(x) assumed (without loss
of generality) to be symmetric. Then, with

τ ε,cx = inf{t : Xε,c
t ∈ ∂G},

for each c(x) ∈ ΠK there exists an ε0 (dependent on c) such that

E{τ ε,cx } ≤ E{τ ε,c
∗

x }

for all ε ≤ ε0. The optimal control c∗ is independent of initial conditions x in the
interior of G.

Comment. Note that all permissible control vector fields which are equal almost
everywhere (in the Lebesgue sense) are considered equivalent.

Proof. The theorem follows easily from Theorem 1 and a representation of the
solution to the diffusion equation on the graph as the expectation of a functional of
the process on the graph. Consider the diffusion process on the graph governed by
the operators (5) inside the edges and the gluing conditions (8) on the vertices. Let
τ ε,cy be the hitting time of the set GΓ. Note that

uc(i, y) = E{τ cy}(15)

is the solution of

Lciu
c(i, y) + 1 = 0, (i, y) ∈ GΓ,∑

i:Ii∼Ok(±βki)uc′(i,H(yk)) = 0 for all interior vertices,

uc(i, y) = 0 on the boundary ∂GΓ

(16)

(see [2]). Consider sign(v′(i, x)) as a fixed function and apply equations (13) and (16)
to see that uc

∗
(i, x) = v(i, x). Let, for c ∈ ΠK ,

ec(i, y) = uc
∗
(i, y)− uc(i, y),
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which is the solution to
Lcie

c(i, y)

+

[
K

∮
Ci(y)

(∇Ht(x)M−1(x)∇H(x))1/2

|∇H(x)| dl∮
Ci(y)

1
|∇H(x)|dl

|v′(i, y)| −
∮
Ci(y)

∇H(x)·c(x)
|∇H(x)| dl∮

Ci(y)
1

|∇H(x)|dl
v′(i, y)

]
= 0 for (i, y) ∈ GΓ,∑

i:Ii∼Ok(±βki)ec ′(i,H(yk)) = 0 for all interior vertices,

ec(i, y) = 0 on the boundary ∂GΓ.

Hence there is a functional integral representation for ec(i, y) with, for appropriate
stochastic process (it, Zt) on the graph,

ec(i, y) = Ei,y

{∫ τ
0

[
K

∮
Ci(Zt)

(∇Ht(x)M−1(x)∇H(x))1/2

|∇H(x)| dl∮
Ci(Zt)

1
|∇H(x)|dl

|v′(it, Zt)|

−
∮
Ci(Zt)

∇H(x)·c(x)
|∇H(x)| dl∮

Ci(Zt)
1

|∇H(x)|dl
v′(it, Zt)

]
dt

}
.

(17)

The requirement that the control vector satisfies ct(x)M(x)c(x) ≤ K2 establishes that
ec(i, y) > 0 when c 6= c∗ (i.e., c 6= c∗ on a set of Lebesgue measure greater than zero).
To see this, consider the problem of maximizing, for fixed x and v′(it, Zt),

sup
c(x): ct(x)M(x)c(x)≤K2

v′∇H(x) · c(x).(18)

Clearly, due to the linear nature of the optimization, the maximum will occur on the
boundary. Using Lagrange multiplier λ, we maximize

v′∇H(x) · c(x) + λ(ct(x)M(x)c(x)−K2).

Taking the gradient with respect to c and solving for c,

c(x) = −
(

2v′

λ
M−1(x)∇H(x)

)
.

Differentiating with respect to λ yields the constraint and

λ = ±2|v′|(∇Ht(x)M−1(x)∇H(x))1/2

K
.

The sign is resolved by considering equation (18). Note that only the properties of
H(x) inside the set G are required to determine the process behavior until the exit
from the set G. Corollary 1 then completes the proof.

The following corollary follows immediately from Theorem 2 and shows that the
optimal control c∗ is asymptotically robust. Let τ c

∗
be the exit time for the limit

process Y c
∗

t on the graph.
COROLLARY 2.
(1) For any ε0 > 0,

inf
ε∈(0,ε0]

Ex[τ ε,c
∗
] ≤ sup

c∈ΠK
inf

ε∈(0,ε0]
Ex[τ ε,c] ≤ Ex[τ c

∗
] ≤ sup

ε∈(0,ε0]
Ex[τ ε,c

∗
].

(2)

lim
ε0↓0

sup
c∈ΠK

inf
ε∈(0,ε0]

Ex[τ ε,c] = lim
ε0↓0

Ex[τ ε,c
∗
] = Ex[τ c

∗
].
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4. Comments on applying the control law. Several extensions of the results
in Theorems 1 and 2 are available. An important generalization is the consideration
of general conservation laws H(x). Since the skew gradient ∇H is orthogonal to the
gradient ∇H, the unperturbed dynamics can always be written in terms of a scalar
function β(x) as

˙̃Xt = β(X̃t)∇H(X̃t),

X̃0 = (X̃1
0 , X̃

2
0 ) = x ∈ <2.

This equation is discussed in more detail in Borodin and Freidlin [15]. A controlled
version of the perturbed dynamic system is then written as

˙̃Xε
t = β(X̃ε

t )∇H(X̃ε
t ) + εc(X̃ε

t ) + ε1/2 ˙̃Wt,

X̃ε
0 = x ∈ <2.

As long as β(x) is not equal to zero anywhere in G, then the results above need only
small modification. The diffusions will again converge to diffusions on a graph, with
the graph having the same structure as discussed above. A convergence result similar
to Theorem 1 will hold for Y ε,ct = Y (Xε,c

t ), with Y ε,ct → Y ct . However, the operator
coefficients will be determined differently. We will have a theorem of the following
form, which is proved in the same way as Theorem 2.

THEOREM 3. Let GΓ be a closed and connected set on the graph Γ corresponding
to the Hamiltonian H(x), and let G = Y −1(GΓ) be the corresponding inverse image
in <2. Assume G is a bounded set.

Let H(x), x ∈ <2, be four times continuously differentiable in G. Let H(x)
have a finite number of critical points x1, x2, . . ., xN in G at which the matrix of
second derivatives is nondegenerate. Also assume that each level curve Ck = {x :
Y (x) = Y (xk)} contains at most one critical point. Finally, assume β(x) is four
times continuously differentiable and β(x) 6= 0 anywhere in G.

Let v(i, y) be a solution, continuous and twice differentiable in the interior of the
graph segments, of

1
2Aiv

′′(i, y) +Biv
′(i, y) +KEi|v′(i, y)|+ 1 = 0, (i, y) ∈ GΓ,∑

i:Ii∼Ok(±βki)v′(i,H(yk)) = 0 for all interior vertices,

v(i, y) = 0 on the boundary ∂GΓ,

with

Ai(H) =

∮
Ci(H)

|∇H(x)|2
|β(x)∇H(x)|dl∮

Ci(H)
1

|β(x)∇H(x)|dl
, Bi(H) =

∮
Ci(H)

1
2 ∆H(x)

|β(x)∇H(x)|dl∮
Ci(H)

1
|β(x)∇H(x)|dl

,

Ei(H) =

∮
Ci(H)

(∇Ht(x)M−1(x)∇H(x))1/2

|β(x)∇H(x)| dl∮
Ci(H)

1
|β(x)∇H(x)|dl

,

and

βki =
∫
Cki

|β(x)∇H(x)|dl.



244 JAMES P. DUNYAK AND MARK I. FREIDLIN

The sign ± of the coefficients meet ±βki ≥ 0 if H ≥ H(xk) on Ii and ±βki ≤ 0 if
H ≤ H(xk) on Ii.

Define the optimal control c∗(x) by

c∗(x) = K sign(v′(Y (x)))
M−1(x)∇H(x)

(∇Ht(x)M−1(x)∇H(x))1/2

and the set of permissible controls ΠK as the set of functions c meeting two condi-
tions: c is twice continuously differentiable (with uniformly bounded derivatives) in G
except at points in a finite number of level sets of H(x); and ct(x)M(x)c(x) ≤ K2 for
constant K > 0, with M(x) twice continuously differentiable (with bounded deriva-
tives), M(x) uniformly positive definite on x ∈ G, and M(x) assumed (without loss
of generality) to be symmetric. Then, with

τ ε,cx = inf{t : Xε,c
t ∈ ∂G},

for each c(x) ∈ ΠK there exists an ε0 (dependent on c) such that

E{τ ε,cx } ≤ E{τ ε,c
∗

x }

for all ε ≤ ε0. The optimal control c∗ is independent of initial conditions x in the
interior of G.

Note that Corollary 2 will also apply, so the control will again be asymptotically
robust. The formulation of this problem is more complex if β(x) = 0 somewhere in
G. In this case, the structure of the resulting graph is changed.

Finally, we consider a problem of our most general form. Consider a more general
noise model dependent on a nonsingular matrix σ. For scalar function β, let

˙̂
Xε
t = β(X̂ε

t )∇H(X̂ε
t ) + εc(X̂ε

t ) + ε1/2σ
˙̂
Wt,

X̂ε
0 = x ∈ <2.

By doing a simple transformation X̃t = σ−1X̂t, the equations become

˙̃Xε
t = β(σX̃ε

t )σ−1∇H(σX̃ε
t ) + εσ−1c(σX̃ε

t ) + ε1/2 ˙̃Wt,

X̃ε
0 = x ∈ <2.

Now the conservation law isH(σx). DefiningH2(x) = H(σx), the term β(σx)σ−1∇H(σx)
can be written as β2(x)∇H2(x) for some scalar function β2(x). In the same manner,
define c2(x) = σ−1c(σx). The original domain Ĝ is transformed to G2 = {x : σx ∈
G}, and the original control limit matrix M̂ is transformed to M2(x) = σtM(σ−1x)σ.
Our optimization problem then becomes

˙̃Xε
t = β2(X̃ε

t )∇H2(X̃ε
t ) + εc2(X̃ε

t ) + ε1/2 ˙̃Wt,

X̃ε
0 = x ∈ <2

with region G2 and control magnitude limit c2(x)tM2(x)c2(x) ≤ K2. Note in particu-
lar that if β(x) 6= 0 in G, then β2(x) 6= 0 in G2 so that Theorem 3 and then Corollary
2 can be applied.

Also note the special structure of the set G: the boundary ∂G is composed of
level sets of the Hamiltonian H. This special structure is completely natural because
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of the underlying Hamiltonian dynamics. If, for some x ∈ G, the unperturbed and
uncontrolled solution X̃t with initial condition x leaves G, then no control εc(·) is
able to prevent exit from G when ε is small. Thus for a more general domain G̃, we
should decompose G̃ = G1

⋃
G2 with G1 = {x : X̃t ∈ G ∀t ≥ 0 when X̃0 = x} and

G2 = G̃ − G1. Then Theorem 2 is applied in G1 and initial points in G2 are not
asymptotically stabilizable.

5. Examples. Several examples are given to illustrate application of the theo-
rem. The first provides a simple numerical example to illustrate how the theory might
be applied. The other examples discuss solving for the optimal control problem in a
more general setting.

Example 1. Consider control of a simple linear oscillator perturbed by a small
noise and controlled by a small control:(

˙X̃c
1 t
˙X̃c
2 t

)
=
(

X̃c
2 t

−X̃c
1 t

)
+ 0.0001 c(X̃c

t ) + 0.00011/2 ˙̃Wt,

X̃c
0 = x ∈ <2.

(19)

Note that (
X̃c

2 t
−X̃c

1 t

)
= ∇H(X̃c

t )

for Hamiltonian function

H(x) =
1
2

(x2
1 + x2

2).

Here, clearly, is the situation we have discussed above with ε = 0.0001. Choice of
the constant K (in ct(x)M(x)c(x) ≤ K2) will be used to constrain the precise size
of the control with respect to the noise and Hamiltonian dynamics. In order to fit
into the mathematical format above, we rescale time by t

0.0001 → t, with the resulting
dynamics ( ˙Xc

1 t
˙Xc
2 t

)
=

1
0.0001

(
Xc

2 t
−Xc

1 t

)
+ c(Xc

t ) + Ẇt,

Xc
0 = x ∈ <2.

(20)

Our goal is to stabilize Xc
t so that 1 ≤ H(Xc

t ) ≤ 2 for as long as possible. We can
see the geometry of the situation in Figure 2. The Hamiltonian and its level curves
are shown in Figure 2(a) and 2(b). Our region G is shown in Figure 2(c), and G has
boundaries H(x) = 1 and H(x) = 2. Figure 2(d) shows the segment of the graph
corresponding to G. Note that the segment endpoints correspond to the trajectories
H(x) = 1 and H(x) = 2.

We should first informally verify that application of our theory to this problem is
reasonable: we should establish that X0

t (note the control c = 0) generally makes a
number of revolutions before the Hamiltonian H(X0

t ) changes a great deal. Figure 3
shows a sample path for X0

t and H(X0
t ). Only a few sample paths need be examined

to convince us that use of the theory is reasonable.
Now we can easily find the optimal control for various control size limits

K (ct(x)M(x)c(x) ≤ K2 with M(x) = I). For this example, we used K = 2 and
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FIG. 2.

K = 4. The solution of the optimal control requires, from equation (13), the solution
of

hv′′(h) + v′(h) +
√

2hK|v′(h)|+ 1 = 0, h ∈ (1, 2),

v(1) = v(2) = 0.
(21)

Note that there is only one graph segment, so that the segment notation has been
dropped. Then the control c is given according to equation (14). This problem was
easily solved in MATLAB and required only a few minutes of coding and execution.
The solution v also provides (for small ε and a specific K) the approximation

v(H(Xε,c∗

0 )) ≈ Ex(τ ε,c
∗
)

as follows from equations (15) and (16). Note that solving equation (21) with K = 0
yields an estimate of the uncontrolled exit time. Figure 4 shows the theoretical limit
(as ε → 0) of the mean exit times for no control, optimal control with K = 2, and
optimal control with K = 4. These are, respectively, the solid, dashed, and dotted
lines. The regions where v increases or decreases determine whether the control is
along or opposed to the gradient ∇H, as seen in equation (14).
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FIG. 3.

To test whether ε = 0.0001 is indeed “small,” Monte Carlo numerical simulations
of equation (20) were also run in MATLAB. These computations turned out to be
delicate: since the random trajectories generally circled hundreds or thousands of
times before leaving G = {x : 1 ≤ 1

2 (x2
1 + x2

2) ≤ 2}, numerical errors in the integra-
tion scheme caused significant drift in H(Xc∗

t ). This was counteracted by noticing
that, since the Hamiltonian drifted slowly, equation (20) could be approximated as
a linear equation over short time intervals. A state transition matrix was calculated
and applied over each of these short time intervals. Using this viewpoint, 250 sample
trajectories were calculated for each of the three controls and initial conditions corre-
sponding to initial Hamiltonian values of 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9.
The mean exit time over the 250 samples is plotted in Figure 4 as “o” for no control,
“x” for optimal control with K = 2, and “+” for optimal control with K = 4.

Although there is some sampling error and probably still some error from the
numerical integration scheme, the agreement in Figure 4 is good. The theoretical
limit (as ε→ 0) does predict the actual exit times for ε = 0.0001, leading us to believe
that the asymptotically optimal controls are good choices for controlling the exit time
in equation (19).

Example 2. The second example is the simplest and most obvious. Consider
the simple Hamiltonian function described in Figures 1(a) and 1(b), along with the
corresponding graph in Figure 1(d). Let G be a set whose boundary is a level set
of H(x) and assume G contains all three extrema, O1, O2, and O3. Let the matrix
function M(x) = I in the control constraint ct(x)M(x)c(x) ≤ K2.

Theorem 2 may be easily applied to maximize the expected exit time from G.
First note that the differential equation in (13) may be viewed as a first-order equation
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FIG. 4.

involving v′ and its derivative v′′, with no direct dependence on v. As long as v′ is
negative, the solution in the interior of a segment may be written as

v′(i, y) = exp
{∫ y

y0

− 2
Ai(ŷ)

(Bi(ŷ)−KEi(ŷ)) dŷ
}
v′(i, y0)

+
∫ y

y0

− 2
Ai(ỹ)

exp
{∫ y

ỹ

− 2
Ai(ŷ)

(Bi(ŷ)−KEi(ŷ)) dŷ
}
dỹ.

(22)

Consider the lower left segment of the graph in Figure 1(d). The inaccessibility
condition in equation (9) establishes that v′(1, y) < 0 as y approaches the lower
segment endpoint. Then, since Ai(y) ≥ 0, v′(1, y) < 0 on the left segment. Similarly,
v′(3, y) < 0 on the lower right segment. The boundary condition on the graph center
node then requires that v′(2, y) < 0 for y at the center joint. Again applying (22)
establishes v′(3, y) < 0 on the upper segment of the graph. Thus

c∗(x) = −K ∇H(x)/|∇H(x)|

for Example 1. This result is expected; the control pushes away from the boundary
of G along the gradient of H(x).

Example 3. Let H(x) have the general structure illustrated in Figures 1(a), 1(b),
and 1(d). Let G be a set with the structure illustrated in Figure 1(c). The goal
is to keep the dynamical system inside G; the system oscillations should not be too
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far from the ∞-shaped curve passing through the saddle point O2. Let the matrix
function M(x) = I in the control constraint ct(x)M(x)c(x) ≤ K2.

This problem is more complex, but a straightforward method may be constructed
for its solution. For convenience, let (1, y1), (2, y2), and (3, y3) be the boundary of the
image of G on the lower left graph segment, the upper graph segment, and the lower
right graph segment, respectively. Note that in Theorem 2 the boundary conditions
require v(i, yi) = 0 for the three boundary points. Also use the notation yn to indicate
the value of y at the central node. Our problem requires six boundary and gluing
conditions provided by

v(1, y1) = 0,
v(2, y2) = 0,
v(3, y3) = 0,

v(1, yn) = v(2, yn),
v(2, yn) = v(3, yn),

β12v
′(2, yn) = β11v

′(1, yn) + β13v
′(3, yn)

with β11 > 0, β12 > 0, and β13 > 0.
Solution representations such as (22) show that the sign of v′ can change sign at

most once in the interior of an interval. Also, for Example 2, v′(1, y1) > 0, v′(2, y2) <
0, and v′(3, y3) > 0 follow from the fact that v(i, y) ≥ 0.

It is possible that v′(1, yn) = v′(2, yn) = v′(3, yn) = 0. This can be tested
immediately by using solution representations such as (22) to solve the resulting two-
point boundary value problems using v(i, xi) = 0 and v′(i, yn) = 0. Each boundary
value problem only requires solution of a linear algebraic equation. Continuity then
requires v(1, yn) = v(2, yn) = v(3, yn). If this condition is met, then the optimal
control is

c∗(x) =



K ∇H(x)
|∇H(x)| for x ∈ Y −1(I1),

−K ∇H(x)
|∇H(x)| for x ∈ Y −1(I2),

K ∇H(x)
|∇H(x)| for x ∈ Y −1(I3).

For the remainder of this example we consider the case when v′(1, yn) = v′(2, yn) =
v′(3, yn) = 0 does not hold. The node gluing condition then shows that v′(i, y) must
change sign on one or two of the graph segments. Changing sign on no segments or
changing sign on all three segments leads to a violation of the joint gluing condition.
The fact that at least one of the three segments does not change sign, and therefore
is described by a linear differential equation, allows explicit solution without solving
a nonlinear boundary value problem.

Now a method of solution may be constructed, based on solving for a single
parameter via integration of one-dimensional differential equations. First solve the
linear equation

Lĉiu
ĉ(i, y) + 1 = 0, (i, y) ∈ GΓ,∑

i:Ii∼Ok(±βki)uĉ
′(i,H(yk)) = 0 for all interior vertices,

uĉ(i, y) = 0 on the boundary ∂GΓ,
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with

ĉ(x) =



K ∇H(x)
|∇H(x)| for x ∈ Y −1(I1),

−K ∇H(x)
|∇H(x)| for x ∈ Y −1(I2),

K ∇H(x)
|∇H(x)| for x ∈ Y −1(I3).

This corresponds to a control pushing toward the graph joint. The problem is easily
solved by viewing uĉ′(1, y1), uĉ′(2, y2), and uĉ′(3, y3) as unknowns. Then three linear
algebraic equations can be written for these unknowns. First define the state transition
matrix for each segment:

Φĉi
′(y, yi) =

[
− 2
Aĉi (y)B

ĉ
i (y) 0

1 0

]
Φ(y, yi), y ∈ Ii,

Φĉi (yi, yi) =
[

1 0
0 1

]
.

Then [
uĉ
′(i, y)

uĉ(i, y)

]
= Φĉi (y, yi)

[
uĉ
′(i, yi)

0

]
−
∫ y

yi

Φĉi (y, ŷ)

[
2

Aĉi (ŷ)

0

]
dŷ, y ∈ Ii.(23)

Evaluating these three solutions at the joint yn and applying the gluing and conti-
nuity conditions establishes three linear conditions in the three unknowns uĉ′(1, y1),
uĉ
′(2, y2), and uĉ

′(3, y3). In the case that uĉ′(1, yn) = uĉ
′(2, yn) = uĉ

′(3, yn) = 0, ĉ
is the optimal control. Due to the gluing conditions, at least one of the uĉ′(i, y) does
not change sign. For convenience, assume uĉ′(3, y) > 0 on I3. Then, for the optimal
control c∗, uĉ(3, y) ≤ uc∗(3, y). This, together with

uĉ
′(3, y) = exp

{∫ y

y3

− 2
Aĉi (ŷ)

Bĉi (ŷ)dŷ
}
uĉ
′(3, y3)

+
∫ y

y3

− 2
Aĉi (ỹ)

exp
{∫ y

ỹ

− 2
Aĉi (ŷ)

Bĉi (ŷ)dŷ
}
dỹ,

(24)

indicates that uĉ′(3, y3) ≤ uc
∗ ′

(3, y3). We see then that uc
∗ ′

(3, y) = v′(3, y) > 0 on
segment I3. This provides the key to solving the nonlinear control problem in equation
(13).

The solution can now be described as solving a single equation for a single un-
known α. For notational purposes, represent this nonlinear algebraic equation by

F (α) = 0,

where evaluation of F (·) is best described by a procedure rather than an explicit
formula. To calculate F (α), perform the following steps:

(1) Set v′(1, y1) = α.
(2) Use (13) and integrate the nonlinear equation along I1 to the node. This

results in boundary conditions at the node of v(1, yn)(α) = v(2, yn)(α) = v(3, yn)(α)
and v′(1, yn)(α). The dependence on α is made explicit in the notation.
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(3) Now solve the linear two-point boundary value problem along I3. Because
v′(3, y) > 0, c∗(x) = ĉ(x) for x ∈ Y −1I3. Using the values v(3, yn)(α) and v(3, y3) = 0,
the solution representation in equation (23) may be used to immediately calculate the
resulting v′(3, yn)(α).

(4) Continuity and gluing conditions in equation (13) immediately yield values
for v(2, yn)(α) and v′(2, yn)(α). Use equation (13) on segment I2 and integrate to
finally find an endpoint value v(2, y2)(α). The function F (α) may then be expressed
by

F (α) = v(2, y2)(α).

After a solution to F (α) = 0 is found, the functions v(i, y) are then calculated by
setting v′(1, y1) = α and integrating along the graph segments again. See the above
four steps. The direction of optimal control is then along the gradient of H(x), with
direction determined by sign(v′(i(x), H(x))) and magnitude equal to K.

This solution has an interesting interpretation. The unperturbed Hamiltonian
oscillations at which

sign(v′(i(x), H(x)))

changes are in a sense the “safest” paths, and the control pushes the system trajectory
toward these “most stable” solutions. If only one sign change of v′(i, x) occurs on the
graph in GΓ, then all points in G are attracted to the resulting single most stable
trajectory. If two sign changes of v′(i, x) occur on the graph in GΓ, then points in
x ∈ G are attracted to the “safe” path which is least risky to reach.

6. Conclusions. The results of this paper are easy to apply and have signifi-
cant intuitive appeal: the optimal control is in the direction of the gradient of the
Hamiltonian, with sign determined by solution of a simple boundary value problem on
the corresponding graph. However, three important directions of expansion of these
results are possible.

The admissible control class ΠK is not the broadest possible choice. A better
choice would be all functionals ct = c(Xε,c

s , 0 ≤ s ≤ t) with ct(x)M(x)c(x) ≤ K2

and c(·) measurable with respect to the system trajectory up to time t. This appears
possible, but it is complicated by the fact that the convergence occurs on the graph
instead of in <2. Many analytical tools have not yet been developed for processes on
graphs. It is worth noting that for each fixed ε the optimal control given by equation
(4) is in ΠK .

The noise process in our problem is two-dimensional white noise Ẇt. These results
can possibly be extended for a more general noise term of the form σ(Xε,c

t )Ẇt (with
spatial dependence in the noise field) for positive definite σ(·). Degenerate noise is
much more problematic.

Finally, controls for perturbed Hamiltonian systems in <n, with n > 2, are of
course of great interest. Systems with more than one integral of motion could be
considered; in this case, the random motion would occur not on a graph but on
some higher-dimensional object. The geometry would be complicated, and the non-
perturbed system trajectories would not in general provide the required averaging
conditions. More can be said about a special case in <n in which averaging is accom-
plished by a second noise process. Consider, for example, a system such as

˙̃
Xε,c
t = f(X̃ε,c

t ) + ζt(X̃
ε,c
t ) + ε c(X̃ε,c

t ) + ε1/2 ˙̃Wt,

X̃ε,c
0 = x ∈ <2.
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Here ζt is a random process. As written here, ζt is smooth enough to allow stochastic
integration, but a white noise process could also be used. We are interested in systems
with an integral of motion H(·) for the uncontrolled and unperturbed system

˙̃Xt = f(X̃t) + ζt(X̃t),

X̃ε,c
0 = x ∈ <2,

(25)

so

∇H(x) · f(x) = 0,
∇H(x) · ζt(x) = 0.

Conditions can be given for the noise process ζt so that the system in equation (25)
is ergodic in the level sets of H(·). Then averaging will occur, and the approach used
in this paper could be applied.

REFERENCES

[1] M. I. FREIDLIN AND A. D. WENTZELL, Random perturbations of Hamiltonian systems, Mem.
Amer. Math. Soc., 109 (1994), pp. 1–82.

[2] M. I. FREIDLIN AND A. D. WENTZELL, Diffusion processes on graphs and the averaging prin-
ciple, Ann. Probab., 21 (1993), pp. 2215–2245.

[3] A. D. WENTZELL AND M. I. FREIDLIN, Some problems concerning stability under small random
perturbations, Theory Probab. Appl., 17 (1972), pp. 269–283.

[4] M. I. FREIDLIN AND A. D. WENTZELL, Random Perturbations of Dynamical Systems, Springer-
Verlag, Berlin, New York, 1984.

[5] W. H. FLEMING AND P. E. SOUGANIDIS, PDE-viscosity solution approach to some problems
of large deviations, Ann. Scoula. Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), pp. 171–192.

[6] P. DUPUIS AND H. KUSHNER, Minimizing escape probabilities: A large deviations approach,
SIAM J. Control Optim., 27 (1989), pp. 432–445.

[7] S. M. MEERKOV AND T. RUNOLFSSON, Residence time control, IEEE Trans. Automat. Control,
33 (1988), pp. 323–332.

[8] S. M. MEERKOV AND T. RUNOLFSSON, Theory of residence time control by output feedback,
in Proc. of the 28th IEEE Conference on Decision and Control, Tampa, Florida, 1989,
pp. 1175–1179.

[9] S. M. MEERKOV AND T. RUNOLFSSON, Output residence time control, IEEE Trans. Automat.
Control, 34 (1989), pp. 1171–1176.

[10] T. RUNOLFSSON, Residence time control of systems subject to measurement noise, J. Math.
Anal. Appl., 145 (1990), pp. 289–308.

[11] S. KIM, S. M. MEERKOV, AND T. RUNOLFSSON, Residence probability control, Comput. Math.
Appl., 19 (1990), pp. 121–125.

[12] E. KAPPOS, Optimal control problems arising in large deviation theory, in Modern Optimal
Control, E.P. Roxin, ed., Dekker, New York, 1989, pp. 203–215.

[13] N. V. KRYLOV, Controlled Diffusion Processes, Springer-Verlag, Berlin, New York, 1980.
[14] I. I. GIHMAN AND A. V. SKOROHOD, The Theory of Stochastic Processes III, Springer-Verlag,

Berlin, New York, 1979.
[15] A. N. BORODIN AND I. M. FREIDLIN, Fast oscillating random perturbations of dynamical

systems with conservation laws, Ann. Inst. H. Poincaré, Probab. Stat., 31 (1995), pp. 485–
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Abstract. Output dead beat control for a class of nonlinear discrete time systems, which are
described by a single input-output (I-O) polynomial difference equation, is considered. The class
of systems considered is restricted to systems with a two-dimensional state space description. It
is assumed that the highest degree with which the present input appears in the equation is odd.
Necessary and sufficient conditions for the existence of output dead beat control and for the stability
of the zero output constrained dynamics are presented. We also design a minimum time output
dead beat control algorithm (feedback controller) which yields stable zero dynamics, whenever this
is feasible. A number of interesting phenomena are discussed and illustrated with examples.

Key words. polynomial systems, dead beat, controllability
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1. Introduction. Linear dead beat control has received a great deal of attention
in the past 30 years [16]. The discoveries in the area of linear dead beat control resulted
in a better understanding of linear systems theory and a number of very successful
applications. The fact that very often the dynamics of a plant cannot successfully
be modeled using linear time invariant equations, provide motivation for considering
nonlinear dead beat control. Dead beat control or controllability for special classes of
nonlinear systems has been addressed by many authors [1, 7, 8, 9, 10, 12, 20, 21, 22].
Nevertheless, a wealth of open questions remain to be explored.

Polynomial I-O systems of the form yk+1 = f(yk, . . . , yk−s, uk−t, . . . , uk) are often
used [13, 14, 5] for system identification in black-box mode (see also [23, 24]). y, u,
and k are, respectively, the output, input, and time index. The function f is a
polynomial in all its arguments. This is an obvious generalization of linear ARMA
models. Although a number of applications of I-O polynomial systems have been
reported, e.g., [5, 14], their control properties are not well understood.

In this paper we consider a class of I-O polynomial systems of the following form:

yk+1 = f(yk, uk−1, uk).(1.1)

We assume throughout the paper that the highest exponent of the argument uk in
the polynomial f is an odd integer. An application of this class of systems can be
found in [5] where a subsystem of a radiator and fan is identified in this form.
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The control question that we are interested in is minimum time output dead beat
regulation. In particular, we want to design a control law of the form

uk = c(yk, uk−1)(1.2)

such that yk = 0 ∀k ≥ t for some integer t and such that the constrained dynamics1

defined by

0 = f(0, uk−1, uk),
uk = c(0, uk−1)(1.3)

are stable in a sense to be specified later. The paper deals with two questions: output
dead beat controllability and stability of constrained dynamics for (1.1).

Some pioneering work on controllability for a class of discrete time bilinear systems
can be found in [11]. Papers [7, 8, 12] provide complete conditions for controllability
for the same class of systems. Invariance of the control independent set was investi-
gated in [11]. We show that a new notion of strongly invariant sets, first introduced
in [20, 21], is crucial for output dead beat controllability of (1.1). We take a similar
approach as in [20, 21], where dead beat controllability of scalar polynomial systems
is considered. The output controllability result of this paper can be viewed as a gen-
eralization of some results on odd systems in [20, 21]. In the conference version [22] of
this paper, we provided the output controllability test for (1.1). However, the design
of a feasible dead beat controller and stability of constrained dynamics are analyzed
in the sequel.

Output dead beat control of recursive nonlinear systems was investigated in [1, 3].
Existence of constrained dynamics together with a number of interesting phenomena
were studied. The considered class of systems was, however, large and results are
consequently weak. The notion of criterion of choice is introduced in the context
of stability of constrained dynamics in [1, 3]. This notion is also important in our
discussions. Stability of one-dimensional explicit constrained dynamics uk = f(uk−1)
was investigated [2, 3]. Our paper extends these results to the case of implicitly defined
polynomial dynamics (1.3) and we present necessary and sufficient conditions of the
existence of a criterion of choice that leads to stable constrained dynamics. We point
out that the stability of an interval that we consider was investigated in [3] and in [15],
where this property is referred to as “permanence.” In [15], global stability properties
of a number of nonlinear explicit systems of the form yk+1 = F (yk, . . . , yk−s) were
investigated (see also [19] for continuous time results). We, however, consider the
implicit difference equation in (1.3). We emphasize that the notion of constrained
dynamics considered here differs from the concept of zero dynamics introduced in
[17, 18]. Moreover, the notion of zero dynamics [17, 18] appears not to be sufficiently
general to be applicable to the stabilizing dead beat control problem considered here.

This paper provides an explicit test for verifying the existence of an output dead
beat control law which yields stable constrained dynamics for the system of the form
(1.1). Furthermore, a constructive design method is provided to find any such feedback
law. A purpose of this paper is to show the difficulties that one may face when tackling
the output dead beat control problem for the simple class of I-O polynomial systems
(1.1) and to present a number of interesting phenomena.

1The definition of stable zero output constrained dynamics that we analyze is more general than
the usual definition of zero dynamics found in literature [17]. To make the distinction more obvious
we refer to our definition as constrained dynamics and to the definition in [17] as zero dynamics.
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The paper is organized as follows. In section 2 we present some notation, and
in section 3 we define the problem and the class of systems that we consider. The
question of the existence of dead beat control is addressed in section 4. Sections 5 and
6 are, dedicated to, respectively, the stability of constrained dynamics and a method
to check the existence of a dead beat control law which yields stable constrained
dynamics. The modified dead beat control law which zeros the output in minimum
time and also yields stable constrained dynamics is then presented in section 7. In
section 8, we present several examples which illustrate our methods. The summary
and conclusion are given in the last section.

2. Mathematical preliminaries. We use the standard definitions of rings and
fields [6]. We work over the field of real numbers which is denoted as <. <n is a
set of all n-tuples of elements of <, where n is a nonnegative integer. The ring of
polynomials in n variables over the real field < is denoted as <[x1, x2, . . . , xn]. Let
f1, f2, . . . , fs be polynomials in <[x1, x2, . . . , xn]. Then we define

V (f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ <n : fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s}.
We call V (f1, f2, . . . , fs) the real algebraic set or real variety defined by f1, f2, . . . , fs.
Since the defining polynomials of a real variety are often clear from the context, it is
often denoted simply as V .

DEFINITION 2.1. A real variety V ⊂ <n is irreducible if whenever V is written
in the form V = V1 ∪ V2, where V1 and V2 are real varieties, then either V1 = V or
V2 = V [6, p. 196].

THEOREM 2.2 (see [6, p. 202]). Let V ⊂ <n be a real variety. Then V can be
written as a finite union of irreducible varieties V = V1 ∪ V2 ∪ · · · ∪ Vm where each Vi
is an irreducible variety.

Let f, g ∈ <[x1, x2, . . . , xn]. f |g means that g divides f ; that is, there exists a
polynomial h ∈ <[x1, x2, . . . , xn] such that f = hg. f ≡ g|h means that f is divisible
by h modulo g; that is, given polynomials h and g, deg(g) < deg(f) there exists a
polynomial h1 ∈ <[x1, x2, . . . , xn] such that f = h1h + g. Also, f 6 | g and f ≡ g 6 | h
denotes, respectively, that f is not divisible by g and f is not divisible by h modulo
g.

We say that a variety V ⊂ <2 has special form if

V =

{
(y, v) ∈ <2 : y −

n−1∑
i=0

biv
i = 0, bi ∈ <, i = 0, 1, . . . , n− 1

}
.

Varieties of special form are irreducible because they can be parametrized by polyno-
mials [6, p. 197].

3. Definition of the system. We consider systems described by the following
recursive I-O polynomial equation:

yk+1 = f(yk, uk−1, uk),(3.1)

where yk is the output of the system at time k and uk is the input to the system at
time k. The function f is a polynomial, f ∈ <[y, v, u]. We assume that the highest
exponent of u in f(y, v, u) is an odd integer. A system (3.1) with this property is
referred to as an odd system.

It is always possible to rewrite (3.1) in the following form:

yk+1 = gn(yk, uk−1)unk + gn−1(yk, uk−1)un−1
k + · · ·+ g0(yk, uk−1),(3.2)

where gn 6≡ 0 and n is an odd positive integer.
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ASSUMPTION 1. Constrained dynamics are defined as

∀v ∈ <, ∃u ∈ < such that f(0, v, u) = 0.(3.3)

A sequence of controls is denoted as

U = {u0, u1, . . .}.

The truncation to a sequence of length p+ 1 is denoted as Up = {u0, u1, . . . , up}. The
composition of the function f in equation (3.1) under the action of a control sequence
Up which starts from (y0, u−1) ∈ <2 is denoted as

fUp(y0, u−1) = f(f(. . . f(f︸ ︷︷ ︸
p times

(y0, u−1, u0), u0, u1), . . . , up−1, up).

Obviously yp+1 = fUp(y0, u−1) is the output at time p + 1, given the starting
point (y0, u−1) and the input Up.

We can introduce the state variables x1(k) = yk and x2(k) = uk−1 and write
accordingly the model in state space format. In the sequel, we refer to (y0, u−1) ∈ <2

as an initial state although we work with the input output equation (3.1).
We are interested in output dead beat control in Definition 3.1.
DEFINITION 3.1. The system (3.1) is output dead beat controllable if for every

(y0, u−1) ∈ <2 there is a sequence U = {u0, u1, . . .} such that the output of the system
(3.1) is driven to zero in finite time, that is, yk = 0,∀k ≥ t, where t is a nonnegative
integer.

DEFINITION 3.2. A feedback controller, given by uk = c(yk, uk−1), is an output
dead beat controller if there exists a positive integer P such that ∀(y0, u−1) ∈ <2 and
k ≥ P we have yk = 0, where yk+1 = f(yk, uk−1, c(yk, uk−1)).

Because of Assumption 1, we can split the dead beat control problem into two
parts. Indeed, the control sequence U in Definition 3.1 may be split into two parts. Ut
is the part of the sequence U that transfers the output to the origin and {ut+1, . . .} the
part which keeps the output at the origin. Section 4 is concerned with the existence
of the sequence Ut, which naturally leads to the construction of an (feedback) output
dead beat controller. In section 5 we consider the properties of the obtained control
laws, which settles the usefulness of the approach.

4. Output dead beat controllability of recursive polynomial systems.
In this section, we consider when it is possible to transfer the output of the system
(3.1) to the origin in finite time, starting from an arbitrary initial state (y0, u−1) ∈ <2.
The following definition is used in the sequel.

DEFINITION 4.1. The one-step reachable set from an initial state (y0, u−1) ∈ <2

is defined as

Vr(y0, u−1) = {(y, u) ∈ <2 : y − f(y0, u−1, u) = 0}.

We also define the projection of the one-step reachable set onto the first coordinate
axis as

ΠVr(y0, u−1) = {y ∈ < : ∃v ∈ < : (y, v) ∈ Vr(y0, u−1)}

and call it the set of one-step reachable outputs.
Observe that the one-step reachable set is a real variety and it has special form

for any initial state in <2. Moreover, since the systems is odd, the only states from
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which it may not be possible to zero the output in one step belong to the real variety
VC defined by

VC = {(y, v) ∈ <2 : gn(y, v) = 0}.(4.1)

Notice that dim VC < 2.
DEFINITION 4.2. The variety VC given by (4.1) is called the critical variety.
DEFINITION 4.3. The number of varieties of special form that are contained in

VC is denoted by N .
Let V and W be varieties. We introduce the notation

V
f→W(4.2)

to denote that Vr(y0, u−1) = W ∀(y0, u−1) ∈ V . It should be emphasized that
equation (4.2) means that the one-step reachable set from any initial state in V is
equal to W .

DEFINITION 4.4. A set VIj ⊆ VC is invariant if

∀(y, v) ∈ VIj , Vr(y, v) ⊆ VIj .(4.3)

The union of all invariant sets VI = ∪jVIj is called the maximal invariant set.
DEFINITION 4.5. A subset WIj of the variety VC is strongly invariant if it is

invariant and ∀(y0, u−1) ∈ WIj there exists an integer t ≥ 0, t = t(y0, u−1) and a
sequence of controls Ut = {u0, u1, . . . , ut} which yields (yt+1, ut) = (y0, u−1), where
yt+1 = fUt(y0, u−1). The union of all strongly invariant sets WI = ∪jWIj is called
the maximal strongly invariant set.

DEFINITION 4.6. The number of varieties of special form that are contained in
the maximal strongly invariant set WI of VC is denoted by L.

The propositions below indicate some important properties of the maximal in-
variant and strongly invariant sets.

PROPOSITION 4.7. The maximal strongly invariant set can be decomposed into
finitely many strongly invariant subsets WIj , each of which can be decomposed into
finitely many varieties of special form Wi:

WI = W1 ∪ · · · ∪WL1︸ ︷︷ ︸
WI1

∪WL1+1 ∪ · · · ∪WL1+L2︸ ︷︷ ︸
WI2

∪ · · ·∪WL1+···+Lp−1+1 ∪ · · · ∪WL1+···+Lp︸ ︷︷ ︸
WIp

,

where L1 + L2 + · · ·+ Lp = L. Therefore, the maximal strongly invariant set is itself
a variety.

Sketch of the proof. We prove this proposition in four steps. Since Vr(y0, u−1) is
of special form for any (y0, u−1) ∈ VC , at least one variety of special form W1 belongs
to the maximal strongly invariant subset WI . Then we can show that in order to have
invariance one-step reachable sets from any initial state in W1 must coincide; that is,
Vr(y1, v1) = Vr(y2, v2) ∀(y1, v1), (y2, v2) ∈W1. Therefore, we show that one can write
Vr(y, v) = W2 ∀(y, v) ∈W1, where W2 is a variety of special form which is a subset of
VC . After this, we show that the union W1∪W2∪· · ·∪WL is a subset of WI . Finally,
it is proved that the union W1 ∪W2 ∪ · · · ∪WL is equal to WI , and the partition into
smaller strongly invariant sets follows easily. For a more detailed proof see [22].

Proofs of the propositions below hinge on the proof of Proposition 4.7 (see [22]).
PROPOSITION 4.8. Any invariant subset VIj of the critical variety VC contains a

strongly invariant subset WIj .
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PROPOSITION 4.9. Any initial state that belongs to an invariant subset VIj of the
critical variety VC is transferred to a strongly invariant subset WIj (which is a subset
of VIj ) in finite time.

PROPOSITION 4.10. Any (y0, u−1) ∈ VC − VI can be mapped to <2 − VC in at
most N − L+ 1 time steps (see Definitions 4.3 and 4.6).

COMMENT 1. An immediate consequence of Proposition 4.10 is that if VI = ∅
any initial state in VC can be mapped to <2 − VC in at most N + 1 time steps and
hence the output can be zeroed in at most N + 2 steps (see Definition 4.3).

PROPOSITION 4.11. Consider the system (3.1). The critical variety VC (4.1) con-
tains a strongly invariant subset if and only if there exist polynomials y−

∑n−1
i=0 b

p
i v
i,

bpi ∈ <, p = 1, 2, . . . , B, B ≤ L ≤ N such that

gn(y, v)|
(
y −

n−1∑
i=0

bpi v
i

)
∀p = 1, 2, . . . , B,

gi(y, v) ≡ bp+1
i |

(
y −

n−1∑
i=0

bpi v
i

)
∀p = 1, 2, . . . , B − 1 ∀i = 1, . . . , n− 1, and

gi(y, v) ≡ b1i |
(
y −

n−1∑
i=0

bBi v
i

)
∀i = 1, . . . , n− 1.

The above properties of invariant subsets of VC , lead to necessary and sufficient
conditions for output dead beat controllability for the class of odd systems (3.1).

THEOREM 4.12. The odd system (3.1) is output dead beat controllable if and only
if either the maximal invariant set VI = ∅ or if VI 6= ∅, then all irreducible components
(varieties) Wi, i = 1, 2, . . . , L of the maximal strongly invariant set WI intersect the
line y = 0.

Sketch of the proof. The whole state space can be partitioned as WI ∪ (VI−WI)∪
(VC − VI) ∪ (<2 − VC). Propositions 4.7, 4.8, 4.9, 4.10, together with the fact that
any state in VC −VI can be mapped to <2−VC , give a characterization of all possible
behaviors.

COMMENT 2. It is easily verified that the conditions under which the critical
variety VC may contain invariant subsets (they are given in Proposition 4.11) are
clearly not generic.

COMMENT 3. It is important to notice that Theorem 4.12 provides conditions
for output controllability to the origin. If we want to check output controllability
to some other point y∗ 6= 0, then all irreducible components (varieties) Wi of the
maximal strongly invariant set WI should intersect the line y = y∗.

5. Stability of constrained dynamics. We examine in this section properties
of the control law which keep the output of the system at zero after the output
was zeroed. We extend Theorem 6.2 [3] to the class of polynomial implicitly defined
systems. This theorem gives necessary and sufficient conditions for the global stability
of an invariant interval for the class of explicit constrained dynamics defined by uk =
g(uk−1) with g continuous. We consider implicitly defined polynomial systems. The
equation that defines the behavior of the system is given below:

f(0, uk−1, uk) = 0.(5.1)

It was noticed in [1] that the properties of the control law that keep the output at
zero depend on the rule used to determine which particular solution from among the
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possible alternatives uk, satisfying (5.1), is used for any given uk−1. This rule is
referred to as a criterion of choice. If we have several control actions that satisfy the
constraint (5.1) at our disposal, it is very important to apply “the most appropriate
one.”

In this section we define what we mean by stable constrained dynamics and find
conditions which guarantee the existence of a “good” criterion of choice, i.e., one that
leads to stable constrained dynamics. Now we give definitions for the concepts that
we need in our developments.

DEFINITION 5.1. A criterion of choice is a single valued function c : < → <
(denoted also as uk = c(uk−1)) such that

f(0, v, c(v)) = 0 ∀v ∈ <.(5.2)

DEFINITION 5.2. Consider a criterion of choice c (Definition 5.1). A bounded
interval A ⊂ < is invariant under mapping c if c(A) ⊆ A.

DEFINITION 5.3. Let A ⊂ < be a bounded interval invariant under mapping c.
Then

1. A is called stable if ∀E ⊆ <, A ⊂ E, ∃K(E) > 0 such that ∀uk−1 ∈ E we
have supuk−1∈E |c(uk−1)| ≤ K(E) <∞;

2. A is called attractive if ∀∆ > 0 ∀u−1, ∃T = T (∆, u−1) such that infx∈A, |x−
uk| < ∆ ∀k > T ;

3. A is called asymptotically stable if 1 and 2 hold.
DEFINITION 5.4. Implicitly defined constrained dynamics (equation (5.1)) are

called stable if there exists a criterion of choice c such that there is a bounded interval
A invariant under mapping c which is asymptotically stable.

We emphasize that the present notion of stability is more general than allowed
for in [17, 18], where only stability of equilibria is considered. Notice also that we
consider a global stability property.

We now cite Theorem 6.2 from [3] which is used in the proof of the main result.

THEOREM 5.5 (see [3]). Consider the map g : D→ D, D ⊂ <. Let A 4= [a, b] ⊂ <
such that

1. D ∩ A is invariant under g: g(D ∩ A) ⊂ D ∩ A;
2. (<−]a, b[) ⊂ D;
3. g is continuous on (<−]a, b[).

Then A is globally attracting interval of the iterative map u(k + 1) = g(u(k)) if and
only if the following conditions hold:

∀x < a, g(x) > x,

∀x > b, g(x) < x,

∀x < a such that ∃(x, z) ∈ G−1
R , g(x) < z,

∀x > b such that ∃(x, z) ∈ G−1
L , g(x) > z.(5.3)

The domain D represents the domain of definition of constrained dynamics. Other
symbols used in the statement of Theorem 5.5 are given below:

G = {(x, g(x)) : x ∈ < − [a, b]}, GL = {(x, g(x)) ∈ G : x < a},
GR = {(x, g(x)) ∈ G : x > b}, G−1

L = {(g(x), x) : (x, g(x)) ∈ GL},
G−1
R = {(g(x), x) : (x, g(x)) ∈ GR}.

COMMENT 4. In our case the domain of definition of constrained dynamics is the
whole real line; that is, D = <. Therefore, condition 2 of Theorem 5.5 does not need
to be verified.
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Given T ≥ 0 a real number, the following sets will be used in what follows:

S1 = {(v, u) ∈ <2 : v < −T}, S2 = {(v, u) ∈ <2 : v > T}.(5.4)

A very important feature of polynomial systems which is crucial for the stability of
constrained dynamics is given in the theorem below.

THEOREM 5.6. Consider the real variety Vz defined by

Vz = {(v, u) ∈ <2 : f(0, v, u) = 0}.(5.5)

There exists T ≥ 0 such that there are constant numbers n1 and n2 of continuous
branches2 of variety Vz on sets S1 and S2 (5.4).

Proof of Theorem 5.6. Sturm sequences can be used in order to check the exact
number of distinct real roots of a univariate polynomial on any interval [a, b], including
] −∞,+∞[ [4]. We will regard uk−1 as a parameter, and for any fixed uk−1 we can
find the number of distinct real roots uk to (5.1). In other words, we can find the
exact number of real roots to (5.1) on vertical lines uk−1 = const.

Consider the Sturm sequence of f(0, v, u). It has the form

A0
n(v)un + · · ·+A0

0(v),
A1
n−1(v)un−1 + · · ·+A1

0(v),
. . .

An0 (v).(5.6)

The leading coefficient functions are rational functions in v. It turns out that for the
number of real solutions u to (5.1) for a fixed value of the parameter v, only the leading
coefficient functions are important. Actually, the signs of these functions determine
the number of real roots, and since they are rational functions, we can find a set of
the form ] −∞,−D1[∪]D1,+∞[ on which their signs do not change. The modified
division algorithm which is used to determine the sequence (5.6) yields a special
form of the leading coefficients in the Sturm sequence. Namely, the denominator of
Aj+1
n−j+1(v) has the same roots as the numerator of Ajn−j(v)∀j > 1. Also, A0

n = gn(0, v)
and A1

n−1 = n∂/∂v[gn(0, v)] are polynomials. Consequently, the set on which the
Ajn−j(v) do not change signs can be determined considering the equations Ajn−j(v) = 0
∀j = 0, . . . , n. We introduce the following set:

D1 = {v ∈ < : Ajn−j(v) = 0 for some j = 0, . . . , n}.(5.7)

Denote as D1 the following number:

D1 = sup
v∈D1

|v|.(5.8)

It follows that on the set ] −∞,−D1[∪]D1,+∞[ all the leading coefficient functions
do not change their signs. Therefore, there is a constant number of real roots uk
for every uk−1 ∈] − ∞,−D1[ and uk−1 ∈]D1,+∞[ to (5.1). We can also say that
there exists a constant number of continuous branches of Vz on sets ] −∞,−D1[×<
and ]D1,+∞[×<. This follows from the theorem on the continuity of real roots [4,
p. 38]. Since gn(0, v) 6= 0 (gn = A0

n) for v ∈] −∞,−D1[∪]D1,+∞[ and since there
is a constant number of complex roots, all the conditions of the theorem are
satisfied.

2The term “branch of Vz” that we use corresponds to parts of irreducible varieties (curves) from
which the variety Vz is composed [4, 6] that belong to sets S1 and S2.
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COMMENT 5. Theorem 5.6 states that it is possible to find an interval [−D1, D1]
inside which all bifurcations of the variety Vz occur. Moreover, from the theorem on
the continuity of roots [4, p. 38] we see that all intersections between branches of the
variety Vz occur inside the same interval.

LEMMA 5.7. A necessary condition for the existence of stable constrained dynam-
ics is

sup
|v|<K

inf
(v,u)∈Vz

|u| < +∞ ∀K ∈]0,+∞[.

Proof of Lemma 5.7. Suppose that there exists a criterion of choice c which yields
stable constrained dynamics. Suppose that there exists v = u∗k−1 which belongs to the
invariant interval such that all branches of the variety Vz have a vertical asymptote
at v = u∗k−1. In other words, the condition of Lemma 5.7 is not satisfied for any
neighborhood of the origin that contains u∗k−1. It is then obvious that the invariant
interval must have one of the following forms: ] − ∞,+∞[, [K,+∞[, or ] − ∞,K],
and we have a contradiction since neither of these intervals is bounded. Suppose
now that u∗k−1 does not belong to the invariant interval. In this case, constrained
dynamics cannot be stable in the sense of Definition 5.4 because for uk−1 such that
uk−1 → u∗k−1 we have that |uk| → +∞, so we again obtain a contradiction.
Now we can give definitions of maximal and minimal branches of the variety Vz.

DEFINITION 5.8. Consider the variety Vz on sets S1 and S2. The maximal branch
of Vz in S2 is given by

V S2
M = {(v, u) : v ∈]T,+∞[, u = max

(v,y)∈(Vz∩S2), y<v
y}.

The minimal branch of Vz in S1 is such that

V S1
m = {(v, u) : v ∈]−∞,−T [, u = min

(v,y)∈(Vz∩S1), y>v
y}.

In other words, the maximal branch is the closest branch of Vz to the bisector
u = v, which is below the bisector (on the set S2). Notice that minimal and maximal
branches are well-defined parts of irreducible varieties of Vz, following from the theo-
rem on continuity of roots [4] and Bezout’s theorem [6]. Bezout’s theorem says that
we can find a set [−D3, D3]×< inside which all intersections between the variety Vz
and the bisector u = v occur. Also notice that if there are no branches in S2 that are
below the bisector u = v, then by definition V S2

M = ∅.
COMMENT 6. Suppose that we can find a criterion of choice such that outside a

bounded interval [−T, T ] all orbits are bounded, converge to the interval, and enter
it in finite time from any given u−1. Then it is easy to show that when Lemma 5.7
holds there exists an interval (perhaps larger than [−T, T ] but bounded) such that
it is invariant and stable. Consequently, we will concentrate only on the existence
of a bounded stable interval, and Lemma 5.7 guarantees that we can always have a
criterion of choice for all u−1 ∈ [−T, T ] which renders the interval invariant.

Now we can state the main result.
THEOREM 5.9. Implicitly defined constrained dynamics (5.1) are stable if and

only if the mapping uk = g(uk−1) defined as

uk =


y such that (uk−1, y) ∈ V S1

m if uk−1 < −T,
y such that (uk−1, y) ∈ V S2

M if uk−1 > T,
y such that (uk−1, y) ∈ Vz if uk−1 ∈ [−T, T ] and

y has the smallest absolute value

(5.9)

satisfies equations (5.3) of Theorem 5.5 and Lemma 5.7 holds.
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Proof of Theorem 5.9. Sufficiency. Consider the criterion of choice (5.9). It is
obvious that all the conditions of Theorem 5.5 are satisfied and this criterion yields
stable constrained dynamics.

Necessity. We have to show only that the conditions (5.3) are necessary for stable
constrained dynamics. We can find a set inside which all intersections between the
variety Vz and the bisector u = v occur and denote it as [−D3, D3]×<. Moreover, we
can find another set inside which all the intersections between Vz and V −1

z = {(v, u) ∈
<2 : f(0, u, v) = 0} occur (modulo common components which may have infinitely
many common points) and denote it as [−D2, D2]×<. All the subsequent arguments
are given for the sets S1 and S2 defined by the number T = max[D1, D2, D3]. Sets S1
and S2 (5.4) defined in this way obviously have the property that (modulo common
components) there are no intersections between Vz and V −1

z on the sets, there are no
bifurcations of the variety Vz on the sets and, finally, minimal and maximal branches
V S1
m and V S2

M are either parts of continuous curves or they are empty sets.
Suppose that the constrained dynamics are stable and that the first condition in

(5.3) is not satisfied. Since V S1
m = ∅, all branches are below the bisector u = v and as a

consequence we have that uk → −∞ as k →∞, ∀u−1 ∈]−∞,−T ]. A similar situation
happens when the second condition (5.3) is not satisfied and therefore the first two
conditions in (5.3) are necessary to ensure stability of the constrained dynamics. In
other words, a necessary condition for the stability of the implicitly defined constrained
dynamics (5.1) is that V S1

m 6= ∅ and V S2
M 6= ∅.

Consider now what happens if the third condition in (5.3) is not satisfied. Since
all branches of Vz in S2 are above V S2

M , all their inverses will lay on the left-hand
side (or below) of (V S2

M )−1. Thus, we suppose that no branch of V −1
z satisfies the

third condition in (5.3). Moreover, if we use pieces of branches of Vz to construct
a piecewise continuous one-to-one function and use the modified Theorem 5.5 [3] we
can see that no such function would satisfy the conditions of Theorem 5.5. Therefore,
there does not exist a criterion of choice which yields stable constrained dynamics.
The contradiction completes the proof. The last two conditions are symmetric and
they are either both satisfied or not.

6. An algebraic test for stability of constrained dynamics. We now pre-
sent a method to check the conditions of Theorem 5.9. First, we provide a means of
verifying the conditions of Lemma 5.7.

We write the function (5.1) as

f(0, v, u) = gn(0, v)un + · · ·+ g0(0, v).(6.1)

The only critical points that we have to check are the ones for which the leading
coefficient gn(0, v) (6.1) vanishes [4, pp. 10, 39]. Therefore, the first step is to find all
real solutions v to gn(0, v) = 0. It is then necessary to check whether

f(0, v, u) = 0(6.2)

has real roots u for all critical values of v. We define the following sets:

A = {v : gn(0, v) = 0},(6.3)
B(v) = {u ∈ < : f(0, v, u) = 0}, v ∈ A,(6.4)
C = {(v, u) : v ∈ A, u ∈ B(v)}.(6.5)

There must be at least one real root u ∈ B(v) ∀v ∈ A, otherwise Assumption 1 would
not be satisfied. We can now use the implicit function theorem. For all pairs of
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controls (v, u) ∈ C equation (5.1) holds. If for every v ∈ A there exists at least one
u ∈ B(v) for which

∂f

∂u
|(v,u) 6= 0,(6.6)

then the implicit function theorem guarantees the existence of a function u = g(0, v),
which is C∞ since we deal with polynomials such that f(0, v, g(0, v)) = 0.

The implicit function theorem gives only sufficient conditions to check Lemma 5.7
but they are easy to check. If (6.6) does not hold, we may check whether Lemma 5.7
is satisfied. The easiest way to do this is to draw the variety Vz around every point
(v, u) in C using Matlab (the set C contains finitely many points) and check whether
there exists a branch of Vz which does not have a vertical asymptote at (v, u).

Before we give the classification of all possible situations we define bisectors and
octants.

B1 = {(v, u) ∈ <2 : v = u}, B2 = {(v, u) ∈ <2 : −v = u},

O1 = {(v, u) ∈ <2 : v > 0, u > 0, u < v}, O2 = {(v, u) ∈ <2 : v > 0, u > 0, u > v},

O3 = {(v, u) ∈ <2 : v < 0, u > 0, u > −v}, O4 = {(v, u) ∈ <2 : v < 0, u > 0, u < −v},

O5 = {(v, u) ∈ <2 : v < 0, u < 0, u > v}, O6 = {(v, u) ∈ <2 : v < 0, u < 0, u < v},

O7 = {(v, u) ∈ <2 : v > 0, u < 0, u < −v}, O8 = {(v, u) ∈ <2 : v > 0, u < 0, u > −v}.

We also use the notation A1 and A2 to denote, respectively, the line v = 0 and u = 0
in <2.

A very important concept of the “inverse graph” of the variety Vz (5.5), which is
given by

V −1
z = {(v, u) ∈ <2 : f(0, u, v) = 0}(6.7)

is obtained by simply interchanging variables v and u in the defining polynomial. It is
easy to check that if a point on a variety Vz is in the first octant O1, the corresponding
point on V −1

z is in the second octant O2 and vice versa. We use the following notation
to summarize all possible situations:

O2 ↔ O1, O3 ↔ O8, O4 ↔ O7, O5 ↔ O6.

In some cases the position of branches V S2
M and V S1

m provide sufficient information to
conclude on the stability of constrained dynamics since the conditions on the inverse
graph are automatically satisfied. We summarize these trivial cases in the lemma
below.

LEMMA 6.1.
1. If one of the following conditions holds:

(a) V S1
m ⊂ O5 and V S2

M ⊂ O1,
(b) V S1

m ⊂ O5 and V S2
M ⊂ O8,

(c) V S1
m ⊂ O5 and V S2

M ⊂ O7,
(d) V S1

m ⊂ O4 and V S2
M ⊂ O1,

(e) V S1
m ⊂ O4 and V S2

M ⊂ O8,
(f) V S1

m ⊂ O3 and V S2
M ⊂ O1,
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then there exists a criterion of choice which yields stable constrained dynam-
ics.

2. If V S1
m ⊂ B2 (V S2

M ⊂ B2) then there exists a criterion of choice which yields
stable constrained dynamics if and only if V S2

M (V S1
m ) belongs to the cone

{(v, u) ∈ <2 : |v| < |u|}.
3. If V S1

m ⊂ A2 or V S2
M ⊂ A2, the constrained dynamics are stable.

4. If V S1
m = ∅ or V S2

M = ∅ or V S1
m = ∅ and V S2

M = ∅, then the constrained
dynamics are unstable.

5. If V S1
m ⊂ O3 or V S2

M ⊂ O7 or V S1
m ⊂ O3 and V S2

M ⊂ O7, then the constrained
dynamics are unstable.

It can easily be checked that the only remaining cases are
1. V S1

m ⊂ O3 and V S2
M ⊂ O8,

2. V S1
m ⊂ O4 and V S2

M ⊂ O7.
Only in these cases do we have to use “inverses” (V S1

m )−1 and (V S2
M )−1. Since we are

dealing with polynomial systems, we can use the algebraic structure of these systems
in order to obtain a “box” inside which all intersections between Vz and V −1

z occur
(modulo common components). We will use the theory of resultants to compute such
a box. We denote f1 = f(0, v, u) and f2 = f(0, u, v).

Resultants procedure. First, we find the greatest common divisor of f1 and f2
which is denoted as GCD(f1, f2) ∈ <[v, u]. Then we compute “common components-
free” polynomials:

fccf1 =
f1

GCD(f1, f2)
, fccf2 =

f2

GCD(f1, f2)
.(6.8)

Now, we can regard polynomials fccf1 and f ccf2 as polynomials in v whose coefficients
are polynomials in u. Now we can find the resultant of the two polynomials:

R(f ccf1 , fccf2 ) =
p∑
i=0

aiu
i.(6.9)

The resultant R(f ccf1 , fccf2 ) is a polynomial in u. We know that polynomials fccf1 and
f ccf2 have no common roots if R(fccf1 , fccf2 ) 6= 0. We can find a number D2 which is
such that all absolute values of real roots of the resultant are less than D2.

Second, we estimate the number D2 using formulas for bounds on roots, e.g.,
D̂2 = 1+supi |ai| [4], where ai, i = 0, 1, . . . , p, are coefficients of the resultant. Outside
the box defined by {(v, u) ∈ <2 : |v| ≤ D̂2 and |u| ≤ D̂2} the varieties Vz and V −1

z

have no intersections modulo common branches.
Third, we pick û such that |û| > |D̂2| and find sets of solutions:

Σ1 = {v ∈ < : f(0, v, û) = 0}, Σ2 = {v ∈ < : f(0, û, v) = 0}.(6.10)

We can see that the sets Σ1 and Σ2 give a complete picture about the branches of
varieties Vz and V −1

z and therefore can be used to check whether constrained dynamics
are stable for the two remaining cases. The criterion for the stability of constrained
dynamics of the two last cases, which are not covered by Lemma 6.1, is given in the
following lemma.

LEMMA 6.2. If
1. V S1

m ⊂ O3 and V S2
M ⊂ O8 or

2. V S1
m ⊂ O4 and V S2

M ⊂ O7,
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then constrained dynamics are stable if there exist σ1 ∈ Σ1 and σ2 ∈ Σ2 such that
σ1 < σ2. In the first case sets Σ1 and Σ2 (6.10) are calculated using û > T̂ and in
the second case û < −T̂ .

Proof of Lemma 6.2. It trivially follows from Theorem 5.9 and the procedure
given above.

The method to check the existence of constrained dynamics consists of several
steps:

1. Check the conditions of Lemma 5.7 as described before.
2. Form the Sturm sequence and find all leading coefficient functions. Using

(5.8) and bounds on roots, determine the estimate D̂1.
3. Find the box inside which all intersections between the variety Vz and B1, B2,
A1, and A2 occur. This is done in the following way. Find the following
estimates:

D̂3 = 1 + max
i
|ni|, D̂4 = 1 + max

i
|mi|, D̂5 = 1 + max

i
|ki|, D̂6 = 1 + max

i
|li|,

where ni, mi, ki, li ∈ < are, respectively, coefficients of polynomials f(0, v, v),
f(0, v,−v), f(0, 0, u), and f(0, v, 0).

4. Find the estimate T̂ of T using

T̂ = max(D̂1, D̂3, D̂4, D̂5, D̂6).(6.11)

5. Pick any v∗ ∈]−∞,−T̂ [ and compute all real roots of

f(0, v∗, u) = 0.(6.12)

Pick any v∗∗ ∈]T̂ ,+∞[ and compute all real roots of

f(0, v∗∗, u) = 0.(6.13)

6. Determine to which octants do the pairs (v∗, real root to (6.12)) and (v∗∗,
real root to (6.13)) belong and check whether Lemma 6.1 holds (remember
that checking the position of a single point of the variety implies that the
whole branch has the same position). If Lemma 6.1 is not satisfied, then
proceed to the next step.

7. Compute D̂2 = 1 + maxi |fi|, where fi are the coefficients of the resultant
R(f ccf1 , fccf2 ); redefine T̂ = max(D̂1, D̂2, D̂3, D̂4, D̂5, D̂6); and apply the re-
sultants procedure which is used to check conditions of Lemma 6.2.

7. Output dead beat control law with stable constrained dynamics.
Propositions 4.7–4.11 can be used to design a dead beat controller (algorithm) as
outlined in Figure 7.1. The obtained controller uses static feedback to compute the
value of a control signal at any time instant k. The closed-loop system can be written
in the form

yk+1 = f(yk, uk−1, uk),
uk = c(yk, uk−1).(7.1)

The control signal is obtained as a solution to a polynomial algebraic equation, and
since there may be more than one solution, we need a criterion of choice to define the
control law c(yk, uk−1). One criterion for the choice may be to apply the control signal
that has the least absolute value. We may be able to shape the transient response
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FIG. 7.1. Output dead beat controller - algorithm.

and keep the control signals as small as feasible, using a different criterion of choice.
The question of which choice is not so critical if the output is not zero. Having zeroed
the output, the criterion of choice becomes crucial for the stability of constrained
dynamics and, consequently, for the stability of the closed loop system (7.1).

A criterion of choice which yields stable constrained dynamics is given by

uk =


u ∈ V S1

m if (v, u) ∈ S1,

u ∈ V S2
M if (v, u) ∈ S2,

u s.t. it has minimum absolute value if v ∈ [−T̂ , T̂ ].
(7.2)

This choice does not guarantee the fastest convergence to the invariant interval, and
other choices may be better in this sense than this control law. The tradeoff between
the speed of convergence to the invariant interval and the shape of the transient re-
sponse is a difficult problem in its own right, but very often it is possible to successfully
tackle this problem on a case-by-case basis.

Notice that working with poor bounds on roots, such as the one that we have
used, may yield an estimate T̂ which is much larger than the minimal possible T , but
the computations are simpler and faster to use when checking the existence of stable
constrained dynamics. Computing exact roots, on the other hand, yields a smaller
size of the invariant interval, which should be used when implementing the controller.
Blocks in which we need to check whether (y(k), u(k − 1)) belong to WI or VI are
equivalent to testing whether a finite number of polynomials which define WI and VI
are zero when evaluated at (y(k), u(k − 1)).

8. Examples. The following example illustrates the concepts of invariant and
strongly invariant subsets of the variety VC .
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EXAMPLE 1. Consider the system

yk+1 = (yk − u2
k−1 − 1)(yk + u2

k−1 + 1)[(yk + 2)u3
k + u2

k + 1] + u2
k + 1.(8.1)

Assumption 1 is satisfied. The critical variety VC is defined by

VC = {(y, v) ∈ <2 : (y − v2 − 1)(y + v2 + 1)(y + 2) = 0}.

In this case we can verify that the only strongly invariant set is given by

WI = {(y, v) ∈ <2 : (y − v2 − 1) = 0} ⊂ VC .

We check the existence of strongly invariant sets via Proposition 4.11. There are three
varieties of special form that are contained in VC ,

y − v2 − 1, y + v2 + 1, y + 2,

and we also have

g0 = (y − v2 − 1)(y + v2 + 1) + 1; g1 = 0; g2 = (y − v2 − 1)(y + v2 + 1) + 1.

The only cycle of Proposition 4.11 is given by the divisions

g0 ≡ 1|(y − v2 − 1), g1 ≡ 0|(y − v2 − 1), g2 ≡ 1|(y − v2 − 1),

which defines WI . Since WI does not intersect the line y = 0 according to Theorem
4.12 the system is not output dead beat controllable.

We have, therefore, WI
f→WI , and t in Definition 4.5 can be chosen to be 1. From

equation (8.1) it is clear that ∀(y, v) ∈ V1, where V1 = {(y, v) ∈ <2 : (y+ v2 + 1) = 0}
(see Figure 8.1) we have Vr(y, v) = WI . Therefore, any initial state in V1 is transferred
in one step to some point in WI irrespective of the control that is applied. Thus, we
can write

V1
f→WI

f→WI
f→ . . . .

Consider now initial states on the line y0 = −2. The model of the system becomes

y1 = [(−3− u2
−1)(−1 + u2

−1) + 1](u2
0 + 1).

Denote real solutions u−1 of the equations

[(−3− u2
−1)(−1 + u2

−1) + 1] = −1,

[(−3− u2
−1)(−1 + u2

−1) + 1] = 1

as ai and bi (i = 1, 2), respectively. The set of one-step reachable states from (−2, a1)
and (−2, a2), is V1 and from (−2, b1) and (−2, b2) it is WI . Notice also that b1 =
1, b2 = −1, and hence (−2, b1) and (−2, b2) belong to V1. Therefore, we can write

(−2, ai)
f→ V1

f→WI
f→WI

f→ · · · , i = 1, 2.

The maximal invariant set VI is

VI = {(y, v) ∈ <2 : (y − v2 − 1)(y + v2 + 1) = 0} ∪ {(−2, a1), (−2, a2)}.
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FIG. 8.1. Invariant sets VI and strongly invariant sets WI (Example 1).

Sets VI and WI are shown in Figure 8.1. The set VC − VI is not invariant and
there exists a control uk which can map any initial state from it to <2−VC in one step.
Observe that both VI and WI are real varieties, whereas VC − VI is not. Also, initial
states in V1 are transferred to WI in one step and the initial states (−2, ai), i = 1, 2,
are transferred to WI in two steps.

The following example serves to illustrate why the present notion of stability of
constrained dynamics is more appropriate in this context than the notion of zero
dynamics introduced in [17, 18].

EXAMPLE 2. Consider the following system:

yk+1 = (uk + 2uk−1 + yk)(uk − 0.5uk−1 − yk).

We introduce the state variables x1(k) = yk and x2(k) = uk−1 and write

x1(k + 1) = (uk + 2x2(k) + x1(k))(uk − 0.5x2(k)− x1(k)),
x2(k + 1) = uk,(8.2)

y(k) = x1(k).

According to [17], the relative degree for system (8.3) is d = 1 and Assumption 1 in
[17] holds. Two possible feedback laws can be used to transform the system into the
form (2.6) in [17]:

uk =
−1.5x2(k) +

√
6.25x2

2(k) + 10x1(k)x2(k) + 4x2
1(k) + 4v(k)

2
,(8.3)

uk =
−1.5x2(k)−

√
6.25x2

2(k) + 10x1(k)x2(k) + 4x2
1(k) + 4v(k)

2
,(8.4)

where v(k) is the new control input. If we use the control law (8.4), the corresponding
zero dynamics are then defined as x2(k + 1) = −2x2(k) (with x1(k) = 0, v(k) = 0)
and are obviously not stable. If, on the other hand, we had chosen (8.3), we obtain
x2(k + 1) = 0.5x2(k), which is obviously stable. In this case there are four different
continuous feedback laws that transform the system into the form (2.6) in [17]. Three
of them yield stable zero dynamics, and one yields unstable zero dynamics. Also, there
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are infinitely many discontinuous control laws that keep the output at zero. Notice
that all conditions in [17] are satisfied, and it appears that the stability of the zero
dynamics depends on the choice of the feedback law. The criterion of choice that we
use in the definition of stable constrained dynamics takes this phenomenon explicitly
into account.

The following example illustrates the method for checking the existence of stable
constrained dynamics.

EXAMPLE 3. Check the existence of stable constrained dynamics for the following
system:

yk+1 = −2(1+y2
k)u5

k−2u3
k+2ukuk−1(1+y4

k)+2uku2
k−1+uk−1u

4
k+uk−1u

2
k−u2

k−1−u3
k−1+y3

k.

For yk = 0 we have

−2u5
k − 2u3

k + 2ukuk−1 + 2uku2
k−1 + uk−1u

4
k + uk−1u

2
k − u2

k−1 − u3
k−1 = 0.(8.5)

Therefore, the variety Vz is defined by

Vz = {(v, u) ∈ <2 : −2u5 − 2u3 + 2uv + 2uv2 + vu4 + vu2 − v2 − v3 = 0}.

We will follow the steps that are described in section 6 in order to check the existence
of stable constrained dynamics.

Step 1. Since g5(0, v) = −2, the conditions of Lemma 5.7 are satisfied.
Step 2. Using Maple3, we obtain the following Sturm sequence:

f0 = −2u5 − 2u3 + 2uv + 2uv2 + vu4 + vu2 − v2 − v3,

f1 = −10u4 − 6u2 + 2v + 2v2 + 4vu3 + 2vu,

f2 = −
(
−4

5
+

2
25
v2
)
u3 − 12

25
vu2 −

(
41
25
v2 +

8
5
v

)
u+

24
25

(v2 + v3),

f3 = −25
(−24 + 7v4 + 8v3 − 80v − 82v2)u2

(−10 + v2)2 + 50
v(−15v2 + 4v3 + 4v4 − 16v − 4)u

(−10 + v2)2

−50
4v3 + v4 + v5 + 4 + 4v + 4v2

(−10 + v2)2 ,

f4 = −[8(12800v + 41680v2 + 68240v3 + 52516v4 + 7268v5 − 10960v6

−3152v7 + 449v8 + 133v9 + 8v10 + 4v11 + 1600)]/[25(−24 + 7v4

+8v3 − 80v − 82v2)2] + [v(161600v + 548160v2 + 923680v3

+727392v4 + 113716v5 − 142400v6 − 41100v7 + 4456v8 + 1033v9

+196v10 + 100v11 + 19200)u]/[25(−24 + 7v4 + 8v3 − 80v − 82v2)2],

f5 = [50(49v15 + 161v14 − 2148v13 − 8948v12 + 27908v11 + 175332v10

+5760v9 − 1338048v8 − 2333952v7 + 1619072v6 + 10299904v5 + 15313920v4

+11967488v3 + 5407744v2 + 1351680v + 147456)v]/[(25v5 + 24v4

+728v3 + 1360v2 + 848v + 192)2(−10 + v2)2].
(8.6)

3Copyright c©1981–1992 by the University of Waterloo.
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From the Sturm sequence we find the leading coefficient functions:

−2, −10, −
(
−4

5
+

2
25
v2
)
,

−25
(−24 + 7v4 + 8v3 − 80v − 82v2)

(−10 + v2)2 ,

[v(161600v + 548160v2 + 923680v3 + 727392v4 + 113716v5

−142400v6 − 41100v7 + 4456v8 + 1033v9

+196v10 + 100v11 + 19200)]/[25(−24 + 7v4 + 8v3 − 80v − 82v2)2],

[50(49v15 + 161v14 − 2148v13 − 8948v12 + 27908v11 + 175332v10

+5760v9 − 1338048v8 − 2333952v7 + 1619072v6 + 10299904v5 + 15313920v4

+11967488v3 + 5407744v2 + 1351680v + 147456)v]/[(25v5 + 24v4

+728v3 + 1360v2 + 848v + 192)2(−10 + v2)2].
(8.7)
Using the formula for bounds on roots [4] we find that the highest coefficient func-
tions do not change their signs for v belonging to intervals ] − ∞,−312529.98[ and
]312529.98,+∞[. In other words, the estimate of D1 is D̂1 = 312529.98.

Step 3. All intersections of the variety Vz with A1, A2, B1, and B2 lie in the
interval ]− 4,+4[. It is easy to check that D̂3 = 2, D̂4 = 4, D̂5 = 2, and D̂6 = 3.

Step 4. Therefore, the estimates of sets S1 and S2 are defined using the number
T̂ = 312529.98.

Step 5. We now substitute any number v from the interval ] − ∞,−312529.98[
into (8.5) and find all real roots. We obtain the following set of points in <2:

{(−312530, u) : (−312530,+559.04293), (−312530,−559.04293), (−312530,−156265)}.

Similarly, we obtain the set of roots

{(312530, u) : (+312530, 559.04383), (312530,−559.04383), (312530, 156265)}

when we substitute v∗∗ = 312530 that belongs to the interval ]312529.98,+∞[ into
(8.5). All these points represent branches and hence V S1

m ⊂ O5 and V S2
M ⊂ O1.

Step 6. We conclude that there exists stable constrained dynamics for this system
since point 1.a of Lemma 6.1 is satisfied. We could work with better bounds on the
roots in order to obtain better estimates for the intervals S1 and S2 or better still find
the exact roots of the polynomials in the Sturm sequence. However, the proposed
method is able to check the existence of the constrained dynamics quickly.

We have provided a constructive method to verify the existence of a criterion
of choice leading to (globally) stable constrained dynamics. The method of [17, 18]
appears not to be able to deal with this aspect in general, as the example shows.
Indeed, the feedback law required in the method of [17, 18] for this example cannot
be expressed in an explicit form (this requires an analytic solution for a fifth-degree
polynomial equation).
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9. Conclusion. We have presented necessary and sufficient conditions for out-
put dead beat controllability for a class of discrete time systems described by a single
I-O polynomial equation. The highest exponent of the current input is assumed to be
an odd integer. The output controllability test amounts to checking whether a set of
polynomial divisions is satisfied or not.

We obtained necessary and sufficient conditions for the existence of stable con-
strained dynamics defined by a scalar implicit equation. We assumed that the con-
strained dynamics exist for every uk−1, but the defining polynomial f(0, uk−1, uk)
may be even. A dead beat controller that zeros the output of the system in minimum
time and which yields stable constrained dynamics is derived.

It is important to say that all algorithms that we presented are computationally
expensive and that the computational complexity for systems defined by polynomials
of high total degree may be prohibitive. This is an intrinsic feature of polynomial
systems and not a drawback of the particular methods that we used.
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Abstract. In this paper we investigate optimal control problems governed by elliptic variational
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first-order optimality conditions.
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1. Introduction. In this paper we investigate optimal control problems gov-
erned by elliptic variational inequalities with additional state constraints. This topic
has been widely studied by many authors. We mainly could mention Barbu [1, 2, 3],
Friedman [11, 12], Mignot [13], Mignot and Puel [14], Tiba [15], and Bermudez and
Saguez [8]. Most of these contributions (for example [1, 2, 3]) study the problem
via the penalization of the state (in)equation. On the other hand Mignot and Puel
[14] (for instance) give an equivalent formulation of the variational inequality via the
associated Lagrange multiplier for the obstacle problem example. We have followed
this point of view; our purpose is to set optimality conditions for such a problem that
could easily be used from the numerical point of view. This paper is the generaliza-
tion of the case of the obstacle problem that we have been studying in [5]. We deal
here with quite abstract variational inequalities. Following our previous work, we
first present a relaxed form of the original problem which can be considered as a good
“approximation” of this problem. Then using both Moreau–Yosida approximation
techniques and a penalization method we are able to set optimality conditions. We
end the paper with the example of the obstacle problem.

2. Setting the problem. Let V and H be a pair of real Hilbert spaces such
that V is a dense subset of H and V ⊂ H ⊂ V ′ algebraically and topologically (V ′

denotes the dual of V ). We suppose in addition that

the injection V ⊂ H is compact(2.1)

so that H ⊂ V ′ is compact too. (For example, one may choose V = H1
o (Ω) and

H = L2(Ω), where Ω is an open bounded “regular” subset of R3.) We denote 〈 , 〉
the pairing between V and V ′, ( , )H the H-scalar product and | |V the norm of V .
We call ΛV : V → V ′ the canonical isomorphism. Let U be another Hilbert space
(such that U = U ′); we consider the variational inequality

Ay + ∂Φ(y) 3 Bu+ f,(2.2)
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where A : V → V ′ is a linear, continuous operator satisfying the coercivity condition

∃ω > 0 ∀v ∈ V 〈Av, v〉 ≥ ω|v|2V ;(2.3)

Φ is a convex, proper, lower semicontinuous (LSC) function
from V to R ∪ {+∞}.(2.4)

We denote

dom Φ = { y ∈ V | Φ(y) < +∞ }

the domain of Φ (which is convex and V -closed). We recall that the subdifferential
∂Φ(yo) of Φ at yo ∈ V is

∂Φ(yo) = { z∗ ∈ V ′ | ∀y ∈ V Φ(y)− Φ(yo)− 〈z∗, y − yo〉 ≥ 0}

and that dom Φ = dom ∂Φ.
f ∈ V ′ and

B is a linear, compact operator from U to V ′.(2.5)

Let us recall some general results about solutions of (2.2) (see [2, 3] for example).
THEOREM 2.1. (Barbu [2, p. 40]). Under assumptions (2.3)–(2.4) and for all

ψ ∈ V ′ the variational inequality

Ay + ∂Φ(y) 3 ψ

has a unique solution y(ψ) ∈ V and the mapping ψ 7→ y(ψ) is Lipschitz from V ′ to
V .

COROLLARY 2.1. (Barbu [2, p. 63]). With the assumptions of the previous theo-
rem, for all u ∈ U there exists a unique y(u) ∈ V solution of (2.2) and the mapping
u 7→ y(u) is weakly strongly continuous from U to V .

In order to get some regularity results, we suppose from now on that

f ∈ H and B ∈ L(U,H),(2.6)

so that (2.5) is fulfilled and we may use in addition the following result (Barbu [2, p.
42]): let us denote AH : H → H the operator

AH(y) = Ay for all y ∈ D(AH) = { y ∈ V | Ay ∈ H }.(2.7)

This operator is maximal monotone in H ×H and we have Theorem 2.2.
THEOREM 2.2. Assume (2.3) and suppose in addition that there exists z ∈ H and

c ∈ R such that

∀y ∈ V,∀λ > 0 Φ((I + λAH)−1(y + λz)) ≤ Φ(y) + cλ.(2.8)

Then for every ψ ∈ H the solution y(ψ) of Ay + ∂Φ(y) 3 ψ belongs to D(AH) and

|Ay(ψ)|H ≤ c(1 + |ψ|H).

From now we suppose that (2.8) is ensured. This is the case for example for
the obstacle problem given as an example in the last section of this paper, where
V = H1

o (Ω), H = L2(Ω), and D(AH) = H2(Ω) ∩H1
o (Ω).
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Applying this regularity result to our case we get that for all u ∈ U , f +Bu ∈ H
so that the solution of (2.2) y belongs to D(AH) ⊂ V ; that is, Ay ∈ H.

REMARK 2.1. One could think that this regularity assumption is not really neces-
sary. Indeed, it is not useful to prove the results of next section. Nevertheless, when
we investigate penalized problems, then we shall need some “strong” convergence for
the penalized solutions, that is with the compactness assumptions “weak” convergence
in the pivot space H.

Now, we investigate the following optimal control problem:

(P)

 min g(y) + h(u),
Ay + ∂Φ(y) 3 Bu+ f,
(y, u) ∈ K × Uad,

where the following hold.
• g is convex from H to R, finite everywhere (dom(g) = H) and continuous.

This implies ([4, Proposition 1.9, p. 85]) that

∃(ag, cg) ∈ H × R such that ∀y ∈ H g(y) ≥ (ag, y)H + cg(2.9)

(because g is LSC) and g is everywhere subdifferentiable.
• h is convex from U to R, finite everywhere (dom(h) = U), continuous, and

coercive:

lim
|u|U→+∞

h(u)
|u|U

= +∞.(2.10)

• Uad (resp., K) is a closed, convex, nonempty subset of U (resp., V ). We note
that y ∈dom ∂Φ ⊂dom Φ so that one may always suppose that

K ⊂ dom Φ.(2.11)

REMARK 2.2. From now, we always suppose that these assumptions are satisfied.
They are not of course optimal. To get more information one can refer to Barbu [3,
p. 150].

We end this section with an existence result for (P).
THEOREM 2.3. Under assumptions (2.3), (2.4), (2.9), (2.10), problem (P) has (at

least) one optimal solution.
Proof. The proof is quite similar to the one given in Barbu [3, p. 151]. The main

difference is the addition of the state constraint y ∈ K, which does not modify the
proof.

3. “Relaxation” of the problem. We denote Φ∗ : V ′ → R the conjugate
function of Φ; it is also convex, proper, LSC and we know that (see [4, 10])

z ∈ ∂Φ(y)⇔ y ∈ ∂Φ∗(z)⇔ Φ(y) + Φ∗(z) = 〈y, z〉 .(3.1)

Because of the regularity result we always have Bu + f − Ay ∈ H, so that z =
Bu+ f −Ay ∈ ∂Φ(y) ∩H and (3.1) is equivalent to

z ∈ ∂Φ(y)⇔ y ∈ ∂Φ∗(z)⇔ Φ(y) + Φ∗(z) = (y, z)H .

REMARK 3.1. In addition such an element z belongs to dom ∂Φ∗ ⊂ dom Φ∗ so
that the condition “z ∈ dom Φ∗” is implicitly included in relation (3.1).
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Finally, problem (P) is equivalent to

(P̃)


min g(y) + h(u),
Ay = Bu+ f − z ∈ H,
Φ(y) + Φ∗(z)− (y, z)H = 0,
y ∈ D(AH) ∩K, (u, z) ∈ Uad × (dom Φ∗ ∩H) .

w = (u, z) is now considered as a new control variable. Problem (P̃) is a state-
constrained optimal control problem with a nonconvex (because of the bilinear term)
constraint coupling the state y and the control w. This constraint is quite difficult
to deal with. It is not convex and the equality constraint makes the interior of the
feasible domain empty in a very strong sense. So as we have done in [5] for the
particular case of the obstacle problem, we had rather study a “relaxed” problem.
More precisely we consider

(PRα )


min g(y) + h(u),
Ay = Bu+ f − z,
Φ(y) + Φ∗(z)− (y, z)H ≤ α,
y ∈ K, (u, z) ∈ Uad ×B∗R,

where α > 0, R > 0, B∗R = BH(0, R)∩dom Φ∗, and BH(0, R) is the H-ball of radius
R. B∗R is convex and H-closed (since dom Φ∗ is convex and V ′-closed).

REMARK 3.2. Let us comment on this “relaxed” form for problem (P̃). First we
know that Φ(y) + Φ∗(z)− (y, z)H is always nonnegative. So

Φ(y) + Φ∗(z)− (y, z)H ≤ α(3.2)

is equivalent to |Φ(y) + Φ∗(z) − (y, z)H | ≤ α. This is the relaxed term: we have
replaced the equality “= 0” with the inequality “≤ α,” where α may be as small as
wanted. This is quite realistic from the numerical point of view where equalities are
indeed inequalities up to α.

On the other hand, if we do not add the constraint “z ∈ BH(0, R)” the relaxed
problem is not coercive and so in general it has no solution. Moreover, by virtue of
assumptions (2.8) and (2.10) the optimal solutions (y, u) and Ay remain in a bounded
set of H × U and H and the constant R has to be chosen accordingly (that is large
enough); in particular, R is greater than |Aȳ − f − Bū|H for any (ȳ, ū) solution of
(P), so that the feasible domain of (PRα ) is nonempty.

Anyway, this additional condition is not very restrictive. One could instead add
a regularization term (as |z|2H/R) to the cost functional, which would have exactly the
same effect. One may also add adapted penalization terms to this cost functional as
|y − ȳ|2V or |z − z̄|2H .

From now we fix R so that we always omit the index R in the notations and (PRα )
becomes (Pα).

THEOREM 3.1. For every α > 0, (Pα) has at least one optimal solution denoted
(yα, uα, zα). Moreover, when α → 0, yα strongly converges to ȳ in V , uα weakly
converges to ū in U , and zα weakly converges to z̄ in H where (ȳ, ū) is a solution of
(P) and z̄ = Aȳ −Bū− f ∈ H.

Proof. Let α > 0; we have chosen R such that the feasible domain of (Pα)
is always nonempty. We first prove that dα = inf (Pα) ∈ R. The coercivity and
continuity assumptions on A yield that A is an isomorphism from V to V ′. Let
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(yn, un, zn) be a minimizing sequence: yn = A−1(Bun+f−zn), |zn|H ≤ R, un ∈ Uad,
Φ(yn) + Φ∗(zn)− (yn, zn)H ≤ α, and g(yn) + h(un)→ dα. Because of (2.9) we have

g(yn) + h(un) ≥
(
ag, A

−1(Bun + f − zn)
)
H

+ h(un) + cg
≥
(
ag, A

−1Bun
)
H

+ h(un)−
(
ag, A

−1zn
)
H

+ cg +
(
ag, A

−1f
)
H
.

As |zn|H ≤ R, then −
(
ag, A

−1zn
)
H

+ cg +
(
ag, A

−1f
)
H

is bounded from below.
If dα = −∞, then

(
ag, A

−1Bun
)
H

+ h(un) → −∞. If (un) were bounded in U ,
then (extracting a subsequence) un would be weakly convergent to some ũ in U ; as B
is continuous Bun would be convergent to Bũ weakly in H and strongly in V ′. There-
fore, A−1Bunwould be strongly convergent to A−1Bũ in V and

(
ag, A

−1Bun
)
H
→(

ag, A
−1Bũ

)
H

. Moreover h is LSC, so that −∞ < h(ũ) ≤ limn→+∞ inf h(un), so
we get a contradiction. This means that (un) is unbounded. Coercivity assumption
(2.10) implies that

lim
n→+∞

h(un)
|un|U

= +∞.

Moreover the Cauchy–Schwarz inequality shows that∣∣∣∣∣
(
ag, A

−1Bun
)
H

|un|U

∣∣∣∣∣ ≤ co |un|U|un|U
,

so

lim
n→+∞

(
ag, A

−1Bun
)
H

+ h(un) = |un|U

[(
ag, A

−1Bun
)
H

|un|U
+
h(un)
|un|U

]
= +∞,

and we get a contradiction.
• As |zn|H ≤ R one may extract a subsequence (still denoted zn) weakly conver-

gent in H to zα ∈ B∗R (since B∗R is weakly closed). As dα > −∞, h(un) is bounded,
and by coercivity (un) is bounded in U ; so (extracting a subsequence) un weakly con-
verges to uα ∈ Uad (Uad is weakly closed in U). The continuity of B yields that Bun
converges to Buα weakly in H. So Ayn = Bun + f − zn converges to Buα + f − zα
weakly in H and strongly in V ′. As A is an isomorphism from V to V ′, yn converges
to yα = A−1(Buα + f − zα) strongly in V . Moreover yα ∈ K since K is closed.
• Let us prove that (yα, uα, zα) is feasible for (Pα). It remains to show that

Φ(yα) + Φ∗(zα) − (yα, zα)H ≤ α. Φ and Φ∗ are convex and LSC so they are weakly
LSC and we have

Φ(yα) + Φ∗(zα) ≤ lim inf
n→+∞

Φ(yn) + lim inf
n→+∞

Φ∗(zn) ≤ lim inf
n→+∞

[Φ(yn) + Φ∗(zn)] .

Moreover the strong convergence of yn to yα in H and the weak convergence of zn to
zα in H give

lim
n→+∞

(yn, zn)H = (yα, zα)H .

Finally

Φ(yα) + Φ∗(zα)− (yα, zα)H ≤ lim inf
n→+∞

[Φ(yn) + Φ∗(zn)− (yn, zn)H ] ≤ α.
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Therefore (yα, uα, zα) is feasible for (Pα) and g(yα) + h(uα) ≥ dα. As g and h
are LSC, we also have

g(yα) + h(uα) ≤ lim inf
n→+∞

g(yn) + lim inf
n→+∞

h(un) ≤ lim inf
n→+∞

[g(yn) + h(un)] = dα.

Finally g(yα) + h(uα) = dα and (yα, uα, zα) is an optimal solution for (Pα).
• It remains to prove the convergence of (yα, uα, zα) to an optimal solution of

(P). Let (yo, uo, zo) be an optimal solution of (P) such that zo ∈ B∗R (remember that
we have chosen R to ensure the existence of such a solution). It is also a feasible triple
for (Pα) for any α > 0. So

∀α > 0 −∞ < dα = g(yα) + h(uα) ≤ g(yo) + h(uo) = do.

So dα is bounded from above in R. If it were not bounded from below, then we could
find a sequence αn → 0 such that dαn → −∞. The same proof as before shows that
it is impossible. So h(uα) is bounded (independently of α) and by coercivity (uα) is
bounded in U as well. Similarly (zα) is bounded in H (zα ∈ B∗R). Then one can show
(as we have proved the existence of (yα, uα, zα)) that

yα → ȳ strongly in V, uα ⇀ ū weakly in U, and zα ⇀ z̄ weakly in H,

where (ȳ, ū) is a solution of (P) with z̄ = Aȳ −Bū− f and that

lim
α→0

[g(yα) + h(uα)] = g(ȳ) + h(ū).

4. Penalization of (Pα).

4.1. The approximated-penalized problem. From now on, we fix also α > 0
as small as we want and we shall omit the index α most of time. We are going to
approximate and penalize the state equation of (Pα) to get an approximated problem
(Pεα). Then we shall derive optimality conditions for this problem and set qualification
conditions allowing us to pass to the limit with respect to ε. For ε > 0, we consider
the following problem:

(Pεα)
{

minJε(y, u, z),
(y, u, z) ∈ K × Uad ×B∗R,

where

Jε(y, u, z) = gε(y) + hε(u)

+
1
2ε
|Ay −Bu− f + z|2V ′ +

1
2ε

[Φε(y) + Φ∗ε(z)− (y, z)H − α]2+

+
1
2
|y − yα|2V +

1
2
|u− uα|2U +

1
2
|z − zα|2H .

Here g+ = max (0, g), and gε, hε, Φε, and Φ∗ε are the Moreau–Yosida approximations
of g, h, Φ, and Φ∗.

First, we briefly recall some useful properties of the Moreau–Yosida approximation
of convex functions. Let ϕ be a convex, proper, LSC function from H to R ∪ {+∞}
where H is a Hilbert space (not necessarily identified with its dual). The Moreau–
Yosida approximation of ϕ is defined by

ϕε(x) = inf
{
|x− y|2H

2ε
+ ϕ(y), y ∈ H

}
and we have the following properties [3, pp. 49–55] in Theorem 4.1.
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THEOREM 4.1. Let us call Iε = (ΛH+εD)−1 the proximal mapping with D = ∂ϕ,
ΛH the canonical isomorphism from H to H′, and Dε = −ε−1ΛH(Iε − I).

i. Iε is single valued and nonexpansive.
ii. Dεx ∈ ∂ϕ(Iεx) for all x ∈ H, and for all x ∈ dom(∂ϕ), limε→0Dεx = Dox ∈

∂ϕ(x) (strongly in H′), where Do(x) is the element of minimal norm of ∂ϕ(x).
iii. For all x ∈ dom ϕ, Iεx converges strongly in H toward x.
iv. If εn → 0, xεn → xo strongly in H, and Dεnxεn ⇀ yo weakly in H′, then

yo ∈ ∂ϕ(xo).
v. ϕε is Fréchet differentiable and ϕ′ε = Dε is Lipschitz (so that ϕε is C1).
vi. For all x ∈ H and ε > 0 ϕ(Iεx) ≤ ϕε(x) ≤ ϕ(x).

Moreover, for all x ∈ H, limε→0 ϕε(x) = ϕ(x).
In addition, as we need sharper convergence results, we set some further assump-

tions about the function ϕ and we suppose that

∀(xε) ∈ dom ϕ strongly convergent (in H ) to x ∈ dom ϕ
then ϕ′ε(xε) is bounded in H′ (with respect to ε).(4.1)

Then we have the following useful theorem
THEOREM 4.2. For any convex, proper, LSC function ϕ,
i. if xε strongly converges to some x in H, then limε→0 Iεxε = x (strongly in H);
ii. if xε weakly converges to some x ∈ dom ∂ϕ in H, then limε→0 inf ϕε(xε) ≥ ϕ(x);
iii. if ϕ satisfies condition (4.1) and if xε ∈ dom ϕ strongly converges to some

x ∈ dom ϕ, then limε→0 ϕε(xε) = ϕ(x) and x ∈ dom ∂ϕ.
Proof. i and ii are direct consequences of Theorem 4.1. To prove iii, we use the

relation (2.18) given in Barbu [3, p. 66]:

∀z, y ∈ H,∀ε > 0, ϕε(y)− ϕε(z) ≤ 〈ϕ′ε(y), y − z〉H′,H
where 〈 , 〉H′,H denotes the pairing between H and H′.

We use it first with z = xε and y = x and then with y = xε and y = x; this gives

|ϕε(xε)− ϕε(x)| ≤ max(|ϕ′ε(xε)|H′ , |ϕ′ε(x)|H′)|x− xε|H.
With Theorem 4.1 ii, assumption (4.1), and the strong convergence of xε to x, we get
the strong convergence of ϕε(xε) to ϕε(x). We conclude with Theorem 4.1 vi.

REMARK 4.1. The above property is satisfied for any convex, proper, LSC function
ϕ as soon as x ∈ int(dom ϕ) since ∂ϕ(x) is locally bounded in this case (see [4, p.
60]). Anyway, here it may happen that int(dom ϕ) is empty and this result cannot be
used.

Now we make precise the hypotheses on functions Φ and Φ∗; from now we assume
that

Φ satisfies (4.1) with H = V and Φ∗ satisfies (4.1) with H = V ′ .(4.2)

This assumption is not so restrictive since it allows us to consider a wide class of
convex functions; let us give some examples.

EXAMPLE 4.1. (convex functions satisfying (4.1)).
• Any continuous, convex function defined on the whole space V satisfies (4.1)

since int(dom ϕ) = V so that ∂ϕ(x) is locally bounded for any x (we use also Theorem
4.2 i, Theorem 4.1 ii, and a result of Barbu and Precupanu [4, p. 60]).
• Any indicator function ϕ = 1C of a convex, closed, nonempty subset C of H

satisfies (4.1) also; we recall that

1C(y) =
{

0 if y ∈ C,
+∞ else,
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and Iε(x) = PC(x) where PC is the H-projection on C. Then

ϕε(x) =
|x− PC(x)|2H

2ε
and ϕ′ε(x) = ΛH

(
x− PC(x)

ε

)
.

If xε strongly converges to x in C =dom ϕ, then ϕ′ε(xε) = 0 for all ε and so remains
bounded in H′.

EXAMPLE 4.2. (convex functions satisfying (4.2)).
• If Φ is the indicator function of a convex closed cone C of V , then Φ∗ = 1C∗ ,

where C∗ is the polar cone of C in V ′; so with Example 4.1 we see that (4.2) is
ensured.

This case involves the obstacle problem or the Signorini problem.
• If Φ(x) = |x|V is continuous and dom (Φ) = H then Φ∗ is the indicator function

of the unit ball of V ′.
• Φ(x) = 1

p |x|
p
V then Φ∗(x) = 1

p′ |x|
p′

V ′ where p, p′ ∈]1,+∞[ are conjugate numbers
(see Ekeland–Temam [10]). This leads to a semilinear state equation.

REMARK 4.2. The approximation process concerns the functions g, h, Φ, and
Φ∗ which are not necessarily Fréchet differentiable and are replaced by their Moreau–
Yosida approximations. This method provides C1 functions.

We have also added two kinds of penalization terms: the state equation and the
inequality (nonconvex) constraint are penalized in a standard way. The other terms
are adapted penalization terms which ensure the strong convergence of the penalized
solution toward the desired solution (when uniqueness does not hold).

First we have an existence and convergence result for (Pεα).
THEOREM 4.3. For all ε > 0, problem (Pεα) has (at least) a solution (yε, uε, zε).

Moreover, when ε→ 0, (yε, uε, zε)→ (yα, uα, zα) strongly in V × U ×H.
Proof. We first prove the existence of a solution for (Pεα). We notice that

(yα, uα, zα) is a feasible triple for (Pεα) so that the feasible domain of (Pεα) is nonempty,
and we may find a minimizing sequence (ynε , u

n
ε , z

n
ε ) converging to dε = inf(Pεα). Set-

ting Iε,g = (IH + ε∂g)−1 and Iε,h = (IU + ε∂h)−1 we get

Jε(y, u, z) ≥ gε(y) + hε(u) ≥ g(Iε,g(y)) + h(Iε,h(u))

and

inf
V×U×H

Jε(y, u, z) ≥ inf
V×U

g(Iε,g(y)) + h(Iε,h(u)) ≥ γ > −∞

because of the properties of g and h. So dε ∈ R and the end of the proof is standard
(see Theorem 3.1).

Now we prove the convergence result. Since (yα, uα, zα) is a feasible triple for
(Pεα) we have

dε = Jε(yε, uε, zε) ≤ g(yα) + h(uα) = dα.(4.3)

We have just seen that dε is lower bounded (with respect to ε) so that yε, uε,
and zε are bounded in V, U , and H. Extracting a subsequence, we get the weak
convergence of (yε, uε, zε) to (ỹ, ũ, z̃) in V × U × H; in particular, this yields that
Ayε −Buε − f + zε converges to Aỹ −Bũ− f + z̃ weakly in V ′.

Moreover Ayε−Buε− f + zε converges to zero strongly in V ′ so that Aỹ−Bũ−
f + z̃ = 0 . In addition, as Uad, K and B∗R are weakly closed we get ũ ∈ Uad, ỹ ∈ K,
and z̃ ∈ B∗R. The injection of V in H is compact, so yε → ỹ strongly in H; as zε ⇀ z̃
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weakly in H we get the convergence of (yε, zε)H to (ỹ, z̃)H . Moreover Theorem 4.2
gives

lim inf
ε→0

Φε(yε) ≥ Φ(ỹ) and lim inf
ε→0

Φ∗ε(zε) ≥ Φ∗(z̃).

So we get

[Φ(ỹ) + Φ∗(z̃)− (ỹ, z̃)H − α]+ ≤ lim inf
ε→0

[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]+.

Since limε→0[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]2+ = 0, this yields

[Φ(ỹ) + Φ∗(z̃)− (ỹ, z̃)H − α]+ = 0.

So (ỹ, ũ, z̃) is feasible for (Pα). Now relation (4.3) gives

gε(yε) + hε(uε) +
1
2
|yε − yα|2V +

1
2
|uε − uα|2U +

1
2
|zε − zα|2H ≤ g(yα) + h(uα).

Passing to the inf-limit in the above relation we get

g(ỹ) + h(ũ) +
1
2
|ỹ − yα|2V +

1
2
|ũ− uα|2U +

1
2
|z̃ − zα|2H ≤ g(yα) + h(uα) ≤ g(ỹ) + h(ũ),

since (ỹ, ũ, z̃) is feasible for (Pα). So ỹ = yα, ũ = uα and z̃ = zα. Furthermore
limε→0 |yε − yα|V = 0, limε→0 |uε − uα|U = 0, and limε→0 |zε − zα|H = 0 and we get
the strong convergence.

COROLLARY 4.1. There exists (y∗, z∗) ∈ ∂Φ∗(zα)×∂Φ(yα) such that Φ′ε(yε) ⇀ z∗

weakly in V ′ and Φ∗
′

ε (zε) ⇀ y∗ weakly in V (and strongly in H). Moreover

lim
ε→0
〈Φ′ε(yε), yε〉 = 〈z∗, yα〉 and lim

ε→0

(
Φ∗
′

ε (zε), zε
)
H

= (y∗, zα)H .(4.4)

Proof. As yε ∈ K ⊂ dom(Φ) strongly converges to yα in V , we use assumption
(4.2) to infer that Φ′ε(yε) is bounded in V ′. So we may extract a subsequence (denoted
similarly) such that Φ′ε(yε) weakly converges in V ′ to z∗. Theorem 4.1 iv implies that
z∗ ∈ ∂Φ(yα). Similarly, we may prove that Φ∗

′

ε (zε) ⇀ y∗ ∈ ∂Φ∗(zα) weakly in
V and strongly in H, since zε strongly converges to zα in V ′. Relations (4.4) are
obvious.

4.2. Optimality conditions for (Pεα). Now, we want to derive optimality
conditions for (Pεα). Jε is C1 and the feasible domain of (Pεα) is convex, so using
convex variations we have

∀(y, u, z) ∈ K × Uad ×B∗R, ∇Jε(yε, uε, zε)(y − yε, u− uε, z − zε) ≥ 0.(4.5)

This leads to the following penalized optimality system in Theorem 4.4.
THEOREM 4.4. For all ε > 0 (small enough), there exist qε ∈ V and λε ∈ R+

such that

∀y ∈ K
(g′ε(yε), y− yε)H+(yε − yα, y−yε)V +〈A∗qε +λε[Φ′ε(yε)− zε], y−yε〉 ≥ 0,(4.6)

∀u ∈ Uad (h′ε(uε)−B∗qε + uε − uα, u− uε)U ≥ 0,(4.7)
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∀z ∈ B∗R
(
qε + λε[Φ∗

′

ε (zε)− yε] + zε − zα, z − zε
)
H
≥ 0,(4.8)

where A∗ and B∗ are the adjoint operators of A and B.
Proof. Relation (4.5) may be decoupled to obtain

∀y ∈ K, ∇yJε(yε, uε, zε)(y − yε) ≥ 0,(4.9)
∀u ∈ Uad, ∇uJε(yε, uε, zε)(u− uε) ≥ 0,(4.10)
∀z ∈ B∗R, ∇zJε(yε, uε, zε)(z − zε) ≥ 0.(4.11)

Let us make precise these relations: setting qε = Λ−1
V (sε) ∈ V and

sε =
Ayε −Buε − f + zε

ε
∈ H ⊂ V ′, λε =

[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]+
ε

∈ R+ ,

relation (4.9) gives for all y ∈ K

(g′ε(yε), y − yε)H + (yε − yα, y − yε)V
+ 〈λε[Φ′ε(yε)− zε], y − yε〉+ 〈qε, A(y − yε)〉 ≥ 0;

introducing the adjoint operator A∗ of A we get (4.6). The other relations are obtained
similarly.

REMARK 4.3. Equation (4.8) (and (4.7) as well) can be reformulated using the
normal cone to B∗R. Indeed, as B∗R is convex this normal cone is characterized with

NB∗R(zε) = { ξ ∈ H | (ξ, zε − z)H ≥ 0 ∀z ∈ B∗R }

(see for instance Clarke [9, p. 53]), so that relation (4.8) is equivalent to

−[qε + λε(Φ∗
′

ε (zε)− yε)] ∈ zε − zα +NB∗R(zε).(4.12)

5. Optimality conditions for (Pα). In order to pass to the limit (with respect
to ε) in the previous relations we need further estimations on the multipliers qε and
λε.

5.1. Estimations of the penalized multipliers. Let (y, u, z) ∈ K×Uad×B∗R
and let us add relations (4.6)–(4.8). This gives

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U
+ (yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H
+ 〈qε, Ay −Bu+ z − f − (Ayε −Buε + zε − f)〉
+ λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗
′

ε (zε)− yε, z − zε
)
H

]
≥ 0 .

Using the definition of qε and that ε 〈qε,ΛV qε〉 ≥ 0 we get

〈−qε, Ay−Bu+ z − f〉 − λε
[
〈Φ′ε(yε)−zε, y − yε〉+

(
Φ∗
′

ε (zε)− yε, z − zε
)
H

]
≤ (g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U

+ (yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H .

The right-hand-side term is bounded since (yε, uε, zε)→ (yα, uα, zα) strongly in V ×
U ×H, and (g′ε(yε), h

′
ε(uε)) ⇀ (ygα, u

h
α) ∈ ∂g(yα)× ∂h(uα) weakly in H ×U (because
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of Theorem 4.2 iii and the continuity of g and h). The bounding constant σ depends
only on (y, u, z). So we have, for all ε > 0 small enough,

−λε
[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗
′

ε (zε)− yε, z − zε
)
H

]
−〈qε, Ay −Bu+ z − f〉 ≤ σ(y, u, z).

(5.1)

We first estimate the real number λε. If the solution (yα, uα, zα) is such that the
nonconvex constraint is inactive, i.e.,

Φ(yα) + Φ∗(zα)− (yα, zα)H − α = G(yα, zα) < 0,

then convergence results yield

∃εo > 0 ∀ε ≤ εo, Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α < 0

as well and λε = 0; hence the limit λα = 0.
Now, we investigate the case when the constraint is active; that is,

Φ(yα) + Φ∗(zα)− (yα, zα)H − α = G(yα, zα) = 0.

Let us assume the following condition (H1):

(H1)
∀α such that G(yα, zα) = 0 ∀(y∗, z∗) ∈ ∂Φ∗(zα)× ∂Φ(yα),
∃(ỹ, ũ, z̃) ∈ K × Uad ×B∗R such that Aỹ = Bũ+ f − z̃, and

[Φ(yα)− Φ(y∗)− 〈yα − y∗, z̃〉] + [Φ∗(zα)− Φ∗(z∗)− 〈zα − z∗, ỹ〉] < 2α.(5.2)

REMARK 5.1. Relation (5.2) is indeed equivalent to

〈yα − y∗, z̃ − zα〉+ 〈zα − z∗, ỹ − yα〉 > 0,

as we shall prove later. Moreover, in our case, 〈yα − y∗, z̃〉 = (yα − y∗, z̃)H since
z̃ ∈ H.

THEOREM 5.1. Assume (H1); then λε is bounded by a constant independent of ε,
and we may extract a subsequence converging to λα ∈ R+.

Proof. If α is such that G(yα, zα) < 0, we have already seen that λα = 0.
If G(yα, zα) = 0, we use (H1). Let (y∗, z∗) ∈ ∂Φ∗(zα) × ∂Φ(yα) ⊂ V × V ′ be

given by Corollary 4.1. Let us apply relation (5.1) with the triple (ỹ, ũ, z̃) given by
(H1). We get

λε

[
〈zε − Φ′ε(yε), ỹ − yε〉+

(
yε − Φ∗

′

ε (zε), z̃ − zε
)
H

]
≤ C̃(5.3)

and

Φ(yα)− Φ(y∗)− (yα − y∗, z̃)H + Φ∗(zα)− Φ∗(z∗)− 〈zα − z∗, ỹ〉 < 2α.

As y∗ ∈ ∂Φ∗(zα) and z∗ ∈ ∂Φ(yα), we have Φ(y∗) + Φ∗(zα) = (y∗, zα)H and Φ∗(z∗) +
Φ(yα) = 〈z∗, yα〉.

Moreover we are in the case where Φ(yα) + Φ∗(zα) = (yα, zα)H +α, so that (5.2)
is equivalent to

ρ = (yα − y∗, z̃ − zα)H + 〈zα − z∗, ỹ − yα〉 > 0,

as mentioned in Remark 5.1.
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Convergence results given in Theorem 4.3 and Corollary 4.1 imply that

lim
ε→0

(
yε − Φ∗

′

ε (zε), z̃ − zε
)
H

+ 〈zε − Φ′ε(yε), ỹ − yε〉 = ρ > 0.

So, there exists εo > 0 such that for all 0 < ε < εo we have(
yε − Φ∗

′

ε (zε), z̃ − zε
)
H

+ 〈zε − Φ′ε(yε), ỹ − yε〉 ≥
ρ

2
.

Then relation (5.3) gives

∀ε < εo 0 ≤ ρ

2
λε ≤ C̃.

So λε is bounded and converges to some λα ∈ R+ (extracting a subsequence).
It remains to bound qε. Following [7] we assume the (qualification) condition

(H2):

(H2)


∃W separable Banach subspace such that

W ⊂ V ′ continuously and densely,
∃M ⊂ K × Uad ×B∗R bounded in V × U ×H, such that

0 ∈ IntWT (M) in W -topology,
where T (y, u, z) = Ay −Bu− f + z .

More precisely, 0 ∈ IntWT (M) means the existence of ρ > 0 such that

∀ξ ∈W, |ξ|W ≤ 1, ∃(yξ, uξ, zξ) ∈M such that Ayξ = Buξ + f − zξ + ρξ.

THEOREM 5.2. Assume (H1) and (H2); then qε is bounded in W ′, and one may
extract a subsequence converging weak* to qα in W ′.

Proof. Let ρ > 0 be given by (H2) and ξ ∈W such that |ξ|W ≤ 1. We use relation
(5.1) with (yξ, uξ, zξ) and we get

〈−qε, ρξ〉 ≤ C1 + C2λε,

where C1 and C2 are constants dependent only on (yξ, uξ, zξ). Assumption (H1)
provides a bound for λε andM is bounded. So there exists a constant C (depending
only on M) such that

∀ξ ∈W, |ξ|W ≤ 1, 〈qε, ξ〉W ′,W ≤ C

(as W ⊂ V ′ and qε ∈ V then qε ∈W ′). Thus qε is bounded in W ′.
Now, we are able to pass to the limit in the penalized optimality system with

respect to ε.

5.2. Optimality conditions for (Pα).
THEOREM 5.3. Let be α > 0 and assume (H1) and (H2); then there exists

(ygα, u
h
α, z
∗
α, y
∗
α) ∈ ∂g(yα) × ∂h(uα) × ∂Φ(yα) × ∂Φ∗(zα) ⊂ H × U × V ′ × V and

(qα, λα) ∈W ′ × R+ such that

∀y ∈ K such that A(y − yα) ∈W,
(ygα, y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα 〈z∗α − zα, y − yα〉V ′,V ≥ 0 ,(5.4)

∀u ∈ Uad such that B(u− uα) ∈W,(
uhα, u− uα

)
U
− 〈qα, B(u− uα)〉W ′,W ≥ 0,(5.5)
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∀z ∈ B∗R such that z − zα ∈W,
〈qα, z − zα〉W ′,W + λα (y∗α − yα, z − zα)H ≥ 0,(5.6)

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0.(5.7)

Proof. Let y ∈ K be such that A(y− yα) ∈W, u ∈ Uad such that B(u−uα) ∈W
and z ∈ B∗R such that z − zα ∈ W . We use relations (4.6)–(4.8) with these test
functions and add them to get

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U
+ (yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H
+ 〈qε, Ay −Bu+ z − f − (Ayε −Buε + zε − f)〉
+ λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗
′

ε (zε)− yε, z − zε
)
H

]
≥ 0;

that is, as subsection 5.1,

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U
+ (uε − uα, u− uε)U + (zε − zα, z − zε)H
+ 〈qε, A(y − yα)−B(u− uα) + z − zα〉W ′,W
+ λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗
′

ε (zε)− yε, z − zε
)
H

]
≥ 0.

As g and h are continuous and finite everywhere, (g′ε(yε), h
′
ε(uε)) converges toward

some (ygα, u
h
α) ∈ ∂g(yα)×∂h(yα). Then we may pass to the limit in the above relation

to infer

(ygα, y − yα)H +
(
uhα), u− uα

)
U

+ 〈qα, A(y − yα)−B(u− uα) + z − zα〉W ′,W
+ λα [〈z∗α − zα, y − yα〉+ (y∗α− yα, z − zα)H ] ≥ 0 .

Taking in turn y = yα, u = uα, and z = zα we obtain relations (5.4)–(5.6).
Finally if Φ(yα) + Φ∗(zα) − (yα, zα)H − α < 0 we have seen that λα = 0. So

relation (5.7) is satisfied.
REMARK 5.2. As we already mentioned in Remark 4.3, equation (5.6) is equivalent

to

−qα − λα(y∗α − yα) ∈ NB∗R∩(zα+W )(zα).(5.8)

COROLLARY 5.1. With assumptions of Theorem 5.3, there exist (ygα, u
h
α) ∈ ∂g(yα)×

∂h(uα) ⊂ H × U and (qα, λα) ∈W ′ × R+ such that

∀y ∈ K s.t. A(y − yα) ∈W,
(ygα, y − yα)H + 〈qα, A(y − yα)〉W ′,W
+ λα [Φ(y) + Φ∗(zα)− (y, zα)H − α] ≥ 0

(5.9)

∀u ∈ Uad s.t. B(u− uα) ∈W
(
uhα, u− uα

)
U
− 〈qα, B(u− uα)〉W ′,W ≥ 0,

∀z ∈ B∗R s.t. z − zα ∈W,
〈qα, z − zα〉W ′,W + λα [Φ(yα) + Φ∗(z)− (yα, z)H − α] ≥ 0,(5.10)

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0.
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Proof. Theorem 5.3 gives (z∗α, y
∗
α) ∈ ∂Φ(yα) × ∂Φ∗(zα) ⊂ V ′ × V such that

relations (5.4) and (5.6) are satisfied.
As z∗α ∈ ∂Φ(yα) we get, for all y ∈ K such that A(y − yα) ∈W ,

Φ(y)− Φ(yα) ≥ 〈z∗α, y − yα〉 ,

so that relation (5.4) becomes

(ygα, y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα [Φ(y)− Φ(yα)− (zα, y − yα)H ] ≥ 0.

Using (5.7) we obtain relation (5.9). Similarly, we can show relation (5.10).
COROLLARY 5.2. With assumptions of the previous theorem and if g and h are

Gâteaux differentiable, there exists (qα, λα) ∈W ′ × R+ such that

∀y ∈ K s.t. A(y − yα) ∈W,
(g′(yα), y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα [Φ(y) + Φ∗(zα)− (zα, y)H − α] ≥ 0,

∀u ∈ Uad s.t. B(u− uα) ∈W (h′(uα), u− uα)U − 〈qα, B(u− uα)〉W ′,W ≥ 0,

∀z ∈ B∗R s.t. z − zα ∈W,
〈qα, z − zα〉W ′,W + λα [Φ(yα) + Φ∗(z)− (z, yα)H − α] ≥ 0,

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0.

REMARK 5.3. The natural idea would now be to study the asymptotic behavior of
the previous optimality system when α → 0. Unfortunately, we would have to set an
“(H1)-like” assumption with α = 0, to be able to pass to the limit in the α-optimality
system. This is impossible since the interior of the feasible domain of P is empty
because of the nonconvex equality constraint and an assumption like (H1) with α = 0
would never be ensured. However, as we have already mentioned, this relaxed approach
is sufficient for numerical applications.

6. Example of the obstacle problem. In this section we study an example
where the variational inequality leads to an obstacle problem.

Let Ω be an open, bounded subset of Rn with a smooth boundary ∂Ω. We consider
a bilinear form a(., .) defined on H1

o (Ω)×H1
o (Ω) and A the continuous linear operator

from H1
o (Ω) to H−1(Ω) associated with a such that

Ay = −
n∑

i,j=1

∂xi(aij(x)∂xjy) + a0(x)y with

aij , a0 ∈ C2(Ω̄) for i, j = 1, . . . , n, inf {a0(x) | x ∈ Ω̄} > 0,
n∑

ij=1

aij(x)ξiξj ≥ δ
n∑
i=1

ξ2
i ∀x ∈ Ω̄∀ξ ∈ Rn, δ > 0.

(6.1)

We shall denote ‖ ‖, the L2(Ω)-norm, ( , ) the L2(Ω)-scalar product, and 〈 , 〉 any
duality product. We set

V = H1
o (Ω) , H = L2(Ω) , DH(A) = H2(Ω)∩H1

o (Ω) , U = L2(Ω), and B = IdL2(Ω).
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Let us set also

K = V and C+ = {y | y ∈ H1
o (Ω), y ≥ 0 a.e. in Ω}.

The convex function Φ is the indicator function I+ of C+ Then Φ∗ is the indicator
function I− of the negative cone C− of H−1, and we have already mentioned that Φ
and Φ∗ satisfy condition (4.2). Then we get as a state equation

Ay = f + v − z in Ω, y = 0 on Γ,(6.2)

with f, v, and z belonging to L2(Ω) (because of the regularity result mentioned in
section 1). The constraint z ∈ ∂Φ(y) becomes

y ≥ 0 , z ≤ 0 , (y, z) = 0,

and the α-inequality constraint Φ(y) + Φ∗(z)− (y, z) ≤ α gives:

y ≥ 0 , z ≤ 0 , (y,−z) ≤ α.

We set ξ = −z, so that the original control problem is defined as follows (see [5]):

(P) min
{
J(y, v) =

1
2

∫
Ω

(y − zd)2 dx+
M

2

∫
Ω
v2 dx

}
,

Ay = f + v + ξ in Ω, y = 0 on Γ,(6.3)

(y, v, ξ) ∈ D,(6.4)

where

D = {(y, v, ξ) ∈ H1
o (Ω)× L2(Ω)× L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, (y, ξ) = 0}

and zd ∈ L2(Ω). The relaxed problem is

(Pα) minJ(y, v),

Ay = v + ξ in Ω, y ∈ H1
o (Ω),(6.5)

(y, v, ξ) ∈ DRα ,(6.6)

where

DRα = {(y, v, ξ) ∈ H1
o (Ω)×L2(Ω)×L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, ‖ξ‖ ≤ R, (y, ξ) ≤ α}.

The results of the previous section may be applied with W = Lp(Ω) and we get
Theorem 6.1.

THEOREM 6.1. Assume

(H1)

∀α such that 〈yα, ξα〉 = α ,

∃(ỹ, ṽ, ξ̃) ∈ C+ × Uad ×B∗R such that
Aỹ = ṽ + ξ̃ and (ỹ, ξα) +

(
yα, ξ̃

)
< 2α
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and

(H2)
∃p ∈ [1,+∞[, ∃ ρ > 0 ∀ χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1,

∃(yχ, vχ, ξχ) bounded in C+ × Uad ×B∗R (independently of χ)
such that Ayχ = vχ + ξχ + ρχ in Ω,

and let (yα, vα, ξα) be a solution of (Pα); then a Lagrange multiplier (qα, λα) ∈
Lp
′
(Ω)× R+ exists such that

∀y ∈ C+ such that A(y − yα) ∈ Lp(Ω),
(yα − zd, y − yα) + 〈qα, A(y − yα)〉+ λα (ξα, y − yα) ≥ 0 ,(6.7)

∀v ∈ Uad, v − vα ∈ Lp(Ω), 〈Mvα − qα, v − vα〉 ≥ 0,(6.8)

∀ξ ∈ B∗R, ξ − ξα ∈ Lp(Ω), 〈λαyα − qα, ξ − ξα〉 ≥ 0,(6.9)

λα ((yα, ξα)− α) = 0.(6.10)

For more details one can refer to [5]. We just mention that assumptions (H1)
and (H2) are satisfied, for instance, if Uad = L2(Ω) or Uad = {v ∈ L2(Ω) | v ≥ ψ ≥
0 a.e. in Ω}.

7. Conclusion. As already mentioned at the beginning of this paper, we have
in mind the numerical aspects of the question: that is, why we have underlined that
the “relaxed” problem Pα is a good approximation of the original problem. Now,
we think that the main tool for a good numerical approach for such problems is
the (necessary) optimality conditions that we have obtained in Theorem 5.3. They
allow us to interpret the optimal solution as the first argument of the saddle point
of a linearized Lagrangian function, although the problem is not convex. We have
developed this point of view and presented some algorithms in [6] for the case of the
obstacle problem. The numerical behavior of these methods is quite nice.

On the other hand, though we have not tested methods using Yosida approxima-
tion, we believe that the use of penalization is not helpful for numerics. It seems to
be too unstable (because of the suitable choice of the parameter ε), and we think it
is only a theoretical tool.
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Abstract. We consider the initial value problem with boundary control for a scalar nonlinear
conservation law

ut + [f(u)]x = 0, u(0, x) = 0, u(·, 0) = ũ ∈ U ,(∗)

on the domain Ω = {(t, x) ∈ R2 : t ≥ 0, x ≥ 0}. Here u = u(t, x) is the state variable, U is a set
of bounded boundary data regarded as controls, and f is assumed to be strictly convex. We give a
characterization of the set of attainable profiles at a fixed time T > 0 and at a fixed point x̄ > 0:

A (T,U) = {u(T, ·) : u is a solution of (∗)},
A (x̄,U) = {u(·, x̄) : u is a solution of (∗)},

U = L∞(R+).

Moreover we prove that A (T,U) and A (x̄,U) are compact subsets of L1 and L1
loc, respectively,

whenever U is a set of controls which pointwise satisfy closed convex constraints, together with some
additional integral inequalities.

Key words. conservation laws, boundary control, attainable set

AMS subject classifications. 35B37, 35L65

PII. S0363012996304407

1. Introduction. The paper is concerned with the initial boundary value prob-
lem for a scalar nonlinear conservation law in one space dimension:

ut + [f(u)]x = 0,(1.1)
u(0, x) = 0, t, x ≥ 0,(1.2)
u(t, 0) = ũ(t),(1.3)

where u = u(t, x) is the state variable, ũ is a measurable bounded boundary data,
and f is assumed to be a strictly convex function. Following [14] we shall consider
only weak entropic solutions of (1.1)–(1.2) which satisfy the boundary condition (1.3)
in a weak sense.

Here we study the system (1.1)–(1.3) from the point of view of control theory [8],
regarding the boundary data ũ as a control. Given a set U ⊂ L∞(R+) of admissible
controls, we study the set of attainable profiles at a fixed time T

A (T,U) =
{
u(T, ·) : u is a solution to (1.1)–(1.3) with ũ ∈ U

}
.

We will give a precise characterization of the attainable set when U = L∞(R+) by us-
ing the theory of generalized characteristics developed by Dafermos [5]. Applications
to calculus of variations and problems of optimization motivate the study of topolog-
ical properties of A (T,U). Here closure and compactness of the attainable set will
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be established in connection with classes of boundary controls which are measurable
selections of a bounded multifunction with closed convex values and satisfy certain
integral inequalities. In the proof of such results a key role will be played by the weak?

compactness of the set of fluxes {f(ũ) : u ∈ U} of admissible boundary controls.
Results concerning the set of attainable profiles at a fixed point in space x̄ > 0,

A (x̄,U) =
{
u(·, x̄) : u is a solution to (1.1)–(1.3) with ũ ∈ U

}
,

can be derived by similar arguments.
The compactness of the attainable sets allows us to prove the existence of solutions

for a class of optimization problems, where the cost functional depends on the profiles
of the solutions at some time T or at a fixed point x̄. In section 5 we apply these
results to a model of traffic flow where one wants to minimize the average time spent
by cars travelling through a given stretch of highway. The controller acts by varying
the density of cars entering the highway.

2. Preliminaries and statements of main results.

2.1. Formulation of the problem. On the domain Ω = {(t, x) ∈ R2 : t ≥
0, x ≥ 0} consider the mixed initial boundary value hyperbolic problem

ut + [f(u)]x = 0,(2.1)
u(0, x) = ū(x), t, x ≥ 0,(2.2)
u(t, 0) = ũ(t),(2.3)

where ũ ∈ L∞(R+), ū ∈ L∞(R+)∩L1(R+), and f : R→ R is a twice continuously dif-
ferentiable strictly convex function. Denote b(x) = (f ′)−1(x) whenever x ∈ Range (f ′)
and b(0) = −∞ if 0 /∈ Range (f ′).

We recall that problems of this type do not possess classical solutions since dis-
continuities arise in finite time even if the initial and boundary data are smooth (see
[4], [15]). Hence it is natural to consider weak solutions in the sense of distributions
satisfying the usual entropy conditions [11], [13]

u(t, x−) ≥ u(t, x+), t, x > 0.(2.4)

As pointed out in [3], [6], and [14], in general the Dirichlet condition (2.3) may not
be fulfilled pointwise a.e.; thus following [14] we require that an entropic solution u to
(2.1)–(2.3) satisfies the above condition in a weaker sense which is motivated by the
classical vanishing viscosity method (see [3], [14], and Definition 1). In [3] an entropic
solution to (2.1)–(2.3) is obtained as the limit of solutions of suitable approximating
parabolic problems, while in [14] Le Floch generalizes a result of Lax for the Cauchy
problem for the scalar conservation law (see [12]), expressing a solution in terms of
the pointwise minimum of a function y 7→ Ψ(t, x, y) for any (t, x) ∈ R+×R+ (see also
Remark 2.1). Concerning uniqueness, in [14] an L1-semigroup property in the class
of piecewise regular solutions is established (see Remark 2.2).

As observed in [14], any solution of (2.1)–(2.3) with boundary data ũ such that
f ′(ũ(t)) < 0 on a subset I of R+ of positive measure can be obtained with the
boundary data

ũ′(t) =

{
b(0) if t ∈ I,
ũ(t) otherwise.
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Hence it is not restrictive to assume that the characteristics at the boundary are always
entering the domain, i.e., f ′(ũ(t)) ≥ 0 for a.e. t: this hypothesis will be adopted in
the rest of the paper. We recall here the definition of the solution to (2.1)–(2.3) as
stated in [14].

DEFINITION 1. A function u ∈ L1(Ω;R) is a solution of (2.1)–(2.3) if
(i) it is a weak entropic solution of (2.1) in the interior of Ω;
(ii) there exists a set E ⊂ R+ with zero measure such that

lim
t→0+

t/∈E

∫ x

0
u(t, ξ) dξ =

∫ x

0
ū(ξ) dξ, x ≥ 0;(2.5)

(iii) the boundary condition is satisfied in the following weak sense: there exist a
set F ⊂ R+ with zero measure and two functions Υ : R+ → R and µ : R+ → {−1, 0, 1}
such that

lim
x→0+

x/∈F

∫ t

0
f(u(s, x)) ds =

∫ t

0
Υ(s) ds, t ≥ 0,(2.6)

lim
x→0+

x/∈F

sgn f ′(u(t, x)) = µ(t), a.e. t ≥ 0,(2.7)

and {
Υ(t) = f(ũ(t)) if µ(t) ≥ 0,
Υ(t) ≥ f(ũ(t)) if µ(t) = −1

a.e. t > 0.(2.8)

Remark 2.1. In [14] Le Floch proves that under the above assumptions there
exists a solution u to (2.1)–(2.3), having right and left limits in t and x at every point
in the interior of Ω and such that for any fixed t ≥ 0 u(t, ·) has at most countably
many discontinuities. Moreover it satisfies the bounds

‖u(·, ·)‖∞ ≤ max {‖ū(·)‖∞, ‖ũ(·)‖∞} ,

min
{
f(u) : |u| ≤ ‖ũ‖∞, ‖ū(·)‖∞

}
≤ Υ(t) ≤ max

{
‖f(ū(·))‖∞, ‖f(ũ)(·)‖∞

}
(2.9)

for a.e. t > 0. Such a solution admits the following explicit representation inside the
domain:

u(t, x) = b

(
x− y(t, x)

t

)
, t > 0, x > 0,(2.10)

where y(t, x) denotes a point of minimum value for the function

y 7→ ΨΥ(t, x, y) =


∫ y

0
ū(s) ds+ t g

(
x− y
t

)
if y ≥ 0,

−
∫ τ

0
Υ(s) ds+ (t− τ) g

(
x

t− τ

)
if y ≤ 0,

(2.11)

with g denoting the Legendre transform of a superlinear convex map f̃ which coincides
with f on the closed ball {u ∈ R : |u| ≤ ‖ũ‖∞} and τ satisfying

x− y
t

=
x

t− τ , y ≤ 0.
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Notice that in [11] it is shown that for any given t ∈ [0, T ] the function y 7→ ΨΥ(t, x, y)
attains its minimum at a single point for all but at most countably many x > 0.
Furthermore the existence of the traces at x = 0 in the sense of (2.6)–(2.7) for the
functions f(u), sgn f ′(u) holds in general for any map u admitting a representation
as in (2.10) with ΨΥ defined by (2.11) in connection with some L∞ function Υ.

Remark 2.2. Regarding uniqueness in [14], the following L1-semigroup property is
established: if u and v are piecewise continuously differentiable solutions of (2.1)–(2.3)
associated with initial and boundary data ū, ũ and v̄, ṽ, respectively (ũ, ṽ ≥ b(0)),
then

∫ +∞

0
|u(t, x)− v(t, x)| dx ≤

∫ +∞

0
|ū(x)− v̄(x)| dx+

∫ t

0
|f(ũ(s))− f(ṽ(s))| ds

(2.12)

holds for any t > 0. This property can be extended to all the solutions associated with
an L∞ boundary condition (for details see the Appendix), and hence any solution to
(2.1)–(2.3) admits a representation of the form (2.10) for a.e. (t, x) ∈ int Ω.

In this paper we are interested only in solution of (2.1)–(2.3) with null initial data
ū. From now on we will adopt the semigroup notation Stũ for the unique solution of
(1.1)–(1.3) at time t. We shall be concerned with basic properties of the attainable
sets for (1.1)–(1.2):

A (T,U) .= {ST ũ : ũ ∈ U} ,(2.13)

A (x̄,U) .=
{
S(·)ũ(x̄) : ũ ∈ U

}
,(2.14)

which consist of all profiles that can be attained at a fixed time T > 0 and at a fixed
point x̄ > 0 by solutions of (1.1)–(1.2) with boundary data that varies inside a given
class U ⊆ L∞ of admissible boundary controls. In particular we give a characterization
of

A(T ) .=
{
ST ū : ũ ∈ L∞(R+), ũ ≥ b(0)

}
,(2.15)

A(x̄) .=
{
S(·)ũ(x̄) : ũ ∈ L∞(R+), ũ ≥ b(0)

}
,(2.16)

and we establish the compactness of (2.13), (2.14) in connection with a special class
of admissible boundary controls.

2.2. Statements of the main results. We present here the statements of the
main results. Throughout the following,

D−w(x) = lim inf
h→0

w(x+ h)− w(x)
h

, D+w(x) = lim sup
h→0

w(x+ h)− w(x)
h

will denote, respectively, the lower and upper Dini derivatives of a function w at x.
THEOREM 1. In connection with problem (1.1)–(1.2), for any fixed T > 0, A(T )

is the set of all bounded functions w which satisfy the following conditions:

w(x) 6= 0 =⇒ f ′(w(x)) ≥ x

T
,(2.17)

w(x−) 6= 0 and w(y) = 0 ∀ y > x =⇒ f ′(w(x−)) >
x

T
,(2.18)

D+w(x) ≤ f ′(w(x))
xf ′′(w(x))

(2.19)

for every x > 0.
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Remark 2.3. By definition an element w̃ ∈ A(T ) ⊆ L∞(R+) is an equivalence
class of essentially bounded measurable functions. Hence the above characterization
must be interpreted in the sense that w̃ ∈ A(T ) iff there exists a representative w in
the class w̃ satisfying (2.17)–(2.19).

Notice that if a bounded function w satisfies (2.17), then there exists a > 0 such
that w(x) = 0 if x ≥ a. Therefore, the boundedness of w together with (2.17), (2.19)
imply that w has finite total increasing variation (and hence finite total variation as
well) on subsets of R+ bounded away from the origin. Thus we may assume that w
admits left limit in any point and (2.18) makes sense. Moreover from (2.19) it follows
that w(x−) > w(x+) at every point of discontinuity.

Remark 2.4. Having in mind the extension of the above result to attainable sets
for classes of admissible boundary controls in L1(R+) (see [1]), it is useful to rewrite
condition (2.19) in the following form:

w(y) ≤ w(x) +
∫ y

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ ∀ x, y > 0, y ≥ x,(2.19′)

which is shown to be equivalent to (2.19) at the end of section 3.
THEOREM 2. In connection with problem (1.1)–(1.2), for any fixed x̄ > 0, A(x̄)

is the set of all bounded functions ρ which satisfy the following conditions:

ρ(t) 6= 0 =⇒ f ′(ρ(t)) ≥ x̄

t
,(2.20)

ρ(τ+) 6= 0 and ρ(t) = 0 ∀ t < τ =⇒ f ′(ρ(τ+)) >
x̄

τ
,(2.21)

D−ρ(t) ≥ f ′(ρ(t))
tf ′′(ρ(t))

(2.22)

for every t > 0.
The proof of Theorem 1 is given in section 3; the proof of Theorem 2 is entirely

similar so it is omitted.
In order to achieve the closure of the attainable sets for (1.1)–(1.2) we need to

restrict the class of admissible boundary controls by means of a suitable multifunc-
tion G.

THEOREM 3. Let G : R+ ↪→ [b(0),+∞) be a measurable uniformly bounded
multifunction with convex closed values, qi : R+ × R → R, i = 1, . . . , N , measurable
maps convex w.r.t. the second variable, gi : R+ → R, i = 1, . . . , N , measurable maps
and let J be a possibly empty subset of R+. Denote

U =
{
ũ ∈ L∞(R+) : ũ(t) ∈ G(t), for a.e. t,∫ t

0
qi
(
s, f(ũ(s))

)
ds ≤ gi(t) ∀ t ∈ J, ∀ i = 1, . . . , N

}
.

(2.23)

Then A (T,U), T > 0, and A (x̄,U), x̄ > 0 are compact subsets of L1(R+) and
L1

loc(R+), respectively.
The proof of Theorem 3 is given in section 4. (For references on the multifunction

G see [2].)
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Remark 2.5. The convexity assumption on the multifunction G cannot be relaxed
in order to ensure the closure of the attainable set, as shown by the following example.

Example. Consider the problem (1.1)–(1.2) associated with the Burgers equation

ut +
(
u2

2

)
x

= 0,(2.24)

and assume that the admissible boundary controls are all the measurable functions
taking values in {0, 2}. We claim that the corresponding attainable set at time T = 1
is not closed in the topology of L1. Indeed, define

ũν(t) =


2 if

k

2ν
≤ t ≤ k + 1

2ν
k even,

0 if
k

2ν
≤ t ≤ k + 1

2ν
k odd,

0 ≤ k ≤ 2ν − 1.(2.25)

Observe that f(ũν) converges weakly in L1 to f(ũ), with ũ(t) ≡
√

2. Hence by the
same arguments of section 4 it can be shown that S(·)ũ

ν(·) converges in the L1-norm
to a solution of (2.24), (1.2), (1.3) with boundary data ũ: then

S1ũ(x) =

{√
2 if 0 < x <

√
2/2,

0 otherwise.
(2.26)

It can be easily seen that such a profile cannot be obtained with a boundary data ũ′

which takes values in {0, 2}. Indeed, by tracing the backward generalized character-
istics [5] and recalling (2.8), one gets

ũ′(t) =
√

2 ∀ t ∈ [1/2, 1].(2.27)

Remark 2.6. The convexity assumption on the functions qi cannot be relaxed too.
Indeed, consider the Burgers equation (2.24) with admissible boundary data ũ taking
values in [0, 2] and satisfying the inequality∫ 1

1/2
ũ(s) ds ≤ 1

2
,(2.28)

which is an integral constraint of the type given in (2.23) with

q(s, v) .=

{
0 if 0 ≤ s < 1/2,
sgn(v)

√
2|v| otherwise.

Observe that the same sequence defined by (2.25) fulfills such a constraint. On the
other hand, from (2.27) it follows that the profile in (2.26) cannot be attained by
using any boundary control satisfying (2.28).

As stated in the introduction, the compactness of the attainable sets guarantees
the existence of optimal controls for a class of minimization problems.

COROLLARY 1. Let F1 : L1(R+) → R, F2 : L1([0, τ ]) → R, τ > 0, be lower
semicontinuous functionals and let U be defined as in (2.23). Then for every fixed
T, x̄ > 0 the optimal control problems

min
ũ∈U

F1 (ST ũ(·)) , min
ũ∈U

F2
(
S(·)ũ(x̄)

)
admit a solution.



296 FABIO ANCONA AND ANDREA MARSON

3. Proof of Theorem 1. The proof will be divided into two steps:
Step 1. Show that any element ST ũ ∈ L∞(R+) of the attainable set satisfies

(2.17)–(2.19).
Step 2. Show that if w ∈ BV([α,+∞)) ∀ α > 0 is a bounded function satisfying

(2.17)–(2.19), then there exists ũ ∈ L∞([0, T ]), ũ ≥ b(0) such that ST ũ = w.

3.1. Step 1. A technical result will be proved first.
LEMMA 3.1. Let w : R→ R, x > 0, be a bounded right continuous function having

right and left limits in any point. Then ϕ : x 7→ f ′(w(x))
x is nonincreasing iff (2.19)

holds.
Proof. Observe that nonincreasing monotonicity of ϕ is equivalent to

D+ϕ(x) ≤ 0 ∀ x > 0.(3.1)

Suppose first that x > 0 is a point of continuity for w. Hence f ′′ > 0,

lim sup
h→0

ϕ(x+ h)− ϕ(x)
h

= lim sup
h→0

[
f ′(w(x+ h))− f ′(w(x))

(w(x+ h)− w(x))
w(x+ h)− w(x)

(x+ h)h
− f ′(w(x))
x(x+ h)

]

=
f ′′(w(x))

x
lim sup
h→0

w(x+ h)− w(x)
h

− f ′(w(x))
x2 ,

(3.2)

which shows that (3.1) and (2.19) are equivalent.
In the case when w is not continuous at x, assume (3.1) holds: then w(x−) > w(x).

Indeed, if it is false, then f ′(w(x−)) < f ′(w(x)) by convexity of f ; hence there exists
y < x such that ϕ(y) < ϕ(x) which contradicts the monotonicity assumption on ϕ.
There follows that

D+w(x) = lim sup
h→0+

w(x+ h)− w(x)
h

;

thus (2.19) follows taking in (3.2) the lim sup as h → 0+. Conversely, if (2.19) holds
then still w(x−) > w(x). Since w and hence ϕ are right continuous it follows that
ϕ(x−) > ϕ(x), due to the monotonicity of f ′. Thus it is sufficient to prove (3.1)
for h → 0+. This follows immediately from (3.2) using the same arguments as
before.

Recalling Remark 2.1 we can choose a representative function w of ST ũ which
is right continuous. Assume that f ′(w(x)) < x/T and let ξ(·) denote the maximal
backward generalized characteristic through (T, x). Observe that ξ(·) is a genuine
characteristic (see [5, Theorem 3.2]) and hence, by Theorem 3.3 in [5], S(·)ũ(ξ(·)) = v

a.e. on [0, T ] for some constant v such that ξ̇ = f ′(v). Since Theorem 4.1 in [5]
implies v(0) = w(x), it follows that ξ(t) = x+f ′(w(x))(t−T ) for all t ∈ [0, T ]. Hence
ξ(0) = x− Tf ′(w(x)) > 0, which implies w(x) = S0ũ(ξ(0)) = 0 thus proving (2.17).

Next, suppose that there exists x > 0 such that f ′(w(x−)) ≤ x/T . If w(x−) = 0
there’s nothing to prove. Otherwise f ′(w(x−)) = x/T . If w(x+) = w(x−), again
there’s nothing to prove, otherwise, from arguments similar to the previous ones and
since genuine characteristics do not intersect in the interior of Ω, it follows that w(y) =
0 ∀y > x and hence w(x−) > 0. Observe now that the values of the solution in the
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interior of the funnel confined between minimal and maximal backward characteristics
through (T, x) depend only on the values of the solution at t = 0. Thus Stũ(x) = 0
for any 0 < t < T and x > f ′(w(x−))t. There follows that the minimal characteristic
is not genuine, which gives a contradiction, proving (2.18).

To prove (2.19) by Lemma 3.1 it is sufficient to show that the function ϕ : x 7→
f ′(w(x))/x is nonincreasing. Let 0 < x1 < x2 be given and trace the maximal
backward characteristics ξ1(·), ξ2(·) through (T, x1) and (T, x2), respectively. By the
same arguments as above they have the form

ξi(t) = xi + f ′(w(xi))(t− T ), i = 1, 2(3.3)

as long as they exist. Assume that f ′(w(x1)) < f ′(w(x2)) (otherwise the result is
obvious) and let τ ∈ R be such that ξ1(τ) = ξ2(τ) where, with an abuse of notation,
ξi(·) denote the functions in (3.3) defined for all t ∈ R. Since ξ1 and ξ2 are genuine
characteristics and hence do not intersect in the interior of Ω (see [5]), we deduce
that ξi(τ) ≤ 0. Otherwise it should be τ < 0 which implies, by arguments as above,
f ′(w(x1)) = f ′(w(x2)) = f ′(0). Therefore,

1 +
f ′(w(x1))

x1
(τ − T ) =

ξ1(τ)
x1

≤ ξ2(τ)
x2

= 1 +
f ′(w(x2))

x2
(τ − T )

showing ϕ(x1) ≥ ϕ(x2).

3.2. Step 2. Choose w ∈ L∞(R+) satisfying (2.17)–(2.19). By Remark 2.3 we
can assume that w is right continuous. Observe first that if w ≡ 0 then the boundary
control

ũ ≡
{

0 if f ′(0) ≥ 0,
b(0) if f ′(0) < 0

clearly produces the null solution. Next we prove the result in the case when w is
made up of two constant states.

PROPOSITION 3.1. Let ω, r > 0 be given with f ′(ω) > r/T . Then there exists
ũ ∈ L∞([0, T ]), ũ ≥ b(0), such that

ST ũ(x) =

{
ω if x < r,

0 otherwise.
(3.4)

Proof. If c .= [f(ω)− f(0)] /ω ≥ r/T , set t1 = T − r ω/ [f(ω)− f(0)] ≥ 0. Then

ũ(t) =


ω if t1 < t < T,

0 if 0 < t < t1 and f ′(0) ≥ 0,
b(0) if 0 < t < t1 and f ′(0) < 0

produces the solution

Stũ(x) =

ω if 0 < x < r +
f(ω)− f(0)

ω
(t− T ),

0 otherwise

which satisfy (3.4).
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Now assume c < r/T and call t2 = T − r/f ′(ω) > 0. For any t̄ ∈ [0, t2) and v ≥ ω
define the function φt̄,v : [0, T ]→ [ω,+∞) by setting

φt̄,v(t) =


v if 0 ≤ t < t̄,

b

[
f ′(v) +

t− t̄
t2 − t̄

(f ′(ω)− f ′(v))
]

if t̄ ≤ t < t2,

ω if t ≥ t2.

(3.5)

If v ≥ ω satisfies f(v) > f(0), since t 7→ φt̄,v(t) is decreasing on [0, t2] it can be easily
seen that S(·)φt̄,v has a single shock curve t 7→ η(φt̄,v)(t) departing from the origin
such that Stφt̄,v(x) = 0 for x > η(φt̄,v)(t) as long as η(φt̄,v)(·) exists (see Figure 1).

We claim that there exist ω0, ω1 > ω and 0 ≤ τ0, τ1 < t2 such that η(φτ0,ω0)(·)
and η(φτ1,ω1)(·) are defined on [0, T ] and

η(φτ0,ω0)(T ) < r ≤ η(φτ1,ω1)(T ).(3.6)

First we prove the existence of τ1 and ω1. To this end we show that there exist v > ω
and s ∈ (0, T ) such that

f(v)− f(0)
v

s > r + |c|(T − s),(3.7)

0 < s− 1
f ′(v)

f(v)− f(0)
v

s < t2.(3.8)

Indeed, if limv→+∞ f ′(v) = +∞ then choose s = t2/2 and v > ω satisfying (3.7).
Otherwise, f ′(ω) > r/T and hence

r

T
< lim
v→+∞

f ′(v) = lim
v→+∞

f(v)− f(0)
v

,(3.9)

there exists v̄ > ω such that T [f(v̄)− f(0)] /v̄ > r. Then, using the continuity of the
map

t 7→ f(v̄)− f(0)
v̄

t− r − |c|(T − t),
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we find some s ∈ (0, T ) satisfying (3.7) with v = v̄. But (3.9) and the convexity of f
guarantee that there exists v ≥ v̄ satisfying (3.7)–(3.8) as well. Now set

ω1 = v, τ1 = s− 1
f ′(v)

f(v)− f(0)
v

s.(3.10)

It follows that

η(φτ1,ω1)(T ) =
∫ s

0
η̇(φτ1,ω1)(t) dt+

∫ T

s

η̇(φτ1,ω1)(t) dt

≥ f(ω1)− f(0)
ω1

s+ c(T − s)

> r + (|c|+ c)(T − s) ≥ r.

(3.11)

Now we set τ0 = 0 and prove the existence of ω0. If c > 0, take ω0 = ω. Otherwise
set

v̄ = sup {v ≥ ω : STφ0,v ≡ 0} .(3.12)

By the previous analysis, v̄ < +∞. Moreover, since the map v 7→ φ0,v is continuous
from [ω,+∞) into L∞([0, T ]) w.r.t. the L1-norm, from Remark 2.2 it follows that
STφ0,v̄ ≡ 0. If v > v̄, then η(φ0,v)(·) is defined on [0, T ] and η(φ0,v)(T ) > 0. Indeed, if
not, then there exists τ < T such that η(φ0,v)(τ) = 0. There follows that Sτφ0,v ≡ 0
and that f(φ0,v(t)) ≤ f(φ0,v(τ)) < f(0) ∀t ≥ τ . Hence Stφ0,v ≡ 0 ∀t ≥ τ , which
contradicts (3.12). Moreover, if 0 < x < η(φ0,v)(T ), then STφ0,v(x) ≥ ω. In fact,
due to (2.18), the minimal backward characteristic through (T, η(φ0,v)(T )) reaches
the t-axis in positive time. Since genuine characteristics do not intersect, all maximal
backward characteristics through (T, x), 0 < x < η(φ0,v)(T ), intersect the t-axis.
Since φ0,v(t) ≥ ω for any t ∈ [0, T ], by arguments similar to the ones used in Step
1 we deduce that STφ0,v(x) ≥ ω. There exists δ > 0 such that if v̄ < v < v̄ + δ
then η(φ0,v)(T ) < r. Indeed assume by contradiction that there exists a decreasing
sequence (vn)n∈N converging to v̄ such that η(φ0,vn)(T ) ≥ r ∀n. Then

‖STφ0,v̄ − STφ0,vn‖L1 ≥
∫ r

0
|STφ0,vn(x)| dx ≥ ωr,

which contradicts the continuity of the map v 7→ STφ0,v, proving the existence of ω0
with the required property. Consider now the continuous map φ : [0, 1]→ L∞([0, T ])
defined by

φ(λ) = λφτ1,ω1 + (1− λ)φτ0,ω0 .(3.13)

Set η(φ(λ))(T ) = 0 if STφ(λ) ≡ 0. Then from the continuity of λ 7→ STφ(λ), it
follows that the map λ 7→ η(φ(λ))(T ) is continuous. Indeed, by the previous analysis,
STφ(λ)(x) ≥ ω whenever x < η(φ(λ))(T ). Hence

|η(φ(λ1))(T )− η(φ(λ2))(T )| ≤ 1
ω

∣∣∣∣∣
∫ η(φ(λ2))(T )

η(φ(λ1))(T )
|STφ(λ1)(x)− STφ(λ2)(x)| dx

∣∣∣∣∣
≤ 1
ω
‖STφ(λ1)− STφ(λ2)‖

L1 ,
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which approaches zero as λ1−λ2 → 0. It follows that there exists λ̄ ∈ [0, 1] such that
η(φ(λ̄))(T ) = r. We claim that STφ(λ̄) satisfies (3.4). Indeed if x < r let t 7→ θ(t)
be the maximal backward characteristic through (T, x). Then by (2.17) there exists
τ ≥ 0 such that θ(τ) = 0. Actually τ ≥ t2. If not, then

θ̇(t) = f ′(STφ(λ̄)(x)) =
x

T − τ <
r

T − t2
= f ′(ω),

which gives a contradiction since f ′ is increasing and STφ(λ̄)(x) ≥ ω. Thus τ ≥ t2,
from which it follows that STφ(λ̄)(x) = ω.

Throughout the following we denote by ψ(ω, r) ∈ L∞([0, T ]) a boundary control
such that STψ(ω, r) satisfies (3.4). In order to prove Step 2 in the general case we
shall adopt the following procedure.

1. For every x > 0 we trace the lines θ−x , θ
+
x through (T, x) with slope f ′(w(x−))

and f ′(w(x+)), respectively. These will be the minimal and maximal backward char-
acteristics through (T, x) of the candidate solution. Due to (2.17), if w(x) 6= 0
they reach the t-axis in positive time. Assumption (2.19) guarantees that the lines
{θ±x : x > 0} do not intersect each other in the interior of Ω.

2. Since a solution is constant along minimal and maximal backward characteris-
tics [5], for every t ∈ [0, T ] for which there exists x > 0 such that θ±x (t) = 0, we define
ũ(t) = w(x). The set of the remaining t is a disjoint union of open intervals. On any
of such intervals ũ is defined so as to produce a compression wave which generates a
discontinuity at time T .

3. By using the fact that a solution is constant along genuine characteristics, we
define a function u : (0, T ) × R+ → R, which is candidate, to be S(·)ũ and we prove
that u is a weak entropic solution of (1.1)–(1.2) in the interior of Ω.

4. We show that u satisfies the boundary condition related to the boundary
control ũ in the sense of Definition 1 (iii) and that u(T−, ·) = w.

1. For each x > 0 consider the lines

θ−x : t 7→ x+ f ′(w(x−))(t− T ),(3.14)

θ+
x : t 7→ x+ f ′(w(x))(t− T ),(3.15)

defined for t ≤ T . By Remark 2.3 and convexity of f one has θ−x (t) ≤ θ+
x (t) ∀ t. We

claim that for any 0 < x < y the lines θ±x and θ±y do not intersect in the interior of
Ω. By the previous argument it suffices to prove that θ+

x (t) > θ−y (t) in the interior of
Ω. If f ′(w(x)) ≥ f ′(w(y−)) the claim is obvious. Otherwise since w(x) 6= w(y−), one
of the two is nonzero. Hence due to (2.17) one of the two holds: f ′(w(x)) ≥ x/T or
f ′(w(y−)) ≥ x/T . Let τ < T be such that θ+

x (τ) = θ−y (τ) .= ξ. Then τ ≥ 0 or ξ ≤ 0.
Actually ξ ≤ 0. Indeed, let ϕ be as in Lemma 3.1. Then ϕ(y−) ≤ ϕ(x). Hence

ξ

x
= 1 + ϕ(x)(τ − T ) ≤ 1 + ϕ(y−)(τ − T ) =

ξ

y

and since x < y it follows that ξ ≤ 0, which proves the claim.
2. Define

x0
.= inf {x > 0 : w(y) = 0 ∀ y ≥ x} .(3.16)

To get a boundary control ũ that produces a solution of (1.1)–(1.3) that attains w,
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we consider the following partition of the interval [0, T ] (see Figure 2):

I1
.=
{
t ∈ [0, T ] : ∃! x > 0 : θ−x (t) = 0 or θ+

x (t) = 0
}
,(3.17)

I2
.=
{
t ∈ [0, T ] : ∃ 0 < x < y : θ+

x (t) = θ−y (t) = 0
}
,(3.18)

I3
.=
{
t ∈ [0, T ] : 6 ∃ x > 0 : θ−x (t) = 0 or θ+

x (t) = 0,

∃ t′ ∈ (0, t) ∩ [I1 ∪ I2] , ∃ t′′ ∈ (t, T ) ∩ [I1 ∪ I2]
}
,(3.19)

I4
.=
{
t ∈ [0, T ] : ∀t′ ≥ t 6 ∃ x > 0 : θ−x (t′) = 0 or θ+

x (t′) = 0
}
,(3.20)

I5
.=
{
t ∈ [0, T ] : ∀t′ ≤ t 6 ∃ x > 0 : θ−x (t′) = 0 or θ+

x (t′) = 0
}
.(3.21)

Here any of these sets could be empty. The above sets, whenever nonempty, satisfy
the following properties:

(i) I2 contains at most countably many points;
(ii) I3 is the disjoint union of at most countably many open intervals (Iν)ν∈N of

the form

Iν = (τ1
ν , τ

2
ν ), θ+

xν (τ1
ν ) = θ−xν (τ2

ν ) = 0 ∃ xν > 0,(3.22)

where xν is a point of discontinuity for w.
(iii) I4 is an interval of the form I4 = (τ4, T ] with τ4 ∈ I1 ∪ I2.
(iv) I5 is an interval of the form I5 = [0, τ5) with θ−x0

(τ5) = 0.
To show (i) it is sufficient to observe that, since the lines {θ±x }x>0 do not intersect

in the interior of Ω, for each t ∈ I2 the set

Jt
.=
{
x > 0 : θ−x (t) = 0 or θ+

x (t) = 0
}

(3.23)

is an interval and Js ∩ Jt = ∅ for any s, t ∈ I2, s 6= t.
Regarding (ii)–(iv), we first show that I3 ∪ I4 ∪ I5 is open in [0, T ]. Indeed, let

t ∈ I3 ∪ I4 ∪ I5 and assume by contradiction that (tν)ν∈N ⊆ I1 ∪ I2 is a sequence
converging to t. Then there exists a sequence (yν)ν∈N ⊆ R+ such that θ±yν (tν) = 0.
By eventually taking a subsequence, we shall assume θ+

yν (tν) = 0, the other case being
entirely similar. Since w is bounded, from (2.17) it follows that (yν)ν∈N is bounded, so
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it admits a converging subsequence which is still denoted by (yν)ν∈N. Call ȳ its limit
point. Again, up to a subsequence we can assume that f ′(w(yν)) → f ′(w(ȳ)). Then
0 = θ+

yν (tν) → θ+
ȳ (t), which gives a contradiction. Observe now that inf I4 ∈ I1 ∪ I2.

Indeed, if inf I4 = 0, then it belongs to I1 ∪ I2 by (2.17) since w 6≡ 0. Otherwise,
since I3 ∪ I4 ∪ I5 is open, if inf I4 /∈ I1 ∪ I2, then there exists t′ < inf I4 such that
(t′, inf I4) ⊆ I3 ∪ I4 ∪ I5 which clearly gives a contradiction. Since by definition I4 is
an interval and sup I4 = T , this suffices to prove (iii).

Concerning (iv), in a similar way it can be proved that τ5 = sup I5 ∈ I1 ∪ I2. Set

z
.= sup

{
x > 0 : θ−x (τ5) = 0 or θ+

x (τ5) = 0
}
.(3.24)

Let y > z and suppose that w(y) 6= 0. Then by (2.17) and (3.21), θy(τ5) = 0, which
contradicts (3.24). Thus it must be z ≥ x0. If z > x0, then 0 = θ±z (τ5) = z+f ′(0)(τ5−
T ). Hence there exists y > z and t ∈ (0, τ5) such that θ±y (t) = y + f ′(0)(t − T ) = 0,
which gives a contradiction by the definition of I5. Thus z = x0 and hence θ−x0

(τ5) = 0
proving (iv).

Regarding (ii), since inf I4, sup I5 /∈ I3, I3 is open; hence it is a disjoint union of
at most countably many open intervals Iν = (τ1

ν , τ
2
ν ). Moreover τ1

ν , τ
2
ν ∈ I1 ∪ I2 since

I3 ∪ I4 ∪ I5 is open. Call

x1
ν
.= inf

{
x > 0 : θ−x (τ1

ν ) = 0 or θ+
x (τ1

ν ) = 0
}
,

x2
ν
.= sup

{
x > 0 : θ−x (τ2

ν ) = 0 or θ+
x (τ2

ν ) = 0
}
.

Then x1
ν = x2

ν
.= xν . In fact x2

ν ≤ x1
ν since the lines {θ±x }x>0 do not intersect in the

interior of Ω. If x2
ν < x1

ν , then choose y ∈ (x2
ν , x

1
ν). Then there exists τ ∈ (τ1

ν , τ
2
ν )

such that θ±y (τ) = 0, which is a contradiction. Since by (2.19) w satisfies (2.8), the
conclusion of (ii) follows immediately.

Now we are ready to define the boundary data which produces the given profile:

ũ(t) =



w(x−) if t ∈ I1, θ−x (t) = 0,
w(x) if t ∈ I1, θ+

x (t) = 0,
w ((supJt)−) if t ∈ I2,

b

(
xν
T − t

)
if t ∈ Iν ⊆ I3,

b(0) if t ∈ I4,
ψ(w(x0−), x0)(t) if t ∈ I5.

(3.25)

Notice that if t ∈ Iν ⊆ I3, then

f ′(w(xν)) <
xν
T − t < f ′(w(xν−)),

and hence xν/(T − t) ∈ Range f ′. Moreover, if I4 6= ∅, then b(0) > −∞. Indeed,
fix ε > 0. Then for any x ∈ (0, ε(t − τ4)) we have 0 < f ′(w(x)) ≤ ε. In fact let
ξ > 0 be such that θ±ξ (τ4) = 0. If f ′(w(x)) > ε, then there exists τ > τ4 such that
θ±ζ (τ) = 0, thus contradicting (3.20). If f ′(w(x)) ≤ 0, then θ±ζ and θ±ξ would intersect
in the interior of Ω. Hence limx→0+ f ′(w(x)) = 0. Due to the boundedness of w, this
implies 0 ∈ Range f ′. Thus (3.25) is well defined.

3. For each s ∈ Iν ⊆ I3 define the line

θs : t 7→ f ′(ũ(s))(t− s) =
xν

T − s (t− s), s < t < T,(3.26)
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which is entirely contained in the open set
{

(t, x) : s < t < T, θ−xν (t) < x < θ+
xν (t)

}
.

Observe that any of the θs cannot intersect one of the θ±x in the interior of Ω, otherwise
θ±x would intersect θ−xν or θ+

xν too. Denote (see Figure 3)

A1
.=
{

(τ, ξ) ∈ int Ω : ξ ≤ θ−x0
(τ)
}
,

A2
.=
{

(τ, ξ) ∈ int Ω : ξ > θ−x0
(τ))

}
.

(3.27)

We claim that for any (τ, ξ) ∈ A1 there exists a unique line through (τ, ξ) belonging
to the family Θ .= {θ±x : x > 0}∪{θs : s ∈ I3}. The uniqueness of such a line follows
from the previous remark and from the fact that the lines of each family {θ±x : x > 0}
and {θs : s ∈ I3} do not intersect in the interior of Ω. Regarding the existence observe
that if ξ 6= θ±x (τ) for any x > 0, then there exists s ∈ I3 such that θs(τ) = ξ. Indeed,
the set

B(τ) .=
{

0 < x < θ−x0
(τ) : 6 ∃ y > 0 : θ±y (τ) = x

}
(3.28)

is open. In fact, let x ∈ B(τ) and assume by contradiction that there exists in
(0, θ−x0

(τ)) a sequence xν = θ±yν (τ), yν > 0, converging to x. By eventually taking a
subsequence, we shall assume that xν = θ+

yν (τ), the other case being entirely similar.
Since w is bounded, from (2.17) it follows that (yν)ν∈N is bounded. Therefore, there
exists a subsequence, which we still denote by (yν)ν∈N, converging to some ȳ > 0 and
such that f ′(w(yν)) → f ′(w(ȳ)). Then θ+

yν (τ) → θ+
ȳ (τ) and hence x = θ+

ȳ (τ) which
gives a contradiction.

Now, let (ξ1, ξ2) be the connected component of B(τ) containing ξ. Then as above
there exists y > 0 such that θ−y (τ) = ξ1 and θ+

y (τ) = ξ2. Let t1 > t2 be such that
θ−y (t1) = θ+

y (t2) = 0. Then clearly it must be (t2, t1) = Iν , y = xν , and

xν − ξ
T − τ =

xν
T − s = θ̇s

for some ν ∈ N and s ∈ (t2, t1). Thus by (3.26) one has θs(τ) = ξ.



304 FABIO ANCONA AND ANDREA MARSON

Consider now the function u : (0, T )× R+ → R defined by

u(τ, ξ) =



w(x) if (τ, ξ) ∈ A1, θ
+
x (τ) = ξ ∃ x > 0,

w(x−) if (τ, ξ) ∈ A1, θ
−
x (τ) = ξ ∃ x > 0,

ũ(s) if (τ, ξ) ∈ A1, θs(τ) = ξ ∃ s ∈ I3,
Sτψ(w(x0−), x0)(ξ) if (τ, ξ) ∈ A2, w(x0−) > 0,
0 if (τ, ξ) ∈ A2, w(x0−) = 0.

(3.29)

We claim that, for every (τ, ξ) ∈ A1, u(τ, ·) is continuous on (0, θ−x0
(τ)] and u(·, ξ)

is continuous on [τ, T ). We only give the proof of the first property, the second one
being derived in an entirely similar way. To this end we first show that u(τ, ·) satisfies
the following properties on (0, θ−x0

(τ)] :
(a) if there exists x > 0 such that θ−x (τ) = ξ, then u(τ, ·) is left continuous at ξ;
(b) if there exists x > 0 such that θ+

x (τ) = ξ, then u(τ, ·) is right continuous at ξ;
(c) if ξ ∈ B(τ), then u(τ, ·) is continuous at ξ.
Observe first that if ζ ∈ B(τ), so that θ−xν (τ) < ζ < θ+

xν (τ) for some ν ∈ N and
ζ = θs(τ) for some s ∈ Iν , then

f ′(w(xν)) = θ̇+
xν =

xν
T − τ1

ν

<
xν

T − s <
xν

T − τ2
ν

= θ̇−xν = f ′(w(xν−)).

Hence, since f ′ is strictly increasing,

w(xν) < u(τ, ζ) < w(xν−).(3.30)

We now prove (a). Let x, ξ > 0 be such that θ−x (τ) = ξ. Then, by (3.29) u(τ, ξ) =
w(x−). Fix ε > 0 and choose δ > 0 such that

|w(y)− w(x−)| ≤ ε ∀y ∈ (x− δ, x).(3.31)

Let ξδ = θ+
x−δ(τ). By point 1, ξδ < ξ. Then, for every ζ ∈ (ξδ, ξ),

|u(τ, ζ)− u(τ, ξ)| ≤ ε.(3.32)

Indeed, using again point 1, if ζ = θ±y (τ) for some y > 0 then y ∈ (x − δ, x) and
hence (3.32) follows from (3.31). Otherwise ζ ∈ B(τ) and (3.30) holds for some
xν ∈ (x− δ, x). Again (3.32) follows from (3.31).

The proof of (b) is entirely similar and (c) follows with an analogous argument
by using the continuity of ũ on I3 instead of the existence of right and left limits of
w.

Using (a), (b), and (c) we now derive the continuity of u(τ, ·) on (0, θ−x0
(τ)]. Indeed

if ξ = θ−x (τ) = θ+
x (τ) for some x > 0 or ξ ∈ B(τ) the conclusion is obvious. Otherwise,

assume ξ = θ−xν (τ) < θ+
xν (τ) for some ν ∈ N. Since ζ ∈ B(τ) for any ζ ∈ (ξ, θ+

xν (τ)) it
follows

lim
ζ→ξ+

u(τ, ζ) = lim
ζ→ξ+

b

(
xν − ζ
T − τ

)
= b

(
xν − ξ
T − τ

)
= b(f ′(w(xν−))) = u(τ, ξ);

i.e., u(τ, ·) is right continuous at ξ, and hence continuous as well by (a). In a similar
way it can be shown that if ξ = θ+

x (τ) > θ−x (τ), then u(τ, ·) is continuous at ξ.
In order to prove that u is a weak entropic solution of (1.1) in the region A1, we

now show that u is locally Lipschitz continuous. As above we prove only that, for
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every τ ∈ (0, T ), u(τ, ·) is locally Lipschitz continuous on (0, θ−x0
(τ)). Observe first

that, with the same arguments of Step 1, from the definition of u it follows

D+
ξ u(τ, ξ) ≤ f ′(u(τ, ξ))

ξf ′′(u(τ, ξ))

for any 0 < ξ < θ−x0
(τ). Hence, to derive the Lipschitz continuity of u(τ, ·) it suffices

to show that locally there exists a constant C1 ≤ 0 such that

D−ξ u(τ, ξ) ≥ C1 ∀ ξ ∈ (0, θ−x0
(τ)).(3.33)

If D−ξ u(τ, ξ) ≥ 0, there is nothing to prove. Otherwise let τ < T ′ < T be fixed. Since
by construction

u(t, ξ + f ′(u(τ, ξ)))(t− τ) = u(τ, ξ) ∀ t ∈ [τ, T ], (τ, ξ) ∈ A1,(3.34)

for every ζ ∈ (0, θ−x0
(τ)) there exists a unique z = z(ζ) ∈ (0, θ−x0

(T ′)) such that

ζ = z + f ′ (u(T ′, z)) (τ − T ′), u(T ′, z) = u(τ, ζ).

Observe that

D−ξ u(τ, ξ) = lim inf
z→z(ξ)

u(T ′, z)− u(T ′, z(ξ))
(z − z(ξ)) + [f ′(u(T ′, z))− f ′(u(T ′, z(ξ)))] (τ − T ′)

= lim inf
z→z(ξ)

(
z − z(ξ)

u(T ′, z)− u(T ′, z(ξ))
+
f ′(u(T ′, z))− f ′(u(T ′, z(ξ)))

u(T ′, z)− u(T ′, z(ξ))
(τ − T ′)

)−1

.

(3.35)

Choose a sequence (zν)ν∈N converging to z(ξ) such that

D−ξ u(τ, ξ)

= lim
ν→+∞

(
zν − z(ξ)

u(T ′, zν)− u(T ′, z(ξ))
+
f ′(u(T ′, zν))− f ′(u(T ′, z(ξ)))

u(T ′, zν)− u(T ′, z(ξ))
(τ − T ′)

)−1

.

(3.36)

By the continuity of u(T ′, ·),

lim
ν→+∞

f ′(u(T ′, zν))− f ′(u(T ′, z(ξ)))
u(T ′, zν)− u(T ′, z(ξ))

= f ′′(u(T ′, z(ξ)))

and hence

lim
ν→+∞

zν − z(ξ)
u(T ′, zν)− u(T ′, z(ξ))

does exist. Call ` its value. We observe that ` ≤ 0. In fact, assume by contradiction
that ` > 0. For ν sufficiently large

u(T ′, zν)− u(T ′, z(ξ))
zν − z(ξ)

> 0.(3.37)
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Let ξν = zν + f ′(u(T ′, zν))(τ −T ′). Hence ξν → ξ as ν → +∞. Since f ′ is increasing,
(3.34) and (3.37) imply

u(τ, ξν)− u(τ, ξ)
ξν − ξ

=
u(T ′, zν)− u(T ′, z(ξ))

ξν − ξ
> 0,

which contradicts the assumption on D−ξ u(τ, ξ). By (3.36)

D−ξ u(τ, ξ) ≥ 1
f ′′ (u(T ′, z(ξ)))(τ − T ′) ,

proving (3.33).
Since u is locally Lipschitz continuous, then it is a.e. differentiable on A1 and

by construction it satisfies ut + f ′(u)ux = 0 a.e. Moreover by definition it is a weak
entropic solution to (1.1) in A2. Now observe that, for any t ∈ [0, T ], u(t, θ−x0

(t)−) =
w(x0−) since u(t, ·) is left continuous at θ−x0

(t). On the other hand, if w(x0−) > 0
then one has w(x0−) = Stψ(w(x0−), x0)(θ−x0

(t)−) = Stψ(w(x0−), x0)(θ−x0
(t)+) since

θx−0
is a minimal backward characteristic of S(·)ψ(w(x0−), x0). If w(x0−) = 0 then

u(t, θ−x0
(t)+) = 0. Thus u(t, θ−x0

(t)−) = u(t, θ−x0
(t)+) for any t ∈ (0, T ). It follows

that u is a weak entropic solution to (1.1) in the interior of Ω. Furthermore it clearly
fulfills (1.2) in the sense of (ii) in Definition 1.

4. We claim that for any t ∈ I1 ∪ I3 ∪ I4,

lim
x→0+

u(t, x) = ũ(t).(3.38)

If t ∈ I1∪ I3 (3.38) follows by using the same arguments at point 3. Let t ∈ I4 and fix
ε > 0. For any x ∈ (0, ε(t − τ4)) we have 0 < f ′(u(t, x)) ≤ ε. Indeed fix ξ > 0 such
that θ±ξ (τ4) = 0. By construction s ∈ I3 does not exist such that θs(t) = x. Hence
x = θ±ζ (t) for some ζ > 0 and f ′(u(t, x)) = f ′(w(ζ±)). If f ′(u(t, x)) > ε, then there
exists τ > τ4 such that θ±ζ (τ) = 0, thus contradicting (3.20). If f ′(u(t, x)) ≤ 0, then
θ±ζ and θ±ξ would intersect in the interior of Ω. Hence limx→0+ f ′(u(t, x)) = 0, so that
(3.38) holds. Moreover since f ′(ũ(t)) > 0 for every t ∈ I1 ∪ I3, it follows that

lim
x→0+

sgn f ′(u(t, x)) = 1 ∀ t ∈ I1 ∪ I3 ∪ I4.(3.39)

Thus if t ∈ I1 ∪ I3 ∪ I4, then u satisfies the boundary condition related to ũ in the
sense of Definition 1. If t ∈ I5 such a boundary condition is fulfilled by construction.
Hence u solves (1.1)–(1.3) with ũ as in (3.25). Now we show that

lim
t→T−

∫ +∞

0
|u(t, x)− w(x)| dx = 0.(3.40)

Let (tν)ν∈N be an arbitrary increasing sequence converging to T . Then∫ +∞

0
|u(tν , x)− w(x)| dx =

∫ x0

0
|u(tν , x)− w(x)| dx+

∫ +∞

x0

|u(tν , x)| dx.(3.41)

Let us estimate each term in the right-hand side of (3.41). Concerning the first term
we show that

lim
ν→+∞

u(tν , x) = w(x) ∀ x ∈ (0, x0).(3.42)
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In fact, let ε > 0 be given and fix δ > 0 such that |w(y) − w(x)| ≤ ε whenever
x ≤ y < x + δ. Let τ < T be such that θ−x+δ(τ) = x (such a τ does exist since
f ′(w(x)) ≥ x/T ). We claim that if tν > τ then |u(tν , x)− w(x)| ≤ ε. Assume first
x ∈ B(tν). Then θ−xk(ν)

(tν) < x < θ+
xk(ν)

(tν) for some k(ν) ∈ N, with x ≤ xk(ν) < x+ δ

since θ+
x , θ

±
xk(ν)

, and θ−x+δ do not intersect each other in the interior of Ω. Hence
from the above remark and (3.30) it follows |u(tν , x)− w(x)| ≤ ε. Suppose now that
x /∈ B(tν). Then with arguments similar to the previous ones we get that x = θ±y (tν)
with x ≤ y < x+ δ and u(tν , x) = w(y±). The conclusion follows easily.

Furthermore there exists C2 > 0 such that |u(tν , x) − w(x)| ≤ C2 for any x ∈
(0, x0). Hence by the dominated convergence theorem we get

lim
ν→+∞

∫ x0

0
|u(tν , x)− w(x)| dx = 0.(3.43)

Concerning the second term in the right-hand side of (3.41), observe first that if
w(x0−) = 0, then f ′(0) ≥ x/T , due to (2.17). Hence u(tν , x) = 0 for any x ≥ x0 since
x0 +f ′(0)(tν−T ) ≤ x0. Otherwise, t 7→ Stψ(w(x0−), x0) is continuous as a map from
[0, T ] into L1(R+) and STψ(w(x0−), x0)(y) = 0 whenever y ≥ x0. By combining this
with (3.41) and (3.43) and by the arbitrary choice of (tν)ν∈N, we obtain (3.40).

3.3. Proof of Remark 2.4. As in Remark 2.3 the boundedness of w together
with (2.19′) imply that w has finite total increasing variation (and hence total increas-
ing variation as well) on sets bounded away from the origin. Thus we can assume that
w has left and right limits at every point and is right continuous. Moreover (2.19′)
implies that w(x−) ≥ w(x). Next observe that (2.19′) holds iff the function

γ : x 7→ w(x)−
∫ x

c

f ′(w(ξ))
ξf ′′(w(ξ))

dξ, c > 0,(3.44)

is nonincreasing on R+ and hence iff

D+γ(x) ≤ 0 ∀ x > 0.(3.45)

Now we show that

D+γ(x) = D+w(x)− f ′(w(x))
xf ′′(w(x))

.(3.46)

If x > 0 is a point of continuity for w then

D+γ(x) = lim sup
h→0

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]

= D+w(x)− f ′(w(x))
xf ′′(w(x))

.

Otherwise since w is right continuous and w(x−) > w(x),

lim sup
h→0+

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]
= D+w(x)− f ′(w(x))

xf ′′(w(x))
,

lim sup
h→0−

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]
= −∞,

which imply (3.46).
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4. Proof of Theorem 3. We will give the proof of the statement concerning
A (T,U), the one concerning A (x̄,U) being entirely similar. Let (ũν)ν∈N ⊂ U . Then,
being G bounded, by (2.9) and (2.17) there exist C,α > 0 such that

|Stũν(x)| ≤
{
C if x < α

0 if x ≥ α
∀ t ∈ [0, T ] ∀ ν ∈ N.(4.1)

Hence (ST ũν)ν∈N , (S(·)ũν)ν∈N are weak? relatively compact in L∞(R+), L∞(Ω),
respectively, so that we can assume

ST ũν
∗
⇀ w in L∞(R+),(4.2)

S(·)ũν
∗
⇀ u in L∞(Ω),(4.3)

for some functions w ∈ L∞(R+), u ∈ L∞(Ω). We shall prove that w ∈ A (T,U) and
that there exists a subsequence of (ST ũν)ν∈N converging to w in L1(R+). By (4.1)
and Remark 2.3 for every a > 0 there exists Ca > 0 such that

TV {Stũν ; [a,+∞)} ≤ Ca ∀ t ∈ [0, T ] ∀ ν.(4.4)

Moreover there exists L > 0 such that if 0 < a′ < a, then∫ +∞

a

|Stũν(x)− Ssũν(x)| dx ≤ L|t− s|Ca′ ∀ t, s > 0 ∀ ν.(4.5)

By Helly’s theorem for any fixed a > 0 there exists a subsequence
(
Stũνj

)
j∈N which

converges to some function va(t, ·) in L1
loc([a,+∞)) for every t ∈ [0, T ]. But (4.3)

implies that such a function must coincide with u and hence by using (4.1), for every
t ∈ [0, T ], the original sequence (Stũν)ν∈N converges to u(t, ·) in L1(R+). In particular,
from the convergence of (ST ũν)ν∈N to u(T, ·) and (4.2) it follows that u(T, ·) = w.
Thus to complete the proof it remains to show that u is a solution of (1.1)–(1.3)
corresponding to a boundary data ũ ∈ U .

By (4.1) and the regularity of f it can be assumed that, for every t ∈ [0, T ],
the sequence (f(Stũν))ν∈N converges in L1(R+) to f(u(t, ·)). It follows that, for any
nonnegative C1 function φ with compact support in [0, T ]×(0,+∞) and for any k ∈ R,
we obtain∫ ∫ {

|u− k|φt +
(
f(u)− f(k)

)
sgn (u− k)φx

}
dxdt

= lim
ν→+∞

∫ ∫ {
|Stũν − k|φt +

(
f(Stũν)− f(k)

)
sgn (Stũν − k)φx

}
dxdt

≥ 0.

(4.6)

Hence u is a weak entropic solution of (1.1)–(1.2) in the interior of Ω.
Next we show that the traces of the functions f(u), sgn f ′(u) at x = 0 exist

in the sense of (2.6)–(2.7). By Remark 2.1 it is sufficient to prove that u admits
in the interior of Ω the representation (2.10). Let Υν , ν ∈ N, be the traces of
f(S(·)ũν), ν ∈ N. By Remarks 2.1–2.2, for every given t ∈ [0, T ] and for any ν ∈ N,
Stũν(x) = b ((x− yν(t, x))/t) for a.e. x > 0 with yν(t, x) denoting the unique point
where the function y 7→ ΨΥν (t, x, y) defined by (2.11) attains its minimum. Since by
(2.9) and (4.1) Υν are uniformly bounded, there exists a subsequence still denoted
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(Υν)ν∈N which converges weak? in L∞ to some function Υ ∈ L∞([0, T ]). Thus for
every (t, x) ∈ int Ω the sequence of maps (ΨΥν (t, x, ·))ν∈N converges uniformly to
ΨΥ(t, x, ·) and hence for all t ∈ [0, T ] and for a.e. x > 0 the corresponding minimum
points yν(t, x) being unique (see Remark 2.1) converge to the minimum point y(t, x)
of ΨΥ(t, x, ·) proving that u satisfies (2.10).

Observe now that f(ũν) are uniformly bounded, and hence it can be assumed
that

f(ũν) ∗⇀ Φ in L∞([0, T ])

for some function Φ ∈ L∞([0, T ]). Since f(ũν(t)) ∈ f(G(t)) and by (2.8) f(ũν(t)) ≤
Υν(t) for a.e. t, being f convex and G convex closed valued it follows that Φ(t) ∈
f(G(t)) and Φ(t) ≤ Υ(t) for a.e. t. Hence there exists a measurable selection ũ from
G such that

Φ(t) = f(ũ(t)), f(ũ(t)) ∈ f(G(t)), f(ũ(t)) ≤ Υ(t) for a.e. t > 0.

Since, for any t ∈ J , on bounded subsets of L∞ the functionals y 7→
∫ t

0 qi(s, y(s)) ds,
i = 1, . . . , N , are sequentially lower semicontinuous w.r.t. weak convergence on L1

(see Theorem 3 in [10]), it follows that ũ ∈ U . Therefore, to prove that u fulfills (iii)
in Definition 1, it remains to show that Υ(t) = f(ũ(t)) whenever µ(t) ≥ 0, with µ
denoting the trace of sgn f ′(u) at x = 0 as defined in (2.7). Assume that µ(t) = 0.
Then there exists δ > 0 such that f ′(u(t, x)) = 0 whenever x ∈ (0, δ) \ F , so that
Υ(t) = f(b(0)) = f(ũ(t)).

Now consider the set

P .= {t ∈ [0, T ] : µ(t) = 1}(4.7)

and assume that P has positive measure. Let µν be the trace of sgn f ′(S(·)ũν) as
defined in (2.7). We claim that

lim inf
ν→+∞

µν(t) ≥ 0 for a.e. t ∈ P.(4.8)

Indeed, suppose that (4.8) does not hold. Then there exists P ′ ⊆ P with positive
measure such that for every t ∈ P ′ there is a subsequence (µνk(t))k∈N of (µν(t))ν∈N
such that µνk(t) = −1 for all k. This means that, for any such t, f ′(Stũνk(x)) < 0
for x sufficiently close to zero. Hence by (2.17), since genuine characteristics do not
intersect in the interior of the domain, it follows that Stũνk(x) = 0 for every x > 0
and hence f ′(0) < 0. Fix R > 0 and define

R .= {(t, x) ∈ P ′ × [0, R] : f ′(u(t, x)) > 0} .(4.9)

Clearly meas(R) > 0. Let 0 < ε < meas(R)/2. By Egoroff’s theorem there ex-
ists R′ ⊂ R such that meas(R \ R′) < ε and S(·)ũν converges uniformly to u on
R′. Therefore, if (t, x) ∈ R′, for ν sufficiently large Stũν(x) ≥ b(0) which gives
a contradiction since f ′(0) < 0 implies 0 < b(0) by the convexity of f . Hence
limν→∞ (f(ũν)(t)−Υν(t)) = 0 for a.e. t ∈ P. Since f(ũν) ∗

⇀ f(ũ) and Υν
∗
⇀ Υ

in L∞, we get f(ũ)(t) = Υ(t) for a.e. t ∈ P.

5. An application. When modelling traffic phenomena in first approximation
we find it is reasonable to treat a flow of traffic on a highway as a continuum with
an observable density u(t, x) equal to the number of cars per unit length and a flux
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f(t, x) equal to the number of cars crossing the point x per unit time. Making the
assumption that at each point x the flux f is a function only of the density u at x
leads to the conservation law (see [9])

ut + [uυ(u)]x = 0,(5.1)

where υ(u) represents the velocity of the cars as a function of their density. In
practice one often takes υ(u) = a1 ln(a2/u) for suitable constants a1 and a2. Consider
the problem of minimizing the mean time which occurs in driving through a stretch
of the highway between an entry at a point x = 0 and an exit at a point x = x̄ by
controlling the density ũ(t) of cars entering the highway at time t equal to the value
of u at the boundary x = 0. Suppose that at time t = 0 no cars are on the stretch
of highway [0, x̄]. Let g(t) be the number of cars arriving at x = 0 per unit of time.
We may assume that g is a continuous function with compact support. Let um be
the maximum density, i.e., the value for which the cars are bumper to bumper. Then
there are quite natural assumptions that can be made on the boundary data ũ:

(i) the net flux of cars entering the stretch of highway must be equal to the total
number of cars arriving at the entry:∫ +∞

0
ũ(s)υ(ũ(s)) ds =

∫ +∞

0
g(s) ds;(5.2)

(ii) at any time t > 0 the total number of cars which have entered the highway
until that moment must be less than or equal to the total number of cars that have
arrived at the entry in the same period of time:∫ t

0
ũ(s)υ(ũ(s)) ds ≤

∫ t

0
g(s) ds;(5.3)

(iii) the maximum number of cars entering the highway must be less than or equal
to the maximum density of cars allowed on the highway:

ũ(t) ∈ [0, um];(5.4)

(iv) after a period of time sufficiently large no cars enter the highway:

ũ(t) = 0, t > τ, ∃τ > 0.(5.5)

Then if (t, x) 7→ Stũ(x) denotes the solution to (5.1), (1.2), (1.3), we will be
interested in minimizing the difference between the average incoming time of cars at
x = x̄ and at x = 0:(∫ +∞

0
t Stũ(x̄)υ (Stũ(x̄)) dt−

∫ +∞

0
t g(t) dt

)(∫ +∞

0
g(t) dt

)−1

,(5.6)

which clearly is equivalent to the minimization problem

min
ũ∈U

∫ +∞

0
t Stũ(x̄)υ (Stũ(x̄)) dt,(5.7)

where the admissible set U consists of all L∞ functions ũ satisfying (5.2)–(5.5) for a.e.
t > 0. Here we have a strictly concave flux f(u) = uυ(u). Since it is not restrictive to
consider boundary data with characteristics entering the domain R+ × R+, one can
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assume that ũ ∈ [0, b(0)] ⊆ [0, um] for a.e. t > 0 and for any admissible boundary
data ũ. Moreover by the basic structure of a solution to (1.1)–(1.3), from (5.5) it
follows that Stũ(x̄) = 0 for a.e. t > τ + x̄ b(0)/f(b(0)) .= τ ′. Therefore problem (5.7)
can be restated

min
ũ∈U

∫ τ ′

0
t Stũ(x̄)υ

(
Stũ(x̄)

)
dt,(5.8)

where U is a set of the form (2.23), q being the identity map and G the multifunction

G(t) =

{
[0, b(0)] if t ≤ τ ′,
{0} otherwise,

with an additional constraint given by (5.2). Observe that the compactness of the
attainable set A (x̄,U) still holds in connection with such an admissible set of bound-
ary controls as it follows from the proof of Theorem 3. Thus, since the map u 7→∫ τ ′

0 t u(t)υ(u(t)) dt is continuous as a functional from {u ∈ L∞([0, τ ′]) : ||u||∞ ≤
b(0) } into R w.r.t. the L1-norm, by Corollary 1 problem (5.8), admits a solution.

6. Appendix. Here we extend the L1-contraction property (2.12) established in
[14] for piecewise continuously differentiable solutions of the mixed initial boundary
value problem (2.1)–(2.3) to the class of all solutions associated with every initial and
boundary data in the domain

D .=
{

(ū, ũ) ∈ L∞(R+) ∩ L1(R+)× L∞(R+) : ũ(t) ≥ b(0) a.e. t
}
.

In the following we denote Tt : L∞ → L∞, t > 0, the translation operator, i.e.,
Ttũ(s) .= ũ(t+ s) ∀s > 0.

THEOREM 4. Let f : R → R be a continuously differentiable strictly convex
function. Then there exists a continuous map S : R+ × D → L∞(R+) with the
following properties:

(i) S0(ū, ũ) = ū, Ss+t(ū, ũ) = Ss
(
St(ū, ũ), Ttũ

)
∀s, t > 0;

(ii) ‖St(ū, ũ)− St(v̄, ṽ)‖
L1(R+)

≤ ‖ū− v̄‖
L1(R+)

+ ‖f(ũ)− f(ṽ)‖
L1([0,t])

∀t > 0;
(iii) each trajectory t → St(ū, ũ) yields the unique solution (in the sense of

Definition 1) to the initial boundary value problem (2.1)–(2.3).
Proof. For any given R > 0 consider the set

DR
.=
{

(ū, ũ) ∈ D : ‖ũ‖∞ ≤ R
}

endowed with the product topology of L1(R+)× L1
loc(R+). Then to prove Theorem

4 it suffices to show that for any R > 0 there exists a continuous map S : R+×DR →
L∞(R+) satisfying (i), (ii), (iii).

Let D̂R be the set of couples (ū, ũ) ∈ DR of piecewise constant functions (with
finite number of discontinuities). Observe first that any solution of (2.1)–(2.3) asso-
ciated with initial and boundary data in D̂R is piecewise continuously differentiable.
Then for every (ū, ũ) ∈ D̂R let Ŝt(ū, ũ) be the value at time t of the solution to (2.1)–
(2.3) which, by Remark 2.2, is unique, admits a representation of the form (2.10),
and satisfies the L1 contraction property (ii). Since D̂R is a dense subset of DR the
continuous flow Ŝ : R+ × D̂R → DR can be uniquely extended by continuity to a
continuous map S : R+ × DR → DR satisfying (ii) as well. Thus the proof will be
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completed if we show that t→ St(ū, ũ) admits a representation of the form (2.10) for
every (ū, ũ) ∈ DR.

Let (ūν)ν∈N , (ũν)ν∈N, (ūν , ũν) ∈ DR, be two sequences of piecewise constant
functions such that

ūν → ū in L1(R+),(6.1)

f(ũν)→ f(ũ) in L1
loc(R+).(6.2)

Then by previous arguments, for every fixed t > 0, one has

St(ūν , ũν)(x) = b

(
x− yν(t, x)

t

)
for a.e. x > 0, yν(t, x) denoting the unique minimum point for the function
y 7→ ΨΥν (t, x, y) defined by (2.11) in connection with the trace Υν at x = 0 of
f
(
S(·)(ūν , ũν)

)
. Observe that by (2.9) Υν are uniformly bounded. Thus there exists

a subsequence still denoted (Υν)ν∈N which converges weak? in L∞ to some function
Υ ∈ L∞(R+). Therefore, for every x > 0 the sequence of maps (ΨΥν (t, x, ·))ν∈N con-
verges uniformly to ΨΥ(t, x, ·). This implies that for a.e. x > 0 the corresponding min-
imum points yν(t, x) being unique (see Remark 2.1) converge to the minimum point
y(t, x) of ΨΥ(t, x, ·) and hence

(
b ((x− yν(t, x))/t)

)
ν∈N converges to b ((x− y(t, x))/t)

for a.e. x > 0 proving that St(ū, ũ) satisfies (2.10).

Acknowledgments. The authors would like to thank Prof. Alberto Bressan for
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SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 313–335, January 1998 017

Abstract. In this paper we use infinite linear programming to study Markov control processes
in Borel spaces and the average cost criterion in the “unichain” and “multichain” cases. Under
appropriate assumptions we show that in both cases the associated linear programs are solvable and
that there is no duality gap. Moreover, conditions are given for minimizing (respectively, maximizing)
sequences for the primal (respectively, dual) programs to converge to optimal solutions.
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1. Introduction. In this paper we use infinite-dimensional linear programming
to study discrete-time Markov control processes (MCPs) with Borel state and control
spaces and the average cost (AC) criterion. Our results extend several recent works
on MCPs in Borel [17, 18, 19] and countable [21, 25] spaces. Namely, we consider
the so-called unichain and multichain cases and for each of them we show that the
associated linear programs, both the primal and the dual, are solvable and that there
is no duality gap. Furthermore, conditions are given for minimizing (respectively,
maximizing) sequences for the primal (respectively, dual) programs to converge to
optimal solutions.

Linear programming (LP) is a standard technique to study many different classes
of control problems—see, e.g., [13, 19, 27, 28, 31] and their references. In particular,
as shown in the historical remarks in [1, 4, 19, 23], LP has been used since the early
1960s to study MCPs, but except for just a few papers, all of the literature deals with
countable—mainly finite—spaces. To our knowledge, this is the first paper dealing
with multichain MCPs and uncountable spaces.

For finite state MCPs, the LP approach to the multichain case has been used
for many years, beginning with Denardo and Fox [12] and further extended by sev-
eral authors, including Hordijk and Kallenberg [20, 23]—see also [1, 4, 19] for addi-
tional references. Moreover, extending previous work of Kallenberg [23], Altman and
Spieksma [2] have recently found an explicit relation between the measure ν in an
optimal solution (µ, ν) for the corresponding linear program P (see (3.5) or (3.7)) and
the so-called deviation matrix (see also [22]), but their analysis and the result itself
heavily depend on the finiteness of the state space.

In the countably infinite case, the LP approach was initiated in an interesting
recent paper by Hordijk and Lasserre [21], in which one can already appreciate the
difficulties in going from the finite to the infinite-space situation. For instance, in
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the latter case there seems to be nothing remotely close to the “deviation matrix”
interpretation in [2] and there seems to be no direct way of getting the no-duality-
gap condition, which is trivial in the finite-space case. More explicitly, one of the
main technical difficulties in showing that our infinite-dimensional linear programs
EP and P (see (3.3)–(3.4) and (3.5)–(3.6)) are consistent and solvable and that there
is no duality gap requires verifying that some sets are weakly closed (see Theorems
5.1 and 5.6). Since typically this cannot be done by direct methods, we have to
use “perturbations” of EP (see (4.4)–(4.6)) and P (see (4.13)) and “subconsistency”
results (Theorem 5.5).

In addition to the LP approach, one could also use (in principle) recurrence-like
conditions to study the multichain case. This has been done by Schäl [30] in the
countable-space case under a Lyapunov condition and by Kurano [24] for compact-
space MCPs under the Doeblin hypothesis. Both papers heavily rely of course on
their respective assumptions, and extending their results to uncountable noncompact
spaces poses a challenging problem.

The remainder of the paper is organized as follows. In section 2 we introduce
the AC problems we shall be dealing with, and in section 3 we present the associated
linear programs, which are called EP and P in the unichain and multichain cases,
respectively, and their corresponding duals are called EP ∗ and P ∗. In section 4,
first we present two sets of hypotheses (Assumptions 4.1 and 4.2), and then we state
our main results for EP (Theorems 4.5 and 4.6) and P (Theorems 4.9 and 4.10);
their proofs are given in sections 6 and 7, respectively, whereas section 5 contains
several technical preliminaries for the proofs. The latter include the generalized Farkas
theorem of Craven and Koliha [11], which is used to give necessary and sufficient
conditions for EP and P to be consistent. We conclude in section 8 with some
general remarks.

2. Markov control processes and AC problems. MCPs have been discussed
by many authors, so our review can be brief. Except for small changes, our notation
generally follows Hernández-Lerma and Lasserre [17], which provides many related
references. (See also [18], [19, Chapter 6].)

We consider an MCP (X,A, {A(x)|x ∈ X}, Q, c) with state space X and control
(or action) set A, both assumed to be Borel spaces with Borel σ-algebras B(X) and
B(A), respectively. For every state x ∈ X, A(x) ∈ B(A) is the (nonempty) set of
admissible control actions in x. We assume that the set

K := {(x, a)|x ∈ X, a ∈ A(x)}(2.1)

is a Borel subset of X × A and that it contains the graph of a measurable function
from X to A. The transition law Q(B|x, a), with B in B(X) and (x, a) in K, is
a stochastic kernel on A given K, and the one-stage cost c(x, a) is a nonnegative
measurable function on K.

Additional assumptions on the MCP are imposed in the following sections.
A control policy π = {π0, π1, . . .} is a sequence of stochastic kernels πt(·|ht) on A,

given the previous history ht = (x0, a0, . . . , xt−1, at−1, xt), satisfying the constraint

πt(A(xt)|ht) = 1 ∀ht, t = 0, 1, . . . ,(2.2)

where xn and an denote the state and control at time n. The set of all control policies
is denoted by Π.
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DEFINITION 2.1. (a) F denotes the set of all measurable functions f : X → A
such that f(x) ∈ A(x) for all X, and Φ stands for the set of all stochastic kernels on
A, given X, such that ϕ(A(x)|x) = 1 for all x ∈ X.

(b) A control policy π = {πt} is said to be a randomized stationary (or relaxed)
policy—also known as a Young measure (see, e.g., Balder [5, 6])—if there exists ϕ ∈ Φ
such that πt(·|ht) = ϕ(·|xt) for every history ht and t = 0, 1, . . ..

(c) π = {πt} is said to be a (deterministic or nonrandomized) stationary policy
if there exists f ∈ F such that πt(·|ht) is concentrated at f(xt) for every ht and t.

We shall identify F (respectively, Φ) with the set of all stationary (respectively,
randomized stationary) policies.

P πγ denotes the induced probability measure when using the policy π, given the
initial distribution γ, and Eπγ stands for the expectation operator with respect to Pπγ .
If γ is the unit mass at the initial state x0 = x, we write Pπγ and Eπγ as Pπx and Eπx ,
respectively.

Remark 2.2. If v(x, a) is a function on K and ϕ ∈ Φ is a randomized stationary
policy, we write

v(x, ϕ) :=
∫
A

v(x, a)ϕ(da|x), x ∈ X.

In particular, for a stationary policy f ∈ F, v(x, f) := v(x, f(x)).
AC problems. Let Jn(π, γ) be the n-stage total expected cost when using the

policy π, given the initial distribution γ; that is,

Jn(π, γ) := Eπγ

[
n−1∑
t=0

c(xt, at)

]
, n = 1, 2, . . . ,

and J0(·) ≡ 0. The long-run expected AC is then defined as

J(π, γ) := lim sup
n→∞

Jn(π, γ)/n,(2.3)

and the AC-value function is

J∗(γ) := inf
π
J(π, γ), γ ∈ P(X),(2.4)

where P(X) denotes the set of all probability measures on X. Then the so-called AC
problem is to find a policy π∗ such that

J(π∗, γ) = J∗(γ) for all γ ∈ P(X).(2.5)

A policy π∗ satisfying (2.5) is called AC optimal.
The usual dynamic programming approach to solve the AC problem is to find a

canonical triplet (g, h, f∗), which consists of two real-valued functions g and h on X,
and a stationary policy f∗ ∈ F, such that the pair (g, h) satisfies the AC optimality
equation (2.6)–(2.7) below, and f∗(x) ∈ A(x) attains the minimum in (2.6)–(2.7) for
every x ∈ X, which (using the notation in Remark 2.2) yields (2.8)–(2.9): ∀x ∈ X,

g(x) = inf
a∈A(x)

∫
X

g(y)Q(dy|x, a),(2.6)

g(x) + h(x) = inf
a∈A(x)

[
c(x, a) +

∫
X

h(y)Q(dy|x, a)
]
,(2.7)
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g(x) =
∫
X

g(y)Q(dy|x, f∗), and(2.8)

g(x) + h(x) = c(x, f∗) +
∫
X

h(y)Q(dy|x, f∗).(2.9)

Finally, if h is such that

lim sup
n→∞

Eπx [h(xn)]/n = 0 for every π ∈ Π and x ∈ X,(2.10)

then f∗ is AC optimal and g(·) is the AC value function, i.e.,

J(f∗, x) = g(x) = J∗(x) ∀x ∈ X,(2.11)

and (2.5) is immediately obtained.
The LP formulation to the AC problem is closely related to (2.6)–(2.7), except

that (2.5) is solved for every fixed initial distribution; i.e., given the initial distribution,
say γ0, we find π∗ such that

J(π∗, γ0) = J∗(γ0) := inf
π
J(π, γ0).(2.12)

Another related problem is to find a minimum pair (π0, γ0), i.e., a policy π0 and
an initial distribution γ0 such that

J(π0, γ0) = inf
γ
J∗(γ) =: ρ∗.(2.13)

Of course, if the AC value function J∗ is a constant , as in the so-called unichain case,
using dynamic programming the idea would be to solve (2.6)–(2.9) with a constant
function g(·), and then, under (2.10), we would obtain (2.11) with g(·) = J∗(·) = ρ∗.

The minimum pair problem is precisely the one solved in [17] and analyzed again
here from a different viewpoint. We also study (2.12), which we call the γ0-AC problem
or AC problem in the multichain case (with initial distribution γ0).

3. Associated linear programs. In this section we informally present the lin-
ear programs associated with the AC problems (2.12) and (2.13). The hypotheses
under which they are well defined, together with our main results, are given in section
4.

As in [17] (see also [3], [18], or [19]), we first introduce the dual pairs (M(K), F (K))
and (M(X), F (X)) in Definition 3.1 below, where we use the functions

w(x, a) := 1 + c(x, a) and w0(x) := inf
a∈A(x)

w(x, a).(3.1)

Since (by assumption) c is nonnegative, we have

1 ≤ w0(x) ≤ w(x, a) ∀(x, a) ∈ K,(3.2)

and—under Assumptions 4.1 or 4.2—w0 is measurable.
DEFINITION 3.1. (a) M(K) denotes the normed vector space of finite signed mea-

sures µ on K with

‖µ‖w :=
∫
K
wd|µ| <∞,
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where |µ| stands for the total variation of µ, and F (K) denotes the normed vector
space of real-valued measurable functions u on K with

‖u‖w := sup
(x,a)
|u(x, a)|/w(x, a) <∞.

(M(K), F (K)) is a dual pair with respect to the bilinear form

〈µ, u〉 :=
∫
K

udµ, µ ∈M(K), u ∈ F (K).

(b) Similarly, replacing K and w by X and w0, respectively, we get the dual pair
(M(X), F (X)).

We shall in fact consider several topologies on M(K) (see Remark 5.3), but unless
explicitly stated otherwise we shall always consider M(K) to be endowed with the weak
topology σ(M(K), F (K)). A similar remark holds for M(X).

Notation. In any vector space, the “null” or “zero” vector will be denoted by
“0”. Thus µ(·) = 0 is the trivial measure and u(·) = 0 is the null function. M+(K)
denotes the convex cone of nonnegative measures in M(K) and similarly for M+(X).

Now we introduce four linear operators (which will be weakly continuous under
Assumptions 4.1 or 4.2—see Lemma 4.4):

L0, L1 : M(K)→M(X), L : M(K)→ R×M(X), and T : M(K)2 →M(X)2,

defined, for every µ and ν in M(K) and B ∈ B(X), as

L0µ := µ1 := marginal (or projection) of µ on X,

(L1µ)(B) := µ1(B)−
∫
K
Q(B|x, a)µ(d(x, a)),

Lµ := (〈µ, 1〉, L1µ) [with 〈µ, 1〉 =
∫
K
dµ = µ(K)],

and

T (µ, ν) := (L0µ+ L1ν, L1µ).

The corresponding adjoints

L∗0, L
∗
1 : F (X)→ F (K), L∗ : R× F (X)→ F (K), and T ∗ : F (X)2 → F (K)2

are given, for every g and h in F (X), ρ ∈ R, and (x, a) ∈ K, by

(L∗0g)(x, a) := g(x),

(L∗1g)(x, a) := g(x)−
∫
X

g(y)Q(dy|x, a),

L∗(ρ, g) := ρ+ L∗1g,

and

T ∗(g, h) := (L∗0g + L∗1h, L
∗
1g).

With this notation, the primal linear program associated with the minimum pair
problem (2.13) is (as in [17] or [19])

EP : minimize 〈µ, c〉
(3.3) subject to µ ∈M+(K), 〈µ, 1〉 = 1, and L1µ = 0 (i.e., Lµ = (1, 0)).
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(See Remark 3.2(a).) The dual linear program is

EP ∗: maximize ρ [= 〈(1, 0), (ρ, h)〉]
(3.4) subject to L∗(ρ, h) ≤ c, (ρ, h) ∈ R× F (X).

Similarly, for the γ0 AC problem (2.12) the associated primal program is

P : minimize 〈µ, c〉 [= 〈(µ, ν), (c, 0)〉]
(3.5) subject to T (µ, ν) = (γ0, 0), (µ, ν) ∈M+(K)2.

The dual of P is

P ∗: maximize 〈γ0, g〉 [= 〈(γ0, 0), (g, h)〉]
(3.6) subject to T ∗(g, h) ≤ (c, 0), (g, h) ∈ F (X)2.

Remark 3.2. (a) Vector equalities and inequalities are understood componentwise.
For instance, (3.5) means that

L0µ+ L1ν = γ0 and L1µ = 0,(3.7)

and (3.6) is the same as writing

L∗0g + L∗1h ≤ c and L∗1g ≤ 0.(3.8)

Incidentally, note that (3.8) (or (3.6)) can be “derived” from (2.6)–(2.7), in the sense
that if (g, h) satisfies (2.6)–(2.7), then it satisfies (3.8). Thus, solving P ∗ is basically
the same as finding the “maximal subsolution” of (2.6)–(2.7); see Lemma 7.1. This
is interesting to note because, historically speaking, it is the way the “LP approach”
to MCPs was born: trying to solve a dynamic programming equation rewriting it as
a linear program.

(b) If (µ, ν) satisfies (3.5) (= (3.7))—in other words, if (µ, ν) is feasible for P—
then µ is a probability measure. Of course, a similar remark holds if µ is feasible for
EP—see (3.3).

(c) A function g in F (X) will be identified with the function (L∗0g)(x, a) := g(x)
in F (K), in which case we can write F (X) ⊂ F (K). This can be done because, by
(3.2), ‖g‖w ≤ ‖g‖w0 < ∞ if g is in F (X). Hence, we can also write 〈µ, g〉 = 〈µ1, g〉
for every g ∈ F (X) and µ ∈M(K), where µ1 := L0µ.

(d) The definition of the weight functions w and w0 in (3.1) is useful because it
automatically yields that c is in F (K) and that (3.2) holds. However, it is important to
keep in mind that to develop the LP approach we can take any weight functions w and
w0 as long as c ∈ F (K) and (3.2) (together with Assumption 4.1(c)=4.2(d)) hold true.
Similarly, Assumption 4.1(a) below can be replaced by the following statement: c is
l.s.c. (lower semicontinuous) and the weight function w is inf-compact. This condition
together with the requirement on w in Assumption 4.1(d) ensures, for instance, that
the set of measures µ that satisfy (3.3) and

∫
cdµ <∞ is tight (cf. Assumption 5.1(c)

in [17]).

4. Main results. In this section we present two different sets of assumptions,
which are briefly discussed in Remark 4.3, and then we state our main results.

We shall use the following notation: If S is a metric space, we denote by Cb(S)
the Banach space of real-valued bounded continuous functions on S, endowed with
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the supremum norm (‖u‖ := sups |u(s)|), and by C0(S) the subspace of continuous
functions vanishing at infinity. If S is compact , then Cb(S) = C0(S).

The following assumption collects the hypotheses used in [17].
Assumption 4.1. (a) The one-stage cost function c : K → R+ (R+ := [0,∞)) is

inf-compact; i.e., for every real number r, the set {(x, a) ∈ K|c(x, a) ≤ r} is compact.
(b) The transition law Q is weakly continuous; i.e., the function∫

X

v(y)Q(dy|·) is in Cb(K) whenever v ∈ Cb(X).

(c)
∫
X
w0(y)Q(dy|·) is in F (K); i.e., there is a constant C such that∫

X

w0(y)Q(dy|x, a) ≤ Cw(x, a) ∀(x, a) ∈ K.

(d) There is a policy π such that for every initial distribution γ, the average cost
J(π, γ) <∞, or, equivalently (by (3.1)),

lim sup
n→∞

Eπγ

[
n−1∑
t=0

w(xt, at)

]
/n <∞.

Assumption 4.2. (a) X and K are locally compact separable metric spaces.
(b) The one-stage cost c is l.s.c.
(c) Q is weakly continuous (Assumption 4.1(b)) and, in addition, for every com-

pact subset K of X, Q(K|·) vanishes at infinity; i.e., for every ε > 0 there is a compact
set K ′ = K ′(ε,K) in K such that

Q(K|x, a) ≤ ε ∀(x, a) 6∈ K′.

(d) This is the same as Assumption 4.1(c).
Remark 4.3. (a) It is obvious that Assumptions 4.1 and 4.2 are not comparable.

For instance, in Assumption 4.1 it is implicit that X and K are Borel spaces (see
the second paragraph of section 2), which is a condition weaker than Assumption
4.2(a). But on the other hand, Assumption 4.1(a) is stronger than (i.e., it implies)
Assumption 4.2(b). Similarly, Assumption 4.2(c) implies 4.1(b), but 4.1(d) is not
required in Assumption 4.2.

(b) In most applications of MCPs, the spaces X and K—and also the control
set A—are “nice” subsets of Euclidean spaces, so Assumption 4.2(a) is not really too
restrictive. A sufficient condition for it is that X and A are both locally compact
separable metric spaces (which is a necessary and sufficient condition for X × A to
be locally compact separable metric—see, e.g., Dieudonné [14, p. 75]) and that K is
either open or closed in X ×A [14, p. 66]. The main reason for requiring X and K as
in Assumption 4.2(a) is explained in Remark 5.3.

(c) Assumption 4.2(c) on Q—as well as (4.10) below (see also the Remark follow-
ing Theorem 4.5)—is related to conditions given by Benes [7] to ensure the existence
of invariant distributions for Feller–Markov chains—observe that weak continuity of
Q is a Feller-like condition. In our present context, Assumption 4.2(c) implies in
particular that, as is easily shown,∫

X

u(y)Q(dy|·) is in C0(K) if u ∈ C0(X).(4.1)
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For a general (say, Rd-valued) discrete-time system xt+1 = F (xt, at, ξt), t = 0, 1, . . . ,
with independent and identically distributed disturbances ξt, Assumption 4.2(c) holds
if, for every s, the function F (x, a, s) is continuous in (x, a) ∈ K and, moreover,
F (x, a, s) → ∞ as (x, a) → ∞. The general discrete-time system, in particular the
additive-noise case in (d), below, includes many control models found in applications;
see [4, 13, 16, 19].

(d) As an example, consider the additive-noise system

xt+1 = G(xt, at) + ξt, t = 0, 1, . . . ,

with state and control spaces X = A = R (so that K = R2), where the disturbances
ξt are independent and identically distributed random variables, independent of the
initial state x0. Moreover, the one-stage cost c is supposed to be a quadratic function,
say c(x, a) = αx2 + βa2 with positive α and β, and G(x, a) is a given continuous
function. In this case, Assumptions 4.1(a),(b) and 4.2(a),(b) are obviously satisfied,
and conditions sufficient for Assumption 4.1(c),(d) are easily determined (see, for
instance, [17]). Finally, the second part of Assumption 4.2(c) is also satisfied if, for
instance, |G(x, a)| → ∞ as |(x, a)| → ∞. In other words, under the given conditions,
Assumptions 4.1 and 4.2 both hold. Similar statements hold in the vector case.

(e) (See [3, p. 37] or [11, p. 984].) Let (X ,Y) and (Z,W) be two dual pairs of
vector spaces and G : X → Z a linear mapping with adjoint G∗. Then G is weakly
continuous if and only if G∗ maps W into Y. For instance, by Remark 3.2(c), (3.2)
implies that L∗0 maps F (X) into F (K) and, therefore, L0 : M(K)→M(X) is weakly
continuous. Similarly, Assumption 4.1(c) (=4.2(d)) yields that, for all g in F (X),∣∣∣∣∫ g(y)Q(dy|x, a)

∣∣∣∣ ≤ ‖g‖w0

∫
w0(y)Q(dy|x, a) ≤ ‖g‖w0Cw(x, a).

Hence, this assumption and (3.2) imply that L∗1 maps F (X) into F (K), so that L1 :
M(K) → M(X) is weakly continuous. Combining these facts with the definitions of
L and T (see section 3), we obtain part (a) in the following lemma.

LEMMA 4.4. (a) Each of the operators L0, L1, L, and T is weakly continuous.
(b) L∗0 maps Cb(X) into Cb(K), and so does L∗1 if Q is weakly continuous (see

Assumption 4.1(b) or 4.2(c)).
Proof. Part (a) follows from Remark 4.3(e), and part (b) is obvious.
Plainly, the dual programs EP ∗ and P ∗ are both consistent. For instance, for

any constant k the pair (ρ, h) := (0, k) and (g, h) := (0, k) satisfy (3.4) and (3.6),
respectively. In the remainder of this section, (i) we give necessary and sufficient
conditions for the primal problems EP and P to be consistent ; (ii) we show that for
each of them there is no duality gap, i.e.,

sup(EP ∗) = inf(EP ) (= ρ∗; see (2.13)),(4.2)

and similarly for P ; and, finally, (iii) we show that in each case there is strong duality,
which means that EP and EP ∗ are both solvable and their optimal values satisfy

max(EP ∗) = min(EP )(4.3)

and similarly for P and P ∗. (In writing (4.3) we follow the usual convention that
“min” replaces “inf” for an attained infimum and similarly for “max” and “sup.”)
We shall first state the results for EP and then for P ; the proofs are presented in
sections 6 (for EP ) and 7 (for P ).
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Main results for EP . Under Assumption 4.1, it is shown in [17] that EP is
solvable and that it has no duality gap. Here, first we use Assumption 4.2 to obtain
a necessary and sufficient condition for EP to be consistent (Theorem 4.5). To do
this using a generalized Farkas theorem (Theorem 5.1) we would need to show that
the set L(M+(K)) ⊂ R ×M(X) is weakly closed. Since we are unable to prove this
directly, we “perturbate” EP as follows.

Let v0 be a strictly positive function in C0(X), and consider the linear operator
L : M(K)× R2 →M(X)× R2 with

L(µ, r1, r2) := (L1µ, 〈µ, 1〉+ r1, 〈µ, v0〉 − r2).(4.4)

The adjoint L∗ : F (X)× R2 → F (K)× R2 is given by

L∗(h, ρ1, ρ2) = (L∗1h+ ρ1 + ρ2v0, ρ1,−ρ2).(4.5)

Now note that EP is consistent (i.e., there is a measure µ satisfying (3.3)) if and only
if the linear equation

L(µ, r1, r2) = (0, 1, ε) has a solution (µ, r1, r2) in M+(R)× R2
+(4.6)

for some ε > 0. This is obvious because if µ satisfies (3.3), then (µ, 0, 0) satisfies
(4.6) with ε := 〈µ, v0〉; and, conversely, if (µ, r1, r2) satisfies (4.6), then 〈µ, v0〉 ≥ ε
implies 〈µ, 1〉 > 0 and, therefore, µ∗ := µ/〈µ, 1〉 satisfies (3.3). We will show that
(4.6) and the generalized Farkas theorem (see Theorem 5.1 below) yield part (a) in
the following result.

THEOREM 4.5. Suppose that Assumption 4.2 holds. Then
(a) EP is consistent (equivalently, (4.6) holds) if and only if

L∗1h+ ρ1 + ρ2v0 ≥ 0 with h ∈ F (X), ρ1 ≥ 0, and ρ2 ≤ 0(4.7)

implies

ρ1 + ερ2 ≥ 0 for some ε > 0.(4.8)

(b) Let v0 and w0 be as in (4.4) and (3.1), respectively, and suppose there exists
ε > 0 and a relaxed policy ϕ such that ∀x ∈ X

lim inf
n→∞

Eϕx [w0(xn)]/n = 0 and(4.9)

lim inf
n→∞

n−1∑
t=0

Eϕx [v0(xt)]/n ≥ ε.(4.10)

Then EP is consistent.
Remark. The hypotheses of Theorem 4.5(b) imply that the stochastic kernel

Q(·|·, ϕ) satisfies Benes’s [7] condition (v) (hence, the equivalent conditions (i)–(iv))
for the existence of a nontrivial invariant measure. Indeed, suppose that ε > 0 is such
that ε ≤ ‖v0‖, and choose 0 < ε0 < ε. As v0(·) > 0 is in C0(X), there is a compact
set K0 such that 0 < v0(x) ≤ ε0 for all x not in K0. Then (writing X as the union of
K0 and its complement) for all t = 0, 1, . . . and x ∈ X,

Eϕx [v0(xt)] =
∫
X

v0(y)Qt(dy|x, ϕ) ≤ (‖v0‖ − ε0)Qt(K0|x, ϕ) + ε0.
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This implies, by (4.10),

lim inf
n→∞

1
n

n−1∑
t=0

Qt(K0|x, ϕ) ≥ (ε− ε0)/(‖v0‖ − ε) > 0.

Finally, take Benes’s measure µ as (for instance) the initial distribution γ0 in (2.12)
to obtain the condition (v) in [7].

In Theorem 4.6 we use the following definition. A sequence of measures µn in
M(K) is said to be a minimizing sequence for EP if each µn is feasible for EP (see
(3.3)) and 〈µn, c〉 ↓ inf (EP ). Similarly (ρn, hn) is a maximizing sequence for the dual
EP ∗ if each (ρn, hn) is feasible for EP ∗ and ρn ↑ sup(EP ∗). Of course, minimizing
and maximizing sequences for P and P ∗, respectively, are defined analogously.

THEOREM 4.6. Suppose that either (i) Assumption 4.1 holds, or (ii) Assumptions
4.2 and 4.1(a) hold and EP is consistent with a finite value. Then the following hold.

(a) EP is solvable and there is no duality gap; i.e., there exists a feasible solution
µ∗ for EP such that

〈µ∗, c〉 = min(EP ) = sup(EP ∗) (= ρ∗; see (2.13)).(4.11)

(b) If {µn} is a minimizing sequence for EP , then there exists a subsequence
{j} of {n} such that µj converges in the weak topology σ(M(K), Cb(K)) (see Remark
5.3(b)) to an optimal solution for EP .

(c) If (ρn, hn) is a maximizing sequence for EP ∗ with {hn} bounded in the w0-
weighted norm (i.e., there is a constant k such that ‖hn‖w0 ≤ k ∀n), then (i) EP ∗

is solvable, (ii) strong duality holds (see (4.3)), and (iii) if µ∗ is optimal for EP and
µ∗1 = L0µ is its marginal on X, then the AC optimality equation (2.6)–(2.7) holds
µ∗1-almost everywhere (a.e.) with g(·) = ρ∗; in fact, there is a function h ∈ F (X) and
a policy f∗ ∈ F such that for µ∗1-almost every x ∈ X:

ρ∗ + h(x) = min
a∈A(x)

[
c(x, a) +

∫
X

h(y)Q(dy|x, a)
]

= c(x, f∗) +
∫
X

h(y)Q(dy|x, f∗).
(4.12)

We now turn our attention to the linear program P .
Main results for P . In analogy with EP , we use Theorem 5.1 to obtain a

necessary and sufficient condition for P to be consistent (Theorem 4.9). And again,
as with EP , instead of (3.5), we consider an equivalent , “perturbated” linear equation,
(4.13), as follows.

Consider the linear mapping τ : M(K)2 × R→M(X)2 × R defined by

τ(µ, ν, r) := (L0µ+ L1ν, L1µ, 〈µ+ ν, w〉+ r)
= (T (µ, ν), 〈µ+ ν, w〉+ r).

The adjoint τ∗ : F (X)2 × R→ F (K)2 × R is given by

τ∗(g, h, ρ) := (L∗0g + L∗1h+ ρw,L∗1g + ρw, ρ)
= (T ∗(g, h), 0) + ρ(w,w, 1).

Also consider the primal linear program, with m ≥ 1 (see Remark 4.7),
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Pm: minimize 〈µ, c〉 [= 〈(µ, ν, r), (c, 0, 0)〉]
(4.13) subject to τ(µ, ν, r) = (γ0, 0,m), (µ, ν, r) ∈M+(K)2 × R+.

The corresponding dual is

P∗m: maximize 〈γ0, g〉+mρ [= 〈(γ0, 0,m), (g, h, ρ)〉]
subject to τ∗(g, h, ρ) ≤ (c, 0, 0), (g, h, ρ) ∈ F (X)2 × R.

Remark 4.7. If (µ, ν, r) satisfies (4.13), then µ is a probability measure, which
combined with (3.1), yields m ≥ 1 since

m = 〈µ+ ν, w〉+ r ≥ 〈µ,w〉 ≥ 〈µ, 1〉 = 1.

The following proposition shows that P and Pm, as well as the duals P ∗ and P ∗m,
are equivalent for all m s.l. (sufficiently large).

PROPOSITION 4.8. (a) P is consistent if and only if Pm is consistent for m s.l.;
moreover, inf(Pm) ≤ inf(P ) for all m ≥ 1.

(b) If Pm is consistent (m ≥ 1), then so is Pm′ and inf(Pm) ≥ inf(Pm′) ∀m′ ≥ m;
hence

inf(P ) = inf(Pm) for all m s.l.(4.14)

(c) If there is no duality gap for Pm, then there is no duality gap for P , and for
all m s.l.:

inf(P ) = inf(Pm) = sup(P ∗m) = sup(P ∗).(4.15)

THEOREM 4.9. Suppose that Assumption 4.2 holds. Then the following statements
hold.

(a) P is consistent (equivalently, Pm is consistent for some m ≥ 1) if and only if

(g, h) ∈ F (X)2, L∗0g + L∗1h+ ρw ≥ 0, L∗1g + ρw ≥ 0, and ρ ≥ 0(4.16)

imply

〈γ0, g〉+ ρm ≥ 0.(4.17)

(b) If Pm is consistent with a finite value, then it is solvable and there is no
duality gap; hence (by (4.15)) for all m s.l., P is solvable and

min(P ) = min(Pm) = sup(P ∗m) = sup(P ∗).(4.18)

THEOREM 4.10. Suppose that Assumptions 4.2 and 4.1(d) hold. Then
(a) P is solvable and there is no duality gap for it.
(b) Let (µn, νn) be a minimizing sequence for P and suppose that either (i) 〈µn+

νn, w〉 is bounded, or (ii) Assumption 4.1(a) holds and 〈νn, w〉 is bounded. Then there
is subsequence {j} of {n} such that (µj , νj) converges to an optimal solution for P in
the weak∗ topology σ(M(K), C0(K)).

(c) Let (gn, hn) be a maximizing sequence for P ∗. If the sequences gn, hn are
bounded in the w0-weighted norm (i.e., there is a constant k such that ‖gn‖w0 , ‖hn‖w0 ≤
k ∀n), then (i) P ∗ is solvable. Hence, (ii) there is strong duality, i.e., min(P ) =
max(P ∗) = 〈γ0, J

∗〉, and (iii) an optimal solution (µ, ν) for P is such that
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• (2.6) holds ν1-a.e., and
• (2.7) holds µ1-a.e.
We conclude with the following interesting remark whose easy proof is left to the

reader.
Remark 4.11. Under Assumptions 4.1 or 4.2, the set of optimal solutions for P is

a weakly closed, convex, extremal subset of the set of feasible solutions for P—where
extremal means that if (µ, ν) is optimal for P , if (µi, νi) is feasible (i = 1, 2), and if

(µ, ν) = r(µ1, ν1) + (1− r)(µ2, ν2) for 0 < r < 1,

then (µi, νi) is optimal for P (i = 1, 2) (see [9]).

5. Technical preliminaries for the proofs. In this section we collect some
facts used in the proofs of our main results.

If (X ,Y) is a dual pair of vector spaces, we denote by σ(X ,Y) the weak topology
on X [3, 10, 15]. If Y is a Banach space and X = Y∗ the topological dual, then
σ(X ,Y) is called the weak∗ topology on X .

Let (X ,Y) be a dual pair, and S a convex cone in X . Then the dual cone S∗ is
the set {y ∈ Y|〈x, y〉 ≥ 0 ∀x ∈ S}.

THEOREM 5.1 (generalized Farkas theorem [11, Theorem 2]). Let (X ,Y) and
(Z,W) be two real dual pairs, let S be a convex cone in X , and let G : X → Z
be a weakly continuous linear map. If G(S) is weakly closed, then the following are
equivalent conditions on b ∈ Z (where G∗ :W → Y denotes the adjoint of G):

(a) The equation Gx = b has a solution x ∈ S.
(b) G∗w ∈ S∗ ⇒ 〈b, w〉 ≥ 0.
The following result is the Alaoglu, or Banach–Alaoglu–Bourbaki theorem (see

[10, 15]), which is used in sections 6 and 7 in combination with Remark 5.3.
THEOREM 5.2. Let X be a Banach space with topological dual X ∗ and let U be

the closed unit sphere in X ∗. Then U is compact in the weak∗ topology σ(X ∗,X ).
Moreover, if X is separable, then the weak∗ topology of U is metrizable.

Remark 5.3. (a) Let us view M(K) (see Definition 3.1) as the Banach space of
finite signed measures on K endowed with the total variation norm ‖ ·‖TV . Note that,
by (3.1)–(3.2),

‖µ‖w =
∫
wd|µ| ≥ ‖µ‖TV ,

so that (M(K), ‖ · ‖w) is a subspace of (M(K), ‖ · ‖TV ). On the other hand, with K
as in Assumption 4.2(a), (M(K), ‖ · ‖TV ) is the dual of the separable Banach space
C0(K).

(b) We shall consider three topologies on M(K): the weak topology σ(M(K),
F (K)), the weak topology σ(M(K), Cb(K)), and the weak∗ topology σ(M(K), C0(K)).
However, as already noted in section 3, by “weak topology” we always mean σ(M(K),
F (K)), unless explicitly stated otherwise.

(c) Under Assumption 4.2(a), if {µj} is a bounded sequence of measures on K
that converges in the weak∗ topology, then also the sequence of marginals L0µ

j = µj1
on X converges in the weak∗ topology. That is, if

(i) 〈µj , v〉 −→ 〈µ, v〉 ∀v ∈ C0(K),

then

(ii) 〈µj , u〉 −→ 〈µ, u〉 ∀u ∈ C0(X),
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where in (ii) we have used Remark 3.2(c) to write 〈µj , u〉 and 〈µ, u〉 instead of 〈µj1, u〉
and 〈µ1, u〉, respectively. To prove (ii) first note that, under Assumption 4.2(a), K is
σ-compact and, therefore, there exists an increasing sequence of compact sets Kn ↑ K.
Moreover, by Urysohn’s lemma [29, p. 39], for any given ε > 0 and all n = 1, 2, . . . ,
there is a function αn in C0(K) such that 0 ≤ αn ≤ 1, with αn = 1 on Kn and
αn(x, a) = 0 if the distance from (x, a) to Kn is ≥ ε. Now, given u in C0(X), define
un(x, a) := u(x)αn(x, a) on K. Then un is in C0(K), and for all (x, a) in K,

|un(x, a)| ≤ |u(x)| ≤ ‖u‖ <∞, and un(x, a)→ u(x) as n→∞.

Hence, by the bounded convergence theorem, for every fixed j,

(iii) 〈µj , un〉 −→ 〈µj , u〉 and 〈µ, un〉 −→ 〈µ, u〉 as n→∞.

On the other hand, for every fixed n, (i) yields

(iv) 〈µj , un〉 −→ 〈µ, un〉 as j →∞.

Finally, the desired conclusion (ii) follows from (iii), (iv), and the inequality

|〈µj , u〉 − 〈µ, u〉| ≤ |〈µj , u〉 − 〈µj , un〉|
+|〈µj , un〉 − 〈µ, un〉|+ |〈µ, un〉 − 〈µ, u〉|.

Linear programming. Let (X ,Y), (Z,W), S, G, and b be as in Theorem 5.1,
and consider the linear program, with c ∈ Y,

P : minimize 〈x, c〉
(5.1) subject to Gx = b, x ∈ S.

The dual of P is

P∗: maximize 〈b, w〉
subject to c−G∗w ∈ S∗, w ∈ W.

Weak duality. If x is feasible for P and w is feasible for P∗, then 〈b, w〉 ≤ 〈x, c〉;
hence

sup(P∗) ≤ inf(P).(5.2)

DEFINITION 5.4. (see [3, p. 40]). Let H be the subset of Z × R defined as

H := {(Gx, 〈x, c〉+ r)|x ∈ S, r ≥ 0}.(5.3)

The program P is said to be subconsistent if there is some r ∈ R with (b, r) in the
weak closure cl(H) of H. If P is subconsistent, its subvalue is defined as the infimum
of all r ∈ R for which (b, r) is in cl(H). (Thus, the subvalue is the infimum of r for
which there is a net {xα} in S with Gxα → b and 〈xα, c〉 → r.)

THEOREM 5.5 (see [3, Theorem 3.3]). P is subconsistent with a finite value r∗ if
and only if P∗ is consistent with a finite value r∗.

THEOREM 5.6 (see [3, Theorems 3.9, 3.22]). If P is consistent with a finite value
and H is weakly closed, then P is solvable and there is no duality gap for P.
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6. Proof of the results for EP .
Proof of Theorem 4.5. (a) In this proof we use Theorem 5.1 with the following

identifications (see (4.4)–(4.6))]:

(X ,Y) := (M(K)× R2, F (K)× R2), (Z,W) := (M(X)× R2, F (X)× R2),

G := L, S := M+(K)× R2
+, b := (0, 1, ε).(6.1)

Then condition (a) in Theorem 5.1 is the same as (4.6), and condition (b) becomes

L∗(h, ρ1, ρ2) ≥ 0 =⇒ 〈(0, 1, ε), (h, ρ1, ρ2)〉 ≥ 0,

which is precisely that condition “(4.7) implies (4.8).” Hence, to prove Theorem 4.5(a)
we only need to verify the hypotheses of Theorem 5.1; namely, we need to check that
(in view of (6.1))

(i) L is weakly continuous, and
(ii) L(S) is weakly closed.

The requirement (i) follows from Lemma 4.4(a) and the definition of L—see (4.4).
Therefore, to complete the proof of Theorem 4.5(a) it only remains to prove (ii).

Proof of (ii). To prove that L(S) is weakly closed, let (D,≤) be a directed set,
and let {(µα, rα1 , rα2 ), α ∈ D} be a net in S such that L(µα, rα1 , r

α
2 ) converges weakly

to (ν, ρ1, ρ2) ∈M(X)× R2; i.e. (by (4.4)),

〈L1µ
α, u〉 → 〈ν, u〉 ∀u ∈ F (X),(6.2)

〈µα, 1〉+ rα1 → ρ1, and(6.3)

〈µα, v0〉 − rα2 → ρ2.(6.4)

We wish to show that (ν, ρ1, ρ2) is in L(S); i.e., there exists (µ0, r0
1, r

0
2) in S such that

(a) L1µ
0 = ν, (b) 〈µ0, 1〉+ r0

1 = ρ1, and (c) 〈µ0, v0〉 − r0
2 = ρ2.(6.5)

If ρ1 = 0 in (6.3), then rα1 and 〈µα, 1〉 → 0, and it is easily verified that necessarily
ν = 0 and that (6.4) holds with (µ0, r0

1, r
0
2) = (0, 0,−ρ2). We shall now consider the

case ρ1 > 0.
Suppose that ρ1 > 0. Then, by (6.3), there exists α0 ∈ D such that

0 ≤ 〈µα, 1〉 = µα(K) ≤ 2ρ1 ∀α ≥ α0.(6.6)

Hence, by Theorem 5.2 and Remark 5.3(a), there exists a measure µ0 on K and a
sequence {j} in D such that µj → µ0 in the weak∗ topology σ(M(K), C0(K)); i.e.,

〈µj , v〉 → 〈µ0, v〉 ∀v ∈ C0(K).(6.7)

Moreover, µ0 is in M(K), since 0 ≤ µ0(K) ≤ lim infj µj(K) ≤ 2ρ1 (see, e.g., [10,
Proposition III.12]). Now, let u be an arbitrary function in C0(x). Then (6.7) and
(4.1) yield, as j →∞,〈

µj ,

∫
X

u(y)Q(dy|·)
〉
−→

〈
µ0,

∫
X

u(y)Q(dy|·)
〉
,
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whereas (6.7) and Remark 5.3(c) yield

〈µj , u〉 −→ 〈µ0, u〉.

Therefore, as u ∈ C0(X) was arbitrary, L1µ
j converges to L1µ

0 in the weak∗ topology;
i.e.,

〈L1µ
j , u〉 −→ 〈L1µ

0, u〉 ∀u ∈ C0(X).(6.8)

By (6.2) and (6.8), we obtain L1µ
0 = ν, which is condition (6.5)(a), and, finally, (b)

and (c) in (6.5) hold with r0
1 := ρ1 − 〈µ0, 1〉 and r0

2 := ρ2 − 〈µ0, v0〉. This proves (ii),
which, as already noted, concludes the proof of Theorem 4.5(a).

(b) In view of part (a), to prove (b) it suffices to show that (4.7), together with
(4.9) and (4.10), implies (4.8). So, let ϕ be as in (4.9) and let us rewrite (4.7) as

h(x) ≥
∫
h(y)Q(dy|x, a)− ρ1 − ρ2v0(x), h ∈ F (X), ρ1 ≥ 0, ρ2 ≤ 0.(6.9)

Note that (4.9) obviously implies

lim inf
n

Eϕx [h(xn)]/n = 0 ∀h ∈ F (X), x ∈ X.(6.10)

On the other hand, since (6.9) holds for all (x, a) in K, integration with respect to
ϕ(·|x) yields

h(x) ≥
∫
h(y)Q(dy|x, ϕ)− ρ1 − ρ2v0(x) ∀x ∈ X,

which in turn (by iteration) implies, ∀x ∈ X and n = 1, 2, . . .,

h(x) ≥ Eϕx h(xn)− nρ1 − ρ2

n−1∑
t=0

Eϕx v0(xt);

i.e.,

h(x) + nρ1 + ρ2

n−1∑
t=0

Eϕx v0(xt) ≥ Eϕx h(xn).

Thus, multiplying by 1/n and taking lim inf as n→∞, (6.10) and (4.10) yield (4.8).
Therefore, by part (a), EP is consistent.

In the proof of Theorem 4.6 we shall use the following lemma in which (a) is a
well-known result on disintegration of measures [32], and (b) is a result of Blackwell
[8]—see also, e.g., [16, pp. 88, 97] or [19, Proposition D.8].

LEMMA 6.1. (a) If µ is a finite measure on K, then there exists a randomized
stationary policy ϕ such that µ(d(x, a)) = ϕ(da|x)µ1(dx), where µ1 = L0µ is the
marginal of µ on X; i.e.,

µ(B × C) =
∫
B

ϕ(C|x)µ1(dx) ∀B ∈ B(X), C ∈ B(A).(6.11)

(b) If ϕ is a randomized stationary policy and v : K→ R is a measurable function
such that v(·, ϕ) (recall Remark 2.2) is a finite-valued function on X, then there exists
a stationary policy f ∈ F satisfying

v(x, ϕ) ≥ v(x, f) ∀x ∈ X.
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Also note that if µ is feasible for EP and (ρ, h) is feasible for EP ∗, then

〈L1µ, h〉 = 0 and 〈Lµ, (ρ, h)〉 = ρ.(6.12)

Proof of Theorem 4.6. (a) This part is proved in [17] under condition (i),
namely, Assumption 4.1, and in fact the proof works in exactly the same way under
condition (ii).

(b) Let {µn} be a minimizing sequence for EP ; that is, µn is feasible for EP ,
which (by (3.1)) means that

(i) 〈µn, 1〉 = 1, and (ii) L1µ
n = 0 ∀n,(6.13)

and

〈µn, c〉 ↓ min(EP ).(6.14)

In particular, (6.14) implies that for any given ε > 0 there exists n(ε) such that

min(EP ) ≤ 〈µn, c〉 ≤ min(EP ) + ε ∀n ≥ n(ε).

The right-hand side inequality and Assumption 4.1(a) imply (see, for instance, [5, 6,
7, 17, 19]) the existence of a probability measure µ∗ on K and a subsequence {j} of
{n} such that µj converges to µ∗ in the weak topology σ(M(K), Cb(K)); i.e.,

〈µj , v〉 → 〈µ∗, v〉 ∀v ∈ Cb(K).(6.15)

Hence, as c is l.s.c.,

〈µ∗, c〉 ≤ lim inf
j
〈µj , c〉 ≤ min(EP ) + ε.

As ε > 0 was arbitrary, the latter inequality shows that µ∗ satisfies (4.11). Thus,
to complete the proof of part (b) it only remains to show that µ∗ is indeed feasible
for EP (see (3.3)). But this, however, follows directly from (6.15) and (6.13)—in
particular, note that Assumption 4.1(b), which is part of 4.2(c), implies that L∗1 maps
Cb(X) into Cb(K) (see Lemma 4.4(b)) and, therefore, ∀u ∈ Cb(X),

〈L1µ
∗, u〉 = 〈µ∗, L∗1u〉 = lim

j
〈µj , L∗1u〉 = lim

j
〈L1µ

j , u〉 = 0;

that is, L1µ
∗ = 0.

(c) Let (ρn, hn) be a maximizing sequence for EP ∗, i.e., (ρn, hn) is feasible for
EP ∗, so that (by (3.4)) ∀ n = 1, 2, . . . , (x, a) ∈ K,

ρn + hn(x) ≤ c(x, a) +
∫
X

hn(y)Q(dy|x, a),(6.16)

and

ρn = 〈(1, 0), (ρn, hn)〉 ↑ sup(EP ∗) = ρ∗ (by (4.11)).

Define h(x) := lim supn hn(x), x ∈ X. Since, by hypotheses, ‖hn‖w0 is bounded, h is
in F (X) and, moreover, applying Fatou’s lemma in (6.16) we see that

ρ∗ + h(x) ≤ c(x, a) +
∫
h(y)Q(dy|x, a) ∀(x, a) ∈ K;(6.17)
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that is, (ρ∗, h) is feasible—hence optimal (as ρ∗ = sup(EP ∗))—for EP ∗. This fact,
combined with (4.11), yields strong duality: there exists an optimal solution µ∗ for
EP , and optimal solution (ρ∗, h) for EP ∗, and 〈µ∗, c〉 = ρ∗. On the other hand, by
(6.12),

〈µ∗, L∗(ρ∗, h)〉 = 〈Lµ∗, (ρ∗, h)〉 = ρ∗.

This yields

〈µ∗, c− L∗(ρ∗, h)〉 = 0,

or, equivalently, writing µ∗(d(x, a)) = ϕ∗(da|x)µ∗1(dx) as in Lemma 6.1(a),

0 =
∫

[c(x, a)− L∗(ρ∗, h)(x, a)]µ∗(d(x, a))

=
∫ [

c(x, ϕ∗)− ρ∗ − h(x) +
∫
h(y)Q(dy|x, ϕ∗)

]
µ∗1(dx).

This equation and (6.17) yield, for µ∗1-a.e. x ∈ X:

ρ∗ + h(x) = min
a∈A(x)

[
c(x, a) +

∫
X

h(y)Q(dy|x, a)
]

= c(x, ϕ∗) +
∫
X

h(y)Q(dy|x, ϕ∗) (see (2.6)–(2.9)).

Finally, by Lemma 6.1(b), there is a stationary policy f∗ such that

ρ∗ + h(x) ≥ c(x, f∗) +
∫
X

h(y)Q(dy|x, f∗)

for µ∗1-a.e. x ∈ X, which combined with (6.17) yields (4.12). This completes the proof
of Theorem 4.6.

7. Proof of the results for P .
Proof of Proposition 4.8. (a) If (µ, ν) satisfies (3.5), then, in particular, 〈µ+

ν, w〉 ≤ m for some 1 ≤ m < ∞; hence (µ, ν, r) with r := m − 〈µ + ν, w〉 satisfies
(4.13). Conversely, if (µ, ν, r) satisfies (4.13) for any m ≥ 1, then obviously (µ, ν)
satisfies (3.5). Moreover, the latter fact implies inf(Pm) ≤ inf(P ) for all m ≥ 1.

(b) If (µ, ν, r) is feasible for Pm and m′ ≥ m, then (µ, ν, r′) with r′ := r+m′−m
is feasible for Pm′ , and, therefore, inf(Pm) ≥ inf(Pm′). On the other hand, by part
(a), if P is consistent then Pm is consistent for some m ≥ 1 and, therefore, Pm′ is
consistent for all m′ ≥ m. Combining this fact with part (a), there is some m s.l.
such that

inf(P ) ≥ inf(Pm) ≥ inf(Pm′) ≥ inf(P ) ∀m′ ≥ m,

which yields (4.14).
(c) If (g, h) is feasible for P ∗ (i.e., (3.6) holds true), then (g, h, ρ) is feasible for

P ∗m for all ρ ≤ 0, and 〈γ0, g〉 ≥ 〈γ0, g〉+mρ ∀m ≥ 1 and ρ ≤ 0. Therefore,

sup(P ∗) ≥ sup(P ∗m).(7.1)

Now suppose that there is no duality gap for Pm so that, by (4.14),

inf(P ) = inf(Pm) = sup(P ∗m).(7.2)
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If inf(Pm) = +∞, then (4.15) follows (by (7.1)). Now suppose that inf(Pm) < ∞.
Then if sup(P ∗) > sup(P ∗m), (7.1) and (7.2) yield sup(P ∗) > inf(P ), which contradicts
the weak duality property (see (5.2)). Hence sup(P ∗) = sup(P ∗m) and we obtain
(4.15).

Proof of Theorem 4.9. (a) The proof of this part is very similar to the proof
of Theorem 4.5(a), so we only mention the main steps and leave the details to the
reader.

As in the proof of Theorem 4.5(a), the idea is to use the generalized Farkas
theorem, Theorem 5.1, for which we make the following identifications:

(X ,Y) := (M(K)2 × R, F (K)2 × R), (Z,W) := (M(X)2 × R, F (X)2 × R),

S := M+(K)2 × R+, b := (γ0, 0,m), and G := τ.(7.3)

With this notation, part (a) in Theorem 5.1 turns out to be the same as (4.13), and
part (b) becomes

τ∗(g, h, ρ) ≥ 0 =⇒ 〈(γ0, 0,m), (g, h, ρ)〉 ≥ 0,

which is the same as “(4.16) =⇒ (4.17).” Hence, Theorem 4.9(a) will be proved if
we can show that (i) τ is weakly continuous, and (ii) τ(S) is weakly closed. Since (i)
follows from Lemma 4.4(a), we only need to prove (ii). To do this, let {(µα, να, rα), α ∈
D} be a net is S such that (recalling the notation (7.3))

τ(µα, να, rα)→ (θ1, θ2, ρ) ∈ Z in the weak topology σ(Z,W),(7.4)

so we need to show that (θ1, θ2, ρ) is in τ(S); in other words, there is (µ0, ν0, r0) in S
with

τ(µ0, ν0, r0) = (θ1, θ2, ρ).(7.5)

This is done exactly, mutatis mutandis, as in (6.2)–(6.8).
(b) By Theorem 5.6 (see also (5.3)), we only need to show that (using notation

(7.3)) the set

H := {(τ(µ, ν, r), 〈µ, c〉+ s)|(µ, ν, r) ∈ S, s ≥ 0}

is weakly closed in Z ×R := M(K)2 ×R2; that is, if (µα, να, rα, sα) is a net in S ×R
for which we have the weak convergence

(τ(µα, να, rα), 〈µα, c〉+ sα)→ (θ1, θ2, ρ1, ρ2) ∈ Z × R,

then (θ1, θ2, ρ1, ρ2) is in H. The latter means that

τ(µ0, ν0, r0) = (θ1, θ2, ρ1) and 〈µ0, c〉+ s0 = ρ2

for some (µ0, ν0, r0, s0) in S×R. The first equality is obtained exactly as in (7.4)–(7.5),
and the second holds with s0 := ρ2 − 〈µ0, c〉.

In the proof of Theorem 4.10 we use the following lemma.
LEMMA 7.1. If (g, h) is feasible for P ∗, then g(x) ≤ J(π, x) for every initial state

x and every policy π; hence g(x) ≤ J∗(x) ∀x ∈ X. Therefore, under Assumption
4.1(d),

〈γ0, g〉 ≤ 〈γ0, J
∗〉 <∞,(7.6)
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and so P ∗ is consistent with a finite value

sup(P ∗) ≤ 〈γ0, J
∗〉.(7.7)

Proof. Standard calculations [4, 17, 18, 19] show that the second inequality in
(3.6) (or (3.8)) implies

Eπx g(xn) ≥ g(x),

and, similarly, the first inequality in (3.6) (or (3.8)) yields

Jn(π, x) + Eπxh(xn) ≥ h(x) +
n−1∑
t=0

Eπx g(xt)

≥ h(x) + ng(x).

Finally, since (2.10) holds for every policy π as in Assumption 4.1(d), we obtain
J(π, x) ≥ g(x), which in turn yields the desired conclusion.

Proof of Theorem 4.10. (a) Since P ∗ is consistent with a finite value sup(P ∗)
(Lemma 7.1), then (by (7.1)) so is P ∗m for every m ≥ 1, with finite value

sup(P ∗m) ≤ sup(P ∗) ≤ 〈γ0, J
∗〉.(7.8)

Therefore (Theorem 5.5), Pm is subconsistent with subvalue v = sup(P ∗m). In other
words (by Definition 5.4), there is a net (µα, να, rα) in S (see (7.3)) such that

τ(µα, να, rα)→ (γ0, 0,m) weakly,(7.9)

and

〈(µα, να, rα), (c, 0, 0)〉 = 〈µα, c〉 → v.(7.10)

Moreover, (7.9) implies (see (7.4)–(7.5)) the existence of (µ0, ν0, r0) ∈ S such that

τ(µ0, ν0, r0) = (γ0, 0,m),

whereas (7.10) yields 〈µ0, c〉 ≤ v. This implies that (µ0, ν0) is feasible for P and

〈µ0, c〉 ≤ v = sup(P ∗m) ≤ inf(Pm) (by (5.2))(7.11)
= inf(P ) ≤ 〈µ0, c〉 (by (4.14)).

Therefore, since equality holds throughout (7.11), (µ0, ν0) is an optimal solution for
(P ) and there is no duality gap for Pm, hence for P , by Proposition 4.8(c).

(b) Let (µn, νn) be a minimizing sequence for P and suppose that (i) holds; that
is, 〈µn + νn, w〉 is bounded. Then, for every n, (µn, νn) satisfies (3.5), so that

L0µ
n + L1ν

n = γ0, L1µ
n = 0, µn and νn ∈M+(K),(7.12)

and

〈µn, c〉 = 〈(µn, νn), (c, 0)〉 ↓ inf(P ),(7.13)

and

〈µn, 1〉+ 〈νn, 1〉 ≤ 〈µn + νn, w〉 ≤ k(7.14)
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for some constant k. By (7.14), Remark 5.3(a), and Theorem 5.2, there exist measures
µ∗, ν∗, and a subsequence {j} of {n} such that

µj → µ∗ and νj → ν∗ in the weak∗ topology σ(M(K), C0(K)).(7.15)

Therefore (as in (6.7)–(6.8)), (7.15), (7.14), and (7.12) yield that (µ∗, ν∗) is feasible
for P , i.e.,

L0µ
∗ + L1ν

∗ = γ0, L1µ
∗ = 0, µ∗, ν∗ ∈M+(K),

whereas (7.13) and the fact that c is l.s.c. yield

inf(P ) = lim
j
〈µj , c〉 ≥ 〈µ∗, c〉.

This completes the proof of (b), under condition (i), as 〈µ∗, c〉 ≥ inf(P ).
Let us now suppose (ii). Then (7.13) and Assumption 4.1(a) imply (as in (6.14)–

(6.15)) the existence of a subsequence {i} of {n} and a probability measure µ∗ in
M+(K) such that µi → µ∗ in the weak topology σ(M(K), Cb(K))—hence in the weak∗

topology σ(M(K), C0(K))—and 〈µ∗, c〉 = inf(P ). On the other hand, as 〈νi, w〉 is
bounded, there is a subsequence {j} of {i} and a measure ν∗ such that (µj , νj)
satisfies (7.15). Now (b) is concluded as in the previous paragraph.

(c) Let us first note the following obvious fact: If (g1, h) and (g2, h) are two
feasible solutions for P ∗ (see (3.6) or (3.8)) and g := max(g1, g2), then (g, h) is also
feasible for P .

Now let (gn, hn) be a maximizing sequence for P ∗, with gn and hn bounded in
the w0-weighted norm; that is, for every (x, a) ∈ K and n = 1, 2, . . .

gn(x) + hn(x) ≤ c(x, a) +
∫
hn(y)Q(dy|x, a),(7.16)

gn(x) ≤
∫
gn(y)Q(dy|x, a),(7.17)

〈γ0, g
n〉 =

∫
gn(x)γ0(dx) ↑ sup(P ∗),(7.18)

and, for some k ≥ 0,

|gn(x)|, |hn(x)| ≤ kw0(x).(7.19)

By the remark in the previous paragraph (and recalling that (0, N) is feasible for P ∗

for any constant N) we may assume that {gn} is a nonnegative increasing sequence
in F (X). Finally, define

g(·) := lim
n
gn(·) and h(·) := lim sup

n
hn(·),(7.20)

and let n → ∞ in (7.16) and (7.17). Then, by Fatou’s lemma (which is indeed
applicable, by (7.19) and Assumption 4.1(d)) and the monotone convergence theorem
we obtain that (g, h) is feasible for P ∗ and 〈γ0, g〉 = sup(P ∗); that is, (g, h) is an
optimal solution for P ∗. This proves (i), which combined with part (a) yields (ii).

To prove (iii) let (µ, ν) be an optimal solution for P and (g, h) an optimal solution
for P ∗. Then by strong duality

〈(µ, ν), (c, 0)〉 = 〈µ, c〉 = 〈γ0, g〉.
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On the other hand (for any (µ, ν) and (g, h) that are feasible for P and P ∗, respec-
tively),

〈(µ, ν), T ∗(g, h)〉 = 〈T (µ, ν), (g, h)〉 = 〈γ0, g〉.

Hence

〈(µ, ν), (c, 0)− T ∗(g, h)〉 = 0,

which is equivalent to ∫
K

(c− L∗0g − L∗1h)dµ =
∫
K

(L∗1g)dν.

As the left-hand side is ≥ 0 and the right-hand side is ≤ 0 (see (3.6) or (3.8)), we
obtain that each side equals 0; i.e.,∫

K

[
c(x, a) +

∫
X

h(y)Q(dy|x, a)− g(x)− h(x)
]
µ(d(x, a)) = 0,

and ∫
K

[
g(x)−

∫
X

g(y)Q(dy|x, a)
]
ν(d(x, a)) = 0

Thus, disintegrating µ and ν as in Lemma 6.1(a) (see the proof of Theorem 4.6(c)),
we conclude part (iii).

8. Closing remarks. In the previous sections we have presented an LP ap-
proach to studying “unichain” and “multichain” AC problems for MCPs on uncount-
able spaces. Our results include necessary and sufficient conditions for the related
linear programs to be consistent (Theorems 4.5 and 4.9) and conditions for solvability
and strong duality (Theorems 4.6 and 4.10). There are, on the other hand, many ques-
tions that come to mind: (i) Why LP (why not one of the more standard approaches,
such as dynamic programming or the “vanishing discount” approach)? (ii) Why do
the assumptions look so “restrictive”? (iii) Can we actually compute a solution of the
primal and/or the dual programs?

Concerning question (i) (and (iii)), at least for finite-state, finite-action MCPs,
LP is the most widely used technique, and even in the countable-state case it has been
proved to be very useful to study constrained and adaptive MCPs; see, for instance,
[1] for an extensive list of related references. Hence, in the first place, it seems natural
to try to extend the LP techniques to MCPs on more general spaces. But more
importantly, in the multichain uncountable-space case LP seems to be (to the best
of our knowledge) the only “reasonable” approach. Namely, all the other techniques
(dynamic programming, “vanishing discount,” etc.) assume, explicitly or implicitly,
the unichain setting (see [4, 16, 19]); and even under very strong probabilistic-like
hypotheses, multichain results are not ensured (see, for instance, [24]). These remarks
are also related to question (ii): a comparison of our assumptions with those required
by the other techniques would hardly yield that ours are more “restrictive.” As to
the nature of these assumptions, it should be noted that basically they are designed
to obtain the “weak closedness” that makes applicable background results such as
Theorems 5.1 and 5.6.
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Finally, we have the computational question (iii), which is in fact a common
difficulty to all the known solution methods. An approach we are currently investigat-
ing is based on the well-known fact that in a Polish space S the class of probability
measures with finite support is weakly dense in P(S), that is, in the weak topology
σ(M(S), Cb(S)). Now assume that X and A are both Polish spaces, and let DX and
DA be countable dense sets in X and A, respectively. Next, consider MCPs of the
form (Xn, An, Qn, c), where Xn and An are suitably chosen finite subsets of DX and
DA, respectively. And, finally, the idea is to exploit the denseness of DX and DA

to show that, as n → ∞, the values of the finite linear programs corresponding to
(Xn, An, Qn, c) converge (or at least give a good approximation) to the original linear
programs EP or P in section 3. In view of Theorems 4.6(b), (c) and 4.10(b), (c), we
expect to obtain that the finite programs will yield monotone approximation schemes,
decreasing for EP and P , and increasing for the duals EP ∗ and P ∗. More generally,
from a computational viewpoint, it would be important to investigate whether some
of the available approximation schemes for LP (see, for instance, [1, 27, 28]) can be
extended to uncountable-state MCPs.

Acknowledgment. We would like to thank one of the anonymous reviewers for
calling our attention to an embarrassing mistake in a previous statement of Lemma
4.4.

Note Added in Proof. The LP approximations mentioned in the last paragraph
of section 8 have been recently developed in [33].

REFERENCES

[1] E. ALTMAN, Constrained Markov Decision Processes, Rapport RR–2574, INRIA, Centre
Sophia-Antipolis, 1995.

[2] E. ALTMAN AND F. SPIEKSMA, The linear program approach in multi-chain Markov decision
processes revisited, Z. Oper. Res., 42 (1995), pp. 169–188.

[3] E. J. ANDERSON AND P. NASH, Linear Programming in Infinite-Dimensional Spaces, Wiley,
Chichester, 1987.

[4] A. ARAPOSTATHIS, V. S. BORKAR, E. FERNÁNDEZ-GAUCHERAND, M. K. GHOSH, AND S. I.
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[17] O. HERNÁNDEZ-LERMA AND J. B. LASSERRE, Linear programming and average optimality of
Markov control processes on Borel spaces—unbounded costs, SIAM J. Control Optim., 32
(1994), pp. 480–500.
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[19] O. HERNÁNDEZ-LERMA AND J. B. LASSERRE, Discrete-Time Markov Control Processes: Basic
Optimality Criteria, Springer, New York, 1996.

[20] A. HORDIJK AND L. C. M. KALLENBERG, Linear programming and Markov decision chains,
Manage. Sci., 25 (1979), pp. 352–362.

[21] A. HORDIJK AND J. B. LASSERRE, Linear programming formulation of MDPs in countable
state space: The multichain case, Z. Oper. Res., 40 (1994), pp. 91–108.

[22] A. HORDIJK AND F. SPIEKSMA, A new formula for the deviation matrix, in Probability, Statis-
tics and Optimization, F. P. Kelly, ed., Wiley, New York, 1994, pp. 497–507.

[23] L. C. M. KALLENBERG, Linear Programming and Finite Markovian Control Problems, Math-
ematical Centre Tracts 148, Mathematisch Centrum, Amsterdam, 1983.

[24] M. KURANO, The existence of a minimum pair of state and policy for Markov decision processes
under the hypothesis of Doeblin, SIAM J. Control Optim., 27 (1989), pp. 296–307.

[25] J. B. LASSERRE, Average optimal stationary policies and linear programming in countable
space MDPs, J. Math. Anal. Appl., 183 (1994), pp. 233–249.

[26] U. RIEDER, Measurable selection theorems for optimization problems, Manuscripta Math., 24
(1978), pp. 115–131.

[27] J. RUBIO, Control and Optimization: The Linear Treatment of Nonlinear Problems, Manch-
ester University Press, Manchester, and John Wiley, New York and London, 1986.

[28] J. RUBIO, The global control of nonlinear diffusion equations, SIAM J. Control Optim., 33
(1995), pp. 308–322.

[29] W. RUDIN, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1986.
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Abstract. A nonconvex problem of constrained optimization is analyzed in terms of its ordinary
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1. Introduction and preliminaries. In this paper we consider problems of
global optimization whose abstract presentation is as follows:

F(z)→ inf subject to z ∈ Z ⊂ H, G(z) ≤ 0.(1.1)

Here Z is an affine subspace of a real linear space H, the functions F : H → R and
G : H → Y are given, and Y is a finite-dimensional real linear space. This space is
assumed to be ordered with a convex cone K+ ⊂ Y = {y},K+ 3 0. Accordingly, the
inequalities y1 ≤ y2 and y2 ≥ y1 signify the inclusion y2 − y1 ∈ K+. The interior
intK+ of the cone K+ is supposed to be nonempty. An example of the constraint
G(z) ≤ 0 under consideration is the system of scalar inequalities

G1(z) ≤ 0, . . . ,Gk(z) ≤ 0.(1.2)

In this case, Y = Rk,G(z) = ‖Gi(z)‖, andK+ =
{
y = ‖yi‖ ∈ Rk : y1 ≥ 0, . . . , yk ≥ 0

}
.

In what follows, our interest will be focused on the special case when, in (1.1),

F(z) = BF (z, z) + ΦF (z), G(z) = BG(z, z) + ΦG(z).(1.3)

Here BF : H × H → R, BG : H × H → Y are bilinear symmetric mappings and
ΦF : H → R,ΦG : H → Y are convex mappings. We do not impose assumptions
that imply positivity or convexity of the forms BF (z, z) and BG(z, z). So, in (1.1),
the objective and constraint functions may be nonconvex. As is well known, this
nonconvexity involves a series of troubles both in the analysis of the problem and in
the computation of its global solution.

The purpose of this paper is to investigate the validity of the duality in the
Arrow–Hurwicz sense [1], which makes use of the ordinary Lagrangian function

S(τ∗, z) := F(z) + τ∗G(z).(1.4)
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(Here τ∗ ∈ Y ∗ is a Lagrange multiplier.) So, throughout the paper, the term “method
of duality” will denote the following specific rule (I)–(IV) to solve the problem (1.1).1

Further the inequality τ∗ ≥ 0 expresses that τ∗y ≥ 0 for all y ≥ 0.
METHOD OF DUALITY

(I) For any τ∗ ≥ 0, solve the problem

S(τ∗, z)→ inf subject to z ∈ Z.(1.5)

More exactly, it suffices to find only the value of the infimum

S0(τ∗) := inf
z∈Z

S(τ∗, z).(1.6)

(II) Determine some solution τ∗0 of the dual problem

S0(τ∗)→ max subject to τ∗ ≥ 0,(1.7)

where the maximum must be attained.
(III) Find all solutions z of the problem (1.5) with τ∗ = τ∗0 and omit those not

satisfying at least one of the following relations:

G(z) ≤ 0, τ∗0G(z) = 0.(1.8)

The resultant set {z} must coincide with the set of all solutions of the primal problem
(1.1).

(IV) Let inf{F(z) : z ∈ D} > −∞, where D := {z ∈ Z : G(z) ≤ 0} is the
admissible domain in the problem (1.1). A sequence {zn} ⊂ Z is minimizing in this
problem

F(zn)→ inf
z∈D
F(z) as n→∞, zn ∈ D ∀n(1.9)

if and only if it is minimizing in the problem (1.5) with τ∗ := τ∗0

S(τ∗0 , zn)→ inf
z∈Z

S(τ∗0 , z) as n→∞(1.10)

and

G(zn) ≤ 0 ∀n , τ∗0G(zn)→ 0 as n→∞.(1.11)

The last item is of particular interest if the primal problem (1.1) has no solution
and so the operations (I)–(III) result in the empty set.

In general, the method formulated fails to be correct and may produce a wrong
result. Its validity is known to be equivalent to the duality relation [2, 13]

inf
z∈Z
G(z)≤0

F(z) = max
τ∗≥0

inf
z∈Z

S(τ∗, z).(1.12)

This relation is valid for convex problems (1.1) (i.e., if the functions F and G are
convex) provided G (z∗) ∈ −intK+ for some z∗ ∈ Z [1]. The same is true for specific
variational problems and problems of optimal control that can be converted into

1The statement of this rule follows [11, 12].
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convex ones by means of relaxation [3, Chapters IX, X]. Furthermore, there is known
a number of other results on the validity of (1.12), which also utilize a specific nature
of the problem under consideration ([4, 5] and others; see [6] for detailed survey).

On the whole, problems for which relation (1.12) is known to be true constitute
a relatively small subclass in the class of all mathematical programming problems.
In connection with this, a considerable number of generalized duality schemes has
been developed. (See [7, 8, 9, 10] and many others. For an excellent survey of them,
the reader may consult [6].) Proceeding from various ideas, these schemes replace
some constructions in the duality method (I)–(IV) (such as the Lagrangian function,
the dual problem, etc.) by generalized ones. However, there are applications where
the use of the nongeneralized constructions is preferable and has the advantage of
the considerable simplification of the method. Some examples of such applications
were given in [11, 12, 13, 14]. A number of other examples will be considered in this
paper. They deal with linear-quadratic optimal control problems whose statements
differ from traditional ones by the presence of additional quadratic constraints.

In this paper we indicate a new class of problems to which the method (I)–(IV)
is applicable. This class not only covers all convex problems but also includes an
essential supplement in the region of nonconvex ones. In the description of this class,
the main point is the decomposition (1.3) and certain assumptions on the spectral
properties of the quadratic forms

Bτ∗(z) := BF (z, z) + τ∗BG(z, z)(1.13)

over the linear subspace M := Z − z0 (z0 ∈ Z) that is a displacement of Z. To
illustrate in outline what kind of properties is meant, here we adduce a particular,
but suitable for immediate formulation, consequence of the results of this paper.

PROPOSITION 1.1. In (1.1) let H be a real Hilbert space and the subspace Z be
closed. Assume that the decomposition (1.3) is valid where the mappings BF (·, ·),
BG(·, ·) are continuous with respect to the norm | · |H of H and ΦF (·),ΦG(·) are
continuous with respect to the weak topology of the space H. Also let there exist
an element z∗ ∈ Z such that G (z∗) ∈ −intK+. Consider the bounded self-adjoint
linear operator Aτ∗ : M→M that corresponds to the quadratic form (1.13) Bτ∗(z) =
〈Aτ∗z, z〉 (∀z ∈M). (The symbol 〈·, ·〉 denotes the inner product in H.)

If for any τ∗ ≥ 0 this operator either has no negative isolated eigenvalues of finite
geometrical multiplicity at all or, at least, the minimal point of its spectrum is not
such an eigenvalue, then relation (1.12) is true and the method (I)–(IV) is valid.

We recall that an eigenvalue is called isolated if some of its neighborhoods has
no common points with the spectrum of the operator except for this eigenvalue. The
geometrical multiplicity of an eigenvalue is merely the dimension of the space of all
its eigenvectors.

Both this assertion and the further, more general, results of the paper cannot be
applied to problems with a finite-dimensional subspace Z. Nevertheless these results
have a series of useful applications to problems of optimal control of dynamical systems
(see section 5). To deal with them, it is important that, under the assumptions of this
paper, the Lagrangian function S(τ∗, z) proves to be convex on Z whenever τ∗ ≥ 0
and S0(τ∗) > −∞. This means that the method of duality (I)–(IV) converts the
nonconvex problem of global optimization (1.1) into two convex problems (1.5) and
(1.7).

Indeed, the function S0(τ∗) is concave as the infimum (1.6) of the functions (1.4),
which are linear in τ∗. So the dual problem (1.7) is convex. (More precisely, it becomes
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convex by switching the sign in (1.7)−S0(τ∗)→ min, τ∗ ≥ 0.) In (1.7), one obviously
can seek the maximum only on the convex domain R := {τ∗ ≥ 0 : S0(τ∗) > −∞}.
In doing so, one has to calculate the value S0(τ∗) for τ∗ ∈ R by solution of the
corresponding problem (1.5), which is also convex as it was remarked above.

The reduction of the primal problem (1.1) to two convex ones brings the possibility
to solve it with the aid of the highly developed methods of convex programming.
Furthermore, the resultant problems (1.5) and (1.7) are simpler than the original
one (1.1) not only for their convexity. While the primal problem (1.1) is infinite
dimensional and has a quite complicated admissible domain D := {z ∈ Z : G(z) ≤ 0},
the dual problem (1.7) is finite dimensional and the admissible domain Z in the
problem (1.5) is quite simple. (It is an affine subspace.) Moreover, in many important
applications, the problem (1.5) belongs to a thoroughly investigated class of problems
and can be solved easily.

As an example, consider the stationary infinite-horizon linear-quadratic optimal
control problem with quadratic inequality constraints. It presents some typical fea-
tures of problems to be covered by the theory of this paper and is stated as follows:

G0 → min subject to(1.14)

ẋ = Ax+Bu, x = x(t) ∈ Rl, u = u(t) ∈ Rm, 0 ≤ t <∞ ,(1.15)

x(0) = a, |x(·)|+ |u(·)| ∈ L2 ,(1.16)

G1 ≤ 0, . . . ,Gk ≤ 0,(1.17)

where

Gi :=
∫ ∞

0
gi(x, u)dt− γi (i = 0, . . . , k).(1.18)

Here gi(x, u) = x∗Gix+ 2x∗Qiu + u∗Γiu is a quadratic form, the asterisk stands for
transposition, A,B,Gi, Qi,Γi are constant matrices, and γi are given reals γ0 = 0.

Omitting the constraints (1.17), we get the problem (1.14)–(1.16), which was
thoroughly investigated in linear-quadratic optimal control theory ([15, 16, 17, 18]
and others). This theory places at our disposal quite efficient methods of solution.
They include simply verified criteria for the infimum Ginf

0 of the objective functional to
be finite. If Ginf

0 > −∞, then solution of the problem ultimately looks like computation
of l × l matrix P and l ×m matrix r [15, 16, 17, 18]. Namely, Ginf

0 = a∗Pa and the
optimal process is generated by the closed-loop controller u = r∗x in the so-called
regular case (see [19] for the definition). Otherwise, the matrix r is used to construct
a minimizing sequence of admissible processes [19]. There are known quite simple and
efficient methods to calculate the matrices P and r ([15, 16, 17, 18] and others).

As for the problem (1.14)–(1.18), the above theory did not directly deal with the
constraints (1.17), which, however, are of interest for many applications. It was first
discovered in [11] that the method (I)–(IV) not only is valid for the problem (1.14)–
(1.18)2 but also permits us to harness classic linear-quadratic optimal control theory
for solution of the problem with the constraints (1.17).

2The same follows from Proposition 1.1; see section 5 for details.
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Indeed, rewrite first the problem (1.14)–(1.18) in the form (1.1) with the con-
straints (1.2)

z = [x(·), u(·)], H := L2
{

[0,+∞)→ Rl
}
× L2 {[0,+∞)→ Rm} ,

Z := {z ∈ Z : (1.15) and (1.16) are true }, F := G0, and Gi is defined by (1.18).
The point to note is that now (1.5) is an ordinary problem of linear-quadratic optimal
control theory: minimize

S[τ∗, x(·), u(·)] =
∫ ∞

0
gτ (x, u)dt− γτ(1.19)

subject to the constraints (1.15) and (1.16). Here τ∗ = τ = ‖τi‖ ∈ Rk, the function
gτ := g0+τ1g1+· · ·+τkgk is a quadratic form, and γτ := τ1γ1+· · ·+τkγk is a constant.
So the problem (1.5) can be solved easily by calculating the corresponding matrices Pτ
and rτ . Then the dual problem (1.7) takes the form a∗Pτa − γτ → max. It remains
to find its optimum τ0 and either to generate the solution of the original problem
(1.14)–(1.18) by the closed-loop controller u = r∗τ0x or to construct a minimizing
sequence.

This example underscores the advantage of the ordinary Lagrangian function
(1.4). This function inherits the quadratic and integral nature of the objective and
constraint functionals, and it is for this reason that the effective methods of linear-
quadratic optimal control theory can be drawn in solution.

Studies on the validity of the duality method are often related to revealing the
convexity or some neighboring properties of the set

C+ := {ξ = (t, y) ∈ Y := R× Y : t ≥ F(z) and y ≥ G(z) for some z ∈ Z}.(1.20)

To illustrate their significance, assume that there exists a point z∗ ∈ Z for which
G (z∗) ∈ −intK+. Then relation (1.12) is valid if either (A) the set (1.20) is convex or
(B) its closure C+ is convex [2, 13].

For the convex problem (1.1), assertion (A) is apparently true for the convexity
of F and G. There is another research trend, which proves the same assertion by
reasons that may ultimately be boiled down to the so-called effect of Lyapunov [2,
Chapter 2], [3, pp. 367–373], [20, p. 24]. This paper represents the third research
trend, which does not appeal to the above reasons but utilizes the quadratic structure
of the functionals under consideration. Its origins may be traced back to the following
classic result [21, p. 166].

THEOREM 1.2 (Toeplitz–Hausdorff). Let H be a complex Hilbert space and G1,G2
be continuous Hermitian forms on H.

Then the image of the unit sphere S := {h ∈ H : |h| = 1} under the mapping
G := [G1,G2] is convex.

The following are basic known and quite general facts on the validity of the
method (I)–(IV) that are based upon the quadratic structure of the functionals. This
method is valid for the problem (1.1) with the constraints (1.2) if either (1) H is a real
linear space, k = 1, and F , G1 are quadratic functionals3 [22] or (2) H is a complex
linear space, k = 2, and F , G1, G2 are quadratic functionals [23]. In (1) and (2), the
number of constraints k cannot be increased because it would lead to the assertions,

3A functional G : H → R is called quadratic if it can be written as the sum G(h) = B(h)+Rel∗z+c
where B(h, h) ∈ R is a quadratic (Hermitian in the case of a complex space H) form, l∗ ∈ H∗ is a
linear functional, and c ∈ R.
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which are wrong in general [23]. In [11, 14], the method (I)–(IV) was justified for
the problem (1.14)–(1.18) with Gi being the sum of the integral (1.18) and a linear
continuous functional on L2×L2. The backbone of the approach taken in [11, 14] was
a result of [24] on the convexity of the set G(M) ⊂ Rk. Here M is the collection of
all pairs [x(·), u(·)] satisfying (1.15), (1.16) with a := 0 and G := [G1, . . . ,Gk] where
Gi is defined by (1.18). In [11, 14], the method (I)–(IV) was also justified for certain
specific abstract linear-quadratic problems with a finite [11] or infinite [14] number of
inequality constraints. A generalization on the case when there also is a finite number
of equality constraints was considered in [13]. Applications of the foregoing theory to
stationary optimal control problems were considered in [11, 12, 13, 14].

All the results mentioned either impose very strong restrictions on the dimension
of the space Y [22, 23] or appeal explicitly or implicitly to the periodicity or the
stationarity of the problem [11, 12, 13, 14, 24]. This paper presents a more general
approach and enlarges the class of problems to which the method (I)–(IV) is proven
to be applicable. This approach does not appeal to the periodicity of the problem and
it does not involve restrictions on dimY . Instead, this approach is actually related
to new extensions of the founding Toeplitz–Hausdorff theorem. Since we do not need
the explicit formulation of these extensions to prove our results, we state an example
of such an extension here only to reveal the underlying ideas.

Let V be a linear space. A set C ⊂ V is called almost convex if there exists a
convex set C0 ⊂ V such that C0 ⊂ C ⊂ C0.

THEOREM 1.3. Let H be a real Hilbert space and G1, . . . ,Gk be continuous quadratic
forms on H. Given τ = ‖τi‖ ∈ Rk, consider the quadratic form Gτ (z) := τ1G1(z) +
· · · + τkGk(z) = 〈Aτz, z〉, where Aτ is the corresponding self-adjoint bounded linear
operator. Denote by σ (Aτ ) its spectrum.

If for any τ ∈ Rk the extreme (i.e., the minimal and the maximal) points of
the spectrum σ (Aτ ) are not isolated eigenvalues of finite geometrical multiplicity,
then the image of the unit sphere S := {z ∈ H : |z| = 1} under the mapping G(z) :=
[G1(z), . . . ,Gk(z)] is almost convex.

The proof of this theorem will be given in section 3 below.4

The body of the paper is organized as follows. In section 2, we state our main
results. They deal with the abstract problem (1.1). The proof of these results is given
in section 4, which is prefaced with the study of vector-valued quadratic forms in
section 3. The approach taken in this section develops some ideas and constructions
from [27] as well as from [11, 13, 24]. Section 5 is devoted to applications of the
general theory developed in the paper. We indicate there a series of infinite-horizon
nonstationary and nonconvex optimal control problems to which the method (I)–(IV)
is applicable. An example of its application is given in section 6.

Note in conclusion that, according to Lemma 1.1 of [13], results on the applicabil-
ity of the method (I)–(IV) can be interpreted as criteria for equivalence of the following
two conditions (A) and (B). (A) F(z) ≥ 0 in the domain z ∈ Z, G(z) ≤ 0. (B) There
exists a functional τ∗ ≥ 0 such that S (τ∗, z) ≥ 0 for all z ∈ Z, where S (τ∗, z) is
the Lagrangian function (1.4). Called the S-procedure, the substitution (B) in place
of (A) is used in the theory of stability [22], in the theory of H∞-optimization, in
the theory of robustness of uncertain systems [24], and also in some other branches

4In [25, 26], the reader may find a result that is close to another extension of the Toeplitz–
Hausdorff theorem that also deals with an arbitrary number of forms but differs from Theorem 1.3
in assumptions.
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of systems and control theory [28]. Thus, this paper indicates new cases when the
S-procedure is applicable.

2. Statement of basic results. Given y1, y2 ∈ Y , the strict inequalities y1 < y2
and y2 > y1 denote the inclusion y2 − y1 ∈ intK+.

DEFINITION 2.1. The problem (1.1) is called regular if there exists an element
z∗ ∈ Z such that

G(z∗) < 0.(2.1)

Given a topological space X, the limit inferior of a function f : X → R at a point
x0 ∈ X is defined as

lim
x→x0

f(x) := lim inf
x→x0

f(x) := sup
V ∈O(x0)

inf
x∈V

f(x).(2.2)

Here O(x0) is the collection of all neighborhoods of the point x0. The following
theorem offers a criterion for the method (I)–(IV) to be applicable.

THEOREM 2.2. In (1.1) let Z be an affine subspace of a real locally convex topo-
logical linear space H, and let the finite-dimensional linear space Y be ordered with a
convex cone K+, which contains an interior point. Let also the functions F : H → R
and G : H → Y be given. Assume that

(A) the decomposition (1.3) is valid where BF : H×H → R and BG : H×H → Y
are bilinear symmetric mappings and the functions ΦF : H → R,ΦG : H → Y are
continuous and convex on Z;

(B) given z ∈ Z, the linear operators BF (z, ·) and BG(z, ·) are continuous on
the linear subspace M := Z − z0 (z0 ∈ Z) that is a displacement of Z;

(C) given τ∗ ∈ Y ∗, τ∗ ≥ 0, the quadratic form (1.13) has the following property:

Bτ∗(h) < 0 for some h ∈M =⇒ lim inf
h→0
h∈ m

Bτ∗(h) < 0.(2.3)

If, in addition, the problem (1.1) is regular, then relation (1.12) is true and the
method (I)–(IV) is valid. Furthermore, the Lagrangian function (1.4) is convex on
Z and the quadratic form (1.13) is nonnegative on M provided that τ∗ ≥ 0 and the
infimum (1.6) is finite.

The proof of this theorem will be given in section 4 below.
It easily follows from (2.2) that limx→0 f(x) = limx→0 f(ρx) for any ρ > 0 and

also that limx→0 f(x) ≤ 0 provided f(0) = 0. Picking here X := M, f(x) := Bτ∗(x),
we get

σlim(τ∗) := lim inf
h→0
h∈ m

Bτ∗(h) = lim inf
h→0
h∈ m

Bτ∗(ρh) = ρ2σlim(τ∗) ≤ 0 ∀ρ > 0.

This implies that either σlim(τ∗) = 0 or σlim(τ∗) = −∞. So the inequality σlim(τ∗) < 0
from (2.3) is equivalent to the equality σlim(τ∗) = −∞.

The following two lemmas are useful to verify assumption (C) of Theorem 2.2.
LEMMA 2.3. Any of the following assumptions (C.1)–(C.3) implies assumption

(C) of Theorem 2.2.
(C.1) If τ∗ ∈ Y ∗, τ∗ ≥ 0, h ∈ M, and Bτ∗(h) < 0, then there exists a sequence

{hn}∞n=0 ⊂M such that

hn → 0 as n→∞, lim inf
n→∞

Bτ∗(hn) < 0.(2.4)
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(C.2) For any τ∗ ∈ Y ∗, τ∗ ≥ 0, and h ∈M, there exists a sequence {hn}∞n=0 ⊂M

such that

hn → 0 as n→∞, lim inf
n→∞

Bτ∗(hn) ≤ Bτ∗(h).(2.5)

(C.3) There exists a sequence of mappings Tn : H → H, n = 0, 1, . . . such that
TnM ⊂M for all n and

BP (Tnh, Tnh)→ BP (h, h) , Tnh→ 0 as n→∞ (∀h ∈M, P := F ,G).(2.6)

Here BF and BG are the quadratic summands in the decomposition (1.3).
Proof. The proof comes from the chain of obvious implications (C.3)⇒ (C.2)⇒

(C.1)⇒ (C).
In [11, 13, 14], the validity of the method (I)–(IV) was proved under assumptions,

which included (C.3) with Tn being linear continuous operators.
In many applications, H is introduced to be a Hilbert space equipped with the

corresponding weak topology. In this case, the limit inferior from (2.3) can be calcu-
lated explicitly. To do this, we recall some notions.

Let X be a real Hilbert space and B : X → R be a continuous quadratic form. A
linear subspace L ⊂ X is called B-negative iff B(x) < 0 whenever x ∈ L and x 6= 0.
The (negative) index of inertia n−[B(·)] of the form B(·) is defined to be the least upper
bound of dimL over all B-negative linear subspaces L ⊂ X. Consider the self-adjoint
continuous linear operator A : X → X that corresponds to the form B(x) = 〈Ax, x〉.
If its spectrum σ(A) contains no negative points, then n−[B(·)] = 0. If any point
λ ∈ σ(A) ∩ (−∞, 0) is an eigenvalue, then n−[B(·)] =

∑
degλ where the sum is over

λ ∈ σ(A) ∩ (−∞, 0) and degλ is the geometrical multiplicity of the eigenvalue λ. In
general, n−[B(·)] = dim ImP{(−∞, 0)}, where P (dλ) is the resolution of the identity
for the operator A [29, p. 889].

LEMMA 2.4. Let X be a real Hilbert space and B : X → R be a scalar quadratic
form. Assume that the form B is continuous with respect to the norm of X. Then

σlim := lim inf
x⇀0

B(x) =
{

0 if n−[B(·)] <∞,
−∞ if n−[B(·)] =∞.(2.7)

Here the arrow ⇀ denotes the convergence with respect to the weak topology.
Proof. Since σlim = 0,−∞, it suffices to show that σlim = 0⇔ n−[B(·)] <∞.
Let σlim = 0. By (2.2), there exists a weak neighborhood V of the origin

such that c−(V ) := infx∈V B(x) > −∞. By the definition of the weak topology,
we can pick linear functionals m∗1, . . . ,m

∗
p ∈ X∗ and a real ε > 0 such that V ⊃

{x : |m∗i x| < ε, i = 1, . . . , p}. Introducing the linear subspaceM := {x : m∗1x = 0, . . . ,
m∗px = 0

}
, we have M ⊂ V and, therefore, B(x) ≥ c−(V ) for all x ∈M . Here, putting

x := ρx and letting ρ→∞ result in the inequality B(x) ≥ 0. Thus,

m∗1x = 0, . . . ,m∗px = 0 =⇒ B(x) ≥ 0.(2.8)

Show that n−[B(·)] ≤ p. Suppose to the contrary that n−[B(·)] ≥ p + 1. Then
there exists a linear subspace L ⊂ X such that dimL = p+ 1 and B(x) < 0 whenever
x ∈ L and x 6= 0. Choose a basis of this subspace e1, . . . , ep+1. The system of p linear
algebraic equations

p+1∑
i=1

αi
(
m∗jei

)
= 0 (∀j = 1, . . . , p)
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has a nonzero solution α1, . . . , αp+1. Then x := α1e1 + · · · + αp+1ep+1 6= 0, x ∈ L,
and so B(x) < 0 by the choice of L. But, on the other hand, m∗jx = 0 for j = 1, . . . , p
and, hence, B(x) ≥ 0 due to (2.8). This contradiction proves that n−[B(·)] ≤ p <∞.
Thus σlim = 0⇒ n−[B(·)] <∞.

Conversely, let n−[B(·)] <∞. Consider the self-adjoint continuous linear operator
A : X → X that corresponds to B. Let P (dλ) be its resolution of the identity [29,
p. 889]. Denoting P− := P{(−∞, 0)}, we have dim ImP− = n−[B(·)] < ∞. From
this it follows that P− is a continuous operator from the space X endowed with the
weak topology into the same space equipped with the norm topology. So the set V :=
{x : |P−x| < 1} is a weak neighborhood of the origin. Denote −λ− := minλ∈σ(A) λ
and −λ0

− := min {−λ−, 0}, where σ(A) is the spectrum of A. Given x ∈ V , we have
[29, pp. 893, 899]

B(x) =
∫ +∞

−∞
λ 〈P (dλ)x, x〉 =

∫
(−∞,0)

λ 〈P (dλ)x, x〉+
∫ ∞

0
λ 〈P (dλ)x, x〉

≥
∫

[−λ0
−,0)

λ 〈P (dλ)x, x〉 ≥ −λ0
− 〈P−x, x〉 = −λ0

− |P−x|
2 ≥ −λ0

− > −∞.

Passing to the infimum over x ∈ V and taking into account equation (2.2), we get
σlim := lim infx⇀0 B(x) ≥ −λ−. Since σlim = 0,−∞, we have the equality desired:
σlim = 0.

An immediate consequence of Lemma 2.4 is the following useful corollary.
COROLLARY 2.5. Let the assumptions of Theorem 2.2 be fulfilled except for (B),

(C), and let H be a real Hilbert space endowed with the weak topology. Also let the
mappings BF (·, ·), BG(·, ·) be continuous with respect to the norm of H and let Z be
closed. Then assumption (B) of Theorem 2.2 is satisfied, and assumption (C) of this
theorem is equivalent to the following assertion.

Given τ∗ ∈ Y ∗, τ∗ ≥ 0, the next implication takes place for the quadratic form
(1.13)

n−[Bτ∗ | m] 6= 0 =⇒ n−[Bτ∗ | m] =∞.(2.9)

In particular, if this assertion is valid, then the conclusion of Theorem 2.2 is true.
Proof. Since dimY <∞ and the operators BF (z, ·), BG(z, ·) are continuous with

respect to the norm of H, they are also continuous with respect to the weak topology;
i.e., assumption (B) of Theorem 2.2 is valid. Note that n− [Bτ∗ | m] 6= 0⇔ Bτ∗(h) < 0
for some h ∈M. So (2.9) implies (2.3) by (2.7). Thus, assumption (C) of Theorem 2.2
is true.

Let the affine subspace Z be closed. Denote by σ (Aτ∗) the spectrum of the
bounded self-adjoint linear operator Aτ∗ : M→M that corresponds to the quadratic
form (1.13) Bτ∗(h) = 〈Aτ∗h, h〉 (∀h ∈ M). It is well known that the inequality
n− [Bτ∗ | m] < ∞ is true if and only if the negative part of the spectrum σ (Aτ∗) ∩
(−∞, 0) either is empty or consists of a finite number of eigenvalues each having finite
geometrical multiplicity. Consequently, the implication (2.9) means that the second
case does not take place for any τ∗ ≥ 0. Thus, Proposition 1.1 readily follows from
Corollary 2.5.

3. Upper limitrophe cones of quadratic forms. This section provides pre-
liminary studies to be used further in the demonstration of Theorem 2.2.
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Throughout the section, M is a real locally convex linear topological space and Y
is a real finite-dimensional linear space ordered with a nonempty convex cone K+ ⊂ Y .
Now we do not insist on its interior to be nonempty. A function B : M→ Y is called
(vector) quadratic form iff it can be represented as follows B(h) = B(h, h) with B(·, ·)
being a bilinear symmetric mapping B : M ×M → Y . This mapping is determined
uniquely by the simply verified formula B(h1, h2) = 1/4 [B(h1 + h2)− B(h1 − h2)].
It shows that the continuity of the form B(·) is equivalent to the continuity of the
mapping B(·, ·).

The upper image of a set V ⊂ M under a mapping f : M → Y is defined by
f(V )+ := {y ∈ Y : y ≥ f(h) for some h ∈ V } = f(V ) + K+. Let B : M → Y be a
quadratic form. Denote by O the collection of all neighborhoods V ⊂M of the origin.
The set

K+(B) :=
⋂
V ∈O

B(V )+(3.1)

is called the upper limitrophe cone of the form B. If K+ = {0}, the adjective “upper”
and the index + are dropped.

The usage of the term “cone” with respect to the set (3.1) is justified by the
following lemma.

LEMMA 3.1. Let B : M→ Y be a quadratic form.
(a) The set (3.1) is a cone; i.e., ρK+(B) ⊂ K+(B) for all ρ ≥ 0.
(b) The upper limitrophe cone (3.1) is closed and K+ ⊂ K+(B).
(c) If the form B is bounded on some neighborhood V0 ∈ O, then K+(B) = K+.

Proof. (a) Let ρ > 0. By (3.1), we have

ρK+(B) =
⋂
V ∈O

ρ
[
B(V )+

]
=
⋂
V ∈O

ρB(V )+ =
⋂
V ∈O

ρ [B(V ) +K+]

=
⋂
V ∈O

[ρB(V ) + ρK+] =
⋂
V ∈O

B(
√
ρV ) +K+ =

⋂
V ∈O

B(
√
ρV )+.

Here
√
ρV runs over O provided that V does so. This means that the last intersection

coincides with (3.1) and ρK+(B) = K+(B). If ρ = 0, then ρK+(B) = {0} ⊂ K+(B).
(b) The proof is obvious.
c) Since (b) implies the inclusion K+ ⊂ K+(B), it remains to prove the opposite

one, K+(B) ⊂ K+. Let y ∈ K+(B). Choose ρ > 0, ε > 0. Since ρV0 ∈ O, we have,
by (3.1), y ∈ B (ρV0)+ and so y = B(ρhρ,ε) + y+

ρ,ε + δyρ,ε for some hρ,ε ∈ V0, y
+
ρ,ε ∈

K+, |δyρ,ε| < ε. Here |B (ρhρ,ε) | ≤ ρ2c with c := sup{|B(h)| : h ∈ V0} being finite
by the assumption. Consequently, B (ρhρ,ε) → 0, δyρ,ε → 0 as ρ → +0, ε → +0, and
the above decomposition of y implies that y+

ρ,ε → y as ρ → +0, ε → +0; i.e., y ∈
K+.

The boundedness of the form B on some neighborhood V0 follows from the con-
tinuity of B. So, by Lemma 3.1(c), nontrivial upper limitrophe cones are associated
with discontinuous forms only. A widespread situation to produce such a cone is the
following: M is a Hilbert space endowed with the weak topology, and the form B is
continuous with respect to the strong topology of M but is not continuous with re-
spect to the weak one. In this case, the form B apparently has the following important
property.
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ASSUMPTION 3.1. Consider the bilinear symmetric mapping B : M ×M → Y
associated with the quadratic form B. Given h ∈M, the linear operator B(h, ·) : M→
Y is continuous.

The usefulness of the notion of upper limitrophe cone is predetermined in part by
the following fact.

LEMMA 3.2. Let Assumption 3.1 be fulfilled. Then the upper limitrophe cone (3.1)
is convex. Furthermore,

B(V )+ +K+(B) ⊂ B(V )+(3.2)

for any convex neighborhood V ⊂M of the origin.
Proof. Note first that (3.2) ensures the convexity of the cone (3.1). Indeed, denote

by Oconv the collection of all convex neighborhoods of the origin. Since the topology
of M is locally convex, one can obviously substitute Oconv for O in (3.1). Then (3.2)
immediately results in the inclusion K+(B) +K+(B) ⊂ K+(B) where K+(B) is a cone
by (a) of Lemma 3.1. This implies that the cone K+(B) is convex [8, p. 14].

Thus, it suffices to prove (3.2). Let V ∈ Oconv and y ∈ B(V )+ + K+(B) =
B(V ) +K+ + K+(B). Choose ε > 0 and κ > 0. Then y = B(z) + y+ + y0 + δy for
some z ∈ V, y+ ∈ K+, y0 ∈ K+(B), and |δy| < ε. By Assumption 3.1, the operator
B(z, ·) is continuous and so the set V ′ := {z′ ∈ κV : |B(z, z′)| < ε} is a neighborhood
of the origin. By (3.1), y0 ∈ B(V ′)+ and we have y0 = B(z′) + y+

0 + δy0 where
z′ ∈ V ′, y+

0 ∈ K+, and |δy0| < ε. Hence

y = B(z) + y+ + δy + y0 = B(z) + B(z′) + y+ + y+
0 + δy + δy0

= B(z + z′︸ ︷︷ ︸
zε,κ

) + y+ + y+
0︸ ︷︷ ︸

y+
ε,κ

+ δy − 2B(z, z′) + δy0︸ ︷︷ ︸
δyε,κ

.(3.3)

Here |δyε,κ| ≤ |δy| + |δy0| + 2|B(z, z′)| ≤ 4ε. Let ε → +0. Then (3.3) means that
B(zε,κ) + y+

ε,κ → y where y+
ε,κ ∈ K+ and zε,κ = z + z′ ∈ V + κV = (1 + κ)V . So

y ∈ B [(1 + κ)V ]+ = (1 + κ)2B(V )+. Dividing by (1 + κ)2 and letting κ → 0, we get
the inclusion y ∈ B(V )+ where the vector y ∈ B(V )+ + K+(B) is arbitrary. Thus,
(3.2) is true.

Given a normed space X and a set Q ⊂ X, the symbol riQ denotes the relative
interior of the set Q, i.e., its interior in the affine hull affQ of the set Q.

The next lemma offers an important dual characterization of upper limitrophe
cones.

LEMMA 3.3. Let B : M→ Y be a quadratic form and Assumption 3.1 be fulfilled.
Denote

E∗+(B) :=
{
τ∗ ∈ Y ∗ : τ∗ ≥ 0 and inf

h∈V
τ∗B(h) > −∞ for some V ∈ O

}
,(3.4)

where O is the collection of all neighborhoods of the origin. Then

K+(B) =
{
y ∈ Y : τ∗y ≥ 0 for all τ∗ ∈ E∗+(B)

}
,(3.5)

where K+(B) is the upper limitrophe cone (3.1).
Proof. If y ∈ Y ⇒ y = 0, the lemma is obvious. Let Y contain a nonzero vector.

By Lemmas 3.1 and 3.2, K+(B) is a closed convex cone. So the positive conjugate
cone

P∗(B) :=
{
τ∗ ∈ Y ∗ : τ∗y ≥ 0 for all y ∈ K+(B)

}
(3.6)
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restores K+(B) by the formula [8, p. 121]

K+(B) = {y ∈ Y : τ∗y ≥ 0 for all τ∗ ∈ P∗(B)} .

Here the cone P∗(B) obviously can be replaced by any set E∗+ ⊂ Y ∗ such that E∗+ =
P∗(B). Putting E∗+ := E∗+(B) entails (3.5) and so it suffices to prove the relation
E∗+(B) = P∗(B). Since P∗(B) = riP∗(B) [8, p. 46], the equality desired results from
the following inclusions to be demonstrated in the remainder of the proof:

riP∗(B) ⊂ E∗+(B) ⊂ P∗(B).(3.7)

We start with the second inclusion. Let τ∗ ∈ E∗+(B). Then, by (3.4), τ∗ ≥ 0
and c (τ∗, V ) := infh∈V τ∗B(h) > −∞ for some V ∈ O. Choose ε > 0 and consider
y ∈ B(εV )+. It is clear that y = ε2B(h) + y+ for some h ∈ V and y+ ∈ K+. So

τ∗y = ε2τ∗B(h) + τ∗y+ ≥ ε2τ∗B(h) ≥ ε2 inf
h′∈V

τ∗B(h′) = ε2c (τ∗, V )

or finally τ∗y ≥ ε2c (τ∗, V ) for all y ∈ B(εV )+. By continuity, this inequality spreads
on all y ∈ B(εV )+ where B(εV )+ ⊃ K+(B) due to (3.1). Letting ε → +0 and taking
into account (3.6), we get the second inclusion in (3.7).

To demonstrate the first inclusion in (3.7), we first assume that the cone K+(B)
includes no lines. Then affP∗(B) = Y ∗ [8, p. 126] and so intP∗(B) = riP∗(B) 6= ∅.
Let τ∗ ∈ intP∗(B) and τ∗ 6= 0. There exists ε > 0 such that δτ∗ ∈ Y ∗ and |δτ∗| ≤ ε⇒
τ∗− δτ∗ ∈ P∗(B). Given y ∈ K+(B), by (3.6), we have 0 ≤ (τ∗ − δτ∗) y = τ∗y− δτ∗y
and so τ∗y ≥ δτ∗y. By passing to the maximum over δτ∗ ∈ Y ∗ with |δτ∗| ≤ ε, we get

τ∗y ≥ ε|y| (∀y ∈ K+(B)).(3.8)

This and (b) of Lemma 3.1 ensure, in particular, that τ∗ ≥ 0.
Assume that τ∗∈E∗+(B). Given a convex neighborhood V of the origin, c (τ∗, V ) =

−∞ due to (3.4). So τ∗B(h) ≤ −‖τ∗‖ for some h ∈ V . Here τ∗B(h) ≥ −‖τ∗‖|B(h)|.
Hence −‖τ∗‖ ≥ −‖τ∗‖|B(h)| and so |y′| ≥ 1 for y′ := B(h). Putting y := y′|y′|−1, we
have y = B(|y′|− 1

2h) ∈ B(V )+, |y| = 1, and τ∗y = |y′|−1τ∗B(h) ≤ 0. This means that
the following compact set C(V ) is not empty

C(V ) :=
{
y ∈ Y : |y| = 1, τ∗y ≤ 0, y ∈ B(V )+

}
.(3.9)

Given a finite number of neighborhoods of the origin V1, . . . , VN ∈ O, there exists
a convex neighborhood V0 ∈ O such that V0 ⊂ V1 ∩ · · · ∩ VN . It is easy to see that
C(V0) ⊂ C(V1)∩ · · · ∩C(VN ) where C(V0) 6= ∅ by the foregoing. Then, in accordance
with the generalized principle of Cantor, C∞ :=

⋂
V ∈O C(V ) 6= ∅. Choose y ∈ C∞. By

(3.9), τ∗y ≤ 0, |y| = 1, and y ∈
⋂
V ∈O B(V )+ = K+(B). These relations apparently

contradict (3.8).
So we are forced to reject the assumption τ∗∈E∗+(B) and to recognize that τ∗ ∈

E∗+(B) whenever τ∗ ∈ riP∗(B). Let us proceed to the case when the cone K+(B)
includes lines. Reduce this case to the previous one. To this end, consider the linear
subspace L := K+(B) ∩ [−K+(B)], the quotient space Ŷ := Y/L, and the canonical
projection π : Y → Ŷ . Let us order the space Ŷ with the cone K̂+ := π(K+). The
quadratic form B̂(·) := π ◦B obviously satisfies all the assumptions of Lemma 3.3. We
are going to show first that

π−1K+(B̂) = K+(B).(3.10)
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Indeed, let V ∈ O. Note that

B̂(V )+ = B̂(V ) + K̂+ = πB(V ) + πK+ = π [B(V ) +K+] = π
[
B(V )+] .(3.11)

From this it follows that B(V )+ ⊂ π−1B̂(V )+ ⊂ π−1B̂(V )+, where the set π−1B̂(V )+

is closed by the continuity of π. So π−1B̂(V )+ ⊃ B(V )+ ⊃ K+(B) and, by (3.1),

π−1K+(B̂) = π−1
⋂
V ∈O

B̂(V )+ =
⋂
V ∈O

π−1B̂(V )+ ⊃ K+(B).

Conversely, given V ∈ O, there exists a convex neighborhood Vaux ∈ O such that
Vaux ⊂ V . By definition, L ⊂ K+(B). So (3.2) implies the inclusion B(Vaux)+ +
L ⊂ B(Vaux)+. It is easy to see that B(Vaux)+ + L = π−1π[B(Vaux)+]. Thus,
B(Vaux)+ = π−1[π(B(Vaux)+)] and so π−1[Ŷ \ π(B(Vaux)+)] = Y \ B(Vaux)+, i.e.,
Ŷ \ π[B(Vaux)+] = π[Y \ B(Vaux)+]. Here the set Y \ B(Vaux)+ is open, and so
too is the image π[Y \ B(Vaux)+] because the operator π transforms open sets into
open ones [30, p. 20]. Consequently, the set π[B(Vaux)+] is closed where, by (3.11),

B̂(Vaux)+ = π[B(Vaux)+] ⊂ π[B(Vaux)+]. Therefore, B̂(Vaux)+ ⊂ π[B(Vaux)+]. Fur-

thermore, due to (3.1), B̂(Vaux)+ ⊃ K+(B̂). Hence π−1[K+(B̂)] ⊂ B(Vaux)+ ⊂ B(V )+

for any V ∈ O. Passing here to the intersection over all V ∈ O and taking into
account (3.1), we get the inclusion desired: π−1[K+(B̂)] ⊂ K+(B). Thus, (3.10) is
true.

The cone K+(B̂) includes no lines l 6= {0} because, otherwise, we would have, by
(3.10), π−1(l) = −π−1(l) ⊂ π−1[K+(B̂)] = K+(B), π−1(l) ⊃ π−1(0) = L 6= π−1(l)
that would contradict the definition L = K+(B) ∩ [−K+(B)] of L. Thus, as it has
been proven,

riP∗(B̂) = intP∗(B̂) ⊂ E∗+(B̂).(3.12)

Formula (3.10) implies the following relationship between the positive conjugate cones

(3.6) [8, p. 143] P∗(B) = π∗P∗(B̂), where π∗ : Ŷ ∗ → Y ∗ is the adjoint operator. Since
Imπ = Ŷ , this operator maps isomorphically the space Ŷ ∗ onto Imπ∗. As a result, on
the one hand, the image π∗P∗(B̂) of the closed set P∗(B̂) is also closed and we have
P∗(B) = π∗P∗(B̂) and, on the other hand, riP∗(B) = π∗intP∗(B̂).

To conclude the proof, consider τ∗ ∈ riP∗(B) . The last equality means that
τ∗ = π∗θ∗ for some θ∗ ∈ intP∗(B̂), i.e., τ∗ = θ∗ ◦ π. By (3.12), θ∗ ∈ E∗+(B̂) and (3.4)
yields that θ∗ ≥ 0 and ĉ(θ∗, V ) := inf{θ∗B̂(z) : z ∈ V } > −∞ for some V ∈ O. By
definition, θ∗ ≥ 0⇔ θ∗ŷ ≥ 0 for all ŷ ∈ K̂+ = πK+ ⇔ θ∗ ◦ πy ≥ 0 for all y ∈ K+ ⇔
τ∗ ≥ 0. In addition, ĉ(θ∗, V ) = inf {θ∗πB(z) : z ∈ V } = inf {τ∗B(z) : z ∈ V } > −∞
and, by (3.4), τ∗ ∈ E∗+(B). Thus, τ∗ ∈ E∗+(B) whenever τ∗ ∈ riP∗(B), and the first
inclusion in (3.7) does hold.

The following lemma characterizes the set (3.4) in terms of the limit inferior (2.2).
LEMMA 3.4. Let B : M→ Y be a quadratic form. Then

E∗+(B) =
{
τ∗ ∈ Y ∗ : τ∗ ≥ 0 and lim inf

h→0
τ∗B(h) = 0

}
.(3.13)

Proof. Denote by E∗lim the set on the right. By (2.2) and (3.4), E∗lim ⊂ E∗+(B).
Conversely, let τ∗ ∈ E∗+(B). For each V ∈ O, denote I−(V ) := inf {τ∗B(h) : h ∈ V }.
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By (3.4), τ∗ ≥ 0 and I−(V0) > −∞ for some V0 ∈ O. Given ρ > 0, we have ρV0 ∈ O
and then, by (2.2),

l− := lim inf
h→0

τ∗B(h) ≥ I− (ρV0) = inf
h∈V0

τ∗B(ρh) = ρ2I−(V0).

By letting ρ→ +0, we get l− ≥ 0. Furthermore, I−(V ) ≤ τ∗B(0) = 0 for any V ∈ O
because 0 ∈ V . Then equation (2.2) implies l− ≤ 0. Thus l− = 0, τ∗ ≥ 0 and so
τ∗ ∈ E∗lim.

We recall that the limitrophe cone K(B) is the upper limitrophe cone (3.1) corre-
sponding to the trivial positive cone K+ = {0}. In other words, K(B) =

⋂
V ∈O B(V )

where B(V ) := {y : y = B(h) for some h ∈ V } is the ordinary image and O is the
collection of all neighborhoods of the origin.

LEMMA 3.5. Let B : M→ Y be a quadratic form, Assumption 3.1 be fulfilled, and
the cone K(B) does not contain vectors y such that y ∈ −K+ and y 6= 0. Then

K+(B) = K(B) +K+.(3.14)
Proof. If y ∈ Y ⇒ y = 0, the lemma is obvious. Let Y contain a nonzero

vector. Given k ⊂ Y ∗, denote by k◦ the positive conjugate cone k◦ := {y ∈ Y :
τ∗y ≥ 0 for all τ∗ ∈ k} and put K∗+ := {τ∗ ∈ Y ∗ : τ∗ ≥ 0}. We are going to show
first that

riK∗+ ∩ riE∗(B) 6= ∅,(3.15)

where E∗(B) is the set (3.4) corresponding to the trivial positive cone K+ = {0}, i.e.,

E∗(B) =
{
τ∗ ∈ Y ∗ : inf

h∈V
τ∗B(h) > −∞ for some V ∈ O

}
.

Suppose to the contrary that formula (3.15) violates riK∗+ ∩ riE∗(B) = ∅. Here
K∗+ and E∗(B) are obviously convex cones. Therefore, they are separable with a
hyperplane; i.e., there exists a vector y ∈ Y such that y 6= 0, τ∗y ≥ 0 for all τ∗ ∈ E∗(B),
and τ∗y ≤ 0 for all τ∗ ∈ K∗+. By Lemma 3.3, the second inequality yields that
y ∈ K(B). In its turn, the third one means that −y ∈

(
K∗+
)◦ where

(
K∗+
)◦ = K+

[8, p. 125]. Thus, y ∈ −K+ and we have a contradiction to the assumption of the
lemma. Therefore, (3.15) does hold.

By (3.15) and Corollary 16.4.2 [8, p. 146],[
K∗+ ∩ E∗(B)

]◦ =
[(
K∗+
)◦ + (E∗(B))◦

]
.(3.16)

It is clear that K∗+ ∩ E∗(B) = E∗+(B), where the set E∗+(B) is given by (3.4). Then
(3.5) means that the left-hand side in (3.16) is equal to K+(B) and (E∗(B))◦ = K(B).
Furthermore,

(
K∗+
)◦ = K+ [8, p. 125]. So (3.16) takes the form K+(B) = K(B) +K+

where the inside closure sign can obviously be omitted.
Note that, in general, formula (3.14) fails to be true.
As a principal tool in the justification of the method (I)–(IV), we shall use the

following key result. To state it, we recall that a set C ⊂ Y is called almost convex if
there exists a convex set C0 ⊂ Y such that C0 ⊂ C ⊂ C0. Thus, the set C is almost
convex iff it differs from some convex set C0 at most by boundary details.

THEOREM 3.6. Let M be a real locally convex linear topological space, and let Y be
a real finite-dimensional linear space ordered with a nonempty convex cone K+ ⊂ Y .
Also let B : M→ Y be a quadratic form and Assumption 3.1 be fulfilled.
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Assume that, for any τ∗ ∈ Y ∗, τ∗ ≥ 0, the following implication takes place

τ∗B(h) < 0 for some h ∈M =⇒ lim inf
h→0

τ∗B(h) = −∞.(3.17)

Then the upper image B(M)+ = {y ∈ Y : y ≥ B(h) for some h ∈M} of the space
M is almost convex and its closure coincides with the upper limitrophe cone (3.1).

Moreover, given a neighborhood V of the origin, its upper image B(V )+ := {y ∈
Y : y ≥ B(h) for some h ∈ V } is almost convex and

B(V )+ = B(M)+ = K+(B),(3.18)

riB(V )+ = riB(M)+ = riK+(B),(3.19)

where K+(B) is the upper limitrophe cone (3.1).
In the case of a Hilbert space M equipped with the weak topology, the meaning of

the implication (3.17) was discussed in section 2 (see Lemma 2.4 and the neighboring
considerations).

We break up the proof of Theorem 3.6 into a string of three lemmas.
LEMMA 3.7. Let the assumptions of Theorem 3.6 be valid. Then relations (3.18)

are true for any V ∈ O.
Proof. The inclusions

K+(B) ⊂ B(V )+ ⊂ B(M)+(3.20)

result from (3.1). Given τ∗ ∈ E∗+(B), it follows from (3.13) and (3.17) that τ∗B(h) ≥ 0
for all h ∈M and τ∗y+ ≥ 0 for all y+ ∈ K+. Summing up, we have τ∗ [B(h) + y+] ≥ 0
for all h ∈ M and y+ ∈ K+, i.e., τ∗y ≥ 0 for all y ∈ B(M)+, τ∗ ∈ E∗+(B). By
Lemma 3.3, this implies that y ∈ K+(B) whenever y ∈ B(M)+. Thus, B(M)+ ⊂
K+(B) where the cone K+(B) is closed by Lemma 3.1. So B(M)+ ⊂ K+(B) and,
thanks to (3.20), we get B(M)+ = K+(B). Then the inclusions (3.20) come to relations
(3.18).

To prove (3.19), we need a topological technique, which is developed in the fol-
lowing lemma.

LEMMA 3.8. Denote by Sr the standard (r − 1)-dimensional simplex

Sr := {θ = ‖θi‖ ∈ Rr : θi ≥ 0 for all i, θ1 + · · ·+ θr = 1} .

Let a set C ⊂ Y be given. Assume that
(i) its closure C is convex,
(ii) given r = 1, 2, . . . and elements y1, . . . , yr ∈ C, there exists an infinite se-

quence f1(·), f2(·), . . . of continuous functions fm : Sr → C such that

fm(θ)→ y(θ) :=
r∑
i=1

θiyi as m→∞(3.21)

uniformly over θ = ‖θi‖ ∈ Sr.
Then ri C ⊂ C.
Proof. It needs to be proven that y0 ∈ C whenever y0 ∈ riC. Without loss of ge-

nerality, we can assume that y0 = 0. Then L := affC 3 0 is a linear subspace. Choose
a real ε > 0 such that y ∈ L, |y| ≤ ε ⇒ y ∈ riC and also choose a basis y′1, . . . , y

′
r−1 of
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L such that |y′1| = · · · = |y′r−1| = ε/(r− 1). The vectors y′1, . . . , y
′
r−1 obviously belong

to riC ⊂ C, as does the vector y′r := −
(
y′1 + · · ·+ y′r−1

)
. Consequently, any vector

y′i can be approximated by an element yi ∈ C. Choose so close approximations that
the vectors y1, . . . , yr−1 constitute a basis of L and all the coefficients of the vector yr
with respect to this basis are strictly negative. Then the convex hull Q of the vectors
y1, . . . , yr is apparently a neighborhood of the origin in the subspace L. Denote by
θ(y) = [θ1(y), . . . , θr(y)] ∈ Sr the row of the barycentric coordinates of a point y ∈ Q
with respect to the apices y1, . . . , yr, i.e., y =

∑r
i=1 θi(y)yi, θi(y) ≥ 0 for all i, and∑r

i=1 θi(y) = 1. Consider a sequence f1(·), f2(·), . . . that corresponds to the elements
y1, . . . , yr ∈ C by Assumption (ii). Then introduce the continuous mappings

Im(y) := y [θ(y)]− fm [θ(y)] ∈ L, y ∈ Q, m = 1, 2, 3, . . . ,

where y(θ) was defined in (3.21). Due to (3.21), the continuous function Im(·) maps
the compact convex neighborhood of the origin Q ⊂ L into itself provided that the
index m is sufficiently large. By the Brouwer’s fixed-point theorem, this implies the
existence of a fixed point ym = Im (ym) = y [θ (ym)] − fm [θ (ym)] ∈ Q. Since, by
(3.21), y [θ(y)] =

∑r
i=1 θi(y)yi = y for all y ∈ Q, we have ym = ym − fm [θ (ym)].

Hence fm [θ (ym)] = 0, where fm(θ) ∈ C for all θ by the assumptions of the lemma.
Thus, 0 ∈ C.

To prove relations (3.19), we shall apply Lemma 3.8 to the set C := B(V )+.
Then Assumption (i) of this lemma follows from Lemmas 3.2 and 3.7. So we need to
demonstrate only Assumption (ii). This gap is filled by the following lemma.

LEMMA 3.9. Let the assumptions of Theorem 3.6 be valid. Consider a continuous
mapping y : Sr → K+(B) where K+(B) is the upper limitrophe cone (3.1).

Given ε > 0 and a neighborhood V of the origin, the function y(·) may be decom-
posed as follows:

y(θ) = B [z(θ)] + y+(θ) + ∆y(θ) ∀θ ∈ Sr,(3.22)

where z : Sr → V, y+ : Sr :→ K+,∆y : Sr → Y are continuous functions and
|∆y(θ)| ≤ ε for all θ ∈ Sr.

Proof. Due to the compactness of the simplex Sr, we can pick a real κ > 0 such
that

θ′, θ′′ ∈ Sr, |θ′ − θ′′| < κ ⇒ |y(θ′)− y(θ′′)| < ε

2
.(3.23)

Choose a finite collection of nonempty open sets O1, . . . , On ⊂ Sr such that Sr =
O1 ∪ · · · ∪ On and supθ,ϑ∈Oi |θ − ϑ| < κ. Given θ ∈ Sr and i = 1, . . . , n, we put
ζi(θ) := minϑ∈Sr\Oi |θ − ϑ|. Then ζi(θ) > 0 if θ ∈ Oi and ζi(θ) = 0 otherwise. Hence
ζ(θ) := ζ1(θ) + · · ·+ ζn(θ) > 0 for all θ ∈ Sr. So the function ρi(θ) := ζ(θ)−1ζi(θ) is
well defined on θ ∈ Sr and continuous. It is also easy to see that

ρ1(θ) + · · ·+ ρn(θ) = 1, ρi(θ) ≥ 0 ∀θ ∈ Sr, i = 1, . . . , n,(3.24)

suppρi := {θ : ρi(θ) 6= 0} 6= ∅, max
θ′,θ′′∈suppρi

|θ′ − θ′′| < κ ∀i = 1, . . . , n.(3.25)

Choose an element θ(i) ∈ suppρi for each i = 1, . . . , n, and also fix a convex neighbor-
hood of the origin Vc ⊂ V . Denote ν := ε

(
2n2
)−1 and consider the bilinear symmetric

mapping B : M×M→ Y associated with the form B(·).
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As a first step, we are going to choose vectors x1, . . . , xn ∈ M, y+
1 , . . . , y

+
n , and

∆y1, . . . ,∆yn ∈ Y such that

y
(
θ(i)
)

= B (xi) + y+
i + ∆yi ∀i ,(3.26)

xi ∈ n
−1Vc, y+

i ∈ K+, |∆yi| < ν ∀i ,(3.27)

|B (xi, xj)| < ν ∀i 6= j .(3.28)

Do this in a consecutive order. Namely, choose first x1, y
+
1 , ∆y1, then x2, y

+
2 , ∆y2,

and so on. Denote V0 := n−1Vc. Since y
(
θ(1)
)
∈ K+(B), we have by (3.1) y

(
θ(1)
)
∈

B (V0)+ that apparently implies (3.26) and (3.27) for i = 1 with appropriate x1, y
+
1 ,∆y1.

Consider m = 1, . . . , n − 1, and assume that the vectors x1, . . . , xm, y
+
1 , . . . , y

+
m,

∆y1, . . . ,∆ym have already been chosen. To construct xm+1, y
+
m+1,∆ym+1, note first

that, by Assumption 3.1, the operator B(xi, ·) : M → Y is continuous for any i ≤
m. So the set V̂ :=

{
h ∈ n−1Vc : |B (xi, h)| < ν for all i = 1, . . . ,m

}
is a convex

neighborhood of the origin. This permits us to repeat the above considerations with
respect to V0 := V̂ , y

(
θ(m+1)

)
. As a result, we conclude that (3.26) and (3.27) are

true for i = m+ 1 with appropriate xm+1 ∈ V̂ , y+
m+1, and ∆ym+1. If max{i, j} ≤ m,

inequality (3.28) is valid by assumption. If max{i, j} = m + 1, it follows from the
inclusion xm+1 ∈ V̂ .

Thus, the requisite vectors xi, y+
i ,∆yi do exist. Show that the functions

z(θ) :=
∑n

i=1

√
ρi(θ)xi, y+(θ) :=

∑n

i=1 ρi(θ)y
+
i ,

∆y(θ) := y(θ)− B [z(θ)]− y+(θ)
(3.29)

have all the properties desired. Indeed, it is clear that the decomposition (3.22) takes
place and that the functions z(·) and y+(·) are continuous, as is the function ∆y(·)
by the following concretization of the term B [z(θ)] in its definition:

B [z(θ)] = B [z(θ), z(θ)] =
n∑
i=1

ρi(θ)B (xi) + 2
∑
i<j

√
ρi(θ)

√
ρj(θ)B (xi, xj) .

Taking into account both this relation and (3.24), (3.26), (3.29), we get

|∆y(θ)| =
∣∣y(θ)− B [z(θ)]− y+(θ)

∣∣
=

∣∣∣∣∣∣
n∑
i=1

ρi(θ)y(θ)−
n∑
i=1

ρi(θ)B (xi)−
n∑
i=1

ρi(θ)y+
i − 2

∑
i<j

√
ρi(θ)

√
ρj(θ)B (xi, xj)

∣∣∣∣∣∣
≤

n∑
i=1

ρi(θ)|y
(
θ(i)
)
− B (xi)− y+

i︸ ︷︷ ︸
=∆yi

|+
n∑
i=1

ρi(θ)
∣∣∣y (θ(i)

)
− y(θ)

∣∣∣

+2
∑
i<j

√
ρi(θ)

√
ρi(θ) |B (xi, xj)| .
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Here θ(i) ∈ suppρi by choice. So (3.25) implies that ρi(θ) 6= 0 ⇒ |θ − θi| < κ and,
by (3.23), |y(θ(i))− y(θ)| ≤ ε/2. Consequently, ρi(θ)|y(θ(i))− y(θ)| ≤ ρi(θ)ε/2 for all
θ ∈ Sr where ρi(θ) ≤ 1 by (3.24). This and (3.26)–(3.28) permit us to continue the
estimation

|∆y(θ)| ≤
n∑
i=1

ρi(θ)ν +
ε

2

n∑
i=1

ρi(θ) + 2
∑
i<j

ν =
ε

2
+ n

2ν,

where ν = ε
(
2n2
)−1 by choice. Thus, we get the inequality desired: |∆y(θ)| ≤ ε. The

inclusion y+(θ) ∈ K+ results from (3.24), (3.27), and (3.29) because K+ is a convex
cone. Due to (3.24), ρi(θ) ≤ 1 and so (3.29) and the first inclusion in (3.27) yield that
z(θ) ∈ Vc ⊂ V ; i.e., the last property to be proved does take place.

Now we are ready to prove Theorem 3.6. Relations (3.18) are true by Lemma 3.7.
To prove (3.19), consider a neighborhood of the origin V and apply Lemma 3.8 to
C := B(V )+. Lemma 3.8(i) follows from Lemmas 3.2 and 3.7. To prove assumption
(ii), consider y1, . . . , yr ∈ C = B(V )+. By (3.18), y1, . . . , yr ∈ K+(B) where K+(B) is a
convex cone by Lemma 3.2. So y(θ) := θ1y1 +· · ·+θryr ∈ K+(B) for all θ = ‖θi‖ ∈ Sr.
Given a natural m, the application of Lemma 3.9 to the mapping y(·) and to the real
ε := m−1 results in the corresponding continuous functions z : Sr → V, y+ : Sr → K+,
and ∆y : Sr → Y . It is clear that fm(θ) := B [z(θ)] + y+(θ) ∈ B(V )+ = C. Since
fm(θ) = y(θ) − ∆ym(θ), the function fm(·) is continuous. From (3.22), we have
|y(θ)− fm(θ)| = |∆ym(θ)| ≤ ε = m−1, which proves (3.21).

Thus, all the assumptions of Lemma 3.8 are valid. By this lemma, riK+(B) ⊂
B(V )+, where, due to (3.18), B(V )+ ⊂ B(V )+ = K+(B) and so riB(V )+ = riK+(B).
Here choosing V := M, we get (3.19).

Consider the convex set C0 := riK+(B). By (3.18) and (3.19), C0 = riB(V )+ ⊂
B(V )+ ⊂ B(V )+ = K+(B) = C0 or, in brief, C0 ⊂ B(V )+ ⊂ C0. This means that the
set B(V )+ is almost convex. So is the set B(M)+ because V := M is a particular case
of a neighborhood of the origin. Thus, the proof of Theorem 3.6 is completed.

We conclude the section with the demonstration of Theorem 1.3 (see section 1).
LEMMA 3.10. Let Y be a real linear finite-dimensional space and C1, C2 be almost

convex sets.
If riC1 ∩ riC2 6= ∅, then the intersection C1 ∩ C2 is almost convex too.
Proof. By the definition of an almost convex set, there exist convex sets C0

1 , C
0
2 ⊂

Y such that C0
i ⊂ Ci ⊂ C0

i for i = 1, 2. These inclusions imply that, first, C0 := C0
1 ∩

C0
2 ⊂ C1∩C2 ⊂ C0

1∩C0
2 with the set C0 being convex and, second, riC0

i ⊂ riCi ⊂ riC0
i ,

where riC0
i = riC0

i [8, p. 46]. Therefore, riC0
i = riCi and we have riC0

1 ∩ riC0
2 6= ∅.

From this it follows that C0 = C0
1 ∩ C0

2 = C0
1∩C0

2 [8, p. 47]. Thus, C0 ⊂ C1∩C2 ⊂ C0;
i.e., the set C1 ∩ C2 is almost convex.

LEMMA 3.11. Let H be a real Hilbert space and G1, . . . ,Gk be continuous scalar
quadratic forms on H. Define the quadratic form B : H → Rk+1 by B(z) :=
{G1(z), . . . , Gk(z), |z|2

}
, where |z| =

√
〈z, z〉 is the norm in H.

If the image B(H) of the space H is almost convex, then the image of the unit
sphere S := {z ∈ H : |z| = 1} under the mapping G(z) := [G1(z), . . . ,Gk(z)] is almost
convex too.

Proof. The function J(y1, . . . , yk) := (y1, . . . , yk, 1) maps isomorphically Rk onto
the affine subspace C2 :=

{
y = ‖yi‖ ∈ Rk+1 : yk+1 = 1

}
⊂ Rk+1. Furthermore, it is

easy to see that J [G(S)] = B(H) ∩ C2. So it suffices to prove that the intersection
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B(H)∩C2 is almost convex. By Lemma 3.10, this follows from the relation riB(H)∩
riC2 6= ∅ to be demonstrated in the remainder of the proof.

Assume the opposite riB(H) ∩ riC2 = ∅. By the definition of an almost convex
set, there exists a convex set C such that C ⊂ B(H) ⊂ C. Then riC ⊂ riB(H) ⊂ riC
where riC = riC [8, p. 46]. So riC = riB(H) and we have riC ∩ riC2 = ∅ with both
sets being convex. Consequently, they are separable with a hyperplane; i.e., there
exists τ = ‖τi‖ ∈ Rk+1 such that τ 6= 0 and τ∗y′ ≥ α ≥ τ∗y′′ for all y′ ∈ riC, y′′ ∈ C2
where the asterisk stands for transposition. By continuity, these inequalities spread
on all y′ ∈ riC = C ⊃ B(H). Picking y′′ := (y1, . . . , yk, 1) and letting successively
y1 → ±∞, . . . , yk → ±∞, we get τ1 = 0, . . . , τk = 0, α ≥ τk+1 6= 0. Picking
y′ := B(z) ∈ B(H), we get τ∗y′ = τk+1|z|2 ≥ α ≥ τk+1, τk+1(|z|2 − 1) ≥ 0 for all
z ∈ H. Hence τk+1 = 0, which contradicts the above inequality τk+1 6= 0. Thus, we
are forced to recognize that riB(H) ∩ riC2 6= ∅.

Proof of Theorem 1.3. Define the quadratic form B : H → Y := Rk+1 as in
Lemma 3.11. We are going to apply Theorem 3.6. To this end, denote by M the
space H equipped with the weak topology and pick K+ := {0}. Then Assumption 3.1
is clearly true. By Lemma 2.4, the implication (3.17) now takes the form

n− [τ∗B(·)] 6= 0 =⇒ n− [τ∗B(·)] = +∞,(3.30)

where τ = ‖τi‖ ∈ Rk+1, the asterisk stands for transposition, and n−(·) is the (nega-
tive) index of inertia of the scalar quadratic form. Denoting τ̂ := (τ1, . . . , τk) ∈ Rk, we
obviously have τ∗B(z) = 〈(Aτ̂ + τk+1I) z, z〉, where the operator Aτ̂ was introduced
in Theorem 1.3 and I is the identity operator on H. Consider the resolution of the
identity P (dλ) for the operator Aτ̂ . Then the last equality looks like the following
[29, pp. 893, 899]:

τ∗B(z) =
∫ λ+

λ−

(λ+ τk+1) 〈P (dλ)z, z〉 .(3.31)

Here λ− := min{λ : λ ∈ σ(Aτ̂ )} and λ+ := max{λ : λ ∈ σ(Aτ̂ )}.
Let n− [τ∗B(·)] 6= 0. Then (3.31) implies that, on the one hand, λ−+τk+1 < 0 and,

on the other hand, z ∈ ImP {[λ−,−τk+1)} , z 6= 0 ⇒ τ∗B(z) < 0. So n− [τ∗B(·)] ≥
µ := dim ImP {[λ−,−τk+1)}. Here λ− is not an isolated eigenvalue of finite geomet-
rical multiplicity by the assumptions of Theorem 1.3. So µ = ∞ and (3.30) does
hold.

Thus, the assumptions of Theorem 3.6 are valid. By this theorem, the image
B(H) is almost convex. Then Lemma 3.11 completes the proof.

4. Correctness of the method (I)–(IV). This section is devoted to the proof
of Theorem 2.2. We recall first the following fact [2, 13, 14].

LEMMA 4.1. Let, in (1.1), Z be a subset of a set H and F : H → R, G : H → Y
be given functions. Assume that the finite-dimensional linear space Y is ordered with
a convex cone K+ ⊂ Y , which contains an interior point. Let also the problem (1.1)
be regular (see Definition 2.1). Denote by D the admissible domain in this problem
D := {z ∈ Z : G(z) ≤ 0} and define the set C+ by (1.20).

If either infz∈D F(z) = −∞ or the closure C+ of the set (1.20) is convex, then
relation (1.12) is true and the method of duality (I)–(IV) is valid.

In the remainder of the section, the assumptions of Theorem 2.2 are assumed
to be fulfilled. We shall consider the linear space Y := R × Y and the mapping
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G(z) := [F(z),G(z)] ∈ Y. The space Y is assumed to be ordered with the convex
cone K+ := {ξ = (t, y) ∈ Y : t ≥ 0, y ≥ 0}. By (1.3), we obviously have

G(z) = B(z) + Φ(z),(4.1)

where B(z) := B(z, z), B (z1, z2) := [BF (z1, z2) , BG (z1, z2)], and Φ(z) := [ΦF (z),
ΦG(z)]. The functions B(·, ·) and Φ(·) apparently have the same properties that
the functions BF , BG and, respectively, ΦF ,ΦG have by Assumptions (A) and (B) of
Theorem 2.2. Here and throughout, M denotes the linear subspace M := Z−z0 (z0 ∈
Z) that is a displacement of Z. It is endowed with the topology induced on M by H.

To prove Theorem 2.2, it suffices to show that the closure of the set (1.20) is
convex provided infz∈D F(z) > −∞. We preface the study of this set with four
technical lemmas. Further, the problem (1.1) is assumed to be regular.

LEMMA 4.2. For the quadratic form B| m, define the set E∗+ := E∗+ (B| m) ⊂ Y =
R× Y in accordance with (3.13).

If infz∈D F(z) > −∞, then there exists an element τ∗ = (τ0, τ∗) ∈ E∗+ with
τ0 > 0.

Proof. Suppose to the contrary that E∗+ ⊂ L∗ := {τ∗ ∈ Y
∗ : τ0 = 0}. Let ξ ∈

L := {(t, y) ∈ Y : y = 0}. For any τ∗ ∈ E∗+, we have τ∗ ∈ L∗ and so τ∗ξ = 0. Then,
by Lemma 3.3, ξ ∈ K := K+ (B|m), i.e., L ⊂ K.

Consider the element z∗ ∈ Z from (2.1), and choose ε > 0 such that |G (z∗)− y| <
ε⇒ y < 0. Denote by V the set of all h ∈M such that

|ΦF (z∗ + h)− ΦF (z∗)| < 1, |BF (z∗, h)| < 1,
|ΦG (z∗ + h)− ΦG (z∗)| < ε/4, |BG (z∗, h)| < ε/4.(4.2)

By Assumptions (A) and (B) of Theorem 2.2, the set V ⊂ M is a neighborhood of
the origin in the subspace M.

Given ρ ∈ R, we have (ρ, 0) ∈ L ⊂ K+ (B| m) and, by (3.1), (ρ, 0) ∈ B(V )+.
Hence, (ρ, 0) = [BF (h, h), BG(h, h)] + (ρ+, y+) + (∆ρ, ∆y) for some h ∈ V, ρ+ ≥
0, y+ ≥ 0, |∆ρ| < 1, |∆y| < ε/4. Letting z := z∗ + h ∈ Z, we have by (1.3) and
(4.2) ∣∣G(z) + y+ − G (z∗)

∣∣
=
∣∣BG (z∗ + h, z∗ + h) + ΦG (z∗ + h) + y+ −BG (z∗, z∗)− ΦG (z∗)

∣∣
≤
∣∣ BG(h, h) + y+︸ ︷︷ ︸

=−∆y

∣∣+ 2 |BG (z∗, h)|+ |ΦG (z∗ + h)− ΦG (z∗)| < ε,

and, consequently, G(z) + y+ < 0⇒ G(z) ≤ 0, z ∈ Z ⇒ z ∈ D. Likewise,∣∣F(z)− ρ+ ρ+ −F (z∗)
∣∣ ≤ ∣∣ BF (h, h)− ρ+ ρ+︸ ︷︷ ︸

=−∆ρ

∣∣+ 2 |BF (z∗, h)|

+ |ΦF (z∗ + h)− ΦF (z∗)| ≤ 4.

Hence, F(z) ≤ ρ+F (z∗) + 4, where z ∈ D. Thus, f := infz∈D F(z) ≤ ρ+F (z∗) + 4.
By letting ρ → −∞, we get the contradiction to the assumption f > −∞ of the
lemma. This proves the lemma by contraposition.
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Given Q ⊂ Y
∗, denote by konQ the minimal cone containing Q.

LEMMA 4.3. Let C ⊂ Y
∗ be a convex set such that E∗+ ⊂ kon C and riC ∩ E∗+ 6= ∅

where the set E∗+ is defined in Lemma 4.2.
Assume that, for any τ∗ ∈ C, τ∗ ≥ 0, we have

τ∗B(h) < 0 for some h ∈M =⇒ σ (τ∗) := lim inf
h→0,h∈m

τ∗B(h) < 0.(4.3)

Then this implication remains valid provided τ∗ ≥ 0 only.
Proof. τ∗ ∈ C, τ∗ ≥ 0, σ (τ∗) = 0 ⇒ τ∗B(h) ≥ 0 for all h ∈M due to (4.3).

Furthermore, by (3.13), τ∗ ∈ E∗+ ⇔ τ∗ ≥ 0, σ (τ∗) = 0 . Thus, C ∩ E∗+ ⊂ N ∗ :=
{τ∗ ∈ Y

∗ : τ∗ξ ≥ 0 for all ξ ∈ B(M)}. Since E∗+ andN are cones, we have konC∩E∗+ ⊂
N ∗. Choose τ∗0 ∈ riC∩E∗+ and τ∗ ∈ E∗+. Then τ∗ ∈ konC, τ∗0 ∈ riC ⊂ ri(konC)⇒ τ∗ε :=
(1−ε)τ∗+ετ∗0 ∈ konC for any ε ∈ (0, 1] [8, p. 45], and, by (3.4), τ∗, τ∗0 ∈ E∗+ ⇒ τ∗ε ∈ E∗+.
In brief, τ∗ε ∈ konC ∩ E∗+ ⊂ N ∗. Letting ε → +0, we get τ∗ ∈ N ∗ where the element
τ∗ ∈ E∗+ is arbitrary. Thus, E∗+ ⊂ N ∗.

Recalling (3.13) and the definition of the set N ∗, we can rewrite the last inclu-
sion as follows τ∗ ≥ 0, σ (τ∗) = 0 ⇒ τ∗B(h) ≥ 0 for all h ∈M or, in other words,

τ∗B(h) < 0 for some h ∈M ⇒ σ (τ∗) 6= 0 provided τ∗ ≥ 0. To complete the proof,
it suffices to recall that σ (τ∗) can take only two values 0 and −∞.

LEMMA 4.4. Let infz∈D F(z) > −∞. Then the quadratic form B| m : M → Y

satisfies the assumptions of Theorem 3.6 and, therefore,

B(M)+ = K+ (B| m)(4.4)

where the upper limitrophe cone K+ (B| m) is defined in accordance with (3.1).
Proof. Assumption 3.1 follows from assumption (B) of Theorem 2.2. Relation

(4.4) is merely a part of (3.18). So it suffices to demonstrate only the implication
(3.17). Now it takes the form (4.3) and has to be proven for any τ∗ ∈ Y

∗, τ∗ ≥ 0.
To this end, we shall apply Lemma 4.3.

Denote C := {τ∗ = (τ0, τ∗) ∈ Y
∗ = R× Y ∗ : τ0 = 1} and define the set E∗+ =

E∗+ (B| m) in accordance with (3.13). Since kon C = {τ∗ : τ0 > 0}, we have kon C =
{τ∗ : τ0 ≥ 0} and, by (3.13), E∗+ ⊂ kon C. By Lemma 4.2, there exists an element
τ∗ = (τ0, τ∗) ∈ E∗+ with τ0 > 0. Then τ̃∗ := τ−1

0 τ∗ ∈ E∗+ due to (3.13) and, obviously,
τ̃∗ ∈ C where C = riC. Thus, riC ∩ E∗+ 6= ∅. Given τ∗ = (1, τ∗) ∈ C, τ∗ ≥ 0,
the implication (4.3) apparently has the form (2.3) and is thereby true. Then, by
Lemma 4.3, the implication (4.3) is valid for all τ∗ ∈ Y, τ∗ ≥ 0.

To state the next lemma, we recall that the space Y is ordered with the cone
K+ := {ξ = (t, y) ∈ Y : t ≥ 0, y ≥ 0}.

LEMMA 4.5. Let the vectors z1, z2 ∈ Z, δz ∈ M, ξ+,∆ξ ∈ Y and the
reals θ1 ∈ [0, 1], ε > 0 be given. Denote ∆z := z2 − z1 and θ2 := 1− θ1. Assume that

B(∆z) = B(δz) + ξ+ + ∆ξ, ξ+ ≥ 0, |∆ξ| < ε,(4.5)

δz ∈M, |B (z1, δz)| < ε, |B(∆z, δz)| < ε,(4.6)

∣∣∣Φ(θ1z1 + θ2z2 +
√
θ1θ2δz

)
− Φ (θ1z1 + θ2z2)

∣∣∣ < ε.(4.7)
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Then the vector

z := θ1z1 + θ2z2 +
√
θ1θ2δz(4.8)

belongs to Z. Furthermore, there exists a vector ∆ ∈ Y such that

G(z) ≤ θ1G (z1) + θ2G (z2) + ∆, |∆| < 6ε.(4.9)

Proof. Since Z is an affine subspace and M = Z − Z, we have

θ1, θ2 ≥ 0, θ1 + θ2 = 1, z1, z2 ∈ Z, δz ∈M ⇒ z ∈ Z.

In light of (4.1) and (4.8), it is straightforward to compute that

G(z) = B
(
z1 + θ2∆z +

√
θ1θ2δz , z1 + θ2∆z +

√
θ1θ2δz

)
+ Φ(z)

= B(z1) + 2θ2B (z1,∆z) + θ2
2B(∆z) + θ1θ2B(δz) + Φ (θ1z1 + θ2z2)

+ 2
√
θ1θ2B (z1, δz) + 2θ1/2

1 θ
3/2
2 B (∆z, δz) + Φ(z)− Φ (θ1z1 + θ2z2)︸ ︷︷ ︸

∆1

.
(4.10)

By (4.6)–(4.8) and the inequalities 0 ≤ θ1, θ2 ≤ 1, we get

|∆1| ≤ 2
√
θ1θ2ε+ 2θ1/2

1 θ
3/2
2 ε+ ε ≤ 5ε.(4.11)

Calculate B(δz) from (4.5) and put the result into (4.10)

G(z) = B (z1) + 2θ2B (z1,∆z) + θ2
2B(∆z) + θ1θ2B(∆z)︸ ︷︷ ︸

b

−θ1θ2
[
ξ+ + ∆ξ

]
+ Φ (θ1z1 + θ2z2) + ∆1.

Here

b = (θ1 + θ2)B (z1) + 2θ2B (z1,∆z) + θ2 (θ1 + θ2)B (∆z)

= θ1B (z1) + θ2 [B (z1) + 2B (z1,∆z) + B (∆z)] = θ1B (z1) + θ2B (z1 + ∆z)︸ ︷︷ ︸
=z2

.

Thus, we have

G(z) = θ1B (z1) + θ2B (z2) + Φ (θ1z1 + θ2z2)− θ1θ2ξ
+

+ ∆1 − θ1 (1− θ1) ∆ξ︸ ︷︷ ︸
∆

.(4.12)

The third relation in (4.5) and (4.11) imply the second inequality in (4.9). By
assumption (A) of Theorem 2.2, the function Φ = [ΦF ,ΦG ] is convex on Z, i.e.,
Φ (θ1z1 + θ2z2) ≤ θ1Φ (z1) + θ2Φ (z2). Recalling that ξ+ ≥ 0 by (4.5) and taking into
account (4.1), we can continue (4.12) and complete the proof

G(z) ≤ θ1B (z1) + θ2B (z2) + θ1Φ (z1) + θ2Φ (z2) + ∆

= θ1 [Φ (z1) + B (z1)] + θ2 [Φ (z2) + B (z2)] + ∆ = θ1G (z1) + θ2G (z2) + ∆.
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Now we are ready to study the set (1.20).
LEMMA 4.6. Let infz∈D F(z) > −∞. Define the set C+ by (1.20). Then the

closure C+ is convex.
Proof. In terms of the mapping G(z) := [F(z),G(z)] ∈ Y := R× Y and the cone

K+ := {ξ = (t, y) ∈ Y : t ≥ 0, y ≥ 0}, formula (1.20) takes the form C+ = G(Z) + K+
and implies that C+ + K+ ⊂ C+, i.e., C+ + ξ+ ⊂ C+ for any ξ+ ∈ K+. By passing to
the closure, we get C+ + ξ+ ⊂ C+. In other words,

C+ + K+ ⊂ C+.(4.13)

To prove the lemma, it suffices to demonstrate that

θ1G (z1) + θ2G (z2) ∈ C+(4.14)

whenever z1, z1 ∈ Z, θ1, θ2 ≥ 0, and θ1 + θ2 = 1. Indeed, (4.14) means that θ1G (Z) +
θ2G (Z) ⊂ C+. Then, taking into account (4.13), we have

θ1C+ + θ2C+ = θ1 [G(Z) + K+] + θ2 [G(Z) + K+]

= [θ1G(Z) + θ2G(Z)] + [θ1K+ + θ2K+] ⊂ C+ + K+ ⊂ C+.

This immediately implies the inclusion C+ ⊃ θ1C+ + θ2C+, where clearly θ1C+ + θ2C+
⊃ θ1C+ + θ2C+. Thus θ1C+ + θ2C+ ⊂ C+ whenever θ1, θ2 ≥ 0 and θ1 + θ2 = 1 that
means the convexity of the set C+ and proves the lemma.

Turn to demonstration of (4.14). Let z1, z2 ∈ Z, θ1, θ2 ≥ 0, and θ1 + θ2 = 1.
Denote ∆z := z2−z1 ∈M, and choose ε > 0. Assumptions (A) and (B) of Theorem 2.2
yield that the set

V := {h ∈M : |B (z1, h)| < ε, |B (∆z, h)| < ε,
|Φ (θ1z1 + θ2z2 + h)− Φ (θ1z1 + θ2z2)| < ε}(4.15)

is a neighborhood of the origin in M. Choose a convex neighborhood of the origin
Vc ⊂ V . Taking into account (4.4), we have B(∆z) ∈ B(M) ⊂ B(M)+ = K+ (B| m).
By (3.1), this implies B(∆z) ∈ B (Vc)+. Consequently, there exist vectors δz ∈
Vc, ξ

+ ∈ Y, and ∆ξ ∈ Y such that (4.5) is true. Since the set Vc is convex, ρδz ∈ Vc
for all ρ ∈ [0, 1] and, in particular, δz,

√
θ1θ2δz ∈ Vc ⊂ V . Then, due to (4.15), we

have (4.6) and (4.7). Thus, the assumptions of Lemma 4.5 are fulfilled.
By this lemma, the vector (4.8) belongs to Z and relations (4.9) are valid with an

appropriate vector ∆ ∈ Y. By (1.20), the first relation in (4.9) means that θ1G (z1) +
θ2G (z2) + ∆ ∈ C+. Taking into account the second relation in (4.9) and letting
ε→ +0, we get (4.14).

Proof of Theorem 2.2. By Lemma 4.1, formula (1.12) and the applicability of the
method (I)–(IV) follow from Lemma 4.6.

It remains to prove the second assertion of Theorem 2.2. Namely, we have to
show that the Lagrangian function (1.4) is convex on Z and the quadratic form (1.13)
is nonnegative on M whenever τ∗ ≥ 0 and S0 (τ∗) := infz∈Z S (τ∗, z) > −∞.

Let τ∗ ≥ 0 and S0 (τ∗) > −∞. Choose z0 ∈ Z. Given h ∈ M, we have z :=
z0 + h ∈ Z. Then, by (1.3), (1.4), and (1.13),

S0 (τ∗) ≤ S (τ∗, z) = Bτ∗(z) + ΦF (z) + τ∗ΦG(z)︸ ︷︷ ︸
φ(z)

= Bτ∗ (z0) + 2 [BF (z0, h) + τ∗BG (z0, h)]︸ ︷︷ ︸
b

+Bτ∗(h) + φ (z0 + h) .
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Let h → 0, h ∈ M. Then b → 0 by assumption (B) of Theorem 2.2 and
φ (z0 + h)→ φ (z0) due to assumption (A) of this theorem. Hence

−∞ < S0 (τ∗) ≤ Bτ∗ (z0) + φ (z0) +

σ︷ ︸︸ ︷
lim inf
h→0, h∈m

Bτ∗(h),

i.e., σ > −∞. It was shown in section 2 that either σ = 0 or σ = −∞. Therefore,
σ = 0 and (2.3) implies that Bτ∗(h) ≥ 0 for all h ∈M; i.e., the quadratic form (1.13)
is nonnegative on M. Then, as it is well known, this form is convex on Z, and so
is the function φ(z) by assumption (A) of Theorem 2.2. As a result, the Lagrangian
function S (τ∗, z) = Bτ∗(z) + φ(z) is also convex on Z.

5. Method of duality for nonconvex problems of optimal control with
inequality constraints. In this section we apply Theorem 2.2 to indicate a number
of nonconvex optimal control problems to which the method (I)–(IV) is applicable. It
is only for definiteness that we shall confine our remarks to consideration of systems
described by ordinary differential equations. Analogous examples can be given for
other systems (discrete-time, distributed, and so on).

Consider the following problem of optimal control:

G0 → min subject to G1 ≤ 0, . . . ,Gk ≤ 0,(5.1)

ẋ = A(t)x+B(t)u, x = x(t) ∈ Rl, u = u(t) ∈ Rm, 0 ≤ t <∞ ,(5.2)

x(0) = a, |x(·)|+ |u(·)| ∈ L2 ,(5.3)

Gi :=
∫ ∞

0
gi(t, x, u) dt+

∫ ∞
0

φi(t, x, u) dt− γi (i = 0, . . . , k) .(5.4)

Here x = x(t) is the state and u = u(t) is the control, A(t) and B(t) are matrices
of respective sizes l × l and l × m, gi(t, x, u) = x∗Gi(t)x + 2x∗Qi(t)u + u∗Γi(t)u
is a quadratic form in x and u, the function φi(t, x, u) is assumed to be at least
convex in x, u, and γ0, . . . , γk are given reals, γ0 = 0. The matrix-valued functions
A(·), B(·), Gi(·) = Gi(·)∗, Qi(·),Γi(·) = Γi(·)∗ are measurable, so are the functions
φi(·, x, u) for all x, u. Further we shall impose additional assumptions on gi(·) and
φi(·) to ensure the convergence of the integrals in (5.4) for all x(·) ∈ L2, u(·) ∈ L2.
The problem under consideration is a particular case of the abstract problem (1.1)
with the constraints (1.2): now H := L2

(
[0,+∞)→ Rl

)
×L2 ([0,+∞)→ Rm) , Z :=

{z = [x(·), u(·)] ∈ H : (5.2) and (5.3) are true } , F := G0, and G1, . . . ,Gk are defined
by (5.4).

It is worthy to note first that, in general, the method (I)–(IV) fails to be valid for
the problem (5.1)–(5.4). (See the example in subsection 5.5 at the end of the section.)
Nevertheless, we shall indicate a number of particular cases of this problem for which

(A) the method (I)–(IV) is valid and the duality relation (1.12) is true and
(B) the Lagrangian function (1.4) is convex on the domain Z of all processes

[x(·), u(·)] that satisfy (5.2) and (5.3) whenever τ∗ ≥ 0 and the infimum of the La-
grangian function on Z is finite.

In each of these cases, the admissible domain and the objective function can be
nonconvex due to the absence of assumptions on gi(t, x, u) that imply the convexity
of the first summand in (5.4).
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Interpreting Definition 2.1, we see that the problem (5.1)–(5.4) is regular if and
only if there exists a process [x(·), u(·)] such that relations (5.2) and (5.3) are true
and G1 < 0, . . . ,Gk < 0 with Gi being defined by (5.4).

5.1. Stationary linear-quadratic problem.
LEMMA 5.1. Let A(t) = A, B(t) = B, Gi(t) = Gi, Qi(t) = Qi, and Γi(t) = Γi

be constant matrices. Assume that the pair (A,B) is stabilizable and φi(t, x, u) =
ri(t)∗x+ ρi(t)∗u with |ri(·)|+ |ρi(·)| ∈ L2.

Then assertions (A) and (B) are true provided that the problem (5.1)–(5.4) is
regular.

Proof. Rewrite the problem (5.1)–(5.4) in the form (1.1) as it was done above.
Equip H with the weak topology. Given zi = [xi(·), ui(·)] ∈ H, i = 1, 2, z =
[x(·), u(·)] ∈ H, we put

Bi (z1, z2) :=
∫ +∞

0

 x1(t)

u1(t)

∗ Gi(t) Qi(t)

Qi(t)∗ Γi(t)

 x2(t)

u2(t)

 dt ,

BF (·, ·) := B0(·, ·), BG(·, ·) := [B1(·, ·), . . . , Bk(·, ·)] ,

(5.5)

Φi(z) :=
∫ +∞

0
φi [t, x(t), u(t)] dt− γi ,

ΦF (·) := Φ0(·), ΦG(·) = [Φ1(·), . . . ,Φk(·)] .
(5.6)

Then the decomposition (1.3) is valid and the mappings BF (·, ·), BG(·, ·), ΦF (·), and
ΦG(·) are evidently continuous with respect to the norm of H with ΦF (·) and ΦG(·)
being linear in z. This clearly implies assumptions (A) and (B) of Theorem 2.2. Its
assumption (C) follows from assumption (C.3) of Lemma 2.3 by this lemma. To prove
(C.3), choose a sequence {tn} , tn > 0, tn →∞, and define the operator Tn : H → H
to be the right shift Tn [x(·), u(·)] := [x̂(·), û(·)] , x̂(t) := x (t− tn) , û(t) := u (t− tn)
if t ≥ tn and x̂(t) := 0, û(t) := 0 otherwise. Now the space M := Z − Z is obviously
described by relations (5.2) and (5.3) with a = 0. So it is very easy to see that, due
to stationarity,

TnM ⊂M, BP (Tnh, Tnh) = BP(h, h) ∀n = 1, 2, . . . , P := F ,G, h ∈M.(5.7)

Given z = [x(·), u(·)] ∈M, h = [y(·), v(·)] ∈ L2 × L2, we have

|〈Tnz, h〉| =
∣∣∣∣∫ +∞

tn

y(t)∗x (t− tn) dt+
∫ +∞

tn

v(t)∗u (t− tn) dt
∣∣∣∣

≤
(∫ +∞

tn

|y(t)|2
)1/2(∫ +∞

0
|x(t)|2

)1/2

+
(∫ +∞

tn

|v(t)|2
)1/2(∫ +∞

0
|u(t)|2

)1/2(5.8)

and, consequently, Tnz⇀ 0 with respect to the weak topology as n → ∞. Invoking
(5.7), we see that (2.6) is true. This completes the proof of assumption (C.3).

Thus, all the assumptions of Theorem 2.2 are fulfilled and, by this theorem,
Lemma 5.1 is valid.

Remark. Lemma 5.1 was first proved in [11]. Note also that this lemma readily
follows from Proposition 1.1. Indeed, consider the self-adjoint operator Aτ∗ : M→M

that corresponds to the form (1.13) Bτ∗(h) = 〈Aτ∗h, h〉 , h ∈ M, and denote by
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λ− the minimal point of its spectrum. Then B−(h) := Bτ∗(h) − λ−|h|2H ≥ 0 for
all h ∈ M. Assume that λ− is an eigenvalue of Aτ∗ and consider a corresponding
eigenvector h0 6= 0. Then B− (h0) = 0. By (5.7), the form (1.13) is invariant,
Bτ∗ (Tnh) = Bτ∗(h), h ∈ M, and so evidently is the norm |Tnh|H = |h|H . From
this it follows that B− (Tnh0) = B− (h0) = 0 where Tnh0 ∈M and B−(h) ≥ 0 for all
h ∈M. In other words, Tnh0 = arg minh∈ mB−(h). By applying the Fermat necessary
conditions, we see that hn := Tnh0 is also an eigenvector Aτ∗hn = λ−hn. It remains to
note that the linear hull of all the shifts h0, h1, . . . is an infinite-dimensional subspace
provided h0 6= 0. Thus, even if λ− is an eigenvalue, its geometrical multiplicity is
infinite. So the assumptions of Proposition 1.1 are valid and we prove Lemma 5.1
once more.

In what follows, we shall denote the norm of the space Lq by | · |q.

5.2. Almost-periodic linear-quadratic problem with vanishing convex
summands in the objective and constraint functions.

LEMMA 5.2. Assume that
(2.i) the functions A(·), B(·), Gi(·), Qi(·), and Γi(·) are almost-periodic (more pre-

cisely, each of them has an almost-periodic extension on the real line);
(2.ii) the functions φi(t, x, u) are convex in x and u for almost all t and

|φi(t, x, u)| ≤ αi(t)
(
|x|2 + |u|2

)
+ βi(t) (|x|+ |u|) + γi(t),(5.9)

where α0(·) ≥ 0, . . . , αk(·) ≥ 0 are continuous functions of t ∈ [0,∞) such that
αi(t)→ 0 as t→∞ and βi(·) ∈ L2, γi(·) ∈ L1, βi(·) ≥ 0, γi(·) ≥ 0 for all i = 0, . . . , k;

(2.iii) the system (5.2) is stabilizable. Namely, there exists a bounded continuous
m × l matrix function C(t), 0 ≤ t < ∞ such that the solution x(·) of the Cauchy
problem

ẋ = (A+BC)x+ f(t), 0 ≤ t <∞, x(0) = 0,(5.10)

belongs to L2
[
[0,∞)→ Rl

]
for any f(·) ∈ L2

[
[0,∞)→ Rl

]
and

|x(·)|2 ≤ c |f(·)|2(5.11)

where the constant c is independent of f(·).
Then assertions (A) and (B) are true provided that the problem (5.1)–(5.4) is

regular.
Proof. We recall that any collection {pν(·)}ν∈A of seminorms on a linear space X

generates a unique locally convex topology such that a set V ⊂ X is a neighborhood of
the origin iff V ⊃ {x ∈ X : pν1(x) < ε1, . . . , p

νs(x) < εs} for some ν1, . . . , νs ∈ A, ε1 >
0, . . . , εs > 0, and s = 1, 2, . . .. The convergence xn → x with respect to this topology
holds iff pν (xn − x)→ 0 as n→∞ for all ν ∈ A.

Rewrite the problem (5.1)–(5.4) in the form (1.1) just as it was done at the
beginning of the section. Denote α(t) := α0(t)+ · · ·+αk(t), β(t) := β0(t)+ · · ·+βk(t),
and define the seminorm p : H → [0,+∞) as

p(z) :=
[∫ +∞

0
α(t)

(
|x(t)|2 + |u(t)|2

)
dt

]1/2

+
∫ ∞

0
β(t) (|x(t)|+ |u(t)|) dt.

(5.12)
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Equip the spaceH with the topology η that is generated by the collection of seminorms
p(·), {|〈z, ·〉|}z∈H where 〈·, ·〉 is the inner product in H. It is easy to see that

hn
η→ 0 as n→∞
m

hn⇀ 0 with respect to the weak topology of H and p (hn)→ 0 as n→∞.
(5.13)

The decomposition (1.3) is clearly valid with the summands being defined by (5.5)
and (5.6). Due to (5.6), (5.9), and (5.12), the convex functions ΦF (·) and ΦG(·) are
bounded above on the η-open set V := {z ∈ H : p(z) < 1}. From this it follows that
these functions are η-continuous [3, p. 12], and so obviously are the operators BF (z, ·)
and BG(z, ·) for any z ∈ H. This means that assumptions (A) and (B) of Theorem 2.2
are fulfilled.

To prove (C), it suffices to demonstrate assumption (C.2) of Lemma 2.3. To this
end, consider a Lagrange multiplier τ∗ = τ = ‖τi‖ ∈ Rk, τ ≥ 0. The corresponding
form (1.13) clearly looks as follows:

Bτ (z) =
∫ +∞

0
x∗Gτ (t)x dt+ 2

∫ +∞

0
x∗Qτ (t)u dt+

∫ +∞

0
u∗Γτ (t)u dt,(5.14)

where z = [x(·), u(·)] , x = x(t), u = u(t), and Pτ (·) := P0(·) + τ1P1(·) + · · ·+ τkPk(·)
for P := G,Q,Γ. For P := G,Q,Γ, the function Pτ (·) is almost periodic [31, p. 10],
and so is the function Ξ(t) := [A(−t), B(−t), Gτ (t), Qτ (t),Γτ (t)] [31, p. 10]. Applying
the Bohr definition of an almost-periodic function [31, p. 3] to Ξ(·), we conclude that
there exists a sequence {tn}∞n=1 ⊂ (0,+∞) such that tn →∞ as n→∞ and

∆P
n := sup

t∈R
|P (t)− P (t+ σP tn)| → 0 as n→∞(5.15)

for any function P (·) := A(·), B(·), Gτ (·), Qτ (·),Γτ (·), where σP = −1 for P (·) :=
A(·), B(·) and σP := 1 otherwise.

Let h = [x(·), u(·)] ∈ M where M is described by relations (5.2) and (5.3) with
a = 0. We have to construct a sequence hn = [xn(·), un(·)] ∈ M, n = 1, 2, . . . , such
that (2.5) is true. Shift the process h to the right ĥn := [yn(·), vn(·)] , yn(t) :=
x (t− tn) , vn(t) := u (t− tn) if t ≥ tn and yn(t) := 0, vn(t) := 0 otherwise. Then
(5.2) implies that

ẏn = A(t)yn +B(t)vn + fn(t), 0 ≤ t <∞, yn(0) = 0,

where fn(t) := [A (t− tn)−A(t)] yn(t)+[B (t− tn)−B(t)] vn(t). Taking into account
(5.15), we see that |fn(·)|2 ≤ ∆A

n |yn(·)|2 + ∆B
n |vn(·)|2 = ∆A

n |x(·)|2 + ∆B
n |u(·)|2 → 0

as n → ∞. Consider the solution x(·) = ∆xn(·) of the Cauchy problem (5.10) with
f(·) := −fn(·). Denoting ∆un(·) := C(·)∆xn(·), xn(·) := yn(·) + ∆xn(·), un(·) :=
vn(·) + ∆un(·), we see that, by (5.11),

|∆xn(·)|2 + |∆un(·)|2 → 0 as n→∞(5.16)

and also that xn(0) = 0, ẋn = ẏn + ∆ẋn = [Ayn +Bvn + fn] + [(A+BC)∆xn − fn]
= A (yn + ∆xn) +B (vn + C∆xn) = Axn +Bun, i.e., hn := [xn(·), un(·)] ∈M.

Thus, a sequence {hn} ⊂ M is indicated. Put z := hn in (5.14). Then the first
summand in (5.14) looks as follows
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0

[yn(t) + ∆xn(t)]∗G(t) [yn(t) + ∆xn(t)] dt

=
∫ ∞

0
yn(t)∗G(t)yn(t) dt︸ ︷︷ ︸

a1

+ 2
∫ ∞

0
yn(t)∗G(t)∆xn(t) dt︸ ︷︷ ︸

a2

+
∫ ∞

0
∆xn(t)∗G(t)∆xn(t) dt︸ ︷︷ ︸

a3

.

Denoting g := supt∈R |G(t)|, we have by (5.16)

|a2| ≤ 2g |yn(·)|2 |∆xn(·)|2 = 2g |x(·)|2 |∆xn(·)|2 → 0, |a3| ≤ g |∆xn(·)|22 → 0 as n→∞.

In the light of (5.15), we see that∣∣∣∣a1 −
∫ ∞

0
x(t)∗G(t)x(t) dt

∣∣∣∣ =
∣∣∣∣∫ ∞
tn

x (t− tn)∗G(t)x (t− tn) dt−
∫ ∞

0
x(t)∗G(t)x(t) dt

∣∣∣∣
=
∣∣∣∣∫ ∞

0
x(t)∗ [G (t+ tn)−G(t)]x(t) dt

∣∣∣∣ ≤ ∆G
n |x(·)|22 → 0 as n→∞.

Thus, a1 →
∫
x(t)∗G(t)x(t) dt as n→∞.

Considering the second and the third summands in (5.14) by analogy, we get the
equality

lim
n→∞

Bτ (hn) = Bτ (h),

which implies the second relation in (2.5). To complete the proof of (2.5), it remains
to show that hn

η→ 0 as n → ∞. Since, in (5.13), the assertion framed follows from
(5.8) and (5.16), we have to prove only the convergence p (hn)→ 0 as n→∞, which
evidently follows from (5.12) and the estimations

p (hn) = p ([yn(·), vn(·)] + [∆xn(·), ∆un(·)]) ≤ p [yn(·), vn(·)] + p [∆xn(·), ∆un(·)] ,

p [yn(·), vn(·)] =
(∫ ∞

tn

α(t)
(
|x (t− tn)|2 + |u (t− tn)|2

)
dt

)1/2

+
∫ ∞
tn

β(t) (|x (t− tn)|+ |u (t− tn)|) dt

≤
[

sup
t≥tn

α(t)
]1/2 (

|x(·)|22 + |u(·)|22
)1/2

+
(∫ ∞

tn

|β(t)|2 dt
)1/2

(|x(·)|2 + |u(·)|2) ,

p [∆xn(·), ∆un(·)] ≤
[

sup
t≥tn

α(t)
]1/2 (

|∆xn(·)|22 + |∆un(·)|22
)1/2

+
(∫ ∞

tn

|β(t)|2 dt
)1/2

(|∆xn(·)|2 + |∆un(·)|2) .
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Here supt≥tn α(t)→ 0 and
∫∞
tn
|β(t)|2 dt→ 0 as n→∞ by (2.ii). Thus, Assumption

(C.2) of Lemma 2.3 is satisfied.
Thus, all the assumptions of Theorem 2.2 are fulfilled and, by this theorem,

Lemma 5.2 is valid.
In dealing with the previous examples, the point was the use of the right shifts of

the process. The subsequent examples will present another technique. It leans upon
the following frequency criterion for nonnegativity of an integral quadratic form on
the subspace M of all processes satisfying (5.2) and (5.3) with a = 0.

LEMMA 5.3 (see [17]). Let, in (5.2), (5.4), A(t) = A, B(t) = B, G0(t) =
G0, Q0(t) = Q0, Γ0(t) = Γ0 be constant matrices and φ0(t, x, u) = 0, γ0 = 0.
Also let the pair A,B be stabilizable. Denote by C the complex plane, and extend the
function g(·) := g0(·) on Cl × Cm as Hermitian form, i.e., g (x′ + ıx′′, u′ + ıu′′) :=
g (x′, u′) + g (x′′, u′′) for all x′, x′′ ∈ Rl, u′, u′′ ∈ Rm, where ı is the imaginary unity.
Define G0 by (5.4), and denote by I the unit l × l-matrix.

Then G0 ≥ 0 for all processes x(·), u(·) satisfying (5.2) and (5.3) with a = 0 if
and only if

g(y, v) ≥ 0 for all y ∈ Cl, v ∈ Cm, and ω ∈ R such that ıωy = Ay +Bv.(5.17)

5.3. Linear-quadratic problem with quadratic constraints. Stationary
object and nonstationary quadratic forms.

LEMMA 5.4. Assume that
(3.i) gi(t, x, u) = g0

i (x, u)+∆gi(t, x, u), where g0
i (x, u) = x∗G0

ix+2x∗Q0
iu+u∗Γ0

iu
and ∆gi(t, x, u) = x∗∆Gi(t)x+ 2x∗∆Qi(t)u+ u∗∆Γi(t)u are quadratic forms in x, u;

(3.ii) ∆gi(t, x, u) ≥ 0 for all x, u and almost all t ≥ 0;
(3.iii) ∆Gi(·) ∈ L∞, ∆Qi(·) ∈ L∞, ∆Γi(·) ∈ L∞;
(3.iv) given y ∈ Rl and v ∈ Rm, we have

1
T

∫ T

0
∆gi(t, y, v) dt→ 0 as T →∞;(5.18)

(3.v) A(t) = A and B(t) = B are constant matrices and the pair (A,B) is stabi-
lizable;

(3.vi) φi(t, x, u) = ri(t)∗x+ ρi(t)∗u with |ri(·)|+ |ρi(·)| ∈ L2.
Then assertions (A) and (B) are true provided that the problem (5.1)–(5.4) is

regular.
Proof. Rewrite the problem (5.1)–(5.4) in the form (1.1) just as it was done at the

beginning of the section. Equip H with the weak topology and define the mappings
BF (·), BG(·), ΦF (·), ΦG(·) by (5.5) and (5.6). Then the decomposition (1.3) is
obviously valid and assumptions (A) and (B) of Theorem 2.2 are fulfilled. To prove
(C), it suffices to demonstrate assumption (C.1) of Lemma 2.3. To this end, consider
a Lagrange multiplier τ∗ = τ = ‖τi‖ ∈ Rk, τ ≥ 0. The corresponding form (1.13)
now clearly looks as follows:

Bτ (z) :=
∫ +∞

0
g0
τ [x(t), u(t)] dt︸ ︷︷ ︸
B0
τ (z)

+
∫ +∞

0
∆gτ [t, x(t), u(t)] dt︸ ︷︷ ︸

∆Bτ (z)

,(5.19)

where g0
τ (·) := g0

0(·) + τ1g
0
1(·) + · · · + τkg

0
k(·) and ∆gτ (·) := ∆g0(·) + τ1∆g1(·) + · · ·

+τk∆gk(·). Assumptions (3.i)–(3.iv) apparently remain valid for i := τ .
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Let Bτ (h) < 0 for some h ∈M. Since ∆Bτ (h) ≥ 0 by (3.ii), we have B0
τ (h) < 0.

Thus, the quadratic form B0
τ (h) is not nonnegative on the subspace M of all processes

[x(·), u(·)] satisfying (5.2) and (5.3) with a = 0. By Lemma 5.3,

g0
τ (y, v) < 0, ıω = Ay +Bv(5.20)

for some y ∈ Cl, v ∈ Cm, and ω ∈ R. Here g0
τ (x, u) is extended on Cl × Cm as

Hermitian form. Using the analogous extension of the form ∆gτ (t, x, u), we make the
definition (5.19) of Bτ (z) valid for processes [x(·), u(·)] with complex-valued compo-
nents x(t) ∈ Cl, u(t) ∈ Cm.

Since the pair (A,B) is stabilizable, there exists a real l×m matrix C such that
the equation ẋ = (A+BC∗)x is stable. Its solution x(t), t ≥ 0 with x(0) = a ∈ Cl
belongs to L2. Denote x(t|a) := x(t) if t ≥ 0 and x(t|a) := 0 otherwise and put
u(·|a) := C∗x(·|a). Then we have

ẋ(t|a) = Ax(t|a) +Bu(t|a) (if t 6= 0), x(0 + 0|a) = a,

|x(·|a)|2 + |u(·|a)|2 ≤ c2|a| ∀a ∈ Cl .(5.21)

Now we are ready to construct a sequence of processes to ensure assumption (C.1)
of Lemma 2.3. Namely, choose a sequence {tn} ⊂ (0,∞), tn →∞, denote χn(t) := 1
if 0 ≤ t ≤ tn and χn(t) := 0 otherwise, and put zn := [xn(·), un(·)], where

xn(t) := t−1/2
n y eıωtχn(t)︸ ︷︷ ︸

x0
n(t)

+ t−1/2
n

{
x [t| − y] + x

[
t− tn|eıωtny

]}︸ ︷︷ ︸
∆xn(t)

,

un(t) := t−1/2
n v eıωtχn(t)︸ ︷︷ ︸

u0
n(t)

+ t−1/2
n

{
u [t| − y] + u

[
t− tn|eıωtny

]}︸ ︷︷ ︸
∆un(t)

.
(5.22)

It is easy to see that |xn(·)| + |un(·)| ∈ L2, ẋn = Axn + Bun for t ≥ 0, t 6= tn and
also that xn(0 + 0) = 0, xn (tn − 0) = xn (tn + 0). The last relation implies that the
differential equation is valid for all t ≥ 0. Therefore, separating the real z(1)

n and the
imaginary z(2)

n parts of the process zn = z(1)
n + ız(2)

n , we evidently have z(1)
n , z(2)

n ∈M.
(We recall that the subspace M is described by relations (5.2) and (5.3) with a = 0.)
By (5.19), Bτ (zn) = Bτ (z(1)

n ) + Bτ (z(2)
n ) and, consequently,

lim inf
n→∞

Bτ (zn) ≥ lim inf
n→∞

Bτ (z(1)
n ) + lim inf

n→∞
Bτ (z(2)

n ) .(5.23)

It is easy to see that
∣∣x0
n(·)

∣∣
2 = |y|,

∣∣u0
n(·)

∣∣
2 = |v| and, by (5.21), |∆xn(·)|2 ≤

2t−1/2
n c2|y| → 0, |∆un(·)|2 ≤ 2t−1/2

n c2|y| → 0 as n→∞. Denoting z0
n :=

[
x0
n(·), u0

n(·)
]

and ∆zn := [∆xn(·),∆un(·)], we have
∣∣z0
n

∣∣2
H

= |y|2 + |v|2, |∆zn|H → 0 as n→∞ and
so ∣∣Bτ (zn)− Bτ

(
z0
n

)∣∣ ≤ 2
∣∣Bτ (∆zn, z0

n

)∣∣+ |Bτ (∆zn)|

≤ 2 ‖Bτ‖
∣∣z0
n

∣∣
H
|∆zn|H + ‖Bτ‖ |∆zn|2H → 0 as n→∞.

This and the definition of x0
n(·), u0

n(·) yield that

f := lim
n→∞

Bτ (zn) = lim
n→∞

Bτ
(
z0
n

)
= lim
n→∞

{
t−1
n

∫ tn

0
g0
τ

[
eıωt y, eıωt v

]
dt

+ t−1
n

∫ tn

0
∆gτ

[
eıωt y, eıωt v

]
dt

}
= g0

τ (y, v) + lim
n→∞

t−1
n

∫ tn

0
∆gτ (t, y, v) dt.
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Then, by (5.18) and (5.20), f = g0
τ (y, v) < 0. In light of (5.23), we see that lim inf

from (2.4) is negative at least for one of the two sequences {hn} := {z(1)
n } , {z(2)

n } ⊂M.
To complete the proof of assumption (C.1), it remains to show that z(ν)

n ⇀ 0 with
respect to the weak topology of L2 × L2 or, in other words, that 〈z(ν)

n , z̃〉 → 0 as
n→∞ for all z̃ = [x̃(·), ũ(·)] ∈ L2 × L2. It is obvious that

|〈z(ν)
n , z̃〉| ≤

∫ ∞
0
|xn(t)| |x̃(t)| dt︸ ︷︷ ︸

αn

+
∫ ∞

0
|un(t)| |ũ(t)| dt︸ ︷︷ ︸

βn

,

αn ≤
∫ ∞

0
|∆xn(t)| |x̃(t)| dt+

∫ ∞
0

∣∣x0
n(t)

∣∣ |x̃(t)| dt

≤ |∆xn(·)|2 |x̃(·)|2 +
∫ T

0

∣∣x0
n(t)

∣∣ |x̃(t)| dt+
∫ ∞
T

∣∣x0
n(t)

∣∣ |x̃(t)| dt

for any T > 0. Here
∣∣x0
n(t)

∣∣ ≤ t−1/2
n |y| for all t ≥ 0 and

∣∣x0
n(·)

∣∣
2 = |y|. So we have

αn ≤ |∆xn(·)|2 |x̃(·)|2 + t−1/2
n |y|

∫ T

0
|x̃(t)| dt+

∣∣x0
n(·)

∣∣
2

(∫ ∞
T

|x̃(t)|2 dt

)1/2

≤ |∆xn(·)|2 |x̃(·)|2 +
(
T

tn

)1/2

|y| |x̃(·)|2 + |y|
(∫ ∞

T

|x̃(t)|2 dt

)1/2

.

Successively letting n → ∞ and then T → ∞, we see that αn → 0 as n → ∞. By
analogy, βn → 0 as n→∞ that completes the proof of assumption (C.1).

Thus, all the assumptions of Theorem 2.2 are fulfilled and, by this theorem,
Lemma 5.4 is valid.

Remarks. 1. Lemma 5.4 remains valid if assumption (3.ii) is replaced by the
following more general one.

(3.ii′) For each τ∗ = τ = ‖τi‖ ∈ Rk, denote g0
τ (·) := g0

0(·) + τ1g
0
1(·) + · · ·

+τkg0
k(·), ∆gτ (·) := ∆g0(·) + τ1∆g1(·) + · · · + τk∆gk(·). Consider the collection

Θ = {τ} of all multipliers τ ≥ 0 for which the frequency criterion (5.17) is fulfilled
with g := g0

τ .
Given τ ∈ Θ, we have ∆gτ (t, x, u) ≥ 0 for all x, u and almost all t ≥ 0.
Indeed, assumption (3.ii) was used only to demonstrate assumption (C.1) of

Lemma 2.3; i.e., it was used to show that τ ≥ 0 and Bτ (h) < 0 ⇒ f := limn→∞
Bτ (hn) < 0 for the sequence {hn} ⊂ M constructed above. It has been actually
demonstrated that f < 0 for any τ∈Θ. So the role of (3.ii) was only to ensure the im-
plication τ ≥ 0 and Bτ (h) < 0 ⇒ τ∈Θ, which is clearly equivalent to the implication
τ ∈ Θ⇒ Bτ (h) ≥ 0 (∀h ∈M) and now is still true. Indeed, if τ ∈ Θ and h ∈M, then
B0
τ (h) ≥ 0 by Lemma 5.3 and ∆Bτ (h) ≥ 0 by (5.19) and (3.ii′). Therefore, Bτ (h) ≥ 0.

2. The above considerations show that assumption (3.ii′) can be replaced by the
still more general one: given τ ∈ Θ, we have Bτ (h) ≥ 0 for all h ∈M.

3. Shifting the functions (5.22) to the right by sn ≥ 0 and analyzing the above
considerations, we see that assumption (3.iv) can be replaced by the following one.
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(3.iv′) Given y ∈ Cl and v ∈ Cm, there exist infinite sequences of reals
{sn} ⊂ [0,∞) and {tn} ⊂ (0,∞) such that tn →∞ as n→∞ and

t−1
n

∫ sn+tn

sn

∆gi(t, y, v) dt→ 0 as n→∞ for all i = 0, . . . , k.

5.4. Nonstationary linear-quadratic problem with coefficients, which
become constant since some time instant. Consider the problem (5.1)–(5.4)
and assume that

(4.i) the matrix-valued functions A(·), B(·), Gi(·), Qi(·), and Γi(·) are piecewise
continuous. There exists a time instant t0 ≥ 0 such that they are constant in the
domain t ≥ t0, i.e., A(t) = A, B(t) = B, Gi(t) = G0

i , Qi(t) = Q0
i , and Γi(t) = Γ0

i

for all t ≥ t0;
(4.ii) φi(t, x, u) = 0 (i = 0, . . . , k), the pair (A,B) is stabilizable, and the system

ẋ = A(t)x + B(t)u, 0 ≤ t ≤ t0 is controllable on any nontrivial subinterval [t1, t2] ⊂[
0, t0

]
; i.e., given t1, t2 ∈

[
0, t0

]
, t1 < t2, and x1, x2 ∈ Rl, there is a control u(·), which

brings the system starting at time t1 at x1 to x2 at time t2.5

To proceed further, we need some notation. Given a Lagrange multiplier τ =
‖τi‖ ∈ Rk, the function gτ (t, x, u) := g0(t, x, u) +

∑k
i=1 τigi(t, x, u) = x∗Gτ (t)x +

2x∗Qτ (t)u + u∗Γτ (t)u is independent of t in the domain t ≥ t0; i.e., gτ (t, x, u) =
g0
τ (x, u) for t ≥ t0.

(4.D) Denote by Θ the collection of all Lagrange multipliers τ = ‖τi‖ ∈ Rk such
that Γτ (t) ≥ 0 for t ≥ 0, the frequency criterion (5.17) is fulfilled for g := g0

τ , and
τi ≥ 0 (i = 1, . . . , k). Introduce also the set Θ0 := {τ ∈ Θ : Γτ (t± 0) > 0 for all t ≥ 0
and (5.17) is true for g(y, v) := g0

τ (y, v)− δ
(
|y|2 + |v|2

)
with some δ > 0

}
.

Both the set Θ and the set Θ0 can be empty. It is only to simplify the further
formulations that we assume that

(4.iii) Either Θ = ∅ or Θ0 6= ∅ (i.e., Θ 6= ∅ ⇒ Θ0 6= ∅ ).
Let Θ0 6= ∅, and consider τ ∈ Θ0. By the Kalman–Yakubovich–Popov lemma

[15, 16, 17, 18], there exist and are unique the real l× l-matrix Pτ = P ∗τ and the real
l ×m matrix rτ such that

2x∗Pτ (Ax+Bu) + g0
τ (x, u) = (u− r∗τx)∗ Γ0

τ (u− r∗τx) ∀x ∈ Rl, u ∈ Rm(5.24)

and the system ẋ = (A+Br∗τ )x is stable. There is known a number of
efficient methods to calculate Pτ and rτ [15, 16, 17, 18]. Introduce also the matrices

Aτ (t) := A(t)−B(t)Γτ (t)−1Qτ (t)∗, Dτ (t) := B(t)Γτ (t)−1B(t)∗ ,

Cτ (t) := Gτ (t)−Qτ (t)Γτ (t)−1Qτ (t)∗
(5.25)

and define l × l matrices X(t) and Ψ(t) as the solution of the Cauchy problem

Ẋτ (t) = Aτ (t)Xτ (t) + Dτ (t)Ψτ (t),
Ψ̇τ (t) = Cτ (t)Xτ (t) − Aτ (t)∗Ψτ (t),

0 ≤ t ≤ t0,

Xτ

(
t0
)

= I, Ψτ

(
t0
)

= −Pτ .

(5.26)

5See, for example, [20, pp. 92–96] about criteria for controllability.
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The last assumption is the following.
(4.iv) Given τ ∈ Θ0, we have

detXτ (t) 6= 0
(
∀t ∈

(
0, t0

])
.(5.27)

If Θ0 = ∅, this assumption is meant to be omitted.
In (5.27), the time instant t0 can be chosen in various ways. However, the validity

of (4.iv) is independent of this choice (see Lemma 5.6 below).
LEMMA 5.5. Let the above assumptions (4.i)–(4.iv) hold. Then assertions (A) and

(B) are true provided that the problem (5.1)–(5.4) is regular.
We preface the proof of this lemma by two preliminary facts. To state them, we

recall that M is the collection of all processes [x(·), u(·)] satisfying (5.2) and (5.3) with
a = 0.

LEMMA 5.6. Let assumptions (4.i), (4.ii) be fulfilled and a multiplier τ ∈ Θ0 be
given. Define the mapping Bτ : H → R by (5.14). Then the relation

Bτ (h) ≥ 0 ∀h ∈M(5.28)

is true if and only if condition (5.27) is fulfilled.
Note that relation (5.28) does not use the time instant t0. So the choice of this

instant does not affect the validity of condition (5.27).
Proof of Lemma 5.6. (5.27) ⇒ (5.28). Let h = [x(·), u(·)] ∈M; i.e., let relations

(5.2) and (5.3) be true with a = 0. By (5.5), we have

Bτ (h) =
∫ t0

0
gτ [t, x(t), u(t)] dt+

∫ ∞
t0

g0
τ [x(t), u(t)] dt.(5.29)

Put x := x(t) and u := u(t) into (5.24) and recall that Γ0
τ ≥ 0 by the definition of the

set Θ ⊃ Θ0 3 τ . Then, for t ≥ t0, we get

d

dt
[x(t)∗Pτx(t)] + g0

τ [x(t), u(t)]

= [u(t)− r∗τ (t)x(t)]∗ Γ0
τ [u(t)− r∗τ (t)x(t)] ≥ 0.

(5.30)

Integrating over the interval
[
t0,∞

)
results in the inequality∫ ∞

t0
g0
τ [x(t), u(t)] dt ≥ x

(
t0
)∗
Pτx

(
t0
)
.(5.31)

This permits us to establish a below bound of the quantity (5.29)

Bτ (h) ≥ I :=
∫ t0

0
gτ [t, x(t), u(t)] dt+ x

(
t0
)∗
Pτx

(
t0
)
.(5.32)

Here

ẋ(t) = A(t)x(t) +B(t)u(t), 0 ≤ t ≤ t0, x(0) = 0.(5.33)

It remains to note that relation (5.27) is sufficient and necessary for nonnegativity
of the functional I = I [x(·), u(·)] from (5.32) over processes [x(·), u(·)] , 0 ≤ t ≤ t0

satisfying (5.33) [16, 32, 33].
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(5.28) ⇒ (5.27). By the above citation, it suffices to show that I ≥ 0 for any
process [x(·), u(·)] , 0 ≤ t ≤ t0 satisfying (5.33). Consider such a process. For t ≥ t0,
define x(t) to be the solution of the Cauchy problem ẋ = (A+Br∗τ )x, x

(
t0 + 0

)
=

x
(
t0 − 0

)
and put u(t) := r∗τx(t) where r∗τ is the matrix from (5.24). Since the

system ẋ = (A+Br∗τ )x is stable, relations (5.2) and (5.3) are true with a = 0,
i.e., h := [x(·), u(·)] ∈ M. Put x := x(t) and u := u(t) into (5.24) and recall that
u(t) = r∗τx(t) for t ≥ t0. Then we see that, in (5.30)–(5.32), the inequality sign can
be replaced by the equality one. In particular, I = Bτ (h) by (5.32) where Bτ (h) ≥ 0
due to (5.28). Thus, we have the inequality desired: I ≥ 0.

In what follows, the symbol ⇀ will denote the convergence with respect to the
weak topology of the space H := L2

(
[0,+∞)→ Rl

)
× L2 ([0,+∞)→ Rm).

LEMMA 5.7. Let assumptions (4.i)–(4.iv) be fulfilled and a multiplier τ ∈ Rk be
given. Define the mapping Bτ : H → R by (5.14) and consider the set Θ from (4.D).

If τ∈Θ and τi ≥ 0 for all i = 1, . . . , k, then

f := lim inf
h⇀0, h∈ m

Bτ (h) < 0,(5.34)

where lim inf is with respect to the weak topology.
Proof. By (4.D), either (1) v∗Γτ (t + 0)v < 0 for some t ≥ 0 and v ∈ Rm or (2)

relations (5.20) are true for some ω ∈ R, y ∈ Cl, and v ∈ Cm. Consider first the case
(1). By (4.ii), there exists an l×mmatrix C such that the equation ẋ = (A+BC∗)x is
stable. Denote by x(·|a) its solution with x(0|a) = a and put u(·|a) := C∗x(·|a). Then
relations (5.21) are valid. Choose an instant t∗ such that t∗ ≥ t0 and t∗ ≥ t+2. Given
ε ∈ (0, 1], we put uε(t) := ε−1/2v if t ≤ t < t+ ε, uε(t) := −ε−1/2v if t+ ε ≤ t < t+ 2ε,
and uε(t) := 0 if 0 ≤ t < t or t + 2ε ≤ t < t∗. Consider the solution xε(·) of the
Cauchy problem ẋε(t) = A(t)xε(t) + B(t)uε(t), 0 ≤ t ≤ t∗, xε(0) = 0. As is well
known, |xε(·)|∞ ≤ K |uε(·)|1 and so

max
t∈[0,t∗]

|xε(t)| ≤ K |uε(·)|1 = Kε−1/2|v|2ε→ +0 as ε→ +0.(5.35)

Denote aε := xε (t∗) and define xε(t), uε(t) for t ≥ t∗ as follows: xε(t) := x (t− t∗|aε) ,
uε(t) := u (t− t∗|aε). It is easy to see that hε := [xε(·), uε(·)] ∈M. By (5.35), aε → 0
as ε→ +0 and so, due to (5.21) and (5.35), we have

|xε(·)|2 → 0,
∫ ∞
t∗

|uε(t)|2 dt→ 0 as ε→ +0,
∫ t∗

0
|uε(t)|2 dt = 2|v|2.(5.36)

Taking into account (5.14), we get

Bτ (hε) =
∫ ∞

0
xε(t)∗Gτ (t)xε(t) dt︸ ︷︷ ︸

δ1

+ 2
∫ ∞

0
xε(t)∗Qτ (t)uε(t) dt︸ ︷︷ ︸

δ2

+
∫ ∞
t∗

uε(t)∗Γτ (t)uε(t) dt︸ ︷︷ ︸
δ3

+
∫ t∗

0
uε(t)∗Γτ (t)uε(t) dt︸ ︷︷ ︸

δ4

.

Here |δ1| ≤ supt≥0 |Gτ (t)| |xε(·)|22 → 0 as ε → +0 by (5.36) and also δ2 → 0, δ3 → 0
as ε→ +0 due to analogous reasons. Furthermore,

δ4 = ε−1

[∫ t+ε

t

v∗Γτ (t)v dt+
∫ t+2ε

t+ε
(−v)∗Γτ (t)(−v) dt

]
→ 2v∗Γτ (t+0)v as ε→ +0.
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Thus,

Bτ (hε)→ 2v∗Γτ (t+ 0)v < 0 as ε→ +0.(5.37)

To complete the proof, it remains to show that hε⇀ 0 as ε → +0. For h̃ =
[x̃(·), ũ(·)] ∈ H, we have〈

hε, h̃
〉

=
∫ ∞

0
x̃(t)∗xε(t) dt︸ ︷︷ ︸

∆1

+
∫ ∞
t∗

ũ(t)∗uε(t) dt︸ ︷︷ ︸
∆2

+
∫ t∗

0
ũ(t)∗uε(t) dt︸ ︷︷ ︸

∆3

.

Here |∆1| ≤ |x̃(·)|2 |xε(·)|2 → 0 as ε→ +0 due to (5.36). Likewise, ∆2 → 0 as ε→ +0
and

|∆3| ≤
∫ t+2ε

t

|uε(t)| |ũ(t)| dt = ε−1/2|v|
∫ t+2ε

t

|ũ(t)| dt

≤ ε−1/2|v|
(∫ t+2ε

t

dt

)1/2(∫ t+2ε

t

|ũ(t)|2 dt

)1/2

=
√

2|v|
(∫ t+2ε

t

|ũ(t)|2 dt

)1/2

→ 0

as ε→ +0. Thus, hε⇀ 0 as ε→ +0 where hε ∈M as it was shown above. Therefore,
the quantity f in (5.34) does not exceed the limit limε→+0 Bτ (hε), which is negative
by (5.37). So relation (5.34) is true in case (1).

Consider case (2). It was shown in subsection 5.3 that there exists a sequence
hn = [xn(·), un(·)] ∈M, n = 1, 2, . . . such that hn⇀ 0 as n→∞, ẋn(t) = Axn(t) +
Bun(t), 0 ≤ t <∞, xn(0) = 0, and

lim inf
n→∞

∫ ∞
0

g0
τ [xn(t), un(t)] dt︸ ︷︷ ︸

qn

< 0.

Shift the functions xn(·) and un(·) to the right x̃n(t) := xn
(
t− t0

)
, ũn(t) := un

(
t− t0

)
if t ≥ t0 and x̃n(t) := 0, ũn(t) := 0 otherwise. It is obvious that h̃n := [x̃n(·), ũn(·)] ∈
M, h̃n⇀ 0 as n → ∞ and, by (5.5), Bτ (h̃n) = qn. It remains to note that the
quantity f in (5.34) does not exceed lim infn→∞ Bτ (hn) = lim infn→∞ qn < 0.

Proof of Lemma 5.5. The reduction to the abstract problem (1.1) is performed
just as it was done at the beginning of the section. Equip the space H with the weak
topology. The verification of assumptions (A) and (B) of Theorem 2.2 is performed
just as it was done in subsection 5.1. To prove (C), consider a multiplier τ = ‖τi‖ ∈ Rk
with τi ≥ 0. We have to demonstrate relation (2.3), which is equivalent to the
implication

f := lim inf
h⇀0, h∈ m

Bτ (h) ≥ 0⇒ Bτ (h) ≥ 0 ∀h ∈M.(5.38)

By Lemma 5.7, f ≥ 0⇒ τ ∈ Θ. So it suffices to show that

τ ∈ Θ⇒ Bτ (h) ≥ 0 (∀h ∈M).(5.39)

For τ ∈ Θ0, the conclusion from (5.39) is justified by Lemma 5.6.
Let τ ∈ Θ. By (4.iii), Θ0 6= ∅ and we can choose τ0 ∈ Θ0. It easily follows

from (4.D) that τ + ετ0 ∈ Θ0 for any ε > 0. So Bτ+ετ0(h) ≥ 0 for all h ∈ M.
By letting ε → +0, we get the conclusion from (5.39). Thus, (5.39) is true and
all the assumptions of Theorem 2.2 are fulfilled. By this theorem, Lemma 5.5 is
valid.
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5.5. Counterexample. In the conclusion of the section, we show that, in ge-
neral, the method (I)–(IV) fails to be applicable to the problem (5.1)–(5.4). The
following is the counterexample required

G0 := −
∫ T

0
2x1x2 + x2

2 + x1u︸ ︷︷ ︸
µ

dt→ min subject to(5.40)

ẋ1 = x2, ẋ2 = u, 0 ≤ t <∞, x1(0) = x2(0) = 0,
|x1(·)|+ |x2(·)|+ |u(·)| ∈ L2,

(5.41)

G1 := 2
∫ T

0
x2

2 + x1u︸ ︷︷ ︸
σ

dt− 1 ≤ 0, G2 := −
∫ T

0
2x2u+ x2

2 + x1u︸ ︷︷ ︸
η

dt+ 1 ≤ 0,(5.42)

where the real T > 0 is fixed. We shall show that (1) the problem (5.40)–(5.42) is
regular and has a solution, but (2) the method (I)–(IV) fails to be applicable to this
problem.

To this end, note first that, by (5.41), σ = d/dt (x1x2) , η = d/dt
(
x2

2 + x1x2
)
,

and µ = d/dt
(
x2

1 + x1x2
)
. So the problem can be rewritten in terms of the state

y := [x1(T ), x2(T )]

f(y) := −y2
1 − y1y2 →min subject to y = ‖yi‖ ∈ Z := R2,

g1(y) := 2y1y2 ≤ 1, g2(y) := −y2
2 − y1y2 ≤ −1.(5.43)

(Relations (5.41) do not imply any restrictions on y due to controllability of the object
ẋ1 = x2, ẋ2 = u.) Consequently, it suffices to prove assertions (1) and (2) with respect
to the problem (5.43).

(1) Since g1(0, 2) = 0 < 1 and g2(0, 2) = −4 < −1, the problem (5.43) is regular.
It is straightforward to calculate that f = − 1

2g1g2/
(
g2 + 1

2g1
)

for all y1, y2. To esti-
mate the infimum of f in (5.43), consider the following chain of apparent implications,
which starts with the inequalities g1 ≤ 1 and g2 ≤ −1 from (5.43)

2g2
g2−1 ≥ 1 ≥ g1,

g2 − 1 < 0

⇐ g1 ≤ 1, g2 ≤ −1 ⇒ g2 + 1/2g1 < 0

⇒ 2g2 ≤ (g2 − 1) g1 ⇒ 2 (g2 + 1/2g1)
≤ g1g2

∣∣∣∣∣∣∣∣⇒
g1g2

2(g2+ 1
2 g1)

= −f ≤ 1
.

Thus, f ≥ −1 for all points y = (y1, y2) that satisfy the constraints from (5.43).
Since f

(
1/
√

2, 1/
√

2
)

= −1, g1
(
1/
√

2, 1/
√

2
)

= 1, and g2
(
1/
√

2, 1/
√

2
)

= −1, we
see that the point y1 = 1/

√
2, y2 = 1/

√
2 is a solution of the problem (5.43).

(2) Given a Lagrange multiplier τ = ‖τi‖ ∈ R2, the Lagrangian function
S(τ, y1, y2) := f + τ1g1 + τ2g2 = −y2

1 − y1y2 + 2τ1y1y2 − τ2
(
y2

2 + y1y2
)
− τ1 + τ2 is a

quadratic form in y1 with the negative main coefficient. So infy∈R2 S (τ, y1, y2) = −∞
and relation (1.12) fails to be true because its left-hand side is finite as it was shown
above. Therefore, the method (I)–(IV) is valid neither for the problem (5.43) nor for
(5.40)–(5.42).
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6. An example of application of the method (I)–(IV). Return to consi-
deration of the problem (5.1)–(5.4) under the assumptions of subsection 5.4. The
goal of this section is to illustrate in general outline the usefulness of the method (I)–
(IV) for solution of linear-quadratic problems with quadratic constraints. To avoid
consideration of details that are not directly related to this goal we shall impose
additional simplifying assumptions on the problem. In what follows, we shall use the
notations from (4.D), (5.24)–(5.26).

LEMMA 6.1. Let assumptions (4.i), (4.ii) be fulfilled and Θ0 6= ∅. Suppose that
the problem (5.1)–(5.4) is regular and detXτ (t) 6= 0 for all τ ∈ Θ0 and t ∈

[
0, t0

]
.

Denote Rτ (t) := −Ψτ (t)Xτ (t)−1 (t ∈ [0, t0]), and assume that the problem

b(τ) := a∗Rτ (0)a−
k∑
i=1

τiγi → sup subject to τ ∈ Θ0(6.1)

has a solution τ0 ∈ Θ0. (Here a is the initial state from (5.3).)
Then there exists and is unique the optimal process in the problem (5.1)–(5.4).

This process is generated by the closed-loop controller

u = qτ0(t)∗x,
where qτ (t) := rτ (t) for 0 ≤ t ≤ t0 and qτ (t) := rτ for t > t0.

(6.2)

Here rτ is the matrix from (5.24) and

rτ (t) := − [Qτ (t) +Rτ (t)B(t)] Γτ (t)−1.(6.3)

Remarks. 1. It readily follows from (5.26) and is also well known that the function
Rτ (·) is the solution of the matrix Riccati equation

Ṙτ (t) +Rτ (t)A(t) +A(t)∗Rτ (t) +Gτ (t) = rτ (t)Γτ (t)rτ (t)∗, Rτ
(
t0
)

= Pτ .(6.4)

Here rτ (t) is supposed to be replaced by the right-hand side of (6.3) and Pτ is the
matrix from (5.24).

2. In (6.1), the domain Θ0 ⊂ Rk is convex that easily follows from (4.D). It will
be shown below that the function b(·) is concave. So the problem (6.1) can be solved
by means of the methods of convex programming.

3. Consider the matrices Pτ and rτ from (5.24) and put Rτ := Pτ , rτ (t) := rτ
for t ≥ t0. Then relations (6.3) and (6.4) remain valid for t ≥ t0 [16, 17]. This implies
that the choice of the time instant t0 does not affect the coefficient (6.2).

4. It will be shown below that, in the case under consideration, (6.1) is in fact
a concretized form of the dual problem (1.7). On the whole, Lemma 6.1 offers the
following concretization of the method (I)–(IV).

(1) Form the set Θ0 in accordance with (4.D).
(2) Find a solution τ0 ∈ Θ0 of the problem (6.1) where the quantity a∗Rτ (0)a can

be calculated as follows. Given τ ∈ Θ0, determine the solution Pτ = P ∗τ and rτ of
equations (5.24) such that the system ẋ = (A+Br∗τ )x is stable,6 and then find the
solution Rτ (·) of the Cauchy problem (6.4).

(3) Determine rτ (·) by (6.3). The optimal process is generated by (6.2).
Proof of Lemma 6.1. Since Θ0 6= ∅ and detXτ (t) 6= 0 for all τ ∈ Θ0, t ∈

[
0, t0

]
,

assumptions (4.iii) and (4.iv) are fulfilled. So, by Lemma 5.5, the method (I)–(IV)

6See, for example, [15, 16, 17, 18] for methods to calculate Pτ and rτ .
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is applicable and we can use it. In (1.4), now S(τ, z) = Bτ (z) −
∑k
i=1 τiγi due to

(1.3), (1.13), (4.ii), and (5.6). Given τ∈Θ, τ ≥ 0, we have Bτ (h) < 0 for some h ∈M

by Lemma 5.7 and (2.2). So, choosing z′ ∈ Z, we get infz∈Z S(τ, z) +
∑k
i=1 τiγi ≤

infρ∈R Bτ (z′ + ρh) = infρ∈R
[
ρ2Bτ (h) + 2ρBτ (h, z′) + Bτ (z′)

]
= −∞. This means

that now the dual problem (1.7) takes the form

S0(τ)→ max subject to τ ∈ Θ.(6.5)

Here the function S0(τ) is concave as the infimum (1.6) of the functions (1.4),
which are linear in τ . It easily follows from (4.D) that (1) the sets Θ and Θ0 are
convex; (2) riΘ0 ⊂ Θ0 ⊂ Θ = Θ; and (3) (1− ε)τ + ετ0 ∈ Θ0 for any ε ∈ (0, 1), τ ∈
Θ, τ0 ∈ Θ0, and so Θ0 = Θ. From this it follows that [8, pp. 46, 55]

max
τ∈Θ

S0(τ) = sup
τ∈Θ0

S0(τ).(6.6)

We recall that now the subspace Z = {z = [x(·), u(·)]} is described by (5.2) and
(5.3). Let τ ∈ Θ0 and z ∈ Z. Taking into account (5.2) and (6.3), (6.4), it is
straightforward to compute that

d

dt
[x(t)∗Rτ (t)x(t)] + gτ [t, x, u] = [u− rτ (t)∗x]∗ Γτ (t) [u− rτ (t)∗x]

for t ≤ t0, where x = x(t) and u = u(t). Integrating both this equality and (5.30), we
get by (5.29)

S(τ, z) = a∗Rτ (0)a−
k∑
i=1

τiγi

+
∫ ∞

0
[u(t)− qτ (t)∗x(t)]∗ Γτ (t) [u(t)− qτ (t)∗x(t)] dt,

(6.7)

where qτ (·) is defined from (6.2). Since Γτ (t ± 0) > 0 by the definition of the set
Θ0 3 τ , we have S0(τ) := infz∈Z S(τ, z) = b(τ) where b(τ) was defined in (6.1). This
and (6.6) prove that the multiplier τ0 from the statement of Lemma 6.1 is a solution
for the dual problem (6.5). So we can use τ0 in the items (III) and (IV) of the method
(I)–(IV).

Show that the problem (5.1)–(5.4) has a solution. To this end, consider a min-
imizing sequence of processes {zn}∞n=1; i.e., zn = [xn(·), un(·)] satisfies (5.2), (5.3)
(with x(·) := xn(·), u(·) := un(·)) and

Gi [zn] ≤ 0 ∀ i = 1, . . . , k, n = 1, 2, . . . , G0 [zn]→ inf
z∈D
G0(z) as n→∞,(6.8)

where Gi is defined by (5.4). By the item (IV), S(τ0, zn) → S0(τ0) = a∗Rτ (0)a
−
∑k
i=1 τiγi as n → ∞. Then, due to (6.7), ∆un(·) := un(·) − qτ0(t)∗xn(·) → 0

as n → ∞ with respect to the L2-norm. Put x(·) := xn(·) and u(·) := un(·) =
qτ0(·)∗xn(·) + ∆un(·) into (5.2)

ẋn(t) = [A(t) +B(t)qτ0(t)∗]︸ ︷︷ ︸
S(t)

xn(t) +B(t)∆un(t), 0 ≤ t <∞, xn(0) = a.

For t ≥ t0, the matrices S(t) = S0 and B(t) = B are constant due to (4.i) and
(6.2). We recall also that the equation ẋ = S0x = (A + Br∗τ0)x is stable by the
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definition of the matrix rτ0 . So |xn(·)− x(·)|2 → 0 as n → ∞ where x(·) is the
solution of the Cauchy problem ẋ = S(t)x(t), 0 ≤ t < ∞, x(0) = a. Denoting
u(t) := qτ0(t)∗x(t), we see that the pair z∞ := [x(·), u(·)] satisfies (5.2), (5.3) and
|un(·)− u(·)|2 = |∆un(·) + qτ0(·)∗ [xn(·)− x(·)]|2 → 0 as n → ∞. By (5.4), the
functionals Gi are continuous with respect to the L2 × L2 norm. So passing to the
limit in (6.8), we get Gi [z∞] ≤ 0 for i = 1, . . . , k and G0 [z∞] = infz∈D G0(z) where
z∞ ∈ Z. Thus, z∞ is a solution of the problem (5.1)–(5.4).

Consider an optimal process z0 =
[
x0(·), u0(·)

]
in the problem (5.1)–(5.4). In cor-

respondence with the item (III), S(τ0, z0) = infz∈Z S(τ0, z) = a∗Rτ0(0)a
−
∑k
i=1 τiγi and so, by (6.7), u0(t) = qτ0(t)∗x0(t) for all t ≥ 0. This implies that

this process is generated by the controller (6.2) and is thereby unique.
Example. Consider the following problem:

minimize G0 :=
∫ +∞

0

[
u(t)2 + σx(t)2] dt subject to(6.9)

ẋ(t) = u(t), 0 ≤ t <∞, x(0) = a, |x(·)|+ |u(·)| ∈ L2,(6.10)

G1 :=
∫ +∞

T

u(t)2 dt− ν
∫ +∞

T

x(t)2 dt ≤ 0, G2 :=
∫ T

0
x(t)2 dt ≤ α,(6.11)

where the reals σ > 0, ν > 0, α > 0, T > 0, and a ∈ R are given. This problem is
to minimize the convex functional G0 on the domain D := {z = [x(·), u(·)] ∈ H :=
W 1

2 (0,+∞)× L2(0,+∞) : (6.10) and (6.11) are true
}

, which is not convex. To prove
this note first that the domain D is evidently closed with respect to the norm of H.
So, were the domain D convex, it would be weakly closed [3, p. 4]. But it is not weakly
closed. Indeed, consider a process z = [x(·), u(·)] ∈ D′ := {z ∈ H : (6.10) is true and
G2 ≤ α}. Given n > 0 and θ > T , we put

χn(t) :=

 n−1 for 0 ≤ t < n,
−n−1 for n ≤ t < 2n,
0 otherwise,

∆un,θ(t) := χn(t− θ),

∆xn,θ(t) :=
{

(t− θ)χn(t− θ) for t ≤ θ + n,
(t− θ − 2n)χn(t− θ) for θ + n < t.

Denote by ⇀ the convergence with respect to the weak topology of H. By analogy
with (5.8), we have ∆zn,θ := [∆xn,θ(·),∆un,θ(·)] ⇀ 0 as θ → ∞ provided that the
real n is fixed. It is clear that zn,θ := z + ∆zn,θ ∈ D′ and

G1 (zn,θ) = G1(z) + 2n−1 − ν 2n
3︸ ︷︷ ︸

∆(n)

+ 2
∫ +∞

T

[u(t)∆un,θ(t)− νx(t)∆xn,θ(t)] dt,︸ ︷︷ ︸
δ(n,θ)

(6.12)

where δ(n, θ) → 0 as θ → ∞ because ∆zn,θ⇀ 0 as θ → ∞. Choose n− > 0 and
n+ > 0 such that ∆ (n−) < 0 and ∆ (n+) > 0. Then G1

(
zn−,θ

)
< 0 and G1

(
zn+,θ

)
> 0
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provided that the real θ is sufficiently large. In other words, zn−,θ ∈ D and zn+,θ ∈
D′ \D where zn,θ⇀ z ∈ D′ as θ → ∞. Thus the set D and its complement D′ \D
are weakly dense in D′. This proves that the domain D is not weakly closed.

LEMMA 6.2. There exists and is unique the optimal process in the problem (6.9)–
(6.11). This process is generated by the closed-loop controller u = q(t)x, where the
function q(t) is determined as follows. Put

p0 :=

{ √
σ if ν > σ,

1
2

(√
ν + σ√

ν

)
otherwise, r0 :=

{
−
√
σ if ν > σ,

−
√
ν otherwise,(6.13)

ϕ(λ) := λ
{
a2
[
2p0 + T

(
p2

0 − λ2
)]
− 2αp2

0
}

tanh2(λT )

+
{
a2
(
λ2 + p2

0
)
− 4αλ2p0

}
tanh(λT ) + a2λT

(
λ2 − p2

0
)
− 2αλ3.

(6.14)

If ϕ (
√
σ) ≤ 0, we put λ0 :=

√
σ. If ϕ (

√
σ) > 0, then the equation ϕ(λ) = 0 has a

single root λ∗ in the domain λ ≥
√
σ and we put λ0 := λ∗. The above coefficient q(·)

is given by the formula

r(t) := −λ0
λ0 tanh [λ0(T − t)] + p0

p0 tanh [λ0(T − t)] + λ0
if 0 ≤ t ≤ T and r(t) := r0 otherwise.(6.15)

Proof. The problem (6.9)–(6.11) is a particular case of the problem (5.1)–(5.4):
l = m = 1, A(t) = 0, B(t) = 1, k = 2, ϕi(·) = 0, g0(t, x, u) = u2 + σx2, g1(t, x, u) =
0 for t ≤ T and g1(t, x, u) = u2 − νx2 otherwise, g2(t, x, u) = x2 for t ≤ T and
g2(t, x, u) = 0 otherwise, γ0 = γ1 = 0, γ2 = α. Furthermore, the problem (6.9)–
(6.11) is regular, i.e., there exists a process z = [x(·), u(·)] such that (6.10) is true
and G1(z) < 0, G2(z) < α. Indeed, choose δ < min

{
T, 3α/

(
a2 + 1

)}
, θ > T , and

n >
√

3/ν. Put xδ(t) := a
(
1− δ−1t

)
, uδ(t) := −aδ−1 for 0 ≤ t ≤ δ and xδ(t) :=

uδ(t) := 0 for t > δ and pick z := [xδ(·) + ∆xn,θ(·), uδ(·) + ∆un,θ(·)] where the
process [∆xn,θ(·),∆un,θ(·)] was defined above. Then z apparently satisfies (6.10)
and G2(z) =

∫ T
0 x2

δ dt = a2δ/3 < α. Putting x(·) := u(·) := 0 into (6.12) we get
G1(z) = G1 [∆xn,θ(·),∆un,θ(·)] = 2n−1 − 2nν/3 < 0.

The next step will be to apply Lemma 6.1. Its assumptions (4.i), (4.ii) are fulfilled
with t0 := T . Now τ = ‖τi‖ ∈ R2 and gτ (t, x, u) := g0(t, x, u) +

∑2
i=1 τigi(t, x, u) =

u2 + (σ + τ2)x2 for t ≤ T and gτ (t, x, u) = g0
τ (x, u) = (1 + τ1)u2 + (σ − τ1ν)x2 for

t > T . For g(x, u) := g0
τ (x, u) − δ

(
|x|2 + |u|2

)
, the frequency criterion (5.17) takes

the form (1 + τ1 − δ) |u|2 + (σ − τ1ν − δ) |x|2 ≥ 0 for all ω ∈ R, x, u ∈ C such that
ıωx = u or, equivalently, (1 + τ1 − δ) + (σ − τ1ν − δ)ω−2 ≥ 0 for all ω 6= 0. So,
by (4.D), we have Θ0 =

{
τ = (τ1, τ2) : τi ≥ 0 and τ1 < σν−1

}
. Thus the assumption

Θ0 6= ∅ is valid. Consider the problem (6.1) where the objective function is determined
by (5.26) and (5.24). Let τ ∈ Θ0. It is easy to verify that relations (5.24) 2Pτxu +
(τ1 + 1)u2 + (σ − τ1ν)x2 = (τ1 + 1) (u− rτx)2 (∀x, u) have the solution

Pτ =
√

(1 + τ1) (σ − ντ1) =: Pτ1 , rτ = −
√

(σ − ντ1) (1 + τ1)−1(6.16)

for which the equation ẋ = (A+Brτ )x = rτx is stable. The solution of the system
(5.26) Ẋτ = Ψτ , Ψ̇τ = (σ + τ2)Xτ , 0 ≤ t ≤ T, Xτ (T ) = 1, Ψτ = −Pτ is given by

Ψτ (t) = −λ sinh [λ(T − t)] −Pτ cosh [λ(T − t)] ,
Xτ (t) = cosh [λ(T − t)] +Pτ

λ sinh [λ(T − t)] , λ :=
√
σ + τ2,(6.17)
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and evidently satisfies the assumption detXτ (t) = Xτ (t) 6= 0 (∀t ∈ [0, T ]) from
Lemma 6.1. By (6.17), the problem (6.1) takes the form

b(τ) = a2ω
[
Pτ1 ,
√
σ + τ2

]
− ατ2 → sup subject to τ2 ≥ 0, 0 ≤ τ1 < σν−1,(6.18)

where Pτ = Pτ1 is given by (6.16) and

ω(p, λ) := λ
p+ λ tanh(λT )
λ+ p tanh(λT )

.(6.19)

The function ω(p, λ) is strictly monotone with respect to p

∂ω

∂p
(p, λ) = λ2 1− tanh2(λT )

[λ+ p tanh(λT )]2
> 0.

So the problem (6.18) can be rewritten as follows:

w (τ2) := a2ω
[
p0,
√
σ + τ2

]
− ατ2 → sup subject to τ2 ≥ 0,(6.20)

where p0 := max {Pτ1 : 0 ≤ τ1 < σ/ν}. The maximum p0 is achieved by τ1 = τ0
1 where

τ0
1 := 0 if ν > σ and τ0

1 := (2ν)−1(σ − ν) otherwise.
By Remark 2 to Lemma 6.1, the function b(τ) is concave on Θ0, and so evidently

is the function w (τ2) over τ2 ≥ 0. It follows from (6.19) and (6.20) that w (τ2)→ −∞
as τ2 →∞. So the problem (6.20) has a solution τ0

2 and

dw

dτ2
(0) ≤ 0⇒ τ0

2 = 0,
dw

dτ2
(0) > 0⇒ dw

dτ2

(
τ0
2
)

= 0,(6.21)

where the equation dw
dτ2

(τ) = 0 has no more than one solution. (Indeed, otherwise the
set of all its roots is an interval and, therefore, the analytical function dw

dτ2
(·) vanishes,

i.e., w(·) = const that does not take place.) This implies that the problem (6.18)
also has the solution τ0 =

(
τ0
1 , τ

0
2
)
∈ Θ0. Thus all the assumptions of Lemma 6.1 are

fulfilled.
By this lemma, the optimal process exists, is unique, and is generated by the

closed-loop controller (6.2). Putting τ1 := τ0
1 into (6.16), we get (6.13). So, for t ≥ T ,

the coefficient q(·) = qτ0(·) from (6.2) takes the form (6.15). Denote λ :=
√
σ + τ2.

The direct calculation shows that

dw

dτ2
(τ2) =

1
2λ

ϕ(λ)
[λ+ p tanh(λT )]2

,

where ϕ(λ) is defined by (6.14). This and (6.21) imply that the quantity λ0 :=√
σ + τ0

2 is determined as it was indicated in the statement of the lemma. Putting
τ := τ0 into (6.3), we get rτ0(t) = Ψτ0(t)Xτ0(t)−1 if t ≤ T . So, taking into account
(6.17), we get (6.15).
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Abstract. An elementary proof of a sufficient condition for the generic pole placement problem
based on a new elementary framework is given. This condition is the best at present and was proved
by using algebraic geometry. The necessary condition is proved by considering a group action, which
also suggests new treatment of the problem.
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1. Introduction. Let Sm,p,n be the set of all strictly proper transfer functions
of degree n with m inputs, p outputs. For G(s) ∈ Sm,p,n, we let χ(s) be the product
of denominators of its Smith–MacMillan form. χ(s) is the characteristic polynomial
of G(s), and the degree of χ(s) is n. For a proper transfer function K(s) of degree
at most d with p inputs, m outputs, Gcl(s) = (Ip −G(s)K(s))−1G(s) is the transfer
function of the closed-loop system. Its characteristic polynomial is denoted by χcl(s).
Since χcl(s) determines the behavior of the closed-loop system, a basic design problem
is to ask if we can control χcl(s). Design parameters are K, L, M , N such that
K(s) = M(sId−K)−1L+N . For almost all K, L, M , N , χcl(s) is a degree n+d monic
polynomial such that coefficients are polynomials with respect to design parameters.
But for certain parameter values, cancellation may occur, and χcl(s) has less degree.
Hence to keep everything continuous, it is better to control this polynomial, say χ′cl(s),
rather than χcl(s) itself. Ordinarily, this control problem is called the pole placement
problem. For a precise description of χ′cl(s), see Proposition 2.5 in the body of this
paper.

We say thatG(s) is pole assignable by degree d compensators if for any polynomial
of degree n+ d one can choose a K(s) of degree at most d such that χ′cl(s) coincides
with the polynomial. (Both are assumed to be monic without loss of generality.) Since
G(s) is pole assignable by degree d compensators if and only if G(s)T is so, we can
assume p ≤ m.

The generic pole placement problem is to find the minimum d for almost all G(s).
(For a special G(s), d may be smaller.)

To reach the goal, several authors study sufficient conditions. The best re-
sult among them, recently obtained by X. Wang and J. Rosenthal [8], is that n <
mp + dmax(m, p) is sufficient for generic pole placement. The method depends on a
compactification of the moduli space of systems.

The purpose of this paper is to show that this result is a consequence of the
following elementary fact.

Let X be a subset of a vector space V such that
(1) a neighborhood of the origin is contained in X;
(2) X is stable under multiplication by positive real numbers.
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Then X coincides with V .
Hence we do not need algebraic geometry to reach the best result.
The necessary condition is n ≤ mp+ d(m+ p− 1), which is proved in [6] also by

using algebraic geometry. But one can understand this fact by counting parameters
as noticed by preceders. Another purpose of this paper is to prove this necessary
condition along this idea. To verify the idea, we consider a group action here. It is
because this new treatment suggests another approach to the pole placement problem.

(After submitting this paper, The author learned the work of X. Wang [7], [10],
[11] and J. Leventides and N. Karcanias [12]. These treat the static feedback case.
The latter is of special interest to the author, since the basic idea in the paper is very
similar to his. But there are differences, and the results developed in this paper in
order to work in dynamic feedback case are new.)

2. Preliminaries. We first review the theory of minimal bases. For the proof,
we refer to [2], [4], [5]. They are interesting and not difficult to prove.

DEFINITION 2.1. Let V be an r-dimensional subspace of R(s)N .
A basis {g1(s), . . . , gr(s)} of V is called minimal if
(1) gi(s)’s have polynomial entries;
(2) the matrix B(s) = (g1(s), . . . , gr(s)) is left invertible; i.e., there exists an

U(s) ∈M(r,N,R[s]) such that U(s)B(s) = Ir;
(3) B̂(s) = B(s)diag(s−ν1 , . . . , s−νr ) is full rank at s =∞, where νi is the highest

degree of the entries in gi(s).
νi is called the minimal index of gi(s). The following theorems are well known.
THEOREM 2.2. (1) Minimal bases exist.
(2) The set of minimal indices is independent of the choice of a minimal basis.
A minimal basis B(s) is said to be in echelon form if ν1 ≥ · · · ≥ νr and there

exist different r row numbers γj (1 ≤ j ≤ r) such that the following hold.
(1) γj increases on intervals {i|νi = k} for all k.
(2) The ith entry of the jth column has degree equal to or less than νj if i < γj ,

less than νj if i > γj . The γjth entry is a monic polynomial of degree νj .
(3) The γkth entry (νk ≤ νj) of the jth column has degree less than νk.
Note that if νk < νj , then it forces k > j, but if νk = νj , then k > j and k < j

are both possible. It is obvious that there is a unique minimal basis in echelon form.
THEOREM 2.3. Let (A,B) (A ∈ M(n, n,R), B ∈ M(n,m,R)) be controllable,

i.e., R[A]ImB = Rn. Then the set of minimal indices of Ker
([

sIn −A, −B
])

coincides with the set of controlability indices as a multiset.
THEOREM 2.4. (1) Let G(s) be a strictly proper transfer function of degree n

with m inputs, p outputs. Then there exist A ∈ M(n, n,R), B ∈ M(n,m,R), C ∈
M(p, n,R), such that

(a) G(s) = C(sIn −A)−1B,
(b) the characteristic polynomial χ(s) of G(s) equals det(sIn −A),
(c) (A,B) is controllable,
(d) (A,C) is observable.
(2) If G(s) is of the form G(s) = C(sIn − A)−1B, then there exist N0(s) ∈

M(p,m,R[s]), D0(s) ∈M(m,m,R[s]) such that
(e) the sum of highest degrees of columns in D0(s) is n,
(f) D̂0(s) has full rank at s =∞,
(g) det(D0(s)) = det(sIn −A),
(h) G(s) = N0(s)D0(s)−1.
If (h) holds and G(s) is strictly proper, then
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(i) all m minors of B0(s) =
[
N0(s)
D0(s)

]
have degree equal to or less than n and the

only m minor of degree n is det(D0(s)).
(3) If B0(s) ∈M(m+ p,m,R[s]) is such that det(D0(s)) is of degree n, other m

minors with 1 row from N0(s), other (m− 1) rows from D0(s) have degrees less than
n, then G(s) = N0(s)D0(s)−1 is strictly proper.

PROPOSITION 2.5. Let G(s) be a strictly proper transfer function of degree n with
m inputs, p outputs. We take (A,B,C), N0(s), D0(s) as in Theorem 2.4(1) and (2).

(1) For K(s) = M(sId − K)−1L + N , where K ∈ M(d, d,R), L ∈ M(d, p,R),
M ∈M(m, d,R), N ∈M(m, p,R), we set

χ′cl(s) = det



Ip 0 N0(s) 0
0 Id 0 Id
N M D0(s) 0
L K 0 sId


 .

Then, χcl(s) = χ′cl(s) if and only if([
A+BNC BM

LC K

]
,

[
B
0

])
is controllable, and([

A+BNC BM
LC K

]
,
[
C 0

])
is observable.

(2) All proper transfer functions of degree at most d with p inputs, m outputs may
be described as K(s) = M(sId −K)−1L+N .

Proof. This can be proved in an elementary way, but here we appeal to the theory
of elementary divisors.

We first note that the elementary divisors of the C[s]-module

(G(s)C[s]m + C[s]p)/C[s]p

are nothing but denominators of the Smith–MacMillan form of G(s). For a C[s]-
module A, we denote by χ(A) the product of the elementary divisors of A. Then if A
is a submodule or a quotient module of B, χ(A) divides χ(B).

We also note that if we set

X(s) =

 sId −KT −MT 0
LT NT Ip
0 DT

0 (s) NT
0 (s)

 ,
then y = GTcl(s)r can be described as

X(s)

 z
y
−u

 =

 0
−r
0

 .
Hence we have

GTcl(s) =
[

0 Im 0
]
X(s)−1

 0
−Ip

0

 .
Therefore, (GTcl(s)C[s]p + C[s]m)/C[s]m is a subquotient module of

(X(s)−1C[s]d+m+p + C[s]d+m+p)/C[s]d+m+p,
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and thus χcl(s) divides det(X(s)). Since

det

 sId −KT −MT 0
LT NT Ip
0 DT

0 (s) NT
0 (s)

 = ±det



KT MT Id 0
LT NT 0 Ip
0 DT

0 (s) 0 NT
0 (s)

sId 0 Id 0


 ,

we know that det(X(s)) coincides with χ′cl(s) up to sign. In particular, χcl(s) and
χ′cl(s) coincide if and only if the degree of χcl(s) is n+ d.

To see when they coincide, we use the following description of Gcl(s):

Gcl(s) =
[
C 0

] [ sIn −A−BNC −BM
−LC sId −K

]−1 [
B
0

]
.

Suppose that this triple for Gcl(s) is either uncontrollable or unobservable; then
χcl(s) has lower degree and never coincides with χ′cl(s). On the other hand, they
coincide if they are both controllable and observable. It has the same proof as The-
orem 2.4(1). Hence we have (1). Equation (2) is a direct consequence of Theorem
2.4.

By Proposition 2.5(1), we have that χcl(s) = χ′cl(s) for almost all K, L, M , N ,
and the coefficients of χ′cl(s) are polynomials with respect to these design parameters
if (A,B,C) is generic.

We say that G(s) is pole assignable by compensators of degree d if all monic
polynomials of degree n + d can be expressed in the form χ′cl(s) by compensators of
degree at most d.

3. Pole placement map.
DEFINITION 3.1. We denote by Sm,p,n the set of strictly proper transfer functions

of degree n with m inputs, p outputs. S≤nm,p = ∪1≤k≤nSm,p,k.
For a partition ν of n into at most m parts, and a permutation γ of {1, . . . ,m}

which increases on intervals {i|νi = k}, we denote by Σγ,νm,p the set
{
B0(s) =

[
N0(s)
D0(s)

]}
of elements satisfying

(1) N0(s) ∈ M(p,m,R[s]), and entries of the jth column have degree less than
νj;

(2) D0(s) ∈ M(m,m,R[s]), and the ith entry of the jth column have degrees
equal to or less than νj if i < γj, less than νj if i > γj. The γjth entry is a
monic polynomial of degree νj. Further, the γkth entry (νk ≤ νj) of the jth
column must have degree less than νk.

It is simply denoted Σνm,p if γ is the identity. We set Σ≤nm,p = ∪|ν|≤nΣγ,νm,p.
Note that we do not assume that B0(s) ∈ Σγ,νm,p is minimal. But the subset con-

sisting of minimal ones is a dense open subset of Σγ,νm,p.
For B0(s) ∈ Σ≤nm,p, we set

N(s) =
[
N0(s) 0

0 Id

]
, D(s) =

[
D0(s) 0

0 sId

]
, B(s) =

[
N(s)
D(s)

]
.

We also set G = GL(m+ p+ 2d,R), and for g ∈ G, the product of g and B(s) is
partitioned as

gB(s) =
[
N (g)(s)
D(g)(s)

]
.
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LEMMA 3.2. p : Σ≤nm,p → S≤nm,p defined by p(B0(s)) = N0(s)D0(s)−1 is well defined
and onto. The subset consisting of minimal bases bijectively corresponds to Sm,p,n.

Proof. By Theorem 2.4(3), p(B0(s)) is strictly proper.
Since the characteristic polynomial of G(s) divides det(D0(s)), its degree is equal

to or less than n. Thus we have the well-definedness. For any G(s), take B0(s) as in
Theorem 2.4. Since B̂0(s) has the form

[
G(s)
Im

]
D̂0(s), we have that the highest degree

of all entries in the jth column of N0(s) is smaller than that of D0(s). Then by
multiplying D̂0(∞)−1 from the right, and after successive elementary column trans-
formations if necessary, we have an element in Σ≤nm,p which maps to G(s). The rest is
an obvious consequence of the uniqueness of echelon form.

Now we give the definition of a new type of a pole placement map, which allows
us an elementary proof in an elementary framework.

DEFINITION 3.3. For B0(s) ∈ Σ≤nm,p, we define the pole placement map

ρB0 : G×M(m+ d, p+ d,R)→ R[s]n+d

by the following:

ρB0(g,X) = det(g)−1det
([

Ip+d N (g)(s)
X D(g)(s)

])
.

The following proposition is very useful. For the static case, this observation is
due to R. W. Brocket and C. I. Byrnes [1]. But we note that their generalization
of this technique does not allow us to use the differential map of the pole placement
map. Our generalization is a key to the proof we will give in Theorem 4.3.

PROPOSITION 3.4. Let G(s) ∈ Sm,p,n, and we take B0(s) ∈ Σ≤nm,p as in Theorem
2.4. Then G(s) is pole assignable by degree d compensators if and only if the pole
placement map covers R[s]n+d \R[s]n+d−1.

Proof. Assume that G(s) is pole assignable by degree d compensators. Then, by
Proposition 2.5, the set{

det
([

Ip+d N(s)
X D(s)

])
|X ∈M(m+ d, p+ d,R)

}
coincides with the set of all monic polynomials of degree n + d. Since the image of
the pole placement map is nothing but{

det
([

K1 N(s)
K2 D(s)

]) ∣∣∣∣[ K1
K2

]
is full rank

}
,

we can conclude that ρB0 covers R[s]n+d \R[s]n+d−1.
Conversely, we assume that ρB0 covers R[s]n+d \ R[s]n+d−1. Then any monic

polynomial of degree n+ d is expressed as

det
([

K1 N(s)
K2 D(s)

])
.

Laplace expansion tells us that it equals det(K1)det(D0(s))+ (a linear combination
of other m + d minors). Since N(s)D(s)−1 is strictly proper, we have det(K1) 6= 0
by Theorem 2.4(2)(i). By putting X = K2K

−1
1 , we know that the set of all monic
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polynomials of degree n+ d coincides with

{
det
([

Ip+d N(s)
X D(s)

]) ∣∣∣∣X ∈M(m+ d, p+ d,R)
}
.

Hence G(s) is pole assignable by degree d compensators.

4. Generic pole placement. We define an, bn by n = man + bn (0 ≤ bn < m),
and ν(n) by ν(n) = (an + 1, . . . , an + 1, an, . . . , an) (an + 1 repeats bn times).

Among Σγ,νm,p’s, Σν(n)
m,p is the unique set of the maximum dimension n(m+p). (We

know it by counting the number of coefficients.) Hence, to consider the generic pole
placement problem, we can restrict ourselves to p : Σν(n)

m,p → S≤nm,p by Lemma 3.2.
REMARK 4.1. In fact, it is known that we can introduce a topology on S≤nm,p to

make the image of the set of minimal bases in Σν(n)
m,p the unique open cell (see [6]).

The following lemma is the key idea to prove Theorem 4.3. Its proof depends on
a quite elementary fact which we have explained in the introduction.

LEMMA 4.2. Let B0(s) be an element in Σ≤nm,p.
(1) If ρB0(g,−) : M(m+d, p+d,R)→ R[s]n+d covers a neighborhood of the origin

for some g ∈ G, then p(B0(s)) = G(s) is pole assignable by degree d compensators.
(2) If ρB0(g,−) maps 0 to 0, and its differential at 0 ∈ M(m + d, p + d,R) is

surjective, then ρB0(g,−) covers a neighborhood of the origin.
Proof. (1) Since the image of ρB0 is stable under multiplication by positive real

numbers, the assumption ensures that ρB0 is surjective. Thus we have the pole
assignability by Proposition 3.4. (2) is obvious.

We now state the main theorem about generic pole assignability.
THEOREM 4.3. If d > n−mp

max(m,p) , then Sm,p,n is generic pole assignable by degree
d compensators. More precisely, all elements in p(U) are pole assignable by degree d
compensators.

Before we proceed to the proof, we briefly sketch the logical structure of the proof.
We first define an open subset U of Σν(n)

m,p and prove that U is dense. Next, we prove
that all systems in U are pole assignable by degree d compensators. To define U , we
first prepare notation.

DEFINITION 4.4. For h
[
N(s)
D(s)

]
U(s) such that h ∈ G and an invertible polynomial

matrix U(s), we write the first an + 1 entries of the first column as

[
B1
B2

]
1
s
·
·
san


(
B1 ∈M(an + 1, an + 1,R),
B2 ∈M(m+ p+ 2d− an − 1, an + 1,R)

)
.

If det(B1) 6= 0, we define g ∈ G by

g =
[

B−1
1 0

−B2B
−1
1 Im+p+2d−an−1

]
.
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If we compute gh
[
N(s)
D(s)

]
U(s), then we find that the first column has the entries in

such a way that 1 to san in the ascending order in the first an + 1 entries, and 0’s in
the rest of entries.

We also note that g is determined by h ∈ G and a polynomial matrix U(s).
Let U be the open subset of Σν(n)

m,p consisting of elements satisfying
(1) det(B1) 6= 0 for some h

[
N(s)
D(s)

]
U(s);

(2) the set of m + d minors which have one row from N (gh)(s) and other rows
from D(gh)(s) span R[s]n+d.

REMARK 4.5. We form B(s) =
[
N(s)
D(s)

]
from N0(s) and D0(s) as in the previous

section.
Note that U is dense if it is nonempty, since for each h, U(s), the above set is

defined as the complement of the set of zeros of a polynomial, and U is their union.
It is easy to see that U is nonempty. To find an element in U , we set, for example,

N0(s) =


0 · · · 0 1
0 · · · 1 sνm−p+1

· · · · · ·
0 · · · 1 sνm−1

 , D0(s) =


sν1 0 · · · 0 0 0
1 sν2 · · · 0 0 0
· · · · · · · ·
0 0 · · · 1 sνm−1 0
0 0 · · · 0 1 sνm


for the most tight case νm = p+ d− 1.

It turns out to be an element in U . To see it, it is enough to see the matrix
transformation given below. We can treat the other case in the same way. (The
constant feedback case is not the exception.)

We first move the mth column to the first column, the (p+ d+m)th row to the
(p + d + 1)th row, and then the (p + 1)th to the (p + d)th rows to the first d rows.
B(s) =

[
N(s)
D(s)

]
then becomes

⇒



0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0

sνm−p+1 0 · · · 1 0 0 · · · 0
· · · · · · · · · · · ·

sνm−1 0 · · · 1 0 0 · · · 0
sνm 0 · · · 1 0 0 · · · 0
0 sν1 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · sνm−1 0 0 · · · 0
0 0 · · · 0 s 0 · · · 0
0 0 · · · 0 0 s · · · 0
· · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · s



.
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Next, we multiply each of the last d columns by a power of s and add in the first
column. Then it is further transformed into

⇒



sd−1 0 · · · 0 1 0 · · · 0
sd−2 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · ·
1 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0

sνm−p+1 0 · · · 1 0 0 · · · 0
· · · · · · · · · · · ·

sνm−1 0 · · · 1 0 0 · · · 0
sνm 0 · · · 1 0 0 · · · 0
0 sν1 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · sνm−1 0 0 · · · 0
sd 0 · · · 0 s 0 · · · 0
sd−1 0 · · · 0 0 s · · · 0
· · · · · · · · · · · ·
s 0 · · · 0 0 0 · · · s



.

Now we eliminate the latter part of the first column entries by using elementary
row transformations:

⇒



sd−1 0 · · · 0 1 0 · · · 0
sd−2 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · ·
1 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0

sνm−p+1 0 · · · 1 0 0 · · · 0
· · · · · · · · · · · ·

sνm−1 0 · · · 1 0 0 · · · 0
sνm 0 · · · 1 0 0 · · · 0
0 sν1 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · sνm−1 0 0 · · · 0
0 0 · · · −1 s 0 · · · 0
0 0 · · · 0 −1 s · · · 0
· · · · · · · · · · · ·
0 0 · · · 0 0 0 · · −1 s



.

The next step is only to delete 1 in the first column by using the row just below
it:
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⇒



sd−1 0 · · · 0 1 0 · · · 0
sd−2 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · ·
s 0 · · · 0 0 0 · · 1 0
0 0 · · · 0 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0

sνm−p+1 0 · · · 1 0 0 · · · 0
· · · · · · · · · · · ·

sνm−1 0 · · · 1 0 0 · · · 0
sνm 0 · · · 1 0 0 · · · 0
0 sν1 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · sνm−1 0 0 · · · 0
0 0 · · · −1 s 0 · · · 0
0 0 · · · 0 −1 s · · · 0
· · · · · · · · · · · ·
0 0 · · · 0 0 0 · · −1 s



.

It is now easy to check the condition (1), (2), since by rearranging rows of the
above matrix we obtain the final form given below, and we have B1 = I, B2 = 0. We
also remark here that νm = an.

h

[
N(s)
D(s)

]
U(s) =



1 0 · · · · · · · · · ·
s 0 · · · · · · · · · ·
· · · · · · · · · · · ·

sνm · · · · · · · · · · ·
0 sν1 · · · · · · · · · ·
0 1 · · · · · · · · · ·
· · · · · · · · · · · ·
0 · · · · sνm−1 0 · · · · ·
0 · · · · −1 s · · · · ·
0 · · · · 0 −1 · · · · ·
· · · · · · · · · · · ·
0 · · · · · · · · · −1 s
0 · · · · · · · · · · 1



.

Proof of the main theorem. As was explained in the introduction, we can assume
m ≥ p without loss of generality. We consider the map ρB0 in Lemma 4.2. Take any
element in U ; we will show in the following that the corresponding transfer function
has the pole assignability. Note that ρB0(gh,X) is a nonzero scalar multiple of

det
([

Ip+d N (gh)(s)
X D(gh)(s)

] [
I 0
0 U(s)

])
,

where g is as in the above definition. It is well defined by the condition (1).
Because of d > n−mp

m , we have an < p + d. Hence the first column of D(gh)(s)
is zero vector and det(D(gh)(s)) = 0. In other words, the map ρB0(gh,−) maps
0 ∈M(m+ d, p+ d,R) to the origin.

Since the image of its differential at 0 ∈M(m+ d, p+ d,R) is spanned by m+ d
minors which have one row from N (gh)(s), other rows from D(gh)(s), we know that
the differential is surjective by the condition (2).
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Therefore, ρB0(gh,−) covers a neighborhood of the origin of R[s]n+d, which means
that any element in p(U) is pole assignable by degree d compensators. Since we can
find an element in U , U is dense, and we have the result.

5. Necessary condition for generic pole placement. The second applica-
tion of Proposition 3.4 is the following result, which was known, and was “proved”
naively by counting parameters [9]. We give a proof to this result along this idea.
To verify the idea, we consider a group action. We think that this new treatment,
i.e., the Lie group theoretic approach to the pole placement problem, fits well to the
further study, since, in Lie group theory, orbit structures are considered over R, com-
pared with algebraic geometry which is mainly considered over C. J. Rosenthal gave
another proof using a different method [6]. The following proof is new, but we also
remark that for the proof of this necessary condition we replace the general theorem
from Lie group theory by an elementary ring theoretic argument, since the difference
between R and C does not matter at this stage. The real advantage of this Lie group
method remains for future research.

THEOREM 5.1. If G(s) ∈ Sm,p,n is pole assignable by degree d compensators, then
d ≥ n−mp

m+p−1 .
Proof. Let ρ′B0

: M(m+p+2d, p+d,R)→ R[s]n+d be an extended pole assignment
map given by

ρ′B0

([
K1
K2

])
= det

([
K1 N(s)
K2 D(s)

])
.

The image of the set of full rank matrices is the same as the image of ρB0 . ρ′B0

naturally induces the algebra homomorphism

R[a0, . . . , an+d]→ R[xij ],

where ai’s are the coefficients of polynomials in R[s]n+d, xij ’s are matrix coordinates
of M(m+ p+ 2d, p+ d,R). Since G(s) is pole assignable by degree d compensators,
Proposition 3.4 tells us that it is injective.

Let H be the group consisting of the elements

h =

 h1 0 0
0 Im 0
0 0 h2


satisfying

h1 ∈ GL(p+ d,R), h2 ∈ GL(d,R), det(h1) = det(h2).

We denote
[
Ip
0

0
h2

]
,
[
Im
0

0
h2

]
by φ1(h2), φ2(h2), respectively. H acts on M(m +

p+ 2d, p+ d,R) by

h ·
[
K1
K2

]
=
[
φ1(h2)K1h

−1
1

φ2(h2)K2h
−1
1

]
.

We then have
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ρ′B0

(
h ·
[
K1
K2

])
= det

([
φ1(h2)K1h

−1
1 N(s)

φ2(h2)K2h
−1
1 D(s)

])

= det
([

Ip+d 0
0 φ2(h2)

])
det
([

φ1(h2)K1 N(s)
K2 φ2(h2)−1D(s)

])

× det
([

h−1
1 0
0 Im+d

])
.

Since D(s) commutes with φ2(h2), it equals

= det(h2)det(h1)−1det
([

φ1(h2)K1 N(s)
K2 D(s)φ2(h2)−1

])

= det
([

φ1(h2)K1 N(s)φ2((h2)
K2 D(s)

])
det
([

Ip+d 0
0 φ2(h2)−1

])
.

Similarly, we use φ1(h2)N(s) = N(s)φ2(h2). Then,

= det(h1)−1det
([

φ1(h2)K1 φ1(h2)N(s)
K2 D(s)

])
= ρ′B0

([
K1
K2

])
.

Hence we have that R[a0, . . . , an+d] is embedded in R[xij ]H .

Take a Zariski open set U of M(m+ p+ 2d, p+ d,R) consisting of elements
[
K1
K2

]
satisfying

(1) det(K1) 6= 0,
(2) K2 =

[
N
L
M
K

]
such that K has d distinct eigenvalues, (K,L) controllable.

ThenH acts on U freely. Now we consider an embeddingH×U0 → U : (h, u) 7→ h·[
Ip+d
u

]
, where U0 is the set of

[
N
L
M
K

]
such that

(1) the last column of L is
[

0 · · · 1
]T ,

(2) K is of the form 
0 1 · · ·
· · · · · · · · ·
· · · · · · 1
−k1 . . . −kd

 ,
which has distinct eigenvalues.

H acts on H × U0 by left multiplication, and the ring of H invariants is the
polynomial ring in coordinates for U0. By comparing the transcendental degrees of
polynomial rings C[a0, . . . , an+d] and the coordinate ring of U0, we can verify the
dimension counting, which is

n+ d+ 1 ≤ (m+ p+ 2d)(p+ d)− ((p+ d)2 + d2 − 1) = mp+ d(m+ p) + 1,

which completes the proof.
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Abstract. We study the local exact boundary controllability problem for the Boussinesq equa-
tions that describe an incompressible fluid flow coupled to thermal dynamics. The result that we
get in this paper is as follows: suppose that ŷ(t, x) is a given solution of the Boussinesq equation
where t ∈ (0, T ), x ∈ Ω, Ω is a bounded domain with C∞-boundary ∂Ω. Let y0(x) be a given initial
condition and ‖ŷ(0, ·)− y0‖ < ε where ε = ε(ŷ) is small enough. Then there exists boundary control
u such that the solution y(t, x) of the Boussinesq equations satisfying

y|(0,T )×∂Ω = u, y|t=0 = y0

coincides with ŷ(t, x) at the instant T : y(T, x) ≡ ŷ(T, x).

Key words. Boussinesq equation, local exact boundary controllability

AMS subject classifications. 76D05, 49J20, 93B05, 93C20

PII. S0363012996296796

Introduction. We study the local exact controllability problem for the Boussi-
nesq equations that describe the incompressible fluid flow coupled to thermal dy-
namics. The control function is the Dirichlet boundary condition of the velocity and
temperature vector field of fluid flow. More precisely, the investigated local exact
controllability problem is as follows: suppose that

(0.1) ∂ty(t, x) +A(y) = f(t, x), t ∈ (0, T ), x ∈ Ω,

is a symbolic writing of the Boussinesq equations defined in a bounded domain Ω ⊂
Rn, n = 2, 3, where y(t, x) is a velocity and temperature vector field, f(t, x) is an
external forces vector field, and t ∈ (0, T ) is a time. Assume that a solution ŷ(t, x) of
(0.1),

∂tŷ(t, x) +A(ŷ) = f(t, x),

as well as an initial condition y0(x), are given and they satisfy the proximity condition

(0.2) ‖ŷ(0, ·)− y0(·)‖ ≤ ε,

where ‖ · ‖ is the norm of the corresponding initial conditions space and ε > 0 is a
sufficiently small magnitude. One has to find control u defined on the lateral surface
Σ = (0, T )× ∂Ω of the cylinder (0, T )× Ω:

(0.3) y|Σ = u
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such that the solution y(t, x) of (0.1), (0.3) supplied by the initial condition

(0.4) y|t=0 = y0

coincides with the given solution ŷ(t, x) at instant t = T :

(0.5) y|t=T = ŷ|t=T .

One useful application of the local exact controllability property is as follows.
Let f(t, x) ≡ f(x) be independent on t and ŷ(x) be a steady-state solution of (0.1)
with zero boundary condition which, by definition, is a singular point in the phase
space of the dynamical system generated by equation (0.1) supplied by zero boundary
conditions. Suppose that this point ŷ(x) is an unstable one. Then solvability of
problem (0.1), (0.3), (0.5) implies that one can transfer an arbitrary point y0 belonging
to a small neighborhood of ŷ to ŷ via a solution of (0.1) by appropriate choice of
boundary control. Hence, it is possible to suppress the rise of turbulence with the
help of boundary control.

The interest in controllability problems for equations simulating a fluid flow was
initiated by J.-L. Lions in [29], [30]. Different kinds of approximate controllability
results for the Stokes system were obtained by J.-L. Lions in [29], [30], in A. Fursikov
and O. Imanuvilov [18], [20], in J. I. Diaz and A. V. Fursikov [6], in J.-L. Lions
and E. Zuazua [33]. A close problem was considered in C. Fabre and G. Lebeau
[8]. Approximate controllability of the semilinear heat equation with nonlinearity
satisfying the global Lipschitz condition was studied by C. Fabre, J.-P. Puel, and
E. Zuazua [9], [10]. Approximate controllability for a system associated with Navier–
Stokes equations but possessing the sublinear growth of its nonlinearity was proved
by C. Fabre [7].

The solvability of (0.1), (0.3)–(0.5) was first proved in A. Fursikov and O.
Imanuvilov [15] for the case when (0.1) is the Burgers equation. This problem
was solved in the case of Navier–Stokes equations and ŷ ≡ 0 in A. Fursikov and
O. Imanuvilov [16] when the dimension of the system n = 2 and in A. Fursikov
[12] when n = 3. The case of Navier–Stokes equations and ŷ 6= 0 has been studied
in A. Fursikov and O. Imanuvilov [17]. The results proved in this work as well as
analogous results for the Navier–Stokes equations were announced in [19].

J.-M. Coron established exact controllability of the two-dimensional Euler equa-
tion in [3], [4] and approximate controllability of the two-dimensional Navier–Stokes
equations in [5].

At last, exact controllability of a semilinear parabolic equation with coefficients
depending on t and x and with nonlinearity satisfying the global Lipschitz condi-
tion was established by O. Imanuvilov [23]–[26]. A similar result was obtained by
G. Lebeau and L. Robbiano [28] for the linear heat equation on manifolds. We are
interested in the Boussinesq equations because the investigation of a fluid flow sta-
bility in the free convection problem is important in the theory of hydrodynamical
stability (see D. Joseph [27]). Besides, as we think, the exact controllability result for
Boussinesq equations should be useful for solution of certain reversibility problems in
the theory of climate (see J.-L. Lions [29], [30]).

The first step of the controllability property proof is a reduction of the nonlinear
problem (0.1), (0.3)–(0.5) to the solvability of the analogous problem for the lineariza-
tion of (0.1). We do it with the help of one variant of the implicit function theorem.
To establish solvability of the controllability problem we prove that the set of the data
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for which the linear controllability problem has a solution is dense (section 3) and is
closed (section 5) in the corresponding function space.

The main difficulties of the proof are connected with the pressure term in the
Boussinesq equations. To overcome this difficulty we introduce some nonstandard
functional spaces and construct in these spaces a decomposition of a vector field on
solenoidal and potential components (section 4). This decomposition is based on the
Carleman estimate for the Laplace operator (L. Hörmander [21], [22]) and for the
heat equation (section 6). Note that in papers [12], [15], [16] mentioned above we
also used Carleman estimates, but the method of proof of Carleman estimates which
was applied in section 6 is more close to O. Imanuvilov [26] and A. Fursikov and
O. Imanuvilov [17].

1. Statement of the problem and formulation of the main result. In
a bounded domain Ω ⊂ Rn (n = 2 or 3) with C∞-boundary ∂Ω we consider the
Boussinesq system

∂tv(t, x)−∆v + (v,∇)v + θ(t, x)e0 +∇p(t, x) = f(t, x),(1.1)

div v ≡
n∑
j=1

∂xjvj = 0,(1.2)

∂tθ(t, x)−∆θ + (v,∇θ) + (v, e0) = h(t, x),(1.3)

v(t, x)|t=0 = v0(x), θ(t, x)|t=0 = θ0(x),(1.4)

v|Σ = uv, θ|Σ = uθ.(1.5)

Here (t, x) ∈ Q = (0, T ) × Ω, v(t, x) = (v1(t, x), . . . , vn(t, x)) is the velocity of a
fluid at point x and at instant t, θ(t, x) is the temperature of a fluid, ∇p is a pressure
gradient, f(t, x) is the density of external forces, h(t, x) is the density of external
heat sources, e0 ∈ Rn is the vector of the gravity force direction, uv, uθ are Dirichlet
boundary conditions (in our case, they are control functions), and v0, θ0 are initial
conditions. Besides, Σ = (0, T ) × ∂Ω, ∂t = ∂/∂t, ∂xj = ∂/∂xj , ∆ is the Laplace
operator, (v,∇)v =

∑
vj∂xjv, and (v,∇θ) =

∑n
j=1 vj∂xjθ.

We investigate the local exact controllability problem for Boussinesq equations.
Its formulation is as follows. Suppose that v̂(t, x), p̂(t, x), θ̂(t, x) is a given sufficiently
smooth1 solution of Boussinesq equations (1.1)–(1.3):

∂tv̂(t, x)−∆v̂ + (v̂,∇)v̂ + θ̂(t, x)e0 +∇p̂(t, x) = f(t, x),

div v̂ = 0,

∂tθ̂(t, x)−∆θ̂(t, x) + (v̂,∇θ̂) + (v̂, e0) = h(t, x),

and initial conditions v0(x), θ0(x) are sufficiently close to v̂(0, x), θ̂(0, x) with respect
to an appropriate norm. One has to find boundary control (uv, uθ) defined on Σ
such that the solution (v(t, x), p(t, x), θ(t, x)) of boundary value problem (1.1)–(1.5)
satisfies at instant t = T the relations

v(T, x) ≡ v̂(T, x), θ(T, x) ≡ θ̂(T, x).(1.6)

Let us introduce the functional spaces to set precisely the controllability problem and
to formulate the main result. We use the Sobolev spaces W k

p (Ω), 1 ≤ p <∞, k integer

1The precise smoothness conditions are formulated below.
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not negative, possessing the norm

‖u‖Wk
p (Ω) =

∫
Ω

∑
|α|≤k

∣∣∣∣ ∂|α|u(x)
∂xα1

1 . . . ∂xαnn

∣∣∣∣p dx
1/p

,

where α = (α1, . . . , αn), | α |= α1 + . . . + αn. We also use the Sobolev spaces
Wα

2 (Ω) = Hα(Ω) with an arbitrary real α. See their definition in J.-L. Lions and
E. Magenes [32].

Define the functional space V k(Ω) of solenoidal vector fields

V k(Ω) = {v(x) ∈ (Hk(Ω))n : div v(x) = 0}.(1.7)

We need the following spaces of functions defined in the cylinder Q:

W 1,2(k)(Q) = {θ(t, x) ∈ L2(0, T ;Hk+2(Ω)) : ∂tθ ∈ L2(0, T ;Hk(Ω))},(1.8)

V 1,2(k)(Q) = {v(t, x) ∈ (W 1,2(k)(Q))n : div v = 0}.(1.9)

The main result of this paper is as follows.
THEOREM 1.1. Suppose that f(t, x) ∈ (W 1,2(2)(Q))n, h(t, x) ∈ W 1,2(2)(Q) are

given data and (v̂(t, x), p̂(t, x), θ̂(t, x)) ∈ V 1,2(2)(Q)×L2(0, T ;H3(Ω))×W 1,2(2)(Q) is
a solution of equations (1.1)–(1.3), satisfying the property∫

Γj
(v̂(t, x), ν(x)) dσ = 0, j = 1, . . . , r, t ∈ [0, T ),(1.10)

where Γj are components of ∂Ω: ∂Ω = ∪rj=0Γj , Γj ∩ Γk = {∅}, if j 6= k, ν(x) is the
vector field of outside normals to ∂Ω . Suppose that (v0(x), θ0(x)) ∈ V 1(Ω)×H1(Ω)
is a given initial datum satisfying conditions∫

Γj
(v0(x), ν(x)) dσ = 0, j = 1, . . . , r,(1.11)

which is close to (v̂(0, x), θ̂(0, x)):

‖v0 − v̂(0, ·)‖2V 1(Ω) + ‖θ0 − θ̂(0, ·)‖2H1(Ω) < ε,(1.12)

where 0 < ε ≤ ε0 and ε0 is of sufficiently small magnitude depending on (v̂, θ̂). Then
there exists boundary control (uv, uθ) ∈ (L2(Σ))n × L2(Σ) such that there exists the
solution (v, p, θ) ∈ V 1,2(0)(Q) × L2(0, T ;H1(Ω)) ×W 1,2(0)(Q) of problem (1.1)–(1.5)
and this solution satisfies condition (1.6). Moreover, there exist constants κ > 0,
c1 > 0 such that

‖v(t, ·)− v̂(t, ·)‖2V 1(Ω) + ‖θ(t, ·)− θ̂(t, ·)‖2H1(Ω) ≤ c1e
− κ

(T−t) as t→ T.(1.13)

In the remaining part of the paper we prove this theorem.
Remark 1.1. The condition (v̂, p̂, θ̂) ∈ V 1,2(2)(Q)× L2(0, T ;H3(Ω))×W 1,2(2)(Q)

of Theorem 1.1 can be weakened. Namely, the assertion of Theorem 1.1 remains true
if, instead of the assumptions mentioned above, we suppose that

v̂(t, x) ∈ V 1,2(1/2)(Q) ∩ (L∞(Q))n, θ̂ ∈W 1,2(1/2)(Q).(1.14)

In the case of assumption (1.14) we have to add to the proof of Theorem 1.1 with
some more or less complicated applications of the Sobolev embedding theorem and
also with one technical method mentioned below in Remark 5.1.
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2. Reduction to a linear controllability problem.
2.1. Let us begin with a simple but useful remark. We will not specially con-

struct the boundary control (vu, θu). Instead, we will study the solvability of problem
(1.1)–(1.4), (1.6), which does not contain boundary conditions (1.5). We will find a
boundary control (vu, θu) at the very end of the proof with the help of a restriction
of the constructed solution (v, θ) at the boundary Σ.

We show now that one can reduce the controllability problem mentioned above
to the case of bounded domain Ω with a connected boundary. Indeed, let Γ0 be the
external component of the boundary ∂Ω. We denote by G the bounded domain with
the boundary Γ0. Evidently

G = Ω ∪ ∪rj=1(Ωj ∪ Γj),

where Ωj is the bounded domain with the boundary Γj . To reduce the proof of
Theorem 1.1 to the case of domain G with connected boundary we have to contin-
uously extend functions (û, p̂, θ̂) ∈ V 1,2(2)(Q) × L2(0, T ;W 3

2 (Ω)) ×W 1,2(2)(Q) up to
(ũ, p̃, θ̃) ∈ V 1,2(2)(Q̂)× L2(0, T ;W 3

2 (G))×W 1,2(2)(Q̂) where Q̂ = (0, T )×G and ini-
tial conditions (v0, θ0) ∈ V 1(Ω) × H1(Ω) up to (ṽ, θ̃) ∈ V 1(G) × H1(G). After this
extension we substitute (ṽ, p̃, θ̃) into (1.1), (1.3) and calculate the right side (f̃ , h̃) of
these equations. Naturally, (f̃ , h̃) will be an extension of (f, h). When we prove The-
orem 1.1 in the case of domain G, we will restrict the solution of the controllability
problem at ∂Ω = ∪rj=0Γj . Then the constructed function (vu, θu) will be the control
which solves the controllability problem in the case of domain Ω with disconnected
boundary.

PROPOSITION 2.1. For an arbitrary natural number l there exists the extension
operator L : Lθ(x)|Ω ≡ θ(x) such that the maps

L : Hk(Ω)→ Hk(G)

are bounded for k = 0, . . . , l.
Although the proof of this proposition is well known we briefly revisit the con-

struction of the extension, taking into account our future goals. After application of a
partition of unity and rectification of the boundary, we obtain the extension problem
for a function u(x) defined in Rn

+ = {x = (x1, . . . , xn), xn > 0} up to a function
defined on Rn. The extension operator L is now defined by the formula

Lu(x′, xn) =

{
u(x′, xn) when xn ≥ 0,∑l
k=1 λku(x′,−xn/k) when xn < 0,

where λ1, . . . , λn are the solutions of system

l∑
k=1

(
−1
k

)j
λk = 1 (j = 0, 1, . . . , l − 1).

This construction allows us to prove estimates declared in Proposition 2.1 (see V.
Babich [2], L. Slobodetskii [37]). This construction and Proposition 2.1 imply the
following.

PROPOSITION 2.2. For an arbitrary natural k there exists a bounded extension
operator

L : W 1,2(k)(Q)→W 1,2(k)(Q̂), Q̂ = (0, T )×G,
L : L2(0, T ;Hk(Ω))→ L2(0, T ;Hk(G)).
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Let us consider functional spaces of solenoidal vector fields. We define the space

V̂ k(Ω) = {v0 ∈ V k(Ω) : v0 satisfies (1.11)}.

Remark 2.1. Below we use the operator rot. Its definition in the three-dimensional
case is well known. In the case when dim Ω = 2 we define the operator rot by formula

rotu = ∂x1u2 − ∂x2u1.

PROPOSITION 2.3. (i) For an arbitrary natural number k there exists the extension
operator L̂ such that the maps

L̂ : V̂ k(Ω)→ V k(G)

are bounded for k = 0, 1, . . . , l.
(ii) For an arbitrary natural number k there exist bounded extension operators

L̂ : V 1,2(k)(Q)→ V 1,2(k)(Q̂), Q̂ = (0, T )×G,
L̂ : L2(0, T ;V k(Ω))→ L2(0, T ;V k(G)).

Proof. Denote Hσ = {v ∈ V 0(Ω) : (v, ν)|∂Ω = 0}, where (v, ν) is understood as
an element belonging to W−1/2(Ω) (see details in R. Temam [38]). For u ∈ V k(Ω) we
consider the boundary value problem

rot v = u, x ∈ Ω,

div v = 0, x ∈ Ω,

(v, ν)|∂Ω = 0.

There exists a solution v ∈ V k(Ω) ∩Hσ of this problem, which satisfies the estimate

‖v‖V k+1(Ω) ≤ c1(‖u‖V k(Ω) + ‖v‖(L2(Ω))n);

moreover, if we will take v from an orthogonal complement to Ker rotV 1(Ω) in the
space Hσ, then

‖v‖(L2(Ω))n ≤ c2‖u‖(L2(Ω))n

(see R. Temam [38]). Hence, for such v we have the estimate

‖v‖V k+1(Ω) ≤ c3‖u‖V k(Ω).

Now, for u ∈ V k(Ω) we define the extension operator L̂ by formula

L̂u = rotLv,

where L is the extension operator from Proposition 2.1 and v is the solenoidal vec-
tor field constructed above by u. Evidently, the estimate for v written above and
Propositions 2.1, 2.2 imply assertions (i) and (ii) of Proposition 2.3.

2.2. Now we reduce the proof of Theorem 1.1 to the case of a linear controllability
problem. Applying the well-known formula of vector analysis,

(v,∇)v = −v × rot v +∇(|v|2/2),
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where × is the operation of vector multiplication, we can rewrite equation (1.1) in
the form

∂tv(t, x)−∆v − v × rot v + θ(t, x)e0 +∇p′(t, x) = f(t, x),(2.1)

where ∇p′ = ∇(p+ |v|2/2). We write the solution (v, θ) in the form

v(t, x) = v̂(t, x) + w(t, x), θ(t, x) = θ̂(t, x) + τ(t, x),(2.2)

substitute (2.2) into equations (2.1), (1.2), (1.3), and subtract from them the same
equations for (v̂, p̂, θ̂). As a result we get

N (w, q, τ) = ∂tw(t, x)−∆w− v̂×rotw−w×rot v̂−w×rotw+∇q+τe0 = 0,(2.3)

divw = 0,(2.4)

H(w, τ) = ∂tτ(t, x)−∆τ + (v̂,∇τ) + (w,∇θ̂) + (w,∇τ) + (w, e0) = 0,(2.5)

where ∇q = ∇p′ −∇p̂. The functions w, τ satisfy the initial conditions:

w(0, x) = w0(x), τ(0, x) = τ0(x),(2.6)

where w0(x) = v0(x) − v̂(0, x), τ0(x) = θ0(x) − θ̂(0, x). Evidently we have reduced
our problem to the construction of a solution (w(t, x), τ(t, x)) of problem (2.3)–(2.6),
which satisfies the equalities

w(T, x) = 0, θ(T, x) = 0.(2.7)

Remark 2.2. In the two-dimensional case we will rewrite the nonlinear term
(v,∇)v in the form

(v,∇)v = (−v2 rot v, v1 rot v) +∇(|v|2/2)

and derive the analog of (2.3)–(2.7) in the same way as above. The obtained system
differs from (2.3)–(2.7), but the proof of Theorem 1.1 will not differ from the proof
given below for the three-dimensional case.

We will solve problem (2.3)–(2.7) with the help of the following variant of the
implicit function theorem.

THEOREM (on a right inverse operator). Suppose that X, Z are Banach spaces
and

A : X → Z(2.8)

is a continuously differentiable map. We assume that for x0 ∈ X, z0 ∈ Z the equality

A(x0) = z0(2.9)

holds and the derivative A′(x0) : X → Z of the map A at x0 is a surjective operator.
Then there exists ε > 0 such that for any z ∈ Z which satisfies the condition

‖z − z0‖Z < ε,

there exists a solution x ∈ X of equation

A(x) = z.
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This theorem is a simple corollary of the generalization of the implicit function
theorem which has been proved in V. Alekseev, V. Tikhomirov, and S. Fomin [1]. In
our case X will be a space of triplets x = (w, q, τ),

A(x) = (N (w, q, τ),H(w, τ), w|t=0, τ |t=0),(2.10)

and the collection of components in (2.10) defines the space Z. We note that (2.7)
will be guaranteed by the insertion of special weights on the norm of X. We take
x0 = (0, 0, 0), z0 = (0, 0, 0). Then equation (2.9) for operator (2.10), (2.3), (2.5) is
fulfilled. Thus, the main condition that should be verified to apply the right inverse
operator theorem is the assertion of solvability of the equation A′(0)x = z for any
z ∈ Z. This equation in our case has the following form:

N ′(0)(v, p, θ) = ∂tv(t, x)−∆v − v̂ × rot v − v × rot v̂ + θe0 +∇p = f,(2.11)

div v = 0,(2.12)

H′(0)(v, θ) = ∂tθ(t, x)−∆θ + (v̂,∇θ) + (v,∇θ̂) + (v, e0) = h,(2.13)

v|t=0 = v0, θ|t=0 = θ0,(2.14)

v|t=T = 0, θ|t=T = 0.(2.15)

2.3. We now define the functional spaces X, Z corresponding to the problem
(2.3)–(2.7). Let

η(t, x) ≡ ηs(t, x) = s(e2x̂1 − ex1)/(T − t)(2.16)

be the weight function where s > 0 is a parameter which will be chosen below,
x̂1 = maxx=(x1...xn)∈Ω |x1|.

Denote

L2(Q, η) ≡ L2(Q, ηs) =
{
y(t, x) : ‖y‖2L2(Q,η) =

∫
Q

e2ηs |y|2 dx dt <∞
}
.(2.17)

Below we will also use the space L2(Q, β) with different weights. We define the space
Θ(Q, η) of components θ(t, x) in (2.11)–(2.15):

Θ(Q, η) ≡Θ(Q, ηs) =

θ(t, x), (t, x) ∈ Q : ‖θ‖2Θ(Q,ηs) ≡ ‖∂tθ −∆θ‖2L2(Q,ηs)

+ ‖(T − t)−3/2θ‖2L2(Q,ηs) + ‖(T − t)−1/2|∇θ|‖2L2(Q,ηs)

+ ‖(T − t)1/2∂tθ‖2L2(Q,ηs) +
n∑

i,j=1

‖(T − t)1/2∂2
xixjθ‖

2
L2(Q,ηs) <∞

.
(2.18)

The space of right side components f in (2.11)–(2.15) is as follows:

F (Q, η) ≡ F (Q, ηs) = {f ∈ (L2(Q))n : ∃ f1 ∈ (L2(Q, η))n,

∃ f2 ∈ L2(0, T ;H1(Ω)) such that f = f1 +∇f2}.
(2.19)

The norm of the space F (Q, η) is defined by the relation

‖f‖F (Q,ηs) = inf
f1,∇f2

f=f1+∇f2

(‖f1‖2(L2(Q,ηs))n + ‖∇f2‖2(L2(Q))n)1/2.(2.20)
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Remark 2.3. Note that F (Q, ηs) is a Hilbert space. Indeed, since the functional
J(f1, f2) = (‖f1‖2(L2(Q,ηs))n + ‖∇f2‖2(L2(Q))n)1/2 is strictly convex, for an arbitrary
f ∈ F (Q, ηs) in the set of pairs (f1,∇f2) ∈ L2(0, T ;H1(Ω)) × (L2(Q, η))n satisfying
f = f1 +∇f2 there exists the unique pair (f̂1,∇f̂2) ∈ (L2(Q, ηs))n × (L2(Q))n such
that ‖f‖F (Q,ηs) = J(f̂1, f̂2). Hence, the map f = f̂1+∇f̂2 → (f̂1,∇f̂2) establishes iso-
metric isomorphism between F (Q, ηs) and L2(0, T ;H1(Ω))×L2(Q, ηs), which implies
that F (Q, ηs) is a Hilbert space.

We define the space Ξ(Q, η) of components v in (2.11)–(2.15) with the help of the
equality

Ξ(Q, η) ≡ Ξ(Q, ηs) =

v(t, x) : div v = 0, ‖v‖2Ξ(Q,ηs)

≡ ‖∂tv −∆v‖2F (Q,ηs) + ‖(T − t)−1v‖2(L2(Q,ηs))n + ‖∇v‖2(L2(Q,ηs))n

+ ‖(T − t)∂tv‖2(L2(Q,ηs))n +
n∑

i,j=1

‖(T − t)∂2
xixjv‖

2
(L2(Q,ηs))n <∞

.
(2.21)

Now we can define the spaces X and Z in the case of problems (2.3)–(2.7) or (2.11)–
(2.15):

X = Xs(Q) = Ξ(Q, ηs)× L2(0, T ;H1(Ω))×Θ(Q, ηs),(2.22)

Z = Zs(Q) = F (Q, ηs)× L2(Q, ηs)× V 1(Ω)×H1(Ω).(2.23)

Since the weight function ηs(t, x) increases exponentially as t → T , the functions
v ∈ Ξ(Q, ηs), θ ∈ Θ(Q, ηs) decrease exponentially as t → T , and therefore equalities
(2.15) are true.

2.4. Let us show that for an arbitrary parameter s > 0, operator (2.8) and its
derivative

A′(0) : Xs(Q)→ Zs(Q)(2.24)

are continuous, where A(x) is defined as in (2.10), (2.3), (2.5).
LEMMA 2.1. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈W 1,2(2)(Q),

A′(0)(v, p, θ) = (N ′(0)(v, p, θ),H′(0)(v, θ), v|t=0, θ|t=0),(2.25)

where N ′(0), H′(0) are defined by (2.11), (2.13). Then, for s > 0, the operator (2.24)
is continuous.

Proof. Since n = dim Ω = 2, 3, the embeddings Ξ(Q, η) ⊂ V 1,2(0)(Q), Θ(Q, η) ⊂
W 1,2(0)(Q) are continuous. Since the restriction operator γ0y = y|t=0 acts continu-
ously from W 1,2(0)(Q) to H1(Ω) and from V 1,2(0)(Q) to V 1(Ω) (see [32]), the inequal-
ities

‖γ0v‖V 1(Ω) ≤ c4‖v‖Ξ(Q,η), ‖γ0θ‖H1(Ω) ≤ c5‖θ‖Θ(Q,η)(2.26)

hold. Let us prove that the operator

H′(0) : Ξ(Q, η)×Θ(Q, η) → L2(Q, η)(2.27)
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defined in (2.13) is continuous. Since the embeddings

V 1,2(2)(Q) ⊂ C(0, T ;C1(Ω̄))n, W 1,2(2)(Q) ⊂ C(0, T ;C1(Ω̄))(2.28)

are continuous for n ≤ 3, we obtain, taking into account (2.13), (2.17), (2.18),

(2.29)
‖H′(0)(v, θ)‖L2(Q,η) ≤ ‖∂tθ −∆θ‖L2(Q,η) + ‖v̂‖(C(Q̄))n‖∇θ‖(L2(Q,η))n

+ ‖∇θ̂‖(C(Q̄))n‖v‖(L2(Q,η))n ≤ (1 + ‖v̂‖V 1,2(2)(Q))‖θ‖Θ(Q,η) + ‖∇θ̂‖(C(Q̄))n‖v‖Ξ(Q,η).

The relations (2.11), (2.17)–(2.21) yield

‖N ′(0)(v, p, θ)‖F (Q,η) ≤ ‖∂tv −∆v − v̂ × rot v − v × rot v̂ + θe0‖(L2(Q,η))n

+ ‖∇p‖(L2(Q))n ≤ ‖∂tv + ∆v‖(L2(Q,η))n + ‖v̂‖C(0,T ;(C1(Ω̄))n)(‖v‖(L2(Q,η))n

+‖|∇v|‖(L2(Q,η))n) + c6‖θ‖L2(Q,η) + ‖∇p‖(L2(Q))n

≤ (1 + ‖v̂‖V 1,2(2)(Q))‖v‖Ξ(Q,η) + c7‖θ‖Θ(Q,η) + ‖p‖L2(0,T ;H1(Ω)).

(2.30)

The inequalities (2.26), (2.29), (2.30) imply the desired assertion.
LEMMA 2.2. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈ W 1,2(2)(Q), and A is operator

(2.10). Then for arbitrary s > 0 the operator

A : Xs(Q)→ Zs(Q)

is continuous.
Proof. To prove this lemma we need only to complete the proof of Lemma 2.1 by

the estimate of the terms w×rotw and (w,∇τ). The Cauchy–Bunyakovskii inequality
and the Sobolev embedding theorem yield:

‖eη(w,∇τ)‖L2(Q) ≤
∫ T

0
‖e

η
2w(t, ·)‖(L4(Ω))n‖e

η
2 |∇τ(t, ·)|‖L4(Ω) dt(2.31)

≤ c8
∫ T

0
‖e

η
2w(t, ·)‖V 1(Ω)‖e

η
2 τ(t, ·)‖W 2

2 (Ω) dt

≤ c9‖e
η
2w‖C(0,T ;V 1(Ω))‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω))

≤ c10‖e
η
2w‖V 1,2(0)(Q)‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω)).

Taking into account (2.16), the evident inequality

(T − t)−k ≤ c(k)e
η
2 ,

and the definition of norms in the right side of (2.30), we get the upper bound:

‖e
η
2w‖V 1,2(0)(Q)‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω)) ≤ c11

(
‖e

η
2 (T − 2)−2w‖(L2(Q))n(2.32)

+ ‖e
η
2 (T − t)−1|∇w|‖(L2(Q))n +

n∑
i,j=1

‖e
η
2 ∂2

xixjw‖(L2(Q))n

)‖e η2 (T − t)−2τ‖L2(Q)

+ ‖e
η
2 (T − t)−1|∇τ |‖L2(Q) +

n∑
i,j=1

‖e
η
2 ∂2

xixjτ‖L2(Q)

 ≤ c12‖w‖Ξ(Q,η)‖v‖Θ(Q,η).

One can estimate the term (w,∇)w analogously.
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Thus, in order to apply the right inverse operator theorem we have to prove
surjectivity of the operator A′(0) : Xs(Q) → Zs(Q). To prove this assertion we will
show that the image of this operator is dense in Zs(Q), and besides, it is a closed
subset of Zs(Q) for s sufficiently large. These assertions imply that the image of A′(0)
coincides with the whole space Zs(Q).

3. The solvability of the linear controllability problem for a dense set
of data.

3.1. In order to solve the controllabilty problem for a dense set of data we need
the Carleman estimate for elliptic and inverse parabolic equations.

We consider the Cauchy problem for the Laplace operator

∆z(x) = f(x), x ∈ Ω, z|∂Ω =
∂z

∂ν

∣∣∣∣
∂Ω

= 0,(3.1)

where Ω ⊂ Rn is a bounded domain with C∞ boundary and ∂/∂ν is the derivative
along outside normal ν to ∂Ω.

LEMMA 3.1. Let f(x) ∈ L2(Ω). There exists s0 > 0 such that for any s > s0 the
solution z(x) ∈W 2

2 (Ω) of (3.1) satisfies the Carleman estimate:

∫
Ω

1
s

n∑
i,j=1

∣∣∣∣ ∂2z(x)
∂xi∂xj

∣∣∣∣2 + s|∇z|2 + s3z2

 exp(sex1) dx(3.2)

≤ c1
∫

Ω
f2(x) exp(sex1) dx,

where x1 is the first component of x = (x1, . . . , xn) ∈ Ω and c1 > 0 does not depend
on s.

For the proof of Lemma 3.1 we refer to L. Hörmander [21], [22]. Note that estimate
(3.2) can be obtained as a simple corollary of Lemma 3.2, which will be proved in
section 6.

Let γ(t) be a function satisfying the properties

γ(t) ∈ C∞(0, T ), 0 < γ(t) ≤ 1 ∀ t ∈ (0, T ),(3.3)

γ(t) =
{
t when t ∈ (0, T0),
T − t when t ∈ (T − T0, T ),

T0 = min
(
T

3
,

1
2

)
.

We define ϕ(t, x), α(t, x) by relations

ϕ(t, x) =
ex1

γ(t)
, α(t, x) = (ex1 − e2x̂1)/γ(t),(3.4)

where x̂1 = max
x=(x1,...,xn)∈Ω

|x1|.

COROLLARY 3.1. Let f(x) ∈ L2(Ω) and s be just the same as in Lemma 3.1.
Then for any t ∈ (0, T ) the following estimate is true:

∫
Ω

γ(t)
s

n∑
i,j=1

∣∣∣∣ ∂2z(x)
∂xi∂xj

∣∣∣∣2 +
s

γ(t)
|∇z|2 +

s3

γ(t)3 |z|
2

 esϕ(t,x) dx(3.5)

≤ c2
∫

Ω
f2(x)esϕ(t,x) dx.
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Proof. We substitute s = s1(γ(t))−1 into (3.2) and obtain (3.5), where instead of
s1 we write s. In virtue of Lemma 3.1 estimate (3.5) is true when s > s0γ(t). Since
0 < γ(t) ≤ 1 for t ∈ (0, T ), this inequality is also true when s > s0.

We consider the inverse heat equation

∂tz(t, x) + ∆z = f(t, x), (t, x) ∈ Q,(3.6)

with the boundary conditions

z|Σ = 0,
∂z

∂ν

∣∣∣∣
Σ

= 0,(3.7)

where, recall, Q = (0, T )× Ω, Σ = (0, T )× ∂Ω.
LEMMA 3.2. There exists s0 > 0 such that for any s > s0 the solution z(t, x) of

(3.6), (3.7) satisfies the Carleman estimate:

(3.8)∫
Q

(sϕ)−1

|∂tz|2 +
n∑

i,j=1

|∂2
xixjz(t, x)|2

+ sϕ
n∑
j=1

|∂xjz|2 + s3ϕ3z2

 esα(t,x) dx dt

≤ c3
∫
Q

f2(t, x)esα dx dt,

where the functions ϕ(t, x), α(t, x) are defined in (3.4) and c3 > 0 does not depend
on s.

We prove this lemma below, in section 6.

3.2. First, instead of problem (2.11)–(2.15), we consider an auxiliary problem.
Let Ω0 ⊂ Rn be a bounded domain with C∞-boundary ∂Ω0 which contains the closure
Ω̄ of Ω : Ω̄ ⊂ Ω0 and satisfies the condition supx∈Ω0

|x1| < 2 supx∈Ω |x1|. Therefore
the function η from (2.16) is positive and the function α from (3.4) is negative. We
denote

Q0 = (0, T )× Ω0, Σ0 = (0, T )× ∂Ω0, ω = Ω0 \ Ω̄.

In Q0 we consider the linearized Boussinesq equation with the distributed control
concentrated in (0, T )× ω:

(3.9)
N̂ ′(w, p, τ, u) = ∂tw(t, x)−∆w − v̂ × rotw + w × rotv̂ +∇p+ τ(t, x)e0 + u′(t, x)

= f(t, x),

divw = 0,(3.10)

(3.11) Ĥ′(w, τ, u) = ∂tτ(t, x)−∆τ+(w,∇θ̂)+(v̂,∇τ)+(w, e0)+un+1(t, x) = h(t, x),

w(0, x) = w0(x), τ(0, x) = τ0(x),(3.12)

w(T, x) = 0, τ(T, x) = 0,(3.13)

where u(t, x) = (u′(t, x), un+1(t, x)) = (u1, . . . , un, un+1) is the distributed control
concentrated in Qω = (0, T ) × ω: supp u ⊂ Qω. The functional space for data
(f, h, w0, τ0) of problem (3.9)–(3.13) is as follows:

(f, h, w0, τ0) ∈ Φs(Q0) = (L2(Q0, η
s))n × L2(Q0, η

s)× V 1(Ω0)×H1(Ω0),(3.14)



LOCAL EXACT BOUNDARY CONTROLLABILITY 403

where s > 0 is an arbitrary fixed number. We define the functional space of solutions
of problem (3.9)–(3.13) by the formula

(w,∇p, τ, u) ∈ Us(Q0) ≡ Ξ(Q0, η
s)× L2(Q0, η

s)×Θ(Q0, η
s)(3.15)

×(L̂2(Qω, ηs))n+1,

where L̂2(Qω, ηs) is the set of functions that belong to L2(Q0, η
s) and equal zero on

the set Q0 \ Qω; the constant s in (3.15) is just the same as in (3.14). We suppose
that the functions v̂, θ̂ in (3.9), (3.11) satisfy the condition

v̂ ∈ V 1,2(1/2)(Q0), θ̂ ∈W 1,2(1/2)(Q0).(3.16)

As in Lemma 2.1 one can easily prove that the operator

Â′ : Us(Q0)→ Φs(Q0)(3.17)

is continuous, where Φs(Q), Us(Q) are defined in (3.14), (3.15), and

Â′(w,∇p, τ, u) = (N̂ ′(w,∇p, τ, u), Ĥ′(w, τ, u), γ0w, γ0τ)(3.18)

with N̂ ′, Ĥ′ defined in (3.9), (3.11).
LEMMA 3.3. The image of operator (3.17), (3.18) is dense in the space Φs(Q0).
Proof. Suppose that the assertion of Lemma 3.3 is not true. Then there exists a

nonzero collection φ ≡ (m(t, x), ζ(t, x), z0(x), ψ0(x)) ∈ Φs(Q0) such that

(A′(w,∇p, τ, u), φ)Φs(Q0) = 0 ∀ (w,∇p, τ, u) ∈ Us(Q0).(3.19)

We can rewrite equality (3.19) in the form∫
Q0

(∂tw(t, x)−∆w − v̂ × rotw − w × rot v̂ +∇p(t, x) + τ(t, x)e0(3.20)

+ u′(t, x),m(t, x))e2ηs(t,x) dx dt+
∫
Q0

(∂tτ(t, x)−∆τ + (w,∇θ̂) + (v̂,∇τ)

+ (w, e0) + un+1)ζ(t, x)e2ηs dx dt+ (w(0, ·), z0)V 1(Ω0) + (τ(0, ·), ψ0)H1(Ω0) = 0.

We set, in (3.20),

z(t, x) = m(t, x)e2ηs(t,x), ψ(t, x) = ζ(t, x)e2ηs(t,x),(3.21)

∇p(t, x) ≡ 0, u(t, x) ≡ 0, w ∈ Ξ(Q0, η) ∩ (C∞0 (Q0))n, and τ ∈ Θ(Q0, η) ∩ C∞0 (Q0).
Then integrating by parts in (3.20) yields the equations

∂tz + ∆z = rot (v̂ × z) + z × rot v̂ + ψ(∇θ̂ + e0) +∇p̃ in Q0,(3.22)

∂tψ + ∆ψ = −∇(ψv̂) + (e0, z) inQ0.(3.23)

If we set, in (3.20), u ∈ (L̂2(Qω, η))n+1, ∇p = 0, w = 0, τ = 0, we will obtain the
equalities

z(t, x) ≡ 0, ψ(t, x) = 0, (t, x) ∈ Qω = Q0 \Q.(3.24)

In particular, (3.24) means that z and ψ equal zero in a neighborhood of Σ0 =
(0, T ) × ∂Ω0. After setting, in (3.20), ∇p ∈ (L2(Q0, η))n, w = 0, τ = 0, u = 0, and
taking into account (3.24), we get

div z = 0 inQ0.(3.25)
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Equalities (3.22), (3.24) yield that

∇p̃(t, x) ≡ 0, (t, x) ∈ Qω.(3.26)

Applying to both parts of (3.22) the operator div and taking into account (3.25) and
the formula div rot y = 0, we obtain

−∆p̃ = div(z × rot v̂) + div((∇θ̂ + e0)ψ).(3.27)

Our main goal now is to deduce from relations (3.22)–(3.27) that z ≡ 0, ψ ≡ 0. We
will make it with the help of Carleman estimates (3.5), (3.8). We can suppose that
s0 in Lemmas 3.1 and 3.2 are equal. Otherwise, we can replace them in both lemmas
with their maximum.

Let

σ ≥ max(s, s0),(3.28)

where s is the constant from Φs(Q0) in the formulation of Lemma 3.3. We take
magnitude σ instead of s in (3.8) and apply estimate (3.8) to the equations (3.22),
(3.23). Note that boundary conditions (3.7) are fulfilled in our case in virtue of (3.24).
We have ∫

Q0

(σϕ|∇z|2 + (σϕ)3|z|2)eσα(t,x) dx dt(3.29)

+
∫
Q0

(σϕ|∇ψ|2 + (σϕ)3|ψ|2)eσα dx dt

≤ c1
∫
Q0

eσα(|v̂|2|∇z|2 + |∇v̂|2|z|2 + |ψ|2(1 + |∇θ̂|2) + |∇p̃|2

+ |ψ|2|∇v̂|2 + |∇ψ|2|v̂|2 + |z|2) dx dt.

We need estimate ∇p̃ in the right side of (3.29). We do it by means of (3.27), (3.26).
Note that p̃ is defined to within an arbitrary constant. We fix it by the condition

p̃(t, x) ≡ 0, (t, x) ∈ Qω.(3.30)

Taking into account (3.26), (3.30) we apply estimate (3.5) to (3.27). After multiplica-
tion (3.5) on (γ(t)/σ) exp(−e2x̂1/γ(t)) scalarly in L2(Ω) and integration with respect
to t, we get∫

Q0

|∇p̃|2eσα dx dt ≤ c5
∫
Q0

γ(t)
σ

(|∇z|2|∇v̂|2 + |z|2|∇rotv̂|2(3.31)

+ |∇ψ|2(1 + |θ̂|2) + |ψ|2|∆θ̂|2)eσα dx dt

≤ c6(‖v̂‖2C(0,T ;(C1(Ω̄))n) + ‖θ̂‖2C(0,T ;C1(Ω̄)) + 1)
∫
Q0

γ(t)
σ

(|∇z|2 + |∇ψ|2)eσα dx dt

+ c7

‖rot v̂‖2L∞(0,T ;(W 1
4 (Ω0))n)

∫ T

0

(∫
Ω

(
e2σα

(
γ(t)
σ

)2

|z|4
)
dx

)1/2

dt

+ ‖∆θ̂‖2L∞(0,T ;L4(Ω0))

∫ T

0

(∫
Ω

(
γ(t)
σ

)2

ψ4e2σα dx

)1/2

dt

.
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Let us estimate the right side of (3.31) using the continuity of embeddingsW 1,2(2)(Q0) ⊂
C(0, T ;C1(Ω̄0)), W 1,2(2)(Q0) ⊂ L∞(0, T ;W 2

4 (Ω0)), and H1(Ω0) ⊂ L4(Ω0) when
dim Ω0 ≤ 3, and taking into account that in virtue of (3.4)

|∂xj (e
σα
2 z)|2 ≤ c8(σ2ϕ2|z|2 + |∇z|2)eσα.

As a result we obtain the inequality∫
Q0

|∇p̃|2eσα dx dt ≤ c9(‖v̂‖2V 1,2(2)(Q0)(3.32)

+ ‖θ̂‖2W 1,2(2)(Q0) + 1)
∫
Q0

(
γ(t)
σ

(|∇z|2 + |∇ψ|2) +
σe2x1

γ(t)
(|z|2 + |ψ|2)

)
eσα dx dt.

The substitution of (3.32) into (3.29) and simple transformations give us the upper
bound: ∫

Q0

(
σex1

γ(t)
(|∇z|2 + |∇ψ|2) +

σ3e3x1

γ(t)3 (|z|2 + |ψ|2)
)
eσα dx dt(3.33)

≤ c10(‖v̂‖2V 1,2(2)(Q0) + ‖θ̂‖2W 1,2(2)(Q0) + 1)
∫
Q0

((
γ(t)
σ

+ 1
)

(|∇z|2 + |∇ψ|2 )

+
(
σ e2x1

γ(t)
+ 1
)

(|z|2 + |ψ|2)
)
eσα dx dt.

Note that (3.33) is true for arbitrary σ satisfying (3.28). We choose σ so large that
estimates

σex1

γ(t)
> c10(‖v̂‖2V 1,2(2)(Q0) + ‖θ̂‖2W 1,2(2)(Q0) + 1)

(
γ(t)
σ

+ 1
)
,

σ3e3x1

γ(t)3 > c10(‖v̂‖2V 1,2(2)(Q0) + ‖θ̂‖2W 1,2(2)(Q0) + 1)
(
σe2x1

γ(t)
+ 1
)

hold for all (t, x) ∈ Q0. Then (3.33) yields that

z(t, x) ≡ 0, ψ(t, x) ≡ 0.(3.34)

Substituting into (3.20) ∇p ≡ 0, u ≡ 0, w ∈ Ξ(Q0, η), and τ ≡ 0, and ∇p ≡ 0, u ≡ 0,
w ≡ 0, τ ∈Θ(Q0, η) yield the equalities

(w(0, ·), z0)V 1(Ω0) = (w(0, ·), z(0, ·))L2(Ω0) = 0,

(τ(0, ·), ψ0)H1(Ω0) = (τ(0, ·), ψ(0, ·))L2(Ω0) = 0.

Therefore

z0 = 0, ψ0 = 0.(3.35)

Hence, by (3.21), (3.34), and (3.35), we have that φ ≡ (m(t, x), ζ(t, x), z0(x), ψ0(x))
≡ 0.

3.3. Now we can prove the main result of this section.
THEOREM 3.1. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈W 1,2(2)(Q), the operator A′(0) is

defined in (2.25), (2.11), (2.13), the spaces Xs(Q), Zs(Q) are defined in (2.16)–(2.23),
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and the parameter s of these spaces is an arbitrary positive number. Then the image
of the operator

A′(0) : Xs(Q)→ Zs(Q)

is dense in the space Zs(Q).
Proof. Let Ω0, Q0 be the sets introduced in the beginning of section 3.2. By Propo-

sitions 2.2, 2.3 we extend the functions v̂(t, x), θ̂(t, x) continuously from V 1,2(2)(Q) up
to V 1,2(2)(Q0) and from W 1,2(2)(Q) up to W 1,2(2)(Q0) correspondingly and denote
these new functions also by v̂(t, x), θ̂(t, x). Comparing (3.9)–(3.12) and (2.11)–(2.14),
we see that the restriction of operator (3.17), (3.18) on the cylinder Q coincides with
the operator

A′(0) : Us(Q)→ Φs(Q).(3.36)

Here A′(0) is operator (2.25), and in contrast to (3.15),

Us(Q) = Ξ(Q, ηs)× L2(Q, ηs)×Θ(Q, ηs)(3.37)

because the restriction of an arbitrary function from L̂2(Qω, ηs) to Q is identical
to zero. Therefore, in virtue of Lemma 3.3, the image of operator (3.36), (2.25)
is dense in Φs(Q). Let (f, h, v0, θ0) ∈ Zs(Q) (see (2.23)) be an arbitrary element.
Since f ∈ F (Q, ηs) (see (2.19)) then f = f1 + ∇f2 where f1 ∈ L2(Q, ηs), f2 ∈
L2(0, T ;H1(Ω)), and therefore (f1, h, v0, θ0) ∈ Φs(Q). By the density of the image of
operator (3.36), for any ε > 0 there exists (f ε1 , h

ε, vε, θε) ∈ Φs(Q) possessing preimage
(vε, pε, θε) ∈ Us(Q),

A′(0)(vε, pε, θε) = (f ε1 , h
ε, vε0, θ

ε
0),(3.38)

and satisfying the inequality

‖(f1 − f ε1 , h− hε, v0 − vε0, θ0 − θε0)‖Φs(Q) ≤ ε.(3.39)

By virtue of (2.11) and (3.38),

A′(0)(vε, pε + f2, θ
ε) = (f ε1 +∇f2, h

ε, vε0, θ
ε
0).(3.40)

Since f − (f ε1 +∇f2) = f1 − f ε1 , then by (2.23), (2.20), (3.14), and (3.36) we have

‖(f − (f ε1 +∇f2), h− hε, v0 − vε0, θ0 − θε)‖Zs(Q)(3.41)

≤ ‖(f − f ε1 , h− hε, v0 − vε0, θ0 − θε0)‖Φs(Q) < ε.

By (3.15), (2.22) the inclusion (vε, pε, θε) ∈ Us(Q) involves the inclusion (vε, pε +
f2, θ

ε) ∈ Xs(Q). Hence, by (3.40), (vε, pε + f2, θ
ε) is the preimage of (f ε1 +∇f2, h

ε,
vε0, θ

ε
0). This proves the theorem.
Remark 3.1. The method of Lemma 3.3’s proof, based on applying the Hahn–

Banach theorem and using some uniqueness theorems, is well known (see J.-L. Lions
[31]). The density of right-hand sides for which a solution of the corresponding bound-
ary value problem exists was proved in A. Fursikov [13], [14] for certain situations
different from those studied above.
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4. On a decomposition of Weyl type. In this section we investigate the
decomposition of the Weyl type,

y(t, x) = v(t, x) +∇q, (t, x) ∈ Q0,(4.1)

where div v = 0 and ∇q = (∂x1q, . . . , ∂xnq) is the gradient of a function. We do not
impose any boundary conditions on v or ∇q but look for v belonging to the space
Ξ(Q0, η) when y ∈ (Θ(Q0, η))n. We do not look for natural uniqueness conditions for
the decomposition (4.1) but need the following assumption to be fulfilled:

if div y(0, x) ≡ 0, then y(0, x) ≡ v(0, x).(4.2)

To find decomposition (4.1) we consider the extremal problem

J(u) =
∫
Q0

|u(t, x)|2e2η

(T − t)4 dx dt→ inf,(4.3)

∆u(t, x) = div y(t, x), (t, x) ∈ Q0,(4.4)

where y(t, x) ∈ (Θ(Q0, η))n is a given function. If a solution m(t, x) of problem (4.3),
(4.4) exists, we will denote v = y −∇m. Then, by (4.4), the equality div v = 0 will
hold, and therefore decomposition (4.1) will be true.

LEMMA 4.1. There exists s0 such that for y(t, x) ∈ (Θ(Q, ηs))n where s ≥ s0, the
problem (4.3), (4.4) has the unique solution m(t, x) ∈ L2(Q0, η − 2 ln(T − t)). This
solution satisfies the estimates∫

Q0

|m(t, x)|2
(T − t)4 e

2ηs dx dt ≤ c1
∫
Q0

|div y|2
(T − t) e

2ηs dx dt,(4.5) ∫
Q0

|∂tm(t, x)|2e2ηs dx dt ≤ c2‖y‖2Θ(Q0,ηs).(4.6)

Proof. Let s0 be defined as in Lemma 3.1. We denote Qε = (0, T − ε) × Ω0 and
instead of (4.3), (4.4), consider the extremal problem

Jε(u) =
∫
Qε

|u(t, x)|2
(T − t)4 e

2η dx dt→ inf,(4.7)

∆u(t, x) = div y(t, x), (t, x) ∈ Qε.(4.8)

The weight e2η(T − t)−4 is bounded above and below on Qε. Hence the space Uε =
{u ∈ L2(Qε) : ∆u ∈ L2(Qε)} is natural for the problem (4.7), (4.8) and the set of its
admissible elements is as follows:

Aε = {u ∈ Uε : ∆u = div y}.

As is well known, the limit mε ∈ Aε of a weakly converging subsequence of the
minimizing sequence uk: Jε(uk) → infv∈Aε Jε(v) is the solution of problem (4.7),
(4.8). The uniqueness of mε follows from the functional Jε strict-convexity. For
ε1 > ε2, mε1(t, x) coincides almost everywhere with the restriction of mε2(t, x) on
Qε1 . Indeed, if it is not so, then Jε1(mε1) < Jε1(mε2). But on this occasion, mε2 is
not a solution because the function

m̂(t, x) =
{
mε1(t, x), (t, x) ∈ Qε1 ,
mε2(t, x), (t, x) ∈ Qε2\Qε1
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satisfies (4.8) and inequality Jε2(m̂) < Jε2(mε2) holds. That is why below we use the
notation mε = m. Since operator ∆ : Uε → L2(Qε) is surjective, we can apply to
problem (4.7), (4.8) the Lagrange principle (see [1]). This principle asserts that there
exists pε ∈ (L2(Qε))n such that the Lagrange function

L(u, pε) ≡
∫
Qε

(
1
2
|u(t, x)|2
(T − t)4 e

2η + (∆u− div y)pε(t, x)
)
dx dt

satisfies the equality ∂uL(u, pε)|u=m = 0; i.e., for any h ∈ Uε,∫
Qε

(
m(t, x)h(t, x)

(T − t)4 e2η + ∆hpε(t, x)
)
dx dt = 0.(4.9)

It follows from (4.9) that

∆pε(t, x) +
m(t, x)
(T − t)4 e

2η = 0 in Ω0, pε|∂Ω0 =
∂pε
∂ν

∣∣∣∣
∂Ω0

= 0.(4.10)

Relations (4.10) imply that pε does not depend on ε and therefore, below, we use
the notation pε = p. We apply to (4.10) Carleman estimate (3.2), substitute in this
estimate s = 2s1(T−t)−1, multiply it on (T−t)4 exp{−2s1e

2x1/(T−t)}, and integrate
with respect to t. As a result we have the estimate∫

Qε

(T − t)p2e−2η dx dt ≤ c3
∫
Qε

m2

(T − t)4 e
2η dx dt,(4.11)

where c3 > 0 does not depend on ε. We substitute u = m into (4.4), scale the obtained
equation by p in L2(Qε), integrate by parts, and apply (4.10). As a result we get

0 =
∫
Qε

(∆m− div y)p dx dt =
∫
Qε

(m∆p− pdiv y) dx dt

= −
∫
Qε

(
m2

(T − t)4 e
2η + pdiv y

)
dx dt.

This equality and (4.11) yield∫
Qε

m2

(T − t)4 e
2η dx dt ≤ c4

(∫
Qε

|div y|2
(T − t) e

2ηdxdt

)1/2(∫
Q

(T − t)|p|2e−2η dx dt

)1/2

≤ c5
∫
Qε

|div y|2
(T − t) e

2η dx dt+
1
2

∫
Qε

m2

(T − t)4 e
2η dx dt,

which gives us the upper bound∫
Qε

m2

(T − t)4 e
2η dx dt ≤ c6

∫
Qε

|div y|2
(T − t) e

2η dx dt,(4.12)

where c6 does not depend on ε. Hence, we can pass to the limit in (4.12) as ε→ 0 and
obtain (4.5). Let m̂ be the solution of problem (4.3), (4.4). Since m is the solution of
(4.7), (4.8) we have∫

Qε

m2

(T − t)4 e
2η dx dt ≤

∫
Qε

m̂2

(T − t)4 e
2η dx dt ∀ε > 0,
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and therefore ∫
Q0

m2

(T − t)4 e
2η dx dt =

∫
Q0

m̂2

(T − t)4 e
2η dx dt.

This equation implies the equality m = m̂ because the solution of problem (4.3), (4.4)
is unique. Differentiation of the equations in (4.4), (4.10) with respect to t yields

∆∂tm = div ∂ty,(4.13)

∆∂tp+ (∂tm)
e2η

(T − t)4 +m∂t

(
e2η

(T − t)4

)
= 0.(4.14)

Applying to (4.14) the Carleman estimate (3.2) in the same way as in (4.11) we obtain∫
Q0

|∇∂tp|2(T − t)7e−2η dx dt ≤ c7
∫
Q0

(|∂tm|2 + (T − t)−4|m|2)e2η dx dt.(4.15)

Scaling equation (4.13) by ∂tp in L2(Q0), integration by parts, and application of
(4.14) yield

0 =
∫
Q0

(T − t)4(∆∂tm− div∂ty)∂tp dx dt =
∫
Q0

(T − t)4(∂tm∆∂tp

−(∂ty,∇∂tp)) dx dt =
∫
Q0

(
−|∂tm|2e2η −

(
(∂tm)m∂t

e2η

(T − t)4

)
(T − t)4

− (T − t)4(∂ty,∇∂tp)
)
dx dt.

This equality and (4.15) imply∫
Q0

|∂tm|2e2η dx dt ≤ c8
∫
Q0

(
|∂tm||m|

e2η

(T − t)2

+ eη(T − t)1/2|∂ty|e−η(T − t) 7
2 |∇∂tp|

)
dx dt ≤ 1

4

∫
Q0

|∂tm|2e2η dx dt

+ c9

∫
Q0

(
|m|2

(T − t)4 e
2η + (T − t)|∂ty|2e2η

)
dx dt.

This inequality and (4.5) give (4.6).
Let

ρ(x) ∈ C∞(Ω̄0), ρ|∂Ω0 = 0, ρ(x) > 0 ∀ x ∈ Ω0.

Below, we use the following space:

M(Q0, η) =

f = (f1, . . . , fn) : ‖f‖2M(Q0,η) = ‖(T − t)−1f‖2(L2(Q0,ηs))n(4.16)

+ ‖|∇f |‖2(L2(Q0,ηs))n + ‖(T − t)∂tf‖2(L2(Q0,ηs))n

+
n∑

i,j=1

‖(T − t)∂2
xixjf‖

2
(L2(Q0,ηs))n <∞

.
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LEMMA 4.2. Let m(t, x) be the solution of problem (4.3), (4.4) constructed in
Lemma 4.1. Then

‖ρ3∇m‖2M(Q0,η) ≤ c10‖y‖2(Θ(Q0,η))n .(4.17)

Proof. Set m̃ = mρ. Then (4.4), where u = m, implies the following equation for
m̃:

∆m̃ = m∆ρ+ 2(∇ρ,∇m) + ρdiv y.(4.18)

We multiply this equation by −e2ηm̃(T − t)−2 scalarly in L2(Q0), integrate by parts,
and have as a result∫

Q0

|∇m̃|2e2η(T − t)−2 dx dt =
∫
Q0

(T − t)−2
(

1
2
|m̃|2∆e2η −m2ρ∆ρe2η

+
1
2
m2(∆ρ2e2η + (∇ρ2,∇e2η))− ρ2me2ηdiv y

)
dx dt

≤ c11

∫
Q0

(
m2

(T − t)4 + |div y|2
)
e2η dx dt.

This inequality, (4.5) and the definition (2.18) of the space Θ(Q0, η) imply:∫
Q0

|ρ∇m|2
(T − t)2 e

2η dx dt ≤ c12

∫
Q0

|∇(ρm)|2
(T − t)2 e

2η dx dt(4.19)

+
∫
Q0

m2|∇ρ|2
(T − t)2 e

2η dx dt ≤ c13‖y‖2(Θ(Q0,η))n .

Denote m0 = mρ2eη. Then we have, analogously to (4.18),

∆m0 = g, m0|∂Ω0 = 0,(4.20)

where g = m∆(ρ2eη) + 2(∇(ρ2eη),∇m) + ρ2eηdiv y.
By (4.5), (4.19) we get

‖g‖L2(Q) ≤ c14‖y‖(Θ(Q0,η))n .(4.21)

Applying to elliptic boundary value problem (4.20) the well-known estimate of its
solution and taking into account (4.21) we obtain

‖m0‖2L2(0,T ;W 2
2 (Ω0)) = ‖mρ2eη‖2L2(0,T ;W 2

2 (Ω0))(4.22)

≤ c15‖g‖2L2(Q0) ≤ c16‖y‖2Θ(Q0,η)n .

Since

|∂2
xixj (ρ

2meη)|2 ≥ 1
2
|∂xi(ρ2∂xjm)eη|2

− c17(|ρ2(∂xjm)∂xie
η|2 + |(∂xim)∂xj (ρ

2eη)|2 + |m∂2
xixj (ρ

2eη)|2),

then inequalities (4.22), (4.19), and (4.5) imply the estimate∫
Q0

e2η
n∑
j=1

|∂xj (ρ2∇m)|2 dx dt ≤ c18

∫
Q0

n∑
i,j=1

(|∂2
xixj (ρ

2meη)|2(4.23)

+ |ρ2(∂xjm)∂xie
η|2 + |(∂xim)∂xj (ρ

2eη)|2 + |m∂2
xixj (ρ

2eη)|2) dx dt

≤ c19‖y‖2(Θ(Q0,η))n .
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Denote mi = ρ3(∂xim)eη(T − t). Then, by virtue of (4.4) with u = m,

∆mi = gi, mi|∂Ω0 = 0,(4.24)

where

gi = (∂xim)∆(ρ3eη(T − t)) + 2(∇(ρ3eη(T − t)), ∂xi∇m) + ρ3eη(T − t)∂xidiv y.

Apply an estimate of the solution of the Laplace equation to the solutionmi of problem
(4.24). Then, as in (4.22), we get, with the help of inequalities (4.5), (4.19), (4.23),

‖ρ3(∂xim)eη(T − t)‖2L2(0,T ;W 2
2 (Ω0)) ≤ c20

(
‖(∂xim)∆(ρ3eη(T − t))‖2L2(Q0)(4.25)

+
∥∥∥∥( 1

ρ2∇(ρ3eη(T − t)), (∂xi(ρ2∇m)− 2(∂xiρ)ρ∇m)
)∥∥∥∥2

L2(Q0)

+ ‖ρ3eη(T − t)∂xidiv y‖2L2(Q0)

)
≤ c21‖y‖2(Θ(Q0,η))n .

As in (4.22), inequalities (4.25) with i = 1, . . . , n, and estimates (4.23), (4.19), (4.5)
imply: ∫

Q0

e2η
n∑

k,l=1

|∂2
xkxl

(ρ3∇m)|2(T − t)2 dx dt ≤ c22‖y‖2(Θ(Q0,η))n .(4.26)

By virtue of (4.13),

∆(ρ∂tm) = ∂tm∆ρ+ 2(∇ρ,∇∂tm) + ρdiv∂ty.(4.27)

Scaling (4.27) by −(ρ∂tm)e2η(T − t)2 in L2(Q0) and integrating by parts we have∫
Q0

|∇(ρ∂tm)|2(T − t)2 dx dt =
∫
Q0

(
1
2

(ρ∂tm)2∆e2η(T − t)2 − ρ(∂tm)2∆ρe2η(T − t)2

+
1
2

(T − t)2(∂tm)2div(eη∇ρ2)− ρ2∂tm(div ∂ty)e2η(T − t)2
)
dx dt.

This equality implies∫
Q0

|ρ∇∂tm|2(T − t)2e2η dx dt ≤ c23

∫
Q0

|∂tm|2(c24|∇ρ|2(T − t)2 + ρ2(4.28)

+ |ρ∆ρ|(T − t)2 + c25(T − t)(|∇ρ2|+ (T − t)|∆ρ2|))e2η dx dt

+
∫
Q0

[(ρ∇∂tm, ∂ty)ρe2η(T − t)2 + ∂tm(∇(ρ2e2η), ∂ty)(T − t)2] dx dt

≤ c26

∫
Q0

|∂tm|2e2η dx dt+
1
2

∫
Q0

|ρ∇∂tm|2(T − t)2e2η dx dt

+ c27

∫
Q0

e2η|∂ty|2(T − t)2 dx dt.

After transferring the term with ρ∇∂tm from the right side of (4.28) to the left side,
we get, with the help of (4.6) and (2.18),∫

Q0

|ρ∇∂tm|2(T − t)2e2η dx dt ≤ c28‖y‖2(Θ(Q0,η))n .

This equality and upper bounds (4.19), (4.23), (4.26) imply (4.17).
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We prove now the main result of this section.
THEOREM 4.1. Let s satisfy the conditions of Lemma 4.1. Then an arbitrary

vector field y ∈ (Θ(Q0, η
s))n admits decomposition (4.1), where div v(t, x) ≡ 0 and

ρ3∇q ∈ M(Q0, η
s), and if y(t, x) satisfies equality div y(0, x) ≡ 0, then y(0, x) ≡

z(0, x).
Proof. We define the function ϕ(t) ∈ C∞(0, T ), such that ϕ(t) ≡ 0 when t ∈

(0, T/4) and ϕ(t) ≡ 1 when t ∈ [ 3
4T, T ]. Let m(t, x) be the solution of problem (4.3),

(4.4) constructed in Lemma 4.1. Since y ∈ (Θ(Q0, η))n, then for almost all t ∈ (0, T )
the function ∆m(t, ·) ∈ L2(Ω0), and by virtue of (4.5), m(t, ·) ∈ L2(Ω0). Hence (see
J.-L. Lions and E. Magenes [32]) the restriction m(t, ·)|∂Ω is well defined and belongs
to H−1/2(∂Ω0). We introduce the function ζ(t, x), defined on (0, T )×∂Ω0 by formula

ζ(t, x) = ϕ(t)m(t, x), t ∈ (0, T ), x ∈ ∂Ω0,

and consider the following Dirichlet problem:

∆q(t, x) = div y(t, x), (t, x) ∈ Q0,(4.29)

q|(0,T )×∂Ω0 = ζ.(4.30)

The unique solution q(t, x) of (4.29), (4.30) exists (see J.-L. Lions and E. Magenes
[32]), and by virtue of the properties of ζ(t, x),

q(x, t) ≡ m(t, x) ∀ (t, x) ∈ [3T/4, T ]× Ω0(4.31)

and

∀t ∈ [0, T/4] div y(t, x) ≡ 0 implies q(t, x) ≡ 0.(4.32)

By virtue of (4.31) and (4.17) we have ρ3∇q ∈M(Q0, η). Besides, (4.2) follows from
(4.32).

5. The proof of the main results.
5.1. First, we want to solve the exact controllability problem for linearized Boussi-

nesq equations (2.11)–(2.15). To do it we apply the analogous controllability result
for the parabolic equation which is formulated below. We consider the controllability
problem for the heat equation

∂tθ(t, x)−∆θ(t, x) = h(t, x), (t, x) ∈ Q0,(5.1)

θ|t=0 = θ0(x), θ|t=T = 0, x ∈ Ω0,(5.2)

where the functions h ∈ L2(Q0, η), θ0 ∈ H1(Ω) are given . Many authors studied
this controllability problem (see D. Russell [35], H. Fattorini [11], and T. Seidman
[36]). But, taking into account the functional spaces where we look for a solution,
the following result which can be extracted from A. Fursikov and O. Imanuvilov [15],
[16], [26] is convenient for us.

THEOREM 5.1. There exists a number s1 such that for any s > s1 and for arbitrary
given θ0 ∈ H1(Ω0), h ∈ L2(Q0, η

s) there exists the solution θ ∈Θ(Q0, η
s) of problem

(5.1), (5.2).
We consider also the controllability problem for the following parabolic system:

∂ty(t, x)−∆y − v̂ × rot y = f, (t, x) ∈ Q0,(5.3)

y|t=0 = y0, y|t=T = 0, x ∈ Ω0.(5.4)
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THEOREM 5.2. Let v̂(t, x) ∈ V 1,2(2)(Q0) be given. Then there exists a num-
ber s2 such that for any s > s2 and for arbitrary given data y0 ∈ (H1(Ω0))n,
f ∈ (L2(Q0, η

s))n, a solution y ∈ (Θ(Q0, η
s))n of problem (5.3), (5.4) exists.

One can prove Theorem 5.2 absolutely by the same way as in A. Fursikov and
O. Imanuvilov [15], [16], [26], [12]. Let us prove one abstract lemma.

LEMMA 5.1. Suppose that X, Y are separable Hilbert spaces, a bounded linear
operator B : X → Y is surjective, and K : X → Y is a linear compact operator.
Then the image of the operator B +K is closed in Y .

Proof. For an arbitrary ε > 0 there exists the operator Kε that has finite-
dimensional image and

‖K −Kε‖ < ε(5.5)

(see [34]). The equality

B +K = Bε +Kε where Bε = B + (K −Kε)

is true. If in (5.5) ε is small enough, then the image of operator Bε coincides with the
whole Y . Thus, we reduce Lemma 5.1 to the case when operator K : X → Y has a
finite-dimensional image.

We can suppose also that Ker B∩Ker K = 0. Indeed, if it is not so we introduce
the factor space X1 = X/(Ker B ∩Ker K), define operators B1 and K1 by formulas

B1x̃ = Bx, K1x̃ = Kx, where x̃ = x+ Ker B ∩Ker K,

and consider the problem on the closure of operators B1 +K1 : X1 → Y image. Since
operator K has a finite-dimensional image then there exists a finite linear indepen-
dent system of vectors e1, . . . , ek ∈ Y and a linear independent system of functionals
f1, . . . , fn defined and bounded on X such that

Kx =
k∑
j=1

fj(x)ej .

The linear independentness of f1, . . . , fn implies that there exist such linear indepen-
dent vectors g1, . . . , gk ∈ X that fj(gi) = δi,j , where δi,j is Kronecker symbol. Hence,
the space X admits the decomposition

X = [g1, . . . , gk] + Ker K

where [g1, . . . , gk] is a linear span of g1, . . . , gk. Since Ker B ∩ Ker K = 0, then
dim Ker B ≤ k and X admits the decomposition

X = S + Ker B + Ker K,

where S is a certain finite-dimensional space. Let B2,K2 be the restrictions at the
space S + Ker K of the operators B and K, respectively. Since the operator

B : S + Ker K → Y

is an isomorphism, then by Fredholm theorem the image B2 +K2 is closed and has a
finite codimension in Y . The coincidence (B2+K2)(S+Ker K) = (B+K)(S+Ker K)
implies the embedding

(B +K)(S + Ker K) ⊂ (B +K)X.
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Hence (B+K)X = (B+K)(S+Ker K)+S1, where S1 is a certain finite-dimensional
subspace of Y . Being a finite-dimensional space, the subspace S1 is closed. Hence,
(B +K) is closed also.

5.2. Now we prove the assertion on the closure of a set of data for which the
controllability problem for the Boussinesq equations has a solution.

THEOREM 5.3. Let v̂(t, x) ∈ V 1,2(2)(Q), θ̂(t, x) ∈ W 1,2(2)(Q). Then the set of
data (f, h, v0, θ0) for which there exists a solution (v, p, θ) ∈ Xs(Q) of problem (2.11)–
(2.15) is closed in the space Zs(Q) when the magnitude of parameter s is sufficiently
large (spaces Xs(Q), Zs(Q) are defined in (2.22), (2.23)).

Proof. To prove this theorem we intend to apply Lemma 5.1. We decompose the
operator generated by problem (2.11)–(2.15) into the sum B + K, where B is the
operator generated by the problem

∂tv(t, x)−∆v − v̂ × rot v +∇p = f(t, x), div v = 0, v(0, x) = v0(x),(5.6)

∂tθ(t, x)−∆θ = h(t, x), θ(0, x) = θ0(x),(5.7)

v(T, x) ≡ 0, θ(T, x) ≡ 0.(5.8)

The operator K is defined by the formula

K(v, p, θ) = (−v × rot v̂ + θe0, (v̂,∇θ) + (v,∇θ̂) + (v, e0), 0, 0).(5.9)

The boundedness of the operator

B : Xs(Q)→ Zs(Q)(5.10)

is proved in Lemma 2.1. To prove that operator (5.10) is surjective we first, instead
of (5.6), use more simple equations:

∂ty(t, x)−∆y − v̂ × rot y = f1(t, x), y(0, x) = y0(x).(5.11)

Let Q0, Ω0 be the set introduced in the beginning of section 3.2. We continuously
extend v̂(t, x) from V 1,2(2)(Q) to V 1,2(2)(Q0) as well as θ̂(t, x) from W 1,2(2)(Q) to
W 1,2(2)(Q0) using Propositions 2.2 and 2.3 and consider the problem (5.11), (5.7) on
Q0. Note that y0(x) ∈ V 1(Ω0) is an extension of v0 ∈ V 1(Ω).

We choose a parameter s satisfying conditions of Theorems 4.1, 5.1, and 5.2
simultaneously. Then by virtue of these theorems for an arbitrary (f1, h, y0, θ0) ∈
(L2(Q0, η

s))n × L2(Q0, η
s) × V 1(Ω0) × H1(Ω0), there exists a solution (y, θ) ∈

(Θ(Q0, η
s))n × Θ(Q0, η

s) of problem (5.11), (5.7) defined on Q0. With the help
of Theorem 4.1 we decompose the component y of this solution as follows:

y(t, x) = v(t, x) +∇q,(5.12)

where div v = 0, ρ3∇q ∈ M(Q0, η
s). Here M(Q0, η) is space (4.16) and y(0, x) =

v(0, x) = y0(x). We substitute (5.12) into (5.11) and verify that v(t, x) satisfies the
equation

∂tv(t, x)−∆v − v̂ × rot v +∇m = f1(t, x), div v = 0, v(0, x) = y0(x),(5.13)

m = (∂tq −∆q).(5.14)

Now we can prove that operator (5.10) is surjective. Indeed, let (f, h, v0, θ0) ∈
Zs(Q) = F (Q, ηs) × L2(Q, ηs) × V 1(Ω) × H1(Ω). By the definition of the space
F (Q, η), the decomposition

f = f1 +∇f2, f1 ∈ (L2(Q, ηs))n, f2 ∈ L2(0, T ;H1(Ω))
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holds. After extension of f1, f2, h from Q onto Q0 and v0, θ0 from Ω onto Ω0 we get, as
was shown above, the function (v,m, θ), which satisfies (5.13), (5.7), (5.8). Evidently,
if we define

p = m+ f2,(5.15)

then (v, p, θ) will satisfy (5.6)–(5.8). After the restriction of (v, p, θ) at Q this triplet
satisfies boundary value problem (5.6)–(5.8), which we consider on Q. We made an
extension from Q to Q0, and after that the restriction from Q0 to Q, to have the
equality (5.12) defined on Q with ∇q ∈M(Q, ηs) (the restriction onto Q allows us to
take off the multiplier ρ3 including ρ3∇q ∈ M(Q0, η

s)). Since ∇q ∈ M(Q, ηs), then
by virtue of (5.14), (5.15), p ∈ L2(0, T ;H1(Ω)).

Equality (5.12) and inclusions ∇q ∈M(Q, η), y ∈ (Θ(Q, η))n imply that all terms
in definition (2.21) of ‖ · ‖2Ξ(Q,η) for v are finite, except perhaps the term ‖∂tv −
∆v‖F (Q,η). Let us show that this term is also finite. By virtue of (5.6), (5.15), (5.14)

‖∂tv −∆v‖F (Q,η) = ‖f1 + v̂ × rot v +∇f2 −∇p‖F (Q,η) ≤ ‖f1 + v̂ × rot v‖(L2(Q,η))n

+ ‖∇f2 −∇p‖(L2(Q,η))n ≤ c1(‖f1‖(L2(Q,η))n

+ ‖v̂‖(C(Q̄))n‖|∇v|‖(L2(Q,η))n + ‖|∇(∂tq −∆q)|‖(L2(Q,η))n) <∞.

Hence, v ∈ Ξ(Q, η), and therefore we have proved that operator (5.10) is surjective.
We prove now that the operator

K : Xs(Q)→ Zs(Q)(5.16)

is compact, where K is as defined in (5.9). To prove this assertion one has to establish
compactness of the operator

K1 : Xs(Q)→ (L2(Q, η))n × L2(Q, η),(5.17)

where

K1(v, p, θ) = (−v × rot v̂ + θe0, (v̂,∇θ) + (v,∇θ̂) + (v, e0)).(5.18)

We have∫ T

T−δ

∫
Ω
e2η(|v × rot v̂|2 + |(v̂,∇θ) + (v,∇θ̂) + (v, e0)|2) dx dt(5.19)

≤ c2(‖v̂‖2C(0,T ;(C1(Ω̄))n) + ‖θ̂‖2C(0,T ;C1(Ω̄)) + 1)
∫ T

T−δ

∫
Ω
e2η(|v|2 + |θ|2 + |∇θ|2) dx dt

≤ c3(‖v̂‖2V 1,2(2)(Q) + ‖θ̂‖2W 1,2(2)(Q) + 1)δ
∫ T

T−δ

∫
Ω
e2η((T − t)−2(|v|2 + |θ|2)

+ (T − t)−1|∇θ|2) dx dt ≤ c4c3δ(‖v̂‖2V 1,2(2)(Q) + ‖θ̂‖2W 1,2(2)(Q))

uniformly with respect to

(v, θ) ∈ Φ ≡ {(v, θ) : ‖v‖2Ξ(Q,η) + ‖θ‖2Θ(Q,η) ≤ c4}.

Evidently, at Qδ = (0, T − δ)× Ω we have

Ξ(Qδ, η) = V 1,2(0)(Qδ), Θ(Qδ, η) = W 1,2(0)(Qδ), L2(Qδ, η) = L2(Qδ),
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and by the Sobolev embedding theorem the operator

K : V 1,2(0)(Qδ)× L2(0, T ;W 1
2 (Ω))×W 1,2(0)(Qδ)→ (L2(Qδ))n+1 × V 1(Ω)×H1(Ω)

is compact. This property of operator K and (5.19) prove the compactness of operator
(5.17), (5.18). Hence, all assumptions of Lemma 5.1 are true and by this lemma we
get assertion of Theorem 5.3.

Now we can immediately prove Theorem 5.4.
THEOREM 5.4. Let v̂ ∈ V 1,2(2)(Q), θ̂ ∈ W 1,2(2)(Q). Then for an arbitrary data

(f, h, v0, θ0) ∈ Zs(Q) there exists a solution (v, p, θ) ∈ Xs(Q) of problem (2.11)–(2.15)
when the magnitude of parameter s is sufficiently large2.

Proof. By Theorem 3.1 the set of data (f, h, v0, θ0) ∈ Zs(Q) for which problem
(2.11)–(2.13) has a solution (v, p, θ) ∈ Xs(Q) is dense in Zs(Q), and by Theorem 5.3,
it is closed. Hence, this set coincides with Zs(Q).

Proof of Theorem 1.1. First we apply the right inverse operator theorem to
problem (2.3)–(2.7). Let A be operator (2.10), (2.3), (2.5) and the spaces X = Xs(Q),
Z = Zs(Q) be defined in (2.22), (2.23), (2.17)–(2.21). Taking into account that A is a
sum of linear and quadratic operators we can assert that continuous differentiability of
operator (2.8) follows from Lemmas 2.1 and 2.2. Equality (2.9) is evident for x0 = 0,
z0 = 0. At last, the assertion that operator

A′(0) : Xs(Q)→ Zs(Q)

is surjective has been proved in Theorem 5.4. So, all assumptions of the right inverse
operator theorem are fulfilled and therefore there exists ε > 0 such that for any initial
data (w0, τ0) satisfying inequality

‖w0‖2V 1(Ω) + ‖τ0‖2H1(Ω) ≤ ε
and for zero right sides of equation (2.3), (2.5) the problem (2.3)–(2.7) possesses
the solution (v, q, θ) ∈ Ξ(Q, ηs) × L2(0, T ;H1(Ω)) ×Θ(Q, ηs). After returning from
problem (2.3)–(2.7) to problem (1.1)–(1.4), (1.6) by change of variables (2.2) we get
the assertion of Theorem 1.1.

Remark 5.1. As we pointed out in Remark 1.1 the smoothness condition imposed
on the given solution (v̂, p̂, θ̂) in Theorem 1.1 can be replaced by the more weak
condition (1.14). This change of condition would lead to the following complication
of Theorem 5.3’s proof, which we show below. We approximate functions v̂, θ̂ by
functions v̂ε ∈ V 1,2(2)(Q), θ̂ε ∈W 1,2(2)(Q):

‖v̂ − v̂ε‖V 1,2(1/2)(Q)∩(L∞(Q))n ≤ ε, ‖θ̂ − θ̂ε‖W 1,2(1/2)(Q)∩L∞(Q) < ε,(5.20)

where ε is sufficiently small. We can write

B +K = B +Rε +Kε,

where

Kε(v, θ) = (−v × rot v̂ε + θe0, (v̂ε,∇θ) + (v,∇θ̂ε) + (v, e0), 0, 0),

Rε(v, θ) = (−v × rot (v̂ − v̂ε), (v̂ − v̂ε,∇θ) + (v,∇(θ̂ − θ̂ε)), 0, 0).

By virtue of (5.20) the operator Rε : Xs(Q)→ Zs(Q) has a small norm, and therefore
the operator B + Rε : Xs(Q) → Zs(Q) is surjective. The compactness of operator
Kε : Xs(Q) → Zs(Q) has been proved in Theorem 5.3. Hence, by Lemma 5.1 the
image of operator B +Rε +Kε coincides with Zs(Q).

2More precisely, s simultaneously satisfies the conditions of Theorems 4.1, 5.1, 5.2.
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6. The proof of a Carleman estimate. In this section we prove Lemma 3.2.
Proof of Lemma 3.2. We make the change of variables

z(t, x) = e−sαw(t, x)(6.1)

in (3.6), (3.7). As a result, by virtue of (6.1) we get

L1w(t, x) + L2w(t, x) = fs(t, x), (t, x) ∈ Q,(6.2)

w|Σ =
∂w

∂ν

∣∣∣∣
Σ

= 0,(6.3)

where

L1w = ∆w + s2ϕ2w − s(∂tα)w,(6.4)

L2w = ∂tw − 2sϕ∂x1w,(6.5)

fs = esαf + sϕw.(6.6)

Besides, by virtue of (6.1) and by the properties of α we have

w|t=0 = w|t=T = 0.(6.7)

Equation (6.2) implies

‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) + 2(L1w,L2w)L2(Q) = ‖fs‖2L2(Q).(6.8)

By virtue of (6.4), (6.5) we get

(L1w,L2w)L2(Q) = I1 + I2 + I3,(6.9)

where

I1 =
∫
Q

(∆w + s2ϕ2w − s(∂tα)w)∂tw dxdt,(6.10)

I2 = −
∫
Q

∆w(2sϕ∂x1w) dx dt,(6.11)

I3 = −
∫
Q

(s2ϕ2 − s(∂tα))(2sϕw∂x1w) dx dt.(6.12)

Let us transform I1, I2, I3. Integration by parts in (6.10) with the help of (6.3), (6.7)
yields

I1 =
∫
Q

(
−1

2
∂t|∇w|2 +

1
2

(s2ϕ2 − s(∂tα))∂t|w|2
)
dx dt(6.13)

= −
∫
Q

(
s2ϕ∂tϕ−

s

2
∂2
ttα
)
|w|2 dx dt.

Analogously, integration by parts with respect to x in (6.12) with help of (6.3) yields

I3 = −
∫
Q

(s2ϕ2 − s∂tα)sϕ∂x1w
2 dx dt =

∫
Q

(3s3ϕ3w2(6.14)

− s2(∂tϕ)ϕw2 − s2(∂tα)ϕw2) dx dt.
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Finally, let us estimate term (6.11). Integration by parts and (6.1) imply

I2 = (∇w,∇(2sϕ∂x1w))(L2(Q))n =
∫
Q

(2sϕ(∂x1w)2(6.15)

+ sϕ∂x1 |∇w|2) dx dt =
∫
Q

(2sϕ(∂x1w)2 − sϕ|∇w|2) dx dt.

We substitute (6.13), (6.14), (6.15) into (6.9), and after that substitute the obtained
equality into (6.8). As a result we have

‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) + 2
∫
Q

(3s3ϕ3|w|2 − sϕ|∇w|2(6.16)

+ (∂x1w)22sϕ) dx dt = ‖fs‖2L2(Q) +X1,

where

X1 = 2
∫
Q

(
s2ϕ∂tϕ−

s

2
∂2
ttα+ s2ϕ(∂tϕ) + s2ϕ(∂tα)

)
|w|2 dx dt.(6.17)

We get, with the help of a simple estimation of (6.6),

‖fs‖2L2(Ω) ≤ 2
∫
Q

(e2sα|f |2 + s2ϕ2|w|2) dx.(6.18)

Definition (3.4) of ϕ and α imply the inequalities

|∂tϕ| ≤ c1ϕ2, |∂tα| ≤ c2ϕ2, |∂2
ttα| ≤ c3ϕ3,(6.19)

where c1, c2, c3 do not depend on s, t, x. The estimation of (6.17) with the help of
(6.19) yields

|X1| ≤ c4
∫
Q

(1 + s2)ϕ3|w|2 dx dt.(6.20)

Scaling (6.2) by sϕw in L2(Q) and taking into account (6.4) we get after integration
by parts∫

Q

fssϕw dx dt =
∫
Q

(L2w)sϕw dx dt+
∫
Q

(
s3ϕ3|w|2

− sϕ(∂tα)|w|2 − sϕ|∇w|2 +
1
2
s∆ϕ|w|2

)
dx dt.

We can rewrite this equality in the form∫
Q

sϕ|∇w|2 dx dt =
∫
Q

s3ϕ3|w|2 dx dt−X2,(6.21)

where

X2 =
∫
Q

(
fssϕw − (L2w)sϕw + sϕ(∂tα)|w|2 − 1

2
sϕ|w|2

)
dx dt.(6.22)
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We estimate X2, taking into account (6.18), (6.19):

|X2| ≤
1
4
‖L2w‖2L2(Q) + c5

∫
Q

(e2sα|f |2 + (s2ϕ2 + s2ϕ3 + sϕ)|w|2) dx dt.(6.23)

The estimation of (6.16) by means of (6.20), (6.18) yields:

‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) + 2
∫
Q

(3s3ϕ3|w|2 − sϕ|∇w|2) dx dt(6.24)

≤
∫
Q

e2sα|f |2dxdt+ c6

∫
Q

((1 + s2)ϕ3 + s2ϕ2)|w|2 dx dt.

We express the terms
∫
Q
sϕ|∇w|2 dx dt in (6.24) by means of (6.21) and after that

use estimate (6.23). As a result we get the upper bound

‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) + 2
∫
Q

2s3ϕ3|w|2 dx dt(6.25)

≤ 1
2
‖L2w‖2L2(Q) + c9

∫
Q

(e2sα|f |2 + s2ϕ3w2) dx dt.

By (6.25) there exists a parameter s0 such that the following inequality holds:

‖L1w‖2L2(Q) + ‖L2w‖2L2(Q) +
∫
Q

s3ϕ3|w|2 dx dt(6.26)

≤ c10

∫
Q

e2sα|f |2 dx dt ∀ s ≥ s0,

where c10 does not depend on s. After the estimation of the right side of (6.21) with
the help of (6.23), (6.26) we get∫

Q

sϕ|∇w|2 dx dt ≤ c11

∫
Q

e2sα|f |2 dx dt ∀ s ≥ s0.(6.27)

Multiplying (6.4) on (sϕ)−1/2 and estimating with the help of (6.26), (6.19) we get∫
Q

(sϕ)−1|∆w|2 dx dt ≤ c12

∫
Q

((sϕ)−1|L1w|2 + s3ϕ3w2(6.28)

+ s(ϕ)3w2) dx dt ≤ c13

∫
Q

e2sα|f |2 dx dt ∀ s > s0.

Analogously, multiplying (6.5) on (sϕ)−1/2, we obtain the following inequality by
means of (6.26), (6.27):∫

Q

(sϕ)−1|∂tw|2 dx dt ≤ c14

∫
Q

e2sα|f |2 dx dt ∀ s > s0.(6.29)

After substituting w = esαz into (6.26)–(6.29), we obtain (3.8).
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Abstract. Three distinct controlled ergodic Markov models are considered here. The models are
a discrete time controlled Markov process with complete observations, a controlled diffusion process
with complete observations, and a discrete time controlled Markov process with partial observations.
The partial observations for the third model have the special form of complete observations in a
fixed recurrent set and noisy observations in its complement. For each of the models an almost
self-optimizing adaptive control is given. These adaptive controls are constructed from a family of
estimates that use a finite discretization of the parameter set and a finite family of almost optimal
ergodic controls by a randomized certainty equivalence method. A continuity property of the infor-
mation of a model for one parameter value with respect to another is used to establish this almost
optimality property.

Key words. adaptive control, ergodic control, Markov processes, controlled Markov processes,
almost optimal adaptive control
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1. Introduction. In many control problems the models are not completely de-
scribed and there are perturbations or unmodeled dynamics that are described by
noise so that the models are stochastic. If some distributions or parameters in the
models are unknown then these control problems can be considered as problems of
stochastic adaptive control. In this paper, three unknown ergodic Markov models are
considered. The models are a discrete time controlled Markov process with complete
observations, a controlled diffusion process with complete observations, and a discrete
time controlled Markov process with partial observations. The discrete time Markov
processes evolve in a compact state space, and the transition densities depend on an
unknown parameter. The partial observations of the discrete time Markov process in
the third model have the special form of complete observations in a fixed recurrent
set and noisy observations in its complement. The controlled diffusion is described by
a stochastic differential equation where the unknown parameter appears in the drift
vector. The solution of the stochastic differential equation is given in the weak sense.
Since there are some basic differences among these three models, it is convenient to
treat them separately. Typically, the results that are given here are stated for each of
the three models.

Since the true value of the parameter is unknown, it is estimated using the maxi-
mum likelihood procedure where the time differences between the successive updates
of the estimates are sufficiently large so that an ergodic property of the information
and the cost can be used. Since only almost self-optimality is desired, the maximum
likelihood procedure is restricted to choosing from a finite set of possible values for
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the parameter that is a discretization of the possible parameter values. The adaptive
strategy uses a randomized certainty equivalence control that chooses with probabil-
ity almost 1 the control that is almost optimal for the current value of the estimates,
and with small, positive probability each of the other almost optimal controls. This
procedure is shown to give an almost self-optimizing adaptive control.

The adaptive control of ergodic Markov models has been considered elsewhere
(e.g., [1, 2, 4, 6, 8, 9, 10, 13]). However, only here is the maximization of the likelihood
function restricted to a finite, discretized set of the possible parameter values. The
work of Agrawal [1] has motivated the use here of information and the randomized
certainty equivalence adaptive control. A cost-biased maximum likelihood method
introduced in [13] is used in [6, 8] for two of the models considered here. The methods
used here relax some of the assumptions in [4, 6, 8]. For example, the global Lipschitz
continuity of the drift vector with respect to the unknown parameter for the controlled
diffusion model is replaced by only continuity, and the requirement that the law of
large numbers for some martingales be uniform in the parameter, which necessitated
some assumptions in [6, 8], is not required.

The three models that are considered here can be generalized in various ways. The
discrete time Markov process can be modified to include the discrete time recursive
model in [17]. The controlled diffusion model can be generalized by analogy to [7] to
include processes that satisfy stochastic differential equations with delays. The partial
observations structure used here can be modified to noisy observations everywhere if
there is a sequence of random times such that the process at these times is a family
of independent, identically distributed random variables.

The three models are specifically described as follows.
Model I—Discrete time controlled Markov process. A Markov process

(Xn, n ∈ N) evolves in a compact metric space E with the transition operator
P (xn,dy; vn, α0) at time n ∈ N, where α0 ∈ A is an unknown fixed parameter and A
is a compact metric space, and the control vn takes values in a compact metric space
U and is adapted to σ(X0, . . . , Xn). A generic parameter value α ∈ A has a transition
operator that is described by replacing α0 by α above. The transition operators have
continuous densities with respect to a fixed measure ϕ( ·); that is, for each B ∈ B(E),
the Borel σ-algebra on E, and each α ∈ A,

(1) P (x,B; v, α) =
∫
B

p(x, y, v, α)ϕ(dy),

where ϕ is a probability measure on E and p : E×E×U ×A → R+ is continuous. It
is assumed that p(x, y, v, α) > 0 for all x, y ∈ E, v ∈ U , and α ∈ A, and suppϕ = E.
The control problem is to minimize the following ergodic cost functional:

(2) I1((vn, n ∈ N)) = lim sup
n→∞

1
n

n−1∑
i=0

c(Xi, vi),

where c : E × U → R+ is a bounded, Borel measurable function. The family of
controls (vn, n ∈ N) has the form vn = u(Xn), where u ∈ U and U is the family of
Borel measurable functions from E to U .

Model II—Controlled diffusion process. Let (X(t), t ∈ R+) be a controlled
diffusion process that satisfies the following stochastic differential equation:

(3)
dX(t) = f(X(t))dt+ h(X(t), α0, v(t))dt+ σ(X(t))dW (t),

X(0) = x,
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where X(t) ∈ Rn, (W (t), t ≥ 0) is a standard Rn-valued Wiener process, α0 ∈
A is unknown and A is compact, (v(t), t ≥ 0) is adapted to σ(X(s), s ≤ t), and
v(t) ∈ U , a compact set. The functions f and σ satisfy a global Lipschitz condition,
σ(x)σ∗(x) ≥ cI > 0 for all x ∈ Rn, and h : Rn × A × U → Rn is a bounded Borel
measurable function and either h(x, · , v) is continuous uniformly in v ∈ U and x from
compact subsets of Rn or h(x, · , ·) is continuous for each x ∈ Rn. The solution of
the stochastic differential equation (3) is given in the weak sense by an absolutely
continuous transformation of the measure of the strong solution of

(4)
dY (t) = f(Y (t))dt+ σ(Y (t))dW (t),

Y (0) = x.

The family of controls (v(t), t ≥ 0) has the form v(t) = u(X(t)), where u ∈ U and
U is the family of Borel measurable functions from Rn into U . Let TA be the first
hitting time of A ∈ B(Rn); that is,

TA =
{

inf{s > 0 : X(s) ∈ A},
+∞ if the above set is empty.

Let Γ1 and Γ2 be two spheres in Rn with centers at 0 and radii 0 < r1 < r2, respec-
tively. Let τ be given as

(5) τ = TΓ2 + TΓ1 ◦ θTΓ2
,

where (θt, t ≥ 0) is the family of shift operators acting on C(R+,Rn). The random
time τ is the first time that the process (X(t), t ≥ 0) hits Γ1 after hitting Γ2. It is
assumed that

(6) sup
α∈A

sup
u∈U

sup
x∈Γ1

Eα,ux [τ2] <∞

and

(7) Eα,ux [TΓ1 ] <∞

for each (x, α, u) ∈ Rn × A × U , where Eα,ux is the expectation with respect to a
process (X(t), t ≥ 0) that satisfies (3) with α0 replaced by α and v(t) = u(X(t)). The
dependence of the solution of (3) on α ∈ A and the control (v(t), t ≥ 0) is suppressed
for notational convenience. However, it is shown explicitly when the expectations of
functions of the solution are taken. The control problem is to minimize the ergodic
cost functional

(8) I2((v(t), t ≥ 0)) = lim sup
t→∞

1
t

∫ t

0
c(X(s), v(s))ds,

where c : Rn × U → R+ is a bounded, Borel measurable function.
Model III—A partially observed discrete time controlled Markov pro-

cess. A controlled Markov process (Xn, n ∈ N) evolves in a compact subset E of
Rd with the transition operator P (xn,dy; vn, α0) at time n ∈ N, where α0 ∈ A is an
unknown parameter, A is a compact metric space, and the control vn takes values in a
compact metric space U . A generic parameter value α ∈ A has a transition operator
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that is described by replacing α0 by α above. The transition operators have densities
with respect to Lebesgue measure; that is,

(9) P (x,B; v, α) =
∫
B

p(x, y, v, α)dy,

where α ∈ A, B ∈ B(E), and p : E × E × U × A → R+ is continuous and p > 0
on E × E × U ×A. The process (Xn, n ∈ N) is completely observed in a nonempty
compact subset Γ ⊂ E and is partially observed in E \ Γ . The observation process
(Yn, n ∈ N) is explicitly described as follows:

(10) P (Yi ∈ B|Xi,Yi−1) = 1B∩Γ (Xi) + 1Γ c(Xi)
∫
B∩Γ c

r(Xi, y)dy,

where B ∈ B(E), Yi = σ(Y1, . . . , Yi), Y0 = {Ø, Ω}, and r : Γ c × Γ c → R is Borel
measurable such that

∫
Γ c r(x, y)dy = 1 for each x ∈ Γ c. A control v is a U -valued,

Yn-adapted process. The control problem is to minimize the ergodic cost functional

(11) I3((vn, n ∈ N)) = lim sup
n→∞

1
n

n−1∑
i=0

c(Xi, vi),

where c ∈ C(E × U). It is assumed that there is a nonempty compact set Γ1 ⊂ Γ
such that for each probability law µ on X0, control u = (vn, n ∈ N), and α ∈ A,

(12) Eα,uµ [TΓ1 ] <∞

and

(13) sup
x∈Γ1

sup
u∈U

Eα,ux [τ2] <∞,

where TΓ1 is the first hitting time of Γ1, τ is the first hitting time of Γ1 after hitting
Γ c (τ = TΓ c + TΓ1 ◦ θTΓc ), and Eα,uµ is the expectation for the process (Xn, n ∈ N)
with initial law µ, control u, and parameter α ∈ A. For a probability law µ for X0
the measure-valued process (Πα0

n , n ∈ N) is defined as follows:

(14) Πα0

0 (B) = µ(B),

(15) Πα0

n (B) = Pn(Xn ∈ B|Yn)

for each B ∈ B(E). This conditional measure process can be represented more ex-
plicitly using (10) (e.g., Lemma 1 of [18]) as follows:

(16) Πα0

n+1(B) = 1B∩Γ (Yn+1) + 1Γ c(Yn+1)M(Yn+1, Π
α0

n , vn, α
0)(B),

where

(17) M(y, ν, v, α0) =

∫
B∩Γ c

r(z, y)p(ν, z, v, α0)dz∫
Γ c
r(z, y)p(ν, z, v, α0)dz

and

(18) p(ν, z, v, α0) =
∫
E

p(x, z, v, α0)ν(dx).
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2. A finite family of almost optimal controls. For the adaptive control of
Models I, II, and III a finite family of controls is constructed that includes at least
one that is almost optimal for each parameter value α ∈ A.

To determine the almost optimal controls the averaged versions of the ergodic
cost functionals (2), (8), (11) are used. These are denoted as follows:

(19) Jα
0,1

µ ((vn, n ∈ N)) = lim sup
n→∞

1
n
Eα

0,v
µ

[
n−1∑
i=0

c(Xi, vi)

]
,

(20) Jα
0,2

µ ((v(t), t ≥ 0)) = lim sup
t→∞

1
t
Eα

0,v
µ

[∫ t

0
c(X(s), v(s))ds

]
,

(21) Jα
0,3

µ ((vn, n ∈ N)) = lim sup
n→∞

1
n
Eα

0,v
µ

[
n−1∑
i=0

c(Xi, vi)

]
,

where µ is the probability law for X0 and α0 ∈ A is the true parameter value. The
finite families of almost optimal controls for Models I, II, and III are constructed for
the cost functionals Jα

0,1
µ , Jα

0,2
µ , and Jα

0,3
µ , respectively.

Model I. It is assumed that it suffices to consider controls of the form vn =
un(Xn), where un ∈ U = B(E,U), the family of Borel measurable functions from
E to U . Clearly, this restriction is satisfied if c is a continuous, bounded function
because by (1) for B ∈ B(E), x ∈ E, v ∈ U , and α ∈ A,

(22) P v,α(x,B) ≥ inf
x,y∈E

inf
v∈U

inf
α∈A

p(x, y, v, α)ϕ(B)

and

inf
x,y∈E

inf
v∈U

inf
α∈A

p(x, y, v, α) > 0,

and (see Theorem 2.2 and Corollary 3.6 in Chap. 3 of [10]) for each α ∈ A, there is a
uα ∈ B(E,U) such that Jα,1µ (uα) is optimal.

For Model I there is a uniform ergodicity property and a finite family of almost
optimal controls.

PROPOSITION 1. For Model I with α ∈ A and u ∈ U there is a probability measure
παu on B(E) such that

(23) sup
u∈U

sup
α∈A

sup
x∈E
‖(Pu,α)n(x, ·)− παu ( ·)‖var ≤ 2γn−1

0

where ‖ · ‖var is the variation norm and

γ0 = 1− inf
x,y∈E

inf
v∈U

inf
α∈A

p(x, y, v, α).

There is a constant K1 such that for α, β ∈ A and u ∈ U

(24) ‖παu − πβu‖var ≤ K1 sup
x∈E
‖Pu,α(x, ·)− Pu,β(x, ·)‖var.

Furthermore, given ε > 0 there is a finite family of controls U1(ε) = {u1, . . . , ur(ε)}
such that for each α ∈ A there is a k ∈ {1, . . . , r(ε)} and

(25) Jα,1µ (uk(X( ·))) ≤ λ1(α) + ε,
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where

(26) λ1(α) = inf
u∈U

Jα,1µ (u(X( ·))).

Proof. From (22) and (5.6) of [5], (23) is verified. The inequality (24) follows from
the proof of Proposition 1 of [17]. The existence of a finite family U1(ε) satisfying
(25) follows from (24) and the proof of Lemma 2 of [17].

Model II. Let (τn, n ∈ N) be an increasing sequence of random times such that
τ1 = τ and τn+1 = τn◦θτn for n > 1. For a given control u ∈ U and parameter α0 ∈ A
there is a unique invariant measure ηα

0

u for the embedded Markov chain (Xτn , n ∈ N)
and X0 ∈ Γ1 (e.g., [6]). Furthermore, there is a unique invariant measure πα

0

u for the
process (X(t), t ≥ 0) with v(t) = u(X(t)), and it has the form

(27) πα
0

u (B) =

∫
Γ1

Eα
0,u

x

[∫ τ

0
1B(X(s))ds

]
ηα

0

u (dx)∫
Γ1

Eα
0,u

x [τ ]ηα
0

u (dx)
.

For Model II there is an analogue of Proposition 1.
PROPOSITION 2. For Model II there is γ0 ∈ (0, 1) such that

(28) sup
u∈U

sup
α∈A

sup
x∈Γ1

sup
B∈B(Γ1)

|Pα,ux (X(τn) ∈ B)− ηαu (B)| ≤ γn0 ,

where ηαu is the unique invariant measure for the embedded Markov chain. There is a
constant K1 such that for α, β ∈ A and u ∈ U ,

(29) ‖ηαu − ηβu‖var ≤ K1 sup
x∈E

sup
B∈B(Γ1)

|Pα,ux (X(τ) ∈ B)− P β,ux (X(τ) ∈ B)|.

Furthermore, given ε > 0 there is a δ > 0 such that if α, β ∈ A and ρA(α, β) < δ then

(30) sup
u∈U

sup
x∈Γ1

sup
B∈B(Γ1)

|Pα,ux (X(τ) ∈ B)− P β,ux (X(τ) ∈ B)| < ε

and

(31) sup
u∈U

sup
x∈Γ1

sup
B∈B(Γ1)

∣∣∣∣Eα,ux

[∫ τ

0
1B(X(s))ds

]
− Eβ,ux

[∫ τ

0
1B(X(s))ds

]∣∣∣∣ < ε,

where ρA is a metric on A compatible with its topology. Furthermore, given ε > 0,
there is a finite family of controls U2(ε) = {u1, . . . , ur(ε)} such that for each α ∈ A
there is a k ∈ {1, . . . , r(ε)} and

(32) Jα,2µ (uk(X( ·))) ≤ λ2(α) + ε,

where

(33) λ2(α) = inf
u∈U

Jα,2µ (u(X( ·))).

Proof. By Proposition 2.2 of [6] and Theorem 4.1 of [3] the inequality (28) follows.
Using the proof of Proposition 1 of [6], as in our Proposition 1, the inequality (29)
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follows. The uniform continuity properties (30), (31) can be verified as for (10) and
(19) of [6]. Since h is not assumed to be Lipschitz continuous with respect to α ∈ A,
it is necessary to verify that the map

(34) H : Γ1 ×A → R

given by

(35) H(x, α) = Ex

[∫ t

0
|σ−1(Y (s))h(Y (s), α, u(Y (s)))|2ds

]
is continuous uniformly in u ∈ U , where Ex is the expectation for Px that is the
measure for the solution of (4), and

Ex

[∫ t

0
|σ−1(Y (s))(h(Y (s), α, u(Y (s)))− h(Y (s), β, u(Y (s))))|2ds

]
→ 0

as ρA(α, β) → 0 uniformly in u ∈ U . The proof of this last continuity is similar to
the verification of the continuity of H, so only the verification of H is given. Since h
is bounded, it is sufficient to verify the continuity of H̄ : Γ1 ×A → R given by

(36) H̄(x, α) =
∫ t

t1

Ex|σ−1(Y (s))h(Y (s), α, u(Y (s)))|2ds

for each t1 < t uniformly in u ∈ U . To verify this continuity note that the map
(s, x) ∈ (0,∞) × Rd 7→ Px(Y (s) ∈ ·) is continuous in the variation norm topology.
In fact, by Lemma 9.22 of [19], for sn → s > 0 and xn → x the family of measures
(Pxn(Y (sn) ∈ ·), n ∈ N) is tight, so for any ε > 0 there is a compact set K ⊂ Rd such
that

Py(Y (sn) ∈ Kc) < ε

for all y ∈ {x, x1, x2, . . .}. By Theorem 3.2.1 of [19] the measures (P.(Y (s) ∈ ·), s > 0)
have continuous densities. As n → ∞ the following inequality is easily verified from
the previous inequality:

sup
B∈B(Rd)

|Pxn(Y (sn) ∈ B)− Px(Y (s) ∈ B)| ≤ 2ε+
∫
K

|p(sn, xn, y)− p(s, x, y)|dy.

Thus the continuity in the variation norm of P.(Y (s) ∈ ·) is verified. By this conti-
nuity and the continuity of α 7→ h(y, α, v) that is uniform in v ∈ U , the continuity of
(36) and therefore (34) follows. Now only the verification of (32) remains. By (27),
(29), (30), (31), given ε > 0, there is a δ > 0 such that if α, β ∈ A and ρA(α, β) < δ,
then

sup
u∈U
‖παu − πβu‖var < ε.

So by Propositions 2.3 and 2.4 of [6] there is a finite family of controls U2(ε) such
that the inequality (32) is satisfied.

Model III. Let Ũ be a fixed compact subset of C(P(E), U) where P (E) is the
family of probability measures on E with the vague topology, and let u(α) be the
control sequence such that vn = u(Πα

n ). Define λ3 as follows:

(37) λ3(α) = inf
u∈Ũ

Jα,3µ (u(Πα
n ))
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and an increasing sequence of random times (τn, n ∈ N) as τ1 = τ , τn+1 = τn+τ ◦θτn ,
where (θt, t ≥ 0) is the family of shift operators acting on C(R+,Rd).

Some additional assumptions are made on Model III.
(A1) The function r given in (10) is continuous on Γ c × Γ c and bounded on

Γ c
δ × Γ c

δ for some δ > 0 where Γ c
δ = {(y, z) ∈ Γ c × Γ c : ρE(y, Γ ) ≥ δ} ∪ {(y, z) ∈

Γ c × Γ c : ρE(y, z) ≥ δ} and ρE is a metric on E that is compatible with its topology.
If (yn, n ∈ N) is a sequence in Γ c such that yn → y ∈ Γ as n → ∞, and for δ > 0,
B(y, δ) = {z ∈ Γ c : ρE(z, y) ≤ δ}, then

(38) lim
n→∞

inf
α∈A

inf
v∈Ũ

inf
x∈K

∫
B(y,δ)

r(z, yn)Pα,v(x,dz) =∞

for any compact subset K ⊂ E.
(A2) If (zn, n ∈ N) is a sequence in Γ c that converges to z, then

lim
n→∞

R(zn, ·) = R(z, ·),

where the topology is the vague convergence of measures and

(39) R(z,A) =


∫
A∩Γ c

r(z, y)dy for z ∈ Γ c,

1A(z) for z ∈ Γ

for A ∈ B(E).
Using (A1) and (A2) an analogue of Propositions 1 and 2 is given for Model III.
PROPOSITION 3. For Model III, if (A1) and (A2) are satisfied, then there is a

γ0 ∈ (0, 1) and a measure ηαu(β) on Γ such that

(40) sup
u∈Ũ

sup
α,β∈A

sup
x∈Γ

sup
B∈B(Γ1)

|Pα,u(β)
x (Xτn ∈ B)− ηαu(β)(B)| < γn0 .

Given ε > 0 there is a finite family of controls Ũ(ε) = {u1, . . . , ur(ε)} ⊂ Ũ and δ0 > 0
such that if ρA(α, β) < δ0, then

(41) λ3(β)− ε ≤ Jβ,3µ (uk(Πα
n )) ≤ λ3(β) + ε

for some k ∈ {1, . . . , r(ε)}.
Proof. The continuity and the positivity of the transition density p and (13) imply

(40). Using the proof of Lemma 3 of [17], it follows that

Jβ,3µ (uk(Πα
n )) =

∫
Γ

Eβ,u(α)
x

[
τ−1∑
i=0

∫
E

c(z, u(Πα
i ))Πβ

i (dz)ηβu(α)(dx)

]
∫
Γ

Eβ,u(α)
x [τ ]ηβu(α)(dx)

.

By the proofs of Lemma 2 of [17] and Proposition 2.4 of [6], for the verification of (41)
it suffices to show that given ε > 0, there is a δ > 0 such that for α, β, α1, β1 ∈ A, if
ρA(α, α1) < δ and ρA(β, β1) < δ then

(42) sup
u∈Ũ
|Jβ,3µ (u(Πα

n ))− Jβ1,3
µ (u(Πα1

n ))| < ε.
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If the inequality (42) is not satisfied then there are sequences (αm, m ∈ N), (αm1 , m ∈
N) such that αm → α, αm1 → α1, and um(v)→ u(v) uniformly in v ∈ P(E) as m→∞
and

(43) |Jαm,3µ (um(Παm

n ))− Jα
m
1 ,3

µ (um(Παm1
n ))| ≥ ε > 0

for all m ∈ N. Using some continuity arguments in the proofs of Theorems 1 and 6
of [18], where the pair (α, v) ∈ A× U is considered as the control, it follows that

lim
m→∞

Jα
m,3

µ (um(Παm

n )) = Jα,3µ (u(Πα
n ))

and

lim
m→∞

J
αm1 ,3
µ (um(Παm1

n )) = Jα,3µ (u(Πα
n )),

which contradict the inequality (43). Thus (42) is satisfied and there is a finite family
Ũ(ε) of controls such that (41) is satisfied.

Let Ã(δ0) = {α(1), . . . , α(k(δ0))} be distinguished points, one from each of a finite
δ0 net in A. By Proposition 3, given ε > 0, there is an Ã(δ0) from a δ0 net of A
such that the controls (uk(Πα

n ), k ∈ {1, . . . , r(ε)} and α ∈ Ã(δ0)) form the family of
ε optimal controls.

Remark. A finite family of controls for U (1)(ε) can be obtained from a discretiza-
tion of the Bellman equation (cf. [6] and Section 3.5 of [10]). A finite family of controls
for U (2)(ε) can be obtained using [14], and a finite family of controls for Ũ(ε) can be
obtained using [15].

3. The information for different parameters. Kullback and Leibler [11]
have used a notion of information in statistics. For the adaptive control problems for
the three models considered here the information is computed from the probability
densities for different values of the unknown parameter. It is described in [16] as the
information of one parameter value with respect to another. It is shown in [12] that it
is naturally related to the notion of information in information theory. This quantity
has a different form for each of the Markov models. It is denoted Ki, i = 1, 2, 3, for
the three models.

(44) K1
u(α, β) =

∫
E

∫
E

ln
(
p(x, y, u(x), β)
p(x, y, u(x), α)

)
p(x, y, u(x), β)ϕ(dy)πβu(dx),

where ϕ is given in (1), π is the invariant measure given in (23), α, β ∈ A, and u ∈ U .

K2
u(α, β)

=
1
2

∫
Γ1

Eβ,ux

[ ∫ τ

0
|σ−1(X(s))(h(X(s), α, u(X(s)))− h(X(s), β, u(X(s))))|2ds

]
·ηβu(dx)

(∫
Γ1

Eβ,ux [τ ]ηβu(dx)
)−1

,

(45)

where η is the invariant measure for the embedded Markov chain given in (27), α, β ∈
A, and u ∈ U .

K3
u(α, β, γ) =

∫
Γ

Eβ,u(γ)
x

[
τ−1∑
i=0

ln

(
F (Πβ

i , u(Πγ
i ), β)(Yi+1)

F (Πα
i , u(Πγ

i ), α)(Yi+1)

)]
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(46) ·ηβu(γ)(dx)
(∫

Γ

Eβ,u(γ)
x [τ ]ηβu(γ)(dx)

)−1

,

where η is given in (40), α, β, γ ∈ A, u ∈ Ũ , u(γ) in (46) indicates that the control
u(Πγ

i ) is used, and

(47)

F (ν, v, α)(y) := 1Γ (y)p(ν, y, v, α)

+ 1E\Γ (y)
∫
E\Γ

r(z, y)p(ν, z, v, α)dz.

Now some important properties are verified for Ki, i = 1, 2, 3.
PROPOSITION 4. Consider Model I with the assumptions imposed on it. For each

u ∈ U the map K1
u : A × A → R is continuous. Furthermore, if K1

u(α, β) = 0, then
παu = πβu .

Proof. Let L : A×A× E → R be given by

L(α, β, x) =
∫
E

ln
(
p(x, y, u(x), β)
p(x, y, u(x), α)

)
p(x, y, u(x), β)ϕ(dy).

L( · , · , x) is continuous and bounded uniformly in x ∈ E, so the continuity of K1
u

follows by (24).
For x ∈ E, Jensen’s inequality implies that∫

E

ln
(
p(x, y, u(x), β)
p(x, y, u(x), α)

)
p(x, y, u(x), β)ϕ(dy) ≥ 0.

For each B ∈ B(E) it follows by the definition of invariant measures that

πβu(B) ≥ inf
x,y∈E

inf
v∈U, β∈A

p(x, y, v, β)ϕ(B).

If K1
u(α, β) = 0, then

(48)
∫
E

ln
(
p(x, y, u(x), β)
p(x, y, u(x), α)

)
p(x, y, u(x), β)ϕ(dy) = 0

for (ϕ) almost all x ∈ E. Since ln( ·) is a strongly convex function it follows by
Jensen’s inequality that

(49) p(x, y, u(x), α) = p(x, y, u(x), β)

for (ϕ) almost all x ∈ E and (ϕ) almost all y ∈ E. Thus for B ∈ B(E),

πβu(B) =
∫
E

∫
B

p(x, y, u(x), β)ϕ(dy)πβu(dx)

=
∫
E

∫
B

p(x, y, u(x), α)ϕ(dy)πβu(dx)

=
∫
E

Pu,α(x,B)πβu(dx).

The last equality implies that πβu is an invariant measure for the transition operator
Pα,u. The uniqueness of the invariant measure for Pα,u, which follows from (23),
implies that πβu = παu .

Now a result analogous to the above proposition is obtained for Model II.
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PROPOSITION 5. Consider Model II with the assumptions imposed on it. For each
u ∈ U , the map K2

u : A×A → R is continuous. Furthermore, if K2
u(α, β) = 0, then

παu = πβu .
Proof. The continuity of K2

u follows from (29), (30), (31) and the continuity of
h(x, · , v). If K2

u(α, β) = 0, then by Lemma 3.4 of [6] it follows that

h(x, α, u(x)) = h(x, β, u(x))

for all x ∈ Rn \D where λ(D) = 0 and λ is an n-dimensional Lebesgue measure. Thus
for (λ) almost all x ∈ Rn, t > 0, and B ∈ B(Rn),

Pα,ux (X(t) ∈ B) = P β,ux (X(t) ∈ B).

The uniqueness of the invariant measures, as in the proof of Proposition 4, implies
that παu = πβu .

For Model III an additional assumption is introduced:

(A5)
∫
E\Γ

r(x, y)(p(ν1, x, v, α)− p(ν2, x, v, β))dx = 0

for almost all y ∈ E \ Γ if and only if

p(ν1, x, v, α) = p(ν2, x, v, β)

for almost all x ∈ E \ Γ .
Now an analogue of the previous two propositions is verified for Model III.
PROPOSITION 6. If (A1)–(A5) are satisfied for Model III, then for each u ∈ Ũ

the map K3
u : A × A × A → R is continuous. Furthermore, if K3

u(α, β, γ) = 0 then
the measures Ψαu(γ) and Ψβu(γ) on the Borel σ-algebra of P(E)×P(E) coincide, where

(50) Ψ δu(γ)(B) =

∫
Γ

Eδ,u(γ)
x

[
τ−1∑
i=0

1B(Πα
i , Π

β
i )

]
ηδu(γ)(dx)∫

Γ

Eδ,u(γ)
x [τ ]ηδu(γ)(dx)

and δ = α, β and B ∈ σ(P(E)× P(E)).
Proof. The verification of the continuity of K3

u follows from the boundedness and
continuity of F ( · , · , ·)( ·) : P(E) × U × A × E \ ∂Γ → R (cf. Theorems 1 and 6 of
[18]).

If K3
u(α, β, γ) = 0, then by the strict positivity of p it follows that

Eβ,u(γ)
x

[
τ−1∑
i=0

ln

(
F (Πβ

i , u(Πγ
i ), β)(Yi+1)

F (Πα
i , u(Πγ

i ), α)(Yi+1)

)]
= 0

for almost all x ∈ Γ . The map L : Γ → R, where

L(x) = Eβ,u(γ)
x

[
τ−1∑
i=0

ln

(
F (Πβ

i , u(Πγ
i ), β)(Yi+1)

F (Πα
i , u(Πγ

i ), α)(Yi+1)

)]
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is continuous for each β ∈ A, and u ∈ U (cf. Lemma 8 of [18]), so for all x ∈ Γ ,
L(x) = 0. Using (A5) and Lemma 4 of [8] it follows that

P β,u(γ)
x (Πα

i = Πβ
i for i ∈ {0, . . . , τ − 1}) = 1

for each x ∈ Γ . It follows from Corollary 2 of [8] that

Eβ,u(γ)
x

[
τ−1∑
i=0

1B(Πβ
i , Π

γ
i )

]
= Eα,u(γ)

x

[
τ−1∑
i=0

1B(Πβ
i , Π

γ
i )

]

for each B in the Borel σ-algebra of P(E) × P(E), x ∈ Γ1, and ηαu(γ) = ηβu(γ). Thus

Ψαu(γ) = Ψβu(γ).

4. Almost self-optimal adaptive strategies. For ε > 0 fixed, the controls
are restricted to the finite families U1(ε), U2(ε), and Ũ(ε) of ε optimal controls for
Models I, II, and III, respectively. For ε > 0 there is a δ0 > 0 given in Proposition 3
and a δ0 net of A with a distinguished point from each element of the net Ã(δ0) =
{α(1), . . . , α(k(δ0))}.

For a randomization of an adaptive control the following subsets of R are used.
For ε > 0 let

(51)
S(ε) = {βi(j) : i ∈ N, j ∈ {1, 2, . . . , r(ε)} and for each i ∈ N

there is a ji ∈ {1, . . . , r(ε)} such that βi(ji) = 1− ε/‖c‖
and for j 6= ji, β

i(j) = ε/[(r(ε)− 1)‖c‖]}

and

(52)
S̃(ε, δ0) = {βi(j, k) : i ∈ N, j ∈ {1, . . . , r(ε)}, k ∈ {1, . . . , k(δ0)},

and for each i ∈ N there are ji and ki such that βi(ji, ki) = 1− ε/‖c‖

and for j 6= ji or k 6= ki, β
i(j, k) = ε/[(r(ε)k(δ0)− 1)‖c‖]},

where ‖ · ‖ is the supremum norm.
The following result is a continuity property of the invariant measures for the

three models and is naturally associated with Propositions 4, 5, and 6.
PROPOSITION 7. i) Consider Model I with the assumptions imposed on it. For

ε′ > 0 there is a δ > 0 such that if {β̃i(j)} ⊂ S(ε), α, β ∈ A, uj ∈ U1(ε), and

lim inf
n→∞

1
n

n−1∑
i=0

∣∣∣∣∣∣
r(ε)∑
j=1

β̃i(j)K1
uj (α, β)

∣∣∣∣∣∣ < δ,

then

sup
u∈U1(ε)

‖παu − πβu‖var < ε′.

ii) Consider Model II with the assumptions imposed on it. For ε′ > 0 there is a
δ > 0 such that if {β̃i(j)} ⊂ S(ε), α, β ∈ A, uj ∈ U2(ε), and

lim inf
n→∞

1
n

n−1∑
i=0

∣∣∣∣∣∣
r(ε)∑
j=1

β̃i(j)K2
uj (α, β)

∣∣∣∣∣∣ < δ,
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then

sup
u∈U2(ε)

‖παu − πβu‖var < ε′.

iii) Consider Model III with the assumptions (A1)–(A5). For ε′ > 0 there is a
δ > 0 such that if {β̃i(j, k)} ⊂ S̃(ε, δ0), α, β ∈ A, uj ∈ Ũ(ε), and

lim inf
n→∞

1
n

n−1∑
i=0

∣∣∣∣∣∣
r(ε)∑
j=1

k(δ0)∑
k=1

β̃i(j, k)K3
uj (α, β, α(k))

∣∣∣∣∣∣ < δ,

then

sup
u∈Ũ(ε)

sup
γ∈Ã(δ0)

∣∣∣∣ ∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαu(γ)(dν1,dν2)

−
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψβu(γ)(dν1,dν2)
∣∣∣∣ < ε′.

Proof. Only the verifications of i) and iii) are given because the verification of ii)
is similar to that of i).

Verifying by contradiction, assume that i) is not true. Then there are sequences
(αm, m ∈ N) and (βm, m ∈ N) and {β̃im(j)} ⊂ S(ε) such that αm → α, βm → β as
m→∞,

(53) lim sup
m→∞

lim inf
n→∞

1
n

n−1∑
i=0

∣∣∣∣∣∣
r(ε)∑
j=1

β̃im(j)K1
uj (αm, βm)

∣∣∣∣∣∣ = 0,

and

(54) sup
u∈U1(ε)

‖παmu − πβmu ‖var > ε′.

By (53) and the definition of S(ε), it follows that

lim
m→∞

K1
uj (αm, βm) = 0

for each j ∈ {1, . . . , r(ε)}. Thus, by Proposition 4, K1
uj (α, β) = 0 for j ∈ {1, . . . , r(ε)}

and παuj = πβuj for j ∈ {1, . . . , r(ε)}. By (24) it follows that

lim
m→∞

sup
u∈U1(ε)

‖παmu − παu‖var = 0

and

lim
m→∞

sup
u∈U1(ε)

‖πβmu − πβu‖var = 0.

These last two equalities contradict (54). This contradiction verifies i).
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Now assume that iii) is not satisfied. Then there are sequences (αm, m ∈ N) and
(βm, m ∈ N) and {β̃im(j, k)} ⊂ S̃(ε, δ0) such that αm → α, βm → β as m→∞,

(55) lim sup
m→∞

lim inf
n→∞

1
n

n−1∑
i=0

∣∣∣∣∣∣
r(ε)∑
j=1

k(δ0)∑
k=1

β̃im(j, k)K3
uj (αm, βm, α(k))

∣∣∣∣∣∣ = 0

and

sup
u∈Ũ(ε)

∣∣∣∣ ∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαmu(γ)(dν1,dν2)

(56) −
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαu(γ)(dν1,dν2)
∣∣∣∣ ≥ ε′.

By (55) and the definition of S̃(ε, δ0), it follows that

lim
m→∞

K3
uj (αm, βm, α(k)) = 0

for j ∈ {1, . . . , r(ε)} and k ∈ {1, . . . , k(δ0)}. Thus, by Proposition 6, K3
uj (α, β, α(k)) =

0 for j ∈ {1, . . . , r(ε)}, k ∈ {1, . . . , k(δ0)}, and

Ψαu(γ) = Ψβu(γ)

for u ∈ Ũ(ε) and γ ∈ Ã(δ0). In the proof of Theorem 6 of [18] it is shown that

lim
m→∞

Ψαmu(γ) = Ψαu(γ)

and

lim
m→∞

Ψβmu(γ) = Ψβu(γ)

in the weak* topology of P(E)× P(E). By the continuity of c in the cost functional
(11) there is a contradiction to (56). This contradiction verifies iii).

Fix ε > 0. For Models I and II let ε′ = ε/‖c‖, and for Model III let ε′ = ε.
Using this ε′ by Proposition 7, there is a δ > 0 such that i), ii), and iii) are satisfied
for Models I, II, and III, respectively. There is a δ̄ > 0 such that the following are
satisfied.

i) For Model I and α, β ∈ A, if ρA(α, β) < δ̄, then for each u ∈ U1(ε)

(57) |K1
u(α, β)| < δ/3

and

(58) ‖παu − πβu‖var ≤
ε

‖c‖ .

ii) For Model II and α, β ∈ A, if ρA(α, β) < δ̄, then for each u ∈ U2(ε)

(59) |K2
u(α, β)| < δ/3
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and

(60) ‖παu − πβu‖var ≤
ε

‖c‖ .

iii) For Model III and α, β ∈ A, if ρA(α, β) < δ̄, then for each u ∈ Ũ(ε) and
γ ∈ Ã(δ0)

(61) |K3
u(α, β, γ)| < δ/3

and ∣∣∣∣ ∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαmu(γ)(dν1,dν2)

(62) −
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαu(γ)(dν1,dν2)
∣∣∣∣ ≤ ε.

The existence of δ̄ > 0 follows in i) from Proposition 4 and (24), in ii) from Propo-
sition 5 and (27), (29), (30), (31), and in iii) from Proposition 6 and the continuity
of the map Ψ : A×A → P(E)×P(E), which follows from the proof of Theorem 6 of
[18].

For δ̄ > 0 there is a finite covering of A by balls of radius δ̄ with centers at
distinguished points that is denoted A(δ̄). For ε > 0 and δ > 0 given above, there is
a positive integer N whose existence is justified subsequently such that

i) for Model I

(63)

sup
x∈E

sup
u∈U1(ε)

sup
α∈A(δ̄)

sup
β∈A

∣∣∣∣∣ 1
N

N−1∑
i=1

Eβ,ux

[
ln
(
p(Xi, Xi+1, u(Xi), β)
p(Xi, xi+1, u(Xi), α)

)]
−K1

u(α, β)

∣∣∣∣∣ < δ/3

and

(64) sup
x∈E

sup
u∈U1(ε)

sup
β∈A

∣∣∣∣∣ 1
N

N−1∑
i=1

Eβ,ux [c(Xi, u(Xi))]−
∫
E

c(z, u(z))πβu(dz)

∣∣∣∣∣ < ε;

ii) for Model II

sup
x∈Γ

sup
u∈U2(ε)

sup
α∈A(δ̄)

sup
β∈A

∣∣∣∣Eβ,ux [
1
2

∫ τN

0
|σ−1(X(s))(h(X(s), α, u(X(s)))

(65) −h(X(s), β, u(X(s))))|2ds
]
(Eβ,ux [τN ])−1 −K2

u(α, β)
∣∣∣∣ < δ/3

and

sup
x∈Γ1

sup
u∈U2(ε)

sup
β∈A

∣∣∣∣Eβ,ux [ ∫ τN

0
c(X(s), u(X(s)))]ds

(66) ·(Eβ,ux [τN ])−1 −
∫
E

c(z, u(z))πβu(dz)
∣∣∣∣ < ε;
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iii) for Model III

sup
x∈Γ

sup
u∈Ũ(ε)

sup
α∈A(δ̄)

sup
γ∈Ã(δ0)

sup
β∈A

∣∣∣∣Eβ,u(γ)
x

[ τN−1∑
i=0

ln
(
F (Πβ

i , u(Πγ
i ), β)(Yi+1)

F (Πα
i , u(Πγ

i ), α)(Yi+1)

)]

(67) ·(Eβ,ux [τN ])−1 −K3
u(α, β, γ)

∣∣∣∣ < δ/3

and

sup
x∈Γ

sup
u∈Ũ(ε)

sup
γ∈Ã(δ0)

sup
β∈A

∣∣∣∣Eβ,u(γ)
x

[ τN−1∑
i=0

∫
E

c(z, u(Πα
i ))Πβ

i (dz)
]
(Eβ,U(γ)

x [τN ])−1

(68) −
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψβu(γ)(dν1,dν2)
∣∣∣∣ < ε,

where Ψ is given in (50).
The following three lemmas justify the existence of N in (63)–(68).
LEMMA 1. For Model I let

L = sup
x,y∈E

sup
v∈U

sup
α,β∈A

∣∣∣∣ln p(x, y, v, β)
p(x, y, v, α)

∣∣∣∣ .
Then for N ≥ 3L/(δ(1− γ0)) the inequality (63) is satisfied, and for N ≥ ‖c‖/(ε(1−
γ0)) the inequality (64) is satisfied where γ0 is as given in Proposition 1.

Proof. By (23) it follows that∣∣∣∣Eβ,ux [
ln
p(Xi, Xi+1, u(Xi), β)
p(Xi, Xi+1, u(Xi), α)

]
−K1

u(α, β)
∣∣∣∣

=
∣∣∣∣Eβ,ux [∫

E

ln
(
p(Xi, y, u(Xi), β)
p(Xi, y, u(Xi), α)

)
p(Xi, y, u(Xi), β)ϕ(dy)

]
−K1

u(α, β)
∣∣∣∣ ≤ Lγi−1

0

for x ∈ E, α, β ∈ A, u ∈ U1(ε), and i ∈ N. Thus for N ≥ 3L/δ(1− γ0), the inequality
(63) is satisfied. In a similar way by (23) it follows that the inequality (64) is satisfied
for N ≥ ‖c‖/ε(1− γ0).

LEMMA 2. For Model II let

L = sup
x∈Rn

sup
α∈A

sup
v∈U
‖h(x, α, v)∗σ−1(x)‖,

M1 = sup
x∈Γ1

sup
α∈A

sup
u∈U

Eα,ux [τ ],

and

M2 = inf
x∈Γ1

inf
α∈A

inf
u∈U

Eα,ux [τ ].

For

N ≥ 12
δ
L2M1

1
M2(1− γ0)

(
1 +

M1

M2

)
,
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the inequality (65) is satisfied, and for

N ≥ 1
ε
‖c‖M1

1
M2(1− γ0)

(
1 +

M1

M2

)
,

where γ0 is given in Proposition 2, the inequality (66) is satisfied.
Proof. By (28) it follows that∣∣∣∣1i Eβ,ux

[ ∫ τi+1

0
|σ−1(X(s))(h(X(s), α, u(X(s)))− h(X(s), β, u(X(s))))|2ds

]

−
∫
Γ1

Eβ,ux

[ ∫ τ

0
|σ−1(X(s))(h(X(s), α, u(X(s))− h(X(s), β, u(X(s)))|2ds

]
ηβu(dz)

∣∣∣∣
≤ 1
i

i∑
j=0

γi04L2M1 =
1
i

1− γi+1
0

1− γ0
4L2M1

and ∣∣∣∣1i Eβ,ux [τi+1]−
∫
Γ1

Eβ,uz [τ ]ηβu(dz)
∣∣∣∣ ≤ 1

i

1− γi+1
0

1− γ0
M1

for x ∈ Γ1, β ∈ A, and u ∈ U .
Combining the above two inequalities, (65) is satisfied for N stated in the lemma.
In a similar way, (66) is verified.
LEMMA 3. For Model III let

L1 = sup
x,y∈E

sup
v∈U

sup
α∈A

p(x, y, v, α),

L2 = inf
x,y∈E

inf
v∈U

inf
α∈A

p(x, y, v, α),

M1 = sup
x∈Γ

sup
u∈Ũ(ε)

sup
γ∈Ã(δ0)

sup
β∈A

Eβ,u(γ)
x [τ ],

and

M2 = inf
x∈Γ

inf
u∈Ũ(ε)

inf
γ∈Ã(δ0)

inf
β∈A

Eβ,u(γ)
x [τ ].

For

N ≥ 3
δ

ln
(
L1

L2

)
M1

1
M2(1− γ0)

(
1 +

M1

M2

)
,

the inequality (67) is satisfied, and for

N ≥ ‖c‖
ε
M1

1
(1− γ0)M2

(
1 +

M1

M2

)
,

the inequality (68) is satisfied where γ0 is given in Proposition 3.
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Proof. As in the verification of Lemma 2 it follows by (40) that∣∣∣∣1i Eβ,u(γ)
x

[ τi+1−1∑
j=0

ln
F (Πβ

j , u(Πγ
j ), β)(Yj+1)

F (Πα
j , u(Πγ

j ), α)(Yj+1)

]

−
∫
Γ

Eβ,u(γ)
x

[ τ−1∑
j=0

ln
F (Πβ

j , u(Πγ
j ), β)(Yj+1)

F (Πα
j , u(Πγ

j ), α)(Yj+1)

]
· ηβu(γ)(dx)

∣∣∣∣ ≤ 1
i

1− γi+1
0

1− γ0
ln
(
L1

L2

)
M1

and ∣∣∣∣1i Eβ,u(γ)
x [τi+1]−

∫
Γ

Eβ,u(γ)
z [τ ]ηβu(γ)(dz)

∣∣∣∣ ≤ 1
i

1− γi+1
0

1− γ0
M1

for x ∈ Γ , β ∈ A, γ ∈ Ã(δ0), u ∈ Ũ(ε). These inequalities imply the inequalities for
N for which (67) and (68) are satisfied.

Now the construction of the almost self-optimal controls can be completed. Again,
it is subdivided into the three models.

i) For Model I let α̂jN be a maximizer of

(69) L1
jN (α) =

jN−1∑
i=0

ln p(Xi, Xi+1, vi, α)

over α ∈ A(δ̄), where vi is the control at time i. The control vi is a randomized
certainty equivalence control. For i ∈ {jN : j ∈ N}, choose the control ujN ∈ U1(ε)
randomly among (uk, k = 1, . . . , r(ε)) as

(70) P (ujN = uk0 |X(0), . . . , X(jN)) = 1− ε

‖c‖ ,

where uk0 is the almost optimal control for α = α̂jN in U1(ε) and

(71) P (ujN = uk|X(0), . . . , X(jN)) =
ε

(r(ε)− 1)‖c‖

for k = {1, . . . , r(ε)}\{k0}. The control ujN is also used at the times jN +1, . . . , (j+
1)N − 1; that is,

(72) vi = ujN (Xi)

for i = {jN, . . . , (j + 1)N − 1}.
ii) For Model II, let α̂(τjN ) be a minimizer of

(73) L2(τjN ) =
∫ τjN

0
|σ−1(X(s))(h(X(s), α, v(s))− h(X(s), α0, v(s)))|2ds

over α ∈ A(δ). The control in [τjN , τ(j+1)N ) is u(τjN ) ∈ U2(ε), that is, a randomized
certainty equivalence control such that

(74) P (u(τjN ) = uk0 |X(s), 0 ≤ s ≤ τjN ) = 1− ε

‖c‖
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and

(75) P (u(τjN ) = uk|X(s), 0 ≤ s ≤ τjN ) =
ε

(r(ε)− 1)‖c‖

for k = {1, . . . , r(ε)} \ {k0} and uk0 is almost optimal for α̂(τjN ).
iii) For Model III let α̂(τjN ) be a maximizer of

(76) L3
τjN (α) =

τjN−1∑
i=0

lnF (Πα
i , vi, α)(Yi+1)

over α ∈ A(δ̄). The controls v̂(τjN ), v̂(τjN+1), . . . , v̂(τ(j+1)N−1) are selected by a
randomized certainty equivalence rule such that

(77) P (v̂(τjN ) = uk0(Πα(l0)
τjN ), . . . , v̂(τ(j+1)N−1) = uk0(Πα(l0)

τ(j+1)N−1
)|Y(τjN )) = 1− ε

‖c‖

and

P (v̂(τjN ) = uk(Πα(l)
τjN ), . . . , v̂(τ(j+1)N−1) = uk(Πα(l)

τ(j+1)N−1
)|Y(τjN ))

=
ε

(r(ε)k(ε)− 1)‖c‖ ,(78)

where k ∈ {1, . . . , r(ε)} \ {k0}, j ∈ {1, . . . , card(Ã(δk0))}, and uk0(Πα(l0)
τjN ) is almost

optimal for α̂(τjN ).
Let (v̂i, i ∈ N) or (v̂(s), s ≥ 0) be the discrete or the continuous time randomized

certainty equivalence control defined in i), ii), or iii) above. Let (β̄i, i ∈ N), (β̄(s), s ≥
0), and (β̃i, i ∈ N) be processes with values in {1, . . . , r(ε)} for the first two processes
and in {(j, k) : j = 1, . . . , r(ε) and k = 1, . . . , k(δ0)} for the third process such that
the first two processes correspond to the index of the control in U i(ε), i = 1, 2, at
each time and the third process (for Model III) is the index of the control function
and the index of the element of Ã(δ0).

The following result is the almost self-optimality of the randomized certainty
equivalence control for the three Models I, II, and III.

THEOREM 1. Let ε > 0 be fixed. Let Ii be the pathwise cost functional for i =
1, 2, 3 given by (2), (8), and (11), respectively, for Models I, II, and III, respectively,
and let λi(α0) be the optimal cost for i = 1, 2, 3 for parameter α0. Let (v̂i, i ∈ N) and
(v̂(s), s ≥ 0) be the randomized certainty equivalence controls given above. For the
Models I, II, and III the following inequalities are satisfied:

(79) (i) I1((v̂n, n ∈ N)) ≤ λ1(α0) + 6ε a.s.,

(80) (ii) I2((v̂(s), s ≥ 0)) ≤ λ2(α0) + 6ε a.s.,

(81) (iii) I3((v̂n, n ∈ N)) ≤ λ3(α0) + 6ε a.s.

Proof. Initially consider Model I. By the definition of α̂jN , it follows that

(82)
jN−1∑
i=0

ln
p(Xi, Xi+1, v̂i, α̂jN )
p(Xi, Xi+1, v̂i, α0)

≥
jN−1∑
i=0

ln
p(Xi, Xi+1, v̂i, ᾱ

0)
p(Xi, Xi+1, v̂i, α0)

,

where ᾱ0 is an element in A(δ̄) of minimum distance to α0.
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By the law of large numbers for martingales for α ∈ A(δ̄),

lim
n→∞

1
n

( nN−1∑
i=0

ln
p(Xi, Xi+1, v̂i, α)
p(Xi, Xi+1, v̂i, α0)

(83)

−
n−1∑
i=0

Eα
0
[ (i+1)N−1∑

j=iN

ln
p(Xi, Xi+1, v̂i, α)
p(Xi, Xi+1, v̂i, α0)

∣∣∣∣X0, . . . , XiN , β̄0, . . . , β̄iN

])
= 0 a.s.,

lim
n→∞

1
n

( nN−1∑
i=0

c(Xi, v̂i)

(84) −
n−1∑
i=0

Eα
0
[ (i+1)N−1∑

j=iN

c(Xj , v̂j)
∣∣∣∣X0, . . . , XiN , β̄0, . . . , β̄iN

])
= 0 a.s.,

(85) lim sup
n→∞

1
n

n−1∑
i=0

K1
uiN (α, α0)−

r(ε)∑
j=1

βi(j)K1
uj (α, α

0)

 = 0 a.s.,

and

lim sup
n→∞

1
n

n−1∑
i=0

J α̂iN ,1((uiN (Xl), l ∈ N))

(86) −
r(ε)∑
j=1

βi(j)J α̂iN ,1((uj(Xl), l ∈ N)) = 0 a.s.,

where βi(j) = P (β̄i = j|X0, . . . , XiN ), and in the last equality the control functions
uiN and uj are used and their costs are evaluated. Let N be a null set such that the
above four equalities are satisfied onN c. Let F (δ̄) = {α ∈ A(δ̄) : there is an ω ∈ Ω\N
such that α is a frequent point of (α̂jN (ω))}. In many subsequent expressions, the
random variables are evaluated at some ω ∈ Ω \ N but this evaluation is suppressed
for notational convenience. If α ∈ F (δ̄) then for a corresponding ω ∈ Ω \N it follows
from (82), (83) that

(87) lim sup
n→∞

1
n

n−1∑
i=0

Eα
0,uiN

XiN

(i+1)N−1∑
j=iN

ln
p(Xj , Xj+1, uiN (Xj), α0)
p(Xj , Xj+1, uiN (Xj), α)



≥ lim sup
n→∞

1
n

n−1∑
i=0

Eα
0,uiN

XiN

(i+1)N−1∑
j=iN

ln
p(Xj , Xj+1, uiN (Xj), α0)
p(Xj , Xj+1, uiN (Xj), ᾱ)
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for each ᾱ ∈ A(δ̄). By (63) it follows that

(88) lim sup
n→∞

1
n

n−1∑
i=0

K1
uiN (α, α0) +

δ

3
≥ lim sup

n→∞

1
n

n−1∑
i=0

K1
uiN (ᾱ, α0)− δ

3
.

Thus, by (57),

(89) lim sup
n→∞

1
n

n−1∑
i=0

K1
uiN (α, α0) ≥ −δ,

and by (85),

(90) lim sup
n→∞

1
n

n−1∑
i=0

r(ε)∑
j=1

βi(j)K1
uj (α, α

0) ≥ −δ.

Therefore, by Proposition 7 with ε1 = ε/‖c‖,

(91) sup
u∈U1(ε)

‖παu − πα
0

u ‖var <
ε

‖c‖ .

By (84)

(92) I1((v̂n, n ∈ N)) = lim sup
n→∞

1
n

n−1∑
i=0

Eα
0,uiN

XiN

(i+1)N−1∑
j=iN

c(Xj , uiN (Xj))

 a.s.,

so by (64),

(93) I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

∫
E

c(z, uiN (z))πα
0

uiN (dz) + ε a.s.

For ω ∈ Ω \ N it follows from (93) that

(94) I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ̄)(α̂iN )
∫
E

c(z, uiN (z))πα
0

uiN (dz) + ε.

For α ∈ F (δ̄), (91) is satisfied, so for ω ∈ Ω \ N

I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ̄)(α̂iN )
∫
E

c(z, uiN (z))πα̂iNuiN (dz) + 2ε

(95) = lim sup
n→∞

1
n

n−1∑
i=0

J α̂iN ,1((uiN (Xl), l ∈ N)) + 2ε.

For ω ∈ Ω \ N it follows by (86) that

(96) I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

r(ε)∑
j=1

βi(j)J α̂iN ,1(uj(Xl), l ∈ N)) + 2ε.
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Using the definition of βi(j) and (25) it follows that for ω ∈ Ω \ N

I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

(
1− ε

‖c‖

)
λ1(α̂iN ) + 3ε

(97) ≤ lim sup
n→∞

1
n

n−1∑
i=0

λ1(α̂iN ) + 3ε ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ̄)(α̂iN )λ1(α̂iN ) + 3ε.

By (25) and (91) it follows that for α ∈ F (δ̄)

(98) |λ1(α)− λ1(α0)| ≤ 2ε+ sup
u∈U1(ε)

∣∣∣∣∫
E

c(x, u(x))(παu (dx)− πα0

u (dx))
∣∣∣∣ ≤ 3ε.

Thus for ω ∈ Ω \ N

I1((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ̄)(α̂iN )λ1(α0) + 6ε = λ1(α0) + 6ε.

The inequality (79) is verified.
Now consider Model III. By the construction of α̂(τjN ) it follows that

(99)
τjN−1∑
i=0

ln
F (Π

α̂τjN
i , v̂i, α̂τjN )(Yi+1)

F (Πα0

i , v̂i, α0)(Yi+1)
≥
τjN−1∑
i=0

ln
F (Π ᾱi

i , v̂i, ᾱ
0)(Yi+1)

F (Πα0

i , v̂i, α0)(Yi+1)
.

In analogy to (83)–(86), by the law of large numbers for martingales it follows that
for α ∈ A(δ̄),

lim
n→∞

1
n

( τnN−1∑
i=0

ln
F (Π ᾱi

i , v̂i, α
0)(Yi+1)

F (Πα0

i , v̂i, α)(Yi+1)

(100)

−
τnN−1∑
i=0

Eα
0
[ τ(i+1)N−1∑

j=τiN

ln
F (Π ᾱi

i , v̂i, α
0)(Yi+1)

F (Πα0

i , v̂i, α)(Yi+1)

∣∣∣∣Y(τiN ), β̄0, . . . , β̄τiN

])
= 0 a.s.,

(101) lim
n→∞

1
n

(
τnN −

n−1∑
i=0

Eα
0 [
τ(i+1)N − τiN |Y(τiN ), β̄0, . . . , β̄τiN

])
= 0 a.s.,

lim
n→∞

1
n

( τnN∑
i=0

c(Xi, v̂i)

(102) −
n−1∑
i=0

Eα
0
[ τ(i+1)N−1∑

j=τiN

∫
E

c(z, v̂i)Πα0

i (dz)|Y(τiN ), β̄0, . . . , β̄τiN

])
= 0 a.s.,
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(103)

lim sup
n→∞

1
n

n−1∑
i=0

K3
uτiN

(α, α0, α̃τiN )−
r(ε)∑
j=1

k(δ0)∑
k=1

βi(j, k)K3
uj (α, α

0, α(k))

 = 0 a.s.,

lim sup
n→∞

1
n

n−1∑
i=0

(J α̂τiN ,3(uτiN (Π
α̃τiN
l ), l ∈ N))

(104) −
r(ε)∑
j=1

k(δ0)∑
k=1

βi(j, k)(J α̂τiN ,3(uj(Π
α̃τiN
l ), l ∈ N)) = 0 a.s.,

where α̃τiN is the element of Ã(δ0) chosen at time τiN in the construction of the
control v̂τiN ,

βi(j, k) = P (β̃τiN = (j, k)|Y(τiN )),

and Jα,3 is the evaluation of the average cost for α ∈ A. If α ∈ A(δ̄) for some
ω ∈ Ω \ N is a frequent point of the estimation, then similar to (87)–(90), by (62),
(67), (99) it follows that

lim inf
n→∞

1
n

n−1∑
i=0

r(ε)∑
j=1

k(δ0)∑
k=1

βi(j, k)K3
uj (α, α

0, α(k)) ≥ −δ,

so by Proposition 7

sup
u∈Ũ(ε)

sup
β∈Ã(δ0)

∣∣∣∣ ∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψαu(β)(dν1,dν2)

(105) −
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψα
0

u(β)(dν1,dν2)
∣∣∣∣ < ε.

By (68), (101), (102) it follows that

Jα
0,3((v̂n, n ∈ N))

≤ lim sup
n→∞

1
n

n−1∑
i=0

∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψα
0

uτiN (α̃τiN )(dν1,dν2) + ε.

Let F (δ̄) be the set given by F (δ̄) = {α ∈ A(δ̄) : there is an ω ∈ Ω \ N such that α is
a frequent point of α̂τiN (ω)}. By (104), (105) it follows that

I3((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ)(α̂τiN )

·
∫
P(E)×P(E)

∫
E

c(z, u(ν2))ν1(dz)Ψ
α̂τiN
uτiN (α̃τiN )(dν1,dν2) + 2ε,
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so by (104)

I3((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

r(ε)∑
j=1

k(δ0)∑
k=1

βi(j, k)

·J α̂τiN ,3(uj(πα(k)
l ), l ∈ N) + 2ε.

Similar to (97), it follows by (104) that

I3((v̂n, n ∈ N)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

1F (δ̄)(α̂τiN )λ3(α̂τiN ) + 3ε.

For α ∈ F (δ̄) it follows from (41), (104) that

|λ3(α)− λ3(α0)| ≤ 3ε

and

I3((v̂n, n ∈ N)) ≤ λ3(α0) + 6ε a.s.

This verifies the inequality (81).
The verification of the inequality (80) for Model II is similar to the verification of

(79) and (81), and is thereby omitted.

5. Some other adaptive algorithms. The existence of a finite family of almost
optimal controls that is shown in section 2 can be used in the construction of some
other algorithms. Three such algorithms are i) maximum likelihood estimation with
forcing, ii) cost watching with forcing, and iii) cost watching with randomization.
The forcing algorithms (cf., e.g., [2]) are based on the forced use of all of the almost
optimal controls successively at times (Tn, n ∈ N) such that

lim sup
n→∞

1
n

n−1∑
i=0

1{Tj , j∈N}(i) = 0,

so that the forcing does not affect the value of the cost functional. The notion of
cost watching is to compare the average costs incurred for each of the almost optimal
controls. For cost watching during the nonforcing times, a control that has minimal
average cost is used. For cost watching with randomization the control for which
the current average cost is minimal is chosen with probability almost 1, and the
other controls are chosen with small probability. It seems that the algorithms with
forcing should converge slowly, but they have a simple construction. The algorithm
given in section 4 is more complicated and requires some continuity properties of the
invariant measures with respect to the information. A comparative analysis of the
above algorithms requires further study.
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Abstract. We study structural properties of linear time-varying discrete-time systems. At
first an associated system on projective space is introduced as a basic tool to understand the linear
dynamics. We study controllability properties of this system and characterize in particular the control
sets and their cores. Sufficient conditions for an upper bound on the number of control sets with
nonempty interior are given. Furthermore, exponential growth rates of the linear system are studied.
Using finite-time controllability properties in the cores of control sets the Floquet spectrum of the
linear system may be described. In particular, the closure of the Floquet spectrum is contained in
the Lyapunov spectrum.

Key words. time-varying, discrete-time, control sets, universal controls, projected system, Bohl
exponents, Floquet exponents, Lyapunov exponents
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PII. S0363012996299600

1. Introduction. In recent years spectral theory for time-varying linear systems
has attracted renewed interest. While the foundations of the theory were laid by
Floquet [25], Lyapunov [40], and Bohl [16] the introduction of the problems and
considerations of control posed new questions to which different approaches have
been proposed.

Here we present an approach to the spectral theory of families of discrete-time
time-varying linear systems of the form

x(t+ 1) = A(u(t))x(t), t ∈ N ,

where the entries of A depend analytically on the time-varying parameter u, which
takes values in a prescribed set. In order to gain insight into the dynamics of this
system the system that is obtained by projecting on projective space is analyzed. This
approach leads to two generalizations of objects well understood for time-invariant
systems. The concept of eigenspace is extended to what is called a control set on pro-
jective space that is a set characterized by certain controllability properties. Eigenval-
ues find natural and well-understood generalizations in Floquet, Lyapunov, and Bohl
exponents. We examine these different exponential growth rates and how control sets
may be employed to characterize them.

Exponential stability is characterized by the Bohl exponent of a time-varying
linear system [16]; see also [24]. Przy luski and Rolewicz studied Bohl exponents
(or generalized spectral radii, in their terminology) for discrete-time systems in [46],
with further work appearing in [43]–[45]. On the other hand, Lyapunov exponents
characterize exponential growth along trajectories. Properties of Lyapunov exponents
were studied by Barabanov in [8]–[11], where sufficient conditions so that Lyapunov
exponents characterize exponential stability for families of time-varying systems are
shown. Berger and Wang [15], Lagarias and Wang [38], and Gurvits [27] study the
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joint and the generalized spectral radii given by a discrete inclusion (not to be confused
with the notion of generalized spectral radius due to Przy luski and Rolewicz). The
works cited so far are concerned mainly with the largest exponents characterizing
stability. In this article we are interested in the complete spectrum of exponential
growth rates associated with the system. Also, we will briefly discuss the relation
between the different notions appearing in the literature.

The basic idea of our approach is to study a system on projective space that
can be constructed from the linear system by Bogolyubov’s projection introduced
by Has’minskii [28]. The study of this projection in connection with control theory
has found numerous applications for continuous-time systems in the analysis of the
Lyapunov spectrum. For deterministic systems, the work of Colonius and Kliemann
[20], [21], [22] presents a full picture of what is known. In particular, the relation to
exponential dichotomies and the dynamical spectrum as studied by Sacker and Sell
[47] and Johnson, Palmer, and Sell [35] is analyzed in these references.

Interest in the complete spectrum of the linear system stems from diverse lines
of research. One of these is the question of robust stability. Let A(u0) be a Hurwitz
stable matrix (i.e., the spectrum of A(u0) consists of values with negative real part)
and interpret U as a set determining the structure of possible perturbations to the
time-invariant system given by ẋ = A(u0)x. The problem of robust stability is to
determine whether the perturbed system is exponentially stable under all possible
perturbations u : R → U that are, e.g., piecewise continuous; see Hinrichsen, Ilch-
mann, and Pritchard [29], [30] and Colonius and Kliemann [19]. The discrete-time
problem has been treated by Wirth and Hinrichsen in [57], [55].

Interpreting u as a control term, knowledge about the set of exponential growth
rates or Lyapunov exponents can be employed in the stabilization of such systems;
see Colonius, Kliemann, and Krull [23] and Grüne [26].

If u(t) is given a stochastic interpretation we are in the realm of stochastic sys-
tems. This problem was treated for continuous-time systems by Has’minskii [28],
Arnold, Kliemann, and Oeljeklaus [6], Arnold and Kliemann [5], and Arnold and San
Martin [7]. The discrete-time case was studied by Homblé in [32], [33] and Baxendale
and Has’minskii [14], however, with the restriction that the discrete-time system is
invertible.

In this article we wish to lay the foundation for the theory and treat some of
the difficulties inherent in the discrete-time case. It is explained how the problem of
noninvertibility can be partially overcome while retaining the possibility of obtaining
a reasonable system on projective space. We study asymptotic properties of the pro-
jected system, show the existence of controls with universal properties, and examine
the controllability structure of the projected system. This supplies the tools we need
for an analysis of the different spectra.

We proceed as follows. Section 2 contains the problem statement along with the
assumptions we make. In section 3 we study accessibility, transitivity, and regularity
of discrete-time systems. Orbits and regular orbits are introduced and it is explained
why forward accessibility can be characterized by the rank of a Jacobian. This has
been noted by several other authors [41], [32]. What is particularly useful in the case
of the projected system is that by Proposition 3.6 it is not necessary to check this in
local coordinates on the projective space Pn−1

K .
In section 4 we exhibit some asymptotic properties of the system on projective

space. The study of ω-limit sets follows the approach of Colonius and Kliemann [20]
and is standard if the projections of linear systems on projective space are studied.
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Using the regularity arguments from section 3 we obtain sufficient conditions for the
generalized eigenspace of a transition matrix to project to a region of exact control-
lability.

In section 5 we state a result on universally regular controls and a controllability
property that can be proved using the existence of universally regular controls. In
spite of the activity in the study of accessibility of discrete-time systems, the existence
of universal controls has only recently been investigated [54], [50]. In [49] Sontag
shows the existence of universally regular (universal nonsingular, in his terminology)
controls for analytic, strongly accessible continuous-time systems. Related, and at
first glance more interesting, is the existence of universally distinguishing controls
which has been studied by Sussmann [51] and Sontag and Wang [48]. It cannot be
overemphasized, however, that without the existence of universally regular controls,
the following results would lose a considerable amount of strength. The main result
of this section is that forward accessibility on projective space implies that a whole
linear subspace may be steered so as to simultaneously avoid a complementary linear
subspace. An analogue of this statement (Proposition 5.3) has to our knowledge not
been studied in continuous time.

A starting point in the study of nonlinear control systems are questions of control-
lability of a system. Unlike the linear case where controllability is a global property
in the state space, nonlinear systems may possess several regions of controllability.
An important conceptual tool is to study sets, where it is possible to steer arbitrarily
close from any one point to any other. These are the so-called control sets, which are
introduced in section 6.

Kliemann [37] studied properties of control sets of locally accessible systems on
smooth manifolds in continuous time. For the projected system obtained in the
continuous-time case, an upper bound on the number of control sets with nonvoid
interior has been obtained in [20]. An improved version of this result has been given
by Braga and San Martin [12], where smaller upper bounds than the dimension of
the state space have been given depending on the group that is acting on projective
space. In the discrete-time case control sets have been studied by Albertini and Son-
tag [3], [4], [2], who also introduced the concept of the core of a control set, which is
a strictly discrete-time concept. Introducing a further assumption, we define regular
cores which can be shown to enjoy the same properties one would expect for cores;
in fact, for the class of systems studied in [3] the definitions of core and regular core
coincide. We give an example of a system where the interior of a control set and its
regular core do not coincide.

What is surprising is that in neither the continuous- nor the discrete-time case
has an effort been undertaken to study control sets for complex systems, although it
has been known for some time that even for real systems it is useful to study complex
perturbations by the results of Hinrichsen and Pritchard [31].

A first observation for our system on projective space is that the generalized
eigenspaces corresponding to universally regular controls project to the cores of ap-
propriate control sets. Using this property we show in section 7 that under weak
assumptions there exist a unique invariant control set and a unique open control set
on projective space. These are maximal (resp., minimal) in the control order on the
control sets. Here is the first time where the importance of the universally regular
controls becomes clear, as their existence yields an easy proof for the existence of
the maximal and minimal control sets. This is also the point where we have to de-
part from lines of proof available in the literature that are based on properties of Lie
groups, if we do not want to restrict ourselves to the invertible case.
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In section 8 further results on control sets with nonempty interior are presented.
For these it is important what the minimal possible rank drop on a path connecting
two admissible invertible matrices is. Depending on this singularity index, we show
that the eigenspaces of universally regular controls corresponding to an eigenvalue
whose modulus has index greater than the singularity index project to a control set
uniquely determined by the index of the modulus. Control sets with this property are
called main control sets. This leads to a sufficient condition in terms of the singularity
index guaranteeing that there exist at most n control sets with nonempty interior,
which are all main control sets. It is briefly explained in what sense control sets may
be viewed as a generalization of generalized eigenspaces.

In section 9 we begin our discussion of spectral theory by introducing the different
exponents we want to study. Our definition of Floquet and Lyapunov spectra follows
Colonius and Kliemann [20], [22], with the exception that in these references the
collection of the ith Floquet exponents is not introduced.

In section 10 the Floquet spectrum of the discrete-time system is analyzed. We
study Floquet spectra corresponding to control sets with nonempty core. To each
such control set an associated set of Floquet exponents is defined. The idea of the
proof that the closure of such a set is an interval follows the continuous-time case.
The key here is a finite-time controllability property in the cores of control sets. In
section 11 we study Lyapunov and Bohl spectra and their relation to the Floquet
spectrum. Using an idea already developed in [18] we show under which conditions
it is possible to approximate Lyapunov exponents by periodic controls. Furthermore,
it is shown that without any further assumptions the closure of a Floquet spectrum
of a control set actually consists of Lyapunov exponents corresponding to trajectories
that remain in that control set. This is the statement of Theorem 11.1 (ii). It follows
that the closure of the Floquet spectrum is contained in the Lyapunov spectrum. It
has been shown by Berger and Wang [15] that the joint and generalized spectral radii
of a discrete inclusion given by a bounded set of matrices are equal. For our systems,
this implies the equality of the suprema of Bohl, Floquet, and Lyapunov spectra. We
show that the infima of Floquet and Lyapunov spectra coincide as well.

To indicate a further line of research let us point out that an extension to the
theory of control sets is given by the so-called chain control sets, which have been
introduced by Colonius and Kliemann [20], [22]. The idea is to consider not trajecto-
ries of the system but (ε, T )-chains to define chain-orbits and to use these to define
chain control sets. For discrete-time systems, this has been studied by Albertini and
Sontag in [4]. The extension of these concepts to the kind of systems we have studied
will be an interesting direction for further research, since with chain control sets, it
is possible to describe the Morse spectrum of the discrete-time system, which is an
outer approximation of the set of Lyapunov exponents.

2. Problem statement. Let K = R,C and let Ũ ⊂ Km be open and connected.
For an analytic map

A : Ũ → Kn×n ,(2.1)

we consider a family of time-varying linear systems of the form

x(t+ 1) = A(u(t))x(t) , t ∈ N,(2.2)
x(0) = x0 ∈ Kn,(2.3)
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where u : N → U ⊂ Ũ . The set-up we have chosen contains in particular systems
affine in u and positive systems as subclasses. Also, it naturally extends to periodic
systems.

For t ∈ N, U t denotes the set of admissible finite control sequences u = (u(0), . . . ,
u(t− 1)), while UN is the set of infinite control sequences u = (u(0), u(1), . . .). It will
always be clear from the context whether u denotes an element of U , U t, or UN.

For two finite control sequences u1 ∈ U t1 , u2 ∈ U t2 we define the concatena-
tion (u1, u2) to be the sequence in U t1+t2 given by (u1, u2) = (u1(0), . . . , u1(t1 −
1), u2(0), . . . , u2(t2 − 1)). The k-times repeated concatenation of u ∈ U t is de-
noted by (u)k ∈ U tk. For infinite control sequences u ∈ UN we consider for t ∈ N,
u[0,t−1] := (u(0), . . . , u(t − 1)) ∈ U t, the “first part” of the control sequence u. The
evolution operator generated by a control sequence u ∈ UN is defined by

Φu(s, s) = I , Φu(t+ 1, s) = A(u(t))Φu(t, s) , t ≥ s ∈ N .(2.4)

With this notation, Φu(t, 0)x0 is the solution of (2.2) corresponding to the initial
value x0 and the control u at time t.

We denote by Uinv the set {u ∈ U ; detA(u) 6= 0}, which is clearly the comple-
ment of a set defined by analytic equations in U . Thus Uinv is either ω-generic in
U or empty, where we call a set ω-generic if its complement is contained in a proper
analytic subset of Ũ . The term generic will be used for sets whose complements are
contained in closed subanalytic sets of dimension strictly less than the manifold con-
sidered. For details on the theory of analytic and subanalytic sets we refer the reader
to [42], [36], and [52]. Below, we will have to make use of the existence of invertible
matrices A(u), so that we have to assume that Uinv 6= ∅.

The following general assumption will be made throughout the remainder of this
article. Note, however, that the first one is just for convenience and without loss of
generality.

ASSUMPTION 2.1. Let K = R,C and consider system (2.2). We assume that the
map A in (2.1) and the sets U ⊂ Ũ ⊂ Km are such that

(i) 0 ∈ U ,
(ii) the set Uinv is ω-generic in U ,
(iii) intU is connected,
(iv) U ⊂ cl intU ⊂ Ũ ,
(v) U is bounded.
One tool for the study of Lyapunov exponents has been the projection onto the

projective space, known as Bogolyubov’s projection. It is based on the fact that in
continuous time the angular component of the system may be decoupled from the
radial and studied independently.

In our discrete-time system we do not exclude the possibility that the origin may
be reached from nonzero states. If this is regarded from the point of view of stability
or robust stability, it poses no problem, for once system (2.2) is at zero it remains
there, as it is totally uncontrollable at zero. However, this means that system (2.2) as
such may not be projected onto projective space. First the maximal subsystem that
can be projected has to be identified.

To consider the discrete-time analogue of Bogolyubov’s projection, we define for
x ∈ Kn

U(x) := {u ∈ U ;A(u)x 6= 0} ,
and with a slight abuse of notation the analogous sets for finite and infinite control
sequences are denoted by U t(x) and UN(x).
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As Uinv ⊂ U(x) and U tinv := (Uinv)t ⊂ U t(x) for all x ∈ Kn\{0} it follows that
for x 6= 0 the sets U(x) and U t(x) are ω-generic in U (resp., U t). Below, Pn−1

K denotes
the (n − 1)-dimensional projective space, and for W ⊂ Kn, PW denotes the natural
projection of W\{0} onto the projective space Pn−1

K .
For ξ ∈ Pn−1

K we define the admissible control values for ξ by

U(ξ) := U(x) iff ξ = Px ,

and in an analogous fashion U t(ξ), UN(ξ). This is well defined, as KerA(u) is a linear
subspace. With this notation the projected system corresponding to our linear system
(2.2) is given by

ξ(t+ 1) = PA(u(t))ξ(t) , t ∈ N,(2.5)
ξ(0) = ξ0 ∈ Pn−1

K ,(2.6)
u ∈ UN(ξ0).(2.7)

We denote the solution of (2.5) corresponding to an initial value ξ0 and a control
sequence u ∈ UN(ξ0) by ξ(·; ξ0, u). For a subset V ⊂ Pn−1

K , t ∈ N, u ∈ U t the notation
ξ(t;V, u) := {ξ(t; η, u); η ∈ V such that u ∈ U t(η)} will be used.

3. Accessibility, transitivity, and regularity. Let us now study the pro-
jected system (2.5) from a control point of view. The variable “u” will be treated as
if it were available for control of the system. A basic question in control theory is
that of accessibility. We begin with the following basic definitions.

DEFINITION 3.1 (orbits). Let K = R,C. Consider system (2.5). The forward
orbit of ξ at time t is defined as

O+
t (ξ) := {η ∈ Pn−1

K ;∃u ∈ U t(ξ) with η = ξ(t; ξ, u)} .

The forward orbit of ξ is then defined by O+(ξ) := ∪t∈NO+
t (ξ) . The backward orbit

of ξ at time t is given by

O−t (ξ) := {η ∈ Pn−1
K ;∃u ∈ U t(η) with ξ = ξ(t; η, u)},

which leads to a definition of O−(ξ) analogous to that of the positive forward orbit.
Let

O0(ξ) := {ξ} Ot+1(ξ) :=
⋃

η∈Ot(ξ)
O+(η) ∪ O−(η) , t ∈ N.

The orbit of ξ is then defined by

O(ξ) =
⋃
t∈N
Ot(ξ).(3.1)

DEFINITION 3.2 (accessibility). The system (2.5) is called forward accessible from
ξ if intO+(ξ) 6= ∅, backward accessible from ξ if intO−(ξ) 6= ∅, and forward (resp.,
backward) accessible if it is forward (backward) accessible from all ξ ∈ Pn−1

K .
System (2.5) is called transitive, if intO(ξ) 6= ∅ for all ξ ∈ Pn−1

K .
We note the following properties of the forward orbit.
LEMMA 3.3. Let K = R,C. Consider system (2.5).
(i) Let ξ1, ξ2 ∈ Pn−1

K . If ξ2 ∈ clO+(ξ1), then clO+(ξ2) ⊂ clO+(ξ1).
(ii) For all t ∈ N, ξ ∈ Pn−1

K it holds that clO+
t (ξ) is connected.
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Proof. (i) follows from a simple continuity argument. In order to prove (ii) we
proceed by induction over t ∈ N. Let t = 1 and 0 6= x ∈ Kn. For an analytic path
γ : [0, 1] → intU with A(γ(τ))x 6≡ 0, we will show that clP{A(γ(τ))x; τ ∈ [0, 1]} is
pathwise connected. Assume that A(γ(τ0))x = 0 (there are at most finitely many
such τ). Let k ∈ N be the smallest integer such that dk

dτk
A(γ(τ))x|τ=τ0 6= 0, and

without loss of generality, assume that the first component of this vector is nonzero.
In standard local coordinates around (1,0,. . . ,0) we obtain a neighborhood of τ0 where
for τ 6= τ0 it holds that

PA(γ(τ))x =
(

1,
(A(γ(τ))x)2

(A(γ(τ))x)1
, · · · , (A(γ(τ))x)n

(A(γ(τ))x)1

)
.(3.2)

Using the rule of de l’Hospital we obtain that limτ→τ0 PA(γ(τ))x exists, which shows
our claim. As for every u1, u2 ∈ intU there exists a piecewise polynomial path
connecting them, and using Assumption 2.1 (iv), we see that clO+

1 (ξ) is connected.
Assume now that clO+

t (ξ) is connected. Then, for u0 ∈ Uinv, it holds that
PA(u0) clO+

t (ξ) is connected as the continuous image of a connected set. Thus

clO+
t+1(ξ) = cl

⋃
η∈clO+

t (ξ)

clO+
1 (η)

is connected, as each of the sets in the union is connected and each of the sets intersects
the connected set PA(u0) clO+

t (ξ).
It has been shown that forward accessibility is intimately related to the rank of

a certain mapping in the case of smooth invertible systems [4]. To carry this result
over to our case, let for every t ∈ N

Wt :=
{

(ξ, u) ∈ Pn−1
K × intU t; u ∈ U t(ξ)

}
(3.3)

and consider the map

Ft : Wt → Pn−1
K , Ft(ξ, u) := ξ(t; ξ, u).(3.4)

For fixed ξ ∈ Pn−1
K and u0 ∈ intU t(ξ) we consider the rank of the linearization of

Ft(ξ, ·) : U t(ξ)→ Pn−1
K at u0 ∈ U t ⊂ Kmt with respect to u = (u(0)1, . . . , u(0)m, u(1)1,

. . . , u(t− 1)1, . . . , u(t− 1)m). We define the following shorthand notation:

∂Ft
∂u

(ξ, u0) =
(
∂Ft,i
∂u(s)j

(ξ, u0)
)
i=1,...,n−1;s=0,...,t−1;j=1,...,m

,

where the Ft,i are the ith components of the map Ft(ξ, ·) with respect to some coordi-
nate chart around Ft(ξ, u0). The important detail for us is the rank of this Jacobian
which is denoted by

r(t; ξ, u0) := rk
∂Ft
∂u

(ξ, u0).(3.5)

DEFINITION 3.4 (regularity). A pair (ξ, u) ∈ Pn−1
K × intU t is called regular, if

u ∈ intU t(ξ) and r(t; ξ, u) = n− 1. A control u ∈ intU t is called universally regular
if (ξ, u) is a regular pair for all ξ ∈ Pn−1

K .
The following lemma summarizes some easy properties in connection with regu-

larity.
LEMMA 3.5. Let K = R,C, u0 ∈ intU t, v0 ∈ intUs. For ξ0 ∈ Pn−1

K let
Ft+s(ξ0, (u0, v0)) be defined. Then
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(i) r(t+ s; ξ0, (u0, v0)) ≥ r(s; ξ(t; ξ0, u0), v0);
(ii) if v0 ∈ intUsinv then r(t+ s; ξ0, (u0, v0)) ≥ r(t; ξ0, u0).
Proof. Both assertions follow from an application of the chain rule.
PROPOSITION 3.6. Let K = R,C and consider system (2.5). For all x ∈ Kn\{0}, t ∈

N, u ∈ intU t, the following statements are equivalent.
(i) (Px, u) is a regular pair.
(ii) Φu(t, 0)x 6= 0 and the following rank condition holds:

rkGt(x, u) := rk

Φu(t, 0)x
......
∂

∂u
Φu(t, 0)x

 = n .(3.6)

Proof. It is clear that Φu(t, 0)x 6= 0 is necessary for regularity. An application of
the chain rule and a simple calculation in local coordinates yields the desired result.

The preceding criterion will be frequently used, as it is easily handled in lower
dimensions, where all our examples will be situated. Of course, if the dimension is
high or the structure of the map A is complicated, this criterion is much too involved
to yield a feasible procedure for checking whether a system is forward accessible.

DEFINITION 3.7 (regular orbit). Let K = R,C and consider system (2.5). For
ξ ∈ Pn−1

K we define the regular forward orbit and regular backward orbit by

Ô+
t (ξ) := {η; ∃u ∈ intU t(ξ) s.t. (ξ, u) is regular and η = ξ(t; ξ, u)} ,(3.7)

Ô−t (ξ) := {η; ∃u ∈ intU t(η) s.t. (η, u) is regular and ξ = ξ(t; η, u)}.(3.8)

The definitions of Ô+
(ξ) and Ô−(x) are then analogous to Definition 3.1.

For subsets V ⊂ Pn−1
K we will use the notations Ô+

(V ) :=
⋃
ξ∈V Ô

+
(ξ), etc. The

following results exhibit some properties of the regular forward orbits. Items (iii)
and (v) are shown in [4] for analytic invertible systems, and similar arguments are
applicable here.

LEMMA 3.8. For K = R,C consider system (2.5). Let ξ ∈ Pn−1
K ; then

(i) Ô+
t (ξ) is open in Pn−1

K ;

(ii) Ô−t (ξ) is open in Pn−1
K ;

(iii) intO+
t (ξ) 6= ∅ iff Ô+

t (ξ) 6= ∅;
(iv) if, for t ∈ N, Ô+

t (ξ) 6= ∅, then Ô+
s (ξ) 6= ∅ for all s ≥ t;

(v) intO+
t (ξ) 6= ∅ ⇒ clO+

t (ξ) = cl Ô+
t (ξ).

In the case when ξ is a fixed point under a control u such that (ξ, u) is a regular
pair, the following property is immediately obtained.

PROPOSITION 3.9. Let K = R,C. For ξ ∈ Pn−1
K there exist uξ ∈ intU t, t ∈ N

such that (ξ, uξ) is a regular pair and

ξ = ξ(t; ξ, uξ)(3.9)

iff there exists an open neighborhood V of ξ such that V ⊂ Ô+
t (ξ) ∩ Ô−t (ξ).

Proof. “⇒”: This follows as ξ ∈ Ô+
t (ξ) ∩ Ô−t (ξ) and the fact that both Ô+

t (ξ)
and Ô−t (ξ) are open by Lemma 3.8. “⇐”: This is obvious as ξ ∈ Ô+

t (ξ).
Let us now extend this property to connected sets.
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LEMMA 3.10. Let K = R,C. If Γ ⊂ Pn−1
K is a connected set such that for every

ξ ∈ Γ the assumption of Proposition 3.9 holds for some t(ξ) ∈ N, then there exists a
connected open set V such that

Γ ⊂ V ⊂
⋂
ξ∈Γ

Ô+
(ξ) ∩ Ô−(ξ) .(3.10)

Proof. Let ξ ∈ Γ and consider the set Ô+
(ξ) ∩ Γ, which is clearly open in Γ. Let

η ∈ Γ ∩ cl Ô+
(ξ). As η ∈ Ô−(η), which is open, it follows that Ô+

(ξ) ∩ Ô−(η) 6= ∅
and hence η ∈ Ô+

(ξ). Thus Ô+
(ξ) ∩ Γ is open and closed in Γ and nonempty. As

Γ is connected it follows that Γ ⊂ Ô+
(ξ), and as ξ ∈ Γ was arbitrary, it holds for

all ξ1, ξ2 ∈ Γ that ξ1 ∈ Ô
+

(ξ2) and thus Ô+
(ξ1) ⊂ Ô+

(ξ2) by Lemma 3.5 (i). By
symmetry, we obtain Ô+

(ξ1) = Ô+
(ξ2). Furthermore, it follows for every η ∈ Γ that

Γ ⊂ Ô−(η), and again, for all ξ1, ξ2 ∈ Γ, it holds that Ô−(ξ1) = Ô−(ξ2). As Γ is
connected, we can thus choose V to be the connected component of Ô+

(ξ) ∩ Ô−(ξ)
containing Γ for some ξ ∈ Γ.

4. Asymptotic properties on projective space. A first step in the study of
the discrete-time system on projective space is the study of the ω-limit sets defined
by constant matrices in Jordan block form, where we follow the argumentation from
[20] and extend the arguments used there so that we may treat cases not considered
in that reference. The following notation is used from now on.

Let B ∈ Kn×n. For an eigenvalue λ ∈ σ(B) ∩ K, E(λ) denotes the eigenspace
and GE(λ) denotes the generalized eigenspace corresponding to λ. If B ∈ Rn×n and
λ ∈ σ(B) is complex then E(λ) denotes the real part of the sum of the eigenspaces
corresponding to the eigenvalues λ, λ. GE(λ) denotes the appropriate generalized
eigenspaces.

It will also be convenient to consider the set of absolute values of the eigenvalues
defined by |σ(B)| := {|λ| ; λ ∈ σ(B)}. For 1 ≤ i ≤ n, let ri(B) be equal to the ith
entry of the ordered sequence |λ1| ≤ · · · ≤ |λn|, where each element of the spectrum
of B appears according to its algebraic multiplicity. For r ∈ |σ(B)| we denote

E(r) =
⊕
λ∈σ(B)
|λ|=r

E(λ) , GE(r) =
⊕
λ∈σ(B)
|λ|=r

GE(λ) .(4.1)

Below, we will be concerned with eigenspaces of Φu(t, 0) generated by some fi-
nite control sequence u ∈ U t. To make the dependence on u explicit we write
E(λ, u), E(r, u), etc. The projection of generalized eigenspaces is particularly im-
portant if regularity arguments can be applied.

DEFINITION 4.1. Let K = R,C, t ∈ N, u ∈ U t, r ∈ |σ(Φu(t, 0))|. If r > 0, we call
PGE(r, u) regular if u can be partitioned as u = (u1, u2) with u1 ∈ U t1 , u2 ∈ intU t2 ,
and t = t1 + t2, and it holds that

(ξ, u2) is a regular pair for every ξ ∈ PΦu1(t1, 0)GE(r, u) .(4.2)

DEFINITION 4.2 (limit sets). Let K = R,C, u ∈ UN, ξ ∈ Pn−1
K . The positive

ω-limit set is defined by

ω+(ξ, u) :=
{
η ∈ Pn−1

K ;∃{tk}k∈N ⊂ N, lim
k→∞

tk =∞ such that η = lim
k→∞

ξ(tk; ξ, u)
}
.

(4.3)
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The negative ω-limit set is defined by

ω−(ξ, u) :=
{
η ∈ Pn−1

K ;∃{tk}k∈N ⊂ N, lim
k→∞

tk =∞, ∃{ηk} ⊂ Pn−1
K ,

ξ = ξ(tk; ηk, u) such that η = lim
k→∞

ηk

}
.(4.4)

For t ∈ N, u ∈ U t, ξ ∈ Pn−1
K , ω+(ξ, u) (resp., ω−(ξ, u)) denotes the positive (resp.,

negative) ω-limit set that is obtained by applying the t-periodic continuation of u.
Note that with this definition we do not exclude the possibility that ω-limit sets

may be empty, e.g., if u 6∈ UN(ξ). For a discussion of the concept of ω-limit sets we
refer the reader to [1, Chapter 1]. In the following lemma we collect some simple
properties of limit sets pertinent to our problem. The proof is left to the reader.

LEMMA 4.3. Let K = R,C, t ∈ N, u ∈ U t, ξ ∈ Pn−1
K .

(i) ω+(ξ, u) , ω−(ξ, u) are closed.
(ii) Φu(t, 0)ω+(ξ, u) = ω+(ξ, u).
(iii) If ξ = Px = P

∑l
j=1 xj with xj ∈ GE(rj , u) is the spectral decomposition of

ξ and r1 < r2 < · · · < rl, then

ω+(ξ, u) ⊂ PGE(rl) .(4.5)

If r1 = 0, then ω−(ξ, u) = ∅; otherwise

ω−(ξ, u) ⊂ PGE(r1) .(4.6)

(iv) If r > 0, then ξ ∈ PE(r, u)⇒ ξ ∈ ω+(ξ, u) = ω−(ξ, u) ⊂ PE(r, u).
The following lemma states the fundamental asymptotic property of the projected

system.
LEMMA 4.4. Let K = R,C.
(i) Let Jn(λ) denote an n×n Jordan block to an eigenvalue λ ∈ K\{0}. Then for

any x ∈ Kn\{0}

lim
t→±∞

PJn(λ)tx = P[1, 0, . . . , 0]′ .(4.7)

(ii) Let K = R and let Jn(λ, λ̄) denote a 2n×2n Jordan block to a complex pair of
eigenvalues λ, λ̄. Then, for any Riemannian metric d on P2n−1

R and any x ∈ R2n\{0},
it holds that

lim
t→±∞

d(PJn(λ, λ̄)tx,Pspan{[1, 0, . . . , 0]′, [0, 1, 0, . . . , 0]′}) = 0 .(4.8)

Proof.
(i) For λ ∈ K\{0}, t > n it holds that

Jn(λ)t =



λt tλt−1 . . . . . .

(
t

t− (n− 1)

)
λt−(n−1)

0 λt tλt−1 . . .

(
t

t− (n− 2)

)
λt−(n−2)

0 0 λt
...

...
. . . . . .

...

0 . . . 0 λt


.(4.9)
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For i > 1 it follows immediately that

lim
t→∞

∣∣∣∣ (Jn(λ)tej)i
(Jn(λ)tej)1

∣∣∣∣ = 0 ,(4.10)

which proves the assertion in the limit t → +∞. The assertion for t → −∞ follows
upon noting that Jn(λ)−t is similar to Jn( 1

λ )t, where the vector e1 is fixed under the
similarity transformation.

(ii) The proof for the complex pair of eigenvalues follows the same pattern and is
omitted.

COROLLARY 4.5. Let K = R,C, t ∈ N, u ∈ U t. If for r ∈ |σ(Φu(t, 0))|, r > 0, the
generalized eigenspace PGE(r, u) is regular, then there exists an open set V such that

PE(r, u) ⊂ V ⊂
⋂

ξ∈PE(r,u)

Ô+
(ξ) ∩ Ô−(ξ) .(4.11)

Proof. Let u = (u1, u2) be partitioned in accordance with Definition 4.1. If ξ0 ∈
PE(r, u), then there exists a ξ2 ∈ PΦu1(t1, 0)E(r, u) such that ξ0 = ξ(t2; ξ2, u2) and
(ξ2, u2) is regular. Furthermore it holds by Lemma 4.3 (iv) that ξ2 ∈ PΦu1(t1, 0)ω+(ξ0, u)
and soO+(ξ0)∩Ô−(ξ0) 6= ∅ since the regular backward orbit is open by Lemma 3.8 (ii).
Using Lemma 3.8 (v) it follows that ξ0 ∈ Ô

+
(ξ0).

As PE(r, u) is connected, the assertion follows from Lemma 3.10.
COROLLARY 4.6. Let K = R,C, t ∈ N, u ∈ U t. If for r ∈ |σ(Φu(t, 0))|, r > 0,

the generalized eigenspace PGE(r, u) is regular, then there exists an open set W such
that

PGE(r, u) ⊂W ⊂
⋂

ξ∈PGE(r,u)

Ô+
(ξ) ∩ Ô−(ξ) .(4.12)

Proof. Let u = (u1, u2) be partitioned in accordance with Definition 4.1 and ξ ∈
PGE(r, u). By Lemma 4.4 and Corollary 4.5 there exists η ∈ O+(ξ) ∩ Ô−(PE(r, u))
and it follows that PE(r, u) ⊂ Ô+

(ξ). On the other hand, ω−(ξ, u) ⊂ PE(r, u) and
so by Corollary 4.5 there exists an η ∈ Ô+

(PE(r, u)) and a k ∈ N such that ξ =
ξ(kt; η, (u)k). By regularity of the pair (ξ((k− 1)t+ t1; η, ((u)k−1, u1)), u2) and using
the fact that Ô−t2(ξ) is open, we see that η ∈ Ô−kt(ξ). Hence PE(r, u) ⊂ Ô−(ξ). It

follows that ξ ∈ Ô+
(ξ), and an application of Lemma 3.10 completes the proof.

Now that we have seen that for generalized eigenspaces in projective space certain
controllability properties hold if a regularity condition is satisfied, it is reasonable to
ask whether we can, for certain controls, guarantee that this condition holds. This is
discussed in the next section.

5. Universally regular controls. A crucial point in the development of the
theory is the construction of universally regular controls and the proof of their gener-
icity in U t for t large enough. The following result is largely a restatement of results
shown in [54] and [50].

PROPOSITION 5.1. Let K = R,C. For the projected system (2.5) the following
statements are equivalent.

(i) System (2.5) is forward accessible.
(ii) There exist t ∈ N, u∗ ∈ intU t such that u∗ is universally regular.
(iii) There exists a t∗ ∈ N such that for all t > t∗ the set of universally regular

control sequences is generic in intU t.
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(iv) There exists a t ∈ N, u ∈ intU t such that for every r ∈ |σ(Φu(t, 0))| the
generalized eigenspace PGE(r, u) is regular.

Proof. The equivalence of (i), (ii), and (iii) follows from Corollaries 3.2 and 3.3 in
[50]. For this, note in particular that by Proposition 3.6 the set of nonregular pairs in
Pn−1
K × U t is analytic. To complete the proof note that “(ii) ⇒ (iv)” is obvious. For

the converse direction let u be such that (iv) is satisfied. For any ξ ∈ Pn−1
K Lemma 4.4

implies that ω+(ξ, u) ⊂ PE(r, u) for some r ∈ |σ(Φu(t, 0))|. Corollary 4.6 implies that
Ô+

(ξ) 6= ∅, so (i) holds.
The set of universally regular u ∈ U t will be denoted by U treg, while t∗ denotes

the smallest t ∈ N such that U treg 6= ∅. It follows from the results in [50] that if
intO+

t (ξ) 6= ∅ for all ξ ∈ Pn−1
K , then t∗ ≤ tn. Note that U treg is open for all t ∈ N.

Remark 5.2. Let us point out that we use the term generic for sets that are the
complement of closed subanalytic sets of lower dimension in the real case or proper
analytic subsets in the complex case. The reason that we work with analytically
defined sets lies in the analytic dependence of A on u. In particular, we use in the
proof of Proposition 8.1 that if the complement of a set Z is generic, then from every
x ∈ Z there exists a path that starts in x ∈ Z and leaves Z immediately. This is
due to the fact that subanalytic sets can be represented as a locally finite union of
embedded analytic submanifolds; see [52].

PROPOSITION 5.3. Let K = R,C. Assume that (2.5) is forward accessible; then,
for linear subspaces X,Y ⊂ Kn such that

dimX + dimY ≤ n,(5.1)

the set {u ∈ U treg; Φu(t, 0)X ∩ Y = {0}} is generic in intU t for all t ≥ t∗.
Proof. For X = {0} there is nothing to show, so assume dimX ≥ 1. Note that

the set {(ξ, u) ∈ PX × intU t;u /∈ U t(ξ) or [u ∈ U t(ξ) and ξ(t; ξ, u) ∈ PY ]} is analytic
in PX× intU t. From Remmert’s proper mapping theorem [36, Theorem 45.17] (resp.,
the definition of subanalytic sets [52, section 8]) it follows that the projection of this
set given by

{u ∈ intU t;∃ξ ∈ PX such that [u /∈ U t(ξ) or ξ(t; ξ, u) ∈ PY ]}(5.2)

is analytic in intU t for K = C or subanalytic in intU t for K = R. As the set is clearly
closed and the intersection of two generic sets is generic, the assertion is thus proved
in the real and the complex cases if the following statement is shown:

if t ≥ t∗ and u ∈ intU t, then in any open neighborhood of u(5.3)
there exists a v ∈ U treg such that Φv(t, 0)X ∩ Y = {0} .

We prove (5.3) by induction over dimX. Let dimX = 1. Due to u ∈ clU treg it holds

that ξ(t; ξ, u) ∈ cl Ô+
t (ξ) for ξ = PX, so (5.3) follows immediately. Assume that

(5.3) is shown for dimX = k < n − 1 and let X = span{x1, . . . , xk+1} for a linearly
independent set of vectors xi ∈ Kn, i = 1, . . . , k + 1. Without loss of generality, let
Y ⊂ span{ek+2, . . . , en}. Denote X ′ = span{x1, . . . , xk}. Fix u ∈ intU t and an open
neighborhood V ⊂ intU t of u. Thus there exists v ∈ V ∩ U treg such that

Φv(t, 0)X ′ ∩ span{ek+2, . . . , en} = {0} .(5.4)

Due to forward accessibility v may be chosen such that

Φv(t, 0)xk+1 /∈ span{ek+2, . . . , en}.(5.5)
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Let W ⊂ V ∩ U treg be a neighborhood of v such that (5.4) and (5.5) are satisfied for
all v′ ∈W . Let P ∈ Kk+1×n be defined by

P =

 1 0 0 · · · 0
. . .

...
0 1 0 · · · 0

 ;(5.6)

then

rkPΦv(t, 0)[x1
... · · ·

...xk+1] ≥ k .(5.7)

If the rank is equal to k + 1, then indeed

Φv(t, 0)X ∩ span{ek+2, . . . , en} = {0} .(5.8)

Let u′ ∈ Kmt and consider the mappings

hi : (−ε, ε)→ Kk+1,(5.9)
hi(τ) = PΦv+τu′(t, 0)xi(5.10)

for i = 1, . . . , k + 1, where ε is small enough such that v + τu′ ∈ W for |τ | < ε. We
claim that there exist u′ ∈ Kmt such that (5.8) holds for Φv+τu′(t, 0) for some |τ | < ε.
Assume this is not the case. Then hk+1(τ) ∈ span{hi(τ)}i=1,...,k for all |τ | < ε. Hence
there exist continuously differentiable functions

µi : (−ε, ε)→ K, i = 1, . . . , k(5.11)

such that

hk+1(τ) =
k∑
i=1

µi(τ)hi(τ),(5.12)

where the differentiability follows from the differentiability of the hi and the fact
that the hi(τ), i = 1, . . . , k, are linearly independent. Hence, if we differentiate with
respect to τ at τ = 0,

h′k+1(0) =
k∑
i=1

µ′i(0)hi(0) + µi(0)h′i(0),(5.13)

or equivalently, using the chain rule,

P
∂Φv(t, 0)xk+1

∂u
· u′ =

k∑
i=1

µ′i(0)hi(0) + µi(0)P
∂Φv(t, 0)xi

∂u
· u′ .(5.14)

Let

Bi := P
∂Φv(t, 0)xi

∂u
∈ Kk+1×mt(5.15)

be our shorthand notation; then we obtain that if u′ is such that Biu′ ∈ span{h1(0),
. . . , hk(0)} for i = 1, . . . , k and Bk+1u

′ /∈ span{h1(0), . . . , hk(0)}, then (5.14) cannot
be solved and there exist τ arbitrarily small such that

rkPΦu+τu′(t, 0)[x1
... · · ·

...xk+1] = rkΦu+τu′(t, 0)[x1
... · · ·

...xk+1] = k + 1(5.16)

and hence (5.3) holds.
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Assume there is no u′ satisfying these properties; i.e., for all u ∈ Kmt it holds
that

Biu ∈ span{h1(0), . . . , hk(0)}, i = 1, . . . , k ⇒ Bk+1u ∈ span{h1(0), . . . , hk(0)} .

By (5.4) we obtain dim{u ∈ Kmt; Biu ∈ span{h1(0), . . . , hk(0)}} ≥ mt− 1 and thus

dim{u ∈ Kmt; Biu ∈ span{h1(0), . . . , hk(0)} for i = 1, . . . , k}(5.17)
= dim{u ∈ Kmt; Biu ∈ span{h1(0), . . . , hk(0)} for i = 1, . . . , k + 1}(5.18)
≥ mt− k .(5.19)

Hence, in suitable coordinates, the matrices Bi, i = 1, . . . , k + 1, are of the form

k

1

mt− k k

∗ . . . ∗

...
...

∗ . . . ∗

0 . . . 0

∗ . . . ∗

...
...

∗ . . . ∗

∗ . . . ∗


,(5.20)

and there are scalars νi ∈ K, i = 1, . . . , k + 1, not all zero such that

Im
k+1∑
i=1

νiBi ⊆ span{h1(0), . . . , hk(0)} .(5.21)

Now for the vector x =
∑k+1
i=1 νixi 6= 0 and with Gt as defined in (3.6) it follows that

rkPGt(x, v) = rk

 k+1∑
i=1

νihi(0)
......

k+1∑
i=1

νiBi

 ≤ k,(5.22)

which contradicts the universal regularity of v by Proposition 3.6.
In [34], [2], [4] accessibility and transitivity properties of analytic, invertible sys-

tems have been studied. In particular, Lie algebraic characterizations of these prop-
erties were obtained. It was also obtained that on compact manifolds, transitivity,
forward, and backward accessibility are all equivalent. Since forward accessibility of
system (2.5) implies the existence of a universally regular control, we can state the
following proposition.

PROPOSITION 5.4. Let K = R,C. Assume system (2.5) is forward accessible.
Then it is backward accessible and transitive. Furthermore, it holds for every ξ ∈ Pn−1

K

that Ô−(ξ) 6= ∅.
Proof. This is clear from the existence of a universally regular control.
This proposition shows in particular that the criteria for accessibility developed

in [34], [4] can be brought to use in our case, even though the full requirements of
the theorems stated in these references are not met. This is due to the fact that
system (2.5) is forward accessible iff there is an analytic invertible subsystem that
is forward accessible. We call a system a subsystem if the map A is the same but
the set of control values is restricted. Thus we could choose an open subset U ′ of
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Uinv that is relatively compact in Uinv. For the system with control values in U ′ it is
clear that its forward accessibility implies forward accessibility of the original system.
But the converse is also true, as forward accessibility implies the generic existence
of universally regular controls. This implies that there exists a universally regular
control in U ′t

∗

reg, where t∗ is the constant of the original system.
The converse of the statement in Proposition 5.4 does not hold, as shown by the

following example.
Example 5.5. Let K = R,C and U = K. Define

A(u) :=
[

1 + 2u 0
0 1 + u

]
.

Then the system

ξ(t+ 1) = PA(u(t))ξ(t) , t ∈ N,

is clearly not forward accessible, as O+(P[1, 0]′) = {P[1, 0]′} , O+(P[0, 1]′) = {P[0, 1]′}.
However, an open set can be steered to P[1, 0]′ by applying the constant control given
by λ = −1 (resp., P[0, 1]′ and λ = − 1

2 ). It is then easy to see that intO−1 (ξ) 6= ∅ for
all ξ ∈ P1

K. So the system is backward accessible.

6. Control sets. Let us now give a precise meaning to the words “sets where
it is possible to steer arbitrarily close from one point to another.” Control sets are
defined as maximal sets where a controllability property holds. Precontrol sets satisfy
the same controllability properties without being maximal. We note that different
control sets are disjoint, and that for every precontrol set there exists a unique control
set containing it. Furthermore, for every point in a control set there exists a control
sequence such that the corresponding trajectory stays in that control set for all times,
and the closures of the forward orbits of two points contained in the same control set
coincide.

DEFINITION 6.1 (control set). Let K = R,C. Consider system (2.5). A set
∅ 6= D ⊂ Pn−1

K is called a precontrol set if
(i) D ⊂ clO+(ξ), ∀ξ ∈ D;
(ii) for every ξ ∈ D there exists a u ∈ UN(ξ) and an increasing sequence (tk)k∈N ⊂

N such that ξ(tk; ξ, u) ∈ D for all k ∈ N.
A precontrol set D is called a control set if, furthermore,

(iii) D is a maximal set with respect to inclusion satisfying (i).
A control set C is called an invariant control set if

clC = clO+(ξ) ∀ξ ∈ C .(6.1)

With this definition we obtain the following basic results.
PROPOSITION 6.2. Let K = R,C and consider system (2.5).
(i) For two control sets D1, D2 ⊂ Pn−1

K it holds that either D1 = D2 or D1∩D2 =
∅.

(ii) For every precontrol set D′ ⊂ Pn−1
K there exists a unique control set D such

that D′ ⊂ D.
(iii) If ξ1, ξ2 ∈ D for some control set D ⊂ Pn−1

K and for some u ∈ U t it holds
that

ξ2 = ξ(t; ξ1, u),(6.2)
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then

ξ(s; ξ1, u) ∈ D for s = 0, . . . , t .(6.3)

(iv) For a control set D it holds that

clO+(ξ1) = clO+(ξ2) ∀ξ1, ξ2 ∈ D .(6.4)

(v) Let D be a control set. For every ξ ∈ D there exists a control u ∈ UN(ξ) such
that

ξ(t; ξ, u) ∈ D ∀t ∈ N .(6.5)

(vi) Let D be a control set. For every ξ ∈ D and every T ∈ N it holds that

clO+(ξ) = cl
∞⋃
t=T

O+
t (ξ) .(6.6)

In the forward accessible case, invariant control sets enjoy further useful proper-
ties.

PROPOSITION 6.3. Let K = R,C. Assume that (2.5) is forward accessible. A
control set C is invariant iff it is closed and satisfies intC 6= ∅.

Proof. “⇒”: If C = Pn−1
K there is nothing to show. Assume that ξ ∈ clC \ C.

This implies that ξ ∈ clO+(η) for all η ∈ C. As ξ /∈ C it follows that O+(ξ)∩C = ∅,
for otherwise C ⊂ clO+(ξ), and this would imply ξ ∈ C. By assumption, there
exist t ∈ N, u ∈ U t(ξ) such that ξ(t; ξ, u) ∈ intO+(ξ). By continuity, there exists a
neighborhood V of ξ that is steered to intO+(ξ), and therefore there exists η ∈ C
such that O+(η) ∩ intO+(ξ) 6= ∅. But O+(η) ⊂ clC, a contradiction. Hence C is
closed, and C = clO+(ξ) for ξ ∈ C. As intO+(ξ) 6= ∅ it follows that intC 6= ∅.

“⇐”: Let C be a closed control set with intC 6= ∅. If C = Pn−1
K there is nothing to

show. Otherwise we have to show for every ξ ∈ C that clO+(ξ) ⊂ C, or equivalently,
as C is closed, O+(ξ) ⊂ C. For every η ∈ C there exists t ∈ N, u ∈ U t(η) such that
ξ(t; η, u) ∈ intC. By continuous dependence on the initial values there exists an open
neighborhood V (η) of η such that ξ(t;V (η), u) ⊂ intC. Hence there exists an open
set V ⊃ C such that O+(ξ) ∩ intC 6= ∅ and therefore C ⊂ clO+(ξ) for every ξ ∈ V .

Assume now that there exists a ξ ∈ C and a u ∈ U(ξ) such that ξ(1; ξ, u) /∈ C.
As C ⊂ clO+(ξ) there exists an η ∈ O+(ξ) ∩ C, and Proposition 6.2 (iii) guarantees
that there exists a v ∈ U(ξ) such that ξ(1; ξ, v) ∈ C. Now clO+

1 (ξ) ∩ C 6= ∅, but
also clO+

1 (ξ) 6⊂ C. Since clO+
1 (ξ) is connected, it follows that there exists a ζ ∈

O+
1 (ξ) ∩ (V \ C). But then ζ ∈ clO+(η) for all η ∈ C and C ⊂ clO+(ζ), and thus

ζ ∈ C, which is a contradiction.
Cores of control sets, a strictly discrete-time concept, have been introduced in

[4]. We give a definition of the core that differs slightly from the original definition in
that we require a regularity condition to hold. So, to contrast it, it might be called
the regular core of a control set. It should, however, be noted that for the systems
studied in [4], core and regular core of a control set coincide.

DEFINITION 6.4 (regular core). Let K = R,C. Let D ⊂ Pn−1
K be a control set with

intD 6= ∅. The (regular) core of D is defined as

core(D) := {ξ ∈ D; Ô+
(ξ) ∩D 6= ∅ and Ô−(ξ) ∩D 6= ∅} .(6.7)
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PROPOSITION 6.5. Let K = R,C and consider system (2.5). It holds that ξ ∈
Ô+

(ξ) iff there exists a control set D such that ξ ∈ core(D).
Proof. “⇒”: This follows from Proposition 3.9.
“⇐”: Let η ∈ Ô−(ξ) ∩ D. By the implicit function theorem there exists a

neighborhood V of η with V ⊂ Ô−(ξ). As η ∈ D it follows that V ∩ O+(ξ) 6= ∅.
Therefore, Ô−(ξ) ∩ O+(ξ) 6= ∅, and so ξ ∈ Ô+

(ξ).
PROPOSITION 6.6. Let K = R,C and consider system (2.5). Let D ⊂ Pn−1

K be
a control set with intD 6= ∅. If system (2.5) is forward accessible from every ξ ∈ D,
then

(i) core(D) is open in Pn−1
K ;

(ii) cl core(D) = cl int(D) = clD;
(iii) if ξ ∈ core(D) then core(D) ⊂ Ô+

(ξ) and D ⊂ Ô−(ξ);
(iv) if ξ ∈ core(D), t ∈ N, u ∈ intU tinv, and ξ(t; ξ, u) ∈ D, then ξ(s; ξ, u) ∈

core(D) for s = 0, . . . , t.
Proof. (i) If ξ ∈ core(D), then by Proposition 6.5, ξ ∈ Ô+

(ξ). Thus the assertion
follows from Proposition 3.9, as there exists an open neighborhood V of ξ satisfying
V ⊂ Ô+

(ξ) ∩ Ô−(ξ). V is a precontrol set satisfying the rank condition in (6.7), and
thus contained in core(D).

(ii) Clearly, cl core(D) ⊂ cl intD ⊂ clD. Let ξ ∈ clD and V be any open
neighborhood of ξ. Let η ∈ intD. By Lemma 3.8 (v) and Proposition 6.2 (vi) we
have D ⊂ cl Ô+

(η). Thus we may choose ζ ∈ D ∩ V ∩ Ô+
(η), and it follows that

Ô−(ζ) ∩ intD 6= ∅. As ζ ∈ D we have as before that intD ⊂ D ⊂ Ô+
(ζ) and so also

Ô+
(ζ) ∩ intD 6= ∅. Thus ζ ∈ core(D) ∩ V .
(iii) If ξ ∈ core(D), then ξ ∈ clO+(η) for every η ∈ D. By Proposition 3.9,

ξ ∈ Ô−(ξ) and so O+(η) ∩ Ô−(ξ) 6= ∅, and hence η ∈ Ô−(ξ). This shows that
D ⊂ Ô−(ξ). As ξ ∈ core(D) was arbitrary, this implies also that core(D) ⊂ Ô+

(ξ)
for every ξ ∈ core(D).

(iv) This is clear as D ⊂ Ô−(ξ) ⊂ Ô−(ξ(s; ξ, u)) for s = 0, . . . , t by Lemma 3.5,
and core(D) ⊂ Ô+

(ξ(t; ξ, u)) ⊂ Ô+
(ξ(s; ξ, u)).

From now on, control sets of the system on projective space are studied using
the underlying linear structure which allows more precise statements. We begin by
considering projected generalized eigenspaces that satisfy a regularity condition.

PROPOSITION 6.7. Let K = R,C, t ∈ N, u ∈ intU t. Assume that for r ∈
|σ(Φu(t, 0))|, r > 0, the generalized eigenspace PGE(r, u) is regular. Then there
exists a control set D such that

PGE(r, u) ⊂ core(D) .(6.8)

Proof. This follows from Corollary 4.6, and the fact that for every precontrol set,
there is a control set containing it.

PROPOSITION 6.8. Let K = R,C, t ∈ N. Assume that γ : [0, 1] → U t is a
continuous path with an associated continuous path γ2 : [0, 1]→ R such that for every
τ ∈ [0, 1]

0 6= γ2(τ) ∈
∣∣σ(Φγ(τ)(t, 0))

∣∣(6.9)

and PGE(γ2(τ), γ(τ)) is regular. Then there exists a connected open precontrol set D
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contained in the core of a control set with⋃
τ∈[0,1]

PGE(γ2(τ), γ(τ)) ⊂ D .(6.10)

Proof. By Proposition 6.7, for every τ ∈ [0, 1], there exists an open precontrol
set V (τ) ⊃ PGE(γ2(τ), γ(τ)) which we may assume without loss of generality to be
connected and contained in the core of a control set. By the continuity properties
of the eigenprojections (see [13, Chapter II.8]), for every τ ∈ [0, 1] there exists an
ε(τ) > 0 such that PGE(γ2(τ ′), γ(τ ′)) ⊂ V (τ) if |τ − τ ′| < ε(τ). This shows that

D :=
⋃

τ∈[0,1]

V (τ)(6.11)

is connected and, by Lemma 3.10, is a precontrol set with the desired properties.
For the system (2.5) the core of a control set corresponds to regular pairs (ξ, u),

where ξ is an eigenvector of Φu(t, 0) by Proposition 6.5. For a forward accessible
system, even more is true. For any control set D with nonempty core we may find
universally regular controls u that generate an eigenspace whose projection lies in any
prescribed open subset of core(D).

PROPOSITION 6.9. Let K = R,C. Assume that system (2.5) is forward accessible.
For every control set D ⊂ Pn−1

K with core(D) 6= ∅ and every open set ∅ 6= V ⊂ core(D),
there exist t ∈ N, u ∈ U treg such that for some r ∈ |σ(Φu(t, 0))|

PE(r, u) ∩ V 6= ∅ , and PGE(r, u) ⊂ core(D) .(6.12)

Proof. Let ξ ∈ V . By Proposition 6.5, ξ ∈ Ô+
(ξ), and we can choose t ∈ N,

u ∈ intU t such that r(t; ξ, u) = n− 1 and

ξ = ξ(t; ξ, u) .(6.13)

Without loss of generality let t > t∗. Since the set of universally regular controls
is generic in intU t, and by Proposition 6.5, we can choose u1 ∈ U treg such that
η1 := ξ(t; ξ, u1) ∈ Ô+

t (ξ) ∩ Ô−t (ξ) ∩ V . Using the universal regularity of u1 and
applying the implicit function theorem it may be concluded that there exists an open
neighborhood V (ξ) ⊂ V such that for every η ∈ V (ξ) there exists a universally
regular u(η) ∈ U treg with η1 = ξ(t; η, u(η)). Furthermore, as η1 ∈ Ô

−
t (ξ), we may

choose u2 ∈ intU tinv such that η2 := ξ(t; η1, u2) ∈ V (ξ). Hence

η1 = ξ (2t; η1, (u2, u(η2))) ,(6.14)

and as u2 ∈ intU tinv and u(η2) ∈ U treg, it follows by Lemma 3.5 that (u2, u(η2)) is
universally regular. Now η1 is the projection of an eigenvector of Φ(u2,u(η2))(2t, 0),
which proves the first half of (6.12). To complete the proof note that by Proposition 6.7
there exists a control set D2 ⊃ PGE(r, u). But then D ∩D2 6= ∅, and hence D = D2
by Proposition 6.2 (i).

It should be noted that elements of the cores of control sets need not be eigen-
vectors corresponding to eigenvalues for universally regular controls even though it
holds that ξ ∈ Ô+

(ξ) ⇔ ξ ∈ core(D) for some control set D. This phenomenon will
be exhibited in the following example. The small sidestep necessary in the proof of
the previous Proposition 6.9 is thus explained.
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Example 6.10. Let K = R,C, and consider the map

A : K2 → K2×2 , A(a, b) =
[

1 a
b 0

]
.(6.15)

Define U := {[a , b]′ ∈ K2; |a| < 1, |b| < 1
4}. The system (2.5) given with these data is

forward accessible, which is most easily seen using the rank criterion of Proposition 3.6.
Define

V :=
{

[x1, x2]′ ∈ K2;x1 6= 0,
|x2|
|x1|

<
1
2

}
.(6.16)

It is easy to show that PV is an invariant subset of P1
K. Also, for the point ξ0 :=

P[1, 0]′ ∈ V and the control u0 = (0, 0) it may be seen that ξ0 = PA(u0)ξ0 and (ξ0, u0)
is a regular pair. Thus, by Proposition 6.5 there exists a control set D satisfying
ξ0 ∈ core(D), and by invariance of PV it holds that D ⊂ clPV . (In fact, D is the
unique invariant control set, but this will be shown later.) However, ξ0 does not belong
to the projection of a generalized eigenspace of a universally regular control. Note
that there is no generalized eigenspace of dimension 2 corresponding to a universally
regular control as otherwise P1

K would be contained in the core of a control set (by
Proposition 6.7), which contradicts the invariance of V . It is easy to see that if
detA(u) 6= 0 and ξ0 = PA(u)η0, then η0 = P[0, 1]′ /∈ clPV . As universal regularity
implies invertibility it follows that if ξ0 = ξ(t; ξ0, u) for some universally regular control
u then ξ(t− 1; ξ0, u) = η0, contradicting the invariance of PV .

This difference between the projected eigenspaces of universally regular controls
and the regions of complete controllability is unique for discrete systems and does not
occur in continuous time. Compare [20, Proposition 3.8]. The reason appears to be
the noninvertibility possible in discrete time.

PROPOSITION 6.11. Let K = R,C. Assume that system (2.5) is forward accessible.
If U = Uinv, then

ξ ∈ core(D)⇔ ∃t ∈ N, u ∈ U treg such that ξ = ξ(t; ξ, u) ,(6.17)

where D is some control set.
Proof. “⇐” This is clear from Proposition 6.5.
“⇒” As ξ ∈ core(D) by Proposition 6.6 (iii) it follows that core(D) ⊂ Ô+

(ξ).
Hence there exist t ∈ N, u ∈ U treg such that ξ(t; ξ, u) ∈ core(D). As core(D) ⊂ Ô−(ξ),
there exist s ∈ N, v ∈ intUs = intUsinv such that ξ = ξ(t+s; ξ, (u, v)). By Lemma 3.5,
(u, v) ∈ intU t+s is universally regular.

A slight modification of Example 6.10 will show that there indeed exist cases
where core(D) 6= intD for control sets D.

Example 6.12. Let K = R,C,

A : K2 → K2×2 , A(a, b) =
[

1 a3

b3 0

]
.(6.18)

Let U := {[a , b]′ ∈ K2; |a| < 1, |b| < (1
4 )

1
3 }. Note that with this definition the

system defined by (6.18) behaves no differently from the system in Example 6.10, in
the sense that for every point ξ the forward and backward orbits of the two systems
coincide, which is clear from the definitions of A and U . Hence there exists the
same control set D as in Example 6.10. But still the point ξ0 that was critical in



466 FABIAN WIRTH

the previous example now does not even belong to the core of D. For this we show
that Ô−(P[1, 0]′) = Ô−(P[0, 1]′). Let t ∈ N, u = (u(0), . . . , u(t − 1)) ∈ U t with
u(t− 1) = [a, 0]′, and x /∈ Ker Φu(t, 0). Then ξ(t;Px, u) = P[1, 0]′ = ξ0 but

Gt(x, u) =

[
∗
0

......

[
1 a3

0 0

]
· ∂Φu(t− 1, 0)x

∂u

∗ 0
0 0

]
,(6.19)

and hence rkGt(x, u) = 1 and (Px, u) is not a regular pair. If b 6= 0 and ξ0 = PA(a, b)x,
it follows that A(a, b) is invertible. As we have seen in Example 6.10, if detA(u) 6= 0
then any trajectory going to the point ξ0 must first go through η0 = P[0, 1]′ /∈ clO+(ξ)
for all ξ ∈ PV . So ξ0 /∈ Ô

+
(ξ0) and hence ξ0 ∈ intD \core(D).

It should also be noted that it cannot be concluded that the projection of an
arbitrary eigenspace corresponding to any control is contained in the closure of a
control set with nonempty interior. In fact, in the following example we show that
any point of the projective space may be a precontrol set, but the control sets with
nonempty interior do not cover the whole projective space. Note that the following
example is given here, as it fits well in our discussion of control sets and generalized
eigenspaces. We do, however, use a fact from the next section, namely, the existence
of a unique open and a unique invariant control set.

Example 6.13. Let K = R,

A : R2 → R2×2 , A(a, b) =
[

1 ab
a 1

]
.(6.20)

Define U =
{

[a, b]′ ∈ R2; 0 ≤ a ≤ 1
2 , 2 ≤ b ≤ 4

}
. Then, clearly, choosing a = 0 leads

to a transition matrix for which every ξ ∈ P1
R is a fixed point. Furthermore, b may be

chosen such that the rank condition (3.6) is satisfied. However, the controls for which
this is possible are not in the interior of U , and hence the statements made until now
do not infer that the system (2.5) is completely controllable on P1

R. In fact, for the
set

V := {[x1, x2]′ ∈ R2; 0 < x2 < x1} ,(6.21)

PV is an invariant set of system (2.5), and thus the invariant control set satisfies
C ⊂ clPV . On the other hand, we have that the open control set satisfies

C− ⊂ P{[x1, x2]′ ∈ R2; x1x2 ≤ 0},(6.22)

as for every t ∈ N, u ∈ intU t the matrix Φu(t, 0) has only strictly positive entries.
Thus, by the Perron–Frobenius theory for positive matrices, Φu(t, 0) does not have
two linearly independent nonnegative eigenvectors, and the eigenvalue corresponding
to the nonnegative eigendirection has algebraic multiplicity 1 (see [39, Chapter 15.3,
Theorem 1, and Exercise 11]). This implies that for any u ∈ U treg the evolution
operator Φu(t, 0) has an eigenvector x = [x1, x2]′ satisfying x1x2 ≤ 0 corresponding
to an eigenvalue of algebraic multiplicity 1, while the eigenvector corresponding to
the other eigenvalue of algebraic multiplicity 1 projects to PV . As for every control
set D with nonempty interior, there exists a universally regular control u such that
PGE(r, u) ⊂ D for a suitable value r by Proposition 6.9, it follows that the set
P{[x1, x2]′ ∈ R2; 0 < x1 < x2} does not intersect a control set with nonempty
interior, although every point in this set is a precontrol set.
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7. The maximal and minimal control sets. It is now shown that there exist
a unique invariant and a unique open control set. These two can be described in a
particularly easy fashion: they are the intersection of the closures of forward orbits,
respectively, in the interior of the intersection of closures of backward orbits. We call
these control sets the maximal, respectively, minimal, control sets. This terminology
is justified, as we may introduce a natural order on the set of all control sets on Pn−1

K ,
in which the maximal control set is the invariant one and the minimal is open.

THEOREM 7.1. Let K = R,C. Assume that system (2.5) is forward accessible.
Then

(i) there exists a unique invariant control set C ⊂ Pn−1
K , given by

C :=
⋂

ξ∈Pn−1
K

clO+(ξ);(7.1)

(ii) there exists a unique open control set C− ⊂ Pn−1
K , which satisfies

clC− = C∗ :=
⋂

ξ∈Pn−1
K

clO−(ξ) .(7.2)

Moreover, it holds that core(C−) = C−.
Proof. (i) To begin with, it has to be shown that C as defined by (7.1) is not empty.

Let u ∈ U t∗reg and |σ(Φu(t, 0))| = {r1, . . . , rν} with r1 < · · · < rν . By Proposition 6.7
there exists a control set D such that PGE(rν , u) ⊂ core(D). By Lemma 4.3 it holds
for all ξ /∈ P

⊕ν−1
j=1 GE(rj , u) that

ω+(ξ, u) ⊂ PGE(rν , u) .(7.3)

Note that the set of ξ for which (7.3) holds is generic in Pn−1
K . By forward accessibility

we may steer from any point into that generic set, as the interior of each forward orbit
is open, and it follows that PGE(rν , u) ∩ clO+(ξ) 6= ∅ for all ξ ∈ Pn−1

K . However,
we know that PGE(rν , u) ⊂ core(D) so that O+(ξ) ∩ core(D) 6= ∅, and therefore
core(D) ⊂ O+(ξ). In all, we have obtained that core(D) ⊂ C. By the definition of
C, it follows furthermore that D = C, for if ξ ∈ C, then core(D) ⊂ clO+(ξ), and
also ξ ∈ clO+(η) for all η ∈ D, so that ξ ∈ D. C is therefore a closed control set
with nonempty interior and invariant by Proposition 6.3. As C ⊂ clO+(η) for every
η ∈ Pn−1

K , there can be no other invariant control set.
(ii) Let D be the control set with PGE(r1, u) ⊂ core(D). Recall that by Proposi-

tion 5.4, Ô−(ξ) 6= ∅ for all ξ ∈ Pn−1
K . Hence for all ξ ∈ Pn−1

K , we may choose a control
v ∈ intU t

∗
and ξ2 ∈ Pn−1

K such that (ξ2, v) is a regular pair, ξ2 /∈ P
⊕ν

j=2GE(rj , u),
and ξ = ξ(t∗; ξ2, v). By Lemma 4.3 (iii) it follows that ω−(ξ2, u) ⊂ PGE(r1, u).
Thus there exists a ξ3 ∈ core(D) such that ξ3 ∈ Ô

−
(ξ). Since by Proposition 6.6

core(D) ⊂ Ô−(ξ) for ξ ∈ core(D), it follows that core(D) ⊂ Ô−(ξ) for all ξ ∈ Pn−1
K

and thus core(D) ⊂ C∗.
In particular, for η ∈ D it is obtained that core(D) ⊂ Ô−(η) and thus η ∈ core(D).

This implies that D is an open control set by Proposition 6.6 (i).
Finally, it has to be shown that clD = C∗. Let η ∈ C∗ \ clD. As η ∈ C∗ it

follows that η ∈ clO−(ξ) for all ξ ∈ D. Hence, in every neighborhood of η there
exists a ζ such that D ⊂ O+(ζ). On the other hand, D ⊂ Ô−(ζ) and thus ζ ∈ D, by
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maximality. This, however, implies that η ∈ clD, a contradiction. Thus clD = C∗

and hence C− = D is the only open control set contained in C∗.
It remains to show that there is no other open control set in Pn−1

K . If D is a
control set with core(D) 6= ∅, then by Proposition 6.5 there exists ξ ∈ core(D), t ∈ N,
u ∈ U t such that (ξ, u) is regular and ξ = ξ(t; ξ, u). By Proposition 6.9 we may assume
that u is universally regular. Let |σ(Φu(t, 0))| = {r1, . . . , rν}, r1 < · · · < rν . Thus
ξ ∈ PGE(ri, u) for some i > 1, for otherwise ξ ∈ C−, which may be seen using the
previous arguments. Now for η ∈ P(GE(ri, u)⊕GE(r1, u))\PGE(r1, u) it holds that
ω+(η, u) ⊂ PGE(ri, u) by Lemma 4.3 (iii). Thus ∂D ∩P(GE(ri, u)⊕GE(r1, u)) ⊂ D
and D is not open.

COROLLARY 7.2. Let K = R,C. Assume that system (2.5) is forward accessible.
If there exists exactly one control set D in Pn−1

K , then D = core(D) = Pn−1
K .

Proof. By Theorem 7.1 it follows that D = C = C− = core(C−). Thus D is open
and closed and not empty, which shows that D = core(D) = Pn−1

K .
Using the fact that the invariant control set is closed, we may prove the following

result on its connectedness.
PROPOSITION 7.3. Let K = R,C. Assume that (2.5) is forward accessible. Then

the invariant control set C is connected.
Proof. For each connected component Y of C and u ∈ Uinv the image PA(u)Y is

connected as the continuous image of a connected set. Since O+
1 (ξ) is also connected

for all ξ ∈ Y and clO+
1 (Y ) ⊂ C, it follows that there exists a connected component

Y ′ of C such that clO+
1 (Y ) ⊂ Y ′. Let u ∈ U t∗reg. For the connected component of C

satisfying PGE(rn, u) ⊂ Y , which exists as PGE(rn, u) is connected, it follows that
O+
t∗(Y ) ⊂ Y , but then C = clO+(Y ) ⊂

⋃t∗
s=1 clO+

s (Y ) ⊂ C, so that there are k ≤ t∗

connected components of C. Hence we may assume that the connected components
of C are ordered in such a way that

clO+
1 (Yi) ⊂ Yi+1, i = 1, . . . , k − 1 ,

and

clO+
1 (Yk) ⊂ Y1 .

Let v ∈ Ukt∗+1
reg . Then, by universal regularity of v,

PGE(rn, v) ⊂ core(C) ,

and for every i = 1, . . . , k it holds that

ξ ∈ Yi ⇒ ξ(kt∗ + 1; ξ, v) ∈ Yimod k+1 .

But if ξ ∈ PGE(rn, v) then clearly ξ(kt∗ + 1; ξ, v) ∈ PGE(rn, v) and PGE(rn, v) is
connected. So i = imod k + 1 and thus k = 1.

Remark 7.4. (i) The uniqueness of the invariant control set system (2.5) has
been shown in [32] for the case in which all system matrices A(u) are invertible. The
proof relies, however, on a theorem in [7], where it has to be assumed that the group
generated by {A(u);u ∈ U} is a Lie group. We have shown that in our case these
assumptions are not necessary.

(ii) From the proof of Theorem 7.1 it follows that for all t ≥ t∗, u ∈ U treg we have

PGE(r1(Φu(t, 0)), u) ⊂ C− ,(7.4)

PGE(rn(Φu(t, 0)), u) ⊂ C .(7.5)
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The last argument in the proof of Theorem 7.1 contains the fundamental idea on
what order is in a sense natural on the set of control sets.

Let D1, D2 be control sets in Pn−1
K for the system (2.5). We define

D1 ≤ D2 :⇔ there exist ξ ∈ D1, t ∈ N, u ∈ U t such that ξ(t; ξ, u) ∈ D2 .(7.6)

A priori, this defines only a partial order on the control sets. What is, however,
evident at this point is the following.

PROPOSITION 7.5. Let K = R,C. Assume that system (2.5) is forward accessible.
(i) C is the unique maximal control set with respect to the order “≤” on the control

sets.
(ii) C− is the unique minimal control set with respect to the order “≤” on the

control sets.
Proof. (i) is immediate from (7.1), while (ii) follows from (7.2).

8. Main control sets. In this section we give sufficient conditions for which
it is possible to recover exactly those results that are known in the continuous-time
case. Namely, the number of control sets with nonvoid interior is bounded by n, the
dimension of the state space; the control sets are completely ordered with respect to
the order defined in the previous section; and to each control set an index may be
assigned as the sum of the algebraic multiplicities of all the eigenvalues corresponding
to a universally regular u, whose generalized eigenspace is projected into the core of
that control set. Furthermore, in the complex or real invertible case, the control sets
are connected.

We begin with the following definition. For every t ∈ N, u ∈ U t, we will from
now on consider the set {r1, . . . , rn}, where ri ∈ |σ(Φu(t, 0))|, r1 ≤ · · · ≤ rn, and each
ri occurs as often as the sum of the algebraic multiplicities of those λ ∈ σ(Φu(t, 0))
with ri = |λ|. We define for i = 1, . . . , n

Qi(t) :=
⋃

u∈Utreg

PGE(ri, u), Qi :=
∞⋃
t=1

Qi(t).(8.1)

Furthermore, for a map A : Ũ → Rn×n, we introduce the following index, which is a
measure of what sets of rank deficient matrices separate A(intU). Define the sets

Ui := {u ∈ U ; dim KerA(u) ≤ i}(8.2)

and the singularity index

i(A,U) := min{i; intUi is pathwise connected} .(8.3)

Note that all the sets Ui are generic in U , as Ui ⊃ Uinv 6= ∅. Moreover, K = C
implies that i(A,U) = 0, as proper analytic subsets are nowhere separating in the
complex case; see [36, Proposition 7.4]. The significance of the indices i > i(A,U) is
explained in the following proposition.

PROPOSITION 8.1. Let K = R,C. Assume that (2.5) is forward accessible. If
i > i(A,U) then Qi is contained in a precontrol set.

Proof. Let u, v ∈ U treg, where we assume without loss of generality that the
length of the sequences is the same and that t ≥ t∗ + 1. Denote u = (u(0), u′) and
v = (v(0), v′) where u(0), v(0) ∈ intUinv and u′, v′ ∈ intU t−1

inv . Let γ1 : [0, 1] → intU
be a continuous path connecting u(0) and v(0). γ1 can be chosen piecewise analytic.
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Hence we may assume there is a finite number of points τj , j = 1, . . . , k, such that
det(A(γ1(τj))) = 0. By definition we may assume that dim KerA(γ1(τj)) ≤ i(A,U)
for j = 1, . . . , k. By Proposition 5.3, the set

Z :=
{
u ∈ U t−1

reg ; Φu(t− 1, 0) ImA(γ1(τj)) ∩KerA(γ1(τj)) = {0} for j = 1, . . . , k
}

(8.4)
is generic in intU t−1 since it is the finite intersection of generic sets. We may therefore
choose a continuous path γ2 : [0, 1] → intU t−1 such that γ2(0) = u′ and γ2(τ) ∈ Z
for all τ ∈ (0, 1]. Let ũ′ := γ2(1).

Now consider the path:

γ3 : [0, 2]→ intU t,(8.5)

γ3(τ) =
{

(u(0), γ2(τ)) , 0 ≤ τ ≤ 1,
(γ1(τ − 1), ũ′) , 1 ≤ τ ≤ 2.(8.6)

For 0 ≤ τ ≤ 1, γ3(τ) is universally regular as γ3(0) = u and γ2(τ) ∈ U t−1
reg for τ ∈ (0, 1].

Furthermore, we obtain for 1 ≤ τ ≤ 2 and i > i(A,U) that ri(Φγ3(τ)(t, 0)) > 0. This
is clear if det(A(γ1(τ − 1))) 6= 0. For τ = 1 + τj , j = 1, . . . , k, we have that

Φũ′(t− 1, 0) ImA(γ1(τj)) ∩KerA(γ1(τj)) = {0},

and hence for the eigenvalue 0 of Φũ′(t − 1, 0)A(γ1(τj)), algebraic and geometric
multiplicity coincide.

In all we have constructed a continuous path from u = (u(0), u′) to (v(0), ũ′) such
that ri > 0 along this path if i > i(A,U) and furthermore ũ′ ∈ Z can be chosen
arbitrarily close to u′. We wish to continue this procedure in an inductive manner.
Assume that for some 0 < j < t− 1 we have constructed a continuous path from u to
(v′(0), . . . , v′(j− 1), v(j), w(j+ 1), . . . , w(t− 1)) ∈ U treg, where (v′(0), . . . , v′(j− 1)) is
arbitrarily close to (v(0), . . . , v(j− 1)) and (w(j+ 1), . . . , w(t− 1)) is arbitrarily close
to (u(j + 1), . . . , u(t− 1)). Furthermore, along this path the ith entry in the ordered
spectrum is never 0 if i > i(A,U).

Since for all w′1 ∈ U t−j−2, w′2 ∈ U,w′3 ∈ U
j
inv the Jordan structures of

Φw′1(t− j − 2, 0)A(w′2)Φw′3(j + 1, 0)

and

Φw′3(j + 1, 0)Φw′1(t− j − 2, 0)A(w′2)

coincide by similarity, we may work as in the first part to construct a path with
the desired properties from (w(j + 1), w(j + 2), . . . , w(t− 1), v′(0), . . . , v′(j − 1), v(j))
to (v(j + 1), w̃), where w̃ may be chosen arbitrarily close to (w(j + 2), . . . , w(t −
1), v′(0), . . . , v′(j− 1), v(j)). Note that this rearrangement does not destroy universal
regularity by Lemma 3.5. By rearranging the sequence in the original order, we obtain
the desired path in the jth step.

Continuing this procedure we obtain a continuous path γ4 from u to ṽ, where ṽ
may be chosen arbitrarily close to v. As v ∈ U treg, the path may be assumed to go
from u to v.

By construction, ri(Φγ4(τ)(t, 0)) > 0 along this path if i > i(A,U). Now consider
the continuous paths

γ5, γ6 : [0, 1]→ intU t,(8.7)
γ5(τ) = (γ4(τ), u),(8.8)
γ6(τ) = (γ4(1− τ), v)(8.9)
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connecting (u, u) with (v, u) and (u, v) with (v, v), respectively. As u and v are
universally regular, we have that for i > i(A,U) and all τ ∈ [0, 1] the sets

PGE(ri(τ), γ5(τ)), PGE(ri(τ), γ6(τ))(8.10)

are regular. Hence each of the sets⋃
τ∈[0,1]

PGE(ri(τ), γ5(τ)) ,(8.11)

⋃
τ∈[0,1]

PGE(ri(τ), γ6(τ))(8.12)

is contained in an open precontrol set by Proposition 6.8. Furthermore, it holds that

PGE(ri, (v, u)) = PΦv(t, 0)GE(ri, (u, v)) ,(8.13)

which is clear by the relation Φ(u,v)(2t, 0) = Φv(t, 0)Φ(v,u)(2t, 0)Φv(t, 0)−1. By sym-
metry, we obtain furthermore that

PGE(ri, (u, v)) = PΦu(t, 0)GE(ri, (v, u)).(8.14)

Thus it may be concluded that⋃
τ∈[0,1]

PGE(ri(τ), γ5(τ)) ∪
⋃

τ∈[0,1]

PGE(ri(τ), γ6(τ))(8.15)

is contained in a precontrol set. The proof is completed by fixing one universally
regular control and noting that we may apply the procedure of this proof for a path
to any other universally regular control.

Remark 8.2. In the preceding theorem we did not make a statement about con-
nectedness. In Example 6.12, in the case K = R, we have seen a system where indeed
the core of the invariant control set C is not connected. On the other hand, we know
by Proposition 6.9 and by the fact that Q1 is contained in the open control set C−

that for every connected component W of core(C) it holds that Q2 ∩W 6= ∅. Note
that in this example the index i(A,U) = 1 as rkA(u) ≥ 1 for all u ∈ U , and the
controls ( 1

2 ,−ε) ( 1
2 , ε) can only be connected through a point of the form (a, 0) which

leads to a rank drop.
The following statement includes in particular the case of real invertible and

complex systems.
PROPOSITION 8.3. Let K = R,C. Assume that (2.5) is forward accessible. If

i(A,U) = 0, then for each i = 1, . . . , n, the set Qi is contained in a connected compo-
nent of core(D) for some control set D.

Proof. Fix u1, u2 ∈ U treg (where again, without loss of generality, the length of the
control sequences is the same) and let γ : [0, 1]→ intU tinv be a continuous connecting
path. Such a path exists as intU tinv is connected, but there may be τ ∈ [0, 1] such
that γ(τ) is not universally regular. Then the path

γ2 : [0, 2]→ intU2t,(8.16)

γ2(τ) =
{

(u1, γ(τ)), 0 ≤ τ ≤ 1,
(γ(τ − 1), u2), 1 ≤ τ ≤ 2,(8.17)

is a continuous path connecting (u1, u1) and (u2, u2) in intU2t. By Lemma 3.5, the
invertibility of A(γ(τ)) and the universal regularity of u1, u2, it follows furthermore
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that γ2(τ) is universally regular for all τ ∈ [0, 2]. The assertion now follows due to
Proposition 6.8.

THEOREM 8.4. Let K = R,C. Assume that (2.5) is forward accessible and that
i(A,U) ≤ 1. Then the following statements hold.

(i) The number κ of control sets D1, . . . , Dκ with nonempty interior satisfies

1 ≤ κ ≤ n .(8.18)

(ii) For every t > 0, u ∈ U treg, r ∈ |σ(Φu(t, 0))| there exists a control set Di,
1 ≤ i ≤ κ, such that

PGE(r, u) ⊂ core(Di) .(8.19)

(iii) The core of the control sets D1, . . . , Dκ consists of exactly those elements
ξ ∈ Pn−1

K which are eigenvectors to a nonzero eigenvalue of some Φu(t, 0) where (ξ, u)
is a regular pair. If U = Uinv the control may be chosen to be universally regular.

(iv) For every t > 0, u ∈ U t, r ∈ |σ(Φu(t, 0))| there exists a j ∈ {1, . . . , κ} with
PGE(r, u) ∩ clDj 6= ∅. Also, for every t ∈ N, u ∈ U t, and every j = 1, . . . , κ, there
exists an r ∈ |σ(Φu(t, 0))| with PGE(r, u) ∩ clDj 6= ∅.

Proof.
(i) Let D be a control set with core(D) 6= ∅. By Proposition 6.9 there exists

an i ∈ {1, . . . , n} such that Qi ∩ D 6= ∅. If i = 1 then Qi is contained in a
control set by Remark 7.4 (ii). Using Proposition 8.1 it follows that Qi ⊂ D.
Thus the number of control sets with nonempty interior is bounded by n, the
number of the sets Qi.

(ii) This follows from Corollary 4.6 and (i).
(iii) This follows from Propositions 6.5 and 6.11.
(iv) The statement is clear for u ∈ U treg. If t < t∗ choose l such that lt ≥ t∗

and consider the control (u)l. If t ≥ t∗ and u /∈ U treg by genericity of the
universally regular controls, there exists a sequence (uk)k∈N ⊂ U treg with
limk→∞ uk = u. Using again the continuity properties of the eigenprojec-
tions (Chapter II.8 in [13]) it follows that for ri ∈ |σ(Φu(t, 0))| it holds that
PGE(ri, u) ∩ clQi 6= ∅. This implies the assertion.

It has been shown that under the assumption of the previous theorem for every
i ∈ {1, . . . , n}, there exists a control set D such that Qi ⊂ D. From now on, the
following terminology is used.

DEFINITION 8.5 (main control set). Let K = R,C. Assume that (2.5) is forward
accessible. A control set D is called main control set if for every index 1 ≤ i ≤ n it
holds that

Qi ∩D 6= ∅ ⇒ Qi ⊂ D .

The result of the previous theorem may then be paraphrased by saying that in
the case where i(A,U) ≤ 1, i.e., in particular, in the complex or real invertible case,
the only control sets with nonempty core are main control sets. Let us now examine
further properties of main control sets. Recall that n(λ, u) denotes the dimension of
the generalized eigenspace of the eigenvalue λ of Φu(t, 0).

THEOREM 8.6. Let K = R,C. Assume that (2.5) is forward accessible. Then the
following holds.

(i) If i(A,U) = 0 then the core of every main control set is connected.
(ii) The main control sets are completely ordered with respect to the order “≤.”
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(iii) For each main control set D the number

m(D) =
∑

PGE(λ,u)⊂core(D)

n(λ, u)(8.20)

is independent of u ∈ U treg and t ∈ N.
Proof.
(i) Let D be a main control set. For any open set W ⊂ core(D) there exists

an i such that W ∩ Qi 6= ∅ by Proposition 6.9. As the sets Qi are contained in
connected components of the core by Proposition 8.3, it is sufficient to show the
following. If there exists i, j ∈ {1, . . . , n}, i 6= j, such that Qi, Qj ⊂ D, then there
exists a 1 ≤ k ≤ n such that Qk ⊂ D, Qi ∩Qk 6= ∅, and Qj ∩Qk 6= ∅.

Let ξ ∈ Qi, η ∈ Qj . Hence there exist t, s ∈ N, u ∈ U treg, v ∈ Usreg such that

η = ξ(t; ξ, u) ,(8.21)
ξ = ξ(s; η, v) .(8.22)

(Indeed, if ξ ∈ PGE(ri, u′) for u′ ∈ U t
′

reg and ξ = ξ(t′; ξ′, u′), then by the implicit
function theorem there is an open neighborhood of ξ′ that can be steered to ξ with
universally regular controls. Into this neighborhood we can steer from η using an
invertible control. A concatenation yields the desired control.)

Now (v, u), (u, v) ∈ U t+sreg . Furthermore, as σ(Φv(s, 0) Φu(t, 0)) = σ(Φu(t, 0) Φv(s, 0))
it follows that there exists a λ ∈ C∗ such that

ξ ∈ PGE(λ, (v, u))(8.23)

and

η ∈ PGE(λ, (u, v)) .(8.24)

If |λ| = rk(Φ(u,v)(s + t, 0)) = rk(Φ(v,u)(s + t, 0)), it follows that ξ, η ∈ Qk. Hence
Qk ⊂ Di and Qi ∪Qj ∪Qk is contained in a connected component of the core of D.

(ii) Let D1, D2 be two main control sets. Then there exists Qi ⊂ D1, Qj ⊂ D2.
Let us assume that i ≤ j. Then we claim that D1 ≤ D2. Indeed, let u ∈ U t∗reg and
ξ ∈ P(GE(ri, u)⊕GE(rj , u)). As ri ≤ rj it follows that

ω+(ξ, u) ⊂
{
PGE(ri, u) if ξ ∈ PGE(ri, u),
PGE(rj , u) otherwise.(8.25)

As PGE(ri, u) ⊂ core(D1) there exists η ∈ D1 such that ω+(η, u) ⊂ core(D2). This
proves the assertion.

(iii) It is clear that

m(D) = #{1 ≤ i ≤ n; Qi ⊂ D} ,(8.26)

which is independent of u ∈ U treg, t ∈ N.
As a result of Theorem 8.6 the following definition is straightforward.
DEFINITION 8.7 (index of a main control set). Assume that (2.5) is forward

accessible. For a main control set D ⊂ Pn−1
K the number m(D) is called the index of

the control set D.
It remains to analyze the case where i(A,U) > 1. By the discussion up to this

point it is clear that for i = 1, n and i > i(A,U), there exists a main control set Di
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such that Qi ⊂ Di . For the remainder of the indices the question of whether there
exists a unique control set with this property must for the moment be left unresolved.

To summarize, we have obtained the following picture of the control structure of
the system on projective space. For a map A and a set of admissible controls U such
that the system on Pn−1

K is forward accessible and i(A,U) ≤ 1, there exists a sequence
of indices i1, . . . , iκ, with

∑κ
j=1 ij = n.

To each index ij there exists a control set Dj such that m(Dj) = ij . More
specifically, it is shown in [56] that if we write

µj =
j∑
l=1

il

for j = 1, . . . , κ, then

µj⋃
i=µj−1+1

Qi j core(Dj),

where equality holds if U = Uinv. So the numbers from 1 to n are partitioned into κ
noninterlacing subsequences which represent the indices i such that Qi ⊂ core(Dj):

1, . . . , µ1︸ ︷︷ ︸
D1

, µ1 + 1, . . . , µ2︸ ︷︷ ︸
D2

, µ2 + 1, . . .︸ ︷︷ ︸
. . . . . .

, . . . , . . . , µκ−1︸ ︷︷ ︸
. . . . . .

, µκ−1 + 1, . . . , n︸ ︷︷ ︸
Dκ

.

The order between the main control sets is simply reflected in the order of the subse-
quences. In case there are control sets with nonempty core that are not main control
sets, this can be extended in a natural way by considering indices that do not corre-
spond to main control sets but to control set clusters; see [53].

With this notation we may formulate the following invariance principle which
also motivates the interpretation of control sets and their indices as an extension of
eigenspaces and their dimension. For a proof, we refer to [53] or [56].

THEOREM 8.8. Let K = R,C and assume that (2.5) is forward accessible. For
u ∈ UN define d(u) := maxt∈N dim ker Φu(t, 0). Let µ1, . . . , µκ be the indices for the
control set structure as described above.

(i) For every main control set Dj with µj−1 > d(u), there exists a linear subspace
Xj(u) satisfying

dimXj(u) = m(Dj) = µj − µj−1 ,

for all t ∈ N it holds that PΦu(t, 0)Xj(u) ⊂ clDj .

(ii) If d(u) > 0 and a main control set Dj exists such that µj−1 < d(u) < µj then
there exists a linear subspace Xj(u) satisfying

dimXj(u) = µj − d(u) ,

for all t ∈ N it holds that PΦu(t, 0)Xj(u) ⊂ clDj .

9. Characteristic exponents. Up to now we have described the control struc-
ture of a system on projective space. With the insight that has been gained, let us
now discuss properties of the set of characteristic exponents that may be deduced
from our knowledge about the control sets.
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For systems of the form (2.2) let λ(x0, u) denote the Lyapunov exponent corre-
sponding to the initial value (0, x0) ∈ N×Kn and the sequence A(u(·)) ∈ `∞(N,Kn×n)
determined by u ∈ UN, i.e. the exponential growth rate of the corresponding solution:

λ(x0, u) = lim sup
t→∞

1
t

log ‖Φu(t, 0)x0‖,

while β(u) denotes the Bohl exponent determined by u ∈ UN:

β(u) = lim sup
s,t−s→∞

1
t− s log ‖Φu(t, s)‖ .

Note that it is sufficient to study Lyapunov exponents corresponding to the initial
time 0, as control sequences may be shifted; i.e., the Lyapunov exponent to the initial
value (t, xt) and the control sequence u ∈ UN may be recaptured by studying the
initial value (0, xt) and the control sequence v ∈ UN defined by v(s) = u(s+ t). It is
known that in general maxx0 6=0 λ(x0, u) ≤ β(u) where strict inequality is possible; see
[24].

Floquet exponents are the Lyapunov exponents corresponding to periodic se-
quences u ∈ UN. For t ∈ N, u ∈ U t it is easy to see that the set of Floquet exponents
determined by the t-periodic continuation of u is given by

σFl(u) :=
{

1
t

log r; r ∈ |σ(Φu(t, 0))|
}
,(9.1)

where we continue to use the convention log 0 = −∞. For a system of the form
(2.2) determined by the map A and the set of admissible controls U , the Lyapunov
spectrum is defined as the union

ΣLy(A,U) := {λ(x0, u) ; x0 ∈ Kn\{0}, u ∈ UN} .(9.2)

The Floquet spectrum of (2.2) is defined by

ΣFl(A,U) :=
⋃

t≥1,u∈Ut
σFl(u).(9.3)

Furthermore, we define

ΣFl,i(A,U) :=
{

1
t

log ri(Φu(t, 0)); t ≥ 1 , u ∈ U t
}
.(9.4)

Recall that PGE(r, u) is called regular if u = (u1, u2) and (ξ, u2) is a regular pair for
all ξ ∈ PΦu1(t1, 0)GE(r, u). For a control set D with nonempty core we define the
Floquet spectrum of D to be

ΣFl(D) :=
⋃

t≥1,u∈Ut

{
1
t

log r; r ∈ |σ(Φu(t, 0))|, PGE(r, u) ⊂ core(D)

and PGE(r, u) is regular
}
.(9.5)

Finally, we consider the Bohl spectrum of (2.2) defined as the set of all Bohl exponents
the system can generate:

ΣBo(A,U) := {β(u);u ∈ UN} .(9.6)
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Let us begin by explaining how to obtain the Lyapunov exponent λ(x0, u) from the
trajectory ξ(·;Px0, u) of the projected system. For ξ ∈ Pn−1

K , u ∈ U(ξ) define

q(ξ, u) := log
‖A(u)x‖
‖x‖ , where x 6= 0, Px = ξ.(9.7)

This is well defined, as multiplication of x with a nonzero scalar does not alter the
value of q(ξ, u). For ξ ∈ Pn−1

K , t ∈ N, u ∈ U t(ξ) define

J(t; ξ, u) =
t−1∑
s=0

q(ξ(s; ξ, u), u(s)).(9.8)

Then we obtain the following expression for Lyapunov exponents.
LEMMA 9.1. Let K = R,C. For x0 ∈ Kn \ {0}, u ∈ UN it holds that

λ(x0, u) =
{

lim supt→∞
1
t J(t;Px0, u) if u ∈ UN(x0),
−∞ otherwise.(9.9)

Proof. This can be shown by a straightforward calculation.
The previous lemma shows that we may speak of the Lyapunov exponent corre-

sponding to (ξ0, u) ∈ Pn−1
K × UN, which we denote by λ(ξ0, u).

10. The Floquet spectrum. The Floquet spectrum is closely related to the
structure of the control sets examined up to now. In order to explore this relationship
we need a controllability property in the cores of control sets. Let K = R,C, and
consider system (2.5) on Pn−1

K . Consider the function

h : Pn−1
K × Pn−1

K → N ∪ {∞},(10.1)

h(ξ, η) := min{t ∈ N; there is a u ∈ U t such that ξ(t; ξ, u) = η} ,

where min ∅ =∞.
The previous definition is the discrete-time analogue of the first-time hitting map,

as defined, for instance, in [17], [18]. Since we treat noninvertible systems as well, it
is important for us to obtain information not only on the time that elapses to steer
from ξ to η, but also on the “cost” incurred in doing so. For the projected system
(2.5) and the function q interpreted as a cost, |q(ξ, u)| may be arbitrarily large if u
is chosen such that A(u) is almost singular. In analogy to the first-time hitting map,
we define the minimal absolute cost map by

H : M ×M → R+ ∪ {∞},(10.2)

H(ξ, η) := inf{max
1≤s≤t

|J(s; ξ, u)|; t ∈ N; u ∈ U t such that ξ(t; ξ, u) = η} ,

where inf ∅ =∞. The essential point is that both these values may be simultaneously
bounded if one tries to reach a compact subset of the core of a control set.

LEMMA 10.1. Let K = R,C and assume that system (2.5) is forward accessible.
Let D ⊂ Pn−1

K be a control set. Assume there are two nonvoid compact sets K1,K2
with K1 ⊂ O−(D) and K2 ⊂ core(D). Then the following statements hold.

(i) There are constants h ∈ N, H ∈ R+ such that

h(ξ, η) ≤ h for all ξ ∈ K1, η ∈ K2 ,(10.3)

H(ξ, η) ≤ H for all ξ ∈ K1, η ∈ K2 .(10.4)
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(ii) If K2 = PGE(r, u) for some t ∈ N, u ∈ U treg, and r ∈ |σ(Φu(t, 0))|, then h,
H may be chosen such that for all ξ ∈ K1, η ∈ K2 there exists v ∈ U treg with

η = ξ(t; ξ, v),(10.5)
t ≤ h,(10.6)

max
1≤s≤t

|J(s; ξ, v)| ≤ H.(10.7)

Proof. (i) Let ξ ∈ K1, η ∈ K2. Choose any point ζ ∈ core(D) ∩ Ô+
(ξ), which is

possible by Lemma 3.8 (i) and Proposition 6.6 (iii). Thus there exist u1 ∈ intU t1(ξ)
such that ζ = ξ(t1; ξ, u1) and (ξ, u1) is a regular pair. By the implicit function
theorem there exist open neighborhoods V1 of ξ, W1 of u1, and a continuous function
w : V1 → W1 such that ζ = ξ(t1, ξ′, w(ξ′)) for every ξ′ ∈ V1. This shows that
h(ξ′, ζ) ≤ t1 for all ξ′ ∈ V1. Furthermore, by continuous dependence of J(s; ξ′, w(ξ′))
on ξ′, it may also be obtained that H(ξ′, ζ) ≤ H1 for some suitable constant H1 ∈ R
and all ξ′ ∈ V1, where possibly V1 has to be chosen to be smaller than the original
choice.

On the other hand, there exist t2 ∈ N, u2 ∈ intU t2(ζ) such that η = ξ(t2; ζ, u2)
and (ζ, u2) is a regular pair. By regularity, for any open neighborhood W2 of u2, the
set {ξ(t2; ζ, u′); u′ ∈W2} contains an open neighborhood V2 of η. Choosing W2 small
enough so that clW2 ⊂ intU t2(ζ) we see that h(ζ, η′) ≤ t2 for all η′ ∈ V2 and also
H(ζ, η′) ≤ H2 for all η′ ∈ V2 and some suitable constant H2.

In all we have obtained that

h(ξ′, η′) ≤ t1 + t2 for all ξ′ ∈ V1, η
′ ∈ V2

and

H(ξ′, η′) ≤ H1 +H2 for all ξ′ ∈ V1, η
′ ∈ V2.

The assertion now follows because we may choose a finite subcover of the open cover

{V1(ξ)× V2(η); ξ ∈ K1, η ∈ K2}

of the compact set K1 ×K2.
(ii) Let ξ ∈ K1, η ∈ K2. Choose ζ ′ such that ξ(t; ζ ′, u) = η. As u is universally

regular, there exists an open neighborhood V of ζ ′, V ⊂ core(D), such that for every
ζ ′′ ∈ V there exists u(ζ ′′) ∈ U treg with η = ξ(t; ζ ′′, u(ζ ′′)). As ζ ′ ∈ core(D) there
exists t1 ∈ N, u1 ∈ intU t1inv such that ζ := ξ(t1; ξ, u1) ∈ V . Let t2 = t, u2 = u(ζ);
then η = ξ(t1 + t2; ξ, (u1, u2)), (u1, u2) is universally regular and we may proceed as
in the proof of part (i) by genericity of U t1inv and U t2reg.

With this result in hand we may start to examine the structure of the set of
Floquet exponents.

PROPOSITION 10.2. Let K = R,C. The set ΣFl,i(A,U) is an interval.
Proof. Consider the function

λi,t : U t → R ∪ {−∞},

u 7→ 1
t

log ri(Φu(t, 0)).

By Chapter II.8 in [13], λi,t is continuous and therefore λi,t(U t) is connected as the
continuous image of a connected set, and thus an interval. Now

ΣFl,i(A,U) =
∞⋃
t=1

λi,t(U t),
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and furthermore, for u ∈ U and all t ≥ 1

log |ri(A(u))| ∈ λi,t(U t),

as we may simply consider the sequence (u)t. Thus the assertion follows.
Thus, from the connectedness of the set of admissible controls, it is immediately

obtained that the Floquet spectrum is the union of at most n intervals. However, a
weak point of this statement is that it totally ignores the dynamics of the system.
The interplay between Floquet spectrum and dynamical behavior is studied from now
on.

PROPOSITION 10.3. Let K = R,C, and assume that (2.5) is forward accessible.
For a control set D with core(D) 6= ∅ the set cl ΣFl(D) is an interval.

Proof. By Proposition 6.9 there exist t ≥ t∗, u1 ∈ U treg, and λ1 ∈ σ(Φu1(t, 0))
such that PGE(λ1, u1) ⊂ core(D). It is sufficient to show that for any λ ∈ ΣFl(D)
the Floquet exponents of D are dense in the interval determined by λ and 1

t log |λ1|.
Let t2 ∈ N, u2 ∈ intU t2 be such that for some λ2 ∈ σ(Φu2(t2, 0)) we have that

PGE(λ2, u2) ⊂ core(D) and the eigenspace is regular. Without loss of generality we
may assume that t = t2 and |λ1| ≤ |λ2|.

By Lemma 10.1 there exist constants h, H such that for any ξ, η ∈ PE(λ1, u1) ∪
PE(λ2, u2) it holds that

h(ξ, η) ≤ h,

H(ξ, η) ≤ H,

where furthermore the corresponding control steering from ξ to η may be chosen to
be universally regular if η ∈ PE(λ1, u1). Choose ξj ∈ PE(λj , uj), j = 1, 2. Clearly, it
holds for j = 1, 2 that

λ(ξj , uj) =
1
t

log |λj |.

We wish to construct controls such that the corresponding Floquet exponents are
dense in the interval [ 1

t log |λ1|, 1
t log |λ2|]. To this end define the control uk,l,m, k, l,m ∈

N by

uk,l,m := ((u1)mk, v1,k,m, (u2)ml, v2,m,l) ,

where s1,k,m, s2,m,l ≤ h and v1,k,m ∈ intUs1,k,m is chosen such that

ξ(s1,k,m; ξ(mkt; ξ1, (u1)mk), v1,k,m) = ξ2,

and analogously, ξ(s2,l,m; ξ(mlt; ξ2, (u2)ml), v2,l,m) = ξ1 for a universally regular con-
trol v2,l,m, which is possible by Lemma 10.1(ii). We obtain in all that ξ1 = ξ(m(k +
l)t+s1,k,m+s2,k,m; ξ1, uk,l,m). Thus, for some r ∈ R, it holds that ξ1 ∈ PGE(r, uk,l,m).
This projected sum of generalized eigenspaces is regular by the universal regularity
of v2,l,m. The corresponding Floquet exponent is given by

λ(ξ1, uk,l,m) =
J(mkt; ξ1, (u1)mk) + J(mlt; ξ2, (u2)ml) +H(k, l,m)

m(k + l)t+ h(k, l,m)
,

where h(k, l,m) ≤ 2h and |H(k, l,m)| ≤ 2H for all k, l,m ∈ N. Thus for k, l ≥ 1 it
may be seen that

lim
m→∞

λ(ξ1, uk,l,m) = lim
m→∞

1
m(k + l)t

(J(mkt; ξ1, (u1)mk) + J(mlt; ξ2, (u2)ml))
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=
kλ(ξ1, u1) + lλ(ξ2, u2)

k + l
∈ cl ΣFl(D).

Clearly, the set of points that may be obtained by choosing different k, l ∈ N is dense
in [λ(ξ1, u1), λ(ξ2, u2)].

COROLLARY 10.4. Assume that (2.5) is forward accessible.
(i) If K = R,C, then for every control set D with core(D) 6= ∅ it holds that

cl ΣFl(D) = cl
⋃

t∈N,u∈Utreg

{
1
t

log |λ|; λ ∈ σ(Φu(t, 0)), PGE(λ, u) ⊂ core(D)
}
.

(10.8)
(ii) If K = R, then for every control set D with nonempty core,

cl ΣFl(D) = cl
⋃

t∈N,u∈Utreg

{
1
t

log |λ| ∈ ΣFl(D); λ ∈ σ(Φu(t, 0)) ∩ R
}
.(10.9)

Proof.
(i) If for some u ∈ U t and r ∈ |σ(Φu(t, 0))| it holds that PGE(r, u) ⊂ core(D),

then by the genericity of the universally regular controls and the continuity
of the eigenvalues and eigenprojections we may choose universally regular
controls whose eigenspaces project to the core of D and whose corresponding
Floquet exponents approximate the Floquet exponent 1

t log r arbitrarily close.
This shows the assertion.

(ii) Since the intermediate values λ(ξ1, uk,l,m) constructed in the previous proof
are in fact Floquet exponents corresponding to a real eigenvalue of
Φuk,l,m(m(k+ l)t+ s1,k,m+ s2,l,m, 0), it follows that it is sufficient to consider
real eigenvalues. Now we may argue as in part (i).

THEOREM 10.5. Let K = R,C and assume that (2.5) is forward accessible. Let κ
be equal to the number of main control sets.

(i) For each main control set Dj, j = 1, . . . , κ, the closed Floquet spectrum is an
interval. We define

cl ΣFL(Dj) =: [αj , βj ], αj ≤ βj .(10.10)

(ii) If all control sets with nonempty interior are main control sets, then

cl ΣFL(A,U) =
κ⋃
j=1

[αj , βj ] .(10.11)

(iii) If there exist control sets with nonempty interior that are not main control
sets, then there exists a constant β̄ ∈ R such that

cl ΣFL(A,U) =
κ⋃
j=1

[αj , βj ] ∪ [−∞, β̄] .(10.12)

(iv) If for two main control sets, Dj1 < Dj2 , then

αj1 ≤ αj2 ,(10.13)

βj1 ≤ βj2 .(10.14)
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(v) For j = 1, . . . , κ it holds that

# cl ΣFL(Dj) \ ΣFL(Dj) ≤ m(Dj) + 1 .(10.15)

Proof.
(i) This is clear by Proposition 10.3.
(ii) Let t ∈ N, u ∈ U t and consider σFl(u). As the Floquet spectrum of u

does not change if we consider (u)l for some l ≥ 1, we may assume that
t ≥ t∗. Hence, we may choose a sequence {uk}k∈N ⊂ U treg converging to u
for k tending to infinity. By the continuity of the spectrum it follows that
σFl(u) ⊂

⋃κ
j=1[αj , βj ].

(iii) For a control set D with nonempty interior that is not a main control set it
holds by Proposition 8.1 that inf ΣFl(D) = −∞. The assertion thus follows
from Proposition 10.3 and the argumentation of (ii).

(iv) If for two main control sets, Dj1 ≤ Dj2 , then Qi ⊂ Dj1 and Qj ⊂ Dj2

implies that i < j. Thus the assertion follows from the obvious inequalities
inf ΣFl,i(A,U) ≤ inf ΣFl,j(A,U) and sup ΣFl,i(A,U) ≤ sup ΣFl,j(A,U) if
i < j.

(v) Let t ∈ N and u, v ∈ U treg. Consider a continuous path γ : [0, 1]→ intU t with
γ(0) = u and γ(1) = v. Now consider the control (γ(τ), u). For every τ ∈ [0, 1]
and every i ∈ {1, . . . , n} it holds by the universal regularity of u that ri(τ) :=
ri(Φ(γ(τ),u)(2t, 0)) > 0 iff PGE(ri(τ), (γ(τ), u)) is regular. Thus it follows
for every i ∈ {1, . . . , n} that the interval [ri(Φ(u,u)(2t, 0)), ri(Φ(v,u)(2t, 0))] is
contained in ΣFl(D) for some control set D by Proposition 6.8. Since the
sets int ΣFl,i(A,U) are intervals and by cl ΣFl(Dj) =

⋃
Qi⊂Dj cl ΣFl,i(A,U),

it follows that the only points where the Floquet spectrum of a main control
set and its closure may differ are the endpoints of the intervals ΣFl,i(A,U).
Of these there are at most m(Dj) + 1, which shows the assertion.

It should be noted that the spectral intervals corresponding to different main
control sets may overlap, i.e., that the statement αi ≤ αj , βi ≤ βj in Theorem 10.5 in
no way excludes the possibility that βi > αj . In fact, it is even possible that αi = αj
and βi = βj for i 6= j. To illustrate this phenomenon consider the following example.

Example 10.6. Let K = R. Define

A : R4 −→ R2×2,

A(a, b, c, d) :=
[
a b
c d

]
.

Let Rn≥0 denote the set of vectors with nonnegative real entries. Define

U := {[a b c d] ∈ R4
≥0; a+ c ≤ 1; b+ d ≤ 1}.

Then A(U) is exactly the set of nonnegative matrices in R2×2 with 1-norm less than
or equal to 1. As the set of nonnegative vectors in R2 is invariant under A(u) for any
u ∈ U , i.e., A(u)R2

≥0 ⊂ R2
≥0, it follows that the invariant control set D2 = C ⊂ PR2

≥0.
Hence there also exists a minimal control set D1 = C− and no other control set D
with core(D) 6= ∅.

Clearly, α1 = α2 = −∞ as 0 ∈ A(U). Let us show also that β1 = β2 = 0. For
any t ≥ 1, u ∈ U t, it holds that

r(Φu(t, 0)) ≤ ‖Φu(t, 0)‖1 ≤ ‖A(u(t− 1))‖1 · . . . · ‖A(u(0))‖1 ≤ 1.
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Hence β1, β2 ≤ log 1 = 0. On the other hand, I ∈ A(U), and so 0 ∈ cl ΣFL(C),
0 ∈ cl ΣFL(C−), and β1, β2 ≥ 0.

In order to construct a two-dimensional example with identical spectral intervals
and U = Uinv, it is sufficient to replace the set U of the previous example by U ′ :=
{u ∈ U ; det(A(u)) > 0}. If we require that clA(U) consist of invertible matrices,
then it is still possible to make upper or lower boundaries of spectral intervals equal,
e.g., if the map A is replaced by u 7→ exp(A(u)). Note also that exp(A(U)) consists
of nonnegative matrices. Then, as in the preceding discussion, it is possible to obtain
that for this modified example, β1 = β2 = 1. However, this comes with the price that
α1 = −1 6= α2 = 0. It is not known whether identical spectral intervals to different
main control sets are possible if it is assumed that det(A(u)) 6= 0 for all u ∈ clU .

11. The Lyapunov and Bohl spectrums. Let us now discuss how the re-
sults on the Floquet spectrum can be related to the other spectra of characteristic
exponents. We begin by showing that the Lyapunov exponents corresponding to tra-
jectories that evolve in a specific way in the core of control sets are contained in the
closure of the associated Floquet interval. On the other hand, for every element of
the closure of the Floquet interval of a control set there exists a control sequence that
realizes this number as a Lyapunov exponent.

THEOREM 11.1. Let K = R,C, and assume that (2.5) is forward accessible.
(i) Let D be a control set, with core(D) 6= ∅. Assume that (ξ0, u) ∈ Pn−1

K ×UN(ξ0)
are given with ω+(ξ0, u) ⊂ D. If there exists a t0 ∈ N with ξ(t0; ξ0, u) ∈
core(D), then λ(ξ0, u) ∈ cl ΣFl(D).

(ii) Let D be a control set, with core(D) 6= ∅. Then for every λ ∈ cl ΣFl(D) there
exist ξ0 ∈ core(D) and u ∈ UN such that λ = λ(ξ, u). In particular, it holds
that

cl ΣFl(D) ⊂ ΣLy(A,U).(11.1)

Proof. (i) Without loss of generality we may assume that t0 = 0 as the Lyapunov
exponents satisfy λ(ξ0, u) = λ(ξ(t0; ξ0, u), u(t0 + ·)) where u(t0 + ·) = (u(t0), u(t0 +
1), . . .) is the shifted control. Let {tk}k∈N ⊂ N be an increasing sequence such that

lim
k→∞

1
tk
J(tk; ξ0, u) = λ(ξ0, u) .(11.2)

Taking a subsequence we may assume that

lim
k→∞

ξ(tk; ξ0, u) =: η ∈ ω+(ξ0, u) ⊂ D .(11.3)

As ξ0 ∈ core(D) it follows that η ∈ Ô−(ξ0), and hence there is a t ∈ N and a
neighborhood V (η) such that V (η) ⊂ Ô−t (ξ0). For k large enough it holds that
ξ(tk; ξ0, u) ∈ V (η). By continuous dependence of ξ(tk; ξ0, u) on u, the continuous
dependence of J(tk; ξ0, u) on u, and the genericity of U tkreg, we may choose controls
uk ∈ U tkreg such that ξ(tk; ξ0, uk) ∈ V (η) for all k large enough and

lim
k→∞

1
tk
J(tk; ξ0, uk) = λ(ξ0, u) .

We can therefore find a control vk ∈ intU t such that ξ0 = ξ(t; ξ(tk; ξ0, uk), vk).
The Floquet exponent corresponding to the control (uk, vk) and ξ0 is given by

λ(ξ0, (uk, vk)) =
1

tk + t
(J(tk; ξ0, uk) + J(t; ξ(tk; ξ0, uk), vk))(11.4)

= λ(ξ(tk; ξ0, uk), (vk, uk)) ∈ ΣFl(D) ,
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by the universal regularity of uk. Letting k → ∞ the assertion follows after noting
that Lemma 10.1 guarantees that the vk can be chosen so that |J(t; ξ(tk; ξ0, uk), vk)|
is bounded independently of k.

(ii) Let λ∗ ∈ cl ΣFl(D). Let uk ∈ U tkreg, k ∈ N, be a sequence of controls such that

lim
k→∞

1
tk

log |λk| = λ∗,(11.5)

where λk ∈ σ(Φ(tk, uk)) and PE(λk, uk) ⊂ core(D). By Corollary 10.4 such a sequence
exists and we may assume that λk ∈ R if K = R. For k ∈ N let ξk ∈ PE(λk, uk).
Therefore it holds for all l, k ∈ N that ξ(ltk; ξk, (uk)l) = ξk ∈ core(D). For all k ∈ N
there exists a control vk ∈ Usk such that ξk+1 = ξ(sk; ξk, vk). Let Hk be such that
|J(s; ξk, vk)| < Hk for 0 ≤ s ≤ sk. We construct a control that generates the Lyapunov
exponent λ∗ as follows: choose m1 ∈ N such that∣∣∣∣( m1t1

m1t1 + s1 + t2
− 1
)

1
t1

log |λ1|
∣∣∣∣ < 1

8
,(11.6)

H1

m1t1
<

1
8
,(11.7) ∣∣∣∣J(s; ξ2, u2)

m1t1

∣∣∣∣ < 1
8
, 0 ≤ s ≤ t2.(11.8)

Let u∗1 := ((u1)m1 , v1) ∈ UT1 and T1 := m1t1 + s1. Using (11.6) and (11.7) it may be
seen that for 0 ≤ s ≤ s1∣∣∣∣ 1

m1t1 + s
J(m1t1 + s; ξ1, u∗1)− 1

t1
log |λ1|

∣∣∣∣(11.9)

≤ 1
m1t1 + s

|J(s; ξ1, v1)|+
∣∣∣∣( m1t1
m1t1 + s

− 1
)

1
t1

log |λ1|
∣∣∣∣ < 1

4
.

Note also that by (11.8), we obtain as in (11.9) that for 0 ≤ s ≤ t2 and v = (u∗1, u2),∣∣∣∣ 1
T1 + s

J(T1 + s; ξ1, v)− 1
t1

log |λ1|
∣∣∣∣(11.10)

≤
∣∣∣∣ 1
T1 + s

J(m1t1; ξ1, v)− 1
t1

log |λ1|
∣∣∣∣+

H1

T1 + s
+
∣∣∣∣ 1
T1 + s

J(s; ξ2, u2)
∣∣∣∣ < 1

2
.

For k > 1 assume that we have constructed u∗k−1,mk−1, and Tk−1 such that for
−sk−1 ≤ s ≤ tk it holds that∣∣∣∣ 1

(Tk−1 + s)
J(Tk−1 + s; ξ1, (u∗k−1, uk))− 1

tk−1
log |λk−1|

∣∣∣∣ < 2−(k−1) .(11.11)

Choose mk ∈ N such that∣∣∣∣ 1
Tk−1 +mktk

J(Tk−1; ξ1, u∗k−1)
∣∣∣∣ < 2−(k+3) ,(11.12) ∣∣∣∣( mktk

Tk−1 +mktk + sk + tk+1
− 1
)

1
tk

log |λk|
∣∣∣∣ < 2−(k+3) ,(11.13)

Hk

Tk−1 +mktk
< 2−(k+3) ,(11.14)
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∣∣∣∣J(s; ξk+1, uk+1)
mktk

∣∣∣∣ < 2−(k+2) , 0 ≤ s ≤ tk+1.(11.15)

Set u∗k := (u∗k−1, (uk)mk , vk) and Tk := Tk−1 +mktk + sk. For Tk−1 +mktk ≤ t ≤ Tk
we obtain with (11.12), (11.13), and (11.14) that∣∣∣∣1t J(t; ξ1, u∗k)− 1

tk
log |λk|

∣∣∣∣
≤
∣∣∣∣1t J(Tk−1; ξ1, u∗k−1)

∣∣∣∣+
∣∣∣∣(mktk

t
− 1
)

1
tk

log |λk|
∣∣∣∣+

1
t
|J(t− Tk−1 −mktk; ξk, vk)|

< 2−(k+3) + 2−(k+3) + 2−(k+3) < 2−(k+1) .

Analogously to (11.10), it may be seen from (11.13) and (11.15) that for 0 ≤ s ≤ tk+1
and v = (u∗k, uk+1), ∣∣∣∣ 1

Tk + s
J(Tk + s; ξ1, v)− 1

tk
log |λk|

∣∣∣∣ < 2−k .(11.16)

For the control u∗ that is recursively defined via u∗[0,Tk] = u∗k we claim that

λ(ξ1, u∗) = lim
k→∞

1
tk

log |λk| = λ∗ .(11.17)

We have shown that for k > 1 and Tk−1 +mktk ≤ t ≤ Tk + tk+1, it holds that∣∣∣∣1t J(t; ξ1, u∗)−
1
tk

log |λk|
∣∣∣∣ < 2−k.

Thus our claim follows if we can show that for t = Tk−1, . . . , Tk−1 + (mk − 1)tk the
following relation holds:∣∣∣∣1t J(t; ξ1, u∗k)− 1

tk
log |λk|

∣∣∣∣ ≥ ∣∣∣∣ 1
t+ tk

J(t+ tk; ξ1, u∗k)− 1
tk

log |λk|
∣∣∣∣ ,(11.18)

because this means that the sequence behaves in a monotonic way, at least if viewed
at every tkth step. For l = 0, . . . ,mk − 1 and t = Tk−1 + ltk this is clear by∣∣∣∣1t J(t; ξ1, u∗k)− 1

tk
log |λk|

∣∣∣∣ =
∣∣∣∣1t (J(Tk−1; ξ1, u∗k) + l log |λk|)−

1
tk

log |λk|
∣∣∣∣

=
1
t

∣∣∣∣J(Tk−1; ξ1, u∗k)− Tk−1

tk
log |λk|

∣∣∣∣ .
The other cases can be treated using the same argument, with the modification that
the time from which periodicity is used is not Tk−1 but Tk−1+s for some 0 ≤ s ≤ tk−1.
This proves the assertion.

A further question of interest, especially if stabilization and robust stability ques-
tions are considered, concerns the lower and upper bounds of the spectral sets that
we have defined. For a general discrete inclusion given by a bounded set Σ ⊂ Kn×n
and

x(t+ 1) ∈ {Ax(t) ; A ∈ Σ} , t ∈ N,(11.19)

this has been studied in [8], [15], [38], [27]. In particular, the latter three references
study the relation between the generalized spectral radius

ρ̄(Σ) := lim sup
t→∞

ρ̄t(Σ)1/t ,
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where

ρ̄t(Σ) := sup{r(At−1 · . . . ·A0);As ∈ Σ, s = 0, . . . , t− 1},

and the joint spectral radius

ρ̂(Σ) := lim sup
t→∞

ρ̂t(Σ)1/t ,

where

ρ̂t(Σ) := sup{‖At−1 · . . . ·A0‖;As ∈ Σ, s = 0, . . . , t− 1} .

Theorem IV in [15] states that for every bounded set Σ we have ρ̄(Σ) = ρ̂(Σ). Al-
though Berger and Wang restrict themselves to the real case, it is clear that they also
prove the complex case, which may be seen via identification of Cn×n with R2n×2n.
Note that these definitions correspond to our definitions but for the fact that we have
introduced the logarithm. Thus it is easy to see that

log(ρ̄(A(U))) = sup ΣFl(A,U)(11.20)

and

log(ρ̂(Σ)) = lim sup
t→∞

sup
u∈UN, ξ∈Pn−1

K

1
t
J(t; ξ, u) .(11.21)

We therefore immediately obtain the following corollaries, where we do not have
to make our usual forward accessibility assumption. In order to conform to our
previously introduced notation we will still think of the discrete inclusion to be given
by an analytic map A and a set U . Note, however, that if we drop Assumption 2.1,
then any bounded set of matrices may be represented in this way.

COROLLARY 11.2. Let K = R,C, and consider system (2.2). Assume that A(U)
is bounded. Then

sup ΣFl(A,U) = sup ΣLy(A,U) = sup ΣBo(A,U) = lim sup
t→∞

sup
u∈UN, ξ∈Pn−1

K

1
t
J(t; ξ, u) .

Using this result we can also prove the following statements on the infima of the
spectra.

PROPOSITION 11.3. Let K = R,C, and consider system (2.2). Assume that A(U)
is bounded. Then

inf ΣFl(A,U) = inf ΣLy(A,U) = lim inf
t→∞

inf
u∈UN, ξ∈Pn−1

K

1
t
J(t; ξ, u).(11.22)

Proof. Obviously, it holds that

inf ΣFL(A,U) ≥ inf ΣLy(A,U) ≥ lim inf
t→∞

inf
u∈UN, ξ∈Pn−1

K

1
t
J(t; ξ, u) .

If there exists a u ∈ clU such that det(A(u)) = 0 the claim is trivially true as both
infima are given by −∞. If this is not the case we may consider the time-reversed
system

x(t+ 1) = A(u(t))−1x(t), t ∈ N,
x(0) = x0 ∈ Kn,
u(t) ∈ U, t ∈ N.

(11.23)
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Denote the Floquet spectrum of the time-reversed system by Σ−Fl(A,U). It is imme-
diate that sup Σ−Fl(A,U) = − inf ΣFl(A,U). Note also that

inf
x∈Kn,‖x‖=1

log ‖Φu(t, 0)x‖ = − sup
x∈Kn,‖x‖=1

log ‖Φu(t, 0)−1x‖

and therefore

lim inf
t→∞

inf
u∈UN, ξ∈Pn−1

K

1
t
J(t; ξ, u) = − lim sup

t→∞
sup

u∈UN,ξ∈Pn−1
K

1
t
J−(t; ξ, u),

where J−(t; ξ, u) = log ‖Φu(t,0)−1x‖
‖x‖ for ξ = Px. The assertion now follows by applying

Corollary 11.2.
Barabanov [9] proved that to each discrete inclusion given by a bounded set of

matrices there exists a trajectory that realizes the maximal Lyapunov exponent. The
following statement brings this in relation to the control structure of system (2.5).

PROPOSITION 11.4. Let K = R,C, let Assumption 2.1 hold, and assume that
(2.5) is forward accessible. Then

(i) there exist u ∈ UN, ξ ∈ C such that λ(ξ, u) = β(u) = sup ΣLy(A,U);
(ii) there exist v ∈ UN, η ∈ C− such that λ(η, v) = inf ΣLy(A,U).
Proof. (i) (resp., (ii)) follows from Corollary 11.2 (resp., Proposition 11.3, Re-

mark 7.4(ii), and Theorem 11.1 (ii)).
If the finiteness conjecture holds as discussed by Lagarias and Wang [38], then

the previous result can be restated in terms of the Floquet spectrum; i.e., it would be
possible to realize maximal and minimal Floquet exponents via some periodic control
sequence u. This is the topic of ongoing research.

Let us also note that Gurvits [27] has shown that for discrete inclusions given
by finitely many matrices, the indices inf ΣFl,n(A,U) and inf ΣBo(A,U) coincide. It
remains to be investigated how this result may be carried over to our case.
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[20] F. COLONIUS AND W. KLIEMANN, Linear control semigroups acting on projective space, J.
Dynam. Differential Equations, 5 (1993), pp. 495–528.

[21] F. COLONIUS AND W. KLIEMANN, Maximal and minimal Lyapunov exponents of bilinear con-
trol systems, J. Differential Equations, 101 (1993), pp. 232–275.

[22] F. COLONIUS AND W. KLIEMANN, The Lyapunov spectrum of families of time varying matrices,
Trans. Amer. Math. Soc., 348 (1996), pp. 4389–4408.

[23] F. COLONIUS, W. KLIEMANN, AND S. KRULL, Stability and Stabilization of Linear Uncer-
tain Systems—A Lyapunov Exponents Approach, Report 372, Schwerpunktprogramm der
Deutschen Forschungsgemeinschaft “Anwendungsbezogene Optimierung und Steuerung,”
Universität Augsburg, Germany, 1992.

[24] J. L. DALECKII AND M. G. KREIN, Stability of Solutions of Differential Equations in Banach
Spaces, Transl. Math. Monographs 43, AMS, Providence, RI, 1974.
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Norm. Supérieure, 12 (1883), pp. 47–89.
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Abstract. In certain discrete event applications it may be desirable to find a particular con-
troller, within the set of acceptable controllers, which optimizes some quantitative performance
measure. In this paper we propose a theory of optimal control to meet such design requirements for
deterministic systems. The discrete event system (DES) is modeled by a formal language. Event
and cost functions are defined which induce costs on controlled system behavior. The event costs
associated with the system behavior can be reduced, in general, only by increasing the control costs.
Thus it is nontrivial to find the optimal amount of control to use, and the formulation captures the
fundamental tradeoff motivating classical optimal control. Results on the existence of minimally
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1. Introduction. This paper presents a new framework for the optimal control
of discrete event systems (DESs). The aim is to find methods to handle numerical
performance measures in the DES controller design process.

The most influential paradigm for DES control is the supervisory control the-
ory (SCT) suggested by Ramadge and Wonham [9, 8]. SCT makes certain system-
theoretic assumptions which are appropriate for DES control problems. SCT as devel-
oped in [8] partitions all possible DES behavior into legal or illegal, and then addresses
the problem of designing a DES controller that guarantees legal behavior. Here we
enrich this view by accepting that some legal behaviors are better than others. For
example, for a transaction submitted to a database management system (DBMS),
all commit times below a certain threshold may be legal, but a smaller commit time
is better. We propose numerical measures on the set of legal behaviors to capture
such distinctions. The new problem, then, is to produce a controller that is not only
legal but also “good” in the sense of the given numerical performance measures. We
present our various findings collectively as a theory of optimal control for discrete
event systems. It is our hope that this theory lays out the boundaries within which
future work on the performance improvement or performance tuning of specific DESs
can be attempted.

In the historical development of control theory, optimal control has been consid-
ered interesting only after the design and analysis of other control-theoretic concepts
such as controllability, stabilizability, etc. have attained some degree of maturity.
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These concepts are concerned with the design and analysis of controllers which are
feasible or tolerable by some general specification. In the field of DESs there is a
substantial body of literature on the design of controllers which will satisfy logical
specifications. The theory of discrete event dynamical systems has evolved to a point
where it is meaningful to study control methods that not only satisfy legality speci-
fications but also improve quantitative measures of performance. Relevant published
papers on the subject are Passino and Antsaklis [7], Kumar and Garg [6], and Sen-
gupta and Lafortune [11, 12, 14, 13]. The work of Brave and Heymann [2] on the
optimal attractor problem is also of interest.

Our view of the system, the controller, and their interaction is similar to SCT
[8, 16] in the following manner. We view a DES as a system that usually operates
with several concurrent processes. Each process may serve a different user or objec-
tive. A typical example is that of multiple transactions, reading and writing different
records running concurrently on a database. In general, the concurrent processes have
interdependencies, which suggest global level problems relating to correctness, con-
sistency, fairness, etc. SCT conceives of an object called the supervisor that enforces
correctness at the overall system level. We pose our problem in this setting of system
and supervisor; i.e., we wish to design supervisors that are both correct and optimal.
The supervisor acts by disabling events, where the events themselves are assumed to
be generated spontaneously, instantaneously, and asynchronously by the DES itself.
Since the demands and disturbances on DES are uncertain, the supervisor should be
minimally restrictive; i.e., it should allow the DES maximum freedom in its response.
It is not acceptable to prevent illegal behavior by preventing all behavior! The notion
of a minimally restrictive supervisor guaranteeing a legality specification is formalized
in [8] and computed in [16]. We adopt these assumptions on the role of the system
and the supervisor. We will address the issue of minimally restrictive supervisors that
improve quantitative performance measures.

We assume a formal language representation of a DES. The language is not neces-
sarily regular. The behavior of a DES is constituted from events. The set of possible
events is known as the alphabet (denoted Σ). In any given time line the DES executes
a sequence of events. Each sequence is assumed to be of finite length and is a string
in Σ∗, which represents the Kleene closure of Σ. The set of trajectories of the un-
controlled DES is represented by a set of strings, collectively referred to as the plant
language (denoted L ⊆ Σ∗). The language is prefix-closed. This is a very general
representation of a DES. Some strings in L are marked and these constitute a marked
language Lm ⊆ L. A marked string represents a properly completed behavior, i.e.,
one that fulfills control objectives. We assume the plant is nonblocking (L = L̄m) [4].
Of course, many DESs would exhibit blocking behaviors without supervision. Never-
theless the nonblocking plant assumption is made because the synthesis of supervisors
guaranteeing this property is well understood [8, 4]. Moreover, we require that any
controlled DES must also be nonblocking; i.e., the supervisor must ensure that for any
past there exists some future that accomplishes control objectives. Thus, we present
our problem as one of finding the optimal nonblocking supervisor given a nonblocking
plant. This innocuous requirement is actually extremely fundamental, since without
it the optimal solution to many problems is to have the system do nothing at all!

All performance measures are modeled by two functions that we call event and
control cost functions. In this paper we present one example to illustrate their use.
The event cost is associated with the execution of an event by the plant and the
control cost with the disabling of an event by the supervisor. These are the only
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two types of actions in an SCT framework. The event and control costs are used to
induce a cost on each string the system may generate. One part of this string cost is
the sum of the event costs associated with the events in the string. It represents the
energies and resources expended by the plant. The other part is the sum of the control
costs associated with the various events disabled by the supervisor after each prefix of
the string. It represents the energies and resources expended by the controller. The
cost associated with a single string lying in two different controlled sublanguages may
be different, since the supervisors will be different. The event and control costs are
found to be naturally antagonistic as in classical optimal control. It will be shown
that trying to reduce the event costs associated with a language by using control can
raise the control costs. The overall cost of a string in the language, being the sum of
the event and control costs, may increase. This could be undesirable, in which case
we have an optimization problem.

It is reasonable to expect that the optimal and legal supervisor synthesis problems
be related in the following manner. If a solution is optimal, then it should not allow
any illegal traces. Such a view implies that any optimal sublanguage lies within the
supremal controllable sublanguage of the legal language (assuming also that disabling
uncontrollable events entail infinite cost). Since the synthesis of the supremal con-
trollable sublanguage of a legal language is understood from [16], we will assume that
our plant language Lm is legal. If it is not, our problem can be posed on the supremal
controllable sublanguage of the legal language, i.e., (Lm ∩H)↑, where H is the legal
language. (Lm ∩ H)↑ can be computed as discussed in [16]. Thus the problem of
synthesizing an optimal legal supervisor for a regular language DES can be solved as
a two-step process. This paper provides the second step.

The prior literature is as follows. The work by Passino and Antsaklis [7] examines
optimal control of DESs. Unlike the paradigm of SCT, this is a forced event model
where the optimal controller drives the DES along the shortest path. The SCT notion
of designing a controller that is robust under a variety of disturbances and user de-
mands is lost in this work. Thus the representation of a supervisor that provides good
quantitative performance in an uncertain environment requires a more general con-
cept of optimality than that provided in [7]. Kumar and Garg [6] also study optimal
control of DESs. Theirs is a state-based formulation for DESs modeled by finite state
machines (FSMs). No intuition is provided into infinite state systems, though many
DESs (e.g., queuing systems) are infinite state systems without control protocols or
scheduling disciplines. We will study both finite and infinite state systems. However,
the control assumptions in [6] are consistent with the generality of the supervisory
control philosophy. The cost structure, which assumes payoff and control costs, is
interesting. Payoff costs are associated with the set of reachable states, and the con-
trol costs, with the disabling of a transition in an FSM. Disabling costs and payoffs
are incurred only once regardless of the number of times the state is visited. This is
often restrictive, since in most DESs the cost is an explicit function of the dynamic
behavior. We will also assume two cost functions, i.e., event costs and control costs,
though we relate them to the dynamic behavior in a way that is more like classical
optimal control. There are also a variety of interesting modeling and computational
issues associated with the control cost function that are exposed in this paper.

The work of Brave and Heymann [2] on the optimal attractor problem is also
relevant. They are concerned with the cost of keeping a DES within a given finite
state set. Event traces taking the system outside this set are priced, and the supervisor
disables events to return the DES to the designated state set as cheaply as possible.
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However, unlike [6], disabling is free. As mentioned earlier, we see the control cost
function as an important modeling tool that should not be ignored.

This paper presents results on the existence and computation of optimal con-
trollers. In Sengupta and Lafortune [12] we studied a similar problem for DES mod-
eled by finite vertex acyclic directed graphs. Here, the existence theory is developed
for DES represented by any formal language defined over a countable alphabet. The
computation theory is developed for DES represented by regular languages. Therefore
the problem treated in [12] is a special case of the problem studied here.

Section 2 states the problem mathematically and presents examples to illustrate
the formulation. Section 3 discusses the main existence and computational results.
Proofs of the existence results are presented in section 4. Some additional concepts,
required to prove the computational results, are introduced in section 5. The main
computability theorems are proved in the same section. Section 6 is an investigation
of polynomial-time controller synthesis for DES modeled by cyclic and acyclic FSMs.
We present a controller synthesis algorithm together with a proof of correctness and
complexity. An example is also included in the section to help the reader follow the
different steps in the computation. Section 7 is a concluding comment. An index of
notation is included as an appendix.

2. Mathematical formulation of the problem. To state the problem pre-
cisely it is necessary to define the plant, the supervisor, and the relationship between
them mathematically. We also define the objective function and the set of feasible
solutions.

As stated earlier, the uncontrolled system or plant is described by a language L
and a marked language Lm(L = L̄m), defined over an alphabet Σ = {σ1, σ2 . . .}. The
notation Σ∗ represents the Kleene closure of Σ, and ε represents the empty string.
The alphabet exhaustively represents the various events that can occur in the DES. It
is assumed that Σ = Σc ∪Σuc and Σc ∩Σuc = ∅; i.e., the alphabet is partitioned into
controllable and uncontrollable events. For a language A and string s ∈ Ā, we denote
the active set at s in A by ΣA(s) = {σ ∈ Σ : sσ ∈ Ā} and use A/s = {t ∈ Σ∗ : st ∈ A}
to denote the set of continuations of s in A. A/s is called the suffix language of s in
A. For two strings s and t the notation s ≤ t denotes that s is a prefix of t.

Our usage of the terms FSM and submachine of an FSM is as usual and is taken
from [8] and [4], respectively. A FSM G is a 5-tuple G = 〈Σ, Q, q0, Qm, δ〉, where
Σ is the alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, Qm ⊆
Q is a distinguished set of marked states, and δ : Σ × Q → Q is the transition
function. We also use the extended transition function δ∗ : Σ∗ × Q → Q, defined
in the usual way by composing the transition function δ(., .); i.e., δ∗(s, q) is defined
if and only if there exists a sequence of transitions s in G starting at q. A FSM
A = 〈ΣA, QA, q0A, QmA, δA〉 is a submachine of G if ΣA ⊆ Σ, QA ⊆ Q,QmA ⊆ Qm,
and wherever the transition function δA exists it is equal to the transition function
(δ(., .)) of G.

A few norms and projection functions are used for mathematical convenience.
For a string, the symbol ‖.‖ denotes the length of the string, and for a language,
‖.‖ denotes the number of equivalence classes. If L is regular, then ‖L‖ is finite and
known as the Myhill congruence index (refer to p. 65 of [5]) of L. It is assumed that
‖ε‖ = 0. Two projection functions denoted by p and P are defined on strings and
languages, respectively. For a string s, pj(s) represents the prefix of length j. For any
string, p0(.) = ε. For a language A, Pj(A) = {s ∈ A : ‖s‖ = j}; i.e., it is the set of all
strings of length j in A.
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A supervisor is a disabling control law. We clarify our usage of the terms control
law, controlled system, and controllability. The definitions are similar to those in
section (iv) of Ramadge and Wonham [9]. A control law π is a map π : Σ∗ −→ 2Σ.
It specifies the set of events allowed after a string. We use Π to denote the set of all
control laws. π together with a string s ∈ L̄m specifies a prefix-closed language in the
following manner.

DEFINITION 2.1 (language specified by a control law). For s ∈ L̄m and π ∈ Π
define

L(π, s) = {t = σ0 . . . σ‖t‖−1 ∈ Σ∗ : st ∈ L̄m, σi ∈ π(spi(t)), 0 ≤ i ≤ ‖t‖ − 1},
Lm(π, s) = L(π, s) ∩ Lm/s.

If s = ε, then we write L(π) or Lm(π).
Thus, for a control law π and plant Lm, the supervised system is L(π). Note that

it is possible to have π, π′ such that L(π, s) = L(π′, s). Obviously L(π, s) ⊆ Lm/s.
Lm(., .) denotes the marked language specified by the control law. The trajectories of
a controlled DES should constitute some nonblocking sublanguage of L. The following
definition is from [8]. For A ⊆ L, A is nonblocking iff A ∩ Lm = A. A control law
π is nonblocking if for all s ∈ L(π),L(π, s) = Lm(π, s). A nonblocking control law
generates a nonblocking language. Let Πnb denote the set of all nonblocking control
laws.

We wish to construct the optimal nonblocking supervised system. The set of
nonblocking control laws is equivalent to the set of Lm-closed sublanguages [8] of Lm
in the sense of the following proposition. The proposition also states that the control
laws can generate any prefix-closed sublanguage of Lm.

PROPOSITION 2.2. For the control laws defined, the following are true. Let t ∈
L̄m.

(i) ∀A ⊆ Lm/t, A prefix-closed ,∃π s.t. L(π, t) = A.
(ii) {Lm(π, t) : π ∈ Πnb} = {A ⊆ Lm/t : Ā ∩ Lm/t = A}.

The proofs are trivial and omitted. The condition Ā∩Lm/t = A is the Lm-closure
condition. It simply says that if a marked string is in A, then all marked prefixes of
the string are also in A. This is not a serious restriction for reasons explained after
defining the optimization problem. Our usage of controllability is standard and from
[9].

A sublanguage A ⊆ L̄m is controllable iff ĀΣuc ∩ L̄m ⊆ Ā.

As expected, our definitions have the property that a sublanguage is controllable iff
it can be specified by a control law that disables only controllable events. We next
propose the numerical measures required in our framework. We start by defining two
nonnegative real-valued functions

ce : Σ→ R+ ∪ {0},
cc : Σ→ R+ ∪ {0,∞}

on the alphabet. They are known as the event and control cost functions, respectively.
The event cost is incurred whenever the DES generates an event, and the control cost
is incurred whenever the supervisor disables an event. Note that we do not allow
infinite event costs. Infinite event costs are conceivably a good way of pricing illegal
strings. However, for reasons explained in the introduction, it is assumed that Lm is
a legal language. It is assumed that if σ ∈ Σuc then cc(σ) =∞. Thus uncontrollable
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events should not be disabled. We also denote the maximum and minimum values of
these functions by c̄e, c̄c and ce, cc, respectively. The event and control cost functions
are used to induce a cost on the trajectories of a supervised system.

DEFINITION 2.3 (string cost function). Let t ∈ L̄m be a past behavior and π be a
nonblocking control law. We define

(i) a one-stage cost function c̄ : L̄m × Π × Σ −→ R+ ∪ {0,∞} for an event
σ ∈ π(t) to be

c̄(t, π(t), σ) = ce(σ) +
∑

e′∈ΣLm (t)−π(t)

cc(e′);

(ii) string cost functions for a string s = σ0 . . . σ‖s‖−1 ∈ L(π, t) to be

c(t, π, s) =
j=‖s‖−1∑
j=0

c̄(tpj(s), π(tpj(s)), σj) + c̄(ts, π(ts), φ),

where φ is a stopping event having zero event cost. We also define for any s ∈ L(π, t),

ĉ(t, π, s) =
j=‖s‖−1∑
j=0

c̄(tpj(s), π(tpj(s)), σj);

i.e., the last term in c(., ., .) is left out.
Observe that the cost of a string is dependent upon the sublanguage in which

it lies, or in other words, it is influenced by the control law. The first part of the
one-stage cost function is an event cost. This part is independent of the control law
or sublanguage. The second part is the sum of the control costs associated with all
events that must be disabled after the string t is executed. This part is determined
by the control law. Thus the cost of a trajectory or string in a supervised system
is the sum of the event costs of the events in the string and the control costs of the
control actions taken by the supervisor during that trajectory. The term c̄(ts, π(ts), φ)
accounts for the termination cost. If the system stops with behavior ts ∈ Lm, there
is no event cost associated with the stopping but there may be control costs arising
from π(ts).

Two control laws can generate the same language. However, the costs remain
unaffected in the sense of the following proposition. It is stated without proof.

PROPOSITION 2.4. Let t ∈ L̄m and π, π′ ∈ Πnb be such that L(π, t) = L(π′, t) = A.
Then for all s ∈ A,

c(t, π, s) = c(t, π′, s).

Thus we can use the notation c(t, A, .), A ⊆ Lm/t, with the understanding that
A is generated by any one of the suitable control laws. The objective function is as
follows.

DEFINITION 2.5 (objective function). For a language A ⊆ Lm/t, t ∈ L̄m, the
objective function is

csup(A, t) = sup
s∈A/t

c(t, A, s).



494 RAJA SENGUPTA AND STÉPHANE LAFORTUNE

If the second argument in csup(., .) is ε, it will be omitted and we write csup(A).
This objective function costs a supervisor by the worst-case behavior it allows in the
face of uncertain demands and disturbances. Therefore this formulation is consistent
with the view that the supervisor will generate not one but any of a set of possible
behaviors. This is also a weaker notion of optimality than an average or expected
value criterion. However, since in DES control the supervisor is expected to interfere
as little as possible, the notion of interfering only in the worst case is appropriate.
Moreover, as our subsequent results show, this problem has useful and interesting
features.

2.1. The optimal control problem. The most general class of nonblocking
supervised systems possible is the set of systems represented by the nonblocking sub-
languages of the plant language. This set is the feasible space for the optimization
problem. Since L = L̄m, the set of nonblocking sublanguages of L is related to the
sublanguages of Lm by

{A ⊆ L : A = Ā, A ∩ Lm = A} = {Ām : Am ⊆ Lm}.

Thus a good description of the feasible space is the set of sublanguages of Lm.
The optimal control problem is to find a sublanguage Aom of Lm such that

csup(Aom) = min
Am⊆Lm

csup(Am) <∞.

Such an Aom is an optimal sublanguage of Lm. The empty set is not admissible
as a solution unless Lm = ∅. {ε} is admissible as a solution if it is a nonblocking
sublanguage of Lm. Note that the problem requires us to minimize over both the
Lm-closed and non-Lm-closed sublanguages of Lm, whereas control laws as defined
can only specify Lm-closed sublanguages of Lm (Proposition 2.2). Fortunately, the
cost structure ensures that every non-Lm-closed language is contained in an Lm-
closed language of equal cost. Due to this observation and Proposition 2.2 we get the
following equivalence that we state as a proposition. Its proof is omitted.

PROPOSITION 2.6.

min
Am⊆Lm

csup(Am) = min
π∈Πnb

csup(Lm(π)).

Thus, equivalently, we can minimize over the set of nonblocking control laws.
We conclude this subsection with an example and a few remarks. First, though

the event and control cost functions are defined on the alphabet, the case where they
are state dependent is easily accommodated by expanding the alphabet. Second, since
σ ∈ Σuc implies cc(σ) =∞, we have the following proposition.

PROPOSITION 2.7. Let L ⊆ Lm. If csup(L) <∞, then L is controllable.
Consequently, any optimal language is controllable.

Example 2.1.1. This example illustrates the problem formulation. Let the plant
language be

Lm = (σ2 + σ1(σ3 + σ4))(σ1(σ2 + σ1(σ3 + σ4)))∗.

We assume all events are controllable and hence Σ = Σc = {σi : i = 1, 2, 3, 4}.
A generator for this language and the cost functions defined on Σ are as shown in
Figure 2.1.

Since ce(σ1) > 0 it is obvious that csup(Lm) =∞. Hence for any optimal solution
the control law must set

π(σ2) = π(σ1σ4) = π(σ1σ3) = ∅.
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σ1

σ2

σ1

σ4

σ3

ce(σ1) = 1, cc(σ1) = 1
ce(σ2) = 5, cc(σ2) = 5
ce(σ3) = 1, cc(σ3) = 1
ce(σ4) = 3, cc(σ4) = 1

FIG. 2.1. The plant.

σ1

σ2

σ4

σ3csup= 4

csup= 6 csup= 1

FIG. 2.2. An optimal solution.

Thus the optimal solution is contained in Am = {σ2, σ1σ4, σ1σ3}. The worst case of
this language is set by σ2. Since ΣLm(σ2) = {σ1} and π(σ2) = ∅, we obtain

csup(Am) = c(ε,Am, σ2) = ce(σ2) + cc(σ1) = 6.

It is easily shown by examining the six other marked sublanguages of Am that Am
is actually optimal. It has minimum worst-case cost. The generator is as shown in
Figure 2.2.

This optimization problem is also closely related to others in the literature. If
the control costs are all zero, then for a language A ⊆ Lm, csup(A) is generated by
the longest path, insofar as one exists. If all events are controllable, then a solution
to the optimization problem is any shortest path in Lm. If uncontrollable events are
allowed, but still no control costs, then we obtain a problem similar to the optimal
attractor problem. The use of event and control costs is also standard in stochastic
optimal control. Since Lm is a collection of strings of finite length defined over a
countable alphabet, it is a countable set. An optimal sublanguage of Lm is like an
optimal control for a Markov chain with a countable state space; i.e., the strings of the
optimal language correspond to the set of state transition sequences of finite length
having positive measure under the optimal control. However, this is a worst-case
optimization (min-max) problem formulated on a deterministic system representation.
The differences give this problem certain unique advantages and disadvantages with
respect to the optimal control of Markov chains. We say more about this when
presenting the specific results of this paper. For a detailed exposition the interested
reader is referred to chapter 5 of [10].
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FIG. 2.3. System configuration.

We believe the event and control cost functions can be used in a variety of in-
teresting ways. One use of the control costs is to represent the costs of impacting
on an external environment which is not modeled. A large number of systems are
embedded in very complex environments which cannot be modeled in detail. Control
costs suffice as a crude way of recognizing the existence of this larger world. Event
costs, on the other hand, represent physical resources such as time and energy that
may be used by the plant to execute events. We present an example protocol design
problem to motivate the modeling.

2.2. Example: Developing a protocol using delay priorities. Our objec-
tive is to provide tools for supervisor design. In this section we use the problem
formulation to design supervisors for a channel in a communication network under
three different design priorities. The example is similar to that of a CI (computer
interconnect) bus connected to multiple nodes in a VAX cluster system (refer to [3]).
For simplicity it is assumed that the channel has two users or senders connected to
it. The task is to design a supervisor which arbitrates the channel allocation. We
assume that the channel controller has complete knowledge of the demands of the
senders but imprecise knowledge of conditions at the receiver end. It is also assumed
that the channel controller has no control over events at the receiver end. Figure 2.3
illustrates the configuration.

The aim of the exercise is to show that if design priorities are specified by the
cost functions, then the theory algorithmically develops the appropriate control laws.
The system events are

ti = sender i transmits on the channel,
yi = sender i’s transmission is positively acknowledged by the receiver,
ni = sender i’s transmission is negatively acknowledged by the receiver,

where i ∈ {a, b}. The set of all possible behaviors is generated by the FSM in Figure
2.4.

To complete the model we need to define the marked language. It is assumed that
any behavior which gives both a and b at least one successful transmission is marked.
Such a marking makes sense if both a and b have something to transmit. The new
system model is as in Figure 2.5. Let L′m denote the marked language generated by
the FSM in Figure 2.5.

It is assumed that the channel controller can deny channel access to a sender.
Thus the events ta and tb are controllable. Since receiver conditions are unknown
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FIG. 2.4. FSM generating all possible behaviors.
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FIG. 2.5. Plant FSM.

the event ti may be generally followed by either yi or ni. These events are assumed
to be uncontrollable; i.e., cc(yi) = cc(ni) = ∞, cc(ti) < ∞. We also assume ce(yi) =
ce(ni) = 0. Since transmission represents the use of channel time which is a network
resource, it is assumed that ce(ti) > 0. It is also being assumed that all packet
transmission times are the same, so that the same ti and ce(ti) are used for all packets.

From Figure 2.5, we see that csup(L′m) = ∞, and csup(L) = ∞ for any L ⊆
L′m. This is because successful transmission in finite time can only be guaranteed by
disabling of uncontrollable events. Appropriately, this system has no solution under
worst-case analysis. To allow the possibility of guaranteeing finite termination of
transmission processes we introduce a timeout event and associate it with two modes
of operation.

Assumption 1. If a sender accesses the channel three times in succession, then
the third transmission attempt will be followed by a timeout.

Assumption 2. If a sender accesses the channel every alternate transmission, then
the third transmission attempt will be followed by a timeout.

Observe that these two modes require the ordering and counting of transmissions.
The alphabet is enriched to make this possible. The event ti is superscripted as
tni to represent the transmission, by user i, of a packet which has already waited n
transmission times in the network. This makes the alphabet Σ countably infinite. The
new alphabet is more extensive than required by these two assumptions. However, the
distinction between older and newer packets, introduced by the superscript n, allows
us to reflect different design priorities. The timeout event represents the assumption
that regardless of positive or negative acknowledgment, the job is dropped. We do not
use a new event for the timeout but simply model it as a case of necessarily successful
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FIG. 2.6. The FSM Gs.

transmission. Thus a timeout state is one at which only a yi is defined. There is no
ni.

The assumptions ensure that at least two modes of operation will terminate in a
finite number of transmissions. This is not necessarily true of other modes. The FSM
generating plant behavior under these two protocols is complex. Unlike the previous
plant model there are now some states at which events yi are possible but not the
events ni. These states are the timeout states. This model defines the plant. The
machine will be denoted by Gm, and its generated marked language, will be denoted
by Lm. It is a submachine of the superscripted version of the FSM in Figure 2.5.
We will not say more about these complexities. Instead, we show a simpler way of
approaching this problem, by means of the submachine of Gm, in Figure 2.6. The
submachine is denoted by Gs and its generated language is Ls. We present a proof to
show that all our optimization problems are reducible to equivalent problems on the
FSM in Figure 2.6.

Gs is formed by disabling events in Gm. The required control actions are given in
Table 2.1. Note that all the disabled events are controllable. Since all the sequences
in Gs are of finite length and cc(tni ) < ∞, Gs has finite worst-case cost. It actually
generates only the fastest terminating sequences created by Assumptions 1 and 2, i.e.,
termination with three sequential transmissions and three alternating transmissions.

We make one more assumption. It is reasonable that controllers should clear
everybody’s transmission requests as fast as possible. To delay a particular user is
plausible only if not doing so will hinder other more important users. The next
assumption is one simple way to assure such behavior.
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TABLE 2.1
Control law for the machine Gs.

State Disabled events
7 t2b

13, 15, 17 t0a

19 t2b
29 t3a

31, 33, 35 t1a

45 t4b
51, 53, 55 t2a

57 t0a

State Disabled events
8 t2a

16, 18, 20 t0b
14 t2a

30 t3b
32, 34, 36 t1b

44 t4a

52, 54, 56 t2b
58 t0b

Assumption 3. It is assumed that the cost ce(ti) ≡ ce and ce is much greater than
the control costs. More specifically,

ce >> cc(ti), or in the case in which the events are denoted by tni ,
ce >> cc(tni ), 1 ≤ n ≤ 4.

Without this assumption, for decreasing control cost functions characterized by

cc(tni ) > cc(tn+1
i ),

the optimal solution may be such that the channel is unused and packets are kept
waiting just because the control costs will reduce as the packets get older. The
assumed high event cost will allow the examination of decreasing control cost functions
without having them produce such strange solutions.

We formulate three optimal control problems (OCPs) with three types of cost
structures.

OCP 1. ce(tni ) ≡ ce and cc(tni ) ≡ cc. In other words the cost of delaying old or
new packets is the same; i.e., all users, whether old or new, have equal priority.

OCP 2. ce(tni ) ≡ ce and cc(tni ) = n2, n ≥ 0. In other words the cost of delaying
old packets is higher than that of delaying new packets; i.e., old users have higher
priority than new users.

OCP 3. ce(tni ) ≡ ce and cc(tni ) = 1
(n+1)2 . In other words the cost of delaying new

packets is higher than that of delaying old packets; i.e., new users have higher priority
than old users.

The analysis is structured into the following propositions.
PROPOSITION 2.8. Any finite cost sublanguage of Lm must contain a string with

at least six transmission events.
Proof. It is assumed that both senders A and B have packets to transmit. Con-

sequently a string is marked if and only if it represents successful transmission by
both senders. By Assumptions 1 and 2 this can be guaranteed, without disabling
uncontrollable events, only by three consecutive transmissions or by three alternating
transmissions of each sender. The proposition follows.

The following proposition establishes that our OCPs are reducible to an equivalent
problem on the language generated by the FSM Gs shown in Figure 2.6.

PROPOSITION 2.9. For all three cost functions the optimal solution is a sublan-
guage of Ls.

Proof. Upon examination of Figure 2.6 and Table 2.1, we obtain that the worst-
case control cost associated with a string in Ls is of the form

cc(txi ) + cc(t
y
j ) + cc(tzk) + cc(twl ), with i, j, k, l ∈ {a, b} and 0 ≤ x, y, z, w ≤ 4.
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Since by Assumption 3

ce(tni ) = ce > cc(txi ) + cc(t
y
j ) + cc(tzk) + cc(twl ),

any sublanguage L of Lm containing a string with more than six transmission events
in it, even if the string has zero control costs, will have csup(L) > csup(Ls). Therefore,
no optimal solution has more than six transmission events in any string belonging
to it. This fact, together with Proposition 2.8, implies that the longest string in
any optimal solution must have exactly six transmission events in it. Note that Gs
represents the minimally restrictive system that is guaranteed to terminate with no
more than six transmissions. Relaxing the control action at any state of Gs will force
inclusion of strings of Lm containing more than six transmissions.

If Gs or Ls is the minimally restrictive controlled system guaranteeing termination
in six transmission events, it follows that the optimal solution must be contained in
Ls, since in the worst case it will have exactly six transmissions.

The original problems are now equivalent to ones on a finite state system with a
finite alphabet. The problem formulation is such that the optimal solution is a finitely
terminating process. In practice, the protocol would reset to the initial state after
reaching the marked state and repeat again.

Note that for all three OCPs ce(tna) = ce(tnb ) and cc(tna) = cc(tnb ). Thus the cost
structure is symmetrical in a and b and so is the structure of the machine Gs. Hence,
whatever cost analysis is done in one half of the graph is also true of the other half.

Solution to OCP 1. The worst-case cost in the Ls/t0a half of Gs is obviously set
by either

s = t0a na t
1
a na t

2
a yb t

3
b nb t

4
b nb t

5
b yb or

s′ = t0a na t
1
b nb t

2
a na t

3
b nb t

4
a ya t

5
b yb

since these two strings involve both the largest number of transmission events and the
largest number of control actions. The costs associated with the two strings are

c(s, Ls) = ce(t0a) + ce(t1a) + cc(t2b) + ce(t2a) + cc(t0a) + ce(t3b) + cc(t1a)
+ce(t4b) + cc(t2a) + ce(t5b)

= 6ce + 4cc

and

c(s′, Ls) = ce(t0a) + ce(t1b) + cc(t2b) + ce(t2a) + cc(t3a) + ce(t3b) + cc(t4b)
+ce(t4a) + cc(t0a) + ce(t5b)

= 6ce + 4cc.

It is easily seen that the two worst-case paths in the Ls/t0b half of Gs are similar and
have exactly the same cost. Since any sublanguage of Ls must contain one of these
four paths and they all have identical cost, it is clear that disabling any of these four
paths can only increase the control costs, while leaving the event costs unchanged
(refer to Theorem 3.4 in the following section). Since the cost of a string is the sum
of event and control costs, the optimal solution is Ls or Gs itself.

Solution to OCP 2. Once again, the worst case in the Ls/t0a half must be set by
either s or s′. The associated costs are, however, different.

c(s, Ls) = ce(t0a) + ce(t1a) + cc(t2b) + ce(t2a) + cc(t0a) + ce(t3b) + cc(t1a)
+ce(t4b) + cc(t2a) + ce(t5b)

= 6ce + 22 + 02 + 12 + 22 = 6ce + 9
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FIG. 2.7. Solution to OCP 2.

and

c(s′, Ls) = ce(t0a) + ce(t1b) + cc(t2b) + ce(t2a) + cc(t3a) + ce(t3b) + cc(t4b)
+ce(t4a) + cc(t0a) + ce(t5b)

= 6ce + 22 + 32 + 42 + 02 = 6ce + 29.

The analysis for the Ls/t0b half is similar. By disabling the event t1b after t0ana we
remove the string s′. The worst-case cost is now ce + 9 + 12 = ce + 10. An identical
cost will be obtained in the other half of Gs by disabling t1a after t0bnb. The optimal
solution is depicted in Figure 2.7. Obviously, the two control actions described above
are in addition to those given in Table 2.1. The solution represents the forcing of
sequential transmission.

Solution to OCP 3. Again, the worst case in the Ls/t0a half must be set by either
s or s′. The associated costs are different.

c(s, Ls) = ce(t0a) + ce(t1a) + cc(t2b) + ce(t2a) + cc(t0a) + ce(t3b) + cc(t1a)
+ce(t4b) + cc(t2a) + ce(t5b)

= 6ce +
1
32 +

1
12 +

1
22 +

1
32 = 6ce + 1.472

and

c(s′, Ls) = ce(t0a) + ce(t1b) + cc(t2b) + ce(t2a) + cc(t3a) + ce(t3b) + cc(t4b)
+ce(t4a) + cc(t0a) + ce(t5b)

= 6ce +
1
32 +

1
42 +

1
52 +

1
12 = 6ce + 1.213.
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FIG. 2.8. Solution to OCP 3.

The analysis for the Ls/t0b is similar. By disabling the event t1a after t0ana we remove
the string s. The worst-case cost is now ce + 1.213 + 1

22 = ce + 1.463. An identical
cost will be obtained in the other half of Gs by disabling t1b after t0bnb. The optimal
solution is as depicted in Figure 2.8. Obviously, the two control actions described
above are in addition to those given in Table 2.1. The solution represents the forcing
of alternating transmission.

The clear connection between design priorities and the selected protocols can be
seen if the results are summarized as follows.

OCP Cost assumption Protocol
1 Old and new users have same priority Sequential or alternating protocol
2 Old users have higher priority Force sequential protocol
3 New users have higher priority Force alternating protocol

This example illustrates important features of our approach. The control cost of
disabling a transmission event exists because of the obstruction of unmodeled sender
activities; e.g., the sender may be executing programs which wait on the successful
transmission of a packet. The event cost associated with spontaneously executing
a transmission exists because it entails the use of channel time, which is a network
resource. The control costs are used to represent the cost of impacting on an external
environment which is not modeled. Event costs, on the other hand, represent physical
resources such as time and energy that may be used by the plant to execute events.

We also note that, in this example, once design priorities are stated in the cost
functions, then in all three cases there exist interesting and well-defined optimal solu-
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tions. The optimal solutions are also minimally restrictive and satisfy the principle of
dynamic programming; i.e., they have optimal substructure. The purpose of the sub-
sequent results is to make these ideas clear and to characterize, in a general manner,
problems for which we may expect these specific types of optimal solutions.

3. The principal results. For the convenience of the reader, we present all
major results in this section. The section is divided into three subsections covering
general existence results, the role of dynamic programming, and computational re-
sults, respectively. The proofs of the results in the first two subsections are covered
in section 4. The proofs of the computational results are covered in sections 5 and 6.
We present some general computational results and also investigate conditions under
which optimal solutions are polynomially computable.

3.1. General existence results. The theorems in this section clarify conditions
for the existence of optimal solutions and minimally restrictive optimal solutions. An
optimal solution exists if the infimum of csup(.) over the sublanguages of Lm is finite
and if it is realized by some sublanguage of Lm. In other words, the infimum must
be a minimum that is a real number. The first existence theorem is stated for DES
represented by a finite alphabet. It asserts that the existence of a sublanguage with
bounded cost is sufficient for the existence of an optimum.

THEOREM 3.1. Let |Σ| <∞. An optimal sublanguage exists iff there exists some
A ⊆ Lm such that csup(A) <∞.

The necessity of boundedness is trivial. For the sufficiency proof, it is immediate
that the infimum exists. It remains to be argued that it is realized. Note that by
Proposition 2.7 controllability is a necessary condition for a bounded cost sublanguage.

For the case of DES defined over a countable alphabet we present the following
result.

THEOREM 3.2. For all s ∈ L̄m let |ΣLm(s)| <∞. Let ce(.) > δ > 0. There exists
an optimal sublanguage of Lm iff there exists A ⊆ Lm such that csup(A) <∞.

We assume that the event costs are greater than some positive number, however
small. We also assume that the active event set after any string in L̄m is finite. Under
these assumptions we get a result similar to the first theorem. This theorem implies
that optimal solutions to the problems in the example of section 2.2 exist. L(Gs) is
a bounded cost sublanguage, and if we treat tni yi and tni ni as composite events with
cost ce(tni ), then the conditions of the theorem are satisfied for all three control cost
functions. The next theorem is stated for the case in which Lm is a regular language.

THEOREM 3.3. Let Lm be a regular language. An optimal solution exists iff there
exists Am ⊆ Lm, Am regular, controllable, and having the following property for any
n ∈ N :

∀s = tu∗v ⊆ Am, ĉ(t, Ām, un) = 0.

Intuitively the theorem says that optimal solutions exist when there are control-
lable sublanguages of Lm in which all cycles have zero-cost. Thus either cycles with
positive cost must be broken in such a way that all the reachable broken prefixes can
complete to marked states, or cycles with positive cost are altogether unreachable.
Thus a system is not allowed to cycle around using resources (positive event cost)
without finishing its task (completing to a marked string). The controllability con-
dition ensures that the positive cost cycles can be broken using controllable events
alone.

As a consequence of Theorem 3.3 all nonterminating behaviors of regular language
DESs must be zero-cost. If the behavior of interest is itself a positive cost process,
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e.g., steps involved in the manufacture of a part, then the formulation should be used
to model only one cycle of the repetitive process which can then be optimized. A
second step of optimization may then be to model the optimized single step-process
as a repetitive zero-cost process and then use the formulation to optimize the de-
viation from this desired behavior, i.e., associate positive event costs on any events
that disturb the process from its zero-cost trajectory. However, since such modeling
approaches are domain-specific we will not discuss them further.

The next theorem characterizes the interaction of event and control costs.
THEOREM 3.4. Let s ∈ Am ⊆ Bm ⊆ Lm/t, t ∈ L̄m. Then c(t, Am, s) ≥

c(t, Bm, s).
The cost associated with a string lying in a nonincreasing sequence of languages is

nondecreasing. Smaller languages entail more control and hence more control costs.
As the language containing a string is made to shrink, the control cost associated
with the string tends to rise. The event costs are independent of the language. The
purpose of contracting a language is to remove strings with high event costs. Since
this process is accompanied by rising control costs, we have an optimization problem.
This tradeoff is similar to classical optimal control. Observe that the uncontrolled
plant language has no control actions and no control costs. Its worst case is the
longest path as obtained from the event costs. The use of control to disable this
longest path may reduce the event cost, but only at the expense of additional control
costs. The sum of event costs and control costs for the worst-case path in the new
controlled system may be greater. This is the fundamental tradeoff that has made
classical optimal control meaningful, and when captured as in section 2, it makes the
same tradeoff interesting in the control of formal languages. This essence of optimal
control is a powerful theoretical motivation for our formulation.

It can be established from Theorem 3.4 that the union of optimal solutions is
optimal. As a language grows, the event costs associated with its strings do not
change, but the control costs decrease. Therefore, the worst-case costs, in the union
of two languages, cannot be worse than the worst of the two. Standard set-theoretic
arguments lead to the existence of a unique supremal or minimally restrictive element
in the class of optimal solutions. This is stated in the following theorem.

THEOREM 3.5. If an optimal solution exists, then the unique supremal optimal
solution exists.

The supremal optimal sublanguage of Lm will be denoted by L↑o. Note that L↑o
should not be confused with the supremal controllable sublanguage (L↑m) defined in
[16] as a solution to the supervisory control problem defined under legality specifica-
tions. On the basis of this theorem we define an operator

L↑o : L̄m −→ 2Σ∗ ,
L↑o(s) = supremal optimal sublanguage of Lm/s,

if it exists. The operator is undefined otherwise. By the theorem, if an optimal
solution exists in the post-language Lm/s, then the operator L↑o(s) is well defined.
Furthermore, from the definition of the Nerode equivalence relation1 [5], if s ≡Lm t,
where ≡L represents the standard Nerode equivalence relation on a language L̄, then
Lm/s = Lm/t. This implies L↑o(s) = L↑o(t). Hence it is meaningful to define

L↑o : L̄m/ ≡Lm−→ 2Σ∗ ,

1s, t ∈ L are Nerode equivalent iff {u : su ∈ L} = {v : tv ∈ L}.
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σ3csup= 3
FIG. 3.1. A DP-optimal solution.

and accordingly, we will refer to L↑o([s]) or L↑o([t]) in the subsequent development,
where [s] and [t] are the Nerode equivalence classes of s and t, respectively, and
L̄m/ ≡Lm represents the set of Nerode equivalence classes of Lm. Note that L↑o([ε]) =
L↑o.

3.2. The principle of dynamic programming. There are interesting issues
connected with the principle of dynamic programming in this problem of finding the
worst-case optimal supervisor. The optimal solution to this problem is not unique.
Moreover, all the optimal solutions do not structurally have optimal subsolutions
(refer to [1]); i.e., they do not satisfy the principle of dynamic programming. This
fact is later demonstrated by an example. Unlike the optimal control of Markov
chains, the principle of dynamic programming is only a sufficient condition in this
min-max problem. It is not necessary. However, we will prove that in the case of the
finite alphabet, if optimal solutions exist, then solutions having optimal substructure
also exist. We call this latter type a DP-optimal solution and define it as follows.

DEFINITION 3.6. ADO ⊆ Lm is a DP-optimal solution iff it is optimal, and for
all s ∈ ĀDO, ADO/s is an optimal sublanguage of Lm/s.

This type of optimal solution also has a unique physical significance. It guarantees
the best possible future behavior, given that the system has already executed some
prefix spontaneously in the past. Since this is a min-max problem, the post-languages
of all optimal solutions do not have this property. It is shown later that if Lm is
a regular language, then a computational specification of the supremal DP-optimal
sublanguage can be derived in polynomial time by algorithms based on dynamic pro-
gramming. Since we are unable to make the same claim for the supremal optimal
solution, the DP-optimal solution is a crucial component of these investigations. We
illustrate the distinctions by two examples.

Example 3.2.1. We illustrate the distinctions by referring back to Example 2.1.1.
Am and Lm are as previously defined. We see from Figure 2.2 that {σ3, σ4} is not
an optimal sublanguage of Lm/σ1. Thus Am does not have optimal substructure; i.e.,
it is optimal but not DP-optimal. We see from Figure 2.2 that csup(Am/σ1, σ1) = 4,
whereas the optimal solution in the class Lm/σ1 is {σ3} with csup(.) = 3. We use
this to construct a DP-optimal sublanguage of Lm. This language is {σ2, σ1σ3}. A
generator for this solution is shown in Figure 3.1.

Example 3.2.2. This example presents a DES with an infinite alphabet that has
a supremal optimal solution but no DP-optimal solution. The plant state machine is
as in Figure 3.2. The plant language is Lm = {b} ∪ {aidi : i ∈ N}.

We assume cc(a) = cc(b) = 100 and cc(dn) = 0. The event costs are ce(a) =
0, ce(b) = 1, and ce(dn) = 1

n . The supremal optimal sublanguage of this language
is the language itself. However, in the post-language Lm/a, there is no optimal
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FIG. 3.2. The plant.

sublanguage. To see this consider the sequence of languages

L0 = Lm/a, Ln = Ln−1 − {an−1dn}.

Then limn→∞ csup(Ln) = 0, but there is no zero-cost nonblocking sublanguage in
Lm/a. Consequently though an optimal sublanguage of Lm exists, no DP-optimal
sublanguage exists.

The example reveals that the case of the infinite alphabet is complicated. How-
ever, for DES modeled by a finite alphabet, we are able to state the following theorem.

THEOREM 3.7. Let |Σ| < ∞. If an optimal solution exists, then a DP-optimal
solution exists, and furthermore the unique supremal DP-optimal solution, denoted by
L↑DO, exists.

The union of DP-optimal solutions is also DP-optimal, and once again, a mini-
mally restrictive DP-optimal solution exists. The theorem is proved by a construction
detailed in section 4.2.

Our next theorem is a useful relation between the Nerode equivalence on the plant
language and that on the supremal DP-optimal sublanguage.

THEOREM 3.8. If s, t ∈ L↑DO and s ≡Lm t, then s ≡L↑DO t.
The theorem says that if two prefixes of the supremal DP-optimal sublanguage

are Nerode equivalent in Lm, then they are also equivalent in L↑DO.
Theorems 3.1, 3.2, 3.3, 3.5, and 3.7 constitute the existence theory. Theorems

3.1, 3.2, and 3.3 present existence conditions for different types of problems. Theorem
3.5 shows that minimally restrictive solutions are meaningful within this problem
formulation and that they exist if the problem has any solution at all. Theorem
3.7 says that, for finite alphabet systems, if optimal solutions exist, then solutions
having optimal substructure also exist, and there is such a unique minimally restrictive
solution.

3.3. Computational results. We now discuss the main results on the com-
putation of optimal solutions. It is possible to argue from Theorem 3.8 that if Lm
is regular then L↑DO is also regular. This fact leads to the following computability
theorem for DES modeled by regular languages.

THEOREM 3.9. Let G be a FSM generating Lm and let an optimal sublanguage
of Lm exist.

(i) There exists a unique submachine of G generating L↑DO.
(ii) L↑DO is a regular language.
L↑DO is exceptional in the fact that it is regular. Not all optimal solutions are

necessarily regular. Theorem 3.9 tells us that in the finite set of trim submachines ofG,
there is a FSM generating L↑DO. However, the theorem gives no way of identifying the
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required submachine. In section 5 we show how to identify the FSM generating L↑DO
by setting up an appropriate optimization problem on the set of trim submachines
of G. It is shown that a specific type of solution to this new optimization problem
generates L↑DO. The time complexity is exponential in the number of states of G.

The results pertaining to polynomial-time complexity optimal controller synthesis
are as follows. For DES modeled by cyclic FMSs we make additional assumptions.
For DES modeled by acyclic FSMs no additional assumptions are required. For cyclic
FSMs it is assumed that all event costs are positive and that the FSM has only one
marked state; i.e., all strings in Lm are Nerode equivalent. The existence of a general
polynomial algorithm for the acyclic case makes us suspect that it may be possible to
relax the single marked state assumption for the cyclic case. However, this has not
been proved. We discuss it further in section 6. We state the two main theorems.

THEOREM 3.10. Let Lm be regular and such that all marked strings are equivalent
in the sense of Nerode. Let all event costs be positive. If an optimal solution exists
then, given a generator of Lm with n states, a generator for the supremal DP-optimal
sublanguage is computable in time

O(n2|Σ| log(|Σ|) + n3|Σ|).

THEOREM 3.11. Let the plant language Lm be generated by a trim acyclic FSM
G having n states. A generator for the supremal DP-optimal solution is computable
in time:

O(n|Σ| log(|Σ|)).

4. Proofs of the existence results. This section presents the proofs of the-
orems 3.1, 3.2, 3.3, 3.4, 3.5, 3.7, and 3.8. Theorems 3.9, 3.10, 3.11 require some
additional concepts. They are proved in sections 5 and 6. Theorems are presented in
this section in the order in which their proofs are developed. No earlier theorem uses
a later theorem. The proof of Theorem 3.3 uses Theorem 3.8, and so Theorem 3.3 is
proved last. All other theorems are proved in the order stated in section 3. We use
the notation Π0(π(s)) = ΣLm(s)− π(s) to denote the set of active events disabled by
the control law, i.e., events that determine the control cost.

4.1. Existence of optimal solutions. The following is the proof of the exis-
tence theorem for DES modeled by a finite alphabet.

THEOREM 3.1. Let |Σ| <∞. An optimal sublanguage exists iff there exists some
A ⊆ Lm such that csup(A) <∞.

Proof. The necessity of the existence of a bounded cost sublanguage is trivial. We
consider the sufficiency. The existence of Am ⊆ Lm such that csup(Am) <∞ implies
that the infimum in the optimal control problem exists. In particular, consider the
set X = {A ⊆ Lm : csup(A) ≤ csup(Am)}. Then

inf
A⊆Lm

csup(A) = inf
A⊆X

csup(A) = x0 <∞,

where x0 is a nonnegative real number. Pick a sequence 〈An〉 ⊆ X such that
limn→∞ csup(An) = x0. We will establish that the elements of this sequence can take
only finitely many values.

As a first step we show that for any A ⊆ Lm, csup(A) < csup(Am), there ex-
ists u ∈ A such that c(ε,A, u) = csup(A). Consider a sequence 〈uk〉 ⊆ A such that
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limk→∞ c(ε,A, uk) = csup(A). Now, by definition,

c(ε,A, uk) =
j=‖uk‖−1∑

j=0

c̄(pj(uk), πA(pj(uk)), σ(uk)
j ) + c̄(uk, πA(uk), φ),

where uk = σ
(uk)
0 . . . σ

(uk)
‖uk‖−1. Since the alphabet is finite, ce(.) and cc(.) take only

finitely many values, which implies that c̄(., ., .) only takes values in some finite set
Z. Define δ > 0 such that y ∈ Z implies that y > δ or y = 0. Pick M such that
Mδ ≤ csup(Am) but (M + 1)δ > csup(Am). Then, in any uk, there are not more than
M events with positive one-stage costs. Thus c(ε,A, uk) takes one of |Z|M +1 possible
values for all k. Since this is a finite set there exists uk such that c(ε,A, uk) = csup(A).

By the above property we can construct a sequence 〈un〉, un ∈ An, c(ε,An, un) =
csup(An) such that limn→∞ c(ε,An, un) = x0. But c(ε,An, un) takes only values
in a finite set of cardinality |Z|M + 1, which implies that there exists n such that
c(ε,An, un) = csup(An) = x0. Then An is an optimal sublanguage.

The following is the proof of the existence theorem for the countable alphabet.
It uses the condition ce(.) > δ > 0 to establish an equivalent finite alphabet problem.
The theorem is then immediate.

THEOREM 3.2. For all s ∈ L̄m let |ΣLm(s)| <∞. Let ce(.) > δ > 0. There exists
an optimal sublanguage of Lm iff there exists Am ⊆ Lm such that csup(Am) <∞.

Proof. Let Am be as in the hypothesis of the theorem. The necessity of the
existence of a bounded cost language is trivial. We consider the sufficiency. Once
again, pick M > 0 such that Mδ ≤ csup(Am) but (M + 1)δ > csup(Am). Then for
any A ⊆ Lm and u ∈ A with csup(A) < csup(Am), there are at most M events in u.
Consider X = {s ∈ Lm : ‖s‖ ≤M}. Then

csup(A) ≤ csup(Am) =⇒ A ⊆ X.

Let |ΣLm(u)| be finite for all u ∈ L̄m. Then |X| is finite, which implies

inf
A⊆Lm

csup(A) = inf
A⊆X

csup(A) = min
A⊆X

csup(A)

since |X| is finite. Thus the minimum in the set X is an optimal sublanguage.
The following is the proof of the monotonicity of the cost functions.
THEOREM 3.4. Let s ∈ Am ⊆ Bm ⊆ Lm/t, t ∈ L̄m. Then c(t, Am, s) ≥ c(t, Bm, s).
Proof. Let s = σ0 . . . σ‖s‖−1. By Definition 2.3

c(t, Am, s) =
j=‖s‖−1∑
j=0

ce(σj) +
j=‖s‖−1∑
j=0

∑
σ∈Π0(πAm (pj(s)))

cc(σ) + c̄(ts, πAm(ts), φ).

But

Am ⊆ Bm
=⇒ πAm(tpj(s)) ⊆ πBm(tpj(s))
=⇒ Π0(πBm(pj(s))) ⊆ Π0(πAm(pj(s)))
=⇒

∑
σ∈Π0(πBm (tpj(s)))

cc(σ) ≤
∑

σ∈Π0(πAm (tpj(s)))

cc(σ)

=⇒ c(t, Bm, s) ≤ c(t, Am, s).

The next proof establishes the existence of a unique minimally restrictive optimal
solution.
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THEOREM 3.5. If an optimal solution exists, then the unique supremal optimal
solution exists.

Proof. Let Lo and L′o be two optimal sublanguages of Lm/t, t ∈ L̄m. By Theorem
3.4, for any s ∈ Lo,

c(t, Lo ∪ L′o, s) ≤ c(t, Lo, s).

Since the same argument applies for s ∈ L′o we have that

csup(Lo ∪ L′o, t) ≤ csup(Lo, t) = csup(L′o, t).

Thus Lo ∪ L′o is optimal, or in general, the union of optimal solutions is optimal.
Hence

L↑o =
⋃

Lo⊆Lm/t
Lo optimal

Lo

is the unique supremal optimal solution.

4.2. Existence of the supremal DP-optimal solution. We prove the ex-
istence of the supremal DP-optimal solution by construction. The symbol “◦” will
denote the concatenation of a string with a language. If s is a string and A is a
language, then

s ◦A = {su : u ∈ A}.

Consider the following nonincreasing sequence of sets having the supremal optimal
solution as its first element.

K0 = L↑o,

Kn = An ∪Bn,

where An =

 ⋃
ω∈Pn(K̄n−1)

ω ◦ L↑o([ω])

 ,

Bn = Bn−1 ∪ (Pn(An) ∩ Lm),

and B0 =
{
{ε} if ε ∈ Lm,
∅ otherwise.

The two sets An and Bn contain the strings of Kn which are of length greater than
n and less than n, respectively. The strings of length n are contained in both sets. It
is easily shown that Kn is a sublanguage of Lm.

The intuition of the construction is easily seen from the definition of a DP-optimal
solution. The nth step of the construction replaces all post-languages of prefixes of
length n with supremal optimal sublanguages. It will be shown that for all s ∈
K̄n, ‖s‖ ≤ n, Kn/s is an optimal sublanguage. Kn is in a sense “(n−DP)-optimal”
and the limit may be expected to be DP-optimal. The supremality will come from
the use of the supremal optimal sublanguage at each step.

We first establish that

K =
j=∞⋂
j=0

Kj
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is nonempty whenever the supremal optimal solution (K0) exists. The proof proceeds
by showing that in the supremal optimal solution (K0), among the strings realizing
the worst-case behavior, there exists at least one whose costs cannot be reduced by
optimizing at successive prefixes as is done in the construction of the sequence Kn.
Intuitively, this must be the the case, because if the costs of all strings in L↑o(Lm) = K0
could be reduced, then the supremal optimal solution would not be optimal. Lemma
4.3 (ii) proves the existence of such a string and (iii) establishes that it survives in all
the Kn. Once we have established that K is nonempty, we prove that it is supremal
DP-optimal. This is done by arguing that the jth element of the sequence 〈Kn〉
is such that for any s ∈ K̄j with ‖s‖ ≤ j, the language Kj/s is optimal. This is
the precise meaning of the sense of (j−DP)-optimal. The relevant result is Lemma
4.5. Thereafter, we prove that K is supremal DP-optimal by establishing that any
DP-optimal sublanguage is contained by it.

The proof is broken into five lemmas. Lemmas 4.1 and 4.2 establish certain
properties of our definitions and the construction 〈Kn〉. Lemmas 4.3 and 4.5 are as
described above. Lemma 4.4 is essentially a convergence result establishing that the
prefix-closures of Kn converge to the prefix-closure of K. We start with Lemma 4.1,
which states two simple properties of our definitions. It is stated without proof.

LEMMA 4.1.
(i) ∀n ∈ N, Pn(A ∪B) = Pn(A) ∪ Pn(B).
(ii) For all s ∈ Ām, σ ∈ Π0(πAm(s)) iff sσ ∈ P‖s‖+1(L̄m)− P‖s‖+1(Ām).

The next lemma states some properties of the sequence 〈Kn〉. The first part
states that the set Bn is made of strings with length not greater than n. The second
part states that the sequence is a nested one. The third part says that the prefixes of
length less than n of Kn remain in the prefix-closure of all subsequent languages of
the sequence.

LEMMA 4.2.
(i) ∀n ∈ N, s ∈ Bn ⇒ ‖s‖ ≤ n.

(ii) ∀n ∈ N, Pn(K̄n) = Pn(K̄n−1).
(iii) ∀n ∈ N,Kn ⊆ Kn−1 ⊆ Lm.
(iv) ∀j, n, n′ where j ≤ n ≤ n′, Pj(K̄n) = Pj(K̄n′).

Proof.
(i) By definition, B0 = {ε} or ∅. If B0 = ∅, then ‖s‖ ≤ 0 trivially. If B0 = {ε},

then ‖ε‖ = 0 by definition. Hence B0 satisfies the hypothesis. Let the result be true
for n−1. By definition, Bn = (Pn(An)∩Lm)∪Bn−1. If s ∈ Bn−1, then by assumption,
‖s‖ ≤ n− 1. If s ∈ Pn(An) ∩ Lm then ‖s‖ = n. The result follows.

(ii)

Pn(K̄n) = Pn(An ∪Bn)
= Pn(Ān ∪ B̄n)
= Pn(Ān) ∪ Pn(B̄n) [by (i)]
= Pn(Ān) ∪ Pn(B̄n−1) ∪ Pn(Pn(An) ∩ Lm) [by (i)]
= Pn(Ān) ∪ (Pn(An) ∩ Lm) [by (i), Pn(Bn−1) = ∅]
= Pn(Ān) [Pn(An) ⊆ Pn(Ān)]
= Pn(K̄n−1) [by definition of Kn].

(iii) We first establish that An ⊆ An−1.
Let s = pn−1(s)σnt ∈ An. Then, by definition of An, t ∈ L↑o([pn(s)]) and

pn(s) = pn−1(s)σn ∈ Pn(K̄n−1), which implies pn−1(s)σn ∈ K̄n−1, pn−1(s)σn ∈
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Ān−1 (by (1)), and σn ∈ L↑o([pn−1(s)]). Thus

csup(L↑o([pn−1(s)])) ≥ ce(σn) +
∑

σ∈Π0

(
π
L↑o([pn−1(s)])

(ε)
) cc(σ) + csup(L↑o([pn−1(s)])/σn)

≥ ce(σn) +
∑

σ∈Π0

(
π
L↑o([pn−1(s)])

(ε)
) cc(σ) + csup(L↑o([pn(s)]))

by the optimality of L↑o([pn(s)]). Since L↑o([pn−1(s)]) is supremal optimal, this implies
that σn ◦ L↑o([pn(s)]) ⊆ L↑o([pn−1(s)]). Thus

s = pn−1(s)σnt ∈ pn−1(s)σnL↑o([pn(s)]) ⊆ pn−1(s) ◦ L↑o([pn−1(s)]) ⊆ An−1,

since pn−1(s) ∈ Pn−1(Ān−1). This proves An ⊆ An−1.
The inclusion Kn ⊆ Kn−1 is now easy. Let s ∈ Kn = An∪(Pn(An)∩Lm)∪Bn−1 =

An∪Bn−1. If s ∈ An, then s ∈ An−1 ⊆ Kn−1. If s ∈ Bn−1 then s ∈ Kn−1 by definition.
The inclusion Kn ⊆ Lm follows from K0 ⊆ Lm and an inductive application of
Kn ⊆ Kn−1.

(iv) By part (iii)

Kn+1 ⊆ Kn ⇒ K̄n+1 ⊆ K̄n ⇒ Pj(K̄n+1) ⊆ Pj(K̄n).

Let s ∈ Pj(K̄n), j ≤ n. Then ‖s‖ = j and ∃s′ such that ss′ ∈ Kn. The argument may
be considered in two cases.

Case 1. ss′ ∈ Bn. By definition of Bn+1, ss
′ ∈ Bn+1, which implies s ∈ Pj(K̄n+1).

Case 2. ss′ /∈ Bn. Then ss′ ∈ An, but ss′ /∈ Pn(An). Hence pn+1(ss′) exists,
which implies pn+1(ss′) ∈ Pn+1(K̄n) = Pn+1(K̄n+1). Since j ≤ n and ‖s‖ = j, we get
s ∈ Pj(K̄n+1). By induction, s ∈ Pj(K̄n′) for all n′ ≥ n.

We prove next that K is nonempty in three steps. First we state the simple
property that if a string is not in the supremal optimal sublanguage, then any language
containing that string is nonoptimal. Next we show that there exists a string in K0
that realizes the supremum, and the post-languages corresponding to all prefixes of
this string are optimal. Finally, it is established that this particular string must be
contained in K.

LEMMA 4.3.
(i) Let s ∈ Lm/u and s /∈ L↑o(Lm/u). Then, for any L ⊆ Lm/u and s ∈ L, we

have

csup(L) > csup(L↑o(Lm/u)).

(ii) There exists s ∈ K0 = L↑o(Lm) such that K0/pi(s) is optimal for all i, 0 ≤
i ≤ ‖s‖.

(iii) Let there exist s as in part (ii). Then s ∈ K.
Proof.

(i) Let the hypotheses be true and csup(L) ≤ csup(L↑o(Lm/u)). Then L is opti-
mal. This implies s ∈ L ⊆ L↑o(Lm/u), which contradicts the hypothesis. The result
follows.

(ii) Suppose that for all s ∈ K0 there exists i such that csup(K0/pi(s), pi(s)) >
csup(L↑o(Lm/pi(s)), pi(s)). Let i(s) denote the smallest such i for s. If s ≤ t then
i(s) = i(t). Note that K0 = L↑o(Lm). Define

L =
⋃

t∈L↑o(Lm)

pi(t)(t) ◦ L↑o(Lm/pi(t)(t)).
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Let u ∈ L. Then there exists s ∈ K0, such that u = pi(s)(s)v. Then we have

c(ε, L, u) = c(ε, L, pi(s)(s)v)
≤ c̄(ε, L, pi(s)(s)) + csup(L/pi(s)(s), pi(s)(s))

= c̄(ε, L, pi(s)(s)) + csup(L↑o(Lm/pi(s)(s)), pi(s)(s))
< c̄(ε, L, pi(s)(s)) + csup(K0/pi(s)(s), pi(s)(s)).

Next we claim that for all j, such that 0 ≤ j ≤ i(s)− 1,

pj(s)σ ∈ K̄0 ⇔ pj(s)σ ∈ L̄.

The case pj(s)σ = pj+1(s) is trivial. The following argument is for the case pj(s)σ 6=
pj+1(s). Let pj(s)σ ∈ K̄0. Then there exists w = pj(s)σv ∈ K0 and i(w) such that
K0/pi(w)(w) is not optimal. By definition of i(s), i(w) > j. This is true since i(w) ≤ j
implies that i(w) < i(s), which contradicts the definition of i(s) as the smallest such
i for the string s. Thus pi(w)(w) ◦ L↑o(Lm/pi(w)(w)) ⊆ L, which implies pj(s)σ ∈ L̄.
For the reverse inclusion assume pj(s)σ ∈ L̄. Then there exists v such that pj(s)σv ∈
L, and there exists w ∈ K0 such that pi(w)(w) ∈ K̄0 and pj(s)σv ∈ pi(w)(w) ◦
L↑o(Lm/pi(w)(w)). By definition of i(s), i(w) > j, which implies pj(s)σ ∈ K̄0. This
proves the claim. The claim implies c̄(ε, L, pi(s)(s)) = c̄(ε,K0, pi(s)(s)), from which

c(ε, L, u) < c̄(ε,K0, pi(s)(s)) + csup(K0/pi(s)(s), pi(s)(s)) ≤ csup(K0)

for all u ∈ L. Next we use the finiteness of the alphabet to show that there exists
u ∈ L such that csup(L) = c(ε, L, u). Define a sequence 〈un〉 in L such that

lim
n→∞

c(ε, L, un) = csup(L).

Since the alphabet, which is the domain of definition of ce, and cc, is finite, the range
of these functions is also finite. This, together with the fact that csup(L) <∞, implies
that c(ε, L, .) can take only finitely many values. Thus there exists N ∈ N such that
c(ε, L, un) = csup(L) for n ≥ N. Hence,

csup(L) = c(un, L) < csup(K0),

which contradicts the optimality of K0. The result follows.
(iii) Let s 6∈ k. Get the smallest n such that s /∈ Kn. Then s ∈ Kn−1, which im-

plies that pn(s) ∈ K̄n, by definition of Kn. Let s = pn(s)vn. Then vn /∈ K̄n/pn(s), and
by definition of Kn, vn /∈ L↑o(Lm/pn(s)). But vn ∈ Lm/pn(s) and vn ∈ K0/pn(s) ⊆
Lm/pn(s). By part (i)

csup(K0/pn(s), pn(s)) > csup(L↑o(Lm/pn(s)), pn(s)).

This contradicts the hypothesis on s. Hence s ∈ Kn for all n, implying s ∈ K.
Observe that part (ii) of the lemma says that the hypothesis of part (iii) is not

vacuous. The two parts taken together then establish that K is nonempty. The next
lemma states that the sequence Kn develops K incrementally.

LEMMA 4.4. ∀j ≤ n ∈ N, Pj(K̄) = Pj(K̄n).
Proof. We prove K̄ = ∩n=∞

n=0 K̄n. The inclusion K̄ ⊆ ∩n=∞
n=0 K̄n is obvious.

Let s ∈ ∩n=∞
n=0 K̄n. Then for all n there exists vn such that svn ∈ K̄n. In particular,

consider K‖s‖/s = L↑o([s]). We use Lemma 4.3 with K0 replaced by L↑o([s]) = H0 and
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Lm replaced by Lm/s. Denote the analogous sequence by 〈Hn〉. It is easy to show
that H = K/s. Then by Lemma 4.3, there exists v ∈ H = K/s. This implies sv ∈ K
and hence s ∈ K̄. This proves the reverse inclusion.

Now by the above and Lemma 4.2 (iv),

Pj(K̄) =
n=∞⋂
n=0

Pj(K̄n) = Pj(K̄i)

for any i ≥ j. The result follows.
The next lemma states that the worst-case costs associated with the post-language

of a prefix s do not change after ‖s‖ iterations, and moreover, that the post-language
becomes and remains optimal.

LEMMA 4.5.
(i) ∀s ∈ Kj , csup(Kj/s, s) = csup(Ki/s, s) = csup(L↑o([s])), j ≥ i ≥ ‖s‖.
(ii) ∀s ∈ K̄, csup(K/s, s) = csup(Kj/s, s) = csup(L↑o([s])), j ≥ ‖s‖.

Proof.
Claim 4.5.1. ∀s ∈ K̄i, ‖s‖ ≤ i ≤ j, 0 ≤ k ≤ ‖s‖,

Π0(πKi(pk(s))) = Π0(πKj (pk(s))).

Proof. First consider the case k < i ≤ j.

σ ∈ Π0(πKi(pk(s)))
⇔ pk(s)σ ∈ Pk+1(L̄m)− Pk+1(K̄i) [Lemma 4.1 (ii)]
⇔ pk(s)σ ∈ Pk+1(L̄m)− Pk+1(K̄j) [Lemma 4.2 (iv)]
⇔ σ ∈ Π0(πKj (pk(s))) [Lemma 4.1 (ii)].

Next consider the case k = i < j.

σ ∈ Π0(πKi(pi(s)))
⇔ pi(s)σ ∈ Pi+1(L̄m)− Pi+1(K̄i) [Lemma 4.1 (ii)]
⇔ pi(s)σ ∈ Pi+1(L̄m)− Pi+1(K̄i+1) [Lemma 4.2 (ii)]
⇔ pi(s)σ ∈ Pi+1(L̄m)− Pi+1(K̄j) [Lemma 4.2 (iv)]
⇔ σ ∈ Π0(πKj (pi(s))) [Lemma 4.1 (ii)].

The case k = i, j = i is trivial.
Next we show that csup(Ki+1/s, s) ≤ csup(Ki/s, s) for all s ∈ K̄i, i ≥ ‖s‖.

csup(Ki+1/s, s) = csup((Ai+1 ∪Bi+1)/s, s)
= csup((Ai+1 ∪ (Pi+1(Ai+1) ∩ Lm) ∪Bi)/s, s)
= csup((Ai+1 ∪Bi)/s, s)
= csup(Ai+1/s ∪Bi/s, s)
= csup((∪ω∈Pi+1(K̄i)ω ◦ L

↑
o([ω]))/s ∪Bi/s, s).

If u ∈ Bi/s then c(s,Ki+1/s, u) = c(s,Ki/s, u) by the following argument:

u ∈ Bi/s⇒ su ∈ Bi ⇒ ‖su‖ ≤ i [Lemma 4.2 (i)],

from which by Claim 4.5.1,

Π0(πKi(pk(su))) = Π0(πKi+1(pk(su))).
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From the definition of the cost of a string in a language it is now evident that

c(ε,Ki+1, su) = c(ε,Ki, su)
⇒ c(s,Ki+1/s, u) = c(s,Ki/s, u)
⇒ c(s,Ki+1/s, u) ≤ csup(Ki/s, s).

This takes care of the case u ∈ Bi/s. The other possible case is u ∈ Ai+1/s with u = tω
and st ∈ Pi+1(K̄i). Let t = σ0 . . . σ‖t‖−1. Observe that ĉ(s,Ki/s, t) = ĉ(s,Ki+1/s, t)
since

ĉ(s,Ki/s, t) =
l=‖t‖−1∑
l=0

ce(σl) +
k=‖st‖−1∑
k=‖s‖

∑
σ∈Π0(πKi (pk(st)))

cc(σ)

=
l=‖t‖−1∑
l=0

ce(σl) +
k=‖st‖−1∑
k=‖s‖

∑
σ∈Π0(πKi+1 (pk(st)))

cc(σ) [Claim 4.5.1]

= ĉ(s,Ki+1/s, t),

where Claim 4.5.1 is used with p‖st‖−1(st) substituted for s, ‖st‖ − 1 substituted for
i, ‖st‖ substituted for j, and k such that ‖s‖ ≤ k ≤ ‖st‖ − 1. Equipped with this
observation on the nature of ĉ(., ., .), the following argument is made.

c(s,Ki+1/s, u) = c(s,Ki+1/s, tω)
= ĉ(s,Ki+1/s, t) + c(st,Ki+1/st, ω)
= ĉ(s,Ki/s, t) + c(st,Ki+1/st, ω)
≤ ĉ(s,Ki/s, t) + csup(Ki+1/st, st)
= ĉ(s,Ki/s, t) + csup(L↑o([st]), st)
≤ ĉ(s,Ki/s, t) + csup(Ki/st, st)
≤ csup(Ki/s, s).

Since u is arbitrary we obtain from the two cases that csup(Ki+1/s, s) ≤ csup(Ki/s, s).
By induction, it follows that ∀j ≥ i ≥ ‖s‖,

csup(Kj/s, s) ≤ csup(Ki/s, s).

In particular, if i = ‖s‖, then

csup(Kj/s, s) ≤ csup(K‖s‖/s, s) = csup(L↑o([s]), s)

by definition ofKi. Now the optimality of L↑o([s]) gives csup(Kj/s, s) = csup(L↑o([s]), s).
Thus part (i) is proved.

The proof of part (ii) is similar. We begin with an analogous claim.
Claim 4.5.2. ∀s ∈ K̄, ‖s‖ ≤ j, 0 ≤ k ≤ ‖s‖,

Π0(πK(pk(s))) = Π0(πKj (pk(s))).

Proof. Consider first the case k < ‖s‖.

σ ∈ Π0(πK(pk(s)))
⇔ pk(s)σ ∈ Pk+1(L̄m)− Pk+1(K̄) [Lemma 4.1 (ii)]
⇔ pk(s)σ ∈ Pk+1(L̄m)− Pk+1(K̄j) [Lemma 4.4]
⇔ σ ∈ Π0(πKj (pk(s))) [Lemma 4.1 (ii)].
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For the case k = ‖s‖,

σ ∈ Π0(πK(s))
⇔ sσ ∈ P‖s‖+1(L̄m)− P‖s‖+1(K̄) [Lemma 4.1 (ii)]
⇔ sσ ∈ P‖s‖+1(L̄m)− P‖s‖+1(K̄‖s‖+1) [Lemma 4.4]
⇔ sσ ∈ P‖s‖+1(L̄m)− P‖s‖+1(K̄‖s‖) [Lemma 4.2 (ii)]
⇔ σ ∈ Π0(πK‖s‖(p‖s‖(s))) [Lemma 4.1 (ii)]
⇔ σ ∈ Π0(πKj (s)) [Claim 4.5.1].

This claim is used to prove part (ii). Let t = σ0 . . . σ‖t‖−1. By definition,

c(s,K/s, t) =
k=‖t‖−1∑
k=0

ce(σk) +
k=‖st‖∑
k=‖s‖

∑
σ∈Π0(πK(pk(st)))

cc(σ)

=
k=‖t‖−1∑
k=0

ce(σk) +
k=‖st‖∑
k=‖s‖

∑
σ∈Π0(πK‖st‖ (pk(st)))

cc(σ) [Claim 4.5.2]

= c(s,K‖st‖/s, t)
≤ csup(K‖st‖/s, s)
= csup(Kj/s, s), j ≥ ‖s‖ [part (i)]
= csup(L↑o([s]), s).

Thus csup(K/s, s) ≤ csup(Kj/s, s), j ≥ ‖s‖, and by the optimality of L↑o([s])

csup(K/s, s) = csup(Kj/s, s) = csup(L↑o([s]), s)

for all j ≥ ‖s‖.
We now have all properties of the sequence 〈Kn〉 necessary to prove existence of

the supremal DP-optimal solution.
THEOREM 3.7. Let |Σ| < ∞. If an optimal solution exists, then a DP-optimal

solution exists, and furthermore, the unique supremal DP-optimal solution, denoted
by L↑DO, exists.

Proof. We claim that K is the supremal DP-optimal solution. Note first that
by Lemma 4.1 (iii), K is a sublanguage of Lm. By Lemma 4.3, K is nonempty. The
DP-optimality of K is immediate from Lemma 4.5 (ii) since for all s ∈ K̄

csup(K/s, s) = csup(L↑o([s]), s),

which is the definition of a DP-optimal sublanguage of Lm.
The supremality of K is established as follows. Let ADO be any DP-optimal

sublanguage of Lm and s = σ0 . . . σ‖s‖−1 ∈ ADO ⊆ L↑o. Since L↑o(= K0) exists, we get
ε ∈ K̄0, whence ε ∈ P0(K̄0). This is the base case for an inductive argument. Assume
pj(s) ∈ Pj(K̄j). Since ADO/pj(s) is optimal and Kj/pj(s) = L↑o([pj(s)]) it implies
that

ADO/pj(s) ⊆ Kj/pj(s)
⇒ σj ∈ ADO/pj(s) ⊆ Kj/pj(s)
⇒ pj+1(s) ∈ K̄j

⇒ pj+1(s) ∈ Pj+1(K̄j) = Pj+1(K̄j+1) [by Lemma 4.2 (ii)].

Thus, by induction, p‖s‖(s) = s ∈ P‖s‖(K̄‖s‖). Since s ∈ Lm and L↑o([s]) exists, we
get ε ∈ L↑o([s]). This implies s ∈ A‖s‖ and so

s ∈ P‖s‖(A‖s‖) ∩ Lm ⊆ B‖s‖ ⊆ K.
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Since s was arbitrary we have ADO ⊆ K. Thus K contains all DP-optimal solutions,
and being itself DP-optimal, it is the unique supremal DP-optimal solution.

The next theorem proves that if two strings are Nerode equivalent in the plant
language, they are Nerode equivalent in the supremal DP-optimal sublanguage.

THEOREM 3.8. If s, t ∈ L↑DO and s ≡Lm t then s ≡L↑DO t.
Proof. For s ∈ L̄m let L↑DO(s) represent the supremal DP-optimal sublanguage in

the post-language Lm/s if it exists. Since s, t ∈ L↑DO and it is supremal DP-optimal
we have

L↑DO/s = L↑DO(s),

L↑DO/t = L↑DO(t)

because by definition of DP-optimality the post-languages are DP-optimal, and it is
easily shown that if the post-languages are not supremal, then L↑DO is not supremal
either. But s ≡Lm t implies that Lm/s = Lm/t. This, together with the uniqueness
of the supremal DP-optimal sublanguage, gives

L↑DO(s) = L↑DO(t)⇒ L↑DO/s = L↑DO/t⇒ s ≡L↑DO t.

The last theorem in this section is the existence theorem for DESs represented by
regular languages. The theorem uses the existence of the unique supremal DP-optimal
sublanguage, Theorems 3.8 and 3.1.

THEOREM 3.3. Let Lm be a regular language. An optimal solution exists iff there
exists Am ⊆ Lm, Am regular, controllable, and having the following property for any
n ∈ N :

∀s = tu∗v ⊆ Am, ĉ(t, Ām, un) = 0.

Proof. If an optimal solution exists, then L↑DO exists. By Theorem 3.8, ‖L↑DO‖ ≤
‖Lm‖. This implies that L↑DO is regular. By Proposition 2.7, L↑DO is also control-
lable. For tu∗v ⊆ L↑DO, ĉ(t, L

↑
DO, u

n) ≥ nĉ(t, L↑DO, u), which implies csup(L↑DO) ≥
nĉ(t, L↑DO, u). Then necessarily, ĉ(t, L↑DO, u) = 0. This establishes that the given con-
ditions are necessary for the existence of an optimal solution.

The sufficiency is argued as follows. LetAm be as in the hypothesis of the theorem.
Let s = σs0 . . . σ

s
‖s‖−1 ∈ Am. The condition on ĉ(., ., .) implies the following. For i ≤ j,

pi(s) ∼Am pj(s) =⇒ ĉ(pi(s), πAm , σ
s
i . . . σ

s
j−1) = 0.

Thus,

c̄(pk(s), πAm(pk(s)), σsk) > 0 =⇒ [pk(s)σsk]Am 6= [pi(s)]Am

for all i ≤ k. Since Lm is a regular language |{k : [pk(s)σsk]Am 6= [pi(s)]Am , i ≤ k}| ≤
‖Am‖. Thus

c(ε,Am, s) ≤ ‖Am‖(c̄e + |Σ|c̄c)
=⇒ csup(Am) ≤ ‖Am‖(c̄e + |Σ|c̄c).

Thus Am ⊆ Lm is a bounded cost sublanguage defined over a finite alphabet. The
existence of an optimal sublanguage is immediate from Theorem 3.1.

All the existence results stated in section 3 are now proven.



DES OPTIMAL CONTROL: EXISTENCE THEORY 517

5. Computability. We have developed the existence theory and some of the
structural properties of optimal supervisors for DESs represented by any formal lan-
guage consisting of strings of finite length. This section is concerned with the ad-
ditional developments possible for DESs represented by regular languages only; i.e.,
we are able to develop controller synthesis algorithms having polynomial complexity.
The algorithms involve several complex manipulations of FSMs and are unfortunately
more complicated than the algorithms synthesizing legal supervisors. Accordingly, we
have tried to be careful and rigorous in arguing the correctness and complexity of our
synthesis algorithms. Intuitive explanations, showing similarities with shortest path
algorithms for finite vertex-directed graphs, are provided. However, this controller
synthesis problem computes an optimal submachine of a FSM or, in graph-theoretic
terms, an optimal subgraph of a directed graph. It requires additional stages of pro-
cessing not seen in the shortest path problem.

In general, there are infinitely many sublanguages of Lm, and therefore, infinitely
many candidate solutions. It is assumed in the subsequent development that an
optimal sublanguage, i.e., one that realizes the infimum, exists. We show how to
synthesize a FSM generating the supremal DP-optimal sublanguage (L↑DO). This is
done in two steps. First it is shown that a FSM generating the supremal DP-optimal
solution is contained within the set of submachines of any FSM (G) generating the
plant language. This is Theorem 3.9. While this theorem characterizes a finite set
within which the solution may be found, it gives no way of identifying the submachine
of interest. We solve this problem by setting up an appropriate optimization problem
on the set of submachines of G. The submachine of interest is an optimal solution to
this problem. Thus, a FSM generating an optimal sublanguage can at least be found
by evaluating the objective function for every submachine of G and then finding one
that realizes the minimum. This is the import of Theorem 5.3.

The following additional notation is used in this section. We define for any FSM
A and q ∈ QA,

T (A) = {(σ, q, q′) : σ ∈ Σ, q ∈ QA, δA(σ, q) = q′},
T (A, q) = {(σ, q, q′) : σ ∈ Σ, δA(σ, q) = q′}.

These two functions represent the transitions in the machine A and the transitions
defined at each state of A, respectively. ΣA(q) will denote the active event set at
state q of machine A. The projection functions π1, π2, π3 are used to represent the
first, second, and third components of the 3-tuple (σ, q, q′), respectively. Recall the
definition of a submachine of a FSM from section 2. It is immediate that T (A) ⊆
T (G). The statement “A ⊆ G” denotes that A is a submachine of G. We also say A
is a submachine of G at q whenever q0A = q ∈ Q and A ⊆ G.

We are particularly interested in trim [8] submachines of G. Trim submachines
of G at q0 generate nonblocking sublanguages of Lm. If G is accessible with respect
to q0 and co-accessible with respect to Qm then it is trim. The notation M(G, q) =
{A ⊆ G : A trim, q0A = q} represents the set of trim submachines of G at q. The set
M(G, q) has a maximal element, in the sense that all other elements of M(G, q) are
submachines of the maximal element. The maximal element is denoted by M(G, q).
The language generated by an FSM A is denoted by L(A), and the marked language,
by Lm(A). If A is trim then L(A) = Lm(A). We reserve the symbol G for a trim
generator of Lm. Since Lm is nonblocking,

Lm(G) = L̄m = L = L(G).
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The following general property of regular languages gives us an important im-
plication of Theorem 3.8. Its proof is omitted. The interested reader is referred to
[10].

LEMMA 5.1. Let Am ⊆ Lm have the property,

((s, t ∈ Ām) ∧ (s ≡Lm t))⇒ s ≡Am t.

Let G = 〈Σ, Q, qo, Qm, δ〉 be an FSM generating Lm. Then there exists a submachine
of G that generates Am.

It is evident from Theorem 3.8 that L↑DO and Lm satisfy the preconditions of
Lemma 5.1. We can now prove Theorem 3.9.

THEOREM 3.9. Let G be an FSM generating Lm and let an optimal sublanguage
of Lm exist.

(i) There exists a unique submachine of G generating L↑DO.
(ii) L↑DO is a regular language.

Proof. By Theorem 3.7, L↑DO exists. Part (i) follows from Theorem 3.8 and
Lemma 5.1. The uniqueness property follows from the determinism of G. (ii) is
immediate from (i).

To identify the required submachine we define a new optimization problem on the
set of trim submachines of G as follows.

For all q ∈ Q,Ao ∈M(G, q) is an optimal submachine if

cgsup(Ao) = min
A∈M(G,q)

cgsup(A) <∞.

The notation cgsup(A) represents the worst-case behavior that is possible in submachine
A. Its mathematical definition is

cgsup(A) = sup
s∈Lm(A)

cg(q0A, A, s),

where cg(q0A, A, s) is the cost of a string s, which starts at q0A and is generated by
A. For any submachine A and state q ∈ QA and string s = σs0σ

s
1 . . . σ

s
‖s‖−1, such that

δ∗A(s, q) exists, the mathematical definition of cg(., ., .) is

cg(q, A, s) =
j=‖s‖−1∑
j=0

ce(σsj ) +
j=‖s‖∑
j=0

∑
e′∈T (G,δ∗(pj(s),q))−T (A,δ∗A(pj(s),q))

cc(e′)

=
j=‖s‖−1∑
j=0

c̄g(δ∗A(pj(s), q), A, σsj ) + c̄g(δ∗A(s, q), A, φ),

where c̄g(., ., .) is a one-stage cost function. The lower limit of the control cost sum-
mation represents the set of transitions in G that are disabled in A. The one-stage
cost function is defined for any submachine A, state q′ ∈ QA, and σ ∈ ΣA(q′) by

c̄g(q′, A, σ) = ce(σ) +
∑

τ∈T (G,q′)−T (A,q′)

cc(π1(τ)).

Note that φ is a dummy symbol having zero event cost. The term containing φ has only
control costs associated with the end of the string. We also define, for mathematical
convenience, the function

ĉg(q, A, s) =
j=‖s‖−1∑
j=0

c̄g(δ∗A(pj(s), q), A, σsj ),

with the last term of cg(., ., .) missing.
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Note the similarity of cg(., ., .) with the function c(., ., .) denoting the cost of a
string occurring in a sublanguage of Lm. The cost of a transition σ generated by
A at state q′, (c̄g(q′, A, σ)), is the event cost of the transition plus the control cost
of all events disabled at state q′ in submachine A. The event cost of a transition is
independent of the submachine. This is not true of the control cost. A transition in
a smaller submachine may have more control costs associated with it than the same
transition in a bigger submachine. This is because smaller submachines imply more
disabling actions. The following result, similar to Theorem 3.4, is useful. Its proof is
omitted.

LEMMA 5.2. Let A ⊆ B ⊆ G. Then for all s ∈ Σ∗ and q ∈ QA such that δ∗A(s, q)
is defined, we have

c̄g(q, A, s) ≥ c̄g(q,B, s),
cg(q,M(A, q), s) ≥ cg(q,M(B, q), s) if δ∗A(s, q) ∈ QmA.

The new optimization problem on FSMs has been set up to get the following
equalities. If s ∈ Lm(A) and t is such that δ∗(t, q0) = q0A, then cg(q0A, A, s) =
c(t,Lm(A), s). Obviously, then, for any submachine A of G,

cgsup(A) = csup(Lm(A)).(5.1)

This is the desired relationship between the objective function of our new FSM opti-
mization problem and the original language optimization problem. This relationship
does not in itself imply that an optimal solution to the FSM problem generates an
optimal solution to the language problem. The complication is due to the fact that in
general most sublanguages of Lm are not generated by submachines of G. However,
Theorem 3.9 together with the above equality are enough to establish the equivalence
of the FSM and the language optimization problems. To state the theorem we require
one more concept. This is the definition of a DP-optimal submachine. It is analogous
to the definition of a DP-optimal sublanguage.

A submachine ADO ∈ M(G, q) is DP-optimal iff it is optimal and for all q′ ∈
QADO ,M(ADO, q′) is an optimal submachine in M(G, q′).

Note that the statement “A is an optimal submachine of G” will imply q0A = q0
unless stated otherwise. If a particular DP-optimal FSM includes all other DP-optimal
FSMs as submachines of itself, then we call it the maximal DP-optimal submachine.
The following theorem asserts the existence of a unique maximal DP-optimal subma-
chine of G and that it generates the supremal DP-optimal sublanguage of Lm. The
theorem concludes our investigation of computability since the maximal DP-optimal
submachine can be found by exhaustively searching the finite set of trim submachines
of G. Recall that the notation L↑DO(.) represents the supremal DP-optimal sublan-
guage of the language (.).

THEOREM 5.3. Assume that an optimal sublanguage of Lm exists. Then an
optimal submachine of G exists, and the unique maximal DP-optimal submachine
(G↑DO) of G also exists. Moreover, Lm(G↑DO) = L↑DO(Lm(G)); i.e., the maximal
DP-optimal submachine generates the supremal DP-optimal sublanguage of Lm(G).

Proof. Since an optimal sublanguage exists, by Theorem 3.7, L↑DO exists and
csup(L↑DO) < ∞. From this, by (5.1), Theorem 3.9, and the finiteness of the set of
submachines of G, an optimal submachine of G exists. By Theorem 3.9 there exists
a submachine of G that generates L↑DO. Let this FSM be denoted by G↑DO ⊆ G. We
show that G↑DO is the maximal DP-optimal submachine of G.
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Claim 5.3.1. G↑DO is a DP-optimal submachine of G.
Proof. Let there exist Aq ∈M(G, q), q ∈ QG↑DO , such that

cgsup(Aq) < cgsup(M(G↑DO, q)).

Pick some s such that δ∗
G↑DO

(s, q0) = q. By (5.1)

csup(Lm(Aq), s) < csup(Lm(M(G↑DO, q)), s) = csup(L↑DO/s, s).

This contradicts the DP-optimality of L↑DO. Thus M(G↑DO, q) is optimal. Since q is
arbitrary, G↑DO is a DP-optimal submachine of G.

Claim 5.3.2. Let A be a DP-optimal submachine of G. Then Lm(A) is a DP-
optimal sublanguage of Lm(G); i.e., for all s ∈ Lm(A),Lm(A)/s is optimal.

Proof. Pick any s ∈ Lm(A) such that δ∗A(s, q0) = q. M(A, q) is a DP-optimal
submachine in M(G, q). Thus, by (5.1), cgsup(M(A, q)) = csup(Lm(A)/s, s) < ∞.
This implies that an optimal solution exists in Lm(G)/s. By Theorem 3.9 there exists
a submachine in the set M(G, q) which generates L↑DO(Lm(G)/s). Let this subma-
chine be represented by A↑DOq. By Claim 5.3.1, A↑DOq is a DP-optimal submachine of
M(G, q). M(A, q) is DP-optimal by hypothesis, which gives

csup(Lm(A)/s, s) = cgsup(M(A, q)) = cgsup(A↑DOq) = csup(L↑DO(Lm(G)/s), s).

Thus Lm(A)/s is optimal in Lm(G)/s. Since s was any string in Lm(A), Lm(A) is a
DP-optimal sublanguage.

Claim 5.3.3. A maximal DP-optimal submachine of G exists. It is G↑DO.
Proof. Let A be a DP-optimal submachine of G. Pick any s ∈ Lm(A). By Claim

5.3.2, Lm(A) is DP-optimal. It must be a sublanguage of L↑DO(Lm(G)), which by
hypothesis is generated by G↑DO. Hence s ∈ Lm(G↑DO). Thus Lm(A) ⊆ Lm(G↑DO),
and since both are submachines of the deterministic machine G, we obtain A ⊆ G↑DO.
Thus G↑DO is the maximal DP-optimal submachine of G.

The proof of the theorem is immediate from Claim 5.3.3.
The maximal DP-optimal submachine of a machine G at q will be denoted by

Mo
D(G, q). Theorem 5.3 establishes that if an optimal sublanguage exists, then the

maximal DP-optimal solution to the FSM problem will generate the supremal DP-
optimal solution to the language problem. Observe that the only assumptions made
are that the plant language is regular and the costs are nonnegative. We have been
unable to prove this method for other optimal solutions. It is easy to show from Theo-
rem 5.3 and (5.1) that any optimal FSM of G will generate an optimal sublanguage of
Lm(G). It is the converse that is not obvious. In particular, we do not know whether
the supremal optimal sublanguage is generated by an optimal submachine of G or,
for that matter, by any FSM at all.

On the basis of Theorem 5.3 the computational complexity is exponential. How-
ever, we will make some additional assumptions in order to address the issue of poly-
nomial computability in section 6.

6. Polynomial computation of optimal solutions. In this section we in-
vestigate the polynomial computability of optimal solutions. Additional assumptions
are required to establish the results in this section. We treat languages modeled by
cyclic and acyclic FSMs separately. This is because the computational complexities
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in the two cases, and also the required assumptions, are significantly different. The
synthesis algorithms together with proofs of correctness and complexity are stated for
cyclic systems. Acyclic systems are easier to deal with than cyclic systems. They are
discussed informally.

6.1. DP-optimal solutions: The cyclic case. As stated before, two addi-
tional assumptions are required for polynomial computability. They are

(i) ∀σ ∈ Σ, ce(σ) > 0,
(ii) |Qm| = 1.

In other words all event costs are positive, and there is only one marked state in G.
This implies that all strings of Lm(G) are equivalent since they go to the same state.
Note that this is not necessarily true of L(G).

We are relatively comfortable with the first assumption since it appears likely
that in practice the execution of any event will entail the use of some system resource
and accordingly some positive cost. Of course, from a theoretical standpoint, this
cost is allowed to be any arbitrarily small positive number. The critical property
realized by this assumption is that though plant FSMs may contain cycles, the optimal
submachines must be acyclic. In a way we have a type of decyclization problem on a
finite vertex digraph. Unfortunately the general decyclization problem is intractable.
Here we exploit properties of the cost structure to do this in polynomial time.

The second assumption seems more severe. Note that connecting multiple marked
states to a hypothetical marked state does not work. If the algorithm given below is
started at this hypothetical marked state, it is easy to construct cases for which the
algorithm will be incorrect. We explain this further after presenting the algorithm.
For acyclic FSMs the single marked state assumption is not required, which might
suggest the existence of a polynomial-time algorithm in the general case. However,
based on our investigations of the multiple marked state case, we conjecture that any
algorithm accommodating multiple marked states will be of higher complexity than
the algorithm presented here.

An intuitive explanation of the algorithm follows this formal statement. It is
basically a DP-algorithm that recurses backwards state by state. At each state it
solves a “local” optimization problem. We formalize this local object as a one-step
submachine. It is any FSM comprised of a state in q ∈ Q and some of the transitions
defined out of it, i.e., any subset of T (G, q). Any state of Qm is allowed to be a
one-step submachine by itself.

DEFINITION 6.1. A is a one-step submachine of G at q if

A = 〈Σ, QA, q0A, QmA, δA〉

satisfies
(i) q0A = q,
(ii) T (A) ⊆ T (G, q),
(iii) T (A) = ∅ ⇒ q0A ∈ Qm,
(iv) QA = {q′ ∈ Q : ∃τ ∈ T (A), (π3(τ) = q′)} ∪ {q},
(v) QmA = Qm ∩QA.

Note that A is not generally trim. The transitions of A are some subset of those
defined out of q in G. Condition (iii) says that only in the case q ∈ Qm is the trivial
submachine

〈Σ, {q}, q, {q}, δ|Σ×∅〉
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a valid one-step submachine of G at q. We denote the set of all one-step submachines
of G at q byM1(G, q). This set also has a maximal element in the sense of containing
all other elements as submachines. It is denoted by M1(G, q).

The Algorithm. All new notation adopted in this section is defined below for
easy reference. The states of the plant FSM are assumed to be stored in a data
structure having pointers to parent states and children states. Note that |Q| = n.
Complexity will be stated in terms of n and |Σ|.

(i) SL = solved list of states (also sometimes called the closed list).
(ii) Topt(q) = the set of transitions of M1(Mo

D(G, q), q), the maximal one-step
submachine of Mo

D(G, q) rooted at q.
(iii) CL = {(q, csup(Mo

D(G, q))) : q ∈ QG}. This is the cost list maintained by
the algorithm for the recursive computation of the cost associated with a particular
submachine.

The variables CLtemp and T tempopt (.) are also used for temporary storage of the
same quantities.

(iv) C = set of states to be processed in the current iteration.
(v) Pf (C) = {q ∈ Q : ∃τ ∈ T (G), (π2(τ) = q) ∧ (π3(τ) ∈ C)}.

(vi) Sf (C) = {q ∈ Q : ∃τ ∈ T (G), (π3(τ) = q) ∧ (π2(τ) ∈ C)}.
In other words Pf (C) is the set of parent states of set C, and Sf (C), the set of children
of states of C. A function denoted by cmax(E), where E is some set of transitions of
a one-step submachine, will be used in the algorithm. This is appropriate since each
step of the algorithm only computes some one-step object and assumes that the rest
has been correctly computed in prior iterations. The function represents worst-case
cost.

For the convenience of modularity we present the algorithm as a main program
and two subprograms referred to as Optimize and One-Step Optimize, respectively.
The main program primarily orders the backward recursive search and updates C and
SL based on data provided by the subprogram Optimize. The optimization at each
state is described in the subprogram Optimize, which in turn calls the subprogram
One-Step Optimize.

The Main Program.
(i) Input: Σ, Q, qo, qm, δ, ce, cc.
(ii) Initialize: C = {qm}, SL = ∅, CL = ∅, CLtemp = ∅. If there exists σ ∈ Σuc

and q ∈ Q such that (σ, qm, q) ∈ T (G), then STOP since no optimal solution exists.
Otherwise set

Ê0(qm) = E0(qm) = ∅.

(iii) Optimize: Call subprogram Optimize with argument C.
(iv) Compute

A = {qd ∈ C : cmax(T tempopt (qd)) = min
q∈C

cmax(T tempopt (q))}.

(Note: cmax(.) is computed in the subprogram One-Step Optimize.)
(v)

∀q ∈ A Topt(q) = T tempopt (q),
CL→ CL ∪ {(q, cmax(Topt(q))},
SL→ SL ∪A,

CLtemp = ∅.
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(vi) Termination condition: Is qo ∈ SL ? If yes then STOP. Otherwise continue.
(vii) Computation of the states to be optimized in the next iteration: Compute

the following.

Pf (SL)
A = Pf (SL)− SL,

∀q ∈ A, Ê0(q) = {τ ∈ T (G, q) : π3(τ) /∈ SL},
E0(q) = T (G, q)− Ê0(q),

B = {q ∈ A : ∃τ ∈ Ê0(q), π1(τ) ∈ Σuc},
C = A−B.

If C = ∅, then STOP since no optimal solution exists.
(viii) GOTO (iii).
Complexity: Steps (i) and (viii) are independent of n. Step (ii) is linear in |Σ|.

Steps (iv), (v), and (vi) are linear in n. Step (vii) is O(n2|Σ|). This is explained in
Remark 6.1.1 made after the statement of this algorithm. Let the complexity of (iii)
be O(x). Because of step (viii) the complexity of the main program is O(n(x+n2|Σ|)).

Optimize.
(i) Input: C, {Ê0(q) : q ∈ C}, {E0(q) : q ∈ C}.

(ii) Pick any qd ∈ C.
(iii) Update C: C = C − {qd}.
(iv) If E0(qd) 6= ∅ order E0(qd) such that

i < j ⇒ ce(π1(τi)) + cgsup(Mo
D(G, qi)) ≤ ce(π1(τj)) + cgsup(Mo

D(G, qj)),

where π3(τk) = qk for k = i, j.
(v) If E0(qd) = ∅ then set cmax(E0(qd)) =

∑
τ∈T (G,qd) cc(π1(τ)). Else set

cmax(E0(qd)) = ce(π1(τn)) + cgsup(Mo
D(G, π3(τn))) +

∑
τ∈Ê0(qd)

cc(π1(τ)).

(vi) Call subprogram One-Step Optimize.
(vii) Termination condition: Is C = ∅? If yes then return to the main program.

Otherwise GOTO (iii).
Complexity: Steps (i), (ii), (iii), (v), and (vii) are independent of n. Step (iv) is

O(|Σ| log(|Σ|)). Let the complexity of (vi) or One-Step Optimize be O(y). Then since
|C| is O(n), the complexity of Optimize is O(n(|Σ| log(|Σ|) + y)).

One-Step Optimize. We use the notation cmax(E) where E = {τ1, . . . , τj} to
denote the following calculation:

cmax(E) = ce(π1(τj)) + cgsup(Mo
D(G, π3(τj))) +

i=n∑
i=j+1

cc(π1(τi)) +
∑

τ∈Ê0(qd)

cc(π1(τ)),

where Ê0(.) is precalculated in the main program.
(i) Input: qd, E0(qd), Ê0(qd), cmax(E0).

(ii) Initialize: E = E0(qd), E′ = E0(qd), CMAX = cmax(E0(qd)), T tempopt (qd) =
∅.
If E′ = ∅ then goto (iv).
Note that the elements of E′ are always kept in the same order as E0(qd).
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(iii) Compute E′ ← E′ − {τi : i = maxτj∈E′ j}. If E′ 6= ∅ then set

cmax(E′) = ce(π1(τi−1)) + cgsup(Mo
D(G, π3(τi−1))) +

k=n∑
k=i

cc(π1(τk)) +
∑

τ∈Ê0(qd)

cc(π1(τ)).

(iv) Termination condition: Is E′ = ∅?
If yes, then set

T tempopt (qd)← T tempopt (qd) ∪ E,
CLtemp ← CLtemp ∪ {(qd, cmax(E))}

and return to Optimize. Otherwise continue.
(v) Recursion condition: Is cmax(E′) < CMAX? If not then GOTO (iii). If yes,

then continue.
(vi) Set E = E′, CMAX = cmax(E′).

(vii) GOTO (iii).
Complexity: All steps here are independent of n. Since E0 is of order O(|Σ|) the

complexity of One-Step Optimize is O(|Σ|).
Remark 6.1.1. The following pieces of pseudocode compute step (vii) of the main

program.
Nextiter (A)

q = first (A)
trantest (q, T (G, q), A)
C ← C ∪ {q}
Nextiter (A− {q})

trantest (q, T (G, q), A)
τ = first (T (G, q))
if π3(τ) /∈ SL then

if π1(τ) ∈ Σuc
then Nextiter (A− {q})

else Ê0(q)← Ê0(q) ∪ {τ}
trantest (q, T (G, q)− {τ}, A)

else E0(q)← E0(q) ∪ {τ}
trantest (q, T (G, q)− {τ}, A)

The function Nextiter (.) computes the vertices to be optimized in the next iter-
ation. It stores the new list in C. The function first (.) returns the first element of
a set. It is assumed that the set is structured as a linked list. The function trantest
(.) checks transitions for the conditions stated in (vii) and computes E0(.) and Ê0(.).
The function trantest (.) may recurse at most |Σ| levels, and at each level the greatest
number of computations is |SL|. Thus trantest (.) is of order O(n|Σ|). Nextiter (.)
recurses at most |A| times. Since the cardinality of A is O(n) the overall complexity
of Nextiter (.) is O(n2|Σ|). Note that the computation of A itself is O(n2) and that
of Pf (SL) is O(n). Hence the dominant term is O(n2|Σ|).

The overall complexity of the algorithm can now be calculated as follows. Since
O(y) = O(|Σ|) the complexity of Optimize is

O(x) = O(n(|Σ|+ |Σ| log(|Σ|))) = O(n|Σ|+ n|Σ| log(|Σ|)) = O(n|Σ| log(|Σ|)).

The complexity of the main program is obtained by substituting for x. This gives

O(n(n|Σ| log(|Σ|) + n2|Σ|)) = O(n2|Σ| log(|Σ|) + n3|Σ|).
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In general the alphabet is expected to be small. In such cases the complexity is O(n3).
The complexity is set by the computation of the set C in the main program. The
updating of SL creates the O(n2|Σ| log(|Σ|)) term in the expression. Without the
ordering of E0(.) this step would have become exponential.

It is important to note that the algorithm as stated will generally produce a
submachine that is not trim. In particular, it will have states not accessible from q0.
However, the trimming of a submachine is a standard problem, and consequently we
shall not dwell on it any more.

We draw attention to the connection between the acyclic nature of the optimal
solution and the stopping criteria in (ii) and (vi) of the main program. Since there are
no cycles and only one marked state, if there is an uncontrollable transition defined
out of qm, then it must execute a path returning to qm. This is because the optimal
solution is also trim. This path is a cycle and we have a contradiction which is resolved
by concluding that the optimal solution does not exist. If the condition in (vi) fails to
evaluate, then once again the acyclic nature of the optimal solution guarantees that
the set C in (vii) will be nonempty (refer to the proof of Theorem 6.7 presented later
in this section).

The algorithm bears some procedural similarity to a backward recursive shortest
path algorithm. The shortest path algorithm will start at the terminal state and
place it on the solved list (SL). At each step it will develop the set of parents of
SL (denoted by Pf (SL)). From this set the algorithm identifies the next state to
be added to SL. This identification is O(n), and since the identification process is
repeated each time a state is added to SL, the overall complexity is O(n2).

Our algorithm also starts at the terminal state (qm) and places it in SL. At each
step it develops Pf (SL) (main program, (vii); complexity O(n2|Σ|)) and identifies
the next state to be added to SL (main program, (iv)). Unlike the path algorithm
the complexity of the identification process is O(n|Σ| log(|Σ|)). Since the process is
repeated each time a state is added to SL the overall complexity is O(n2|Σ| log(|Σ|)+
n3|Σ|).

The next state to be added to SL is determined as follows. Develop the set C
and pick some q ∈ C. In general, q has transitions leading to children which are
not in SL. Disable all such transitions and consider the one-step FSM constituted
of the remaining transitions (main program, (vii)). This is the set E0(q). Sort these
transitions (Optimize, (iv)) as required by Theorem 6.8 and construct the sequence
of submachines 〈M ′j〉. This sort is O(|Σ| log(|Σ|)). Next find the minimum cost Mj

(One-Step Optimize). Let it be denoted by Mq. Mq must be found for each q ∈ C.
The states realizing minq∈C cgsup(Mq) may be added to SL (main program, (iv), (v))
with the corresponding TT (q) representing M1(Mo

D(G, q), q) (main program, (v)).
This completes one iteration of of the algorithm. It continues until q0 ∈ A (main
program, (vi)). For a clearer understanding of the working of the algorithm, refer to
the example presented in section 6.

Before passing to the proofs of correctness we give a brief explanation of why the
introduction of a hypothetical marked state does not work. The correctness of the
algorithm, as will be proven in the subsequent results, rests upon the nonexistence of
cycles in the optimal solution and the property that the point at which the algorithm
starts is the one and only one point at which all strings terminate in the optimal
solution. No string that reaches this state ever goes anywhere again. The hypothetical
marked state would not have this property, since if two marked states are connected
to it a behavior might reach one marked state and hence the hypothetical state, but
then continue onto the other marked state and hence to the hypothetical marked state
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again. Thus, to make the algorithm correct, the hypothetical marked state should
only be identified with those marked states which in the optimal solution have no
transitions going out of them. How does one find this subset of Qm? Exhaustive
examination of all subsets of Qm is exponential in the cardinality of Qm. It is obvious
that new properties of the structure must be discovered and exploited to isolate this
subset.

It now remains to prove correctness. Since the algorithm computes by incre-
mentally constructing bigger submachines out of smaller submachines, we define an
algebraic operation called merge that combines FSMs.

DEFINITION 6.2 (merge operation). Let A,B be FSMs and q0C ∈ QA ∪ QB be
some state. Then

A⊕B = C = 〈ΣC , QC , q0C , QmC , δC〉,
ΣC = ΣA ∪ ΣB ,
QC = QA ∪QB ,
QmC = QmA ∪QmB ,

δC(σ, q) =

 δA(σ, q) if it exists,
δB(σ, q) if it exists,
undefined otherwise.

Observe that the merge is defined not just by A and B but also by the state qoC .
The merge of A and B produces a machine C whose transitions are the union of the
transitions of A and B. It is apparent from this definition that the merge of two trim
FSMs is not necessarily a trim FSM. It is also true that the transition function is not
necessarily well defined. Fortunately, the next lemma allows us to avoid these pitfalls
in this specific problem. Its proof is straightforward.

LEMMA 6.3. Let A,B ⊆ G. Then the transition function for C = A ⊕ B in
Definition 6.2 is well defined. Moreover, if q0A ∈ QB and A,B are trim, then

C = 〈ΣC , QC , q0B , QmC , δC〉

is a trim submachine of G.
The requirement that A,B be submachines of G ensures that if δA(σ, q) exists

and δB(σ, q) exists, then δA(σ, q) = δB(σ, q).
For allA,B ∈M(G, q) this lemma implies thatA⊕B ∈M(G, q), whenceM(G, q)

has a maximal element in the sense that all others in the set are submachines of it.
This maximal trim submachine of G at q will be denoted by M(G, q). Similarly, for
all A,B ∈M1(G, q) it can be shown that A⊕B ∈M1(G, q), and consequently, there
exists a maximal element M1(G, q). Obviously T (M1(G, q)) = T (G, q). In the subse-
quent development it is implicitly assumed that all FSMs are trim unless mentioned
otherwise.

The following theorem establishes that the merge operation also preserves DP-
optimality.

THEOREM 6.4. Let A be a DP-optimal submachine in the set M(G, q0A) and B
be DP-optimal in M(G, q0B). Furthermore, let q0B ∈ QA. Then A⊕B is DP-optimal
in M(G, q0A).

Proof. Observe that by Lemma 6.3 A ⊕ B is a trim submachine of G. It lies
in the set M(G, q0A). Let s ∈ Σ∗ be such that δ∗A⊕B(s, q) exists for some q ∈
QA ∪ QB . Assume q ∈ QA. The case q ∈ QB is identical. By the definition of
“⊕” there exists a decomposition of s such that s = u1 . . . un, where for all i, 1 ≤
i ≤ n, δ∗A⊕B(u1 . . . ui, q) = qi, {q1, . . . qn−1} ⊆ QA ∩ QB and δ∗A⊕B(ui, qi−1) =
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δ∗A(ui, qi−1) or δ∗B(ui, qi−1). Note that q0 = q. From Lemma 5.2, if δ∗A(ui, qi−1) ex-
ists then ĉg(qi−1, A ⊕ B, ui) ≤ ĉg(qi−1, A, ui). The case when δ∗B(ui, qi−1) exists is
similar. We also note that for all qi, 1 ≤ i ≤ n− 1,

cgsup(M(A, qi)) = cgsup(M(B, qi)).

This follows from the DP-optimality of A and B. The rest of the proof proceeds by
induction. Let

cg(ui+1 . . . un,M(A⊕B, qi)) ≤ cgsup(M(A, qi)) = cgsup(M(B, qi)).

Consider a case with δ∗B(ui, qi−1) defined. The case with δ∗A(ui, qi−1) defined is iden-
tical.

cg(ui . . . un,M(A⊕B, qi−1))
= ĉg(qi−1, A⊕B, ui) + cg(ui+1 . . . un,M(A⊕B, qi)) [by definition of cg(.)]
≤ ĉg(qi−1, B, ui) + cgsup(M(B, qi)) [Theorem 5.2]
≤ cgsup(M(B, qi−1)) [ui ◦ Lm(M(B, qi)) ⊆ Lm(M(B, qi−1))]
= cgsup(M(A, qi−1))

The base case is argued as follows. Assume δ∗A(un, qn−1) exists. The case where
δ∗B(un, qn−1) exists is similar. By Theorem 5.2,

cg(un,M(A⊕B, qn−1)) ≤ cg(un,M(A, qn−1)) ≤ cgsup(M(A, qn−1)).

By induction

cg(s,M(A⊕B, q)) = cg(u1 . . . un,M(A⊕B, q)) ≤ cgsup(M(A, q)).

Since s was arbitrary we obtain cgsup(M(A⊕ B, q)) ≤ cgsup(M(A, q)), whence M(A⊕
B, q) is optimal. Since q was arbitrary and the case q ∈ QB can be argued similarly,
we conclude that A⊕B is DP-optimal.

We are now ready to establish correctness. The first theorem establishes the
relevance of the DP-equation.

THEOREM 6.5.

cgsup(Mo
D(G, qd)) = min

A′∈M1(G,qd)

[
max

τ∈T (A′)
[c̄g(qd, A′, π1(τ)) + cgsup(Mo

D(G, π3(τ)))]
]
,

Mo
D(G, qd) = M ′ ⊕

(
⊕τ∈T (M ′)M

o
D(G, π3(τ))

)
,

where M ′ is the maximal minimizing A′ above.
Proof. The first equation is an application of the principle of dynamic program-

ming. The second equation is a consequence of the maximality of Mo
D(G, q) and

Theorem 6.4.
Thus a maximal DP-optimal solution is constituted of other maximal DP-optimal

solutions. If the other maximal DP-optimal solutions are known, then it is only neces-
sary to find the largest minimizing A′ in the DP-equation. While this is a substantial
simplification, observe that there are O(2|Σ|) candidate one-step submachines. In
view of the large number of times this equation is solved, exhaustive examination
is computationally prohibitive. Consequently, we have sought methods to solve the
equation in polynomial time. We will prove that this can be done in O(|Σ| log(|Σ|))
computations.



528 RAJA SENGUPTA AND STÉPHANE LAFORTUNE

Some new notation is adopted for convenience. SL(i) denotes the value of the
set SL in the ith iteration of the algorithm. For each q ∈ Pf (SL)− SL let B1(q, SL)
represent the maximal one-step submachine of G rooted at q with all transitions
disabled other than those leading into SL. Define

B(qd, SL) = B1(qd, SL)⊕
(
⊕τ∈T (B1(qd,SL))M

o
D(G, π3(τ))

)
.

The next result establishes that in each iteration of the algorithm there exists a
parent state q of SL(i) for which the DP-optimal solution exists. The lemma also
says that the solution will be a submachine of B(q, SL). Lemmas 6.7 and 6.8 show
how to find one or more such q. The three lemmas together show that if an optimal
solution exists, then SL will keep growing until q0 is one of the q’s.

LEMMA 6.6. If an optimal sumachine of G exists and q0 /∈ SL(i), then there
exists q ∈ Pf (SL(i))− SL(i) such that Mo

D(G, q) ∈M(B(q, SL(i)), q).
Proof.
Claim 6.6.1. Let q /∈ SL(i). Then for all s ∈ Σ∗ such that δ∗(s, q) is defined, there

exists

q′ ∈ Pf (SL(i))− SL(i) and t, u ∈ Σ∗

such that s = tu and δ∗(t, q) = q′.
Proof. From the description of the algorithm (main program, (v)), we have

SL(i) ⊆ SL(i + 1). The proof is immediate from qm ∈ SL(i), the co-accessibility
of G with respect to qm and q /∈ SL(i).

Claim 6.6.2. If an optimal submachine of G exists and q0 /∈ SL(i), then there
exists q ∈ (Pf (SL(i))− SL(i)) such that Mo

D(G, q) exists.
Proof. Pick any s ∈ Lm(Mo

D(G, q0)). Since Lm(Mo
D(G, q0)) ⊆ Lm(G), Claim 6.6.1

implies that there exists q ∈ Pf (SL(i)) − SL(i), tu ∈ Σ∗ such that s = tu and
q = δ∗(t, q0). Thus q is a state ofMo

D(G, q0), which implies that an optimal submachine
exists at q. Hence Mo

D(G, q) exists for at least one q ∈ Pf (SL(i))− SL(i).
Let P ′f (SL(i)) = {q ∈ Pf (SL(i))− SL(i) : Mo

D(G, q) exists}. By the prior claim,
P ′f (SL(i)) 6= ∅. We now prove the lemma by contradiction.

For all q ∈ P ′f (SL(i)) let Mo
D(G, q) /∈M(B(q, SL(i)), q). Then, by Theorem 6.5,

M1(Mo
D(G, q), q) /∈M1(B(q, SL(i)), q),

which implies that there exists τ ∈ T (Mo
D(G, q), q), π3(τ) /∈ SL(i). Pick such a τ . By

Claim 6.6.1 there exists q′′ ∈ Pf (SL(i))−SL(i) and u ∈ Σ∗ such that δ∗(π1(τ)u, q) =
q′′ and π1(τ)u ∈ L(Mo

D(G, q)).
Define R(q) = {q′ ∈ Pf (SL(i))− SL(i) : ∃s ∈ L(Mo

D(G, q)), δ∗(s, q) = q′, q 6= q′}.
Obviously q′′ ∈ R(q) and R(q) 6= ∅ for all q ∈ P ′f (SL(i)). Consider the following
inductive construction.

(i) Base step: Pick any q ∈ P ′f (SL(i)). Set q1 = q.
(ii) Induction step: qj+1 = q, q ∈ R(qj).

Since R(q) 6= ∅, qj+1 always exists and the construction never terminates. Since
no cycles are possible in an optimal solution,

q1, . . . qj , qj+1 /∈ R(qj+1)
⇒ 0 < |R(qj+1)| ≤ |P ′f (SL(i))| − (j + 1)
⇒ j + 1 ≤ |P ′f (SL(i))|

for all j. By the finiteness of P ′f (SL(i)) this is a contradiction. Thus the lemma is
proved.
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The next lemma indicates how q as in the prior lemma can be found. From the
construction of B(q, SL(i)) and the fact that Mo

D(G, q′) exists for all q′ ∈ SL(i), it is
evident that if Mo

D(G, q) ∈ M(B(q, SL(i)), q) then cgsup(B(q, SL(i))) < ∞. By The-
orem 5.3 the maximal DP-optimal submachine M̂o

D(G, q) of B(q, SL(i)) also exists.
These entities, well defined by this argument, are referred to in the next lemma.

LEMMA 6.7. For all q ∈ Pf (SL(i))− SL(i) such that cgsup(B(q, SL(i))) <∞, let
M̂o
D(G, q) be the maximal DP-optimal submachine in the set M(B(q, SL(i)), q). In

particular, let qd ∈ Pf (SL(i))− SL(i) be such that

cgsup(M̂o
D(G, qd)) = min

q∈Pf (SL(i))−SL(i)

cgsup(B(q,SL(i)))<∞

cgsup(M̂o
D(G, q)).

Then Mo
D(G, qd) = M̂o

D(G, qd).
Proof. Let cgsup(Mo

D(G, qd)) < cgsup(M̂o
D(G, qd)). Then

Mo
D(G, qd) /∈M(B(qd, SL(i)), qd).

Set q1 = qd. We define an inductive construction with this as the base case.
Inductive step: Let qj ∈ Pf (SL(i)) − SL(i),Mo

D(G, qj) /∈ M(B(qj , SL(i)), qj),
and

cgsup(Mo
D(G, q1)) > · · · > cgsup(Mo

D(G, qj)).

We will now show the construction of qj+1 having all the same attributes as qj . Since
Mo
D(G, qj) /∈ M(B(qj , SL(i)), qj), by Theorem 6.5 there exists τ ∈ T (Mo

D(G, qj))
such that π3(τ) /∈ SL(i). By Claim 6.6.1 there exists q′′ ∈ Pf (SL(i))−SL(i), uv ∈ Σ∗

such that

π1(τ)uv ∈ Lm(Mo
D(G, qj)) ∧ δ∗(π1(τ)u, qj) = q′′.

Assume q′′ is such that Mo
D(G, q′′) ∈ M(B(q′′, SL(i)), q′′). By the above properties

of q′′,

cgsup(Mo
D(G, qj)) > cgsup(Mo

D(G, q′′)) [δ∗(π1(τ)u, q) = q′′, π1(τ)u ∈ L(Mo
D(G, qj))]

= cgsup(M̂o
D(G, q′′)) [Mo

D(G, q′′) ∈M(B(q, SL(i)), q)]
≥ cgsup(M̂o

D(G, qd)) [hypothesis of theorem]
> cgsup(Mo

D(G, qd)) [by assumption]
= cgsup(Mo

D(G, q1)) [base case qd = q1]
> cgsup(Mo

D(G, qj)) [induction hypothesis],

which is absurd. Thus Mo
D(G, q′′) /∈M(B(q′′, SL(i)), q′′). Moreover

cgsup(Mo
D(G, q′′)) < cgsup(Mo

D(G, qj)) < · · · < cgsup(Mo
D(G, q1)).

Set qj+1 = q′′. The state qj+1 has all the properties of qj . Observe that the positivity
of the event cost function has been explicitly used in the above argument.

This is obviously a nonterminating construction. From the uniqueness of the
maximal DP-optimal solution (Theorem 5.3 and the strict inequality on the cost
Mo
D(G, qj)) we have that no two members of the sequence 〈qj〉j=∞j=1 are equal. But for

any given j,

{q1, . . . , qj} ⊆ Pf (SL(i))− SL(i).
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Since the set Pf (SL(i)) − SL(i) has finite cardinality, this is a contradiction. The
lemma is immediate.

The next lemma shows how the one-step submachine of M̂o
D(G, q) may be con-

structed efficiently, i.e., O(|Σ| log(|Σ|)), though in general there could be 2|Σ| candidate
solutions.

LEMMA 6.8. Let qd ∈ Q be such that Mo
D(G, qd) exists. Consider the following

construction. Let

Q̂ = {q ∈ Q : (∃τ ∈ T (G, qd), π3(τ) = q) ∧ (Mo
D(G, q) exists)} = {q1, . . . , q|Q̂|}.

For all i such that 1 ≤ i ≤ |Q̂| let

Mi = M ′i ⊕
(
⊕j=ij=1M

o
D(G, qj)

)
,

where T (M ′i) = {τ1, . . . , τi} ⊆ T (G, qd), τi = (σi, qd, qi), and
ce(π1(τi)) + cgsup(Mo

D(G, qi)) ≤ ce(π1(τi+1)) + cgsup(Mo
D(G, qi+1)).

Then Mo
D(G, qd) ∈ {Mi : 1 ≤ i ≤ |Q̂|}.

Proof. For each qi define the one-step submachine

Ai = 〈Σ, {qd, qi}, qd, qm, δAi〉,
δAi(σi, qd) = qi.

We assume that δAi is undefined for all other states and events. Since Ai has only
one transition and Mo

D(G, qi) is trim, Ai ⊕Mo
D(G, qi) is a trim submachine of G at

qd. Furthermore

Mi = ⊕j=ij=1(Aj ⊕Mo
D(G, qj)),

whence by Lemma 6.3, Mi is trim for all i. We prove that for all j ≤ i,

Ai ⊕Mo
D(G, qi) ⊆Mo

D(G, qd)⇒ Aj ⊕Mo
D(G, qj) ⊆Mo

D(G, qd).

The latter inclusion is equivalent to the statement

Mo
D(G, qd)⊕A = Mo

D(G, qd),

where A = Aj ⊕Mo
D(G, qj). The following argument proves this statement.

We use the notation Qf (.) to represent the set of states of the machine (.). We
first show that M(A, q) is optimal for all q ∈ Qf (A), q 6= qd. By definition of “⊕”
Qf (Mo

D(G, qd) ⊕ A) = Qf (Mo
D(G, qd)) ∪ QA. Consider the case q ∈ Qf (Mo

D(G, qd)).
Let

X = Qf (M(Mo
D(G, qd), q)) ∩Qf (Mo

D(G, qj)).

Then we obtain the following decomposition of Mo
D(G, qd).

M(Mo
D(G, qd)⊕A, q) = M(Mo

D(G, qd), q)⊕ (⊕q′∈XM(Mo
D(G, qj), q′))

= Mo
D(G, q)⊕ (⊕q′∈XMo

D(G, q′)) [Theorem 5.3]
= Mo

D(G, q) [Theorem 6.4].

The case q ∈ Qf (Mo
D(G, qj)) can be treated similarly by interchanging Mo

D(G, qd) and
Mo
D(G, qj) in the preceeding argument. Thus for all q 6= qd, M(Mo

D(G, qd) ⊕ A, q)
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is optimal. We now prove the case q = qd by splitting the argument into two cases.
Consider any s ∈ Lm(Mo

D(G, qd) ⊕ A). The first case covers all s such that the first
event of s lies in Mo

D(G, qd), whereas the second case covers all s such that the first
event lies in A.

Case 1. s = σju.

cg(s,Mo
D(G, qd)⊕A) = c̄g(qd,Mo

D(G, qd)⊕A, σj) + cg(qj ,M(Mo
D(G, qd)⊕A, u))

= ce(σj) +
∑
τ∈T (G,qd)−(T (Mo

D(G,qd),qd)∪T (A,qd)) cc(π1(τ))
+cg(qj ,Mo

D(G, qj), u)
≤ ce(σj) +

∑
τ∈T (G,qd)−T (Mo

D(G,qd),qd) cc(π1(τ))
+cgsup(Mo

D(G, qj))
≤ ce(σi) +

∑
τ∈T (G,qd)−T (Mo

D(G,qd),qd) cc(π1(τ))
+cgsup(Mo

D(G, qi))
= c̄g(qd,Mo

D(G, qd), σi) + cgsup(Mo
D(G, qi))

= c̄g(qd,Mo
D(G, qd), σi) + cgsup(M(Mo

D(G, qd)qi))
≤ cgsup(Mo

D(G, qd)).

Note that the second-to-last inequality follows from the ordering hypothesis.
Case 2. s = σku, σk 6= σj .

cg(s,Mo
D(G, qd)⊕A) = c̄g(qd,Mo

D(G, qd)⊕A, σk) + cg(qk,M(Mo
D(G, qd)⊕A, u))

= ce(σk) +
∑
τ∈T (G,qd)−(T (Mo

D(G,qd),qd)∪T (A,qd)) cc(π1(τ))
+cg(qk,Mo

D(G, qk), u)
≤ ce(σk) +

∑
τ∈T (G,qd)−T (Mo

D(G,qd),qd) cc(π1(τ))
+cgsup(Mo

D(G, qk))
= c̄g(qd,Mo

D(G, qd), σk) + cgsup(Mo
D(G, qk))

= c̄g(qd,Mo
D(G, qd), σk) + cgsup(M(Mo

D(G, qd)qk))
≤ cgsup(Mo

D(G, qd)).

Observe that in Case 2 we have the following advantage:

σk ◦Mo
D(G, qk) ⊆Mo

D(G, qd).

The same cannot be said of j in Case 1. The extra steps in Case 1 take us from j to
i, the i being equivalent to k in Case 2.

Thus for all s ∈ Lm(Mo
D(G, qd)⊕A) we have

cg(qd,Mo
D(G, qd)⊕A, s) ≤ cgsup(Mo

D(G, qd)),

and consequently, cgsup(Mo
D(G, qd) ⊕ A) ≤ cgsup(Mo

D(G, qd)). Thus Mo
D(G, qd) ⊕ A is

optimal. Since we have already shown that for all q 6= qd

M(Mo
D(G, qd)⊕A, q) = Mo

D(G, q),

it follows that Mo
D(G, qd)⊕A is DP-optimal. Since the maximal DP-optimal solution

is unique this implies

Mo
D(G, qd)⊕A ⊆Mo

D(G, qd).

The reverse inclusion being obvious, we conclude that

Mo
D(G, qd)⊕A = Mo

D(G, qd)⇒ Aj ⊕Mo
D(G, qj) ⊆Mo

D(G, qd).

The lemma is immediate.
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The correctness proof is a simple argument based on these results.
THEOREM 6.9. The algorithm is correct. It computes the maximal DP-optimal

FSM Mo
D(G, q0) with worst-case complexity

O(n2|Σ| log(|Σ|) + n3|Σ|).

Proof. We prove correctness inductively. As a base case we show that Topt(qm) is
computed correctly. From step (ii) of the main program, C = {qm}. Since ce(.) > 0
there are no cycles in any optimal solution. Also, there exists only one marked state.
These two facts taken together imply that if there exists (σ, qm, q) ∈ T (Mo

D(G, q0))
such that σ ∈ Σuc, then all controllable trim submachines (submachines constructed
by disabling only controllable events) must contain some cycle passing through qm.
All optimal submachines, if they exist, must lie within the class of controllable sub-
machines, and consequently, no optimal solution exists. Thus the testing condition
in step (ii) is correct. If an optimal solution exists, then, qm being the only marked
state, Mo

D(G, qm) must exist and T (Mo
D(G, qm)) = ∅. Note that T tempopt (qm) = ∅ by

step (iv) of One-Step Optimize. In step (v) of the main program, A = {qm} and
consequently Topt(qm) = ∅, as theoretically expected. Thus the computation for qm
is correct.

Assume that for all q ∈ SL, Topt(q), cmax(Topt(q)), and consequently Mo
D(G, q)

and cmax(Mo
D(G, q)) are known correctly. By the DP-equation (Theorem 6.5), for

any qd ∈ Pf (SL) − SL, it is only necessary to find the maximal A1 ∈ M1(G, qd)
which solves the DP-equation.

Statement (vi) of the main program tests the hypothesis of Lemma 6.6. If the
program does not terminate here and an optimal solution exists, then the hypoth-
esis of Lemma 6.6 is satisfied and it guarantees that C 6= ∅, since otherwise there
will not exist any B(q, SL), q ∈ Pf (SL) − SL with finite cost, and consequently no
Mo
D(G, q) ⊆ B(q, SL). Thus C in the main program is the set of all q ∈ Pf (SL)−SL

for which cgsup(B(q, SL)) is finite. Next, by Lemma 6.7 it is necessary to construct
M1(M̂o

D(G, q)) for each q ∈ C, and by Lemma 6.8 this can be done by sorting and
ordering the transitions of B1(q, SL). The required sorting and ordering is done in
step (iv) of Optimize, and the minimum of the ordered set is computed in One-Step
Optimize, which returns the transitions of M1(M̂o

D(G, q)) in T tempopt (q) and its cost in
CMAX. The minimization required in the hypothesis of Lemma 6.7 is done in step
(iv) of the main program. Consequently, by Lemma 6.7, Topt(q) in step (v) correctly
represents the transitions of M1(Mo

D(G, q)) and cmax(Topt(q)) = cgsup(Mo
D(G, q)). Thus

Topt(q) solves the DP-equation. This proves the correctness of the algorithm.
The complexity is immediate from remarks made during the statement of the

algorithm and from Remark 6.1.1.
Theorem 3.10 summarizes the computational theory for cyclic systems. It is an

aggregation of Theorems 5.3 and 6.9.
THEOREM 3.10. Let Lm be regular and such that all marked strings are equivalent

in the sense of Nerode. Let all event costs be positive. If an optimal solution exists,
then, given a generator of Lm with n states, a generator for the supremal DP-optimal
sublanguage is computable in time

O(n2|Σ| log(|Σ|) + n3|Σ|).

This concludes the examination of cyclic FSMs.

6.2. DP-optimal solutions: The acyclic case. In the subsequent develop-
ment the plant FSM (G) is assumed to be acyclic. The notation used is as defined in
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the prior subsection. The positivity assumption on the event costs and that on the
marked states are relaxed. Thus we return to the premise that the cost functions are
nonnegative and G is co-accessible with respect to the set Qm. Observe that since
ce(.) is always finite, the existence issues are trivial for the following reasons. The
FSM is acyclic and there exists a path of maximum length. All event costs being
finite this implies cgsup(M(G, q)) < ∞ for all q ∈ Q. The set of possible submachines
(sublanguages) is also finite. Thus optimal solutions always exist at all states of G.
The complexity result is as follows.

THEOREM 3.11. Let the plant language Lm be generated by a trim acyclic FSM
G having n states. A generator for the supremal DP-optimal solution is computable
in

O(n|Σ| log(|Σ|)).

The proof is similar to the cyclic case. We discuss it informally. Since the FSM
G is acyclic it is possible to order the states of G so that any state in the sequence
is connected only to states to the right of it. This can be done by a topological sort
(refer to Leiserson, Cormen, and Rivest [15, section 23.4, p. 485]). This sort is of
complexity

O(n+ |T (G)|) = O(n+ n|Σ|) = O(n|Σ|).

The rightmost states in this order are the marked states of zero outdegree, since they
are connected to nothing at all. The backward recursive algorithm will start at these
states. Note that since G is nonblocking there always exists at lease one marked
state having zero outdegree. The controller synthesis algorithm should proceed on
the sequence of states from right to left, starting with the marked states of zero
outdegree. For each state it must compute the maximal DP-optimal submachine at
that state, using the maximal DP-optimal submachines at states to the right of it.
This can be done by sorting the edges of the maximal one-step submachine rooted
at the state, as in step (iv) of Optimize. This is of complexity O(|Σ| log(|Σ|)). The
maximal DP-optimal submachine is then computed by One-Step Optimize exactly as
in the cyclic case. Since there are n states in the sequence, the overall time complexity
is O(n|Σ| log(|Σ|)). The leftmost state in the sequence will always be the initial state
if G is trim. The algorithm will terminate when it reaches the initial state.

6.3. Examples. The following example is constructed to illustrate the essential
features of the algorithm stated in section 6.1. The plant model and costs are as in
Figure 6.1 and Table 6.1, respectively.

For each run of the algorithm we present the values of the variables

C, T tempopt (.), cmax(T tempopt (.)), A, Topt(.), CL, SL.

The working of Optimize and One-Step Optimize is detailed only in the fourth itera-
tion or Run 4 of the algorithm. These routines, being simpler for the other iterations,
are omitted. The algorithm is initialized with C = {m}. The six figures given next
(Figures 6.2–6.7) represent the submachines computed by the six consecutive runs
required to find the optimal solution.
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FIG. 6.1. The plant machine G.

TABLE 6.1
Costs and controllability of G.

Event ce(.) cc(.) Remarks
α 0.5 2 Controllable
β 1 1 Controllable
γ 1 2 Controllable
δ 1 2 Controllable
u 1 ∞ Uncontrollable

m

FIG. 6.2. Run 1.

γ

4

m

FIG. 6.3. Run 2.

γ

α
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FIG. 6.4. Run 3.
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FIG. 6.5. Run 4.
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FIG. 6.6. Run 5.
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FIG. 6.7. Run 6.

Run 1:

T tempopt (m) = ∅,
cmax(T tempopt (m)) = 1,

Topt(m) = ∅,
cmax(Topt(m)) = 1,

CL = {(m, 1)},
SL = {m},
C = {2, 4}.

Note that 1 /∈ C since u is uncontrollable and 1 is not in SL (refer to step (vii) of the
main program).
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Run 2:

T tempopt (2) = {(δ, 2,m)},
cmax(T tempopt (2)) = 5,

T tempopt (4) = {(γ, 4,m)},
cmax(T tempopt (4)) = 4,

Topt(4) = {(γ, 4,m)},
cmax(Topt(4)) = 4,

CL = {(m, 1)(4, 4)},
SL = {m, 4},
C = {1, 2}.

Note that the figure is drawn by using the data in the array [Topt(m) Topt(4)].
Run 3:

T tempopt (1) = {(α, 1, 4)},
cmax(T tempopt (1)) = 4.5,

T tempopt (2) = {(δ, 2,m)},
cmax(T tempopt (2)) = 5,

Topt(1) = {(α, 1, 4)},
cmax(Topt(1)) = 4.5,

CL = {(m, 1)(4, 4)(1, 4.5)},
SL = {m, 4, 1},
C = {0, 2, 3}.

Run 4:

T tempopt (0) = {(γ, 0, 1)},
cmax(T tempopt (0)) = 7.5,

T tempopt (2) = {(δ, 2,m)}(refer to computations below),
cmax(T tempopt (2)) = 5,

T tempopt (3) = {(u, 3, 1), (γ, 3,m)},
cmax(T tempopt (3)) = 5.5,

Topt(2) = {(δ, 2,m)},
cmax(Topt(2)) = 5,

CL = {(m, 1)(4, 4)(1, 4.5)(2, 5)},
SL = {m, 4, 1, 2},
C = {0, 3}.

The working of Optimize and One-Step Optimize in the computation of T tempopt (2)
is as follows. Observe that E0(2) = {(β, 2, 1), (γ, 2, 4), (δ, 2,m)}. When qd = 2 in
Optimize the set is reordered by step (iv) to E0(2) = {(δ, 2,m), (γ, 2, 4), (β, 2, 1)}.
The required data is obtained from CL in Run 2, e.g., cgsup(Mo

D(G, 1)) = 4.5. The
event costs are of course known a priori. Finally, cmax(E0(2)) = 5.5. In One-Step
Optimize the sequence of computation is

(i)

E′ = {(δ, 2,m), (γ, 2, 4), (β, 2, 1)},
cmax(E′) = 5.5,
CMAX = 5.5.
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(ii)

E′ = {(δ, 2,m), (γ, 2, 4)},
cmax(E′) = 6,
CMAX = 5.5.

(iii)

E′ = {(δ, 2,m)},
cmax(E′) = 5,
CMAX = 5.

Thus, finally, we obtain E = {(δ, 2,m)} and T tempopt (2), cmax(T tempopt (2)) as already
stated.
Run 5:

T tempopt (0) = {(γ, 0, 1)(δ, 0, 2)},
cmax(T tempopt (0)) = 6,

T tempopt (3) = {(u, 3, 1), (γ, 3,m)},
cmax(T tempopt (3)) = 5.5,

Topt(3) = {(u, 3, 1), (γ, 3,m)},
cmax(Topt(3)) = 5.5,

CL = {(m, 1)(4, 4)(1, 4.5)(2, 5)(3, 5.5)},
SL = {m, 4, 1, 2, 3},
C = {0}.

Run 6:

T tempopt (0) = {(γ, 0, 1)(δ, 0, 2)},
cmax(T tempopt (0)) = 6,

Topt(0) = {(γ, 0, 1), (δ, 0, 2)},
cmax(Topt(0)) = 6,

CL = {(m, 1)(4, 4)(1, 4.5)(2, 5)(3, 5.5)(0, 6)},
SL = {m, 4, 1, 2, 3, 0}.

The information used to construct Figure 6.7 is in the array [Topt(.)]. Observe
that this FSM is not trim. It can now be trimmed by standard methods to obtain
the trim maximal DP-optimal submachine depicted in Figure 6.8.

7. Conclusion. In this paper we have introduced numerical performance mea-
sures in supervisory control theory. The DES is represented by a formal language,
and the measures are represented by event and control cost functions. The two costs
are associated with the generation of events by the DES and the disabling of events
by the supervisor, respectively. Using these quantitative measures, we have examined
the problem of minimizing the worst-case behavior of a DES. DESs operate in un-
certain environments and it is desirable that a DES supervisor deal with uncertainty
in a minimally restrictive manner. Thus computing a DES supervisor is more than
computing a trajectory. This gives some interesting and unique features to the prob-
lem of defining and computing an optimal supervisor. We have presented an example
in section 2, to motivate an interesting use of the cost function and DES models.
Another example may be found in [10].

The investigation in this paper shows us that optimal supervisory control is related
to two important domains. One is the area of path problems on a directed graph and
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FIG. 6.8. Trim maximal DP-optimal submachine of G.

the other is the optimization of Markov decision processes. For further details on the
latter, we refer to [10]. If there are no control costs, then an optimal supervisor is
one that disables everything other than the shortest path, and a minimally restrictive
supervisor would be one that allows all shortest paths. At the other end of the
spectrum we have the class of optimization problems on Markov chain models. In
stochastic control it is assumed that the system is uncertain, though one has stochastic
information about the uncertainty. The system may execute any of a set of transition
sequences, and control consists of altering the probability distribution on the set of
future behaviors. Like our formulation, this involves control costs. The concept of
disabling used in SCT can be viewed as altering the probability distribution so as
to reduce the probabilities associated with some events to zero. The modeling and
control assumptions are remarkably similar.

The principle of dynamic programming plays an important role. An interesting
feature of the worst-case problem, which it shares with other min-max problems, is
that all optimal solutions do not necessarily solve a DP-equation, though if optimal
solutions exist, the DP-equations also have solutions. These solutions represent the
DP-optimal solutions. Moreover, in this class of solutions there exists a minimally
restrictive DP-optimal solution. The minimally restrictive DP-optimal solution guar-
antees the best possible future regardless of the past.

Theorems 3.1–3.7 constitute the existence theory. Theorem 3.1 deals with DES
defined over a finite alphabet and asserts that the existence of a bounded-cost super-
visor is sufficient for the existence of an optimal supervisor. Theorem 3.2 asserts the
same for DES defined over a countable alphabet, but assumes positive event costs and
a finite active event set. Theorem 3.3 covers specifically the case of DES modeled by
regular languages. Theorems 3.5 and 3.7 deal with the existence of specific types of
optimal solutions, when it is already known that an optimal solution exists. The two
types of solutions are the supremal optimal solution and the supremal DP-optimal
solution, respectively.

Aside from the interesting property that the supremal DP-optimal solution always
guarantees the best possible worst-case behavior for a particular past in a minimally
restrictive manner, it also has a suboptimal structure that we are able to exploit to
develop two polynomially computable algorithms. The first is for DES modeled by
FSMs having cycles, and the second is for DES modeled by acyclic FSMs. The im-
plications of this suboptimal substructure are developed in section 5. Theorem 3.8
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implies that the number of Nerode equivalence classes of the supremal DP-optimal
sublanguage is no more than that of the plant language. Moreover, Theorem 3.9 says
that any deterministic FSM generating the plant language has a submachine gener-
ating the supremal DP-optimal sublanguage. The next step is to find the relevant
submachine. This is accomplished by formulating an equivalent (in the sense of equa-
tion (5.1)) optimization problem on the set of submachines of G (generator of the
plant language). Then Theorem 5.3 establishes that the required submachine is the
unique maximal DP-optimal submachine of G.

The polynomial-time algorithms presented in section 6 involve a few stages of
processing. They are backward recursive dynamic programming algorithms. We
summarize the acyclic case first. The algorithm starts at the set of terminal marked
states and recurses backwards. For each state a DP-equation has to be solved over
the set of subsets of the set of child states (Theorem 6.5). This is more complex than
computing a shortest path or supremal controllable sublanguage, which require search
operations only over the set of child states. Although the set of subsets of a state is not
polynomially related to the alphabet, it is possible to use certain structural properties
of the DP-optimal solution to sort the set of child states (Lemma 6.8). Using this
sorted set the DP-equation can be solved with linear complexity. All these operations
collectively result in an overall complexity of O(n|Σ| log(|Σ|)) (Theorem 3.11).

For DES modeled by FSMs having cycles, the additional complication lies in the
ordering of the vertices for the backward recursion. In the acyclic case this ordering
is straightforward and obtained by starting at the set of terminal marked vertices.
The DP-equation can be solved at all parents of this set, and the new set of solved
vertices obtained. Once again, the entire set of parent states can be computed, the
DP-equation can be solved at all of them, and the solved state list can be augmented
as before. This process can be repeated until the initial state is seen. However, if
the plant model has cycles in it, then the DP-equation cannot necessarily be correctly
solved for all parent states of the set of solved states. Once again, a structural property
of the supremal DP-optimal solution, i.e., that it is acyclic (hence the assumption that
event costs are positive), can be used to extract a subset of the parent states for which
the DP-equation can be solved correctly (Lemmas 6.6 and 6.7). This limited set of
states can be added to the solved list and the new process repeated until the initial
state is encountered. This additional processing of the set of parent states increases
the complexity and makes the overall complexity rise to O(n2|Σ| log(|Σ|) + n3|Σ|)
(Theorems 6.9 and 3.10). We have included an example, for the cyclic case, to help
the reader understand the different stages in the algorithms.

The controller synthesis process involves several complex manipulations of FSMs.
Accordingly, we have been mathematically rigorous in ascertaining the correctness
of the algorithms. To the best of our knowledge the different stages of processing
are unavoidable. It is desirable that an efficient controller synthesis algorithm be
developed for cyclic DES having multiple marked states.

Appendix. List of notation.

‖.‖ = Myhill congruence index of a language or the length of a string,
≡Lm = the Nerode equivalence relation on the language L̄m,
[.] = Nerode equivalence class of a string,
L̄m/ ≡Lm = set of equivalence classes of the language L̄m defined by the

Nerode equivalence relation.
ε = empty event,
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δA(., .) = transition function of machine A,
δ∗A(., .) = extension of δA to strings,
σj = jth event in the alphabet,
Π = set of control laws,
Πnb = set of nonblocking control laws,
Π0(.) = set of active events disabled by the control law after a

particular string,
π(.) = control law defined on a language,
πAm = control law generating sublanguage Am,
Σ = plant alphabet or event set,
Σc = set of controllable events,
Σuc = set of uncontrollable events,
ΣA(q) = active event set at state q in machine A,
ΣL(s) = active event set after string s in language L,
Σ∗ = Kleene star closure of Σ.

cc(.) = control cost,
ce(.) = event cost,
c(., .) = cost of a string in a language,
ĉ(., ., .) = cost of a string less control costs after the last event,
c̄(., ., .) = one-stage cost of an event in a language,
csup(.) = worst-case cost of a language,
cg(., ., .) = cost of a string in a FSM,
c̄g(., .) = one-stage cost of an event in a FSM,
cgsup(.) = worst-case cost of a FSM,
pj(.) = prefix of length j of a string,
q0 = initial state of FSM G,
q0A = initial state of submachine A,
s̄ = set of prefixes of the string s,
u∗ = {un : n ∈ N}.

G = plant FSM,
G↑DO = maximal DP-optimal submachine of G,
L = language,
L̄ = prefix closure of L,
Lm/s = post-language of s ∈ L̄m = {t ∈ Σ∗ : st ∈ Lm},
L↑o = supremal optimal sublanguage,
L↑DO = supremal DP-optimal sublanguage,
Lm = the plant language,
M(A, q) = the maximal trim submachine of A at q ∈ QA,
M1(A, q) = the maximal one-step submachine of A at q ∈ QA,
Mo
D(G, q) = maximal DP-optimal submachine of G at q,

Pf (q) = set of parent states of state q,
Pj(.) = set of strings of length j in a language,
QA = set of states of FSM A,
QmA = set of marked states of submachine A,
Sf (q) = set of children states of state q.
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L↑o([s]) = supremal optimal solution in Lm/s,
L↑DO([s]) = supremal DP-optimal solution in Lm/s,
M(A, q) = set of trim submachines of A at q ∈ QA,
M1(A, q) = set of one-step submachines of G at q ∈ QA,
R+ = positive reals (excluding zero).
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Abstract. This paper introduces certain nonlinear partially observable stochastic optimal con-
trol problems which are equivalent to completely observable control problems with finite-dimensional
state space. In some cases the optimal control laws are analogous to linear-exponential-quadratic-
Gaussian and linear-quadratic-Gaussian tracking problems. The problems discussed allow nonlin-
earities to enter the unobservable dynamics as gradients of potential functions. The methodology is
based on explicit solutions of a modified Duncan–Mortensen–Zakai equation.

Key words. stochastic control, risk-sensitive, nonlinear filtering, sector-bounded nonlinearities,
exact optimal controls
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1. Introduction. An important concept associated with closed loop control laws
for noisily observed linear systems is the so-called “separation principle.” This prin-
ciple allows one to solve an estimation problem first, and then solve a completely
observable control problem whose state is the estimate (observer state). For linear-
quadratic-Gaussian (LQG) tracking problems the observer dynamics are given by the
conditional mean and error covariance equations (see [1, 2]); for linear-exponential-
quadratic-Gaussian (LEQG) tracking problems the observer dynamics are given by
a variant of the conditional mean and error covariance equations (see [2, 3, 4, 5, 6]).
Thus, the problem of optimally controlling the dynamics of the plant is equivalent, for
both the LQG and the LEQG regulator problems, to a standard completely observ-
able optimal control problem with a new state which is either the conditional mean
or a variant of the conditional mean, respectively.

However, when the dynamics or observations are nonlinear in the unobservable
state, the optimal control laws are infinite dimensional and, consequently, the classical
separation principle discussed above does not apply. In this paper we identify classes
of partially observed optimal control problems which are equivalent to completely
observed control problems having a finite-dimensional state space. This allows us to
apply the separation principle, as in LEQG/LQG problems. We then state sufficient
conditions that enable us to compute the optimal control laws explicitly. Further, we
describe techniques which compute suboptimal control laws in closed form.

Our results are also applicable in evaluating Feynman–Kac integrals for partially
observable systems, such as the ones arising in risk-sensitive filtering. In addition,
from the duality between estimation and control problems, explicit solution of the es-
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timation problem translates into explicit solution of completely observable, stochastic
optimal control problems (see [7]).

The classes of problems which we shall treat involve an <n-valued unobservable
state process x(·) given by the stochastic differential equation

dx(t) = f(t, x(t))dt+B(t, u(t, y))dt+G(t)dw(t), x(0) ∈ <n, 0 ≤ t ≤ T.(1.1)

This is observed through an <d-valued process y(·), which satisfies the stochastic
differential equation

dy(t) = h(t, x(t))dt+N(t)
1
2 db(t), y(0) = 0 ∈ <d.(1.2)

y(·) is called the observation process. Here, w(·), b(·) are, respectively, <n- and <d-
valued independent Wiener processes, independent of the random variable x(0), u(·)
is the control process, and T ∈ < is fixed and finite. The cost function to be minimized
over the controls u (which are nonanticipating functionals of the observations y) is of
the general form

JθG(u(·)) = Eu
{∫ T

0 `2(t, x(t), u(t, y)) exp θ
(∫ t

0 `1(s, x(s), u(s, y))ds
)
dt

+ ϕ2(T, x(T )) exp θ
(∫ T

0 `1(t, x(t), u(t, y))dt+ ϕ1(T, x(T ))
)}

, θ > 0.
(1.3)

Here `i, ϕi, i = 1, 2 are real-valued functions and Eu denotes expectation with respect
to a certain probability measure Pu. The precise assumptions on the coefficients of
(1.1)–(1.3) are stated under Assumptions 2.1. This cost criterion appears to be quite
general, as it includes both the integral and the exponential-of-integral cost criteria:
the integral cost criterion can be found by considering

J0
I (u(·)) .=

{
JθG(u(·)); θ = 0

}
,(1.4)

while the exponential-of-integral cost criterion can be found as

JθEI(u(·)) .=
{
JθG(u(·)); `2 = 0, ϕ2 = 1

}
.(1.5)

The approach is based on an “information state” formulation which recasts the
problem as a completely observable control problem with an infinite-dimensional state
space, and control laws which are functionals of this quantity. The information state
associated with the usual integral cost criterion is the unnormalized conditional dis-
tribution; this satisfies the Duncan–Mortensen–Zakai (DMZ) equation (see [8]). The
information state for the exponential-of-integral cost criterion is a modified version of
the unnormalized conditional distribution; this satisfies a variant of the DMZ equation
[3, 4, 5, 9]. To distinguish between the two we refer to the former as the information
state and to the latter as the Feynman–Kac information state.

The results obtained in this paper are extensions of recent related work pursued
independently by Charalambous, Naidu, and Moore [9], Bensoussan and Elliott [10],
and Charalambous [6].

In section 2, we state the main assumptions, identify an “information state,”
and present an equivalent formulation of the partially observable problem (1.1)–(1.3),
which, although completely observable, has an infinite-dimensional state space.

In section 3, we restrict the coefficients in the unobservable dynamics, observa-
tions, and cost (see (1.1)–(1.3)) to forms (for simplicity we often write xt instead of
x(t), etc.)

f(t, x, u) = Ftx+ g(t, x) + ft +Btu, h(t, x) = Htx+ ht, `2 = 0,(1.6)



544 CHARALAMBOS D. CHARALAMBOUS AND ROBERT J. ELLIOTT

2`1(t, x, u) = Qtx.x+Rtx.x+ 2mtx+ 2ntu+ ˜̀1(t, x, u),

2ϕ1(T, x) = QTx.x+ 2mTx.
(1.7)

Here the notation “α.β .= α′β” is used throughout the paper, where (·)′ denotes the
transpose of a matrix. We show that if

g(t, x) = GtG
′
t

∂

∂x
φ(x),(1.8)

˜̀1(t, x, u) = 1
θ

{
|G−1

t (Ftx+ ft +Btu+ g(t, x))|2

−|G−1
t (Ftx+ ft +Btu)|2 + Tr(Dxg(t, x))

}
,

(1.9)

then the sufficient statistics are similar to those of an LEQG tracking problem and,
consequently, the optimal control laws are finite-dimensional. Moreover, if in addition

ϕ2(T, x) = exp(−φ(x)),(1.10)

then the optimal control law is precisely that of the LEQG tracking problem.
When ˜̀1(t, x, u) ≡ ˜̀1(x, u) = 1

θV (x, u), which is a quadratic function of x and u
and (without loss of generality) Gt = In (an identity matrix), using g(x) = Dxφ(x),
then (1.9) is reduced to the controlled Riccati equation

Tr

(
∂

∂x
g(x)

)
+ |g(x)|2 + 2(Fx+ f +Bu).g(x) = V (x, u).(1.11)

Solutions of (1.11) yield finite-dimensional controllers. Notice that, when ˜̀1(t, x, u) ≡
˜̀1(x, u) = 2

θ (Fx+f+Bu).g(x)+ 1
θ Ṽ (x), where Ṽ (·) is a quadratic function of x, then

(1.9) reduces to the Riccati equation

Tr

(
∂

∂x
g(x)

)
+ |g(x)|2 = Ṽ (x),(1.12)

encountered in identifying finite-dimensional solutions of the DMZ equation by Benes
in [11].

In section 3.1.1, we also show that if ϕ2 = 1 and the nonlinear drift terms g(·)
satisfy sector criteria (see A14), then suboptimal linear feedback control laws are
found by employing simple upper and lower bounds on the terminal cost. Finite-
dimensional sufficient statistics are found when the coefficients in the observations
have the form h(t, x) = 1

2x.H̃tx + Htx + ht. Analogous results for stochastic control
problems with cost (1.4) are derived in section 4. In section 5, we discuss the use of
dynamic programming to formally derive verification theorems for nonlinear stochastic
control problems which emerge from solving the above Riccati equations.

The optimal solutions of two examples that emerge from the developments of this
paper are now presented.

Example 1.1. Consider the stochastic optimal control analog of Benes’s filter (see
[11]):

dxt = tanh(xt)dt+ u(t, y)dt+ dwt, x(0) = 0 ∈ <,

dyt = xtdt+ dbt, y(0) = 0 ∈ <.
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The objective is to determine the optimal control law u∗ that minimizes the cost
function

Jθ(u(·)) = Eu
{

exp θ
2

(∫ T
0

[
Qx2

t +Ru(t, y)2
]
dt+QTx

2
T

)
× exp

(∫ T
0 u(t, y) tanh(xt)dt

)
× 1

cosh(xT )

}
,

where QT , Q ≥ 0, R > 0.
Example 1.2. Consider a stochastic optimal control problem with cubic nonlin-

earity in the unobservable dynamics:

dxt = −αx2p+1
t dt+ u(t, y)dt+ dwt, x(0) = 0 ∈ <, α > 0, p = 1, 3, 5, . . . ,

dyt = xtdt+ dbt, y(0) = 0 ∈ <.

The objective is to determine the optimal control law u∗ that minimizes the cost
function

Jθ(u(·)) = Eu
{

exp θ
2

(∫ T
0

[
Qx2

t +Ru(t, y)2
]
dt+QTx

2
T

)
× exp

(∫ T
0

1
2

[
| − αx2p+1

t + u(t, y)|2 − u(t, y)2 + ∂
∂x (−αx2p+1

t )
]
dt

+ α
2p+2x

2p+2
T

)}
,

whereQT , Q ≥ 0, R > 0. Completing the squares in x and u ensures that the integrand
in the exponent is bounded below.

The solution of Example 1.1 is an application of Theorem 5.1; the solution of
Example 1.2 is an application of Theorem 3.4 (using (1.8)–(1.10)). The optimal control
law and optimal sensitivity parameter for the above two problems are identical and
are:

u∗(t) = −R−1Σtrt = −R−1(1− θStPt)−1Strt,

θ∗ = sup {θ; Pt ≥ 0, St ≥ 0, (1− θPtSt) > 0 ∀t ∈ [0, T ]} .

Here Σ(·), S(·) are the solutions of the Riccati differential equations:

Σ̇t + 2θPtQ− Σ(R−1 − θP 2
t )Σt = 0, ΣT = (1− θQTPT )−1QT ,

Ṡt − St(R−1 − θ)St +Q = 0, ST = QT ,
(1.13)

and r(·), P (·) are solutions of the observer dynamics:

drt = θPtQrtdt+ u∗(t, r)dt+ Pt(dyt − rtdt), r(0) = 0,

Ṗ = −Pt(1− θQ)Pt + 1, P (0) = 0.

Setting R = Q = 1, QT = 0, one can verify that the control Riccati differential
equations and observer dynamics correspond to the following H∞, or robust, control
problem:

ẋt = u(t, y) + wt, x(0) = 0 ∈ <,

yt = xt + bt, y(0) = 0 ∈ <,

JH∞(u∗(·)) = inf
u

sup
(w,b)

∫ T

0

1
2

[
x2
t + u(t, y)2 − 1

θ

(
w2
t + b2t

)]
dt,
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where w(·), b(·) ∈ L2([0, T ];<). In addition, from [12, pp. 131–132], we know that, for
θ > 1, there exist unique solutions

Pt =
tan((

√
θ − 1)t)√
θ − 1

, St =
tan(
√
θ − 1(T − t))√
θ − 1

,

provided θ < 4T 2+π2

4T 2 . Also, for T = π
2 the optimal risk-sensitive parameter θ∗ is

θ∗ ≈ 1.3763. Therefore, for 1 < θ < 1.3763 the optimal control law u∗(·) exists
for a family of optimal controllers. An important observation concerning the exact
solution of Examples 1.1 and 1.2 is the linearity of the observer dynamics, despite
the nonlinearity of the unobservable dynamics. This feature of the observer is also
present in the Benes’s filter in [11].

2. Problem formulation.

2.1. Dynamics. We start with a reference probability space (Ω,A, P ) with
a complete filtration {Ft; t ∈ [0, T ]}, two {Ft; t ∈ [0, T ]}-adapted Wiener processes
{w(t); t ∈ [0, T ]}, {b(t); t ∈ [0, T ]}, and an F0-measurable random variable x(0) such
that:

w : [0, T ]× Ω→ <n is a standard Wiener process independent of b(·),

b : [0, T ]× Ω→ <d is a standard Wiener process independent of w(·),

x(0) : Ω→ <n is a random variable independent of w(·), b(·).

Further, suppose an observation process y(·) is given by

dy(t) = N(t)
1
2 db(t), y(0) = 0 ∈ <d.(2.14)

The assumptions concerning (1.1)–(1.3) are now given; some of these assumptions will
be weakened at a later stage depending on the nature of the optimization problem
under consideration.

ASSUMPTION 2.1. | · |2 denotes the Euclidean norm and L(V1;V2) denotes the
space of linear transformations of a vector space V1 into a vector space V2.

A1. U is a nonempty subset of <m.
A2. f : [0, T ]×<n → <n is continuous in t, continuous differentiable in x, and

|f(t, x)− f(t, z)| ≤ K|x− z|, |f(t, x)| ≤ K(1 + |x|).(2.15)

A3. B : [0, T ]× U → <n is Borel measurable, continuous in t, and

|B(t, u)| ≤ K(1 + |u|).

A4. h : [0, T ]×<n → <d is continuous in t, once continuously differentiable in t,
twice continuously differentiable in x, and

|h(t, x)| ≤ K(1 + |x|).(2.16)

A5. N : [0, T ]→ L(<d;<d), N = N
1
2N

1
2 ′, ∃ β1 > 0 such that N ≥ β1Id.

A6. G : [0, T ]→ L(<n;<n), ∃ β2 > 0 such that G ≥ β2In.
A7. `i : [0, T ]×<n×U → <, ϕi : [0, T ]×<n → <, i = 1, 2 are Borel measurable,

continuous in t, and

|`i(t, x, u)| ≤ K(1 + |x|+ |u|)li , |ϕi(t, x)| ≤ K(1 + |x|)ki , i = 1, 2,(2.17)

where li, ki are positive constants.
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A8. The distribution Π0(·) of x(0) has a density qθ0(·) in the space

Mk
.=
{
p ∈ L1(<n); ||p||k

.=
∫
<n

(1 + |x|k)|p(x)|dx <∞
}

for all k ≥ 1.

A9. N,G are continuous in t.
We write {Fyt ; t ∈ [0, T ]} for the complete filtration generated by the observation

σ-algebras σ {y(s); 0 ≤ s ≤ t ≤ T}, and we denote by Eu (resp., E, Êu), the expecta-
tion with respect to measure Pu (resp., P, P̂u).

DEFINITION 2.2. Denote by L2
y

(
[0, T ];<k

)
the set of square integrable stochastic

processes adapted to {Fyt , t ∈ [0, T ]} with values in <k. The set of admissible controls
denoted by Û is defined by

Û .=
{
u(·) ∈ L2

y([0, T ];<k); u(t, y) ∈ U , a.e. t P—a.s.
}
.

For the system (Ω,A, P ;Ft) and for u ∈ Û , consider the diffusion process x(·)
satisfying the Ito equation

dx(t) = f(t, x(t))dt+B(t, u(t, y))dt+G(t)dw(t), x(0) ∈ <n.(2.18)

Under Assumptions 2.1 we have B(·, u(·, y)) ∈ L2
y([0, T ];<n), and there exists a

unique solution x(·) ∈ L2(Ω,Ft, P ;C([0, T ];<n)) of (2.18). For u ∈ Û define the
{Ft; t ∈ [0, T ]}-adapted process Λu(·) by

Λu(t) .= exp
{∫ t

0
h(s, x(s)).N(s)−1dy(s)− 1

2

∫ t

0
h(s, x(s)).N(s)−1h(s, x(s))ds

}
.

For u ∈ Û , in view of Assumptions 2.1 we deduce that there exists some δ > 0 such that
supt∈[0,T ]E

{
exp

(
δ
∫ t

0 |N(s)−
1
2h(s, x(s))|2ds

)}
<∞, and thus we have E[Λu(t)] = 1

(as in [13, Theorems 4.7, 6.1]). Therefore, for u ∈ Û a new measure Pu can be defined
through the Radon–Nikodým derivative

dPu

dP
|FT

.= Λu(T ).

Then, Girsanov’s theorem states that Pu is a probability measure on (Ω,A;Ft) and
that if the stochastic processes wu(·), bu(·) are defined by

dwu(t) .= dw(t), dbu(t) .= db(t)−N(t)−
1
2h(t, x(t))dt,

then bu(·), wu(·) are independent standard Wiener processes on (Ω,A, Pu;Ft). Fur-
thermore, for each u ∈ Û , under Pu, (x(·), y(·)) is a unique weak solution of

dx(t) = f(t, x(t))dt+B(t, u(t, y))dt+G(t)dwu(t), x(0) ∈ <n,(2.19)

dy(t) = h(t, x(t))dt+N(t)
1
2 dbu(t), y(0) = 0 ∈ <d.(2.20)

Now let w(·) ≡ wu(·), b(·) ≡ bu(·); then (2.19), (2.20) correspond, respectively, to the
stochastic equations (1.1), (1.2).
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2.2. Cost criterion. The problem consists of controlling the evolution of the
state process {x(t); t ∈ [0, T ]} using the control process {u(t, y); t ∈ [0, T ]}, which is
a function of the data {y(t); t ∈ [0, T ]}. The objective is to find an optimal control,
denoted by u∗, such that

JθG(u∗(·)) = inf
u∈Û

JθG(u(·)),(2.21)

where JθG(u(·)) is given by (1.3). Under the reference probability measure P , (2.21)
has the equivalent representation

JθG(u(·)) = E
{

Λu(T )
∫ T

0 `2(t, x(t), u(t, y)) exp θ
(∫ t

0 `1(s, x(s), u(s, y))ds
)
dt

+ Λu(T )ϕ2(T, x(T )) exp θ
(∫ T

0 `1(t, x(t), u(t, y))dt+ ϕ1(T, x(T ))
)}

.

(2.22)

2.3. Feynman–Kac information state. In this section we shall introduce
the Feynman–Kac information state associated with the stochastic control problem
(2.19)–(2.21) (or equivalently, (1.1)–(1.3)).

For each u ∈ Û and φ ∈ C2
b (<n) consider the (backward) differential operator

Aφ
.=

1
2
Tr

(
GG′

∂2

∂x2φ

)
+ (f +B) .

∂

∂x
φ =

1
2
Tr
(
GG′D2

xφ
)

+ (f +B) .Dxφ,

whose formal adjoint is denoted by A∗. Write

χu,θt = exp
{
θ

∫ t

0
`1(s, x(s), u(s))ds

}
, (α, β) =

∫
<n
α(z)β(z)dz.

A consequence of the above formulation and Assumptions 2.1 is the following theorem.
THEOREM 2.3. Suppose Assumptions 2.1 hold with k1 = 2, l1 = 0, and U in

A1 is replaced by a compact subset of <m. For some 0 < θ ≤ θ∗ there exists an
Fyt -measurable positive function qθ(x, t) ≡ qθ(x, {y(s); 0 ≤ s ≤ t}, t) satisfying the
Feynman–Kac stochastic evolution equation

dqθ(x, t) = (A(t)∗ + θ`1(t, x, u(t))) qθ(x, t)dt+ h(t, x)qθ(x, t).N(t)−1dy(t),

qθ(x, 0) = qθ0(x),
(2.23)

P—a.s. for any u ∈ Û , which is unique among the functions with exponential growth
condition in the space variable.

For any bounded continuous function ϕ : <n → < with compact support we have

ρθt (ϕ) .= Eu
[
ϕ(x(t))χu,θt |F

y
t

]
=
∫
<n
ρθ(z, t)ϕ(z)dz =

∫
<n q

θ(z, t)ϕ(z)dz∫
<n q

θ(z, t)dz
,(2.24)

where

dρθ(x, t) = (A(t)∗ + θ`1(t, x, u(t))) ρθ(x, t)dt− θρθt (`1)ρθ(x, t)dt

+[h(t, x)− ρθt (h)].N(t)−1db̂u(t), db̂u(t) .= dy(t)− ρθt (h)dt,

ρθt (x, 0) = qθ0(x),

(2.25)

Pu—a.s. for any u ∈ Û .
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Furthermore, for u ∈ Û , the total cost given in section 2.2 has the equivalent
representation

JθG(u(·)) = E

{∫ T

0

(
`2(t, ·, u(t)), qθ(t)

)
dt+

(
ϕ2 exp θ(ϕ1), qθ(T )

)}
.(2.26)

When l1 = 2, similar results hold for sufficiently small values of θ > 0, that ensure
θ`1(t, x, u)− 1

2 |h(t, x)|2 < 0 ∀(t, x, u) ∈ [0, T ]×<n × U .
Proof. The evolution of the Feynman–Kac information state is established in [4]

(and in [9, 5] when the signal and observation noises are correlated). When θ = 0 this
theorem is derived in [14], by first establishing existence and uniqueness results for
(2.23) indirectly, using results from parabolic PDEs (see [15]). Following the deriva-
tion in [14], for a fixed sample path of the observation process y(·, ω) ∈ C([0, T ];<d)
and, consequently, a fixed sample path of the control process, we introduce the gauge
transformation:

q̂θt = exp(−h(t, x).N−1
t yt)qθt , 0 ≤ t ≤ T.(2.27)

Using (2.23) (see also [4, 16]), we see that q̂θt satisfies the following robust, or pathwise,
version of the Feynman–Kac information state equation:

∂

∂t
q̂θt = Â(t)∗q̂θt + e(t, x, yt)q̂θt , q̂θ(x, 0) = qθ(x, 0).(2.28)

Here

Â = A−Dx.GDx(h.N−1yt),(2.29)

and

e(·, x, yt) =
1
2
|G′Dx(h.N−1yt)|2 −N−1yt.

(
∂

∂t
h+Ah

)
− 1

2
|N− 1

2h|2 + θ`1.(2.30)

This is a parabolic PDE with y(·, ω) ∈ C([0, T ];<d) entering parametrically through
the coefficients. It has a bounded diffusion term, a linear growth drift term, and a
quadratic growth potential term (because l1 = 0). Therefore, for sufficiently small θ,
there exists a unique positive fundamental solution Γ̂(x, t; z, s), 0 ≤ s ≤ t ≤ T (see [15,
Theorem 4.5]) of (2.28) satisfying |Dm

x Γ̂(x, t; z, s)| < c(t− s)−(r+|m|)/2 exp[−µ |x−z|
2

t−s ],
0 ≤ |m| ≤ 2. Here c, µ are constants depending on y(·, ω). Then, (2.28) has the
classical solution q̂θ(·) ∈ C2,1

x,t (<n × [0, T ]) given by

q̂θ(x, t) =
∫
<n

Γ̂(x, t; z, 0)qθ(z, 0)dz,(2.31)

which is unique among the class of functions bounded above by α1 exp
(
−α2|x|2

)
, α1 >

0, α2 > 0. Since the gauge transformation (2.27) is invertible, one easily verifies that
qθt = exp(h(t, x).N−1

t yt)q̂θt solves (2.23) P—a.s. The results translate directly into
corresponding results for qθ(·), as claimed.

If we now set ρθ(x, t) = qθ(x, t)(
∫
<n q

θ(x, t)dx)−1 and apply the Ito differential
rule, (2.25) follows.

The derivation of (2.24) is established by introducing the adjoint backward version
of (2.28) and following the derivation in [14], which treats the case θ = 0. Moreover,
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by Assumptions 2.1, with l1 = 0, for y(·, ω) ∈ C([0, T ];<d), we have

ρθt ∈Mk, A(t)∗ρθt ∈Mk−1,
[
`1 − θρθt (`1)

]
ρθt ∈Mk,[

h− ρθt (h)
]
.N−1

[
dyt − ρθt (h)dt

]
ρθt ∈Mk−1

(2.32)

for all 0 < t ≤ T . This allows us to establish (2.24) for functions ϕ(·) which are con-
tinuous and satisfy the growth condition |ϕ(T, x)| ≤ expβ(|x|2), β > 0. Consequently,
for sufficiently small θ > 0, (2.26) is established.

From Theorem 2.3 we formally deduce, setting θ = 0, the evolution equation for
the information state known as the DMZ equation:

dq0(x, t) = A(t)∗q0(x, t)dt

+h(t, x)q0(x, t).N(t)−1dy(t), q0(x, 0) = q0
0(x) = qθ0(x).

(2.33)

The new stochastic control problem derived in Theorem 2.3, although fully observ-
able, has an infinite-dimensional state qθ(·), because the process qθ(·) is determined by
the PDE (2.23). If we are able to describe the state process qθ(·) by finite-dimensional
parameters, then we might be able to convert the infinite-dimensional control problem
of Theorem 2.3 to a standard, finite-dimensional control problem. This is done by
seeking an explicit solution of the equation governing the information state and its
Feynman–Kac version in terms of the solutions of a finite number of ordinary differ-
ential equations which form finite-dimensional sufficient statistics for the estimation
problem. If these statistics are also sufficient for the control problem, then by carrying
out the integration of inner product terms (·, ·) present in (2.26) (whenever possible),
we recover a cost function which is expressed in terms of the sufficient statistics.
Unfortunately, one cannot in general expect the state space of the Feynman–Kac in-
formation state to evolve on a finite-dimensional manifold unless some restrictions on
the vector fields f(t, ·, u), h(t, ·) are imposed.

3. Finite-dimensional Feynman–Kac information states.

3.1. Nonlinear dynamics linear sensor problem. First consider the follow-
ing family of nonlinear control systems.

Control system (Σ1
G). Suppose Assumptions 2.1 hold with l1 = 2, k1 = 2.

Suppose the dynamics, observations, and cost criterion are given by:

dxt = (Ftxt + gt(x) + ft) dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n,(3.34)

dyt = (Htx+ ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d,(3.35)

JθΣ1
G

(u(·)) = Eu
{
ϕ2(T, xT ) exp θ

2

(∫ T
0 [Qtxt.xt +Rtut.ut

+ 2mtxt + 2ntut + ˜̀1(t, xt, ut)]dt+ (QTxT .xT + 2mTxT )
)}

.
(3.36)

Further, suppose the following additional assumptions hold.
A10. The nonlinear drift term is the gradient of some potential function; that is,

g(t, x) = GtG
′
tDxφ(x), φ ∈ C2

x(<n),(3.37)

where φ(·) has at most quadratic growth in the space variable.
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A11. The nonlinear function ˜̀1(·) is related to the nonlinear drift term by

˜̀1(t, x, u) = 1
θ

{
2(Ftx+ ft +Btu).(GtG′t)

−1g(t, x)

+ g(t, x).(GtG′t)
−1g(t, x) + Tr(Dxg(t, x))

}
= 1

θ

{
|G−1

t (Ftx+ ft +Btu+ g(t, x)) |2

− |G−1
t (Ftx+ ft +Btu) |2 + Tr (Dxg(t, x))

}
.

(3.38)

A12. The density of random variable x(0) is

qθ0(x) = exp(φ(x))× q̃θ0(x), q̃θ0(x) =
exp(−P−1

0 (x− ξ).(x− ξ))
(2π)

n
2 |P0|

1
2

,(3.39)

where P0 = P ′0 ≥ 0.
A13. Qt = Q′t ≥ 0, Rt = R′t > 0 ∀t ∈ [0, T ].
Remark 3.1. Suppose mt = 0, nt = 0, ft = 0 ∀t ∈ [0, T ]. From A11 it is easily

verified that when Tr(Dxg(x, t)) ≥ 0 ∀(t, x) ∈ [0, T ]× <n, there exist matrices Qt ≥
0, Rt > 0, t ∈ [0, T ], such that the integrand in the exponential of (3.36) is nonnegative
∀(t, x, u) ∈ [0, T ]×<n × U .

For u ∈ Û the Feynman–Kac information state equation associated with system
Σ1
G is

dqθt = 1
2Tr

(
GtG

′
tD

2
xq
θ
t

)
dt−Dx.

(
qθt (Ftx+ gt(x) + ft +Btu)

)
dt

+ θ
2

(
Qtx.x+Rtu.u+ 2mtx+ 2ntu+ ˜̀1(t, x, u)

)
qθt dt

+ (Htx+ ht) .qθtN
−1
t dyt, qθ(x, 0) = qθ0(x).

(3.40)

We now show that (3.40) is, after a gauge transformation, equivalent to the Feynman–
Kac information state of a LEQG tracking problem.

Introduce the gauge transformation

q̃θt = exp(−φ(x))qθt .(3.41)

Using (3.40) and A10–A12 we derive the following stochastic PDE for q̃θ(·):

dq̃θt = 1
2Tr

(
GtG

′
tD

2
xq̃
θ
t

)
dt−Dx.

(
q̃θt (Ftx+ ft +Btu)

)
dt

+ θ
2 (Qtx.x+Rtu.u+ 2mtx+ 2ntu) q̃θt

+ (Htx+ ht) .q̃θtN
−1
t dyt, q̃θ(x, 0) = q̃θ0(x).

(3.42)

Now, (3.42) is the Feynman–Kac information state equation corresponding to the
LEQG tracking problem specified by (3.51)–(3.53) (see [3, 5]). Moreover, the solution
of (3.42) corresponding to setting θ = 0, and denoted by q̃0(·), is the solution of
the DMZ equation corresponding to the LQG tracking problem. As the coefficients
of (3.42) are continuous in t, we can infer that there exists a unique solution of
(3.42) among the class of Gaussian density functions [5, 6]. Using the invertibility of
the Gauge transformation (3.41) and the quadratic growth assumption on φ(·), the
existence and uniqueness results for q̃θ(·) translate directly into corresponding results
for qθ(·) satisfying (3.40).

From the solution of (3.42) and the gauge transformation (3.41) we have the
following lemma.
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LEMMA 3.2. Suppose there exists a 0 < θ ≤ θ∗ such that H ′tN
−1
t Ht − θQt ≥

0 ∀t ∈ [0, T ]. The solution of (3.40) is given by

qθ(x, t) = exp (φ(x))×
exp

(
−1

2P
−1
t (x− rt).(x− rt)

)
(2π)

n
2 |Pt|

1
2

× exp (ct + λt) .(3.43)

Here P = P ′ : [0, T ]→ L(<n;<n) is the solution of the Riccati equation

Ṗt = FtPt + PtF
′
t − Pt

(
H ′tN

−1
t Ht − θQt

)
Pt +GtG

′
t, P (0) = P0,(3.44)

and r : [0, T ]× Ω→ <n is the observer state satisfying

drt = (Ft + θPtQt) rtdt+ ftdt+Btu(t, y)dt

+ θPtm
′
tdt+ PtH

′
tN
−1
t (dyt −Htrtdt− htdt) , r(0) = ξ.

(3.45)

Moreover, c : [0, T ]× Ω→ <, λ : [0, T ]× Ω→ < are given by

ct =
∫ t

0
(Hsrs + hs) .N−1

s dys −
1
2

∫ t

0
|N−

1
2

s (Hsrs + hs) |2ds,(3.46)

λt = θ
2

∫ t
0 [Qsrs.rs +Rsu(s, y).u(s, y) + 2msrs

+2nsu(s, y) + Tr (PsQs)] ds.
(3.47)

Proof. This follows from the explicit solution of (3.42) (see, for example, [3, 5])
and the gauge transformation (3.41); it is also a special case of the results derived in
Theorem 3.7.

Rewriting the total cost (3.36) of system Σ1
G using (2.26) (by setting `2 = 0) and

then substituting (3.43), the resulting total cost is

JθΣ1
G

(u(·)) = E

{ ∫
<n ϕ2(T, x)× exp

(
φ(z) + θ

2 (QT z.z + 2mT z)
)

× 1
(2π)

n
2 |PT |

1
2

exp
(
− 1

2P
−1
T (z − rT ).(z − rT )

)
dz × exp (cT + λT )

}
= Êu

{ ∫
<n ϕ2(T, x)× exp

(
φ(z) + θ

2 (QT z.z + 2mT z)
)

× 1
(2π)

n
2 |PT |

1
2

exp
(
− 1

2P
−1
T (z − rT ).(z − rT )

)
dz × exp (λT )

}
.

(3.48)
In the second equality the expectation is with respect to measure P̂u and is established
as follows. Define Λ̂ut

.= exp(ct). Since (Hrt + ht) is a Gaussian random variable for
0 < θ ≤ θ∗ we have E[Λ̂ut ] = 1 ∀t ∈ [0, T ]. Therefore, for u ∈ Û we define a new
measure P̂u through the Radon–Nikodým derivative dP̂u

dP |FyT
.= Λ̂uT . (Note that this is

different from that defined in section 2.1 because for each t ∈ [0, T ], Λ̂ut is now an Fyt -
measurable random variable.) By Girsanov’s theorem P̂u is a probability measure
on (Ω,A;Fyt ) and the second equality in (3.48) is established. If we define db̂ut

.=
dyt − (Hrt + ht)dt, then b̂u(·) is a Wiener process corresponding to the innovations
process with correlation N(·) on (Ω,A, P̂u;Fyt ). Consequently, the observer state r(·)
satisfies, under measure P̂u, the following equation:

drt = (Ft + θPtQt) rtdt+ ftdt+Btu(t, y)dt

+θPtm′tdt+ PtH
′
tN
−1
t db̂ut , r(0) = ξ, db̂ut

.= dyt − (Hrt + ht)dt.
(3.49)
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Clearly, the optimal stochastic control problem associated with the family of control
systems Σ1

G is equivalent to the standard, completely observable, stochastic optimal
control problem of minimizing (3.48) subject to the observer state satisfying the linear
stochastic differential equation (3.49).

We have thus established the following recipe for constructing partially observable
stochastic optimal control problems equivalent to LEQG optimal control problems.

THEOREM 3.3. Consider the family of control system Σ1
G, and assume

ϕ2(T, x) = exp(−φ(x)).(3.50)

Then the optimal control law corresponding to Σ1
G is precisely given by the optimal

control law of the following LEQG tracking problem:

JθEQ(u∗(·)) = minu∈Û E
u
{

exp θ
2

(∫ T
0 [Qtxt.xt +Rtu(t, y).u(t, y)

+ 2mtxt + 2ntu(t, y)] dt+ (QTxT .xT + 2mTxT )
) }

,

(3.51)
subject to

dxt = (Ftxt + ft)dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n,(3.52)

dyt = (Htxt + ht)dt+N
1
2
t dbt, y(0) = 0 ∈ <d.(3.53)

Here x(0) is a Gaussian random variable with density q̃θ0 given in A12.
Proof. The proof follows from the above construction. The solution of (3.51)–

(3.53) is derived in [3] using the method of completing the squares, in [6], using
dynamic programming, and in [5], using a maximum principle; it is also given in
section 5.1.

3.1.1. Nonlinear systems Σ1
G with sector-bounded nonlinearities. Con-

sider now the family of nonlinear systems Σ1
G with ϕ2(T, x) = 1. In this case the

corresponding terminal cost of (3.48), which results from carrying out the integration
against the space variable, is not an exponential-of-quadratic function of the observer
state r, because φ(·) is generally a nonquadratic function of x. Consequently, the
optimal control minimizing (3.48) with ϕ2(T, x) = 1 subject to (3.49) cannot be com-
puted explicitly, as in Theorem 3.3. However, when such a situation arises one can
derive suboptimal control laws for the important class of nonlinear drift terms known
as sector-bounded nonlinearities (see [17, Chapter 5]). These are sometimes known
as first and third quadrant nonlinearities. This family of control systems is defined
by Σ1

G and the following assumption.
A14. Suppose ϕ2(T, x) = 1, φ(x) =

∑`
j=1

∫ yj
0 g̃j(σ)dσ, yj = Cjx, Cj ∈ (<n)′,

1 ≤ j ≤ `, where the {g̃}`j=1 satisfy the “sector criterion”

k−j |yj |2 ≤ g̃j(Cjx)Cjx ≤ k+
j |yj |2, 0 ≤ k−j ≤ k+

j , 1 ≤ j ≤ `.(3.54)

(Condition (3.54) ensures that the graph of yj → g̃j(yj) lies in the first and third
quadrants.)

Note that for the class of systems Σ1
G which satisfy A14, the martingale problem is

well posed, and therefore (3.34) has a unique weak solution (see [18, Theorem 10.2.2,
p. 255]). Moreover, by A10 and A14 we have

g(t, x) =
∑̀
j=1

GtG
′
tC
′
j g̃j(yj),

1
2

∑̀
j=1

k−j |yj |2 ≤ φ(x) ≤ 1
2

∑̀
j=1

k+
j |yj |2.(3.55)
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Substituting (3.55) into (3.48), the upper and lower bounds of φ(·) translate into the
following upper and lower bounds for JθΣ1

G
(u(·)), respectively:

Jθ,−Σ1
G

(u−(·)) ≤ JθΣ1
G

(u(·)) ≤ Jθ,+Σ1
G

(u+(·)),(3.56)

where

Jθ,−Σ1
G

(u−(·)) = Êu
{ ∫
<n exp

(
θ
2

[
Qθ,−T z.z + 2mT z

])
× 1

(2π)
n
2 |PT |

1
2

exp
(
− 1

2 |P
− 1

2
T (z − rT )|2

)
dz × exp (λT )

}
,

(3.57)

Jθ,+Σ1
G

(u+(·)) = Êu
{ ∫
<n exp

(
θ
2

[
Qθ,+T + 2mT z

])
× 1

(2π)
n
2 |PT |

1
2

exp
(
− 1

2 |P
− 1

2
T (z − rT )|2

)
dz × exp (λT )

}
.

(3.58)

Also

Qθ,−T
.= QT +

1
θ

∑̀
j=1

k−j C
′
jCj and Qθ,+T

.= QT +
1
θ

∑̀
j=1

k+
j C
′
jCj ,

where P (·), r(·) are solutions of (3.44), (3.49), respectively, and λ(·) is given by (3.47).
Moreover, the optimal control laws u−,∗(·), u+,∗(·) resulting from minimizing (3.57),
(3.58), respectively, subject to (3.49), are linear feedback, reminiscent of the optimal
control law of the LEQG tracking problem of Theorem 3.3. Hence, the optimal cost
of the family of control systems Σ1

G satisfying A14 is bounded from above and from
below by the optimal cost of an LEQG tracking problem.

3.1.2. Nonlinear systems Σ1
G with polynomial nonlinearities. We now

wish to relax the linear growth assumption on the nonlinear drift term g(·) associated
with the family of nonlinear control systems Σ1

G, to consider the situation when the
nonlinear drift terms are polynomial functions of the unobservable state as described
by the next assumption.

A15. n = d = m = 1, Gt = 1 ∀t ∈ [0, T ], k1 = 2p, and the nonlinear drift term
g(·) is a polynomial of odd degree and stable; that is,

g(t, x) = Dxφ(x) =
2p−1∑
j=1

Fjx
j , F2p−1 < 0, p ≥ 2.(3.59)

Notice that the growth condition (2.17) is now specified by substituting (3.59) into
(3.38). Conditions on existence and uniqueness of solutions for the robust version of
the DMZ equation, (2.33), having strongly unbounded coefficients (i.e., greater than
polynomial growth in x), are derived in [19], and include as a special case the situation
when the drift, diffusion, and signal terms in (1.1), (1.2) have polynomial growth (see
[19, section III, Example 1, pp. 207–210]). Following [19], we first note that the
class of state processes x(·) associated with system Σ1

G and satisfying A15 does not
explode in finite time because they satisfy Khas’minskii’s test of nonexplosion (see
[18]). Second, from [19, section III] we deduce that for each y(·, ω) ∈ C([0, T ];<d)
and for some θ > 0, the robust version of the Feynman–Kac equation of systems Σ1

G

satisfying A15 has a unique positive solution among those having exponential growth
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α1 exp(−α2|x|2p), α1 > 0, α2 > 0, because the dominant part of qθ(x, 0), as |x| → ∞,
in the exponent is F2p−1

|x|2p
2p . Alternatively, we can establish existence and uniqueness

of solutions of the Feynman–Kac information state equation corresponding to system
Σ1
G and A15, by invoking the gauge transformation (3.41) given by

qθt = exp

2p−1∑
j=1

∫ x

0
Fjσ

j dσ

 q̃θt ,(3.60)

where q̃θ(·) is the unique Gaussian density function satisfying (3.42), and qθ(·) is
the information state of system Σ1

G and A15. As |x| → ∞, its dominant part in
the exponent is F2p−1

|x|2p
2p . Thus, we establish for each y(·, ω) ∈ C([0, T ];<d) the

existence and uniqueness results stated above.
THEOREM 3.4. Suppose there exists a 0 < θ ≤ θ∗ such that HtNtH

′
t − θQt ≥

0 ∀t ∈ [0, T ]. The Feynman–Kac information state corresponding to system Σ1
G and

A15 is

qθ(x, t) = exp
(∑2p−1

j=1

∫ x
0 Fjσ

j dσ
)

× 1
(2π)

1
2 |Pt|

1
2

exp
(
− 1

2 |P
− 1

2
t (x− rt)|2

)
× exp (ct + λt) ,

(3.61)

where P, r, c, λ are given in Lemma 3.2.
Moreover, suppose

ϕ2(t, x) = exp

− 2p−1∑
j=1

∫ x

0
Fjσ

j dσ

 .(3.62)

Then the optimal control law corresponding to system Σ1
G and A15 is given by the

optimal control law of the LEQG tracking problem (3.51)–(3.53).
Proof. This follows from the above construction, Lemma 3.2, and Theorem 3.3.

Example 1.2 presented in the introduction is an application of Theorem 3.4.
Remark 3.5. In many practical applications one is usually interested in minimizing

exponential-of-quadratic integral cost functions of the form (3.51). Such cost functions
can be incorporated into our earlier framework by requiring ˜̀1(·) to be quadratic in
x, u. For example, suppose

˜̀1(t, x, u) =
1
θ

(
Ṽ (t, x) + R̃tu.u+ 2ñu

)
, Ṽ (t, x) .= Λtx.x+ 2x.σt + δt,(3.63)

where Λ = Λ′ : [0, T ] → L(<n;<n), σ : [0, T ] → <n, δ : [0, T ] → <, R̃ = R̃′ : [0, T ] →
L(<m;<m), ñ : [0, T ] → (<m)′. In this case, the potential functions φ(·) related to
g(·) by A10 should be smooth classical solutions of the PDE (obtained from (3.38)),
namely,

1
2Tr

(
GtG

′
tD

2
xφ(x)

)
+ 1

2Dxφ(x).GtG′tDxφ(x) + (Ftx+ ft +Btu) .Dxφ(x)

= 1
2

(
Ṽ (t, x) + R̃tu.u+ 2ñtu

)
.

(3.64)

If (3.63) takes the form ˜̀1(t, x, u) = 2
θ (Ftx+ ft +Btu) .(GtG′t)

−1g(x) + 1
θ Ṽ (t, x) and

we set R̃ = 0, ñ = 0, then (3.64) is reduced to the well-known Riccati equation

Tr (Dxg(x)) + |G−1
t g(x)|2 = Ṽ (t, x),
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first introduced in [20] for evaluating Feynman–Kac-type Wiener integrals, and in [11]
for identifying finite-dimensional nonlinear filtering examples.

3.2. Nonlinear dynamics quadratic sensor problem. Now consider the
generalized family of nonlinear control systems described by allowing the observa-
tions to be quadratic functions of the unobservable state.

Control system (Σ2
G). Suppose Assumptions 2.1 hold with l1 = 4, k1 = 2, and

U in A1 replaced by a compact subset of <m. A4 is replaced by a quadratic growth
condition, and the dynamics, observations, and cost criterion are given by

dxt = (Ftxt + gt(x) + ft) dt+B(t, u(t, y))dt+Gtdwt, x(0) ∈ <n,(3.65)

dyt =
(

1
2
x′tH̃txt +Htxt + ht

)
dt+N

1
2
t dbt, y(0) = 0 ∈ <,(3.66)

JθΣ2
G

.= JθG(u(·)) = (1.3).(3.67)

Furthermore, suppose the following additional assumptions hold.
A16. g(t, x) = GtGtDxφ(x, t), φ(·) ∈ C2,1

x,t (<n×[0, T ]), φ(·) has at most quadratic
growth in the space variable uniformly in t, Fx+ g(t, x) is stable, and the initial den-
sity of x(0) is qθ(x, 0) = exp(φ(x, t)) × q̃θ(x, 0), where q̃θ(·) is a Gaussian density
function (see A12).

A17. 2`1(t, x, u) = Q̃(t, u)x.x+ R̃(t, u)u.u+ 2m̃(t, u)x+ 2ñ(t, u)u+ ˜̀1(t, x, u).
A18. Q̃ : [0, T ] × U → L(<n;<n), R̃ : [0, T ] × U → L(<m;<m), m̃ : [0, T ] × U →

(<n)′, ñ : [0, T ]× U → (<m)′, ˜̀1 : [0, T ]×<n × U → <, Q̃ = Q̃′ ≥ 0, R̃ = R̃′ > 0.
Whenever H̃ = 0 we assume y : [0, T ]× Ω→ <d.
A derivation of the sufficient statistics associated with system Σ2

G, when g = 0,
is given in [9], using the Fisk–Stratonovich version of the Feynman–Kac information
state equation.

First, we point out that by the stability of Fx+ g(t, x) and the quadratic growth
of h(·) (as in [19], at least for n = 1) we deduce that for each y ∈ C([0, T ];<), and for
some θ > 0, there exists a unique solution of the robust version of the Feynman–Kac
information state equation of system Σ2

G, among the class of functions bounded above
by α1 exp(−α2|x|2), α1 > 0, α2 > 0.

Remark 3.6. Notice that for H̃ 6= 0, the observation process associated with
system Σ2

G is defined by y : [0, T ] × Ω → < (i.e., is a real-valued function), although
we believe that one can generalize the results of this section to multidimensional
observations of the form

dyt =
(

1
2
H̃t(x)x+Htxt + ht

)
dt+N

1
2
t dbt,

where

H̃t(x) =
n∑
i=1

xiH
i
t , H

i : [0, T ]→ L(<n;<d), H : [0, T ]→ L(<n;<d), h : [0, T ]→ <d.

For u ∈ Û the Feynman–Kac information state equation associated with control
system Σ2

G is given by

dqθt = 1
2Tr

(
GtG

′
tD

2
xq
θ
t

)
dt− ∂

∂x

(
qθt (Ftx+ gt(x) + ft +B(t, u))

)
dt

+ θ
2

(
Q̃t(u)x.x+ R̃t(u)u.u+ 2m̃t(u)x+ 2ñt(u)u+ ˜̀1(t, x, u)

)
qθt dt

+ qθt

(
1
2x
′H̃tx+Htx+ ht

)
.N−1

t dyt
.= RHS, qθ(x, 0) = qθ0(x).

(3.68)
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We derive solutions of (3.68) through an alternative technique, by seeking a solution
of the form

qθ(x, t) = exp
(
φ(x, t)− 1

2
P̃tx.x+ r̃t.x+ ρ̃t

)
.(3.69)

Here we suppose

P̃ : [0, T ]× Ω→ L(<n;<n), P̃ = P̃ ′, r̃ : [0, T ]× Ω→ <n, ρ̃ : [0, T ]× Ω→ <,

and the random processes P̃ (·), r̃(·), ρ̃(·) satisfy the following stochastic differential
equations:

dr̃t = ktdt+H ′tN
−1
t dyt, k : [0, T ]× Ω→ <n,(3.70)

dP̃t = Ztdt− H̃ ′tN−1
t dyt, Z : [0, T ]× Ω→ L(<n;<n),(3.71)

dρ̃t = µtdt+ h′tN
−1
t dyt, µ : [0, T ]× Ω→ <.(3.72)

From (3.69) we have

Dxq
θ
t =

(
Dxφt − P̃tx+ r̃t

)
qθt , T r

(
D2
xq
θ
t

)
= |Dxφt − P̃tx+ r̃|2qθt + Tr

(
D2
xφt − P̃t

)
qθt .

Since qθ(x, t) ≡ qθ(x, r̃, P̃ , ρ̃, t), an application of the Ito differential rule yields

dqθt =
{
∂φt
∂t dt+ x.

(
ktdt+Ht.N

−1
t dyt

)
+
(
µtdt+ ht.N

−1
t dyt

)
− 1

2x.
(
Ztdt− H̃t.N

−1
t dyt

)
x+ 1

2

(
Htx.N

−1
t Htx+ ht.N

−1
t ht

+ 1
4H̃tx.xN

−1
t x′H̃tx+ 2Htx.N

−1
t ht +Htx.N

−1
t x′H̃tx+ x′H̃tx.N

−1
t ht

)
dt
}
qθt .

From (3.68) we have

RHS =
{[

1
2 |G′t(Dxφt − P̃tx+ r̃t)|2

+ 1
2

(
GtG

′
t

(
D2
xφt − P̃t

))
−B(t, u).

(
Dxφt − P̃tx+ r̃t

)
−Tr(Ft)− Tr(Dxgt(x))− (gt(x) + Ftx+ ft) .

(
Dxφt − P̃ x+ r̃t

)
+ θ

2

(
Q̃t(u)x.x+ R̃t(u)u.u+ 2m̃t(u)x+ 2ñt(u)u+ ˜̀1(t, x, u)

)
− B(t, u).

(
Dxφt − P̃tx+ r̃t

)]
dt+

(
1
2x
′H̃tx+Htx+ ht

)
.N−1

t dyt

}
qθt .

Equating dqθt to RHS, the stochastic integral terms cancel; therefore, we deduce the
following equation for φ(·):

∂φt
∂t −

1
2x.Ztx+ x.kt + µt + 1

2 |N
− 1

2
t

(
1
2x.H̃tx+Hx+ ht

)
|2

− 1
2 |G′t(Dxφt − P̃tx+ r̃t)|2 − Tr

2

(
GtG

′
t

(
D2
xφt − P̃t

))
+ (gt(x) + Ftx+ ft) .

(
Dxφt − P̃tx+ r̃t

)
+ Tr(Dxgt(x)) + Tr(Ft)

− θ2
(
Q̃t(u)x.x+ R̃t(u)u.u+ 2m̃t(u)x+ 2ñt(u)u

)
− θ2 ˜̀1(t, x, u) +B(t, u).

(
Dxφt − P̃tx+ r̃t

)
= 0.
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Now isolate the coefficients of powers of x2, x1, x0, respectively, as follows:

x.
(
− 1

2Zt −
1
2 P̃tGtG

′
tP̃t − F ′t P̃t − θ

2 Q̃t(u)
)
x,

x.
(
kt + P̃tGtG

′
tDxφt + P̃tGtG

′
tr̃t − P̃tgt(x)

+F ′t r̃t − P̃tft − P̃tB(t, u)− θm̃′t(u)
)
,

(3.73)

µt − 1
2 r̃
′
tGtG

′
t −Dxφt.GtG

′
tr̃t + 1

2Tr
(
GtG

′
tP̃t

)
+ gt(x).r̃t

+ ft.r̃t − θ
2 R̃t(u)u.u− θñt(u)u+B(t, u).r̃t.

Since g(t, x) = GtG
′
tDxφt, we have Dx(gt(x)) = GtG

′
tD

2
xφt, gt(x).Dxφt = GtG

′
t

×Dxφt.Dx φt. Therefore, the coefficients of powers of x2, x1, x0 are independent of
g(·), Dxφ(·).

Now introduce the matrix-valued, vector-valued, and scalar-valued functions γ(·),
α(·), β(·) as follows:

γt
.= −1

2
Zt −

1
2
P̃tGtG

′
tP̃t − F ′t P̃t −

θ

2
Q̃t(u),(3.74)

αt
.= kt + P̃tGtG

′
tr̃t + F ′t r̃t − θm̃′t(u)− P̃tB(t, u)− P̃tft,(3.75)

βt
.= µt − 1

2 r̃
′
tGtG

′
tr̃t + 1

2Tr
(
GtG

′
tP̃t

)
− θ

2 R̃t(u)u.u− θñt(u)u

+B(t, u).r̃t + ft.r̃t.
(3.76)

Using (3.74)–(3.76) in the equation for φ(·) we see

∂φt
∂t + 1

2Tr
(
GtG

′
tD

2
xφt
)

+ 1
2Dxφt.GtG

′
tDxφt + Ftx.Dxφt + 1

2 |N
− 1

2
t ( 1

2x
′H̃tx+Hx+ ht)|2

= −Tr(Ft) + x. (−αt) +1
2x. (−2γt)x− βt + θ

2
˜̀1(t, x, u)−B(t, u).Dxφt.

Rearranging the terms of this equation and setting

Λt = −2γt −H ′tN−1
t Ht − H̃ ′tN−1

t ht, Λt = Λ′t,(3.77)

σt = −αt −H ′tN−1
t ht,(3.78)

δt = −βt −
1
2
h′tN

−1
t ht − Tr(Ft),(3.79)

we have

∂φt
∂t + Tr

2

(
GtG

′
tD

2
xφt
)

+ 1
2Dxφt.GtG

′
tDxφt + (Ftx+ ft) .Dxφt = 1

2x.Λtx+ x.σt + δt

+ θ
2

˜̀1(t, x, u)−B(t, u).Dxφt − 1
2 |N

− 1
2

t
1
2x
′H̃tx|2 − 1

2x
′H̃txN

−1
t Htx.

Using (3.74)–(3.76) and (3.77)–(3.79), the equations satisfied by the functions P̃ (·),
r̃(·), ρ̃(·) are given by (see (3.70)–(3.72))
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dP̃t +
(
P̃tFt + F ′t P̃t + |GtP̃t|2

)
dt =

(
Λt +H ′tN

−1
t Ht

)
dt

+H̃ ′tN
−1
t htdt− θQ̃t(u)dt− H̃ ′tN−1

t dyt,

dr̃t +
(
F ′t + P̃tGtG

′
t

)
r̃tdt− P̃tftdt+ σtdt− P̃tB(t, u)dt+H ′tN

−1
t htdt

−θm̃′t(u)dt = H ′tN
−1
t dyt,

dρ̃t +
(
− 1

2 |G′tr̃t|2 + δt + 1
2 |N

− 1
2

t ht|2 + 1
2Tr

(
GtG

′
tP̃t + 2Ft

))
dt+B(t, u).r̃tdt

+ft.r̃t − θ
2

(
r̃t.Q̃t(u)r̃t + R̃t(u)u.u+ 2ñt(u)u

)
dt = h′tN

−1
t dyt.

Hence, we obtain the following theorem.
THEOREM 3.7. Consider system Σ2

G and suppose for u ∈ Û there exist functions
φ ∈ C2,1

x,t (<n× [0, T ]), which are independent of the paths of y, which satisfy the PDE

∂φt
∂t + 1

2Tr
(
GtG

′
tD

2
xφt
)

+ 1
2Dxφt.GtG

′
tDxφ+ (Ftx+ ft) .Dxφt = 1

2x.Λtx+ x.σt + δt

+
(
θ
2

˜̀1(t, x, u)−B(t, u).Dxφt − 1
2 |

1
2N
− 1

2
t x′H̃tx|2 − 1

2x
′H̃x.N−1

t Htx
)
.

(3.80)
Here the function ˜̀1(·) is free to be chosen so that (3.80) yields explicit solutions.
Then, a Feynman–Kac information state corresponding to system Σ2

G and satisfying
(3.68) is given by

qθ(x, t) = exp
(
φ(x, t) + c̃t + λ̃t + λt

)
×

exp
(
− 1

2P
−1
t (x− rt).(x− rt)

)
(2π)

n
2 |Pt|

1
2

,(3.81)

where

r : [0, T ]× Ω→ <n, P = P ′ : [0, T ]× Ω→ L(<n;<n), c̃, λ̃, λ : [0, T ]× Ω→ <

are given by the following equations:

drt =
{
Ft − Pt

(
H̃ ′tN

−1
t ht − θQ̃t(u) + Λt

)}
rtdt+ (ft − Ptσt +B(t, u)) dt

+
(
PtH̃

′
tN
−1
t PtH

′
t + θPtm̃

′
t(u)

)
dt+ PtH

′
tN
−1
t (dyt −Htrtdt− htdt)

+PtH̃
′
tN
−1
t

(
rtdyt − PtH̃trtdt

)
, r(0) = ξ,

(3.82)

dPt =
{
FtPt + PtF

′
t − Pt

(
H ′tN

−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u)

)
Pt

}
dt

+
(
PtH̃

′
tPtN

−1
t H̃tPt +GtG

′
t

)
dt+ PtH̃

′
tN
−1
t Ptdyt, P (0) = P0,

(3.83)

λt = θ
2

∫ t
0

{
[Q̃s(u)− Λs

θ ]rs.rs + Tr
(
Ps[Q̃s(u)− Λs

θ ]
)}

ds

+ θ
2

∫ t
0

(
R̃s(u)us.us + 2rs.[m̃s(u)′ − σs

θ ] + 2[ñs(u)us − δs
θ ]
)
ds,

(3.84)

λ̃t = 1
2

∫ t
0

{
|12N

− 1
2

s r′sH̃srs|2 + r′sH̃srs.N
−1
s Hsrs + rs.(−3H̃ ′sN

−1
s PsH̃s)rs

+ rs.H̃
′
sPsN

−1
s H ′s

}
ds+ 1

2

∫ t
0 Tr

{
−PsH̃ ′sN−1

s hs + PsH̃
′
sN
−1
s PsH̃s

− 1
2H̃
′
sN
−1
s H̃s

}
ds+ 1

2

∫ t
0 Tr

(
PsH̃

′
sN
−1
s

)
dys,

c̃t =
∫ t

0

(
Hsrs + hs + 1

2r
′
sH̃srs

)
.N−1

s dys

− 1
2

∫ t
0 |N

− 1
2

s

(
Hsrs + hs + 1

2r
′
sH̃srs

)
|2ds.
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The above results will be valid whenever there exists a 0 < θ ≤ θ∗ such that

H ′tN
−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u) ≥ 0 ∀(t, u) ∈ [0, T ]× U .

Proof. Define the functions P (·), r(·), ρ(·) by

Pt
.= P̃−1

t , rt
.= P̃−1

t r̃t, ρt = −2ρ̃t,

and seek a representation of qθ(·) in the form

qθ(x, t) = exp
(
φ(x, t)− 1

2
P−1
t (x− rt).(x− rt) + µ̃t

)
, µ̃t =

1
2
P−1
t rt.rt −

1
2
ρt.

To this end define

c̃t
.=
∫ t

0

(
Hsrs + hs + 1

2r
′
sH̃srs

)
.N−1

s dys

− 1
2

∫ t
0 |N

− 1
2

s

(
Hsrs + hs + 1

2r
′
sH̃srs

)
|2ds.

(3.85)

An application of the Ito differential rule yields (3.82), (3.83), and

dµ̃t = dc̃t + 1
2

(
θQ̃t(u)− Λt

)
rt.rtdt

+
(
−rt.σt − δt + 1

2 |N
− 1

2
t r′tH̃trt|2 + 1

2r
′
tH̃trt.N

−1
t Htrt

)
dt

+
(
− 3

2r
′
tH̃
′
tN
−1
t PtH̃trt + 1

2H̃trt.PtN
−1
t H ′t + 1

2HtPtN
−1
t H ′t

− 1
2Tr

(
2Ft +G′tP

−1
t Gt

))
dt+ θ

2

(
R̃t(u)u.u+ 2m̃t(u)rt + 2ñt(u)u

)
dt,

µ̃(0) = 1
2P (0)−1r(0).r(0)− 1

2ρ(0).

Writing (3.83) in the form

dPt =
{
Ft + PtF

′
tP
−1
t + PtH̃

′
tN
−1
t PtH̃t +GtG

′
tP
−1
t

− Pt

(
H ′tN

−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u)

)}
Ptdt+

(
PtH̃

′
tN
−1
t

)
Ptdyt,

we deduce

d(log |Pt| = Tr
(
Ft + PtF

′
tP
−1
t + PtH̃

′
tN
−1
t PtH̃t +GtG

′
tP
−1
t

)
dt+ Tr

(
PtH̃tN

−1
t

)
dyt

+Tr{−Pt
(
H ′N−1

t Ht + H̃ ′tN
−1
t ht + Λt − θQ̃t(u)

)
− 1

2H̃
′
tN
−1
t H̃t}dt.

Hence,

Tr
(
2Ft +GtG

′
tP
−1
t

)
= d (log |Pt|) + Tr(−PtH̃ ′tPtN−1

t H̃t + 1
2H̃
′
tN
−1
t H̃t)dt

+Tr
{
Pt

(
H ′tN

−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u)

)}
dt− Tr

(
PtH̃

′
tN
−1
t

)
dyt.

If we set

ρ(0) = r(0)′P (0)−1r(0) + log[(2π)n|P (0)|],
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and then substitute into the equation of µ̃(·) we have

dµ̃t = dc̃t + 1
2rt.

(
H̃ ′tPtN

−1
t H ′t − 2σt

)
dt+ θ

2

(
R̃t(u)u.u+ m̃t(u)rt + 2ñt(u)u

)
dt

+ 1
2rt

(
θQ̃t(u)− Λt − 3H̃ ′tN

−1
t PtH̃t

)
.rtdt

+ 1
2

(
| 12N

− 1
2

t r′tH̃trt|2 + r′tH̃trt.N
−1
t Htrt

)
dt

+ 1
2Tr

{
Pt

(
θQ̃t(u)− Λt − H̃ ′tN−1

t ht

)
+ PH̃ ′tN

−1
t PtH̃t − 1

2H̃
′
tN
−1
t H̃t

}
dt

+ 1
2Tr

(
PtH̃

′
tN
−1
t

)
dyt − δtdt− 1

2d (log {(2π)n|Pt|}) ,
µ̃(0) = log {(2π)n|P (0)|}−

1
2 .

This yields the desired results.
Remark 3.8. Theorem 3.7 implies that whenever (3.80) admits an explicit solu-

tion, qθ(·) is described by finite-dimensional parameters. If we set φ(·) = 0, Λ(·) =
0, σ(·) = 0, δ(·) = 0, H̃(·) = 0, we recover the solution of the Feynman–Kac informa-
tion state equation corresponding to the LEQG tracking problem given in [3, 5, 6],
while if, in addition, we set θ = 0, we recover the conditional density of the LQG
tracking problem.

3.2.1. Examples of nonlinear drift terms for Σ2
G. In this section we present

specific examples of nonlinear systems Σ2
G that admit explicit solutions of (3.80)

and so, finite-dimensional representations of the information state qθ(·), for various
nonlinear drift terms g(·).

We first turn (3.80) into a linear second-order PDE by introducing the transfor-
mation

W (x, t) = expφ(x, t).

The equation governing Wt ≡W (x, t) is given by
∂Wt

∂t + Tr
2

(
GtG

′
tD

2
xWt

)
+ (Ftx+ ft +B(t, u)) .DxWt = Wt

{ 1
2x.Λtx+ x.σt + δt

}
+Wt{ θ2 ˜̀1(t, x, u)− 1

2 |
1
2N
− 1

2
t x′H̃tx|2 − 1

2x
′H̃tx.N

−1
t Htx}.

(3.86)
Thus, we seek solutions of (3.86). We shall present two alternative methods for solv-
ing this equation, each leading to different classes of nonlinear control systems Σ2

G. In
the first method, we choose the function ˜̀1(·) to cancel the control-dependent term
B(t, u).DxW (·). This implies that the function g(·) entering the unobservable dy-
namics is independent of the control u(·). In the second method, we allow g(·) to
depend on the control parameter u(·) and hence on the paths of y(·). It is important
to note that, from the family of nonlinear systems Σ2

G, the class of Benes-type [11]
nonlinearities emerges from the first method but not the second method. This obser-
vation will be made precise through examples. Moreover, the second method might
yield finite-dimensional states which are not sufficient for the control, in the sense
that the information state depends on the control directly, not indirectly through the
finite-dimensional sufficient statistics.

THEOREM 3.9 (uncontrolled classes). Suppose u ∈ Û and there exists 0 < θ ≤ θ∗

such that

H ′tN
−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u) ≥ 0 ∀(t, u) ∈ [0, T ]× U .

Define

Γ2(t, x) .=
1
2

∆tx.x+ x.ζt + ηt,
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where ∆(·), ζt(·), η(·) are deterministic functions shortly to be made precise, and set

˜̀1(t, x, u) =
2
θ

{
B(t, u).Dxφ(x, t) +

1
2

(∣∣∣∣12N− 1
2

t x′H̃tx

∣∣∣∣2 + x′H̃tx.N
−1
t Htx

)}
.

The Feynman–Kac information state qθ(·) given in Theorem 3.7 is a density function,
at least for the following two classes of nonlinear drift terms φ(·), (g(·) = GG′Dxφ(·)).

Class 1 (rational nonlinearities). Suppose Γ2(t, x) > 0 ∀(t, x) ∈ [0, T ] × <n. A
solution of (3.80) is

φR2(x, t) = logW1(x, t), W1(x, t) = Γ2(x, t),

which implies that the nonlinear drift term g(·) should be of the form

gt(x) = GtG
′
tDxφR2(x, t) =

GtG
′
t

1
2∆tx.x+ x.ζt + ηt

(∆tx+ ζt) .

Here

∆̇t + F ′t∆t + ∆tFt = δt∆t,

ζ̇t + F ′tζt + ∆tft = δtζt,

η̇t +
1
2
Tr (GtG′t∆t) + ft.ζt = δtηt,

Λt = 0, σt = 0, δt = arbitrary.

Moreover, if ∆t > 0, ηt − 1
2ζt.∆

−1
t ζt > 0 ∀t ∈ [0, T ], then Γ2(t, x) > 0 ∀(t, x) ∈

[0, T ]×<n, and the nonlinear drift term g(t, x) is nonsingular ∀(t, x) ∈ [0, T ]×<n.
Class 2 (exponential nonlinearities). A solution of (3.80) is

φE2(x, t) = logW2(x, t), W2(x, t) = γ1
t exp (Γ2(x, t)) + γ2

t exp (−Γ2(x, t)) .

This implies that the nonlinear drift term g(·) should be of the form

gt(x) = GtG
′
tDxφE2(x, t) =

γ1
t exp (Γ2(x, t))− γ2

t exp (−Γ2(x, t))
γ1
t exp (Γ2(x, t)) + γ2

t exp (−Γ2(x, t))
GtG

′
t (∆tx+ ζt) ,

where

∆̇t + F ′t∆t + ∆tFt = 0,
ζ̇t + F ′tζt + ∆tft = 0,

η̇t +
1
2
Tr (GtG′t∆t) + ft.ζt =

1
2
d

dt

(
log

γ1
t

γ2
t

)
,

Λt = ∆tGtG
′
t∆t, σt = ∆tGtG

′
tζt,

δt =
1
2
ζ ′tGtG

′
tζt +

1
2
d

dt

(
log γ1

t γ
2
t

)
.

Class 3 (combination of classes 1 and 2). We can take φ(x, t) to be linear combi-
nations of the logarithm of solutions W1(x, t),W2(x, t).

Proof. Follow the derivation given in [2], or substitute the solutions into the evolu-
tion equation of W (·) or φ(·). The last class follows from the linearity of (3.86).
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Example 3.10 (rational nonlinearities). Here, we wish to construct specific exam-
ples of nonlinear drift terms g(·) using the results of Theorem 3.9 stated under Class 1.

Case 1. Suppose that F,G, f,Γ2 are independent of time and F = α
2 In, α ∈ <.

The nonlinear drift term is

g(x) =
GG′

1
2∆x.x+ x.ζ + η

(∆x+ ζ),

where ∆ is arbitrary, δ = α, ζ = 2
α∆f, η = 1

2αTr(GG
′∆) + f. 2

α2 ∆f . Moreover, g(x)
is nonsingular ∀x ∈ <n provided ∆ > 0 and α > 0.

Case 2. Suppose F,G,Γ2 are independent of time and F = α
2 In, α ∈ <, f = 0.

The nonlinear drift term is

g(x) =
GG′

1
2∆x.x+ η

∆x,

where ∆ is arbitrary, δ = α, ζ = 0, η = 1
2αTr(GG

′∆). Clearly, in this case g(x) is
nonsingular ∀x ∈ <n provided ∆ > 0 and α > 0.

Case 3. Suppose Ft = 0, f = 0. The nonlinear drift term is

g(t, x) =
GtG

′
t

1
2∆tx.x+ ηt

∆tx,

where ∆̇t = δt∆t, ζt = 0, η̇t+ 1
2Tr(GtG

′
t∆t) = δtηt, δ(·) is arbitrary. Moreover, g(t, x)

is nonsingular ∀(t, x) ∈ [0, T ]×<n provided ∆t > 0 and ηt > 0 ∀t ∈ [0, T ].
The functions ∆(·), ζ(·), η(·),Λ(·), σ(·), δ(·) are measurable functions of t. Thus

they do not depend on the control u ∈ Û , and hence on the paths of y(·). However,
an important disadvantage of the results of Theorem 3.9 is the presence of the term
2
θB(t, u).Dxφt as part of ˜̀1(t, x, u). We can overcome this disadvantage by allow-
ing the functions φ(·), and thus g(·), to be pathwise-dependent on the observations
y(·) through the control u(t, y). This modification leads to the additional classes of
nonlinear control systems presented in the next theorem.

THEOREM 3.11 (controlled classes). Suppose u ∈ Û and there exists a θ ≤ θ∗

such that

H ′tN
−1
t Ht + H̃ ′tN

−1
t ht + Λt − θQ̃t(u) ≥ 0 ∀(t, u) ∈ [0, T ]× U .

Define

Γu2 (t, x) .=
1
2

∆tx.x+ x.ζut + ηut ,

where ∆(·), ζut (·), ηu(·) will be made precise shortly. Set

˜̀1(t, x, u) =
2
θ

{
1
2

(∣∣∣∣12N− 1
2

t x′H̃tx

∣∣∣∣2 + x′H̃tx.N
−1
t Htx

)}
.

Suppose (3.80) has a Borel measurable solution φu : <n × U × [0, T ] → <. The
Feynman–Kac information state qθ(·) given in Theorem 3.7 is a density function at
least for the following two classes of control-dependent, nonlinear drift terms φu(·)
(gu(·) = GG′Dxφ

u(·)).
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Class 1 (rational nonlinearities). Suppose Γu2 (t, x) > 0 ∀(t, x, u) ∈ [0, T ]×<n×U .
A control-dependent solution of (3.80) is

φuR2
(x, t) = logWu

1 (x, t), Wu
1 (x, t) = Γu2 (x, t).

This implies that the nonlinear drift term g(·) should be of the form

gut (x) = GtG
′
tDxφ

u
R2

(x, t) =
GtG

′
t

1
2∆tx.x+ x.ζut + ηut

(∆tx+ ζut ) ,

where

∆̇t + F ′t∆t + ∆tFt = δt∆t,

ζ̇ut + F ′tζ
u
t + ∆tft + ∆tB(t, u) = δtζ

u
t ,

η̇ut +
1
2
Tr (GtG′t∆t) + ft.ζ

u
t +B(t, u).ζut = δtη

u
t ,

Λt = 0, σt = 0, δt = arbitrary.

The functions ζu(·) ≡ ζ(·, u), ηu(·) ≡ η(·, u) are measurable in t, and the function
φuR2

(·) ≡ φ(·, u, ·) is pathwise-dependent on the observations y(·) through the control
u(t, y).

Moreover, if ∆t > 0, ηut − 1
2ζ
u
t .∆

−1
t ζut > 0 ∀(t, u) ∈ [0, T ] × U , then Γu2 (t, x) >

0 ∀(t, x, u) ∈ [0, T ] × <n × U , and the nonlinear drift term gu(t, x) is nonsingular
∀(t, x, u) ∈ [0, T ]×<n × U .

Class 2 (exponential nonlinearities). A control-dependent solution of (3.80) is

φuE2
(x, t) = logWu

2 (x, t), Wu
2 (x, t) = γ1

t exp (Γu(x, t)) + γ2
t exp (−Γu2 (x, t)) ,

which implies that the nonlinear drift term g(·) should be of the form

gut (x) = GtG
′
tDxφ

u
E2

(x, t) =
γ1
t exp (Γu2 (x, t))− γ2

t exp (−Γu2 (x, t))
γ1
t exp (Γu2 (x, t)) + γ2

t exp (−Γu2 (x, t))
GtG

′
t (∆tx+ ζut ) ,

where

∆̇t + F ′t∆t + ∆tFt = 0,
ζ̇ut + F ′tζ

u
t + ∆tft + ∆tB(t, u) = 0,

η̇ut +
1
2
Tr (GtG′t∆t) + ft.ζ

u
t +B(t, u).ζut =

1
2
d

dt

(
log

γ1
t

γ2
t

)
,

Λt = ∆tGtG
′
t∆t, σut = ∆tGtG

′
tζ
u
t ,

δut =
1
2
ζut .GtG

′
tζ
u
t +

1
2
d

dt

(
log γ1

t γ
2
t

)
.

The functions ζu(·) ≡ ζ(·, u), ηu(·) ≡ η(·, u), δu(·) ≡ δ(·, u), σu(·) ≡ σ(·, u) are mea-
surable in t, the nonlinear function φuE2

(·) ≡ φ(·, u, ·) is pathwise dependent on the
observations y(·) through the control u(t, y).

Proof. Follow the derivation given in [2], or substitute the solutions into the
evolution equation for W (·) or φ(·) to verify the results.

We now demonstrate through specific examples that whether the function φ(·) is
chosen to depend on the control u or not, leads to different classes of nonlinear control
problems.
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Example 3.12. Suppose we are interested in the control analog of nonlinear dy-
namical systems with Benes-type [11] nonlinearities, namely:

dxt = tanh(xt)dt+ u(t, y)dt+ dwt, x(0) ∈ <,(3.87)

dyt = xtdt+ dbt, y(0) = 0 ∈ <.(3.88)

This is a special case of the nonlinear control systems defined by the class Σ2
G (i.e.,

F = H = H̃ = f = h = 0, G = 1, B(t, u) = u). When u = 0, the above model is
shown in [11] to yield finite-dimensional filters. Here, we wish to determine whether
the results of Theorems 3.9, 3.11, stated under Class 2, yield explicit solutions of the
Feynman–Kac information state equation for the above control system. This will be
possible if the results of Theorems 3.9, 3.11, stated under Class 2, can be specialized
to the particular form Γ2(t, x) = x, Γu(t, x) = x, respectively. That is, we require
∆t = 0, ζt = 1, ηt = 0. If we set γ1 = γ2 = 1,∆(0) = 0, η(0) = 0, ζ(0) = 1 in the
results of Theorem 3.9, stated under Class 2 we deduce

ζt = 1, ∆t = 0, ηt = 0, Λt = 0, σt = 0, δt =
1
2
.

Hence,

gt(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

= tanh(x).

This implies that the Feynman–Kac information state equation associated with the
above system admits an explicit solution when ˜̀1 = 2

θu(t, y) tanh(x) (see Theo-
rem 3.9). On the other hand, one could show that the results of Theorem 3.11,
stated under Class 2, do not admit an explicit solution for this Feynman–Kac in-
formation state equation because, although we could have ∆t = 0, ζt = 1, we also
have η̇t + u(t, u) = 0. This would never yield the desired solution ηt = 0 (and hence
Γu(t, x) = x), unless u(t, y) = 0.

Example 3.13. Suppose we are interested in the following scalar problem:

dxt =
∆txt + ζt

1
2∆tx2

t + ζtxt + ηt
dt+ u(t, y)dt+ dwt, x(0) ∈ <,(3.89)

dyt = xtdt+ dbt, y(0) = 0 ∈ <.(3.90)

Setting Ft = Ht = H̃t = ft = ht = 0, Gt = 1, B(t, u) = u in the results of Theorem 3.9
stated under Class 1, we deduce

∆̇t = δt∆t, ζ̇t = δtζt, η̇t +
∆t

2
= δtηt.

By choosing δt = δ =constant, we have

∆t = ∆(0) exp(δt), ζt = ζ(0) exp(δt), ηt = η(0) exp(δt)− 1
2

∆(0) exp(δt)t.

Therefore, when ˜̀1(t, x, u) = 2
θu(t, y) ∆tx+ζt

∆tx2+ζtx+ηt
the Feynman–Kac information state

is finite-dimensional and the nonlinear drift term in (3.89) is nonsingular provided
∆(0) > 0 and η(0)− 1

2∆(0)t− 1
2
ζ(0)2

∆(0) > 0. On the other hand, it is easy to show that
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the results of Theorem 3.11, stated under Class 1, do not admit systems of this form
because

∆̇t = δt∆t, ζ̇ut + ∆tu(t, y) = δtζ
u
t , η̇ut +

∆t

2
+ u(t, y)ζut = δtη

u
t .

Thus, ζ(·), η(·) in (3.89) are functionals of u.
Remark 3.14. The last two examples seem to suggest that the results of The-

orem 3.9 are better suited for modeling nonlinearities entering the dynamics of the
unobservable states. On the other hand, a disadvantage is the presence of the term
2
θB(t, u).Dxφ(x, t) as part of ˜̀1(t, x, u). This is not present in the results of Theo-
rem 3.11.

3.2.2. Representation of cost function. We shall now convert the family of
nonlinear control systems Σ2

G, which were originally infinite dimensional (see The-
orem 2.3), to standard, finite-dimensional, completely observable stochastic control
problems. By Theorem 3.7, we know that if a solution of (3.80) exists such that qθ(·)
is a density function, then the total cost function (2.26) can be expressed in terms of
the functions φ(·) (or φu(·)), P (·), r(·), and the differential observation process dy(·).
(We shall distinguish between φ(·) and φu(·) only when referring to specific examples.)
To this end we define

˘̀2(t, x, P, u) .=
∫
<n
`2(t, z, u)

exp
(
φ(z, t)− 1

2P
−1
t (z − x).(z − x)

)
(2π)

n
2

dz,

ϕ̆2(x, P, u) .=
∫
<n
ϕ2(T, z) exp (θϕ1(T, z))

exp
(
φ(z, T )− 1

2P
−1
T (z − x).(z − x)

)
(2π)

n
2

dz.

Clearly, by incorporating the results of Theorem 3.7, the infinite-dimensional, stochas-
tic control problem given under Theorem 2.3, is now equivalent to a completely ob-
servable finite-dimensional stochastic control problem with cost function given by

JθΣ2
G

(u(·)) = E

{∫ T
0

1
|Pt|

1
2

˘̀2(t, rt, Pt, u) exp
(
c̃t + λ̃t + λt

)
dt

+ 1
|PT |

1
2
ϕ̆2(rT , PT ) exp

(
c̃T + λ̃T + λT

)}
.

(3.91)

The functions c̃(·), λ̃(·), λ(·) are defined in Theorem 3.7 and the evolutions of r(·), P (·)
are given by (3.82), (3.83), respectively.

4. Finite-dimensional information states.

4.1. Nonlinear dynamics linear sensor problem. Unfortunately, if we con-
sider the quadratic sensor problem the information state equation (2.33) will not
evolve on a finite-dimensional manifold. This is not surprising because the Feynman–
Kac information state equation contains the additional term ˜̀1 which has been chosen
in Theorems 3.7 and 3.9 in such a way as to cancel nonlinearities in x of specific type.
On the other hand, if we set H̃ = 0 in the definition of the control system Σ2

G, we
obtain from the results of section 3.2 a finite-dimensional representation for q0(·).
These results are summarized in the next theorem.

Control system (ΣuI ). Suppose Assumptions 2.1 hold, with U in A1 replaced
by a compact subset of <m, and the dynamics and observations are given by

dxt = (Ftxt + ft + g(t, x, u(t, y))) dt
+B(t, u(t, y))dt+Gtdwt, x(0) ∈ <n,(4.92)
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dyt = (Htxt + ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d,(4.93)

J0
ΣuI

(u(·)) .= J0
I (u(·)) = (1.4).(4.94)

Here gu ≡ g : [0, T ]×<n ×U → <n is Borel measurable, and A10 and A12 hold with
g → gu, φ(x)→ φ(t, x, u), q̃θ0(x)→ q̃0

0(x).
For u ∈ Û the information state associated with the control system ΣuI evolves

according to the equation

dq0
t = 1

2Tr
(
GtG

′
tD

2
xq

0
t

)
dt− ∂

∂x

(
q0
t (Ftx+ gt(x, u))

)
dt+ (Htx+ ht) .q0

tN
−1
t dyt,

q0(x, 0) = qθ0(x).

The next theorem is a direct consequence of Theorems 3.7 and 3.9. The results
corresponding to uncontrolled diffusion processes (i.e., B = 0) were first derived in
[21].

THEOREM 4.1. Consider the control system ΣuI , suppose H ′tN
−1
t Ht + Λut ≥

0 ∀(t, u) ∈ [0, T ] × U , and for u ∈ Û , there exist functions φu ∈ C2,1
x,t (<n × [0, T ])

satisfying the partial differential equation

∂φut
∂t + 1

2Tr
(
GtG

′
tD

2
xφ

u
t

)
+ 1

2Dxφ
u
t .GtG

′
tDxφ

u
t

+ (Ftx+ ft +B(t, u)) .Dxφ
u
t = 1

2xΛut .x+ x.σut + δut .
(4.95)

Here Λu(·), σu(·), δu(·) are free to be chosen so that (4.95) yields explicit solutions.
Then

q0(x, t) = exp (φu(x, t))
exp

(
− 1

2P
−1
t (x− rt).(x− rt)

)
(2π)

n
2 |Pt|

1
2

exp (ct + µt) .

The cost function is

J0
ΣuI

(u(·)) = E

{∫ T

0
(`2(t, ·, ut), q0

t )dt+ (ϕ2(T, ·), q0
T )

}
.(4.96)

Here P (·), r(·), µ(·), c(·) satisfy the following equations:

drt = (Ft − PtΛut ) rtdt+ ftdt− Ptσut dt
+B(t, u)dt+ PtH

′
tN
−1
t (dyt −Htrtdt− htdt) , r(0) = ξ,

Ṗt = FtPt + PtF
′
t − Pt

(
H ′tN

−1
t Ht + Λut

)
Pt +GtG

′
t, P (0) = P0,

dµt = −1
2

(rt.Λut rt + 2rt.σut + 2δut + Tr(PtΛut )) dt, µ(0) = 0,

dct = (Htrt + ht) .N−1
t dyt −

1
2
|N−

1
2

t (Htrt + ht) |2dt, c(0) = 0.

In addition, the information state q0(·) can be written explicitly for the classes of
nonlinear functions φu(·) given in Theorem 3.11.

Proof. The first part of the theorem follows by setting θ = 0 and H̃ = 0 in the
results of Theorem 3.7. The second part of the theorem follows from Theorem 3.11.
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5. Examples of optimal and suboptimal controls for Σ2
G with H̃ = 0.

Note that, when the Feynman–Kac information state is expressed in terms of a finite
number of quantities, as in Theorem 3.7, under an appropriate hypothesis one could
employ dynamic programming arguments as in [4, 6] to derive a Hamilton–Jacobi
(HJ) equation satisfied by the optimal cost-to-go, and then establish a verification
theorem. Consequently, in this case, if the optimal control laws exist, they are finite-
dimensional.

In the next two theorems we present sufficient conditions for identifying nonlinear
partially observable stochastic control problems with H̃ = 0, which have exact optimal
control laws, reminiscent of LEQG/LQG tracking problems.

THEOREM 5.1. Suppose Assumptions 2.1 hold. Consider the problem of finding a
control law u∗ ∈ Û minimizing the total cost function

Jθ(u(·)) = Eu
{
ϕ2(T, xT ) exp θ

2

(∫ T
0 [Qtxt.xt +Rtu(t, y).u(t, y) + 2mtxt

+ 2ntu(t, y) + ˜̀1(t, xt, u(t, y)]dt+ [QTxT .xT + 2mTxT ]
)}

.
(5.97)

Here

Q = Q′ : [0, T ]→ L(<n;<n), R = R′ : [0, T ]→ L(<m;<m),
m : [0, T ]→ (<n)′, n : [0, T ]→ (<m)′, Q ≥ 0, R > 0,

and x, y are subject to dynamics:

dxt = (Ftxt + g(t, xt) + ft) dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n,(5.98)

dyt = (Htxt + ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d.(5.99)

I. Suppose the following conditions hold.
1. The function ˜̀1(·) is defined by

˜̀1(t, x, u) .=
2
θ
Btu(t, y).Dxφ(x, t) + ˆ̀1(t, x, u),(5.100)

where ˆ̀1(·) is chosen so that there exists some solution of (3.80) with H̃ = 0.
2. The function ϕ2(·) is defined by

ϕ2(T, x) .= exp(−φ(x, T )).(5.101)

3. Λ(·), σ(·) are functions of t and δ(·) is either a function of t or δ(t, ·) is a
linear function of u.

Then the optimal control u∗ ∈ Û is linear, feedback, as in the LEQG tracking problem.
II. If conditions I1, I3 hold and

1
2

(
Q̃−T x.x+ 2m̃−T x+ ρ̃−T

)
≤ φ(x, T ) ≤ 1

2

(
Q̃+
T x.x+ 2m̃+

T x+ ρ̃+
T

)
, ϕ2 = 1,(5.102)

where Q̃−T = Q̃−,′T , Q̃+
T = Q̃+,′

T , then the optimal total cost J(u∗(·)) is bounded above
and below by that of the LEQG tracking problem.

If the term 2
θBtu(t, y).Dxφ(x, t) is removed from (5.100) one must allow g(·) to

be pathwise-dependent on the observations, thus generalizing (5.98).
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Proof. I. From Theorem 3.7, we know that if there exists a function φ ∈ C2,1
x,t (<n×

[0, T ]) satisfying (3.80) with H̃ = 0, and if we choose the function ˜̀1(·) according
to condition I1, then the Feynman–Kac information state equation associated with
control problem (5.97)–(5.99) is given by

qθ(x, t) = exp(φ(x, t) + ct + λt)×
exp

(
− 1

2P
−1
t (x− rt).(x− rt)

)
(2π)

n
2 |Pt|

1
2

Λ̂u0,T ,

where r(·), P (·) satisfy the equations

drt = (Ft − Pt(Λt − θQt)) rtdt+ ftdt+Btu(t, y)dt+ θPtm
′
tdt− Ptσtdt

+PtH
′
tN
−1
t (dyt −Htdt− htdt), r(0) = ξ,

(5.103)

Ṗt = FtPt + PtF
′
t − Pt(H ′tN−1

t Ht + Λt − θQt)Pt +GtG
′
t, P (0) = P0.(5.104)

Λ̂u(·) is defined earlier, and λ(·) is given by the equation

λt = exp θ
2

(∫ T
0

(
rs[Qs − Λs

θ ].rs +Rsu(s, y).u(s, y) + Tr
(
Ps[Qs − Λs

θ ]
))
ds
)

× exp
(
θ
2

∫ T
0

(
2rs.[m′s − σs

θ ] + 2[nsu(s, y)− δs
θ ]
)
ds
)
.

(5.105)

If ϕ2 is defined according to condition I2 and I : [0, T ] → <, from Theorem 2.3, we
know that the cost function (5.97) admits the representation

Jθ(u(·)) = I0,TE
{

exp θ
2

(∫ T
0

(
rs[Qs − Λs

θ ].rs +Rsu(s, y).u(s, y) + Tr
(
Ps[Qs − Λs

θ ]
))
ds
)

× exp
(
θ
2

∫ T
0

(
2rs.[m′s − σs

θ ] + 2[nsu(s, y)− δs
θ ]
)
ds
)

× exp θ
2 (ϕ̂2(T, rT ))× Λ̂u0,T

}
.

(5.106)
Here the function ϕ̂2(·) is quadratic in r. If condition I3 holds as well, then Λ(·), σ(·)
are deterministic functions of t, and either δ(·) : [0, T ]→ < or δ(t, ·) is a linear function
of u. Hence, the problem of minimizing (5.97) over u ∈ Û , subject to dynamics (5.98),
(5.99), is equivalent to the problem of minimizing (5.106) over u ∈ Û , subject to
dynamics (5.103), (5.104). However, the latter problem is equivalent to a completely
observable LEQG tracking problem. Therefore, the optimal control is linear, feedback,
and of separated form u∗(t) = u(t, r) (see [3, 6]).

II. This follows by substituting (5.102) into (5.106).
A similar derivation holds when the function φ(·) is pathwise-dependent on the

observation y. This then implies that the term 2
θBtu(t, y).Dxφ

u(x, t) is not present
in ˜̀1(·). Moreover, it is possible to relax the third condition, allowing σ to be a linear
function of u and δ to be a quadratic function of u.

THEOREM 5.2. Suppose the assumptions corresponding to the family of systems
ΣuI hold with U as defined in A1. Consider the problem of finding a control law u∗ ∈ Û
minimizing the total cost function

J0(u(·)) = 1
2E

u
{∫ T

0
ˆ̀2(t, xt, u(t, y))× (Qtxt.xt +Rtu(t, y).u(t, y)

+ 2mtxt + 2ntu(t, y)) dt+ ϕ̂u2 (T, xT )× (QTxT .xT + 2mTxT )
}
,

(5.107)
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where Q,R,m, n are specified in Theorem 5.1, subject to dynamics and observations
given by

dxt = (Ftxt + gu(t, xt) + ft) dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n,(5.108)

dyt = (Htxt + ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d.(5.109)

I. Suppose the following conditions hold.
1. There exists some solution φu(·) of (4.95).
2. The functions ˆ̀2, ϕ̂u2 (·) are defined by

ˆ̀2(t, x, u) .= exp(−φu(x, t)), ϕ̂u2 (T, x) .= exp(−φu(x, T )).(5.110)

3. Λu(·) = 0, σu(·) = 0, and δu(·) = δ(·) is a function of t.
Then the optimal control u∗ ∈ Û is linear, feedback, as in the LQG tracking

problem.
Proof. From Theorem 4.1, we know that, if there exists a function φu ∈ C2,1

x,t (<n×
[0, T ]), satisfying (4.95), and we set gu = GG′Dxφ

uc, then the information state
equation associated with control problem (5.107)–(5.109) is given by

q0(x, t) = exp(φu(x, t) + λt)×
exp

(
− 1

2P
−1
t (x− rt).(x− rt)

)
(2π)

n
2 |Pt|

1
2

Λ̂u0,t.

Here r(·), P (·) satisfy the equations

drt = (Ft − PtΛut ) rtdt+ ftdt+Btu(t, y)dt− Ptσut dt

+PtH
′
tN
−1
t (dyt −Htdt− htdt), r(0) = ξ,

(5.111)

Ṗt = FtPt + PtF
′
t − Pt(H ′tN−1

t Ht + Λut )Pt +GtG
′
t, P (0) = P0.(5.112)

Λ̂u(·) is the exponential martingale defined earlier, and λ(·) is given by the equation

λt = exp
1
2

{
−
∫ t

0
(rs[Λus ].rs + Tr (Ps[Λus ]) + 2rs.[σus ] + 2[δus ]) ds

}
.(5.113)

If conditions I1–I3 of the theorem are satisfied, from Theorem 4.1, we know that the
cost function (5.107) is represented by

J0(u(·)) = E
{

1
2

(∫ T
0 (Qtrt.rt +Rtu(t, y).u(t, y) + 2rt.m′t + 2ntu(t, y)) dt

+ (QT rT .rT + 2rT .m′T ) +
∫ T

0 Tr (PtQt) dt+ Tr (PTQT )
)

Λ̂u0,T
}

× exp(−
∫ T

0 δtdt).

(5.114)

Hence, the problem of minimizing (5.107) over u ∈ Û , subject to dynamics (5.108),
(5.109), is equivalent to the problem of minimizing (5.114) over u ∈ Û subject to
dynamics (5.111), (5.112). However, the latter problem is equivalent to a completely
observable LQG tracking problem. Therefore, the optimal control is linear, feedback,
and of separated form u∗(t) = u(t, r).

In the next two subsections we shall present specific examples of general nonlinear
partially observable control problems that yield linear observer dynamics and linear
feedback optimal control laws.
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5.1. Nonlinear dynamics exponential-of-integral cost. Control system
(ΣEi , i = 1, 2). We specialize (5.97)–(5.99) of Theorem 5.1 to the following case. The
dynamics and observations are given by

dxt = (Ftxt + gi(t, xt) + ft) dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n, i = 1, 2,

dyt = (Htxt + ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d.

Here

Γi2(t, x) =
1
2

∆i
tx.x+ x.ζit + ηit, i = 1, 2,

g1(t, x) .= GtG
′
t

DxΓ1
2(t, x)

Γ1
2(t, x)

=
GtG

′
t

1
2∆1

tx.x+ x.ζ1
t + η1

t

(
∆1
tx+ ζ1

t

)
,

g2(t, x) .=
γ1
t exp(Γ2

2(t, x))− γ2
t exp(−Γ2

2(t, x))
γ1
t exp(Γ2

2(t, x)) + γ2
t exp(−Γ2

2(t, x))
GtG

′
tDxΓ2

2(t, x).

The functions ∆i, ζi, ηi, i = 1, 2, satisfy the equations stated in Theorem 3.9 under
Classes 1, 2, respectively. Define

`iQ(t, x, u) .= Qtx.x+Rtu.u+ 2mtx+ 2ntu+ ˜̀i
1(t, x, u), i = 1, 2,

where

˜̀i
1(t, x, u) =

2
θ
Btu. (GtG′t)

−1
gi(t, x), i = 1, 2.

For i = 1, 2 we wish to minimize over u ∈ Û the cost function

JθΣEi
(u(·)) = Eu

{
ϕi2(T, xT ) exp

θ

2

(∫ T

0
`iQ(t, xt, ut)dt+ (QTxT .xT + 2mTxT )

)}
,

where

ϕ1
2(T, x) .=

1
Γ1

2(t, x)
=

1
∆1
tx.x+ x.ζ1

t + η1
t

,

ϕ2
2(T, x) =

{
γ1
T exp(Γ2

2(t, x)) + γ2
T exp(−Γ2

2(t, x))
}−1

.

(5.115)

In order to determine explicitly the optimal feedback control law corresponding to
the control problem associated with systems ΣEi , i = 1, 2, we shall need the following
equations.

Observer dynamics.

drit =
{
Ft − P it

(
Λit − θQt

)}
ritdt+

(
ft − P itσit

)
dt+Btu(t, y)dt

+θP itm
′
tdt+ P itH

′
tN
−1
t db̂ut , ri(0) = ξ, b̂ui ≡Wiener process, i = 1, 2,

(5.116)

Ṗ it = FtP
i
t + P itF

′
t − P it

(
H ′tN

−1
t Ht − θ[Qt − Λit

θ ]
)
P it

+GtG
′
t, P

i(0) = P0, i = 1, 2.
(5.117)
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Control gains.

Σ̇it + Σit
(
Ft + θP it [Qt −

Λit
θ ]
)

+
(
F ′t + θ[Qt − Λit

θ ]P it
)

Σit + [Qt − Λit
θ ]

−Σit
{
BtR

−1
t B′t − θP itH ′tN−1

t HtP
i
t

}
Σit = 0, i = 1, 2,

ΣiT = 1
2

{(
I − θQTP iT

)−1
QT +QT

(
I − θP iTQT

)−1
}
, i = 1, 2.

(5.118)

k̇it + kit

(
Ft + θP itH

′
tN
−1
t HtP

i
tΣ

i
t + θP it [Qt −

Λit
θ ]−BtR−1

t B′tΣ
i
t

)
+[mt − σi,∗t

θ ] +
(
f ′t + θ[mt − σit

θ ]P it − ntR−1
t B′t

)
Σit = 0, i = 1, 2,

kiT = mT

(
I − θP iTQT

)−1
, i = 1, 2.

(5.119)

ρ̇it + Tr
(
P itH

′
tN
−1
t HtP

i
tΣ

i
t

)
+ θkitP

i
tH
′
tN
−1
t HtP

i
t k
i,′
t

+2kit
(
ft + θP it [mt − σi,′t

θ ]
)
− |R−

1
2

t

(
B′tk

i,′
t + n′t

)
|2 = 0, i = 1, 2,

ρiT = 0, i = 1, 2.

(5.120)

Ii0,T = 1
|I−θP iTQT |

1
2

exp
{
θ2

2 nT
(
I − θP iTQT

)−1
P iTn

′
T

+ θ
2

∫ T
0

(
Tr(P it [Qt −

Λit
θ ])− δit

θ

)
dt
}
, i = 1, 2.

(5.121)

Introduce the Riccati differential equation

Ṡit + F ′tS
i
t + SitFt − Sit

(
BtR

1
tB
′
t − θGtGt

)
Sit

+[Qt − Λit
θ ] = 0, SiT = QT , i = 1, 2.

(5.122)

Denote by ρ̃(AB) the spectral radius of AB (where A,B are matrix-valued functions),
and define

θ∗
.= sup

{
θ; P it ≥ 0, Sit ≥ 0 ∀t ∈ [0, T ], ρ̃(P itS

i
t) <

1
θ
∀t ∈ [0, T ]

}
.(5.123)

Whenever the functions Λi(·), σi(·), δi(·) are set to zero, the above equations are
identical to the equations associated with determining the optimal control for LEQG
tracking problems specified by (3.51)–(3.53) (see [3, 6]).

COROLLARY 5.3 (exact optimal control laws). Suppose 0 < θ ≤ θ∗. The optimal
control law corresponding to control system ΣEi , i = 1, 2, is given by

ui,∗(t) = −R−1
t B′t

(
Σitr

i
t + ki,′t

)
−R−1

t n′t, i = 1, 2,

where ri(·) ≡ ri,u
∗
(·), P i(·) are given by (5.116), (5.117), respectively, for i = 1, 2.

Furthermore, the optimal total cost associated with system ΣEi , i = 1, 2, is given by

JθΣEi
(ui,∗(·)) = Ii0,T × exp

θ

2
(
Σi(0)ri(0).ri(0) + 2ki(0)ri(0) + ρi(0)

)
, i = 1, 2,

respectively.
Proof. This is a special case of Theorem 5.1.
Remark 5.4. Proceeding along the lines of the derivation of Corollary 5.3, we

could derive the analog of this corollary for the classes of nonlinear control systems
identified in Theorem 3.11 under Class 1.
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Next, we introduce an example with an explicit optimal control law.
Example 5.5 (control problem with rational polynomial nonlinearities). Suppose

we are interested in the stochastic optimal control problem emerging from Exam-
ple 3.10, Case 2 by setting ∆ = 2, α = 2, η = 1

2 . Namely,

dxt = xtdt+
2xt

x2
t + 1

2

dt+ u(t, y)dt+ dwt, x(0) = 0 ∈ <,

dyt = xtdt+ dbt, y(0) = 0 ∈ <.
(5.124)

The objective is to find the optimal control law u ∈ Û that minimizes the cost function

Jθ(u(·)) = Eu
{

exp θ
2

(∫ T
0

[
Qx2

t +Ru(t, y)2
]
dt+QTx

2
T

)
× exp

(∫ T
0

[
u(t, y) 2xt

x2
t+

1
2

]
dt+ ln(x2

T + 1
2 )−1

)}
.

From Corollary 5.3 we deduce that the optimal control law is given by u∗(t) =
−R−1,Σtrt = −R−1 (1− θStPt)Strt, where Σ(·), S(·), r(·) satisfy appropriate equa-
tions.

5.2. Nonlinear dynamics integral cost. Control system (ΣuI1). Suppose
the dynamics and observations are those given under control system ΣE1 defined by

ΣuI1
.=
{

ΣE1 ; g1(t, x)→ g1(t, x, u) ≡ gu(t, x), ζ1
t → ζut , η

1
t → ηut

}
,

and the objective is to minimize over u ∈ Û the cost function

JΣuI1
(u(·)) = 1

2E
u
{

QT xT .xT+mT xT
1
2 ∆T xT .xT+ζuT .xT+ηuT

+
∫ T

0

(
Qtxt.xt+Rtut.ut+2mtxt+2ntut

1
2 ∆txt.xt+ζut .xt+ηut

)
dt
}
.

As in section 5.1 we shall show, by using the results of section 4, that the control
problem associated with ΣuI1 yields an explicit optimal feedback control law. To this
end we introduce the following equations:

Σ̇t + ΣtFt + F ′tΣt − ΣtBtR−1
t B′tΣt +Qt = 0, ΣT = QT ,(5.125)

k̇t + kt
(
Ft −BtR−1

t B′tΣt
)

+mt +
(
f ′t − ntR−1

t B′t
)

Σt = 0, kT = mT ,(5.126)

ρ̇t + Tr
(
PtH

′
tN
−1
t HtPtΣt

)
+ 2ktft − |R

− 1
2

t (B′tk
′
t + n′t) |2 = 0, ρT = 0.(5.127)

COROLLARY 5.6 (exact optimal control laws). The optimal control law corre-
sponding to system ΣuI1 is given by

u∗(t) = −R−1
t B′t (Σtrt + k′t)−R−1

t n′t.

Here Σ(·), k(·) are given by (5.125), (5.126), respectively, and r(·) ≡ ru∗(·) is given by

drt = Ftrtdt+ ftdt+Btu
∗(t)dt+ PH ′tN

−1
t db̂t, r(0) = ξ, b̂t

.= Wiener process.

Proof. This is a special case of Theorem 5.2.
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5.3. Nonlinear dynamics exponential-of-quadratic cost. Now, specialize
the cost function (3.91) (i.e., (2.26)) to that corresponding to an exponential-of-
integral cost by consider the following family of control systems.

Control system (ΣEQ). Consider the dynamics and observations given by

dxt = (Ftxt + g(t, xt) + ft) dt+Btu(t, y)dt+Gtdwt, x(0) ∈ <n,

dyt = (Htxt + ht) dt+N
1
2
t dbt, y(0) = 0 ∈ <d.

(5.128)

Here

g(t, x) =
γ1
t exp (Γ2(t, xt))− γ2

t exp (−Γ2(t, xt))
γ1
t exp (Γ2(t, xt)) + γ2

t exp (−Γ2(t, xt))
GtG

′
t (∆txt + ζt) ,

Γ2(t, x) .=
1
2

∆tx.x+ x.ζt + ηt,

and ∆(·), ζ(·), η(·) satisfy the equations of Theorem 3.9 under Class 2.
The cost function to be minimized over u ∈ Û is

JθΣEQ(u(·)) = Eu
{

exp θ
2

(∫ T
0

[
Qsxs.xs +Rsus.us + 2msxs + 2nsus + ˜̀1(s, xs, us)

]
ds

+ (QTxT .xT + 2mTxT )
) }

, ˜̀1(t, x, u) = B(t, u).(G′tGt)
−1g(t, x),

and Qt = Q′t ≥ 0, Rt = R′t > 0.
Define

ϕ̃EQ1 (x, T ) .=
∫
<n
{
γ1
T exp

( 1
2∆T z.z + z.ζT + ηT

)
+ γ2

T exp
(
− 1

2∆T z.z − z.ζT − ηT
)}

× exp θ
2 (QT z.z + 2mT z)× 1

(2π)
n
2 |PT |

1
2

exp
(
− 1

2P
−1
T (z − x).(z − x)

)
dz.

(5.129)
As before, we know that the partially observable stochastic control problem ΣEQ is
equivalent to the following finite-dimensional, completely observable control problem.

Cost function. Minimize over u ∈ Û the cost function

JθΣEQ(u(·)) = Êu
{
ϕ̃EQ1 (rT , T )× exp

(
θ
2

∫ T
0 Tr

(
Ps[Qs − Λs

θ ]
)
ds
)

× exp
(
θ
2

∫ T
0

(
rs[Qs − Λs

θ ].rs +Rsu(s, y).u(s, y)
)
ds
)

× exp
(
θ
2

∫ T
0

(
2rs.[m′s − σs

θ ] + 2[nsu(s, y)− δs
θ ]
)
ds
)}

subject to the following dynamics.
Observer dynamics.

drt = {Ft − Pt (Λt − θQt)} rtdt+ (ft − Ptσt) dt

+Btu(t, y)dt+ θPtm
′
tdt+ PtH

′
tN
−1
t db̂ut , r(0) = ξ,

(5.130)

Ṗt = FtPt + PtF
′
t − Pt

(
H ′tN

−1
t Ht + Λt − θQt

)
Pt

+GtG
′
t, P (0) = P0.

(5.131)

Define

Q+
T
.= QT +

1
θ

∆T , m+
T
.= mT +

1
θ
ζT ,(5.132)

Q−T
.= QT −

1
θ

∆T , m−T
.= mT −

1
θ
ζT ,(5.133)
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Σ̃+
T
.=
(
I − θPTQ+

T

)−1
, Σ̃−T

.=
(
I − θPTQ−T

)−1
.(5.134)

Use the normalization property of Gaussian densities to deduce

ϕ̃EQ1 (x, T ) = γ̂+
T × exp θ

2

(
Σ̃+
T x.

(
Q+
T x+ 2m+,′

T

))
+ γ̂−T × exp θ

2

(
Σ̃−T x.

(
Q−T x+ 2m−,′T

))
,(5.135)

where

γ̂+
T = γ1

T |Σ̃+
T |

1
2 exp

θ2

2

(
m+
T Σ̃+

TPTm
+,′
T + ηT

)
,

γ̂−T = γ2
T |Σ̃−T |

1
2 exp

θ2

2

(
m−T Σ̃−T PTm

−,′
T − ηT

)
.

Denoting the optimal cost-to-go corresponding to the total cost JθΣEQ(u(·)) by
SEQ(·) and defining

IEQt,T
.= exp

θ

2

{∫ T

t

Tr

(
Ps

[
Qs −

Λs
θ

])
ds

}

for each u ∈ Û , the cost-to-go is now given as follows.
Exponential-of-integral cost-to-go.

SEQ(r, t) = 1
IEQt,T

infu∈Û Ê
u
{
ϕ̃EQ1 (rT , T )× exp θ

2

(∫ T
t
rs[Qs − Λs

θ ].rsds
)

× exp θ
2

(∫ T
t

(
Rsus.us + 2rs.[ms − σs

θ ] + 2[nsus − δs
θ ]
)
ds
)
|Fy0,t

}(5.136)

subject to observer dynamics given as follows.
Observer dynamics.

drt = {Ft − Pt (Λt − θQt)} rtdt+ (ft − Ptσt) dt

+Btu(t, y)dt+ θPtm
′
tdt+ PtH

′
tN
−1
t db̂ut , r(0) = ξ.

(5.137)

Formally, the function SEQ(·) satisfies the second-order HJ equations

∂
∂tSEQ(r, t) + Ãθ(t)SEQ(r, t)

+ θ
2

{
r[Q− Λ

θ ].r + 2r.[m′ − σ
θ ]− 2 δsθ

}
SEQ(r, t)

+Hθ(r,DrSEQ(r, t), DrSEQ(r, t)) = 0, <n × [0, T ),

(5.138)

with terminal condition

SEQ(r, T ) = ϕ̃EQ1 (r, T ) = γ̂+
T × exp θ

2

(
Σ̃+
T r.
(
Q+
T r + 2m+,′

T

))
+ γ̂−T × exp θ

2

(
Σ̃−T r.

(
Q−T r + 2m−,′T

))
.(5.139)

Here

F̃t
.= Ft − Pt (Λt − θQt) , α̃t

.= PtH
′
tN
−1
t HtPt,
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and for Φ ∈ C2
x(<n)

Ãθ(t)Φ(x) =
1
2
Tr
(
α̃tD

2
xΦ(x)

)
+
(
F̃tx+ θPtm

′
t + ft − Ptσt

)
.DxΦ(x),

Hθ(x, p, s) = inf
u∈<m

{
p.Bu+

θ

2
(Ru.u+ 2nu) s

}
.

Hence, the total optimal cost corresponding to control system ΣEQ is obtained from

JθΣEQ(u∗(·)) = inf
u∈Û

JθΣEQ(u(·)) = IEQ0,T SEQ(r(0), 0).(5.140)

If the terminal condition SEQ(T, r) is an exponential-of-quadratic function of r,
the above HJ equations can be solved explicitly to yield optimal controls which are
of linear feedback form. Several attempts to solve explicitly the HJ equation (5.138),
(5.139) have been unsuccessful. For this reason we shall seek suboptimal control laws.

COROLLARY 5.7. Consider the HJ equation (5.138), (5.139) corresponding to the
control system ΣEQ, and suppose

m = 0, η = 0, ζ = 0, ∆T ≥ 0,

QT − 1
θ∆T ≥ 0, I − θPT (QT + 1

θ∆T ) > 0, θ > 0.
(5.141)

Denoting by SEQ− , SEQ, SEQ+ the solutions of (5.138) corresponding to the terminal

cost functions ϕ̃EQ
+

1 , ϕ̃EQ1 , ϕ̃EQ
−

1 , respectively, defined by

ϕ̃EQ
+

1 (x, PT ) .=
(
γ̂+
T + γ̂−T

)
× exp

θ

2

(
x.Σ̃+

TQ
+
T x
)
,(5.142)

ϕ̃EQ1 (x, PT ) .= γ̂+
T × exp

θ

2

(
x.Σ̃+

TQ
+
T x
)

+ γ̂−T × exp
θ

2

(
x.Σ̃−TQ

−
T x
)
,(5.143)

ϕ̃EQ
−

1 (x, PT ) .=
(
γ̂+
T + γ̂−T

)
× exp

θ

2

(
x.Σ̃−TQ

−
T x
)
,(5.144)

where

γ̂+
T = γ1

T |Σ̃+
T |

1
2 , γ̂−T = γ2

T |Σ̃−T |
1
2 ,

we have the following bounds:

SEQ−(r, t) ≤ SEQ(r, t) ≤ SEQ+(r, t) ∀(r, t) ∈ <n × [0, T ].(5.145)

Furthermore,

IEQ0,T SEQ−(r(0), 0) ≤ JθΣEQ(u∗(·)) ≤ IEQ0,T SEQ+(r(0), 0),(5.146)

and the suboptimal control laws obtained by solving the HJ equations associated with
SEQ− , SEQ+ are similar to that of the LEQG tracking problem.

Proof. This is a direct consequence of Theorem 5.1, part II, which is obtained
as follows: from (5.135) and (5.141) we deduce (5.143). Using (5.132)–(5.135) and
(5.141) we deduce

Q+
T ≥ Q

−
T , Σ̃+

T ≥ Σ̃−T ,

ϕ̃EQ
−

1 (r, T ) ≤ ϕ̃EQ1 (r, T ) = SEQ(r, T ) ≤ ϕ̃EQ
+
2

1 (r, T ).(5.147)

From the theory of dominating solutions of PDEs we derive (5.145). Consequently,
we establish (5.146).

Remark 5.8. Lower and upper bounds, such as the ones derived above, can be
derived for other nonlinear drift terms g(·) which admit finite-dimensional solutions
of the Feynman–Kac information state equation.
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6. Conclusion. In general, nonlinear partially observable stochastic optimal
control problems have an infinite-dimensional state space. In this paper we have pre-
sented an approach for treating systems with nonlinearities which enter the unobserv-
able dynamics as gradients of potential functions, and the observations as quadratic
functions, of the unobservable state. When the observations are linear in the unobserv-
able state, sufficient conditions are given to compute optimal control laws explicitly,
along the lines of LEQG/LQG tracking problems.

When the cost function is either quadratic or an exponential-of-quadratic function
of x and u, we have shown that finite-dimensional sufficient statistics are available,
provided the nonlinearities entering the unobservable dynamics are gradients of po-
tential functions and satisfy a generalized version of the Riccati equation. In addition,
suboptimal linear feedback control laws are derived for nonlinearities satisfying “sector
criteria.”
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Abstract. A deterministic infinite-horizon singular control problem with unbounded control
set is solved completely. The methods used here are those of dynamic programming and viscosity
solutions. The novelty is that the value function is convex, C1 along a piece of the free boundary
and not C1 along another piece of it.
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1. Introduction. We consider the following optimal control problem. Let d ≥ 2
and let Ad be the space of antisymmetric d × d matrices a endowed with the norm

|a| =
√

1
2 trace(aa′), where a′ denotes the transpose of a. The system to be controlled

is the bilinear system

ẋ = a(t)x, x(0) = x ∈ Rd,(1.1)

where the control a(·) ∈ Ad, the space of measurable functions of time valued in Ad.
The cost function is defined by

va(x) =
∫ ∞

0
e−t [〈x(t), b〉+ |a(t)|] dt,(1.2)

where b ∈ Rd \ {0} is fixed throughout and 〈·, ·〉 is the inner product in Rd, and the
value function is

v(x) = inf{va(x) : a(·) ∈ Ad}.(1.3)

We show that v is a convex, Lipschitz viscosity solution of the free boundary problem

max(u(x)− 〈b, x〉, λ(x,∇u(x))− 1) = 0, x ∈ Rd,(1.4)

where 〈·, ·〉 denotes the euclidean inner product on Rd and

λ(x, p) = |x| |p| sin θ,(1.5)

with θ the angle between x and p. We shall see that the free boundary—the hy-
persurface where both terms in (1.4) equal zero—consists of two (d− 1)-dimensional
manifolds F0 and F1. The manifold F0 is part of the cylinder in Rd with axis through
b and defining equation

λ(x, b) = 1.(1.6)

∗Received by the editors April 3, 1996; accepted for publication (in revised form) January 8, 1997.
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The manifold F1 is harder to describe; that is done in section 3. The value function
is C1 along F0 but it is not C1 along F1. Besides this, the value function is not C1

along a ray L in the direction of b; see Figure 2. We will also show that the optimal
control is either zero or impulsive. In this problem optimal impulsive controls have
delicate behavior. In fact, in the region J where the optimal control is impulsive, the
optimal trajectories jump along integral curves of (1.1) determined by the feedback
control

a(x(t)) = x(t) ∧∇v(x(t)).

These control functions turn out to be constant along the trajectories they determine.
When we let x(0) vary in J , the optimal impulsive trajectories end up along all of F0,
the only part of the free boundary along which the value function is C1. The methods
used in this paper are those of dynamic programming and viscosity solutions of the
Bellman equation. These methods were also used in [8]. The remarkable difference
between the behavior of the value function along the free boundary in [8] and that
presented here is the existence in our case (1.1)–(1.4) of the piece of the free boundary
F1 along which the value function is not C1. Moreover, our value function is convex.
All stochastic singular control problems with a convex value function found in the
literature (see [11, p. 332]) possess the additional property that the value function
is C2 (smooth fit property) along the free boundary. We conjecture that stochastic
versions of our problem can provide examples of stochastic singular control problems
with a convex value function and nonsmooth fit. Other work dealing with the question
of smooth fit can be found in [1], [5], [6], [9], [10], [15], [16], and [17]. The problem
(1.1)–(1.4) is somewhat related to the euclidean elastica problem (cf. [13]) if one
remembers that the Frenet–Serret formulas for curves in R3 are a bilinear system
with an antisymmetric matrix, as is (1.1) (cf. [2, p. 303]). In such a case, the control
system (1.1) describes general smooth curves in R3 with the matrix a(t) controlling
the curvature and the torsion of the curve. The elastica problem is finite horizon with
b = 0.

2. Derivation of the Bellman equation. If ξ ∈ Rd, then |ξ| denotes its
euclidean length, if a ∈ Ad, then |a|2 = 1

2 trace(aa′) =
∑
i<j a

2
ij , and if a(·) ∈ Ad,

then ||a(·)|| = ess sup{|a(t)| : t ≥ 0}.
If ξ, η are two vectors in Rd \ {0}, then the angle between them is given by

θ = cos−1(〈ξ/|ξ|, η/|η|〉) ∈ [0, π].
The wedge product ξ ∧ η is the antisymmetric n× n matrix defined by

ξ ∧ η = ξη′ − ηξ′,

and we have

|ξ ∧ η|2 =
1
2

trace((ξ ∧ η)(ξ ∧ η)′)

=
∑
i<j

(ξiηj − ξjηi)2.

An easy computation shows that |ξ ∧ η|2 + |〈ξ, η〉|2 = |ξ|2|η|2 and hence |ξ ∧ η| =
|ξ| |η| sin θ = λ(ξ, η), where θ is the angle between ξ and η.

For ε > 0 set

vε(x) = inf{va(x) : ε||a(·)|| ≤ 1, a(·) ∈ Ad}.
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Then an easy approximation argument shows that

v(x) = inf
ε>0

vε(x).(2.1)

LEMMA 1. vε → v uniformly on compact subsets of Rd as ε ↓ 0 and v, vε are
convex and Lipschitz on Rd with Lipschitz constant |b| for all ε > 0. Moreover, v(x)
and vε(x) are bounded above by 〈b, x〉 and below by −|b| |x|.

Proof. Let Φ(t, s) denote the fundamental solution of (1.1) corresponding to a
given control a(·). Since (d/dt)|x(t)|2 = 2〈x(t), a(t)x(t)〉 = 0, we have |x(t)| = |x|,
which yields ||Φ(t, 0)|| = 1 (operator norm). Since

∇va(x) =
∫ ∞

0
e−tΦ′(t, 0)b dt,

it follows that |∇va(x)| ≤ |b|. Since v and vε are infima of va, they are Lipschitz with
constant |b|.

Let a(·) be a bounded control and suppose xε → x. Then

va(x) = lim sup
ε↓0

va(xε) ≥ lim sup
ε↓0

vε(xε),

and so v(x) ≥ lim supε↓0 vε(xε). By (2.1) we have

lim inf
ε↓0

vε(xε) ≥ lim inf
ε↓0

v(xε) ≥ v(x).

This establishes continuous convergence. Then the local uniform convergence follows;
see [4, p. 268]. The last part follows from the fact that v0(x) = 〈b, x〉 for all x and
from v(0) = 0.

Finally, to prove that v is convex, let α ∈ [0, 1] and let xα = (1− α)x0 + αx1 be
a convex combination of initial states for (1.1). Let ε > 0 and let ai(·) be controls
satisfying vai(xi) ≤ v(xi) + ε, i = 0, 1. Let aα = (1 − α)a0 + αa1. Then the corre-
sponding solutions of (1.1) satisfy xα(t) = (1−α)x0(t) +αx1(t), and the convexity of
(1.2) implies

v(xα) ≤ vaα(xα) ≤ (1− α)va0(x0) + αva1(x1)

≤ (1− α)v(x0) + αv(x1) + ε.

Since ε was arbitrary, this proves that v is convex.
We now derive the Bellman equation satisfied by vε. For the concept of “viscosity

solution,” see [3].
LEMMA 2. For all ε > 0, vε is a viscosity solution of

1
ε
H(x,∇vε) + vε − 〈x, b〉 = 0, x ∈ Rd,(2.2)

where

H(x, p) = sup{−〈ax, p〉 − |a| : |a| ≤ 1, a ∈ Ad}
= (|p ∧ x| − 1)+ = (λ(x, p)− 1)+.(2.3)

Proof. We start with the dynamic programming principle [11], which states that
for each T > 0

vε(x) = inf

{∫ T

0
e−t[〈x(t), b〉+ |a(t)|]dt+ e−T vε(x(T ))

}
,(2.4)

where the infimum is over all controls a(·) ∈ Ad satisfying ε||a(·)|| ≤ 1.
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Now suppose φ ∈ C1(Rd) and x ∈ Rd with φ(x) = vε(x) and vε − φ ≤ 0 near x.
Then (2.4) yields for all constant a ∈ Ad satisfying ε|a| ≤ 1,

φ(x) ≤
∫ T

0
e−t [〈x(t), b〉+ |a|] dt+ e−Tφ(x(T )),

which implies by the chain rule and the fundamental theorem of calculus

0 ≤ 1
T

∫ T

0
e−t [〈x(t), b〉+ |a| − φ(x(t)) + 〈∇φ(x(t)), ax(t)〉] dt;

letting T ↓ 0 and taking the supremum over a we obtain

1
ε
H(x,∇φ(x)) + φ(x)− 〈b, x〉 ≤ 0.

On the other hand, suppose x and φ ∈ C1(Rd) are such that φ(x) = vε(x) and
vε − φ ≥ 0 near x. Since

sup
ε||a||≤1

(
sup

0≤t≤T
|x(t)− x|

)
→ 0 as T ↓ 0,(2.5)

(2.4) implies, for T > 0 sufficiently small,

0 ≥ inf
ε||a||≤1

{
1
T

∫ T

0
e−t [〈x(t), b〉+ |a(t)| − φ(x(t)) + 〈∇φ(x(t)), a(t)x(t)〉] dt

}
.

Now (2.5) allows us to pass to the limit T ↓ 0 and obtain

1
ε
H(x,∇φ(x)) + φ(x)− 〈b, x〉 ≥ 0.

The maximization in (2.3) is carried out as follows. Let

f(a) = −〈ax, p〉 − |a| =
∑
i<j

aij(xipj − xjpi)− |a|.

Then by the Cauchy–Schwarz inequality

f(a) ≤ |a|(|x ∧ p| − 1).

Therefore, if |x ∧ p| ≤ 1, we have maxf(a) = 0, attained (not uniquely) at a = 0. If
|x ∧ p| > 1, then maxf(a) = |x ∧ p| − 1, attained (uniquely) when

aij =
xipj − xjpi
|x ∧ p| .

THEOREM 1. v is a Lipschitz viscosity solution of (1.4).
Proof. Lemma 1 states that v is Lipschitz. Let x ∈ Rd and φ ∈ C1 be such that

v − φ has a local maximum at x. Then [3, Theorem 1.1, Lemma 1.1] there exists
xε → x such that vε − φ has a local maximum at xε. This implies, by (2.2),

1
ε
H(xε,∇φ(xε)) + vε(xε)− 〈xε, b〉 ≤ 0.
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Since H ≥ 0 we obtain vε(xε)− 〈xε, b〉 ≤ 0; letting ε ↓ 0 yields v(x)− 〈x, b〉 ≤ 0. Also
multiplying by ε and sending ε ↓ 0 yields H(x,∇φ(x)) ≤ 0. By Lemma 2, we obtain
λ(x,∇φ(x))− 1 ≤ 0. Thus v is a subsolution of (1.4).

Let x and φ ∈ C1 be such that v−φ has a local minimum at x. Choose [3] xε → x
such that vε − φ has a local minimum at xε. Then by (2.2)

1
ε
H(xε,∇φ(xε)) + vε(xε)− 〈xε, b〉 ≥ 0.

Now if v(x)− 〈x, b〉 ≥ 0 then v is a supersolution of (1.4). If not, then it follows that
H(xε,∇φ(xε)) > 0, which by Lemma 2 implies λ(xε,∇φ(xε))− 1 > 0, which yields in
the limit λ(x,∇φ(x))− 1 ≥ 0. Thus v is a supersolution of (1.4).

3. Solution of the free boundary problem. In this section we explicitly
construct a candidate value function U that is Lipschitz on Rd and that solves (1.4)
in the classical sense except for lower-dimensional submanifolds of Rd. To gain some
intuition on the construction of U , note that from (1.2) we can deduce that if a nonzero
control a(·) is optimal along a piece of a trajectory of (1.1), then the inner product
〈x(·), b〉 must not increase along x(·) and, in the regions where a = 0 is optimal,
〈x(·), b〉 should not be too large. The construction of U is divided into three steps.

Step 1. Let D be the closed region bounded by the half of the cylinder (1.6) in
the direction of −b:

D = {x ∈ Rd : 〈x, b〉 ≤ 0, λ(x, b) ≤ 1},

and let F0 be the part of the boundary of D where λ(x, b) = 1. Then F0 is a half-
cylinder. Define

U(x) = 〈x, b〉, x ∈ D.(3.1)

Then U is a classical solution of (1.4) in the interior of D. Up to this point there is
no justification for the requirement 〈x, b〉 ≤ 0 that we put in the definition of D. In
fact, below, we will define U(x) = 〈x, b〉 in a region strictly larger than D.

Step 2. We try to define U outside of D using the method of characteristics
[12, Ch. 1, section 7], [7, section 35.1]. The problem is to solve λ(x,∇u) = 1 with
boundary condition u(x) = 〈x, b〉 on F0.

Since λ ∈ C∞((Rd \{0})× (Rd \{0})), the flow αt of the Hamiltonian vector field

Xλ = 〈∇pλ,∇x〉 − 〈∇xλ,∇p〉

=
〈|x|2p− 〈x, p〉x,∇x〉 − 〈|p|2x− 〈x, p〉p,∇p〉

|x ∧ p|

is well defined.
Let x0 ∈ F0, let π

2 ≤ θ < π be the angle between x0 and b, and let Γ(x0) denote
the Hamiltonian trajectory segment Γ(x0) = {αt(x0, b) : 0 ≤ t < θ}. These are curves
in phase (x, p)-space whose projections Γ1(x0) onto position x-space are drawn in
Figure 1.

Although the Hamiltonian trajectory segments, being integral curves of the C∞

vector field Xλ, cannot intersect, their projections onto x-space, the characteristics,
can and do in fact intersect. As we shall see below, the locus of points of intersections
of the closures of the projections of Γ(x0) is a ray in the direction of b.
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Recall that the Poisson bracket of λ and β = β(x, p),

{λ, β} = Xλ(β) = 〈∇pλ,∇xβ〉 − 〈∇xλ,∇pβ〉,

vanishes if and only if the function β is a constant of the motion; see [7, section 34.2].
In particular, λ is a constant of the motion and hence λ(x, p) = |x ∧ p| = 1 on Γ(x0)
for all x0 ∈ F0. Other constants of the motion are 〈x, p〉 , |x|, |p|, and each entry
(xipj −xjpi) of the matrix x∧ p. Thus, Γ1(x0) is contained on the sphere with center
at the origin and radius |x0|.

Next, determine Γ(x0) explicitly for x0 ∈ F0. The trajectory (X(t), P (t)) =
αt(x0, b) starting from (x0, b) satisfies

ẋ(t) = −Ax(t) +Bp(t), x(0) = x0,

ṗ(t) = −Cx(t) +Ap(t), p(0) = ∇u(x0) = b,

where A = 〈x(t), p(t)〉, B = |x(t)|2, and C = |p(t)|2 are constants.
Then

X(t) = (cos t−A sin t)x0 +B(sin t) b,
P (t) = −C(sin t)x0 + (cos t+A sin t) b.

(3.2)

Note that X(·) stays in the plane determined by the vectors b and x0. Now take the
inner product of the first of the pair (3.2) with b and divide throughout by |X(t)| |b|.
Let φ(t) denote the angle between X(t) and b. Using |x0 ∧ b| = 1 and sin θ = |x0∧b|

|x0| |b|
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we obtain

cosφ(t) =
〈X(t), b〉
|X(t)| |b| =

cos t〈x0, b〉+ sin t(−A〈x0, b〉+B〈b, b〉)
|x0| |b|

= cos t
〈x0, b〉
|x0| |b|

+ sin t
(−|〈x0, b〉|2 + |x0|2 |b|2)

|x0| |b|

= cos t cos θ + sin t
|x0 ∧ b|2
|x0| |b|

= cos t cos θ + sin t sin θ

= cos(θ − t).

Hence φ(t) = θ − t, 0 ≤ t < θ. Thus, space trajectories intersect when φ(t) = 0 or
along a ray in the direction of b. Finally, by the method of characteristics, the solution
Û of λ(x,∇u) = 1 satisfies

d

dt
Û(X(t)) = 〈∇pλ(X(t), P (t)), P (t)〉 = λ2(X(t), P (t)) = 1.

Here we use Û , because to define U , we intend to restrict the domain further. Since
U(x0) = 〈x0, b〉 then

Û(X(t)) = t+ 〈x0, b〉, 0 ≤ t < θ.(3.3)

To express Û in terms of X(t) note that since x0 ∈ F0 then θ = π − sin−1( 1
|b| |X(t)| ),

and |b|2|X(t)|2 cos2(θ) = |b|2|X(t)|2(1− sin2(θ)) = |b|2|X(t)|2 − 1. Therefore, writing
x instead of X(t) and φ instead of φ(t)

Û(x) = θ − φ+ |b| |x| cos θ

= π − sin−1
(

1
|b| |x|

)
− φ−

√
|b|2|x|2 − 1.

Step 3. There is an additional (d− 1)-dimensional switching manifold F1 defined
by

F1 = {x ∈ Rd : Û(x) = 〈x, b〉 ≥ 0}.

To analyze F1, let

S(r, φ) = Û(x)− 〈x, b〉

= π − sin−1
(

1
|b|r

)
− φ−

√
|b|2r2 − 1− |b|r cosφ,(3.4)

where r = |x|. Then F1 is defined implicitly by S(r, φ) = 0, 0 ≤ φ ≤ π
2 . Now,

S(r, φ) ≥ π− sin−1( 1
|b|r )− φ and r ≤ 1

|b| sinφ on F1. Moreover, for 0 ≤ φ < π
2 we have

dr
dφ = −SφSr , where

Sφ = −1 + |b|r sinφ ≤ 0,

Sr = r−1(−
√
|b|2r2 − 1− |b|r cosφ).(3.5)

It follows from (3.4), (3.5), and elementary calculations that S(r, φ) = 0 has a unique
solution r = R(φ), 0 ≤ φ ≤ π

2 , that 1
|b| ≤ R(φ) ≤ 1

|b| sinφ , and that R′(φ) < 0 on [0, π2 )
so that R(·) is strictly decreasing on [0, π2 ]. Now define the closed regions

E = {x ∈ Rd : 〈x, b〉 ≥ 0, |x| ≤ R(φ)}, N = D ∪ E, J = Rd \ interior(N)
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and let

U(x) = 〈x, b〉, x ∈ N,
U(x) = Û(x), x ∈ J.(3.6)

Finally, let L = {rb/|b| : r ∈ [r0,∞)}, with r0 = R(0), be the ray where the projections
Γ1 intersect. See Figure 2.

Then we have proved the following theorem.
THEOREM 2. There is a Lipschitz function U on Rd such that
(1) U is C1,1 on Rd \ (F1 ∪ L),
(2) U is C∞ on Rd \ (F0 ∪ F1 ∪ L),
(3) λ(x,∇U) < 1 in the interior of N ,
(4) λ(x,∇U) = 1 on the complement of N ∪ L,
(5) U(x) < 〈x, b〉 on the complement of N ,
(6) U(x) = 〈x, b〉 on N ;

in particular, U is a classical solution of (1.4) on Rd \ (F1 ∪ L).

4. Equality of Uand v.
THEOREM 3. U = v on Rd.
Proof. We first show that v(x) ≥ U(x) for all x ∈ Rd. To this end, it is enough

to establish va(x) ≥ U(x) for all bounded controls a(·).
Let a(·) be an arbitrary bounded control and let x(·) denote the solution trajectory

of (1.1) starting from x. Since U(·) is Lipschitz and x(·) is absolutely continuous, then
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t→ e−tU(x(t)) equals the integral of its derivative, and hence

e−TU(x(T )) = U(x) +
∫ T

0
e−t

(
−U(x(t)) +

d

dt
U(x(t))

)
dt(4.1)

for all T > 0. Let E0 denote the set of all t such that x(t) /∈ (F1 ∪ L), and let E1
denote the set of all t such that x(t) ∈ (F1 ∪ L). We have

d

dt
U(x(t)) = 〈∇U(x(t)), a(t)x(t)〉

almost everywhere (a.e.) for t ∈ E0, and we will show that (d/dt)U(x(t)) = 0 a.e. for
t ∈ E1.

Let E2 denote the set of all t ∈ E1 such that U(x(·)) is differentiable at t. Since
U(x(·)) is absolutely continuous, then E1 \E2 has measure 0. Since each orbit of (1.1)
is contained in a sphere centered at the origin (see the proof of Lemma 1), then no
orbit intersects both L and F1 \ L. (L ∩ F1 consists of a single point.)

If the orbit intersects L, then it intersects it in a single point, so that U(x(·)) is
constant on E2, and thus has derivative 0 at any t ∈ E2 that is an accumulation point
of E2. If E2 has positive measure, then E2 is uncountable, and by [14, section 23.III,
p. 251], all but countably many points of E2 are condensation points of E2, and thus
accumulation points of E2.

If the orbit intersects F1, then for all t ∈ E2, we have x(t) ∈ F1, so that

U(x(t)) = 〈x(t), b〉 = |b| |x(t)| cosφ(t).

Since S(|x(t)|, φ(t)) = 0 and |x(t)| is a constant, then φ(t) is also a constant. This
follows since S(r, φ) = 0 defines r as a strictly decreasing function of φ on [0, π2 ], as
observed in the proof of Theorem 1 (between (3.5) and (3.6)). Therefore, U(x(·)) is
constant on E2, so that (d/dt)U(x(t)) = 0 for any t ∈ E2 that is an accumulation
point of E2. Again, if E2 has positive measure, then E2 is uncountable, and all but
countably many points of E2 are accumulation points of E2.

We know that −U(x(·)) + [U(x(·))]′ ∈ L∞[0,∞), so letting T → ∞ in (4.1), we
get

0 = U(x) +
∫ ∞

0
e−t

(
−U(x(t)) +

d

dt
U(x(t))

)
dt.

Combining this with (1.2), we get

va(x) = U(x) +
∫ ∞

0
e−t

(
〈x(t), b〉 − U(x(t)) +

d

dt
U(x(t)) + |a(t)|

)
dt.(4.2)

Since 〈x, b〉 −U(x) ≥ 0 and (d/dt)U(x(t)) = 0 a.e. on E1, then the integrand in (4.2)
is nonnegative a.e. on E1. On E0 we have

d

dt
U(x(t)) + |a(t)| = 〈∇U(x(t)), a(t)x(t)〉+ |a(t)|

a.e., and this is nonnegative since by Lemma 2

− 〈∇U(x), ax〉 − |a| = |a|
(
−
〈
∇U(x),

a

|a|x
〉
− 1
)

≤ |a| sup{−〈∇U(x), ax〉 − |a| : |a| ≤ 1, a ∈ Ad}
= |a|(λ(x,∇U(x))− 1)+ = 0.

Thus va ≥ U and v ≥ U on Rd.
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Next, we show v ≤ U on Rd. Since v0(x) = 〈b, x〉, we have v = U on N . Since
L has no interior and since both v and U are Lipschitz, it remains to prove that they
are equal on the complement of N ∪ L. For x in the complement of N ∪ L define

a(x) = x ∧∇U(x) = x∇U(x)′ −∇U(x)x′

and check that

a(x)x = (x∇U(x)′)x− (∇U(x)x′)x = 〈x,∇U(x)〉x− |x|2∇U(x)
= −∇pλ(x,∇U(x)).(4.3)

Here we have used (4) of Theorem 2.
Fix x in the complement of N ∪L and let x1(t), t ≥ 0, be the integral curve of the

vector field a(x)x starting at x at time zero. Setting p1(t) = ∇U(x1(t)), differentiating
λ(x,∇U(x)) = 1, and using (4.3) shows

ẋ1 = −∇pλ(x1, p1),
ṗ1 = +∇xλ(x1, p1).

Thus (x1(t), p1(t)) is the integral curve of −Xλ through (x,∇U(x)) at t = 0 and
through (x0, b), with x0 ∈ F0, at some time t = T . Hence,

(x1(s), p1(s)) = αT−s(x0, b) = (X(T − s), P (T − s)),

where (X(t), P (t)) is as in (3.2). Now define a sequence of controls aε(·) satisfying
limε↓0 v

aε(x) = U(x). Set a1(s) = a(x1(s)), 0 ≤ s < T , a1(s) = 0, s ≥ T . It follows
that the unique solution of (1.1) corresponding to a1(·) equals x1(t), if 0 ≤ t ≤ T ,
and equals x0 if t ≥ T . But we need to spend no time in the complement of N .
Accordingly, we define

aε(t) =
1
ε
a1

(
t

ε

)
, t ≥ 0.(4.4)

Let xε(·) and vaε(x) be the corresponding trajectory and cost. From (4.2) we obtain

vaε(x) = U(x) +
∫ εT

0
e−t[〈xε(t), b〉 − U(xε(t))]dt.

Here we have used that (3.3) and (4.3) imply 〈∇U(x1), a1 x1〉 = −λ2(x1,∇U(x1)) =
−1 = −|a1| and (3.6). Finally, replacing xε(t) = x1(t/ε) and changing variables, we
obtain v(x) ≤ limε↓0 v

aε(x) = U(x).
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Abstract. Linear compartmental systems are mathematical systems that are frequently used
in biology and mathematics. The inputs, states, and outputs of such systems are positive, because
they denote amounts or concentrations of material. For linear dynamic systems the observer problem
has been solved. The purpose of the observer problem is to determine a linear observer such that
the state can be approximated. The difference between the state and its estimate should converge
to zero. The interpretation in terms of a physical system requires that an estimate of the state be
positive, like the state itself. In this paper conditions on the system matrices are presented that
guarantee that there exists a positive linear observer such that both the error converges to zero and
the estimate is positive.

Key words. compartmental systems, positive linear observers, asymptotic stability
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1. Introduction. The purpose of this paper is to derive positive linear observers
for linear compartmental systems.

Compartmental systems are mathematical systems that are frequently used in
biology and mathematics. In addition, a subclass of the class of chemical processes
can be modeled as compartmental systems. A compartmental system consists of
several compartments with more or less homogeneous amounts of material. The com-
partments interact by processes of transportation and diffusion. The dynamics of a
compartmental system are derived from mass balance considerations.

In this paper linear compartmental systems consisting of inputs, states, and out-
puts will be studied. The outputs of these systems are not the real outputs, i.e.,
material leaving the system, but the observations of the amount or concentrations of
material, for example, in one or more compartments. The inputs, states, and outputs
are positive, so these systems are called positive linear systems in system theory. As
in linear system theory, the purpose is to determine a linear observer such that the
state x can be approximated by x̂. The error, x̂(t) − x(t), should converge to zero.
For positive linear systems, the observer provides an approximation of the positive
state. Therefore, the observer should be chosen in such a way that the approximation
of the state, x̂(t), is positive, like the state, x(t), itself.

For linear systems the observer problem has been solved by Luenberger [11]. See
also [10]. As far as we know, there is no literature on positive observers for positive
linear systems, in which the positivity of x̂(t) is taken into account. It turns out that
the existence of a positive linear observer satisfying the above conditions depends
largely on the structure of the system matrices, i.e., the zero/nonzero pattern. Some
relation can be found in the work of Sontag [13, 14].

The outline of the paper is as follows. In section 2 the problem is posed. In sec-
tion 3 continuous-time linear compartmental systems are considered, and in section 4
the discrete-time case is treated. Concluding remarks are made in section 5.

∗Received by the editors July 8, 1996; accepted for publication (in revised form) January 13, 1997.
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†CBS (Statistics Netherlands), P.O. Box 4000, NL 2270 JM Voorburg, the Netherlands (jhof@
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2. Problem formulation. In this section some notation is introduced and the
problem is posed.

The set R+ = [0,+∞) is called the set of the positive real numbers. Let Z+ =
{1, 2, . . .} denote the set of positive integers, Zn = {1, . . . , n}, and NI = {0, 1, 2, . . .}.
Denote by Rn+ the set of n-tuples of the positive real numbers. The set Rn×m+ will
be called the set of positive matrices of size n by m. Note that Rn+ is not a vector
space because it does not admit an inverse with respect to addition. For matrices
A,B ∈ Rn×m, we will write A ≥ B if aij ≥ bij for all i ∈ Zn, j ∈ Zm, and A > B
if A ≥ B and A 6= B. A matrix A ∈ Rn×n is said to be a Metzler matrix if all its
off-diagonal elements are in R+; see [9]. Metzler matrices can be characterized as
follows.

PROPOSITION 2.1. A matrix A ∈ Rn×n is a Metzler matrix if and only if there
exists an α ∈ R+ such that (A+ αI) ∈ Rn×n+ .

DEFINITION 2.2. Consider a continuous-time linear dynamic system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0,
y(t) = Cx(t) +Du(t),(2.1)

with x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, y(t) ∈ Y ⊂ Rk, t ∈ T = [t0,∞). Equation (2.1)
is said to represent a (continuous-time) positive linear system if for all x0 ∈ Rn+ and
for all u(t) ∈ Rm+ , t ∈ T , we have x(t) ∈ Rn+ and y(t) ∈ Rk+ for t ∈ T ; in other words,
X = Rn+, U = Rm+ , and Y = Rk+.

The following proposition provides a characterization of continuous-time positive
linear systems.

PROPOSITION 2.3. A continuous-time linear dynamic system of the form (2.1) is
a positive linear system if and only if

B ∈ Rn×m+ , C ∈ Rk×n+ , D ∈ Rk×m+ , and A is a Metzler matrix.

Proof. Suppose first u(t) = 0 for all t ∈ T . For i ∈ Zn, xi(t) ≥ 0 if and only if
ẋi ≥ 0 whenever xi = 0 and xj ≥ 0 for all j 6= i. This is equivalent to aij ≥ 0 for
all j 6= i. Moreover, y(t) = Cx(t) ≥ 0 for x(t) ≥ 0 if and only if C ∈ Rk×n+ . Now
suppose u(t) 6= 0. For i ∈ Zn, xi(t) ≥ 0 if and only if ẋi ≥ 0 whenever xj = 0 for
all j ∈ Zn. This is equivalent to bir ≥ 0 for r ∈ Zm. Furthermore, if x(t) = 0, then
y(t) = Du(t) ≥ 0 if and only if D ∈ Rk×m+ .

For discrete time, the definition of a positive linear system is presented below.
DEFINITION 2.4. Consider a discrete-time linear dynamic system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0,
y(t) = Cx(t) +Du(t),(2.2)

with x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, y ∈ Y ⊂ Rk, t ∈ T = NI . Equation (2.2) is said
to represent a (discrete-time) positive linear system if for all x0 ∈ Rn+ and for all
u(t) ∈ Rm+ , t ∈ T , we have x(t) ∈ Rn+ and y(t) ∈ Rk+ for t ∈ T ; in other words,
X = Rn+, U = Rm+ , and Y = Rk+.

A characterization of discrete-time positive linear systems is as follows.
PROPOSITION 2.5. A discrete-time linear system of the form (2.2) is a positive

linear system if and only if

A ∈ Rn×n+ , B ∈ Rn×m+ , C ∈ Rk×n+ , D ∈ Rk×m+ .

The positive linear observer problem is as follows. A positive linear observer for
a positive linear system is a positive linear system described by the equations
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˙̂x(t) = Hx̂(t) +Ky(t) + Eu(t), x̂(t0) = x̂0,

x̂(t+ 1) = Hx̂(t) +Ky(t) + Eu(t), x̂(t0) = x̂0,

for the continuous-time case and the discrete-time case, respectively, which yields an
estimate x̂(t) of the state x(t) at time t ∈ T of system (2.1), (2.2), respectively. As in
linear system theory, the observer has to satisfy the following two conditions:

1. x̂(t0) = x(t0) implies x̂(t) = x(t) for all t ≥ t0 and for all input functions
u(t), t ≥ t0;

2. x̂(t) should converge to x(t) for t→∞, for all input functions u(t), t ≥ t0.
For linear systems the problem of finding an observer satisfying 1 and 2 has been
completely solved [11]. The solution is

˙̂x(t) = (A−KC)x̂(t) +Ky(t) +Bu(t),
x̂(t+ 1) = (A−KC)x̂(t) +Ky(t) +Bu(t),

respectively, with K ∈ Rn×k such that A −KC is asymptotically stable; i.e., for the
continuous-time case, σ(A −KC) ⊆ {λ ∈ C | Re(λ) < 0}, and for the discrete-time
case, σ(A −KC) ⊆ {λ ∈ C | |λ| < 1}. Here σ(A) denotes the spectrum of A. The
necessary and sufficient conditions for the existence of a matrix K ∈ Rn×k such that
A − KC is asymptotically stable depend on the matrices A and C; i.e., the pair
(A,C) should be detectable. Equivalent conditions for detectability can be found
in, for example, [3, pp. 259 and 293], respectively. The interpretation in terms of a
physical system requires that an estimate x̂(t) be, like x(t), positive. So a positive
linear observer for a positive linear system should also satisfy the following condition:

3. x̂(t) ∈ Rn+, for all t ≥ t0, if x̂(t0) ∈ Rn+, y(t) ∈ Rk+, and u(t) ∈ Rm+ for all
t ≥ t0.

This third condition is satisfied if and only if K ∈ Rn×k+ and, for the continuous-time
case, A−KC is a Metzler matrix, or for the discrete-time case, A−KC ∈ Rn×n+ . This
follows from Propositions 2.3 and 2.5, respectively. Now detectability of (A,C) defined
in [3] cannot be used, because then it may be possible that K /∈ Rn×k+ . Of course,
detectability is a necessary condition but is not sufficient. Therefore, new necessary
and sufficient conditions on A and C have to be found. The problem considered in
this paper is stated below.

Problem 2.6.
Continuous time. Formulate necessary and sufficient conditions on a Metzler

matrix A ∈ Rn×n and a positive matrix C ∈ Rk×n+ such that there exists a
K ∈ Rn×k+ , K 6= 0, with

1. A−KC a Metzler matrix;
2. σ(A−KC) ⊆ {λ ∈ C | Re(λ) < 0}.

Discrete time. Formulate necessary and sufficient conditions on positive ma-
trices A ∈ Rn×n+ and C ∈ Rk×n+ such that there exists a K ∈ Rn×k+ , K 6= 0,
with

1. A−KC ∈ Rn×n+ ;
2. σ(A−KC) ⊆ {λ ∈ C | |λ| < 1}.

These problems will be solved for linear compartmental systems, which form a
subclass of positive linear systems.

3. Continuous time. In this section conditions for the existence of a positive
linear observer for continuous-time linear compartmental systems will be derived.
First results from the theory on compartmental systems will be presented.
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F0i

qi

Fji

Fij

Ii

FIG. 3.1. One compartment with possible flows.

3.1. Continuous-time compartmental systems. A compartmental system
is a system consisting of a finite number of subsystems, which are called compart-
ments. Each compartment is kinetically homogeneous; i.e., any material entering the
compartment is instantaneously mixed with the material of the compartment. Com-
partmental systems are dominated by the law of conservation of mass. They also form
natural models for other areas of applications that are subject to conservation laws.

Consider an n-compartmental system. The behavior of the ith compartment can
be represented as in Figure 3.1. In this figure, qi denotes the amount of material
considered in compartment i. The arrows represent the flows into and out of the com-
partment. Ii ≥ 0 is the flow into compartment i from outside the system, called the
inflow. Fij ≥ 0 and Fji ≥ 0 represent the flow from compartment j into compartment
i and the flow from compartment i into compartment j, respectively. Finally, F0i ≥ 0
is the outflow to the environment from compartment i. The mass balance equations
for every compartment can be written as

q̇i =
∑
j 6=i

(−Fji + Fij) + Ii − F0i.(3.1)

In this paper the flows Fij will be assumed to be linearly dependent on qj :

Fij = fijqj , i = 0, . . . , n, j = 1, . . . , n, i 6= j,

in which fij are called the fractional transfer coefficients. In general, fij are functions
of q and time t. If fij is independent of q, the system is a linear system. In this
paper it is assumed that fij is also independent of the time t; i.e., the system is a
time-invariant linear system. Using this, (3.1) can be written as

q̇ = Fq + I,

where q =
(
q1 · · · qn

)T ∈ Rn+, F = (fij) ∈ Rn×n, with fii = −(f0i +
∑
j 6=i fji)

and fij constant for i 6= j, and I denotes the inflow from outside the system. Since
qi ≥ 0 and Ii ≥ 0, this system is easily seen to be a positive linear system, if the
output is taken as

y = Cq, y ∈ Rk, C ∈ Rk×n+ ,

where y denotes the vector of the observations. Note that the output is not the outflow
of the compartmental system. The outflow, which is sometimes also called excretion,
represents the flow of material leaving the system. The outputs of an experiment are
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measurements and usually differ from the material outflows. On the other hand, the
terms inflow and input can be used interchangeably.

Another property of compartmental systems is that the total flow out of a com-
partment over any time interval cannot be larger than the amount that was initially
present plus the amount that flowed into the compartment during that interval. To-
gether with the constraints on positive linear systems, this comes down to

1. fij ≥ 0 for all i, j ∈ Zn, i 6= j,

2. − fjj ≥
n∑

i=1,i 6=j
fij ≥ 0 for all j ∈ Zn.

A matrix F satisfying conditions 1 and 2 above is said to be a compartmental matrix.
There is an extensive amount of literature on compartmental systems. See, for exam-
ple, [1, 7, 8, 9]. Condition 2 states that all column sums of F are less than or equal
to zero.

Below some properties of compartmental matrices from the literature will be
discussed that are needed in this paper. References are [5, 6, 9, 15].

DEFINITION 3.1. A matrix A ∈ Rn×n is said to be reducible if there exists a
permutation matrix P ∈ Rn×n such that

PAPT =
(
U 0
Q R

)
,

with U and R square matrices. A is said to be irreducible if A is not reducible.
Let F ∈ Rn×n be a compartmental matrix. Then it follows from [2, Theo-

rem 6.4.6] that σ(F ) ⊆ {λ ∈ C | Re(λ) < 0 or λ = 0}. Since a system ẋ = Fx is
asymptotically stable if and only if σ(F ) ⊆ {λ ∈ C | Re(λ) < 0}, a compartmental
matrix is asymptotically stable if and only if 0 /∈ σ(F ). In the rest of this subsection
compartmental matrices with zero eigenvalues are characterized.

PROPOSITION 3.2 (adapted from [15, Theorem III]). Let F ∈ Rn×n be an irre-
ducible compartmental matrix. Then 0 ∈ σ(F ) if and only if

∑n
i=1 fij = 0 for all

j ∈ Zn
DEFINITION 3.3. Consider an n-compartmental system. A trap is a compartment

or a set of compartments from which there are no transfers or flows to the environment
nor to compartments that are not in that set. A trap is said to be simple if it does not
strictly contain a trap.

In the physical literature traps are usually referred to as sinks.
Let S be a linear compartmental system consisting of the compartments C1,

C2, . . . , Cn and let qj be the amount of material in Cj . Let T ⊆ S be a subsys-
tem of S. Renumbering the compartments, assume T consists of the compartments
Cm, Cm+1, . . . , Cn, for m ≤ n. Let F ∈ Rn×n be the compartmental matrix cor-
responding to S, consistent with this renumbering. Then T is a trap if and only
if

fij = 0 for all (i, j) such that j = m,m+ 1, . . . , n, i = 0, 1, . . . ,m− 1.(3.2)

The following two theorems are due to Fife [5].
THEOREM 3.4. S contains a trap if and only if one of the following conditions

holds:
1. for all j ∈ Zn

n∑
i=1

fij = 0;
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2. there exists a permutation matrix P ∈ Rn×n such that

PFPT =
(
U 0
Q R

)
,

with U , R square matrices and the sum of entries of every column of R is zero.
THEOREM 3.5. S contains a trap if and only if 0 ∈ σ(F ).
In response to Fife [5], Foster and Jacquez [6] derived the following result. See

also Theorems 1 and 2 together with their proofs in [9].
THEOREM 3.6. Let S be a compartmental system with system matrix F .

1. Zero is an eigenvalue of F of multiplicity m ∈ Z+ if and only if S contains
m simple traps.

2. Assume zero is an eigenvalue of F of multiplicity m ∈ Z+. Then there exists
a partition of S into a disjoint union of subsystems

S = S1 ∪ S2 ∪ · · · ∪ Sp

such that Si receives no input from Si+1, . . . , Sp, i = 1, . . . , p−1, and Sp−m+1, . . . , Sp
are traps. Relative to this partition the system matrix is given by

PFPT = F̃ =



F11 0 0 0 · · · 0
...

. . . 0
Fp−m,1 Fp−m,p−m 0
Fp−m+1,1 Fp−m+1,p−m Fp−m+1,p−m+1

...
... 0

. . . 0
Fp1 · · · Fp,p−m 0 0 Fpp


,

where Fii is irreducible for all i ∈ Zp and zero is an eigenvalue of Fii of multiplicity
1 for i = p − m + 1, . . . , p, and the sum of entries of every column of Fii, i =
p−m+ 1, . . . , p, is zero.

An additional consequence of this theorem is that if zero is an eigenvalue of a
compartmental matrix of (algebraic) multiplicity m, the geometric multiplicity is also
m, so there are always m independent eigenvalues for the eigenvalue zero.

3.2. Positive linear observers. In this subsection conditions for the existence
of a positive linear observer for continuous-time linear compartmental systems will
be derived. Consider a compartmental matrix F ∈ Rn×n. If F ∈ Rn×n is a com-
partmental matrix and K ∈ Rn×k+ , C ∈ Rk×n+ are such that F − KC is a Metzler
matrix, then F −KC is also a compartmental matrix, since condition 1 in section 3.1
is satisfied because F −KC is a Metzler matrix and condition 2 becomes

n∑
i=1

(F −KC)ij =
n∑
i=1

fij − (KC)ij ≤
n∑
i=1

fij ≤ 0.

Therefore, for the special class of compartmental matrices, the problem to be solved
is the following.

Problem 3.7. Formulate necessary and sufficient conditions on a compartmental
matrix F ∈ Rn×n and a positive matrix C ∈ Rk×n+ such that there exists a K ∈ Rn×k+ ,
K 6= 0, with

1. F −KC a compartmental matrix;
2. σ(F −KC) ⊆ {λ ∈ C | Re(λ) < 0}.
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To solve this problem, the notions of positive modifiability and positive detectabil-
ity will be defined.

DEFINITION 3.8. Let F ∈ Rn×n be a compartmental matrix and C ∈ Rk×n+ . The
matrix pair (F,C) is said to be positively modifiable if there exists a K ∈ Rn×k+ such
that KC 6= 0 and F−KC is a compartmental matrix. This implies that σ(F−KC) ⊆
{λ ∈ C | Re(λ) < 0 or λ = 0}. (F,C) is said to be positively detectable if there exists
a K ∈ Rn×k+ such that KC 6= 0 and F−KC is an asymptotically stable compartmental
matrix. This implies that σ(F −KC) ⊆ {λ ∈ C | Re(λ) < 0}.

Note that solving Problem 3.7 is equivalent to checking positive detectability.
To solve Problem 3.7, positive modifiability will be used, for which the following
characterization can be given.

PROPOSITION 3.9. Let F ∈ Rn×n be a compartmental matrix and C ∈ Rk×n+ .
The matrix pair (F,C) is positively modifiable if and only if there exists an i ∈ Zn
and an r ∈ Zk such that the rth row in C is nonzero and

{for all j 6= i with crj 6= 0, also fij 6= 0}.(3.3)

Remark 3.10. In terms of compartments, Proposition 3.9 can be interpreted
as follows: an output can be seen as a strictly positive linear combination of one
or more compartments. These compartments contribute to this output. For positive
modifiability there should exist an output such that all the compartments contributing
to this output have a direct flow to one and the same compartment. A compartmental
system with system matrix F can be represented by a unique directed graph; see,
for example, [4] or [8, Chapter 3]. Every compartment is represented by a vertex
and there is a directed arc from xi to xj if and only if fji > 0. If compartment
i contributes to output j, i.e., cji 6= 0, this will be represented by a dashed arc.
The claim in Proposition 3.9 is equivalent to saying that the graph of F should
contain a subgraph of the form given in Figure 3.2(a) if the considered output has
one contributing compartment or, for example, Figure 3.2(b) if the considered output
has three contributing compartments.

Proof. (⇒) Assume (F,C) is positively modifiable, so a K ∈ Rn×k+ can be found
such that KC 6= 0 and F − KC is a compartmental matrix. KC ∈ Rn×n+ , since
K ∈ Rn×k+ and C ∈ Rk×n+ . Therefore there exist i, s ∈ Zn such that 0 < (KC)is =∑k
t=1 kitcts. Hence there exists an r ∈ Zk such that kircrs > 0, which implies kir > 0

and crs > 0. From this it follows that the rth row in C is nonzero. Next, the following
holds for j ∈ Zn, j 6= i, since F −KC is a compartmental matrix,

0 ≤ (F −KC)ij = fij −
k∑
t=1

kitctj .(3.4)

Suppose crj 6= 0; i.e., crj > 0. Since kir > 0, this implies
∑k
t=1 kitctj ≥ kircrj > 0.

Then it follows from (3.4) that fij > 0. So there exist i ∈ Zn, r ∈ Zk such that row
r in C is nonzero and for all j 6= i with crj 6= 0, also, fij 6= 0.

(⇐) Assume there exist i ∈ Zn, r ∈ Zk such that row r in C is nonzero, and for
all j 6= i with crj 6= 0, fij 6= 0 also. Since row r in C is nonzero and C ∈ Rk×n+ ,
there exists either an s ∈ Zn \ {i} such that crs > 0, or crs = 0 for all s ∈ Zn \ {i}
and cri > 0. Assume first that there exists an s ∈ Zn \ {i} such that crs > 0. By
assumption, this implies fis > 0, and in general, for all v ∈ Zn \ {i}, crv > 0 implies
fiv > 0. Now take

0 < kir < min
v∈Zn\{i},crv>0

fiv
crv
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FIG. 3.2. Subgraphs.

and all other entries of K equal to zero. Then K ∈ Rn×k+ and

(F −KC)iw = fiw − kircrw =
{
fiw − kircrw ∈ (0, fiw), if crw > 0, w 6= i,
fiw ≥ 0, if crw = 0, w 6= i;

(F −KC)hw = fhw ≥ 0 for h 6= i, w 6= h;

(F −KC)ii = fii − kircri ≤ fii ≤ −
n∑

q=1,q 6=i
fqi ≤ −

n∑
q=1,q 6=i

(F −KC)qi;

(F −KC)hh = fhh ≤ −
n∑

q=1,q 6=h
fqh ≤ −(fih − kircrh)−

∑
q=1,q 6=h,q 6=i

fqh

= −
∑

q=1,q 6=h
(F −KC)qh for h 6= i.

It follows that K given above satisfies KC 6= 0, and F −KC satisfies the conditions
for a compartmental matrix.

Now assume crs = 0 for all s ∈ Zn \ {i} and cri > 0. Take kir > 0, any positive
constant, and all other entries of K equal to zero. Then K ∈ Rn×k+ ,

(F −KC)hw = fhw ≥ 0 for h ∈ Zn, w 6= h;

(F −KC)hh = fhh ≤ −
n∑

q=1,q 6=h
fqh = −

∑
q=1,q 6=h

(F −KC)qh for h 6= i;

(F −KC)ii = fii − kircri < fii ≤ −
n∑

q=1,q 6=i
fqi ≤ −

n∑
q=1,q 6=i

(F −KC)qi.
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Again it follows that K given above satisfies KC 6= 0, and F − KC satisfies the
conditions for a compartmental matrix.

A matrix K ∈ Rn×k+ such that KC 6= 0 and F −KC is a compartmental matrix
can be found by the following algorithm.

ALGORITHM 3.11. Consider F ∈ Rn×n, C ∈ Rk×n+ . Define the sets

Rc = {(i, r) ∈ Zn×Zk | row r of C is nonzero and (3.3) holds for (i, r)}
and

T(i,r) = {j ∈ Zn \ {i} | crj 6= 0}.

Form the matrix K ∈ Rn×k+ as follows.
1. For every pair (i, r) ∈ Rc with T(i,r) 6= ∅, take

0 ≤ kir < min
j∈T(i,r)

fij
crj

.

2. For every pair (i, r) /∈ Rc with T(i,r) 6= ∅, take kir = 0.
3. For every pair (i, r) ∈ Zn × Zk with T(i,r) = ∅, take any positive constant

kir ≥ 0.
Of course, for KC to be nonzero, at least one kir, for a pair (i, r) ∈ Rc, should

be strictly positive. It follows from Proposition 3.9 that the set Rc is nonempty if
and only if the pair (F,C) is positively modifiable, and if this is the case, K can be
chosen in such a way that KC 6= 0.

Before presenting the main theorem of this section, the following proposition is
stated.

PROPOSITION 3.12. Let F ∈ Rn×n be an irreducible compartmental matrix. As-
sume C ∈ Rk×n+ and K ∈ Rn×k+ are such that KC 6= 0 and F−KC is a compartmental
matrix. Then F −KC is asymptotically stable.

Proof. Let

K =

K1
...
Kn

 , with Ki ∈ R1×k
+ , C =

(
C1 · · · Cn

)
, with Ci ∈ Rk×1

+ .

From K ∈ Rn×k+ and C ∈ Rk×n+ it follows that (F −KC)rs ≤ frs for all r, s ∈ Zn.
First, assume F − KC is irreducible. Since KC 6= 0, there exist i, j ∈ Zn such

that (KC)ij > 0, or equivalently, (F −KC)ij < fij . It follows that
n∑
q=1

(F −KC)qj <
n∑
q=1

fqj ≤ 0.

With Proposition 3.2 this implies that zero is not an eigenvalue of F−KC, so F−KC
is asymptotically stable.

Now, assume F − KC is reducible. Suppose zero is an eigenvalue of F − KC.
Without loss of generality it may be assumed that

F −KC =
(
U 0
Q R

)
,

where U ∈ Rr×r, with 1 ≤ r < n, R ∈ R(n−r)×(n−r), and the sum of entries of every
column of R is zero (see Theorem 3.4). For all j = 1, . . . , n− r,

n−r∑
i=1

Rij =
n∑
i=1

(F −KC)i,r+j =
n∑
i=1

(fi,r+j −KiCr+j).
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Since F is irreducible, there exists a t ∈ Zr such that ft,r+j > 0, and because ft,r+j −
KtCr+j = (F −KC)t,r+j = 0, KtCr+j = ft,r+j > 0. This implies

n−r∑
i=1

Rij =
n∑
i=1

(fi,r+j −KiCr+j) <
n∑
i=1

fi,r+j ≤ 0.

This contradicts the requirements on R. It follows that zero is not an eigenvalue of
F −KC, so F −KC is asymptotically stable.

From Proposition 3.12 it follows that for an irreducible compartmental matrix F ∈
Rn×n and a positive matrix C ∈ Rk×n+ , positive modifiability of (F,C) is equivalent
to positive detectability of (F,C).

Consider a linear compartmental system S. Assume S contains m ≥ 0 traps. If
m ≥ 1, then S can be partitioned as in Theorem 3.6, with system matrix

F =



F11 0 0 0 · · · 0
...

. . . 0
Fp−m,1 Fp−m,p−m 0
Fp−m+1,1 Fp−m+1,p−m Fp−m+1,p−m+1

...
... 0

. . . 0
Fp1 · · · Fp,p−m 0 0 Fpp


∈ Rn×n,(3.5)

in which Fii is irreducible for all i ∈ Zp and the sum of entries of every column of the
square matrices Fp−m+1,p−m+1, . . . , Fpp equals zero. Note that

1. 0 /∈ σ(Fii) for i = 1, . . . , p−m;
2. 0 ∈ σ(Fii) with multiplicity 1 for i = p−m+ 1, . . . , p.

Consider C ∈ Rk×n+ , K ∈ Rn×k+ , and decompose them to conform to the partition in
(3.5):

C =
(
C1 · · · Cp

)
, K =

K1
...
Kp

 .(3.6)

Now the main theorem of this subsection can be stated. It solves Problem 3.7.
THEOREM 3.13. Consider a linear compartmental system S, as defined above,

with m ≥ 0 traps.
1. If m = 0, then F − KC is asymptotically stable for all K ∈ Rn×k+ with

F −KC a compartmental matrix. Moreover, (F,C) is positively detectable if and only
if (F,C) is positively modifiable.

2. For m ≥ 1, let F , K, and C be partitioned as in (3.5) and (3.6). (F,C) is
positively detectable if and only if (Fii, Ci) is positively modifiable for all i = p−m+
1, . . . , p.

Proof. 1. Since S contains no traps, it follows from Theorem 3.5 that 0 /∈ σ(F ),
so F itself is asymptotically stable. Let K ∈ Rn×k+ be such that F − KC is a
compartmental matrix. Suppose 0 ∈ σ(F − KC). Because 0 /∈ σ(F ), KC 6= 0 and
with Theorem 3.4 it follows that either

n∑
q=1

(F −KC)qj = 0 for all j ∈ Zn(3.7)

or there exists a permutation matrix P ∈ Rn×n such that

P (F −KC)PT =
(
U 0
Q R

)
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where U ∈ Rr×r, with 1 ≤ r < n, and R ∈ R(n−r)×(n−r), with

n−r∑
q=1

Rqj = 0 for all j = 1, . . . , n− r.(3.8)

Since there exist s, t ∈ Zn such that (KC)st > 0, the equation

n∑
q=1

(F −KC)qt <
n∑
q=1

Fqt ≤ 0

contradicts (3.7). For the other possibility, assume without loss of generality that
P = I. Since F contains no traps, the last n − r columns of F − KC cannot be
identical to the last n− r columns of F , so there exist s ∈ Zn and t ∈ Zn−r such that
(F −KC)s,r+t < Fs,r+t, from which it follows that

n−r∑
q=1

Rqt =
n∑
q=1

(F −KC)q,r+t <
n∑
q=1

Fq,r+t ≤ 0,

which contradicts (3.8). It follows that 0 /∈ σ(F −KC) for all K ∈ Rn×k+ such that
F −KC is a compartmental matrix. By the definition of positive modifiability and
positive detectability, the second statement in 1 follows.

2. The blocks of F − KC are Fij − KiCj , for i, j ∈ Zp. Consider Fii − KiCi
for i = p −m + 1, . . . , p. There exists a positive matrix Ki such that KiCi 6= 0 and
Fii −KiCi is a compartmental matrix if and only if (Fii, Ci) is positively modifiable,
by definition.

(⇐) Assume (Fii, Ci) is positively modifiable for all i = p − m + 1, . . . , p. Let
i ∈ {p−m + 1, . . . , p}. Since Fii is irreducible, it follows from Proposition 3.12 that
if (Fii, Ci) is positively modifiable, i.e., KiCi 6= 0 and Fii −KiCi is a compartmental
matrix for some positive matrix Ki, then 0 /∈ σ(Fii −KiCi). For j ∈ {1, . . . , p−m},
0 /∈ σ(Fjj), which implies by 1 above that 0 /∈ σ(Fjj −KjCj) for all positive matrices
Kj such that Fjj −KjCj are compartmental matrices. Hence 0 /∈ σ(F −KC), and it
follows that (F,C) is positively detectable.

(⇒) Assume (F,C) is positively detectable; i.e., there exists a K ∈ Rn×k+ such
that KC 6= 0, F − KC is a compartmental matrix, and 0 /∈ σ(F − KC). Then
0 /∈ σ(Fii−KiCi) for all i ∈ Zp. In particular, 0 /∈ σ(Fii−KiCi) for i = p−m+1, . . . , p.
But 0 ∈ σ(Fii), which implies Fii − KiCi 6= Fii; i.e., KiCi 6= 0. Since Fii − KiCi
is also a compartmental matrix, it follows that (Fii, Ci) is positively modifiable for
i = p−m+ 1, . . . , p.

To construct a positive linear observer, the following algorithm can be used.
ALGORITHM 3.14. Consider a linear compartmental system S, with system matrix

F ∈ Rn×n and C ∈ Rk×n+ . Assume S contains m ≥ 0 traps.
1. Write F and C in the forms (3.5) and (3.6), and decompose a matrix K ∈

Rn×k+ accordingly.
2. With Proposition 3.9 check positive modifiability of (Fii, Ci) for every i =

p−m+ 1, . . . , p.
3. Execute Algorithm 3.11 for every pair (Fii, Ci), i = 1, . . . , p.
4. If (Fii, Ci) is positively modifiable for every i = p − m + 1, . . . , p, step 3

provides a positive linear observer. Otherwise (F,C) is not positively detectable.
Note that in step 3 it is not necessary to have KiCi 6= 0 for i = 1, . . . , p − m,

whereas it is necessary for i = p−m+ 1, . . . , p.
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To illustrate the theory, this section will be concluded with an example.
Example 3.15. Consider a continuous-time compartmental system with matrices

F =
(
−2 0
1 0

)
, C =

(
0 1

)
.

The second compartment turns out to be a trap, and F has the form (3.5), with m = 1
and p = 2. Since (F22, C2) = (0, 1) satisfies the conditions stated in Proposition 3.9,
(F22, C2) is positively modifiable. Hence with Theorem 3.13, (F,C) is positively
detectable, so there exist k1, k2 ∈ R+ such that

F −KC =
(
−2 −k1
1 −k2

)
is an asymptotically stable compartmental matrix. Indeed, this can be achieved by
choosing k1 = 0 and k2 > 0. Note that the eigenvalues of F − KC cannot be
arbitrarily located in the complex plane, because of the necessary condition k1 = 0.
One eigenvalue, −2, cannot be moved. The other eigenvalue can be placed, but only
on the real negative axis. The larger k2, the deeper this latter eigenvalue is placed
in the left-half complex plane, but this makes the observer very sensitive to possible
observation noise. The problem of choosing a suitable k2 has not been solved yet.
Because of the restriction k1 = 0, the theory for linear optimal observers, as described
in, for example, [10], cannot be used.

4. Discrete time. In this section conditions for the existence of a positive linear
observer for discrete-time linear compartmental systems will be derived. Most of the
results are closely related to the continuous-time case. Again, first, some theory on
compartmental systems will be presented.

4.1. Discrete-time compartmental systems. In this subsection discrete-time
compartmental systems will be considered. For that purpose it is assumed that trans-
fer of material occurs at discrete times t1, t2, . . . , or a continuous-time system is sam-
pled at discrete times, in which case the state at time tk has been changed into the
state at time tk+1. What happens in between will not be considered explicitly. There-
fore, this can also be seen as if a transfer has occurred at time tk+1. The discrete
times will be assumed to be equally spaced to obtain a time-invariant system. Let
this space be the unit time, so tk+1 = tk + 1.

Let qi(t) be the amount of material in the ith compartment at time t. The amount
transferred from the jth to the ith compartment between time t and time t + 1 is
Gij(t). This transferred material will be assumed to be linearly dependent on qj ; i.e.,
Gij(t) = gijqj(t). The state at time t+ 1 will be given by

qi(t+ 1) =
∑
j 6=i

gijqj(t) + Ii(t) + giiqi(t),

where giiqi(t) is the amount of material that was in compartment i at time t and is
still (or again) in compartment i at time t+ 1. This amount giiqi(t) is equal to qi(t)
minus the amount that left compartment j:

giiqi(t) = qi(t)− goiqi(t)−
n∑

j=1,j 6=i
gjiqi(t) =

1− goi −
n∑

j=1,j 6=i
gji

 qi(t).
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Hence define

gii = 1− goi −
n∑

j=1,j 6=i
gji.

The total outflow of a compartment at time t+ 1 cannot be larger than the amount
that was present at time t if the inflow from outside is assumed to be zero. Together
with the constraints on positive linear systems (in discrete time), this comes down to

1. gij ≥ 0 for all i, j ∈ Zn;

2.
n∑
i=1

gij ≤ 1 for all j ∈ Zn.

A matrix G satisfying conditions 1 and 2 above is said to be a compartmental matrix
(in the discrete-time case). Condition 2 states that all column sums of G = (gij) ∈
Rn×n+ are less than or equal to one.

Below properties of compartmental matrices in discrete time will be discussed,
analogous to the continuous-time case. In the rest of this subsection, G refers to a
discrete-time compartmental matrix, whereas F refers to a continuous-time compart-
mental matrix.

Let G ∈ Rn×n+ be a compartmental matrix. Then σ(G) ⊆ {λ ∈ C | |λ| ≤ 1}, since
the sum of entries of every column of G is less than or equal to one; see [12, Section 6.2]
or [2, Chapter 2]. Because a system x(t + 1) = Gx(t) is asymptotically stable if and
only if σ(G) ⊆ {λ ∈ C | |λ| < 1}, it follows from the Perron–Frobenius theorem (see
[12]) that a compartmental system is asymptotically stable if and only if the spectral
radius ρ(G) 6= 1, which is equivalent to 1 /∈ σ(G). Analogously to the continuous-time
case, compartmental matrices having spectral radius one are characterized.

PROPOSITION 4.1. Let G ∈ Rn×n+ be an irreducible compartmental matrix. Then
ρ(G) = 1 if and only if

∑n
i=1 gij = 1 for all j ∈ Zn.

Proof. This follows from [2, Theorem 2.2.35].
A trap in an n-compartmental system is defined in the same way as for continuous-

time systems; see Definition 3.3. As in the continuous-time case, let C1, C2, . . . , Cn be
the compartments of a linear compartmental system S. After renumbering, let T ⊆ S
consist of the compartments Cm, Cm+1, . . . , Cn, for m ≤ n. Then T is a trap if and
only if

gij = 0 for all (i, j) such that j = m,m+ 1, . . . , n, i = 0, 1, . . . ,m− 1,(4.1)

where G = (gij) ∈ Rn×n+ is the compartmental matrix corresponding to S. Consider
F = G− I. Since

1. fij = gij ≥ 0, for i, j ∈ Zn, i 6= j;

2.
n∑
j=1

fji = gii − 1 +
n∑

j=1,j 6=i
gji =

n∑
j=1

gji − 1 ≤ 0.

The matrix F is a continuous-time compartmental matrix. Assume F is the system
matrix for a continuous-time compartmental system SF and let TF ⊆ SF consist of
the last n−m+ 1 compartments C̃m, . . . , C̃n.

PROPOSITION 4.2. Consider T ⊆ S and TF ⊆ SF defined above. Then T is a
(simple) trap if and only if TF is a (simple) trap.
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Proof. T is a trap if and only if (4.1) holds, which is equivalent to
gij = 0 for all (i, j) such that j = m,m+ 1, . . . , n, i = 1, 2, . . . ,m− 1,
and
gjj = 1−

∑n
i=1,i 6=j gij for all j = m,m+ 1, . . . , n,

(4.2)

since g0j = 0. Because fij = gij for i 6= j and fjj = gjj − 1, (4.2) is equivalent to
fij = 0 for all (i, j) such that j = m,m+ 1, . . . , n, i = 1, 2, . . . ,m− 1,
and
fjj = −

∑n
i=1,i 6=j fij for all j = m,m+ 1, . . . , n,

which is, because f0j = −
∑n
i=1 fij , equivalent to (3.2); i.e., TF is a trap. In the same

way it can be proved that T is a simple trap if and only if TF is a simple trap.
Using Proposition 4.2, the following theorems, analogous to Theorems 3.4, 3.5,

and 3.6, can be proved.
THEOREM 4.3. S contains a trap if and only if one of the following conditions

holds.
1. For all j ∈ Zn

n∑
i=1

gij = 1;

2. There exists a permutation matrix P ∈ Rn×n such that

PGPT =
(
U1 0
Q1 R1

)
,

with U1, R1 square matrices and the sum of entries of every column of R1 being one.
Proof. Since

n∑
i=1

fij =

(
n∑
i=1

gij

)
− 1 and

PFPT = P (G− I)PT = PGPT − I =
(
U1 − I 0
Q1 R1 − I

)
=:
(
U 0
Q R

)
,

in which the sum of entries of every column of R = R1 − I is equal to the sum of
entries of every column of R1 minus one, it follows that the conditions stated in the
theorem are equivalent to the conditions stated in Theorem 3.4. The theorem now
follows using Proposition 4.2.

THEOREM 4.4. S contains a trap if and only if 1 ∈ σ(G).
Proof. The following statements are equivalent: (i) 0 ∈ σ(F ); (ii) det(F ) = 0;

(iii) det(G − I) = 0; (iv) 1 ∈ σ(G); and (v) ρ(G) = 1. The last equivalence relation
follows from the Perron–Frobenius theorem. With Proposition 4.2, the theorem is
proved.

THEOREM 4.5. Let S be a compartmental system with system matrix G.
1. One is an eigenvalue of G of multiplicity m ∈ Z+ if and only if S contains

m simple traps.
2. Assume one is an eigenvalue of G of multiplicity m ∈ Z+. Then there exists

a partition of S into a disjoint union of subsystems

S = S1 ∪ S2 ∪ · · · ∪ Sp
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such that Si receives no input from Si+1, . . . , Sp, i = 1, . . . , p−1, and Sp−m+1, . . . , Sp
are traps. Relative to this partition the system matrix is given by

PGPT = G̃ =



G11 0 0 0 · · · 0
...

. . . 0
Gp−m,1 Gp−m,p−m 0
Gp−m+1,1 Gp−m+1,p−m Gp−m+1,p−m+1

...
... 0

. . . 0
Gp1 · · · Gp,p−m 0 0 Gpp


,

where Gii is irreducible for all i ∈ Zp and one is an eigenvalue of Gii of multiplicity
one for i = p − m + 1, . . . , p, and the sum of entries of every column of Gii, i =
p−m+ 1, . . . , p, is one.

Proof. 1. The following statements are equivalent:
(i) one is an eigenvalue of G of multiplicity m ∈ Z+;
(ii) det(G− λI) = (λ− 1)mp(λ) with p(1) 6= 0;
(iii) det(F − λI) = λmp1(λ) with p1(0) = p(1) 6= 0;
(iv) zero is an eigenvalue of F of multiplicity m ∈ Z+.

The equivalence between the second and third statements follows from det(F −λI) =
det(G − I − λI) = det(G − (λ + 1)I) = ((λ + 1) − 1)mp(λ + 1) = λmp1(λ) with
p1(λ) = p(λ + 1). Now statement 1 follows from Proposition 4.2 and statement 1 of
Theorem 3.6.

2. Consider the following statements.
a. one is an eigenvalue of G of multiplicity m ∈ Z+;
b. zero is an eigenvalue of F of multiplicity m ∈ Z+;
c. statement 2 in Theorem 3.6;
d. statement 2 in Theorem 4.5.
From 1 it follows that a ⇔ b, and Theorem 3.6 provides b ⇒ c. Noting that

PGPT = PFPT + I, Gij = Fij for i 6= j, and Gii = Fii + I, where the sum of entries
of every column of Gii is equal to the sum of entries of every column of Fii plus 1;
the implication c ⇒ d follows from the statements of the proof of part 1 for m = 1.
This completes the proof of part 2.

4.2. Positive linear observers. In this subsection conditions for the existence
of a positive linear observer for discrete-time linear compartmental systems will be
derived. Consider a compartmental matrix G ∈ Rn×n. If G ∈ Rn×n+ is a compartmen-
tal matrix and K ∈ Rn×k+ , C ∈ Rk×n+ are such that G −KC ∈ Rn×n+ , then G −KC
is also a compartmental matrix, since condition 1 in section 4.1 is satisfied because
G−KC ∈ Rn×n+ and condition 2 becomes

n∑
i=1

(G−KC)ij =
n∑
i=1

gij − (KC)ij ≤
n∑
i=1

gij ≤ 1.

The problem for the special class of compartmental matrices is stated below.
Problem 4.6. Formulate necessary and sufficient conditions on a compartmental

matrix G ∈ Rn×n+ and a positive matrix C ∈ Rk×n+ such that there exists a K ∈ Rn×k+ ,
K 6= 0, with

1. G−KC ∈ Rn×n+ being a compartmental matrix;
2. σ(G−KC) ⊆ {λ ∈ C | |λ| < 1}.

Note that 2 is equivalent to ρ(G−KC) < 1, under the assumption that 1 holds.
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FIG. 4.1. Subgraphs.

The notions of positive modifiability and positive detectability are defined anal-
ogously to the continuous-time case.

DEFINITION 4.7. Let G ∈ Rn×n+ be a compartmental matrix and C ∈ Rk×n+ . The
matrix pair (G,C) is said to be positively modifiable if there exists a K ∈ Rn×k+ such
that KC 6= 0 and G−KC is a compartmental matrix. This implies that σ(G−KC) ⊆
{λ ∈ C | |λ| ≤ 1}. The matrix pair (G,C) is said to be positively detectable if there
exists a K ∈ Rn×k+ such that KC 6= 0 and G − KC is an asymptotically stable
compartmental matrix. This implies that σ(G−KC) ⊆ {λ ∈ C | |λ| < 1}.

For the discrete-time case, the condition for positive modifiability is somewhat
different, because the diagonal elements of G also play a role.

PROPOSITION 4.8. Let G ∈ Rn×n+ be a compartmental matrix and C ∈ Rk×n+ .
(G,C) is positively modifiable if and only if there exists an i ∈ Zn and an r ∈ Zp such
that the rth row in C is nonzero and

{for all j ∈ Zn with crj > 0, also gij > 0}.(4.3)

Remark 4.9. The interpretation of Proposition 4.8 is that for positive modifiability
there should exist an output such that all the compartments contributing to this
output have a direct flow to one and the same compartment. Note that in contrast
to the continuous-time case, if this last mentioned compartment is a compartment
that contributes to the output, also is “flow” to itself needed. This means that
some of the material in this compartment is still in this compartment one time step
ahead. Defining a graph for system matrix G as in Remark 3.10, then the condition in
Proposition 4.8 says that the graph of G should contain a subgraph of the form shown
in Figure 4.1. In this case, “flow” to itself is represented by a loop, which occurs if
gii > 0.

Proof. (⇒) Assume (G,C) is positively modifiable, so a K ∈ Rn×k+ can be found,
such that KC 6= 0 and G − KC is a compartmental matrix. KC ∈ Rn×n+ , since
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K ∈ Rn×k+ and C ∈ Rk×n+ . Therefore, there exist i, s ∈ Zn such that 0 < (KC)is =∑k
t=1 kitcts. Hence there exists an r ∈ Zk such that kircrs > 0, which implies kir > 0

and crs > 0. From this it follows that the rth row in C is nonzero. Next,

0 ≤ (G−KC)ij = gij −
k∑
t=1

kitctj(4.4)

holds for all j ∈ Zn, since G−KC is a compartmental matrix. Suppose crj > 0. Since
kir > 0, this implies

∑k
t=1 kitctj ≥ kircrj > 0. From (4.4) it follows that gij > 0. So

there exist i ∈ Zn, r ∈ Zk such that row r in C is nonzero, and for all j ∈ Zn with
crj > 0, gij > 0 also.

(⇐) Assume there exist i ∈ Zn, r ∈ Zk such that row r in C is nonzero, and for
all j ∈ Zn with crj > 0, gij > 0 also. Since row r in C is nonzero, there exists an
s ∈ Zn such that crs > 0. This implies gis > 0, and in general, for all v ∈ Zn, crv > 0
implies giv > 0. Now take

0 < kir < min
v∈Zn,crv>0

giv
crv

and all other entries of K equal to zero. Then K ∈ Rn×k+ and

(G−KC)iw = giw − kircrw =
{
giw − kircrw ∈ (0, giw) if crw > 0,
giw ≥ 0 if crw = 0;

(G−KC)hw = ghw ≥ 0 for h 6= i.

It follows that K given above satisfies KC 6= 0, and G−KC satisfies the conditions
for a compartmental matrix.

A matrix K ∈ Rn×k+ such that KC 6= 0 and G−KC is a compartmental matrix
can be found by the following algorithm.

ALGORITHM 4.10. Consider G ∈ Rn×n+ , C ∈ Rk×n+ . Define the sets

Rd = {(i, r) ∈ Zn×Zk | row r of C is nonzero and (4.3) holds for (i, r)}

and

D(i,r) = {j ∈ Zn | crj 6= 0}.

Form the matrix K ∈ Rn×k+ as follows.
1. For every pair (i, r) ∈ Rd, take

0 ≤ kir < min
j∈D(i,r)

gij
crj

.

2. For every pair (i, r) /∈ Rd, take kir = 0.
Of course, for KC to be nonzero, at least one kir, for a pair (i, r) ∈ Rd, should be

strictly positive. It follows from Proposition 4.8 that the set Rd is nonempty if and
only if the pair (G,C) is positively modifiable, and if this is the case, K can be chosen
in such a way that KC 6= 0. Analogous to the continuous-time case, the following
results can be stated.

PROPOSITION 4.11. Let G ∈ Rn×n+ be an irreducible compartmental matrix. As-
sume C ∈ Rk×n+ and K ∈ Rn×k+ are such that KC 6= 0 and G−KC is a compartmental
matrix. Then G−KC is asymptotically stable.
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Consider a linear compartmental system S. Assume S contains m ≥ 0 traps. If
m ≥ 1, then S can be partitioned as in Theorem 4.5, with system matrix

G =



G11 0 0 0 · · · 0
...

. . . 0
Gp−m,1 Gp−m,p−m 0
Gp−m+1,1 Gp−m+1,p−m Gp−m+1,p−m+1

...
... 0

. . . 0
Gp1 · · · Gp,p−m 0 0 Gpp


∈ Rn×n+ ,(4.5)

in which Gii is irreducible for all i ∈ Zp and the sum of entries of every column of the
square matrices Gp−m+1,p−m+1, . . . , Gpp equals one. Note that

1. 1 /∈ σ(Gii) for i = 1, . . . , p−m;
2. 1 ∈ σ(Gii) with multiplicity 1 for i = p−m+ 1, . . . , p.

Consider C ∈ Rk×n+ , K ∈ Rn×k+ , and decompose them to conform to the partition in
(4.5):

C =
(
C1 · · · Cp

)
, K =

K1
...
Kp

 .(4.6)

The main theorem of this subsection, solving Problem 4.6, is stated below.
THEOREM 4.12. Consider a linear compartmental system S, as defined above,

with m ≥ 0 traps.
1. If m = 0, then G − KC is asymptotically stable for all K ∈ Rn×k+ with

G − KC a compartmental matrix. Moreover, (G,C) is positively detectable if and
only if (G,C) is positively modifiable.

2. For m ≥ 1, let G, K, and C be partitioned as in (4.5) and (4.6). (G,C) is
positively detectable if and only if (Gii, Ci) is positively modifiable for all i = p−m+
1, . . . , p.

Proofs of Proposition 4.11 and Theorem 4.12. These proofs are analogous to the
proofs of Proposition 3.12 and Theorem 3.13, using Proposition 4.1, Theorem 4.3, and
Theorem 4.4, respectively, instead of Proposition 3.2, Theorem 3.4, and Theorem 3.5,
respectively, and changing F into G and the appropriate zeros into ones. Details are
left for the reader.

To construct a positive linear observer, the following algorithm can be used.
ALGORITHM 4.13. Consider a linear compartmental system S, with system matrix

G ∈ Rn×n+ and C ∈ Rk×n+ . Assume S contains m ≥ 0 traps.
1. Write G and C in the forms (4.5) and (4.6), and decompose a matrix K ∈

Rn×k+ accordingly.
2. With Proposition 4.8 check positive modifiability of (Gii, Ci) for every i =

p−m+ 1, . . . , p.
3. Execute Algorithm 4.10 for every pair (Gii, Ci), i = 1, . . . , p.
4. If (Gii, Ci) is positively modifiable for every i = p − m + 1, . . . , p, step 3

provides a positive linear observer. Otherwise (G,C) is not positively detectable.
Note that in step 3 it is not necessary to have KiCi 6= 0 for i = 1, . . . , p − m,

whereas it is necessary for i = p−m+ 1, . . . , p.

5. Concluding remarks. Positive linear observers for linear compartmental
systems have been considered. Conditions on the system matrices A and C have been
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derived for the existence of positive linear observers, i.e., linear observers that provide
positive estimates of the state in case the estimate of the initial state and the input
is positive. As has been shown in the example in section 3.2, the problem of finding
an optimal positive linear observer is also worthwhile to be studied. By an optimal
positive linear observer we mean on the one hand one with a “large” gain K, but
on the other hand one that is not too sensitive to possible observation noise. This
problem remains to be investigated.

In linear system theory, the dual of the observer problem is the stabilization
problem by linear state feedback; see, for example, [3, 10]. Of course, duals of the
results in this chapter can be derived. But these results will have no physical meaning
since a stabilization problem by linear state feedback would be to design for a positive
linear system

ẋ(t) = Ax(t) +Bu(t)

a positive linear control law

u(t) = Fx(t) + v(t),

with v(t) ∈ Rm+ a new input, such that the closed loop system

ẋ(t) = (A+BF )x(t) +Bv(t)

is asymptotically stable. For physical reasons, this control law should produce a
positive input u, given positive state x and positive input v, so F ∈ Rm×n+ . Therefore
A + BF ≥ A, whereas A − KC ≤ A. So new results for this problem have to be
found, and they are definitely not dual to the results in this chapter.
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Abstract. Given a solution of a controlled martingale problem it is shown under general con-
ditions that there exists a solution having Markov controls which has the same cost as the original
solution. This result is then used to show that the original stochastic control problem is equivalent
to a linear program over a space of measures under a variety of optimality criteria. Existence and
characterization of optimal Markov controls then follows. An extension of Echeverria’s theorem char-
acterizing stationary distributions for (uncontrolled) Markov processes is obtained as a corollary. In
particular, this extension covers diffusion processes with discontinuous drift and diffusion coefficients.
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1. Introduction and formulation. We consider processes whose dynamics are
specified through a controlled martingale problem for their generator, that is, by the
requirement that

f(X(t))−
∫ t

0
Af(X(s), u(s)) ds(1.1)

be a martingale for every f in the domain of the generator A. In this expression X is
the state process and u is a process which “controls” X. (A detailed formulation of
the dynamics is given later in this section.) The controller usually compares control
processes by observing their associated “costs” according to a prescribed criterion.
In this paper we consider infinite-horizon discounted and long-term average costs,
finite-horizon costs, and first passage or first exit costs.

The controller may use any nonanticipating process to control the state. The
restriction on the control process is implicit in the martingale requirements; however,
it is easy to check that any solution of the controlled martingale problem corresponds
to a solution with the same state process and a (relaxed) control adapted to the
filtration generated by the state process. Controls may be based on the full history of
the state and control processes or they may depend only on the present value of the
state. The latter control processes are referred to as Markov or feedback controls.

There are usually two desires which the controller would like to fulfill. The first
and most important is to choose the control so as to obtain the minimum cost possible;
however, from a practical point of view, the controller would also like to have as simple
a control as possible.
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In this paper, we show that it is possible to fulfill both desires simultaneously, at
least in one sense, by showing the existence of optimal Markov controls. Furthermore,
we develop a method for determining an optimal Markov control.

The question of existence of optimal Markov controls has been studied in [4, 8, 12].
Each paper considers controlled diffusion processes and gives conditions under which
existence of optimal Markov controls is assured. The approach of the last two papers is
to apply the Krylov selection theorem to obtain a Markov solution to the martingale
problem and thus a Markov control. This approach gives existence of an optimal
Markov control but does not characterize the control.

The method we use to determine an optimal control is to reformulate the original
control problem as a linear program over a collection of measures. This approach has
a long history starting with Manne [15] and has been widely applied in a discrete
setting (see, for example, [5, 6, 16, 20]). The extension to continuous time processes
having continuous state and control processes was given in [19]. However, the optimal
controls obtained in [19] were only shown to be progressively measurable and only
applied to long-term average control problems. Fleming and Vermes [10] use a similar
reformulation in terms of occupation measures. They use convex analysis techniques
to show that the solution is given by the upper envelope of the smooth subsolutions
of the Hamilton–Jacobi–Bellman equation.

This paper has two main components. The first considers existence of Markov
controls for solutions of the controlled martingale problem for the generator A. These
existence results typically take two forms. One form starts with a given solution to
the martingale problem and establishes existence of another solution having a Markov
control whose cost matches the cost of the given solution. The other form begins with
an identity in which a measure (or measures) annihilates the generator (or generators)
of the process(es) and constructs a solution having a Markov control. The second
component develops the LP reformulations of the various control problems.

The organization of this paper is as follows. We give the formulation of the
dynamics of the controlled process in section 1.1. Existence of stationary solutions
having a Markov control and such that the one-dimensional distributions are pre-
scribed is shown for any prescribed distribution satisfying a stationarity condition
(2.1) in section 2. Section 3 extends Echeverria’s theorem (see [9, Theorem 4.9.17])
to operators whose ranges include discontinuous functions and considers the forward
equation. In section 4, we show that for any solution of the controlled martingale
problem there exists another solution having a (time-inhomogeneous) Markov control
which has the same one-dimensional state and control distributions as the given solu-
tion. Since the long-term average, discounted and finite-horizon cost criteria depend
only on the one-dimensional distributions, this result implies that the new solution
has the same expected cost for these criteria. The distribution of the Markov control
corresponds to the projection of the given control onto the σ-algebra generated by
the current state. A corresponding result is also obtained for the first exit criterion.
Section 5 provides existence of a solution with a time-homogeneous Markov control
which matches the costs of a given solution, though the one-dimensional distributions
may no longer be the same as the given solution. Finally, in section 6 we determine
the equivalent LP formulations of the control problems for each of the cost criteria.

The existence results in section 4 are similar in nature to an observation by Dvoret-
sky [7] for discrete processes which says that any sequence of random variables has the
same one-dimensional distributions as a Markov chain. More recently, for a diffusion
having adapted drift and diffusion coefficients, Krylov [13] shows existence of drift
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and diffusion coefficients which are functions of the state such that the two diffusions
have the same Green measure (see Corollary 5.4 of section 5.1). Gyöngy [11] shows
existence of state- and time-dependent coefficients such that the one-dimensional dis-
tributions of the diffusions are the same (see Corollary 4.3 of section 4). For controlled
diffusions in which the control only affects the drift coefficient, Borkar [3] establishes
a similar existence of Markov controls such that the one-dimensional distributions of
the diffusions agree. The results in sections 4 and 5 generalize [3, 11, 13].

Following the completion of the first draft of this paper, the authors became aware
of work of Bhatt and Borkar [2] that has substantial overlap with the results of this
paper. Both papers are based on extensions of Echeverria’s theorem to controlled
processes given in [18, 19]. Bhatt and Borkar work in the context of complete, sepa-
rable, metric state spaces and compact control spaces while we treat locally compact
(not necessarily compact), separable, metric state and control spaces. Their paper
contains analogues of our Theorems 2.2 and 4.1, although the method of proof used
in Theorem 2.2 is substantially different. They study the discounted criterion with a
fixed discount rate, whereas section 5.1 of our paper allows the discount rate to be
state- and control-dependent. This dependence is used to extend Krylov’s result on
the Green measures. Their characterization of the finite-horizon problem does not
include terminal costs since they work with test functions which vanish at the ter-
minal time. Our results (sections 4.2 and 6.3) allow terminal costs. The results on
the first-passage criterion (sections 4.1 and 5.2) and the forward equation for Markov
processes (section 3) appear only in this paper.

1.1. Formulation. In this paper, we only consider relaxed solutions for the
martingale problem, so we begin by stating the definition of a relaxed solution.

For a measurable space S, we define Ĉ(S) to be the space of continuous functions
on S which vanish at ∞, C(S) to be the space of bounded, continuous functions on
S, M(S) to be the space of finite Borel measures on S, and P(S) to be the space of
probability measures on S.

Let the state space E and control space U be locally compact, complete, separable
metric spaces and let E∆ = E ∪ {∆} be the one-point compactification of E. Let
A : D(A) ⊂ Ĉ(E) → C(E × U) and ν ∈ P(E). Then an E × P(U)-valued process
(X,Λ) is a relaxed solution of the controlled martingale problem for (A, ν) if there
exists a filtration {Ft} such that (X,Λ) is {Ft}-progressive, X has initial distribution
ν, and for every f ∈ D(A),

f(X(t))−
∫ t

0

∫
U

Af(X(s), u) Λs(du) ds(1.2)

an {Ft}-martingale.
We assume that the generator A satisfies the following conditions, which are suffi-

cient to guarantee existence of solutions (at least in E∆) to the controlled martingale
problem for each ν ∈ P(E):

(i) D(A) is dense in Ĉ(E) ,
(ii) for each f ∈ D(A) and u ∈ U , Af(·, u) ∈ Ĉ(E),
(iii) for each f ∈ D(A) and compact K ⊂ U , lim supx→∆ supu∈K |Af(x, u)| = 0,

and
(iv) for each u ∈ U , Auf = Af(·, u) satisfies the positive maximum principle.
The fundamental existence result (Theorem 2.2) requires the additional condition

that



612 THOMAS G. KURTZ AND RICHARD H. STOCKBRIDGE

(v) D(A) is an algebra.
For compactness purposes we also assume that
(vi) there exists ψ ∈ C(U), ψ > 0, such that for each f ∈ D(A) there exist

constants af and bf satisfying

|Af(x, u)| ≤ af + bfψ(u).(1.3)

Integrability assumptions of two types will be placed on ψ; the particular assumption
will be specified in each theorem. An additional assumption (6.1) relating the cost
function c with ψ is imposed in the LP reformulation section.

The results of this paper can be extended to a nonlocally compact state space E
as in [1, 2]. We treat the locally compact case for simplicity of exposition.

This paper considers the infinite-horizon discounted cost, the long-term average
cost, the finite-horizon cost, and the first passage or first exit cost associated with
solutions of the controlled martingale problem. There are two forms to the LP refor-
mulations of each control problem which are based on the existence results contained
in sections 4 and 5, respectively. The results in section 4 allow the running cost and
terminal or exit cost functions to be time-dependent and lead to LP reformulations
in which time is a component. When there is no time-dependence in the cost crite-
ria aside from (possibly) discounting, the LP reformulations are simpler and use the
existence of time-homogeneous Markov controls established in section 5.

With this in mind, let c ∈ M(E × U) and g ∈ M(E) be bounded below. (M(E)
will denote the Borel measureable functions on E.) The four standard criteria are

• the discounted cost

E

[∫ ∞
0

e−αt
∫
U

c(X(t), u)Λt(du) dt
]

;(1.4)

• the finite-horizon cost

E

[∫ T

0

∫
U

c(X(t), u)Λt(du) dt+ g(X(T ))

]
;(1.5)

• the long-term average cost

lim sup
t→∞

E

[
t−1

∫ t

0

∫
U

c(X(s), u)Λs(du) ds
]

;(1.6)

• the first passage cost

E

[∫ τ

0

∫
U

c(X(s), u) Λs(du) ds+ g(X(τ))
]
,(1.7)

where E0 ⊂ E is an open set and τ = inf{t ≥ 0 : X(t) ∈ Ec0}.
The criteria (1.4), (1.5), and (1.7) are adjusted appropriately when c and g are

time-dependent. In addition, for the first passage cost we allow E0 ⊂ IR+ × E and
τ = inf{t ≥ 0 : (t,X(t)) ∈ Ec0}. We also consider discount rates that depend on the
state and control.

2. Stationary solution to the controlled martingale problem. The ob-
jective of this section is to establish the existence of a particular form of stationary
solution for the controlled martingale problem for a generator A.
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Suppose µ is a probability measure on E × U which satisfies∫
E×U

Af(x, u)µ(dx× du) = 0 ∀f ∈ D(A) .(2.1)

Denote the state marginal by µ0 = µ(· × U) and let η be the regular conditional
distribution of u given x; that is, η satisfies

µ(Γ1 × Γ2) =
∫

Γ1

η(x,Γ2)µ0(dx) ∀Γ1 ∈ B(E), Γ2 ∈ B(U) .(2.2)

If X is a stationary process with X(0) having distribution µ0, the pair (X, η(X, ·)) is
stationary and the one-dimensional distributions satisfy

E[IΓ1(X(t)) η(X(t),Γ2)] = µ(Γ1 × Γ2), t ≥ 0.

We show that there exists a stationary process X such that the E×P(U)-valued pro-
cess (X, η(X, ·)) is a stationary relaxed solution of the controlled martingale problem
for (A,µ0). The following lemma is essential to this result.

LEMMA 2.1. Let Xn, X be processes in DE [0,∞) with Xn ⇒ X, and let DX =
{t : P{X(t) 6= X(t−)} > 0}. Suppose, for each t ≥ 0, that Xn(t) and X(t) have a
common distribution νt ∈ P(E). Let g be Borel measurable on [0,∞)×E and satisfy∫ t

0

∫
E

|g(s, x)|νs(dx)ds <∞

for each t > 0. Then ∫ [n·]/n

0
g(s,Xn(s)) ds⇒

∫ ·
0
g(s,X(s)) ds(2.3)

and, in particular, for each m ≥ 1, 0 ≤ t1 ≤ · · · ≤ tm < tm+1, ti /∈ DX , and
h1, . . . , hm ∈ C(E),

lim
n→∞

E

[∫ [ntm+1]/n

[ntm]/n
g(s,Xn(s)) ds

m∏
i=1

hi(Xn(ti))

]

= E

[∫ tm+1

tm

g(s,X(s)) ds
m∏
i=1

hi(X(ti))

]
.

(2.4)

Proof. For each ε > 0, there exists gε ∈ C([0,∞)×E) satisfying
∫∞

0 e−t
∫
E
|g(s, x)−

gε(s, x)| νs(dx)ds < ε. Then∣∣∣∣∣E
[∫ [ntm+1]/n

[ntm]/n
{g(s,Xn(s))− gε(s,Xn(s))} ds

m∏
i=1

hi(Xn(ti))

]∣∣∣∣∣
≤

m∏
i=1

||hi||E
[∫ [ntm+1]/n

[ntm]/n
|g(s,Xn(s))− gε(s,Xn(s))| ds

]

≤
m∏
i=1

||hi||(tm+1 − tm + 1)etm+1ε.
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Similarly,

∣∣∣∣∣E
[∫ tm+1

tm

{g(s,X(s))− gε(s,X(s))} ds
m∏
i=1

hi(X(ti))

]∣∣∣∣∣ ≤
m∏
i=1

||hi||(tm+1 − tm + 1)etm+1ε.

The result now follows since the convergence in (2.4) is immediate with g replaced by
gε. The proof of (2.3) is obtained in a similar manner.

THEOREM 2.2. Suppose that E, U , A, and ψ are as in section 1.1. Suppose
µ ∈ P(E × U) satisfies (2.1). Let η satisfy (2.2). Assume that ψ satisfies

∫
ψ(u)µ(dx× du) <∞.(2.5)

Then there exists a stationary process X such that (X, η(X, ·)) is a stationary relaxed
solution of the controlled martingale problem for (A,µ0).

Remark 2.3. It will be clear from the proof that there always exists a modification
of X with sample paths in DE∆ [0,∞) (where E∆ is the one-point compactification
of E), but our assumptions do not imply that the process will have sample paths in
DE [0,∞). For example, let Af = (1 + x4)(f ′′(x) + f ′(x)). It is easy to check that
µ(dx) = c(1 + x4)−1dx satisfies

∫
IRAf(x)µ(dx) = 0, but the corresponding process

will repeatedly “go out” at +∞ and “come back in” at −∞.
For clarity of exposition, we break the proof into two parts. The main part of

the proof is given in the next theorem, which differs from the more general result
in that the range of the generator A consists of bounded continuous functions. The
second part of the proof consists of applying the theorem to bounded generators which
approximate A and showing relative compactness of the solutions.

THEOREM 2.4 (cf. [2, Theorem 2.1 and Corollary 2.1]). Suppose that E, U are as
in section 1.1. Let A : D(A) ⊂ Ĉ(E)→ C(E×U) satisfy conditions (i)–(v). Suppose
µ ∈ P(E×U) satisfies (2.1). Let η satisfy (2.2). Then there exists a stationary process
X such that (X, η(X, ·)) is a stationary relaxed solution of the controlled martingale
problem for (A,µ0).

Proof. As in [18, Theorem 4.1], we may assume E is compact and A1 = 0,
where 1 denotes the constant function 1, by using E∆ and extending A to the space
C(E∆), if necessary. For n = 1, 2, 3, . . . , define the Yosida approximations An by
Ang = n[(I − n−1A)−1 − I]g for g ∈ R(I − n−1A) and note that for f ∈ D(A) and
g = (I − n−1A)f , Ang = Af .

Let M be the linear subspace of functions of the form

F (x1, x2, u1, u2) =
m∑
i=1

{
hi(x1)

[
(I − n−1A)fi(x2, u1) + gi(x2, u2)− gi(x2, u1)

]}
+ h0(x2, u1, u2),

(2.6)

where h1, . . . , hm ∈ C(E), h0 ∈ C(E × U × U), f1, . . . , fm ∈ D(A) , and g1, . . . , gm ∈
C(E × U). Define the linear functional Ψ on M by
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ΨF =
∫
E×U

∫
U

m∑
i=1

{hi(x2)[fi(x2) + gi(x2, u2)− gi(x2, u1)]} η(x2, du2)µ(dx2 × du1)

+
∫
E×U

∫
U

h0(x2, u1, u2) η(x2, du2)µ(dx2 × du1)

=
∫
E×U

∫
U

[
m∑
i=1

hi(x2)fi(x2) + h0(x2, u1, u2)

]
η(x2, du2)µ(dx2 × du1),

(2.7)

in which the second representation follows from the fact that∫
E×U

∫
U

h(x2)[g(x2, u2)− g(x2, u1)]η(x2, du2)µ(dx2 × du1) = 0(2.8)

(write µ(dx2 × du1) = η(x2, du1)µ0(dx2)). Also define the linear operator Π: B(E ×
E × U × U)→ B(E × E × U) by

ΠF (x1, x2, u1) =
∫
U

F (x1, x2, u1, u2) η(x2, du2)(2.9)

and the functional p on B(E × E × U × U) by

p(F ) =
∫
E×U

sup
x1

|ΠF (x1, x2, u1)|µ(dx2 × du1).(2.10)

Observe that Π(ΠF ) = ΠF , so

p(F −ΠF ) = 0.(2.11)

In order to simplify notation, define the operator B on C(E × U) by

Bg(x2, u1) =
∫
U

[g(x2, u2)− g(x2, u1)] η(x2, du2).(2.12)

First, we claim |ΨF | ≤ p(F ). To see this, fix F ∈M . Fix αi ≥ ||(I − n−1A)fi +
Bgi|| ∨ ||fi||, i = 1, . . . ,m, and let φ be a polynomial on IRm which is convex on∏m
i=1[−αi, αi]. By the convexity of φ and [18, Lemma 3.5],

φ((I − n−1A)f1 +Bg1, . . . , (I − n−1A)fm +Bgm)
≥ φ(f1, . . . , fm)− n−1∇φ(f1, . . . , fm) · (Af1, . . . , Afm)

+∇φ(f1, . . . , fm) · (Bg1, . . . , Bgm)
≥ φ(f1, . . . , fm)− n−1Aφ(f1, . . . , fm) +∇φ(f1, . . . , fm) · (Bg1, . . . , Bgm).

In light of (2.1) and (2.8), integration with respect to µ yields

∫
φ((I − n−1A)f1 +Bg1, . . . , (I − n−1A)fm +Bgm) dµ ≥

∫
φ(f1, . . . , fm) dµ,

(2.13)
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and this inequality can be extended to arbitrary convex functions. Consider, in par-
ticular, the convex function φ(r1, . . . , rm) = supx1

∑m
i=1 hi(x1)ri. It follows that

ΨF ≤
∫
E×U

{
sup
x1

m∑
i=1

hi(x1)fi(x2) +
∫
U

h0(x2, u1, u2) η(x2, du2)

}
µ(dx2 × du1)

=
∫
E×U

{
φ(f1, . . . , fm)(x2) +

∫
U

h0(x2, u1, u2) η(x2, du2)
}
µ(dx2 × du1)

≤
∫
E×U

{
φ((I − n−1A)f1 +Bg1, . . . , (I − n−1A)fm +Bgm)(x2, u1)

+
∫
U

h0(x2, u1, u2) η(x2, du2)
}
µ(dx2 × du1)

=
∫
E×U

sup
x1

ΠF (x1, x2, u1)µ(dx2 × du1)

≤ p(F ).

Also, −ΨF = Ψ(−F ) ≤ p(−F ) = p(F ), so |ΨF | ≤ p(F ).
Since Ψ1 = 1, observe that for F ≥ 0,

||F || −ΨF = Ψ(||F || − F ) ≤ || ||F || − F || ≤ ||F ||,

so ΨF ≥ 0. As a result, we can apply the Hahn–Banach theorem (cf. [17, p. 187]) to
extend Ψ to the entire space C(E×E×U ×U), still satisfying |ΨF | ≤ p(F ), and the
extension of the Riesz representation theorem in [1, Theorem 2.3] to conclude that
there exists a measure ν ∈ P(E × E × U × U) such that

ΨF =
∫
E×E×U×U

F (x1, x2, u1, u2) ν(dx1 × dx2 × du1 × du2).(2.14)

By considering functions F of particular forms, we observe some of the conse-
quences of this representation of Ψ. First, for F of the form F (x1, x2, u1, u2) =
h(x1)(I − n−1A)1(x2, u1), with 1 being the constant function, it is clear that
ν(· × E × U × U) = µ0(·). Second, consider F of the form F (x1, x2, u1, u2) =
h(x1)(I − n−1A)f(x2, u1). Letting ν(dx1 × dx2 × du1 × du2) = η̃(x1, dx2 × du1 ×
du2)µ0(dx1), we have∫

E

h(x1)f(x1)µ0(dx1)

= ΨF

=
∫
E×E×U×U

h(x1)(I − n−1A)f(x2, u1) ν(dx1 × dx2 × du1 × du2)

=
∫
E

h(x1)
[∫

E×U
(I − n−1A)f(x2, u1) η̃(x1, dx2 × du1 × U)

]
µ0(dx1),

and thus letting η̂(x1, dx2 × du1) = η̃(x1, dx2 × du1 × U), it follows that∫
E×U

(I − n−1A)f(x2, u1)η̂(x1, dx2 × du1) = f(x1) a.e. µ0(dx1).(2.15)

Third, observe that ΨF = Ψ(ΠF ) by (2.11). With F (x1, x2, u1, u2) = f(x1, x2, u1)g(u2)
and writing ν(dx1 × dx2 × du1 × du2) = η̄(x1, x2, u1, du2)ν̄(dx1 × dx2 × du1), we thus
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have ∫
E×E×U

f(x1, x2, u1)
[∫

U

g(u2) η̄(x1, x2, u1, du2)
]
ν̄(dx1 × dx2 × du1)

= ΨF
= Ψ(ΠF )

=
∫
E×E×U

f(x1, x2, u1)
[∫

U

g(u2)η(x2, du2)
]
ν̄(dx1 × dx2 × du1).

Therefore

ν(dx1 × dx2 × du1 × du2) = η(x2, du2)ν̄(dx1 × dx2 × du1)
= η(x2, du2)η̂(x1, dx2 × du1)µ0(dx1).

Furthermore, using F (x1, x2, u1, u2) = h(x1)[g(x2, u2)− g(x2, u1)], it follows that

0 = ΨF

=
∫
E

h(x1)
[∫

E×U

∫
U

{g(x2, u2)− g(x2, u1)}η(x2, du2)η̂(x1, dx2 × du1)
]
µ0(dx1)

and so

∫
E×U

∫
U

{g(x2, u2)− g(x2, u1)}η(x2, du2)η̂(x1, dx2 × du1) = 0 a.e. µ0(dx1).

(2.16)

Let {(Xk, uk): k = 1, 2, . . . } be a Markov chain on E × U having initial dis-
tribution µ and transition function η̂. A straightforward computation shows that
the Markov chain is stationary, and by (2.15) and (2.16), for each f ∈ D(A) and
g ∈ C(E × U),

[(I − n−1A)f ](Xk, uk)−
k−1∑
i=0

n−1An[(I − n−1A)f ](Xi, ui)

and

k∑
i=0

Bg(Xi, ui)

are martingales with respect to the filtration Fk = σ((Xi, ui): 0 ≤ i ≤ k).
Define Xn(·) = X[n·], un(·) = u[n·], and Fnt = σ((Xn(s), un(s)): 0 ≤ s ≤ t). It

immediately follows (recall An(I − n−1A)f = Af) that

[(I − n−1A)f ](Xn(t), un(t))−
∫ [nt]/n

0
Af(Xn(s), un(s)) ds(2.17)

and ∫ [nt]/n

0
Bg(Xn(s), un(s)) ds(2.18)

are Fnt -martingales.
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Define the measure-valued random variable Γn by

Γn([0, t]×G) =
∫ [nt]/n

0
IG(un(s)) ds.

Let L(U) be the space of measures ξ on [0,∞) × U such that ξ([0, t] × U) < ∞ for
each t > 0. We take the topology on L(U) such that ξn → ξ if and only if∫

fdξn →
∫
fdξ

for every f ∈ C([0,∞) × U) with supp(f) ⊂ [0, tf ] × U for some tf < ∞. Relative
compactness of {Γn} follows from the fact that

E[Γn([0, t]× U)] ≤ t,

and for each ε > 0, there exists a compact set K ⊂ U such that

E[Γn([0, t]×Kc)] =
[nt]
n
µ(E ×Kc) ≤ εt.

See [14, Corollary 1.2]. It follows that (Xn,Γn) is relatively compact in DE [0,∞) ×
L(U). Along any convergent subsequence with limit point (X,Γ), by [14, Lemma 1.5]∫

[0,·]×U
g(Xn(s), u)Γn(ds× du)⇒

∫
[0,·]×U

g(X(s), u)Γ(ds× du),

and as in the proof of [14, Theorem 2.1], there exists a filtration {Gt} such that

f(X(t))−
∫ t

0

∫
U

Af(X(s), u) Γ(ds× du)(2.19)

is a {Gt}-martingale for each f ∈ D(A) . Since Xn is stationary for time shifts that
are multiples of n−1, it follows that X is a stationary process.

Since (2.18) is a martingale, for h1, . . . , hj ∈ C(E), g ∈ C(E × U), and 0 ≤ t1 ≤
· · · ≤ tj < tj+1,

E

[∫ [ntj+1]/n

[ntj ]/n

∫
U

g(Xn(s), u) η(Xn(s), du) ds
j∏
i=1

hi(Xn(ti))

]

= E

[∫ [ntj+1]/n

[ntj ]/n

∫
U

g(Xn(s), un(s)) Γn(ds× du)
j∏
i=1

hi(Xn(ti))

]
.

By the weak convergence of (Xn,Γn) to (X,Γ) and Lemma 2.1, letting n → ∞, we
obtain

E

[∫ tj+1

tj

∫
U

g(X(s), u) η(X(s), du) ds
j∏
i=1

hi(X(ti))

]

= E

[∫ tj+1

tj

∫
U

g(X(s), u) Γ(ds× du)
j∏
i=1

hi(X(ti))

]
.
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In particular, this implies, by taking g = Af , that

f(X(t))−
∫ t

0

∫
U

Af(X(s), u) η(X(s), du) ds

is an {FXt }-martingale.
Proof of Theorem 2.2. For each n ≥ 1, let ψn = 2−n(2n∨ψ), kn(x) =

∫
ψn(u) η(x, du),

and cn =
∫
kn(x)µ0(dx) =

∫
ψn(u)µ(dx× du). Observe that ψn ≥ 1 for all n and as

n→∞, ψn(u)→ 1, cn ↘ 1, and kn ↘ 1. Define the operators An on D(A) by

Anf(x, u) = Af(x, u)/ψn(u),

and note that An : D(A) → C(E × U). Also for each n, define the measure µn ∈
P(E × U) by

µn(Γ) = c−1
n

∫
Γ
ψn(u)µ(dx× du) ∀Γ ∈ B(E × U).

Observe that the state marginal of µn has density kn(x)
cn

with respect to µ:

µ0
n(dx) =

kn(x)
cn

µ0(dx),

and the conditional distribution of u given x under µn is given by

ηn(x, du) =
ψn(u)
kn(x)

η(x, du).

The pairs (An, µn) satisfy the conditions of Theorem 2.4, so there exist stationary
processes {Xn} such that (Xn, ηn(Xn, ·)) is a solution of the controlled martingale
problem for (An, µ0

n).
The relative compactness of {Xn} is established by applying [9, Theorem 3.9.1]

and [18, Theorem 4.5] exactly as in [18, Theorem 4.7]. Let X be a weak limit of Xn,
and without loss of generality, assume the entire sequence converges.

By a monotone class argument, for each f ∈ D(A) ,

f(X(t))−
∫ t

0

∫
U

Af(X(s), u) η(X(s), du) ds

is an {FXt }-martingale if and only if

E

[(
f(X(tm+1))− f(X(tm))−

∫ tm+1

tm

∫
U

Af(X(s), u) η(X(s), du) ds
) m∏
i=1

hi(X(ti))

]
(2.20)

= 0

for each m ≥ 1 and 0 ≤ t1 ≤ · · · ≤ tm < tm+1 and h1, . . . , hm ∈ C(E).
Note that condition (2.21) is satisfied with An, ηn, and Xn replacing A, η, and

X since (Xn, ηn(Xn, ·)) is a solution of the controlled martingale problem for An.
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Fix f ∈ D(A) , t1, . . . , tm+1 ∈ {t ≥ 0 : P (X(t) = X(t−)) = 1}, and h1, . . . , hm ∈
C(E). Since Xn ⇒ X as n→∞,

E

[
(f(Xn(tm+1))− f(Xn(tm)))

m∏
i=1

hi(Xn(ti))

]

→ E

[
(f(X(tm+1))− f(X(tm)))

m∏
i=1

hi(X(ti))

]
.

Lemma 2.1 does not apply directly to the integral terms since the distributions of
Xn(t) and X(t) are not the same. However, a similar argument can be used by
approximating

∫
U
Af(x, u) η(x, du) by a continuous function in L1(µ0) and using the

facts that Xn(t) has distribution µ0
n(dx) = kn(x)/cnµ0(dx) and kn ↘ 1 as n → ∞.

Therefore, (2.20) is established for t1, . . . , tm+1 ∈ {t ≥ 0 : P (X(t) = X(t−)) = 1}.
The result is extended to all t1, . . . , tm+1 by the right continuity of X. Thus

f(X(t))−
∫ t

0

∫
U

Af(X(s), u) η(X(s), du) ds

is an {FXt }-martingale.

3. Stationary solutions and the forward equation for Markov processes.
Theorem 2.2 extends Echeverria’s theorem (cf. [9, Theorem 4.9.17]) to include control
in the dynamics. This theorem can in turn be used to extend the result in the
uncontrolled setting to operators with range in M(E), the (not necessarily bounded)
measurable functions on E; that is, we relax both the boundedness and the continuity
assumptions of the previous results.

THEOREM 3.1. Let E be locally compact and separable. Let Â : D(Â) ⊂ Ĉ(E)→
M(E), let D(Â) be an algebra, and let µ̂ ∈ P(E) satisfy∫

E

Âf(x) µ̂(dx) = 0 ∀f ∈ D(Â).(3.1)

Suppose that there exists a locally compact, separable, metric space U , an operator
A : D(A) ≡ D(Â) ⊂ Ĉ(E) → C(E × U) satisfying conditions (i)–(iv), a transition
function η from E to U such that

Âf(x) =
∫
U

Af(x, u) η(x, du) ∀f ∈ D(Â),

and a ψ ∈ C(U) satisfying condition (vi) and∫
E×U

ψ(u) η(x, du)µ̂(dx) <∞.

Then there exists a stationary solution X of the (uncontrolled) martingale problem
for (Â, µ̂).

Proof. This theorem follows immediately from Theorem 2.2, defining µ ∈ P(E ×
U) by µ(dx× du) = η(x, du)µ̂(dx).

Theorem 3.1 immediately gives a generalization of Proposition 4.9.19 of [9] re-
garding solutions of the forward equation∫

E

fdνt =
∫
E

fdν0 +
∫ t

0

∫
E

Âfdνsds , f ∈ D(Â),(3.2)
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for a P(E)-valued function ν. The proof of the next corollary uses the argument of
Theorem 4.1 in the next section.

COROLLARY 3.2. Let Â : D(Â) ⊂ Ĉ(E) → M(E), A, and ψ be as in Theorem
3.1, and let ν satisfy (3.2) and∫ ∞

0
e−λs

∫
E×U

ψ(u) η(x, du)νs(dx)ds <∞(3.3)

for all sufficiently large λ > 0. Then there exists a solution X of the martingale
problem for (Â, ν0) such that X(t) has distribution νt. If uniqueness holds for the
martingale problem for (Â, ν0), then uniqueness holds for (3.2) among solutions sat-
isfying the integrability condition (3.3).

Proof. Existence of the process X follows by the proof of Theorem 4.1 when the
measure π ∈ P(IR+ × E × U) is defined to satisfy∫

IR+×E×U
h(s, x, u)π(ds× dx× du) = α

∫ ∞
0

e−αs
∫
E

∫
U

h(s, x, u)η(x, du)νs(dx)ds

for h ∈ C(IR+ × E × U). The proof of uniqueness is identical to that of Proposition
4.9.19 of [9].

Example 3.3 (linear combinations of generators). Suppose

Âf(x) =
m∑
k=1

βk(x)Akf(x),

in which each Ak satisfies conditions (i)–(v), A1, . . . , Am have a common domain, and
the coefficients βk are only assumed to be nonnegative and measurable. Suppose µ̂
satisfies (3.1) and ∫

E

∑
k

βk(x)µ̂(dx) <∞.

Then there exists a stationary solution of the martingale problem for (Â, µ̂). To see
that Theorem 3.1 applies, take U = [0,∞)m, Af(x, u) =

∑m
k=1 ukAkf(x), η(x, du) =∏m

k=1 δ{βk(x)}(duk), and ψ(u) =
∑m
k=1 |uk|. Similarly, if {νt} satisfies (3.2) and∫ ∞

0
e−λs

∫
E

∑
k

βk(x)νs(dx)ds <∞

for all sufficiently large λ, then by Corollary 3.2 there exists a solution X of the
martingale problem for Â such that νt is the distribution of X(t).

Example 3.4 (diffusion operators with discontinuous coefficients). Consider the
diffusion generator on IRd,

Âf(x) =
1
2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) +

d∑
i=1

bi(x)
∂

∂xi
f(x)

with domain D(Â) = C2
c (IRd), in which the coefficients are only assumed to be mea-

surable. Suppose that µ̂ ∈ P(E) satisfies∫
E

Âf(x) µ̂(dx) = 0 ∀f ∈ D(Â)(3.4)
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and ∫
[‖a(x)‖+ |b(x)|] µ̂(dx) <∞,

where a(x) = ((aij(x) )) and b(x) = (b1(x), . . . , bd(x)).
Let U = Md×d

+ ×IRd, where Md×d
+ denotes the space of nonnegative definite d× d

matrices, and, with u = (u1, u2), define

Af(x, u) =
1
2

d∑
i,j=1

u1
ij

∂2

∂xi∂xj
f(x) +

d∑
i=1

u2
i

∂

∂xi
f(x) ,

η(x, du) = δ{a(x)}(du1)δ{b(x)}(du2), and ψ(u) = ‖u1‖+ |u2|. Then Theorem 3.1 gives
the existence of a stationary solution of the martingale problem for (Â, µ̂). Similarly,
if there exists a solution of (3.2) satisfying∫ ∞

0
e−λs

∫
[‖a(x)‖+ |b(x)|] νs(dx)ds <∞

for all sufficiently large λ > 0, then there exists a solution X of the martingale problem
for Â such that for each t ≥ 0, νt is the distribution of X(t).

Example 3.5 (jump processes). Let E be locally compact and

Âf(x) = λ(x)
∫
E

(f(y)− f(x))γ(x, dy),

where λ is a nonnegative measurable function on E and γ is a transition function on
E. Suppose that µ̂ ∈ P(E) satisfies (3.1) and

∫
E
λ(x)µ̂(dx) <∞. Let E∆ denote the

one-point compactification of E and U = [0,∞)× P(E∆). Define

Af(x, u) = u1

∫
(f(y)− f(x))u2(dy) ,

ψ(u) = u1, and η(x, du) = δ{λ(x)}(du1)δ{γ(x,·)}(du2). Then Theorem 3.1 gives the
existence of a stationary solution of the martingale problem for (Â, µ̂). Similarly, if
there exists a solution of (3.2) satisfying∫ ∞

0
e−λsλ(x) νs(dx)ds <∞

for all sufficiently large λ > 0, then there exists a solution X of the martingale problem
for Â such that for each t ≥ 0, νt is the distribution of X(t).

4. Feedback controls. We now use Theorem 2.2 to show that for each solu-
tion (X,Λ) of the controlled martingale problem for A there is a process Y and a
transition function η(s, y, du), (s, y) ∈ [0,∞) × E, such that {(Y (s), η(s, Y (s), ·)) :
s ≥ 0} is a solution of the controlled martingale problem for A and for each s ≥ 0,
(Y (s), η(s, Y (s), ·)) has the same distribution as (X(s), E[Λs|X(s)]). To obtain the
desired process, we introduce a time-space generator Ã, identify a stationary distribu-
tion for Ã, and apply Theorem 2.2 to obtain a (stationary) solution of the martingale
problem for Ã. An absolutely continuous change of measure produces the desired
solution of the controlled martingale problem for A.



EXISTENCE OF OPTIMAL MARKOV CONTROLS 623

THEOREM 4.1 (cf. [2, Theorem 2.4]). Suppose E, U , A, and ψ satisfy the con-
ditions of section 1.1. Let (X,Λ) be a relaxed solution of the controlled martingale
problem for (A, ν0), and suppose there exists α > 0 such that∫ ∞

0
e−αtE

[∫
U

ψ(u)Λt(du)
]
dt <∞.(4.1)

Then there exists a process Y and a transition function η from [0,∞)×E to U such
that {(Y (s), η(s, Y (s), ·)) : s ≥ 0} is a relaxed solution of the controlled martingale
problem for (A, ν0) and for each t ≥ 0, the distribution of (Y (t), η(t, Y (t), ·)) on
E × P(U) is the same as (X(t), E[Λt(·)|X(t)]).

Proof. Define the time-space generator

Ã(γf)(s, x, u) = γ(s)Af(x, u) + γ′(s)f(x) + α

[
γ(0)

∫
E

f(y)ν0(dy)− γ(s)f(x)
](4.2)

for f ∈ D(A) and γ ∈ Ĉ1(IR+) and observe that Ã satisfies conditions (i)–(iv).
Define the measure π ∈ P(IR+ × E × U) by

∫
IR+×E×U

h(s, x, u)π(ds× dx× du) = α

∫ ∞
0

e−αsE

[∫
U

h(s,X(s), u)Λs(du)
]
ds

(4.3)

for h ∈ C(IR+ × E × U). The following computation verifies that π is a stationary
distribution for Ã. Let f ∈ D(A) and γ ∈ Ĉ1(IR+). Then∫

IR+×E×U
Ã(γf)(s, x, u)π(ds× dx× du)

= α

∫ ∞
0

γ(s)e−αsE
[∫

U

Af(X(s), u)Λs(du)
]
ds+ α

∫ ∞
0

γ′(s)e−αsE[f(X(s))] ds

+ α2
∫ ∞

0
e−αs dsγ(0)E[f(X(0))]− α2

∫ ∞
0

γ(s)e−αsE[f(X(s))] ds

= α

∫ ∞
0

γ(s)e−αsE
[∫

U

Af(X(s), u)Λs(du)
]
ds

+ αE

[∫ ∞
0

d

ds
(γ(s)e−αs)f(X(s)) ds

]
+ αγ(0)E[f(X(0))]

= α

∫ ∞
0

γ(s)e−αsE
[∫

U

Af(X(s), u)Λs(du)
]
ds+ E

[
αγ(s)e−αsf(X(s)) |s=∞s=0

]
− α

∫ ∞
0

γ(s)e−αsE
[∫

U

Af(X(s), u) Λs(du)
]
ds+ αγ(0)E[f(X(0))]

= 0.
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Let η(s, x, du) denote the regular conditional distribution of u given (s, x) such
that

π(Γ1 × Γ2) =
∫

Γ1

η(s, x,Γ2)π(ds× dx× U) ∀Γ1 ∈ B(IR+ × E),Γ2 ∈ B(U).

Since π is a stationary distribution for Ã and the definition of π together with (4.1) im-
plies (2.5) is satisfied, Theorem 2.2 gives the existence of a stationary time-space pro-
cess {(S(t), Z(t)) : t ≥ 0} and a filtration Gt such that {(S(t), Z(t), η(S(t), Z(t), ·)) :
t ≥ 0} is a relaxed solution of the controlled martingale problem for Ã with distribu-
tion π.

Before constructing the desired process Y , we investigate the stationary time
process S more carefully. For simplicity, assume that the state space E is compact
and A1 = 0; otherwise compactify E as in Theorem 2.2. Then, by choosing f = 1,
we see that

γ(S(t))−
∫ t

0
(γ′(S(r)) + α[γ(0)− γ(S(r))]) dr(4.4)

is an {FS,Zt }-martingale for every γ ∈ Ĉ1(IR+). By [9, Theorem 4.4.1], uniqueness
holds for the martingale problem (4.4). Now define a process S̃ as follows. Let
∆1,∆2,∆3, . . . be a sequence of independent exponential random variables with pa-
rameter α and let S̃(0) also be an exponential random variable with parameter α
which is independent of {∆n}. Let

S̃(t) =

 S̃(0) + t, 0 ≤ t < ∆1,

t−∆n, ∆n ≤ t < ∆n+1.

S̃ is a stationary solution of (4.4) and thus the process S has been identified. Note
that we may assume that (S,Z) is defined for all t ∈ (−∞,∞).

Now let τ1 = inf{t > 0 : S(t) = 0} and, for k ≥ 1, τk+1 = inf{t > τk : S(t) = 0}.
Also define τ−1 = sup{t ≤ 0 : S(t) = 0}. Define the process Y by Y (t) = Z(τ1+t), t ≥
0, and the filtration Ft = Gτ1+t. Again, for simplicity, compactify the time dimension
by taking the one-point compactification [0,∞] and extend the generator (4.2) by
linearity, where for the constant function 1,

Ã(1f)(s, x, u) = Af(x, u) + α

[∫
E

f(y)ν0(dy)− f(x)
]
.(4.5)

An application of the optional sampling theorem (cf. [9, Theorem 2.2.13]) shows that
(with γ = 1)

f(Y (t))−
∫ t

0

∫
U

[
Af(Y (r), u) + α

(∫
E

f(y)ν0(dy)− f(Y (r))
)]

,

η(S(τ1 + r), Y (r), du) dr

is an {Ft}-martingale under P .
Define

L(t) = [α(τ1 − τ−1)]−1eαtI[0,τ2−τ1)(t)
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and observe that L is an {Ft}-martingale with E[L(t)] = 1. Let P̂ be a new prob-
ability having Radon–Nikodým derivative L(t) on Ft with respect to the original
probability P . Denote expectation with respect to P̂ by EP̂ [·].

Remark 4.2. The Radon–Nikodým derivative L(t) includes the term [α(τ1 −
τ−1)]−1 because we have been unable to show that the {τk} are regeneration times for
(S,Z). (They are for S alone.) In fact, in general there will be stationary solutions
of the controlled martingale problem for Ã for which the {τk} are not regeneration
times. When the {τk} are regeneration times for (S,Z), the independence between
cycles implies

EP̂
[∫ ∞

0
e−αt

∫
U

h(t, Y (t), u) η(t, Y (t), du) dt
]

= E

[∫ τ2

τ1

∫
U

h(S(t), Z(t), u) η(S(t), Z(t), du) dt
]

and the following argument can be considerably simplified.
We claim that {(Y (t), η(t, Y (t), ·)), t ≥ 0} under P̂ is the desired solution. We

will first show that this process is a solution to the original martingale problem for A.
A straightforward calculation shows that for f ∈ D(A) ,

lim
h↘0

h−1E
[
[α(τ1 − τ−1)]−1

{
eα(t+h)I[0,τ2−τ1)(t+ h)f(Y (t+ h))

− eαtI[0,τ2−τ1)(t)f(Y (t))
}
|Ft
]

= [α(τ1 − τ−1)]−1eαtI[0,τ2−τ1)(t)
∫
U

Af(Y (t), u) η(t, Y (t), du),

which implies that

[α(τ1 − τ−1)]−1eαtI[0,τ2−τ1)(t)f(Y (t))

−
∫ t

0
[α(τ1 − τ−1)]−1eαsI[0,τ2−τ1)(s)

∫
U

Af(Y (s), u) η(s, Y (s), du) ds

is an {Ft}-martingale under P . In particular,

0 = E

[
[α(τ1 − τ−1)]−1

{
eαtn+1I[0,τ2−τ1)(tn+1)f(Y (tn+1))− eαtnI[0,τ2−τ1)(tn)f(Y (tn))

−
∫ tn+1

tn

eαsI[0,τ2−τ1)(s)
∫
U

Af(Y (s), u) η(s, Y (s), du) ds
} n∏
i=1

hi(Y (ti))

]
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= E

[
[α(τ1 − τ−1)]−1

{
eαtn+1I[0,τ2−τ1)(tn+1)f(Y (tn+1))

− E[eαtn+1I[0,τ2−τ1)(tn+1)|Ftn ]f(Y (tn))

−
∫ tn+1

tn

E[eαtn+1I[0,τ2−τ1)(tn+1)|Fs]

×
∫
U

Af(Y (s), u) η(s, Y (s), du) ds
} n∏
i=1

hi(Y (ti))

]

= EP̂

[{
f(Y (tn+1))− f(Y (tn))

−
∫ tn+1

tn

∫
U

Af(Y (s), u)η(s, Y (s), du) ds
} n∏
i=1

hi(Y (ti))

]

for each n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn < tn+1, and h1, . . . , hn ∈ C(E). It follows that

f(Y (t))− f(Y (0))−
∫ t

0

∫
U

Af(Y (s), u)η(s, Y (s), du)ds

is an {FYt }-martingale under P̂ .
We now derive the one-dimensional distributions of this solution. First, for each

h ∈ C(IR+ × E × U),

EP̂

[
α

∫ T

0
e−αt

∫
U

h(t, Y (t), u) η(t, Y (t), du) dt

]

= E

[
[α(τ1 − τ−1)]−1αeαT I[0,τ2−τ1)(T )

∫ T

0
e−αt

∫
U

h(t, Y (t), u) η(t, Y (t), du) dt

]

= E

[∫ T

0
(τ1 − τ−1)−1E[eαT I[0,τ2−τ1)(T )|Ft]e−αt

∫
U

h(t, Y (t), u) η(t, Y (t), du) dt

]

= E

[
(τ1 − τ−1)−1

∫ τ2∧(τ1+T )

τ1

∫
U

h(S(t), Z(t), u) η(S(t), Z(t), du) dt

]
,

and letting T →∞ yields

EP̂
[
α

∫ ∞
0

e−αt
∫
U

h(t, Y (t), u) η(t, Y (t), du) dt
]

= E

[
(τ1 − τ−1)−1

∫ τ2

τ1

∫
U

h(S(t), Z(t), u) η(S(t), Z(t), du) dt
]
.

(4.6)

Now, for t ≥ 0, define τ t−1 = sup{r ≤ t : S(r) = 0}, τ t1 = inf{r > t : S(r) = 0},
and τ t2 = inf{r > τ t1 : S(r) = 0}. Note that τ0

i = τi for i = −1, 1. Observe that



EXISTENCE OF OPTIMAL MARKOV CONTROLS 627

(τ t1 − τ t−1)−1
∫ τt2

τt1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr

is stationary in t and that for t ∈ [τk, τk+1),

(τ t1 − τ t−1)−1
∫ τt2

τt1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr

= (τk+1 − τk)−1
∫ τk+2

τk+1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr.

Let N(t) denote the number of jumps in the interval [0, t]. Then, by stationarity
(letting τ0 = τ−1),

E

[
(τ1 − τ−1)−1

∫ τ2

τ1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr
]

= E

[
T−1

∫ T

0
(τ t1 − τ t−1)−1

∫ τt2

τt1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr dt

]

= T−1E

N(T )+1∑
k=1

T ∧ τk − τk−1 ∨ 0
τk − τk−1

×
(∫ τk+1

τk

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr
)

= T−1E

[∫ T

0

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr

]

−T−1E

[∫ τ1∧T

0

(
1− T ∧ τ1

τ1 − τ−1

)∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr

]

+T−1E

[
I{N(T )=1}

τ1
τ1 − τ−1

∫ τ2

T

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr
]

+T−1E

[
I{N(T )>1}

∫ τN(T )+1

T

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr
]

+T−1E

[
I{N(T )>0}

T − τN(T )

τN(T )+1 − τN(T )

×
∫ τN(T )+2

τN(T )+1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr

]
.

The first term equals
∫
h(s, x, u)π(ds× dx× du) and the other terms converge to 0
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as T →∞. Thus

E

[
(τ1 − τ−1)−1

∫ τ2

τ1

∫
U

h(S(r), Z(r), u) η(S(r), Z(r), du) dr
]

=
∫
h(s, x, u)π(ds× dx× du)

= α

∫ ∞
0

e−αsE

[∫
U

h(s,X(s), u) Λs(du)
]
ds.

(4.7)

Combining (4.6) and (4.7) yields

EP̂
[
α

∫ ∞
0

e−αt
∫
U

h(t, Y (t), u) η(t, Y (t), du) dt
]

= E

[
α

∫ ∞
0

e−αt
∫
U

h(t,X(t), u) Λt(du) dt
]
.

(4.8)

Let {hn} ⊂ C(E) be a countable collection which is separating (cf. [9, p. 112]).
Taking h(t, x, u) in (4.8) to be of the form γ(t)hn(x), we see that

EP̂ [hn(Y (t))] = E[hn(X(t))] a.e. t.

Since {hn} is separating, it follows that Y (t) d= X(t), a.e. t, and by right continuity
we have

Y (t) d= X(t) ∀ t.(4.9)

More generally, modifying η(t, x, du) at a set of t of measure zero if necessary, we
have that for h ∈ C(E) and g ∈ C(U)

EP̂
[
h(Y (t))

∫
U

g(u) η(t, Y (t), du)
]

= E

[
h(X(t))

∫
U

g(u) Λt(du)
]

∀ t.

The relation (4.9) then implies

E

[
h(X(t))

∫
U

g(u) η(t,X(t), du)
]

= E

[
h(X(t))

∫
U

g(u) Λt(du)
]

for each h ∈ C(E) and g ∈ C(U). Since this is true for each bounded, continuous h,
it follows that

E

[∫
U

g(u)Λt(du)|X(t)
]

=
∫
U

g(u)η(t,X(t), du) a.s.

for each bounded continuous g, and hence that the distributions of η(t, Y (t), ·) and
E[Λt(·)|X(t)] as random measures are the same and also

(Y (t), η(t, Y (t), ·)) d= (X(t), E[Λt(·)|X(t)]) ∀ t.(4.10)

Theorem 4.1 gives the existence of a relaxed control η which is Markovian in the
sense that it only depends on the current state Y (t) and time t and does not depend on
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the history of the process. Moreover, (4.10) implies that these solutions have the same
cost under any criterion which only depends on the one-dimensional distributions. In
particular, this holds for the discounted criterion (1.4), for the finite-horizon criterion
(1.5), and for the long-term average criterion (1.6).

The following corollary relaxes the boundedness and uniform ellipticity assump-
tions in the result of Gyöngy [11].

COROLLARY 4.3. Suppose that W is an IRd-valued {Ft}-Brownian motion; σ̂ and
b̂ are measurable, {Ft}-adapted processes taking values in Md×d and IRd, respectively;
and X(0) is IRd-valued and F0-measurable. Let

X(t) = X(0) +
∫ t

0
σ̂(s)dW (s) +

∫ t

0
b̂(s)ds.

Then there exist measurable functions σ : [0,∞) × IRd → Md×d and b : IRd → IRd, an
IRd-valued Brownian motion W̃ , and a process Y satisfying

Y (t) = Y (0) +
∫ t

0
σ(s, Y (s))dW̃ (s) +

∫ t

0
b(s, Y (s))ds

such that for each t ≥ 0, the distributions of (X(t), E [̂b(t)|X(t)], E[σ̂(t)σ̂T (t)|X(t)])
and (Y (t), b(t, Y (t)), σ(t, Y (t))σT (t, Y (t))) are the same.

Proof. Let the control space U = Md×d
+ × IRd, where Md×d

+ denotes the space
of nonnegative definite d × d matrices, and, with u = (u1, u2), define the time-space
generator

A(γf)(t, x, u) = γ(t)

1
2

d∑
i,j=1

u1
ijfxixj (x) +

d∑
i=1

u2
i fxi(x)

+ γ′(t)f(x),

where γ ∈ C1
c (IR+) and f ∈ D(Â).

Let â(t) = σ̂(t)σ̂(t)T and Λt(du) = δ{â(t)}(du1)δ{b̂(t)}(du
2). Then (X,Λ) de-

termines a solution to the controlled martingale problem for A. Taking ψ(u) =
||u1|| + |u2|, the conditions of Theorem 4.1 are satisfied and an application of the
theorem gives the existence of a process Y and measurable functions a and b. Let
σ be the symmetric square root of a (which will exist even in the degenerate case).
Existence of W̃ follows by [9, Theorem 5.3.3], and the result follows.

4.1. First passage problems. We now turn our attention to the issue of exis-
tence of Markov controls for exit problems. In this section, we seek to minimize (1.7),
in which c and g are time-dependent and E0 ⊂ IR+ × E, over all solutions (X,Λ) of
the controlled martingale problem such that X(0) has distribution ν0 and where, to
avoid degeneracies, we assume ν0{x : (0, x) ∈ E0} = 1.

The key to this existence result is the characterization of the occupation measures
similar to that given by (2.1). We consider pairs of measures µ0 ∈ M(E0 × U)
(M(E0 × U), the Radon measures on E0 × U) and µ1 ∈ P(Ec0), such that

µ0(E0 × U) <∞.(4.11)

The condition corresponding to (2.1) is∫
E0×U

[γ(s)Af(x, u) + γ′(s)f(x)]µ0(ds× dx× du)(4.12)

+ γ(0)
∫
f dν0 −

∫
Ec0

γ(s)f(x)µ1(ds× dx) = 0
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for all γ ∈ Ĉ1(IR+) and f ∈ D(A) .
To motivate this condition on the measures µ0 and µ1, consider a process (X,Λ)

as above and assume E[τ ] <∞. Then, under appropriate conditions,

E

[
γ(τ)f(X(τ))− γ(0)f(X(0))

−
∫ τ

0

∫
U

[γ(s)Af(X(s), u) + γ′(s)f(X(s))] Λs(du) ds
]

= 0.

Let µ0 be given by

µ0(B) = E

[∫ τ

0

∫
U

IB(s,X(s), u)Λs(du)ds
]
,

and let µ1 be the joint distribution of the exit time and exit location (τ,X(τ)). Then
(4.12) is satisfied.

The following lemma will be needed to establish properties of solutions to the
controlled martingale problem. Its proof is delayed to the appendix (section 7).

LEMMA 4.4. Let Q be a nonnegative, {Ft}-adapted, cadlag process, let V1 and V2
be bounded, nonnegative, measurable, {Ft}-adapted processes, and suppose that

g(Q(t))−
∫ t

0
(V1(s)g′(Q(s)) + V2(s)(g(0)− g(Q(s)))) ds

is an {Ft}-martingale for every C1 function g with g and g′ bounded. Let τ be a
stopping time, and define στ0 = inf{t > τ : Q(t) > 0} and στ1 = inf{t > στ0 : Q(t) = 0}.
Then, for τ ≤ t < στ1 , Q(t)−Q(τ) =

∫ t
τ
V1(s)ds, and if στ1 <∞ a.s.,

P

{∫ στ1

στ0

V2(s) ds > x
∣∣Fστ0

}
= e−x, x ≥ 0.

The next result demonstrates existence of solutions corresponding to measures µ0
and µ1 which satisfy (4.11) and (4.12).

THEOREM 4.5. Suppose that E, U , A, and ψ satisfy the conditions of section 1.1
and that E0 ⊂ IR+ × E is open. Let µ0 and µ1 satisfy (4.11) and (4.12) and setting
µ∗0(Γ) = µ0(Γ× U), Γ ∈ B(E0), let η be the transition function satisfying

µ0(Γ0 × Γ1) =
∫

Γ0

η(s, x,Γ1)µ∗0(ds× dx).

Suppose ∫
ψ(u)µ0(ds× dx× du) <∞.(4.13)

Then there exists a process Y with initial distribution ν0 adapted to a filtration {Ft}
and an {Ft}-stopping time τ̃ such that

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(s, Y (s), du) ds
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is an {Ft}-martingale for each f ∈ D(A) and

(i) P ((τ̃ , Y (τ̃)) ∈ Ec0) = 1
and

(ii) {t : (t, Y (t)) ∈ Ec0, t < τ̃} has Lebesgue measure 0.
(4.14)

Moreover, for each Γ1 ∈ B(E0 × U),

E

[∫ τ̃

0

∫
U

IΓ1(s, Y (s), u) η(s, Y (s), du) ds

]
= µ0(Γ1),

and for each Γ2 ∈ B(Ec0)

E[IΓ2(τ̃ , Y (τ̃))] = µ1(Γ2).

Remark 4.6. Y can be extended to a solution of the controlled martingale problem
for A for all t ≥ 0, with sample paths in DE∆ [0,∞). (See [9, Lemma 4.5.16].)

The hypotheses of the theorem do not rule out the possibility that τ̃ > σ = inf{t :
(t, Y (t)) ∈ Ec0}. However, for many processes one can show that inf{t : (t, Y (t)) ∈
Ec0} = inf{t : (t, Y (t)) ∈ (E0)c} a.s., which, by (4.14), implies τ̃ = σ a.s.

Proof. The structure of this proof is very similar to that of Theorem 4.1 in that
we augment the space, define both a new generator A and a corresponding stationary
distribution µ, invoke Theorem 2.2 to obtain a stationary process, and use the optional
sampling theorem in conjunction with an absolutely continuous change of measures to
obtain the result. The specifics, however, are substantially different, and we therefore
provide complete details.

First we augment the state space with extra time dimensions and augment the
control space with a {0, 1} component. Thus the state space is IR+ ×IR+ ×E and the
control space is U × {0, 1}. Define the generator A by

A(βγf)(r, s, x, u, v) = vβ(r)[γ(s)Af(x, u) + γ′(s)f(x)]

+(1− v)
[
β(0)γ(0)

∫
f dν0 − β(r)γ(s)f(x) + β′(r)γ(s)f(x)

]
for β, γ ∈ Ĉ1(IR+) and f ∈ D(A) . It will be shown that the “s” component mea-
sures the time the process specified by generator A runs, whereas the “r” component
measures the (mean 1) exponential time before all state components are reset. The
control “v” determines whether the process governed by A runs or the jump process
runs and will be restricted by the stationary measure so that v = 1 when (s, x) ∈ E0
and v = 0 when (s, x) ∈ Ec0.

Let u∗ be a fixed point of U and let K = µ0(E0 × U) + 1. Define the measure
µ ∈ P(IR+ × IR+ × E × U × {0, 1}) by∫

h(r, s, x, u, v)µ(dr × ds× dx× du× dv)

= K−1
(∫

E0×U
h(0, s, x, u, 1)µ0(ds× dx× du)

+
∫ ∞

0

∫
Ec0

e−rh(r, s, x, u∗, 0)µ1(ds× dx) dr

)
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for each bounded, continuous h. Observe that the conditional distribution of (u, v)
given (r, s, x) under µ is

η(r, s, x, du× dv) =
{
η(s, x, du)δ{1}(dv), (s, x) ∈ E0,
δ{u∗}(du)δ{0}(dv), (s, x) ∈ Ec0.

(4.15)

Note that we can determine the value of v by observing whether (s, x) ∈ E0 or Ec0, so
we define v(s, x) = IE0(s, x). In particular, v is an ordinary feedback control, and we
therefore slightly abuse notation and write η(r, s, x, du) in the sequel. Note also that
IE0(s, x) = I{0}(r) a.e. µ̄.

A straightforward computation shows that (4.12) implies that (A,µ) satisfies the
stationarity condition (2.1). The conditions of Theorem 2.2 on the state and control
spaces and the generator are also satisfied, which therefore implies existence of a
stationary IR+ × IR+ × E-valued process (R,S,X) (which we may assume defined for
all t ∈ IR) such that

(4.16)
β(R(t))γ(S(t))f(X(t))

−
∫ t

0

∫
U

A(βγf)(R(s), S(s), X(s), u, v(S(s), X(s))) η(R(s), S(s), X(s), du) ds

is an {FR,S,Xt }-martingale for all β, γ ∈ Ĉ1(IR+) and f ∈ D(A) . In addition, we have
that v(S(s), X(s)) = IE0(S(s), X(s)) = I{0}(R(s)) a.s. for each s ≥ 0.

For each t ≥ 0, define the following random variables (cf. Theorem 4.1): σt−1 =
sup{r < t : S(r) = 0, R(r) = 0}, σt1 = inf{r ≥ t : S(r) = 0, R(r) = 0}, τ t1 =
inf{t > σt1 : R(t) > 0}, and σt2 = inf{r > σt1 : R(r) = 0}. For s ∈ [σt1, τ

t
1), by

definition, R(s) = 0 and by Lemma 4.4 S(s) =
∫ s
σt1
I{0}(R(r))dr = (s − σt1). For

s ∈ [τ t1, σ
t
2), by Lemma 4.4, R(s) =

∫ s
τt1
I(0,∞)(R(r))dr = s − τ t1 a.s. and conditional

on Fτt1 , σt2 − τ t1 is exponentially distributed with mean 1, and again by Lemma 4.4,
S(s) = S(τ t1) +

∫ s
τt1
I{0}(R(r))dr = S(τ t1) = τ t1 − σt1. Starting with g(r+ s) = e−α(r+s)

and approximating more general g by linear combinations of these exponentials, we
see that

g(S(t) +R(t))−
∫ t

0
(g′(S(r) +R(r)) + (1− v(S(r), X(r)))(g(0)− g(S(r) +R(r)))) dr

is a martingale for C1 functions with g and g′ bounded. Letting σ̃t2 = inf{s > τ t1 :
S(s) +R(s) = 0}, Lemma 4.4 implies

P

{∫ σt2

τt1

(1− v(S(r), X(r)))dr > x
∣∣FR,S,X
τt1

}
= e−x

= P

{∫ σ̃t2

τt1

(1− v(S(r), X(r)))dr > x
∣∣FR,S,X
τt1

}
,

and since σt2 ≤ σ̃t2, we must have σt2 = σ̃t2 a.s. In particular, S(σt2) = 0 a.s. Finally,
defining Z(u) = (R(τ t1 + u), S(τ t1 + u), X(τ t1 + u)) for u ≤ σt2 − τ t1, we can extend Z
to be a solution of the martingale problem for

Cg(r, s, x) =
∫
g(0, 0, y)ν0(dy)− g(r, s, x) +

∂

∂r
g(r, s, x).
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Since any solution of this martingale problem has the property that the final compo-
nent is constant except for jumps that occur when the first two components jump to
zero, it follows that X(u) = X(τ t1) for τ t1 ≤ u < σt2.

Let h be a fixed, bounded, continuous function, and define

Hε(r) =
∫
U

e−ε(R(r)+S(r))h(R(r), S(r), X(r), u, v(S(r), X(r)) η(R(r), S(r), X(r), du)).

Then, as a process in t,

(σt1 − σt−1)−1
∫ σt2

σt1

Hε(r) dr(4.17)

is stationary, and for each t and s ∈ [σt−1, σ
t
1),

(σs1 − σs−1)−1
∫ σs2

σs1

Hε(r) dr = (σt1 − σt−1)−1
∫ σt2

σt1

Hε(r) dr.

These expressions are set equal to 0 whenever σt−1 = −∞ or σt1 = +∞.
Using stationarity,

E

[
(σt1 − σt−1)−1

∫ σt2

σt1

Hε(r) dr

]
= T−1

∫ T

0
E

[
(σt1 − σt−1)−1

∫ σt2

σt1

Hε(r)dr

]
dt,

(4.18)

in which both sides may be infinite due to the (σt1 − σt−1)−1 term. The following
argument, in fact, shows both terms are finite and identifies their common value.

Let N(T ) denote the number of jumps of the process (R,S,X) in the interval
[0, T ], let {σk : k = 1, . . . , N(T )} denote these jump times, and let σN(T )+1 and σ−1
(= σ0 in the summation) denote the first jump time after time T and the last jump
time before time 0, respectively. Then the right-hand side of (4.18) equals

T−1E

N(T )+1∑
k=1

T ∧ σk − σk−1 ∨ 0
σk − σk−1

∫ σk+2

σk+1

Hε(r) dr


= T−1E

[∫ T

0
Hε(r) dr

]

−T−1E

[∫ σ1∧T

0

(
1− T ∧ σ1

σ1 − σ−1

)
Hε(r) dr

]

+T−1E

[
I{N(T )=1}

σ1

σ1 − σ−1

∫ σ2

T

Hε(r) dr
]

+T−1E

[
I{N(T )>1}

∫ σN(T )+1

T

Hε(r) dr
]

+T−1E

[
I{N(T )>0}

T − σN(T )

σN(T )+1 − σN(T )

∫ σN(T )+2

σN(T )+1

Hε(r) dr

]
.
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Observe that the first term is∫
e−ε(r+s)h(r, s, x, u, v)µ(dr × ds× dx× du× dv)(4.19)

and the last four terms are bounded above by 4||h||/(εT ). Thus all terms are finite,
implying that the terms in (4.18) are finite, and moreover, as T →∞, these converge
to (4.19).

Letting ε→ 0 gives, for each bounded, continuous h (and hence for each bounded,
measurable h),

E

[
(σt1 − σt−1)−1

∫ σt2

σt1

∫
U

h(R(r), S(r), X(r), u, v(S(r), X(r))) η(R(r), S(r), X(r), du)dr

]

=
∫
h(r, s, x, u, v)µ(dr × ds× dx× du× dv).

(4.20)

Then, considering h(r, s, x, u, v) = I{0}(v) in (4.20) yields

K−1 = E[(σt1 − σt−1)−1(σt2 − τ t1)]
= E[(σt1 − σt−1)−1],

in which the last equality follows from the fact that, conditional on FR,S,X
τt1

, σt2 − τ t1
is exponentially distributed with mean 1.

Now define the process Y by Y (t) = X(σ0
1 +t), R̃(t) = R(σ0

1 +t), S̃(t) = S(σ0
1 +t),

and the filtration {Ft} = {FR,S,X
σ0

1+t }. Let τ̃ = inf{t ≥ 0 : R̃(t) > 0} and σ = inf{t >
τ̃ : R̃(t) = 0}, and note that Y (t) = Y (τ̃) for τ̃ ≤ t < σ. Observe that both σ1 and
σ−1 are F0-measurable. Define a new probability measure P̂ to have Radon–Nikodým
derivative K(σ1 − σ−1)−1. It then follows from (4.20) that

EP̂
[∫ σ

0

∫
U

h(R̃(r), S̃(r), Y (r), u, v(S̃(r), Y (r))) η(R̃(r), S̃(r), Y (r), du)dr
]

=
∫
h(r, s, x, u, v)µ(dr × ds× dx× du× dv)/E[(σ1 − σ−1)−1](4.21)

=
∫
h(0, s, x, u, 1)µ0(ds× dx× du)

+
∫ ∞

0

∫
e−rh(r, s, x, u∗, 0)µ1(ds× dx)dr.

Considering h(r, s, x, u, v) = I0(r)IEc0 (s, x) and h(r, s, x, u, v) = I(0,∞)(r)IE0(s, x)
in (4.22) indicates that (S̃, Y, τ̃) satisfy (4.14).

The optional sampling theorem implies that under P̂ ,

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(s, Y (s), du) ds

is a martingale with respect to the filtration {Ft}.
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For Γ1 ∈ B(Ec0) and h(r, s, x, u, v) = IΓ1(s, x), (4.22) implies

µ1(Γ1) = E

[∫ σ

τ̃

IΓ1(S̃(r), Y (r)) dr
]

= E[IΓ1(τ̃ , Y (τ̃))(σ − τ̃)]
= E[IΓ1(τ̃ , Y (τ̃))],

where the last equality follows from the fact that σ − τ̃ is a mean 1 exponential time
conditional on Fτ̃ . Similarly, for Γ2 ∈ B(E0 × U) and h(r, s, x, u, v) = IΓ2(s, x, u),
(4.21) implies

E

[∫ τ̃

0

∫
U

IΓ2(s, Y (s), u)η(s, Y (s), du)ds

]
= µ0(Γ2).

COROLLARY 4.7. Suppose E, U , A, and ψ satisfy the conditions of section 1.1,
and E0 ⊂ IR+×E is open. Let (X,Λ) be a solution of the controlled martingale problem
for A such that τ = inf{t ≥ 0 : (t,X(t)) ∈ Ec0} has finite expectation. Suppose

E

[∫ τ

0

∫
U

ψ(u)Λs(du)ds
]
<∞.(4.22)

Then there exists a process Y adapted to a filtration {Ft}, a transition function η from
IR+×E into U , and an {Ft}-stopping time τ̃ satisfying (4.14) such that for f ∈D(A)

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(s, Y (s), du) ds(4.23)

is a martingale with respect to {Ft}, and for each t ≥ 0, (t∧ τ̃ , Y (t∧ τ̃), η(t∧ τ̃ , Y (t∧
τ̃), ·)) has the same distribution as (t ∧ τ,X(t ∧ τ), E[Λt∧τ (·)|X(t ∧ τ)]).

Proof. Define µ0 ∈M(E0 × U) by

µ0(Γ) = E

[∫ τ

0

∫
U

IΓ(s,X(s), u) Λs(du) ds
]

∀Γ ∈ B(E0 × U),

and µ1 ∈ P(Ec0) by

µ1(Γ) = E[IΓ(τ,X(τ))].

The pair (µ0, µ1) satisfies (4.12). Theorem 4.5 then implies the existence of a process
Y , a transition function η, and random variable τ̃ satisfying (4.14) such that (4.23) is
a martingale. The fact that

(t ∧ τ̃ , Y (t ∧ τ̃), η(t ∧ τ̃ , Y (t ∧ τ̃), ·)) d= (t ∧ τ,X(t ∧ τ), E[Λt∧τ (·)|X(t ∧ τ)])

(4.24)

follows by essentially the same argument as in Theorem 4.1.

4.2. Finite-horizon problems. Control problems over a finite horizon can be
formulated as first exit problems, and thus the results of the previous section can be
applied to finite-horizon problems.

A minor change in the time-space generator of the process from γ(s)Af(x, u) +
γ′(s)f(x) to γ(s)Af(x, u)−γ′(s)f(x) augments a time component to the original state
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component, which decreases linearly at rate 1. Taking E0 = (0, T ] × E, the results
of the previous section show that the time-dependence of the feedback control can be
taken to only depend on the time remaining. Observe also that the process will exit
as soon as it hits the boundary {0} × E, so the conclusions are stronger.

The first result establishes existence of a solution for each pair of measures (µ0, µ1)
which satisfy condition (4.25) given below.

THEOREM 4.8. Suppose E, U , A, and ψ satisfy the conditions of section 1.1. Let
E0 = (0, T ]× E and µ0 ∈M(E0 × U) and µ1 ∈ P(E) satisfy∫

(0,T ]×E×U
[γ(s)Af(x, u)− γ′(s)f(x)]µ0(ds× dx× du)(4.25)

+ γ(T )
∫
E

f dν0 − γ(0)
∫
E

f(x)µ1(dx) = 0 ∀γ ∈ Ĉ1(IR+), f ∈ D(A) .

Let η be the regular conditional distribution of u given (s, x). Suppose ψ satisfies
(4.13). Then there exists a process Y with initial distribution ν0 such that

γ(T − (t ∧ T ))f(Y (t ∧ T ))

−
∫ t∧T

0

∫
U

[γ(T − s)Af(Y (s), u)− γ′(T − s)f(Y (s))] η(T − s, Y (s), du) ds

is a martingale with respect to a filtration {Ft}. Moreover, for each Γ1 ∈ B(E0 ×U),

E

[∫ T

0

∫
U

IΓ1(T − s, Y (s), u) η(T − s, Y (s), du) ds

]
= µ0(Γ1),

and for each Γ2 ∈ B(E),

E[IΓ2(Y (T ))] = µ1(Γ2).

The next result essentially states that for any given solution (X,Λ) of the finite-
horizon problem there exists a process Y and feedback control η whose one-dimensional
distributions match the given solution.

COROLLARY 4.9. Suppose E, U , A, and ψ satisfy the conditions of section 1.1.
Let (X,Λ) be a solution of the controlled martingale problem for A. Suppose

E

[∫ T

0

∫
U

ψ(u) Λs(du) ds

]
<∞.

Then there exists a process Y , a transition function η from (0, T ] × E into U such
that

γ(T − (t ∧ T ))f(Y (t ∧ T ))

−
∫ t∧T

0

∫
U

[γ(T − s)Af(Y (s), u)− γ′(T − s)f(Y (s))] η(T − s, Y (s), du) ds

is a martingale with respect to a filtration {Ft} and

(Y (t), η(T − t, Y (t), ·)) d= (X(t), E[Λt|X(t)]) ∀ 0 ≤ t ≤ T.
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5. Time-homogeneous Markov controls. When the state space E does not
contain any time component, the existence result in Theorem 2.2 indicates that, under
the long-term average criterion, to each solution there corresponds a solution having
a time-homogeneous Markov control with the same cost. Theorems 4.1 and 4.5 of
the previous section require augmenting the state space with a time component, and
thus the Markov controls obtained are time-dependent. In fact, time-dependence is
necessary in order for (4.10) and (4.24) to hold.

A dynamic programming argument, however, indicates that there should exist
optimal controls for the discounted and first exit criteria which are stationary (not
time-dependent). The next theorems show that it is possible to have a solution
(Y, η(Y, ·)) in which η is a stationary Markov control and for which the discounted or
first exit cost matches the corresponding cost of a given solution (X,Λ).

5.1. Discounted problems. We begin by considering the discounted criterion
more carefully and allow the discount rate to be a function of the state and control.

THEOREM 5.1. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of section
1.1. Let (X,Λ) be a relaxed solution of the controlled martingale problem for (A, ν0),
let α be a nonnegative, bounded, and continuous function on E×U , and suppose that

E

[∫ ∞
0

e−
∫ t
0

∫
U
α(X(s),u)Λs(du)ds

∫
U

(1 + ψ(u))Λs(du)dt
]
<∞ .

Then there exists a process Y and a transition function η from E to U such that
(Y, η(Y, ·)) is a relaxed solution of the controlled martingale problem for (A, ν0) and

E

[∫ ∞
0

e−
∫ t
0

∫
U
α(Y (s),u)η(Y (s),du)ds

∫
U

c(Y (t), u) η(Y (t), du) dt
]

= E

[∫ ∞
0

e−
∫ t
0

∫
U
α(X(s),u)Λs(du)ds

∫
U

c(X(t), u) Λt(du) dt
]

for every c ∈M(E×U) that is bounded below (in the sense that if one side is infinite
so is the other).

Remark 5.2. Note that Y and η will, in general, depend on α.
Proof. The proof is very similar to the proof of Theorem 4.1. We therefore only

identify the differences. We take the state space to be {−1, 1} × E and define the
generator

Aα(γf)(θ, x, u) = γ(θ)Af(x, u) + α(x, u)
[
γ(−θ)

∫
E

f(y)ν0(dy)− γ(θ)f(x)
]
,(5.1)

where f ∈ D(A) and γ ∈ B({−1, 1}). Let ΓX(t) =
∫ t

0

∫
U
α(X(s), u)Λs(du)ds. Define

the measure π ∈ P({−1, 1} × E × U) by

∫
{−1,1}×E×U

h(θ, x, u)π(dθ × dx× du)

=
E

[∫ ∞
0

e−ΓX(s)
(∫

U

h(−1, X(s), u) Λs(du) +
∫
U

h(1, X(s), u) Λs(du)
)
ds

]
2E
[∫ ∞

0
e−ΓX(s)ds

]

(5.2)
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for h ∈ C({−1, 1} × E × U). The fact that π is a stationary measure for Aα follows
from the fact that

e−ΓX(t)f(X(t))− f(X(0))−
∫ t

0
e−ΓX(s)

∫
U

(Af(X(s), u)− α(X(s), u)f(X(s))) Λs(du)ds

is a martingale which, taking expectations and letting t→∞, implies

E

[∫ ∞
0

e−ΓX(s)
∫
U

(
Af(X(s), u) + α(X(s), u)

[∫
f dν0 − f(X(s))

])
Λs(du)ds

]
= 0.

Observe that π can be written as

π(dθ × dx× du) =
1
2

(δ{−1}(dθ) + δ{1}(dθ))π̂(dx× du)

=
1
2

(δ{−1}(dθ) + δ{1}(dθ))π0(dx)η(x, du) ,

where π̂ and π0 denote the marginals of π on E×U and E, respectively, and η does not
depend on θ. Theorem 2.2 therefore gives the existence of a stationary process (Θ, Z)
with marginal distribution 1

2 (δ{−1}(dθ)+ δ{1}(dθ))π0(dx) such that (Θ, Z, η(Z, du)) is
a solution of the controlled martingale problem for Aα.

Let τ1 = inf{t > 0 : Θ(t) 6= Θ(0)}, τ−1 = sup{t < 0 : Θ(t) 6= Θ(0)}, and τk+1 =
inf{t > τk : Θ(t) 6= Θ(τk)}. As in the proof of Theorem 4.1, define Y (t) = Z(τ1 + t).
It is no longer the case that the τk are the jump times of a Markov chain; however,
taking C = E[(τ1 − τ−1)−1],

L(t) = [C(τ1 − τ−1)]−1e
∫ t
0

∫
U
α(Y (s),u)η(Y (s),du)dsI[0,τ2−τ1)(t)

is still a mean 1 martingale. (Note that C is finite by the boundedness of α.) The
remainder of the proof is the same as before, with (4.8) replaced by

EP̂
[∫ ∞

0
e−

∫ t
0

∫
U
α(Y (s),u)η(Y (s),du)ds

∫
U

c(Y (t), u) η(Y (t), du) dt
]

= E

[∫ ∞
0

e−ΓX(t)
∫
U

c(X(t), u) Λt(du) dt
]
,

which gives the desired result.
The following result is a consequence of the construction in the proof of Theorem

5.1 and will be used in our discussion of the linear programing approach to the solution
of optimal discounted control problems.

COROLLARY 5.3. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of
section 1.1. Suppose that π̂ ∈ P(E × U) satisfies∫

E×U

[
Af(x, u) + α(x, u)

(∫
f(y)ν0(dy)− f(x)

)]
π̂(dx× du) = 0 ∀f ∈ D(A)

and ∫
ψ(u) π̂(dx× du) <∞.
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Let η satisfy π̂(dx × du) = π̂0(dx)η(x, du). Then there exists a process Y such that
(Y, η(Y, ·)) is a relaxed solution of the controlled martingale problem for (A, ν0) and

E

[∫ ∞
0

e−
∫ t
0

∫
U
α(Y (s),u)η(Y (s),du)ds

∫
U

c(Y (t), u) η(Y (t), du) dt
]

E

[∫ ∞
0

e−
∫ t
0

∫
U
α(Y (s),u)η(Y (s),du)ds dt

]

=
∫
E×U

c(x, u)π̂(dx× du)

(5.3)

for every c ∈ B(E × U) and for every nonnegative c ∈ M(E × U) (in the sense that
if one side is infinite so is the other).

Proof. Define π(dθ × dx × du) = 1
2 (δ{−1}(dθ) + δ{1}(dθ))π̂(dx × du). Then π is

a stationary distribution for Aα given by (5.1), and the construction in the proof of
Theorem 5.1 gives the desired process.

Since the discount rate is allowed to be state and control dependent, Theorem 5.1
implies an extension of Theorem 1 of Krylov [13] in which it is shown that to each
diffusion ξ(t) having nonanticipating drift and diffusion coefficients and nonanticipat-
ing killing rate γ(t), there exists a diffusion x(t) having drift and diffusion coefficients
and a killing rate g which are all functions of the state alone such that they have the
same Green measure: for each Γ ∈ B(IRd),

µ(Γ) = E

[∫ ∞
0

IΓ(ξ(t))e−
∫ t
0 γ(s) ds dt

]
= E

[∫ ∞
0

IΓ(x(t))e−
∫ t
0 g(x(s)) ds dt

]
.

Theorem 1 of [13] requires a uniform ellipticity assumption on the diffusion ξ which
the following corollary relaxes.

COROLLARY 5.4. Suppose that W is an IRd-valued, {Ft}-Brownian motion; σ̂ and
b̂ are measurable, {Ft}-adapted processes taking values in Md×d and IRd, respectively;
X(0) is IRd-valued and F0-measurable; and γ is a nonnegative, bounded, {Ft}-adapted
process such that

E

[∫ ∞
0

e−
∫ t
0 γ(s)ds(1 + ‖σ̂(t)σ̂T (t)‖+ |̂b(t)|+ γ(t))dt

]
<∞.

Let

X(t) = X(0) +
∫ t

0
σ̂(s)dW (s) +

∫ t

0
b̂(s)ds.

Then there exist measurable functions σ : IRd → Md×d, b : IRd → IRd, and g : IRd →
[0,∞), an IRd-valued Brownian motion W̃ , and a process Y satisfying

Y (t) = Y (0) +
∫ t

0
σ(Y (s))dW̃ (s) +

∫ t

0
b(Y (s))ds

such that for each Γ ∈ B(IRd)

E

[∫ ∞
0

IΓ(X(t))e−
∫ t
0 γ(s)dsdt

]
= E

[∫ ∞
0

IΓ(Y (t))e−
∫ t
0 g(Y (s))dsdt

]
.
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Proof. Let E = IRd and U = Md×d
+ ×IRd×IR. Define the generator for f ∈ C2

c (IRd)
(and u = (u1, u2, u3)) by

Af(x, u) =
1
2

d∑
i,j=1

u1
ijfxixj (x) +

d∑
i=1

u2
i fxi(x)

and let α(x, u) = u3 and ψ(u) = ||u1|| + |u2| + |u3|. Letting â(t) = σ̂(t)σ̂(t)T and
Λt(du) = δ{â(t)}(du1)δ{b̂(t)}(du

2)δ{γ(t)}(du3), (X,Λ) is a solution of the controlled
martingale problem for A. Using the cost function c(x, u) = IΓ(x), Theorem 5.1
yields the result where

a(x) =
∫
U

u1η(x, du), b(x) =
∫
U

u2η(x, du), g(x) =
∫
U

α(x, u)η(x, du),

σ is the symmetric square root of a (which exists even in the degenerate case), and
W̃ is obtained from [9, Theorem 5.3.3].

5.2. First passage problems. The previous formulation of the exit problem
includes time as a component of the state of the process and allows the running
cost c and exit cost g to depend on the time component. The result naturally has
time-dependence in the Markov control.

We now consider cost structures in which the only time-dependence is through
discounting at a rate α ≥ 0 that can depend on the state and the control. We show
existence of solutions with a time-homogeneous Markov control. In this model, the
cost is defined using the state process up to the time it leaves an open region Ẽ0 ⊂ E
rather than the time-state process leaving an open region E0 ⊂ IR+ × E.

THEOREM 5.5. Suppose E, U , A, and ψ satisfy conditions (i)–(vi) of section 1.1.
Let Ẽ0 ⊂ E be open. Let (X,Λ) be a solution of the controlled martingale problem
for A, let α be a nonnegative, bounded, and continuous function on E × U , define
τ = inf{t ≥ 0 : X(t) ∈ Ẽc0}, and assume that

E

[∫ τ

0
e−

∫ t
0

∫
U
α(X(s),u)Λs(du)ds

(
1 +

∫
U

ψ(u)Λt(du)
)
dt

]
<∞.

Then there exists a process Y adapted to a filtration {Ft}, a transition function η
from E into U , and an {Ft}-stopping time τ̃ such that

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(Y (s), du) ds

is an {Ft}-martingale for all f ∈ D(A), P{Y (τ̃) /∈ Ẽc0, τ̃ < ∞} = 0, the Lebesgue
measure of {t : Y (t) ∈ Ẽc0, t < τ̃} is zero a.s., and, setting

ΓY (t) =
∫ t

0

∫
U

α(Y (s), u)η(Y (s), du)ds

and

ΓX(t) =
∫ t

0

∫
U

α(X(s), u)Λs(du)ds,
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E

[∫ τ̃

0

∫
U

e−ΓY (s)c(Y (s), u) η(Y (s), du) ds+ e−ΓY (τ̃)g(Y (τ̃))

]

= E

[∫ τ

0

∫
U

e−ΓX(s)c(X(s), u) Λs(du) ds+ e−ΓX(τ)g(X(τ))
]

(5.4)

for every c ∈M(E × U) and g ∈M(E) that are bounded below (cf. Theorem 5.1).
Proof. Augment the state with a nonnegative component to form a new state

space IR+ × E. Add a new point u∗ to U giving U = U ∪ {u∗} and augment the
control space with a {0, 1} component to form a new control space U ×{0, 1}. Define
c(x, u∗) = 0, α(x, u∗) = 1 and ψ(u∗) = 1. Define the generator A by

A(γf)(s, x, u, v) = vγ(s)Af(x, u) + (1− v)γ′(s)f(x)

for all f ∈ D(A) and γ ∈ Ĉ1(IR+).
Define

(S(t), X(t)) = (t− t ∧ τ,X(t ∧ τ))

and the relaxed control on U × {0, 1},

Λt(du× dv) = [Λt(du)× δ{1}(dv)] · I[0,τ)(t) + [δ{u∗}(du)× δ{0}(dv)] · I[τ,∞)(t).

Then (S,X,Λ) is a relaxed solution to the controlled martingale problem for A with
S(0) = 0 and X(0) having distribution ν0, where ν0 is the initial distribution of X.
Let ν0 = δ{0} × ν0. As in the proof of Theorem 4.5, we can define v(x) = IẼ0

(x), and
we will have v(X(t)) = I{0}(S(t)) a.s.

Observe that with

c(x, u, v) =
{

c(x, u) for x ∈ Ẽ0, u ∈ U,
α(x, u)g(x) for x ∈ Ẽc0, u ∈ U,

the infinite-horizon discounted cost of (S,X,Λ) satisfies

E

[∫ ∞
0

∫
U×{0,1}

e−
∫ t
0

∫
U×{0,1} α(X(s),u)Λs(du×dv)dsc(X(t), u, v)Λt(du× dv) dt

]

= E

[∫ τ

0

∫
U

e−
∫ t
0

∫
U
α(X(s),u)Λs(du)c(X(s), u)Λs(du) ds

+ e−
∫ τ
0

∫
U
α(X(s),u)Λs(du)g(X(τ))

]
.

By Theorem 5.1, there exists a process (S, Y ) and a transition function η from IR+ ×
E to U such that (S, Y, η(S, Y, ·)) is a relaxed solution of the controlled martingale
problem for (A, ν0) and

E

[∫ ∞
0

∫
U

e−ΓX̄(t)h(S(t), X(t), u, v) Λt(du× dv) dt
]

= E

[∫ ∞
0

∫
U

e−ΓY (t)h(S(t), Y (t), u, v(Y (t)))η(S(t), Y (t), du) dt
]

(5.5)

for every measurable function h which is bounded below. In particular, taking
h(s, y, u, v) = |I{0}(s)− v|, we see that I{0}(S(t)) = v(Y (t)) a.s.
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Define τ̃ = inf{r > 0 : S(r) > 0} and σ = inf{t > τ̃ : S(t) ≤ 0}. Then for
f ∈ D(A) and γ ∈ Ĉ1(IR+),

γ(S((τ̃ + t) ∧ σ))f(Y ((τ̃ + t) ∧ σ))− γ(S(τ̃))f(Y (τ̃))−
∫ (τ̃+t)∧σ

τ̃

γ′(S(s))f(Y (s))ds

(5.6)

(taking (5.6) to be zero if τ̃ = ∞) is an {FS,Yτ̃+t}-martingale, and it follows from
uniqueness for the martingale problem for Bγf(s, x) = γ′(s)f(x) that S(τ̃ + t) ≡ t
and Y (τ̃ + t) ≡ Y (τ̃), when τ̃ < ∞. In particular, if h does not depend on s, (5.5)
becomes

E

[∫ τ

0

∫
U

e−ΓX(t)h(X(t), u, 1) Λt(du) dt+ e−ΓX(τ)h(X(τ), u∗, 0)
]

= E

[∫ τ̃

0

∫
U

e−ΓY (t)h(Y (t), u, 1)η(0, Y (t), du) dt+ e−ΓY (τ̃)h(Y (τ̃), u∗, 0)

]

and (5.4) follows.
COROLLARY 5.6. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of

section 1.1 and that Ẽ0 ⊂ E is open. Let E0 = IR+ × Ẽ0. Let ν0 ∈ P(Ẽ0), µ0 ∈
M(E0 × U), and µ1 ∈ P(Ec0) satisfy (4.11), (4.12), and (4.13). Let α ∈ [0,∞) and η
be the transition function from E to U satisfying∫

[0,∞)×E×U
e−αsh(x, u)µ0(ds× dx× du) =

∫
E×U

h(x, u)η(x, du)µ∗0(dx),

where µ∗0(Γ) = µ0(Γ × U), Γ ∈ B(E0). Then there exists a process Y adapted to a
filtration {Ft}, and an {Ft}-stopping time τ̃ such that

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(Y (s), du) ds

is an {Ft}-martingale for all f ∈ D(A), P{Y (τ̃) ∈ Ẽc0} = 1, the Lebesgue measure of
{t : Y (t) ∈ Ẽc0, t < τ̃} is zero a.s., and

E

[∫ τ̃

0

∫
U

e−αsc(Y (s), u) η(Y (s), du) ds+ e−ατ̃g(Y (τ̃))

]

=
∫
e−αsc(x, u)µ0(ds× dx× du) +

∫
e−αsg(x)µ1(ds× dx)

for every c ∈M(E × U) and g ∈M(E) that are bounded below (cf. Theorem 5.1).
Proof. The result is an immediate consequence of Theorems 4.5 and 5.5.
For the undiscounted exit problem, we can simplify the conditions on µ0 and µ1.
COROLLARY 5.7. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of

section 1.1 and that Ẽ0 ⊂ E is open. Suppose that ν0 ∈ P(Ẽ0), µ0 ∈ M(Ẽ0 × U),
and µ1 ∈ P(Ẽc0) satisfy∫

Ẽ0×U
Af(x, u)µ0(dx× du) +

∫
Ẽ0

f(x)ν0(dx)−
∫
Ẽc0

f(x)µ1(dx) = 0, f ∈ D(A)
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(cf. (4.11) and (4.12)) and that∫
Ẽ0×U

(1 + ψ(u))µ0(dx× du) <∞.

Let η satisfy µ0(dx× du) = η(x, du)µ∗0(dx). Then there exists a process Y adapted to
a filtration {Ft}, and an {Ft}-stopping time τ̃ such that

f(Y (t ∧ τ̃))−
∫ t∧τ̃

0

∫
U

Af(Y (s), u) η(Y (s), du) ds

is an {Ft}-martingale for all f ∈ D(A), P{Y (τ̃) ∈ Ẽc0} = 1, the Lebesgue measure of
{t : Y (t) ∈ Ẽc0, t < τ̃} is zero a.s., and

E

[∫ τ̃

0

∫
U

c(Y (s), u) η(Y (s), du) ds+ g(Y (τ̃))

]

=
∫
Ẽ0×U

c(x, u)µ0(dx× du) +
∫
Ẽc0

g(x)µ1(dx)

for every c ∈M(E × U) and g ∈M(E) that are bounded below (cf. Theorem 5.1).
Proof. Consider the generator Ã for a process in [0,∞) × E with control space

U × {0, 1} defined by

Ã(ζf)(s, x, u, v) = vζ(s)Af(x, u) + (1− v)ζ ′(s)f(x) + (1− v)
(
ζ(0)

∫
fdν0 − ζ(s)f(x)

)
,

and for some fixed u∗ ∈ U , define π ∈ P([0,∞)× E × U × {0, 1}) by

π(ds×dx×du×dv) = C(δ{0}(ds)δ{1}(dv)µ0(dx×du) + e−sdsδ{0}(dv)δ{u∗}(du)µ1(dx)) ,

where C is a constant normalizing π to be a probability measure. Then π is a sta-
tionary measure for Ã, and defining α(s, x, u, v) = (1− v), we see that the conditions
of Corollary 5.3 are satisfied with A replaced by

A0(ζf)(s, x, u, v) = vζ(s)Af(x, u) + (1− v)ζ ′(s)f(x).

Consequently, noting that

η0(s, x, du× dv) = I{0}(s)η(x, du)δ{1}(dv) + I(0,∞)(s)δ{0}(dv)δ{u∗}(du),

there exists a process (S, Y ) such that ((S, Y ), η0(S, Y, ·)) is a relaxed solution of the
controlled martingale problem for (A0, ν0×δ{0}). Using the cost function c(s, x, u, v) =
c(x, u)v + g(x)(1− v), (5.3) implies

E

[∫ ∞
0

e−
∫ t
0 I(0,∞)(S(s))ds

(∫
U

c(Y (t), u)I{0}(S(t))η(Y (t), du) + g(Y (t))I(0,∞)(S(t))
)
dt

]
E

[∫ ∞
0

e−
∫ t
0 I(0,∞)(S(s))ds dt

]
= C

(∫
Ẽ0×U

c(x, u)µ0(dx× du) +
∫
Ẽc0

g(x)µ1(dx)

)
.

Finally, since for any solution of the martingale problem for A0, S(t) > 0 implies
that S(r) > 0 for all r > t, if we define τ̃ = inf{t : S(t) > 0}, we have the desired
result.
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6. LP reformulations. In this section we reformulate the original control prob-
lems as linear programs over appropriate spaces of measures. The importance of these
reformulations is that they provide a way to characterize an optimal Markov control.
Compute the measure(s) µ, π̂, π, or µ0 and µ1 satisfying the appropriate constraints
which minimizes the cost criterion. The relaxed control is then the conditional distri-
bution η on the control space U given the state.

Throughout this section we assume that E, U , A, and ψ satisfy the conditions of
section 1.1. In addition, we assume that there are constants a and b such that

ψ(u) ≤ a+ bc(x, u) or ψ(u) ≤ a+ bc(s, x, u)(6.1)

and

{(x, u) : c(x, u) ≤ a} or {(s, x, u) : c(s, x, u) ≤ a} is compact for each a > 0.
(6.2)

6.1. Long-term average problems. The LP reformulation is especially straight-
forward for long-term average control problems provided the minimization is over all
solutions of the controlled martingale problem for A without any restrictions on the
initial distribution.

THEOREM 6.1. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of sec-
tion 1.1. Let c : E × U → IR be lower semicontinuous, bounded below, and satisfy
(6.1) and (6.2). Then the long-term average control problem of minimizing (1.6) over
all solutions of the controlled martingale problem for A is equivalent to the LP of
minimizing ∫

E×U
c(x, u)µ(dx× du)(6.3)

over all distributions µ ∈ P(E × U) satisfying∫
E×U

Af(x, u)µ(dx× du) = 0 ∀f ∈ D(A).(6.4)

Remark 6.2. This result is a combination of Theorems 3.2 and 3.3 in [19]. How-
ever, the result stated here is stronger in that the proof of the equivalence uses the
existence of a solution with Markov controls given in Theorem 2.2 in place of Theo-
rem 4.1 in [18].

Proof. Let (X,Λ) be a solution of the controlled martingale problem for A, and
define

µt(Γ1 × Γ2) = E

[
t−1

∫ t

0

∫
U

IΓ1×Γ2(X(s), u)Λs(du)ds
]
.

If (1.6) is finite, then the conditions on c imply that {µt} is relatively compact. The
lower semicontinuity of c implies that for any limit point µ of {µt},

∫
cdµ is smaller

than (1.6). Furthermore,
∫
Afdµ = 0 for all f ∈ D(A). It follows that the minimum

cost for the LP is a lower bound for (1.6) for all solutions of the controlled martingale
problem.

The conditions on c imply that if there exists at least one µ satisfying (6.4) for
which (6.3) is finite, then there exists a solution µ∗ for the LP. But by Theorem 2.2
there exists a stationary solution of the controlled martingale problem with marginals
given by µ∗, and hence with long-run average cost given by

∫
c dµ∗, that is, the

minimal value of the LP.
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6.2. Discounted problems. We first reformulate the control problem in which
the only time-dependence is through discounting.

THEOREM 6.3. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of section
1.1. Let c be a measurable function which is bounded below, and which satisfies (6.1)
and (6.2). Then, for each α > 0, the discounted control problem of minimizing (1.4)
over all solutions of the controlled martingale problem for (A, ν0) is equivalent to the
linear programming problem of minimizing

α−1
∫
E×U

c(x, u)π̂(dx× du)(6.5)

over all distributions π̂ ∈ P(E × U) satisfying∫
E×U

Aαf(x, u)π̂(dx× du) = 0 ∀f ∈ D(A),(6.6)

where

Aαf(x, u) = Af(x, u) + α

[∫
f(y)ν0(dy)− f(x)

]
.

Proof. Let (X,Λ) be a solution of the controlled martingale problem for A, and
define π̂ by∫

E×U
h(x, u)π̂(dx× du) = α

∫ ∞
0

e−αsE

[∫
U

h(X(s), u)Λs(du)
]
ds.

If the α-discounted cost is finite, that is,

E

[∫ ∞
0

e−αs
∫
U

c(X(s), u) Λs(du) ds
]
<∞,

then by (6.1), (4.1) holds, and as in the proof of Theorem 5.1, π̂ satisfies (6.6).
Moreover, the definition of π̂ implies that the α-discounted cost satisfies

E

[∫ ∞
0

e−αs
∫
U

c(X(s), u) Λs(du) ds
]

= α−1
∫
E×U

c(x, u)π̂(dx× du) .

Conversely, if π̂ satisfies (6.6) and (6.5) is finite, then by (6.1), the conditions of
Corollary 5.3 are satisfied and hence there exists a solution (Y, η(Y, ·)) of the controlled
martingale problem for the original generator A whose α-discounted cost is also given
by (6.5).

When the running cost function is allowed to be time-dependent, the existence
result in Theorem 4.1 can be used in the preceding argument in place of Theorem 5.1,
resulting in a different LP formulation. The resulting Markov control is now time-
dependent. This observation is summarized in the next theorem. It is interesting to
note that both LP formulations are equivalent to the discounted problem when c does
not depend on time, and thus the two LPs have the same value.

THEOREM 6.4. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of section
1.1. Let c be a measurable function which is bounded below and satisfies (6.1) and
(6.2). Then the discounted control problem of minimizing (1.4) over all solutions of
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the controlled martingale problem for (A, ν0) is equivalent to the linear programming
problem of minimizing

α−1
∫
E×U

c(s, x, u)π(ds× dx× du)

over all distributions π ∈ P(IR+ × E × U) satisfying∫
E×U

Ã(γf)(s, x, u)π(ds× dx× du) = 0 ∀f ∈ D(A) , γ ∈ Ĉ1(IR+),

where Ã is defined by

Ã(γf)(s, x, u) = γ(s)Af(x, u) + γ′(s)f(x) + α

[
γ(0)

∫
f(y)ν0(dy)− γ(s)f(x)

]
.

6.3. Finite-horizon problems. Since the optimal control depends on the time
remaining, the equivalent LP formulation for a finite-horizon control problem is the
same regardless of whether or not the running cost c is time-dependent.

THEOREM 6.5. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of section
1.1. Let c and g be measurable functions which are bounded below and suppose c
satisfies (6.1) and (6.2). Then the finite-horizon control problem of minimizing (1.5)
over all solutions of the controlled martingale problem for (A, ν0) is equivalent to the
linear programming problem of minimizing∫

c(s, x, u)µ0(ds× dx× du) +
∫
g(x)µ1(dx)

over all measures µ0 ∈M((0, T ]× E × U) and µ1 ∈ P(E) satisfying∫
A(γf)(s, x, u)µ0(ds× dx× du) +

∫
B(γf)(x)µ1(dx) = 0

∀ f ∈ D(A) , γ ∈ Ĉ1(IR+),

where A is defined by

A(γf)(s, x, u) = γ(s)Af(x, u)− γ′(s)f(x)

and B is

B(γf)(x) = γ(T )
∫
f(y) ν0(dy)− γ(0)f(x).

Proof. The proof is essentially the same as for Theorem 6.3 but uses Theorem 4.8
and Corollary 4.9 in place of Theorem 5.1 and Corollary 5.3.

6.4. First passage problems. We consider three slightly different cases for the
first passage criterion and develop equivalent LP formulations. We first consider the
general case in which the running cost c and exit cost g are time-dependent.

THEOREM 6.6. Suppose that E, U , A, and ψ satisfy conditions (i)–(vi) of section
1.1. Let c and g be measurable functions which are bounded below and suppose c
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satisfies (6.1) and (6.2). Then the first passage control problem of minimizing (1.7)
over all solutions of the controlled martingale problem for (A, ν0) is equivalent to the
linear programming problem of minimizing∫

E0

c(s, x, u)µ0(ds× dx× du) +
∫
Ec0

g(s, x)µ1(ds× dx)

over all measures µ0 ∈M(E0 × U) and µ1 ∈ P (Ec0) satisfying∫
Â(γf)(s, x, u)µ0(ds× dx× du) +

∫
B̂(γf)(s, x)µ1(ds× dx) = 0

∀ f ∈ D(A) , γ ∈ Ĉ1(IR+),

where Â is defined by

Â(γf)(s, x, u) = γ(s)Af(x, u) + γ′(s)f(x)

and B̂ is

B̂(γf)(s, x) = γ(0)
∫
f(y) ν0(dy)− γ(s)f(x).

Proof. The proof is essentially the same as for Theorem 6.3 but uses Theorem 4.5
and Corollary 4.7 in place of Theorem 5.1 and Corollary 5.3.

We now consider the special case in which the only time-dependence is through
discounting at a rate α > 0; i.e., c(s, x, u) = e−αsc̃(x, u) and g(s, x) = e−αsg̃(x).

THEOREM 6.7. Let c and g be measurable functions which are bounded below
and suppose c satisfies (6.1) and (6.2). Then the first passage control problem of
minimizing (1.7) over all solutions of the controlled martingale problem for (A, ν0) is
equivalent to the linear programming problem of minimizing∫

E0

e−αsc(x, u)µ0(ds× dx× du) +
∫
Ec0

e−αsg(x)µ1(ds× dx)

over all measures µ0 ∈M(E0 × U) and µ1 ∈ P (Ec0) satisfying∫
Â(γf)(s, x, u)µ0(ds× dx× du) +

∫
B̂(γf)(s, x)µ1(ds× dx) = 0

∀ f ∈ D(A) , γ ∈ Ĉ1(IR+),

where Â is defined by

Â(γf)(s, x, u) = γ(s)Af(x, u) + γ′(s)f(x)

and B̂ is

B̂(γf)(s, x) = γ(0)
∫
f(y) ν0(dy)− γ(s)f(x).

Proof. The proof is essentially the same as for Theorem 6.3 but uses Theorem 5.5
and Corollary 5.6 in place of Theorem 5.1 and Corollary 5.3.
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Note that, in general, the optimal control η∗ obtained from Theorem 6.6 will be
time-dependent, whereas that from Theorem 6.7 will be time-homogeneous.

Finally, we consider the undiscounted criterion in which the running cost and exit
cost functions do not depend on the time.

THEOREM 6.8. Let c and g be measurable functions which are bounded below
and suppose c satisfies (6.1) and (6.2). Then the first passage control problem of
minimizing (1.7) over all solutions of the controlled martingale problem for (A, ν0) is
equivalent to the linear programming problem of minimizing∫

Ẽ0

c(x, u)µ0(dx× du) +
∫
Ẽc0

g(x)µ1(dx)

over all measures µ0 ∈M(Ẽ0 × U) and µ1 ∈ P (Ẽc0) satisfying∫
Ẽ0×U

Af(x, u)µ0(dx× du) +
∫
Ẽc0

Bf(x)µ1(dx) = 0, f ∈ D(A),

where B is defined by

Bf(x) =
∫
f(y) ν0(dy)− f(x).

Proof. The proof is essentially the same as for Theorem 6.3 but uses Theorem 5.5
and Corollary 5.7 in place of Theorem 5.1 and Corollary 5.3.

7. Appendix. The proof of Lemma 4.4 relies on the following result.
LEMMA 7.1. Let S(t) be a nonnegative, real-valued, cadlag stochastic process

adapted to a filtration {Ft} and let ν be a random measure on (0,∞)× (0,∞) adapted
to {Ft} in the sense that ν((0, t] × A) is Ft-measurable for each A ∈ B((0,∞)) and
each t ≥ 0. Suppose that for each continuously differentiable γ with γ and γ′ bounded

Mγ(t) = γ(S(t))−
∫ t

0
γ′(S(u))du−

∫
(0,t]×(0,∞)

(γ(0)− γ(s))ν(du× ds)(7.1)

is an {Ft}-local martingale and that there exists a sequence of stopping times with
αn →∞ a.s. such that for each t > 0,

E[ν((0, t ∧ αn]× (0,∞))] <∞.(7.2)

Then, except for a discrete set of time points at which S jumps to zero, S increases
linearly at rate 1. Defining Z = {u ≥ 0 : S(u) = 0} and letting N(t) be the cardinality
of Z ∩ [0, t], N(t) is a counting process such that

N(t)− ν((0, t]× (0,∞))(7.3)

is an {Ft}-local martingale.
Proof. Note that if we define

Sn(t) =
{
S(t), t < αn,
S(αn) + t− αn, t ≥ αn,

and

νn((0, t]× (a, b]) = ν((0, t ∧ αn]× (a, b])
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and replace (S, ν) in the statement of the lemma by (Sn, νn), then Mγ will be a
martingale (rather than a local martingale), and if the conclusion of the lemma holds
for (Sn, νn) for all n, then the conclusion of the lemma holds for (S,N). With that
observation, we assume that Mγ is a martingale and that E[ν((0, t] × (0,∞))] < ∞.
Under these assumptions, we will show that (7.3) is a martingale.

We approximate the set Z using the following level crossing times. Let 0 < δ < ε
and define τ δ,ε0 = 0:

σδ,ε1 = inf{t > 0 : S(t) > ε},
τ δ,εk = inf{t > σδ,εk : S(t) ≤ δ},
σδ,εk+1 = inf{t > τ δ,εk : S(t) > ε},

and Γt = ∪∞k=1(t ∧ σδ,εk , t ∧ τ δ,εk ]. Note that

Z ∩ [0, t] ⊂ [0, σδ,ε1 ) ∪ ∪∞k=1[t ∧ τ δ,εk , t ∧ σδ,εk+1) .

Let γ ≥ 0 with γ(s) = 0 for s ≤ ε and γ(s) > 0 for s > ε. Then for k ≥ 1, the
optional sampling theorem implies

0 = E[Mγ(t ∧ σδ,εk+1)−Mγ(t ∧ τ δ,εk )]

= E

[
γ(S(t ∧ σδ,εk+1)) +

∫
(t∧τδ,εk ,t∧σδ,εk+1]×(0,∞)

γ(s)ν(du× ds)
]
.(7.4)

Since γ(s) > 0 on (ε,∞), it follows that

ν((τ δ,εk , σδ,εk+1]× (ε,∞)) = 0(7.5)

a.s. for each k ≥ 1 such that τ δ,εk < ∞, and S(σδ,εk ) = ε for each k ≥ 2 such that
σδ,εk <∞.

Now let γ satisfy γ(0) = 1, 0 ≤ γ(s) < 1, s > 0, and γ(s) = 0, s ≥ δ. Then, since
M(t∧ τ δ,εk )−M(t∧σδ,εk ) is a martingale for each k by the optional sampling theorem,
(7.2) and the monotone convergence theorem imply that

∞∑
k=1

(M(t ∧ τ δ,εk )−M(t ∧ σδ,εk )) =
∑
τδ,εk ≤t

γ(S(τ δ,εk ))− γ(0)ν(Γt × (0,∞))

+
∫

Γt×(0,δ)
γ(s)ν(du× ds)(7.6)

is a martingale. It follows that

γ(0)E[ν(Γt × (0,∞))] = E

 ∑
τδ,εk ≤t

γ(S(τ δ,εk )) +
∫

Γt×(0,δ)
γ(s)ν(du× ds)

 .(7.7)

Since the left side of (7.7) depends on γ only through γ(0), which we fix as 1, and both
terms on the right side are monotone increasing in γ, it follows that ν(Γt× (0, δ)) = 0
a.s. and that S(τ δ,εk ) = 0 for each k ≥ 1 such that τ δ,εk < ∞ (otherwise changing
γ would change the value of the right side). Since δ and ε are arbitrary, it in turn
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follows that S is monotone increasing except for jumps to 0. Since γ(0) = 1, N ε(t) =∑
τδ,εk ≤t

γ(S(τ δ,εk )) (which does not depend on δ) simply counts the number of jumps
of S from above ε to 0. The martingale in (7.10) can be written

N ε(t)− ν(Γt × [0,∞)),

keeping in mind that Γt does depend on ε. Since

E[N ε(t)] = E[ν(Γt × [0,∞))] ≤ E[ν((0, t]× [0,∞))] <∞,

N(t) = limε→0N
ε(t) exists, and letting δ, ε→ 0, (7.5) implies that (7.6) converges to

N(t)− ν((0, t]× (0,∞)),(7.8)

which, consequently, is a martingale. Note that if we show that S is strictly increasing
except for the jumps to zero we will have that N(t) is the cardinality of Z ∩ [0, t].

Now let τrx = inf{t > r :S(t) ≥ x} and assume that γ ≥ 0 and γ(z) = 0 for z ≤ x
and γ(z) > 0 for z > x. Then

E[I{S(r)<x}γ(S(τ rx ∧ t))] = −E
[
I{S(r)<x}

∫
(r,τrx∧t]×(0,∞)

γ(z)ν(du× dz)
]
,(7.9)

and it follows that both sides must be zero so that S(τ rx) = x, if S(r) < x and τ rx <∞.
Note that this conclusion implies that S has no upward jumps and hence is continuous
except for jumps to zero. Consequently,

γ(S(t))−
∫ t

0
(γ(0)− γ(S(u−)))dN(u)

is continuous. The fact that (7.8) is a martingale implies that∫ t

0
(γ(0)− γ(S(u−)))dN(u)−

∫
(0,t]×(0,∞)

(γ(0)− γ(S(u−)))ν(du× ds)(7.10)

is a martingale, and adding (7.10) to (7.1), we see that

γ(S(t))−
∫ t

0
γ′(S(u))du−

∫
(γ(0)− γ(S(u−)))dN(u)

+
∫

(0,t]×(0,∞)
(γ(s)− γ(S(u−)))ν(du× ds)(7.11)

is a martingale. Equation (7.9) also implies that ν((r, τ rx ] × (x,∞)) = 0, and hence
for 0 = r0 < r1 < · · · and 0 = x0 < x1 < · · · , we have∑

i,j

I(S(ri−),∞)(xj)ν((ri, τ rixj ∧ ri+1]× (xj , xj+1]) = 0.

Letting maxi(ri+1 − ri)→ 0 and observing that if xj > S(u−), then τ rxj > u,

lim inf
∑
i

I(S(ri−),∞)(xj)I(ri,τrixj∧ri+1](u) ≥ I(S(u−),∞)(xj),
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and hence ∑
j

∫
(0,∞)

I(S(u−),∞)(xj)ν(du× (xj , xj+1]) = 0.

Now letting maxj(xj+1 − xj)→ 0, we have

lim
∑
j

I(S(u−),∞)(xj)I(xj ,xj+1](s) = I(S(u−),∞)(s),

and hence ∫
(0,∞)×(0,∞)

I(S(u−),∞)(s)ν(du× ds) = 0.(7.12)

Let τr = inf{t > r : S(t) = 0}, and let γ(0) = 1, γ(x) < 1 for 0 < x < a and
γ(x) = 1 for x ≥ a. Then

E

[
I{S(r)≥a}

∫
(r,τr∧t]×(0,∞)

(1− γ(s))ν(du× ds)
]

= E[I{S(r)≥a}(Mγ(τr ∧ t)

−Mγ(r))] = 0,

and it follows that

I{S(r)≥a}ν((r, τr]× (0, a)) = 0 a.s.(7.13)

Since a is arbitrary, it follows that (7.13) holds for all rational a a.s. and hence, by
taking limits, for all a a.s. Consequently, approximating as in the proof of (7.12),
(7.13) implies ∫

(0,∞)×(0,∞)
I(0,S(u−))(s)ν(du× ds) = 0(7.14)

and (7.12) and (7.14) imply that the support of ν is contained in {(u, S(u−)) : u > 0},
and hence the last term in (7.11) is zero. But that observation implies that (7.11) is
a continuous martingale and hence is constant. Taking γ(s) = s gives

S(t)− S(0) +
∫ t

0
S(u−)dN(u) = t,

and it follows that S increases linearly at rate 1 except for jumps to zero.
Proof of Lemma 4.4. For λ > 0, let Z(t) = eλtQ(t). Then for g in C1 with g and

g′ bounded,

g(Z(t))−
∫ t

0

(
(V1(s)eλs + λZ(s))g′(Z(s)) + V2(s)(g(0)− g(Z(s)))

)
ds

is an {Ft}-local martingale. For simplicity, assume that
∫∞

0 V1(u)du =∞ a.s. (If not,
we can modify Q so that the integral is infinite and the conclusions of the lemma for
the modified process imply the conclusions for the original.) Let ζ(t) = inf{r > τ :∫ r
τ

(V1(u)eλs + λZ(s)) du > t}, Z̃(t) = Z ◦ ζ(t), and

ν((0, t]× (0, a]) =
∫ ζ(t)

τ

V2(u)I(0,a](Z(u))du =
∫ ζ(t)

στ0

V2(u)I(0,a](Z(u))du.
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Then, by the optional sampling theorem,

g(Z̃(t))−
∫ t

0
g′(Z̃(s)) ds−

∫
(0,t]×(0,∞)

(g(0)− g(s))ν(du× ds)(7.15)

is an {Fζ(t)}-local martingale. By Lemma 7.1, Z̃ increases linearly at rate one except
for jumps to zero. Consequently, for ζ(t) < στ1

Z(ζ(t))− Z(ζ(0)) = Z̃(t)− Z̃(0) = t =
∫ ζ(t)

τ

(V1(u)eλs + λZ(s)) du ,

where the first equality is the definition of Z̃, the second is the consequence of Lemma
7.1, and the third is the definition of ζ(t). Note that if Z(τ) > 0, then ζ(0) = τ ,
and if Z(τ) = 0, then Z(ζ(0)) = 0. In either case, since λ is arbitrary, it follows that
Q(t)−Q(τ) =

∫ t
τ
V1(u)du for τ ≤ t < στ1 and that ζ(0) = στ0 .

Now assume that στ1 < ∞ a.s. Let N be the counting process of jumps to zero
by Z̃, and let

Λ(t) =
∫ ζ(t)

ζ(0)
V2(s)I(0,∞)(Z(s))ds.

Then, again by Lemma 7.1,

N(t)− Λ(t)(7.16)

is an {Fζ(t)}-local martingale, and since ζ is continuous on any interval on which Z̃ is
positive, Λ is continuous. Let τ1 be the time of the first jump of N . Then ζ(τ1) = στ1 .
Note that

Λ(τ1) =
∫ ζ(τ1)

ζ(0)
V2(s)I(0,∞)(Z(s))ds =

∫ στ1

στ0

V2(s)ds.

Let η(x) = inf{u : Λ(u) > x}, and for bounded positive f , define

Lf (t) = f(N(t)) exp
{
−
∫ t

0

f(N(s) + 1)− f(N(s))
f(N(s))

dΛ(s)
}
.

Then, by Itô’s formula,

Lf (t) = f(0) +
∫ t

0
Lf (s−)d(N(s)− Λ(s)),

and hence Lf is a local martingale. In particular, it follows that

1 = E[Lf (τ1 ∧ η(x))|Fζ(0)]

= E[f(1)I{τ1<η(x)}e
− f(1)−f(0)

f(0) Λ(τ1)∧x|Fζ(0)] + E[f(0)I{τ1≥η(x)}e
x|Fζ(0)].

Letting f(0) = 1 and then taking a limit as f(1)→ 0, we have

P{Λ(τ1) ≥ x|Fστ0 } = P{Λ(τ1) ≥ x|Fζ(0)} = P{τ1 ≥ η(x)} = e−x.
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Abstract. Using the Daubechies wavelet theory we establish rational wavelet decompositions of
the Hardy–Sobolev classes on the half-plane. The decay of wavelet coefficients is analyzed and error
bounds for approximation are given. We give applications to the modeling of linear systems and to
the model reduction of infinite-dimensional systems.
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1. Introduction.

1.1. Notation and conventions.
C+ = {s = x+ iy : x > 0} right half-plane,
I = {iy : y ∈ R} imaginary axis.

For f belonging to L2(R) the Fourier transform f̂ is defined using the following
convention:

f̂(ξ) =
∫ ∞
−∞

f(t)e−iξtdt.

For g belonging to L2((0,∞)) we write G = (Lg)(s) for the Laplace transform of g:

G(s) = (Lg)(s) =
∫ ∞

0
g(t)e−stdt.

H2(C+) denotes the Hardy space of functions F (s) analytic in the right half-plane
and such that

‖F‖2 = sup
x>0

∫ ∞
∞
|F (x+ iy)|2dy <∞.

By the Paley–Wiener theorem every F (s) belonging to H2(C+) is the Laplace trans-
form of some f(t) ∈ L2((0,∞)) such that ‖F‖2 = (2π)1/2‖f‖2. Upper-case letters
will be used to denote the Laplace transform of the corresponding lower-case letter,
e.g., Ψ(s) = (Lψ)(s). (For further details of Hardy spaces defined on a half-plane see
[28] or [36].)

Lettered results, e.g., Theorem A, will denote a known result in the literature.
Numbered results will be proved.
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1.2. General background. The approximation and identification of transfer
functions of stable linear time-invariant infinite-dimensional systems by those of finite-
dimensional systems is an important part of modern systems theory, and there are two
norms which are most commonly considered. The H∞ norm has found applications
in robust control [20], whereas the H2 norm is the basis of linear quadratic Gaussian
control. However, it is widely regarded as desirable to be able to consider both H2

and H∞ criteria simultaneously: see, for example, the articles of Foias, Frazho, and
Tannenbaum [19] and Bernstein and Haddad [5]. One approach to this is by means
of Hardy–Sobolev classes.

Hardy–Sobolev classes for the disc were considered in [15] and [2]. For the upper
half-plane the Hardy–Sobolev class H2,m, m ∈ R, is defined as follows: let H2,m,
m ∈ R, be the class of functions F (s) analytic in the right half-plane such that
F (s) = (Lf)(s) and

‖F‖2,m =
(∫ ∞

0
|f(t)|2(1 + t)2mdt

)1/2

<∞.(1.1)

If m = 0, H2,0 corresponds to the classical Hardy space H2 for the half-plane, and if
m is a positive integer, F (s) belonging to H2,m is equivalent to the first m derivatives
of F (s) belonging to H2. An equivalent norm can then be defined on H2,m by the
formula

‖F‖22,m = ‖F‖22 + ‖F ′‖22 + · · ·+ ‖Fm‖22.

In this investigation we shall be concerned mainly with the range |m| ≤ 1. The range
m > 1/2 is of particular interest since for F (s) belonging to H2,m we have ‖F‖∞ ≤
Cm‖F‖2,m, where Cm is a constant, and so approximation in the Hardy–Sobolev norm
gives simultaneous approximations in both the uniform and the L2 norms. Indeed,
we can say more: since we obtain, using the Cauchy–Schwarz inequality,

‖f‖L1 =
∫ ∞

0
|f(t)| dt

≤ ‖f(t)(1 + t)‖L2‖1/(1 + t)‖L2

= ‖F‖2,1,

we obtain simultaneous approximation in the L1 norm as well, itself important in
bounded input, bounded output (BIBO) stable control theory (cf. [10]).

The approach to approximation that we shall take will involve the theory of
wavelets, and we now outline this.

1.3. Wavelet classes for H2. We give a definition of wavelet which is perhaps
somewhat more geometric than is normal, and which includes the more usual analytic
definition and is appropriate for both the disc and half-plane. By a lattice L we mean
a discrete set of points in the right half-plane which is both sufficiently dense and
separated with respect to the pseudohyperbolic metric: there exists 0 < δ1 ≤ δ2 < 1
such that the union of balls B(S, δ2), S ∈ L, covers C+ (i.e., δ2 dense) and S, T ∈
L, S 6= T =⇒ ρ(S, T ) > δ1 (i.e., δ1 separated), where

ρ(S, T ) =
∣∣∣∣S − TS + T

∣∣∣∣ .
(See [42] for details.)
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In effect, to say that a set is separated in the above sense amounts to the fact
that the ratio of the distance between neighboring points in the right half-plane to
the distance from the imaginary axis is approximately constant. In this paper we are
interested in lattices of the following form:

L =
{
Sj,k : Sj,k =

1
2j

+ i
k

2j
b0; j, k ∈ Z

}
,

where b0 is some fixed positive constant. Clearly, L is separated and C1 dist(Sj,k, I) ≤
dist(Sj,k, Sj′,k′) ≤ C2 dist(Sj,k, I). Associated with a given lattice L will be a wavelet
class W = {FW : W ∈ L}. Notice that any point in L can be transformed onto
another by a dilation followed by a translation. We construct W so that each FW is
obtained from some fixed mother wavelet Ψ(y) ∈ H2 in a similar fashion. Thus W
actually consists of the system of functions Ψj,k(y) = 2j/2Ψ(2jy−kb0) where we have
normalized them in L2.

In this investigation we are interested in wavelet classes for H2 with mother
wavelets of the form Ψ(y) = (1 + iy)p, where p is a fixed positive integer. Suppose
that W = X + iY = 2−j + ikb02−j ∈ L. Then the corresponding function Ψj,k can
be written

ΨW (y) =
X−1/2

(1 + i(y − Y )/X)p

=
Xp−1/2

((X − iY ) + iy)p

=
Xp−1/2

(iy +W )p
.

For p = 1 ΨW is just the normalized Cauchy kernel with pole at −W , and for p = 2
ΨW is the Bergman kernel evaluated on the imaginary axis. From the practical point
of view the usefulness of the wavelet classes just given is based on the observation that
one has a system of rational functions whose poles cluster on the left of the imaginary
axis. Much of the present investigation centers about the general problem of obtaining
decompositions by using wavelets as elementary building blocks in a sense which will
be made precise below.

Using a fundamental result of Daubechies we obtain decompositions of H2 where
the mother wavelets consist of powers of the Cauchy kernel for the right half-plane.
Consider for a moment the space H2,1 of the disc. It is easy to see that f(z) =∑∞
n=0 anz

n ∈ H2,1 is equivalent to ‖f‖22,1 =
∑∞
n=0(1 + n2)|an|2 < ∞. That is, one

can determine whether a function f(z) in H2 also has L2 bounded derivative by
examining decay of the Taylor coefficients an = 〈f, zn〉. We obtain similar conditions
for H2,1(C+) where the building blocks are replaced by a nonorthogonal system of
rational wavelets. We also consider in section 6 the half-plane algebra A(C+) for the
right half-plane and use a result of Hayman and Lyons to show that suitable sets of
Cauchy kernels are fundamental for A(C+). In section 7 we consider error estimates,
and in section 8 we deduce algorithms which may be applied to the model reduction
of a system.

The following results will be established.
THEOREM 1.1. Let Ψ(y) = (1 + iy)−3, let Ψj,k(y) = 2j/2Ψ(2jy − b0k) where

j, k ∈ Z, b0 > 0, and let 〈·, ·〉 be the usual L2-inner product.
If b0 > 0 is sufficiently small, then for each m with −1 ≤ m ≤ 1 there exist

positive constants Am and Bm such that for F (s) ∈ H2,m the wavelet coefficients
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〈F,Ψj,k〉 satisfy the following pair of inequalities:

Am‖F‖22,m ≤
∑
j,k

| 〈F,Ψj,k〉 |2(1 + 2j)2m ≤ Bm‖F‖22,m.(1.2)

Our next result is an atomic decomposition of H2,m. Let `2((1 + 22j)m) denote
the weighted `2-space

`2((1 + 2j)2m) =
{
λ = (λj,k) : ‖λ‖22,m =

∑
|λj,k|2(1 + 2j)2m <∞

}
.

A sequence Ψj,k in H2,m will be called a set of atoms (with respect to `2((1 +
2j)2m)) for H2,m if the mapping S : `2((1 + 2j)2m)→ H2,m defined by

S : λ 7→
∑
j,k

λj,kΨj,k

is a surjection. Let Ψj,k = 2j/2Ψ(2jy − b0k) where Ψ(t) = (1 + iy)−3.
THEOREM 1.2. The system (Ψj,k), j, k ∈ Z, is a set of atoms for H2,m for

sufficiently small b0 in the sense defined above. Furthermore, for each F belonging to
H2,m we have the inequalities

1
B−m

‖F‖22,m ≤ inf

‖(λj,k)‖22,m : F =
∑
j,k

λj,kΨj,k

 ≤ 1
A−m

‖F‖22,m.(1.3)

THEOREM 1.3. Let T be the operator defined on H2,m, where m = 1 or m = −1
by the formula

TF =
∑
〈F,Ψj,k〉Ψj,k, F ∈ H2,m.

Then, for sufficiently small b0, T is a bounded map H2,m → H2,m. Furthermore, T
is a surjection and invertible.

Finally, we have the following frame decomposition of H2,m for both m = 1 and
m = −1.

COROLLARY 1.4. Every F ∈ H2,m, m = ±1, has the wavelet series representation

F = TT−1F =
∑
j,k

〈
T−1F,Ψj,k

〉
Ψj,k.

We shall prove Theorem 1.1 for the cases m = ±1 in section 3, and for the general
case at the end of section 5. Theorems 1.2 and 1.3 will be proved in sections 4 and
5, respectively. We also obtain estimates for the various constants for a range of b0
which appear in the given results by means of computer, and for these we refer to the
tables.

2. Frames and wavelet decompositions of H2.

2.1. Brief exposition of the theory of frames. Frames were introduced by
Duffin and Schaeffer in [17] in the context of nonharmonic Fourier series, and give
a technique for expanding vectors in a Hilbert space by means of systems of non-
orthogonal vectors.

We give below a brief exposition of the theory of frames. For further details and
fuller proofs we refer to [17], [13], and [34]. Let H be a Hilbert space with inner
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product 〈·, ·〉. A system (φj) of vectors in H will be called a frame for H if there exist
positive constants A and B so that the following pair of inequalities obtain:

A‖f‖2 ≤
∑
j

| 〈f, φj〉 |2 ≤ B‖f‖2, f ∈ H.(2.1)

We define the operator T on H by means of the formula

Tf =
∑
j

〈f, φj〉φj , f ∈ H.

From (2.1) it follows that T is a positive operator on H such that 〈Tf, f〉 ≥ A‖f‖2.
Next one can establish that T is a surjection and is invertible by means of the following
piggyback closed range theorem.

LEMMA A. If U is a positive operator on H such that 〈Uf, f〉 ≥ α‖f‖2 for all
f ∈ H then U is invertible on H and its inverse U−1 satisfies ‖U−1‖ ≤ 1/α.

Proof. We first note that range(U) is a closed subspace of H. Let fn be a Cauchy
sequence in range(U). Then fn = U(gn), and by hypothesis,

‖gn − gm‖2 ≤ α−1 〈U(gn − gm), gn − gm〉 ≤ α−1‖U(gn − gm)‖ · ‖gn − gm‖.

Thus gn is also a Cauchy sequence in H with limit g. It follows from the continuity
of U that U has closed range.

Next we show that range(U) is dense in H: if g ∈ H is such that 〈Uf, g〉 = 0 for
all f ∈ H, it follows in particular that 〈Ug, g〉 = 0. We have α‖g‖2 ≤ 〈Ug, g〉, and
hence we deduce that g = 0. Hence, by the first part, range(U) = H.

Finally, since any f ∈ H can be written as f = Ug we may define U−1f = g and

α‖U−1f‖2 ≤
〈
UU−1f, U−1f

〉
=
〈
f, U−1f

〉
≤ ‖f‖ · ‖U−1f‖,

whence ‖U−1f‖ ≤ α−1‖f‖. This completes the proof.
In fact, one can show using (2.1) that I − 2(A + B)−1T is a contraction and so

compute T−1 by a Neumann series: suppose that f ∈ H, and define a residual vector
R(f) by the equation

R(f) = f − 2
A+B

∑
j

〈f, φj〉φj .

Then −B−AB+AI ≤ R ≤
B−A
B+AI, and so, since R is symmetric, ‖R‖ ≤ B−A

B+A . If B is close
to A we obtain a good reconstruction of f . Otherwise we can write down an algorithm,
viz., a Neumann series for the reconstruction of f with exponential convergence. (See
[13] for details.)

Since T−1 is symmetric it follows that
〈
T−1f, φj

〉
=
〈
f, T−1φj

〉
and so f ∈ H

has the expansions

f = TT−1f =
∑〈

T−1f, φj
〉
φj =

∑〈
f, T−1φj

〉
φj .

The system defined by φ̃j = T−1φj is called the dual frame associated with φj . It can
also be shown that φ̃j is itself a frame.
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2.2. Fundamental theorem of Daubechies. Given a function Ψ ∈ L2(R),
and a0 > 1 and b0 > 0, we define the system of functions

Ψj,k(t) = a0
j/2Ψ(aj0t− kb0), j, k ∈ Z.(2.2)

We ask for conditions on Ψ and b0 such that the system given by (2.2) is a frame for
L2(R). That is, there exist positive constants A, B such that

A‖f‖22 ≤
∑
j,k

| 〈f,Ψj,k〉 |2 ≤ B‖f‖22, f ∈ L2(R).

Daubechies [12], [13], proves the following fundamental result.
THEOREM B. Suppose that Ψ ∈ L2(R) and a0 > 1 are such that

inf
1≤|ξ|≤a0

∞∑
−∞
|Ψ̂(aj0ξ)|2 > 0,

sup
1≤|ξ|≤a0

∞∑
−∞
|Ψ̂(aj0ξ)|2 <∞,

and if β(s) = sup1≤|ξ|≤a0

∑
|Ψ̂(aj0ξ)||Ψ̂(aj0ξ+s)| decays at least as fast as (1+|s|)−(1+ε)

with ε > 0, then there exists a b̃0 > 0 such that the Ψj,k constitute a frame for all
b0 < b̃0. For such b0 the following equalities are frame bounds for the Ψj,k:

A=
2π
b0

 inf
1≤|ξ|≤a0

∞∑
−∞
|Ψ̂(aj0ξ)|2 −

∞∑
k=−∞
k 6=0

[
β

(
2π
b0
k

)
β

(
−2π
b0

k

)]1/2

 ,

B=
2π
b0

 sup
1≤|ξ|≤a0

∞∑
−∞
|Ψ̂(aj0ξ)|2 +

∞∑
k=−∞
k 6=0

[
β

(
2π
b0
k

)
β

(
−2π
b0

k

)]1/2

 .

Since the Fourier transforms of H2 functions of the lower half-plane are functions
in L2(R) supported on the positive real axis, we may apply Theorem B to H2(P)
where P = {x + iy : y < 0}. By rotating, we see that Theorem B is applicable to
establishing frames for H2(C+). In particular, it is routine to check that the estimates
given in the hypotheses of Theorem B are satisfied by mother wavelets of the form
Ψ(y) = (1 + iy)−p where p is a positive integer not less than 2 (since Ψ(y) is the
Laplace transform of ψ(t) = tp−1e−t/(p− 1)!, t > 0).

In the main we will be interested in the system Ψj,k(y) = 2j/2Ψ(2jy− b0k) where
Ψ is the mother wavelet Ψ(y) = (1+ iy)−3. However, in order to establish our results,
we also consider some auxiliary systems of wavelets—in particular, ones generated by
Φ(y) = (1 + iy)−2. With a0 = 2 and a given mother wavelet Ψ, one can then easily
establish by means of a computer a range of b0 for which the corresponding system
Ψj,k(y) is a frame for H2. See Tables 2.1 and 2.2 for the wavelets Ψ(y) = (1 + iy)−3

and Φ(y) = (1 + iy)−2.

3. Proof of Theorem 1.1 for m = ±1.
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TABLE 2.1
Estimates of frame bounds for the mother wavelet Ψ(y) = (1 + iy)−3.

b0 A B B/A
0.25 13.579 13.615 1.003
0.5 6.786 6.811 1.004
1.0 3.114 3.685 1.183

2 0.460 2.939 6.387
3 −0.591 2.857 −4.832

TABLE 2.2
Estimates of frame bounds for the mother wavelet Ψ(y) = (1 + iy)−2.

b0 A B B/A
0.25 9.064 9.066 1.000
0.5 4.532 4.533 1.000
1.0 2.208 2.325 1.053

2 0.738 1.528 2.069
3 0.118 1.392 11.777

3.1. Proof of Theorem 1.1: m = 1. The proof of Theorem 1.1 for m = 1
follows from the considerations of the previous section. Since Ψj,k(y) is a frame for
H2 it follows that for F belonging to H2,

AΨ‖F‖22 ≤
∑
j,k

| 〈F,Ψj,k〉 |2 ≤ BΨ‖F‖22.(3.1)

If, in addition, F ′ also belongs to H2 (so that F ∈ H2,1) then since Φj,k(y) with
Φ(y) = 2(1 + iy)−2 is also a frame for H2 we have

AΦ‖F ′‖22 ≤
∑
j,k

| 〈F ′,Φj,k〉 |2 ≤ BΦ‖F ′‖22.(3.2)

Up to a constant, Ψ is attained from Φ by differentiation with respect to y. Therefore
we may integrate by parts and obtain

〈F ′,Φj,k〉 =
∫ ∞
−∞

F ′(it)Φj,k(t)dt

= 2j
∫ ∞
−∞

F (it)Ψj,k(t)dt

= 2j 〈F,Ψj,k〉 .

Therefore, (3.2) may be replaced by

Aφ‖F ′‖22 ≤
∑
j,k

| 〈F,Ψj,k〉 |222j ≤ Bφ‖F ′‖22.(3.3)

Adding (3.1) and (3.3) and noting that

1
2

(1 + x)2 ≤ (1 + x2) ≤ (1 + x)2,

we obtain the conclusion of Theorem 1.1 with A1 = 1/4 min{AΨ, Aφ} and B1 =
max{BΨ, Bφ}.

Remark. One could prove Theorem 1.1 directly using the same technique as
the proof of Theorem 3.1 below. However, the proof given has the merit of being
elementary, although it will not give the best estimates for A1 and B1.
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3.2. Proof of Theorem 1.1: m = −1. We wish to establish the existence
of positive constants A−1 and B−1 such that for G = Lg belonging to H2,−1, the
following inequalities obtain:

A−1‖G‖22,−1 ≤
∑
j,k

| 〈G,Ψj,k〉 |2(1 + 2j)−2m ≤ B−1‖G‖22,−1.

Since G = L(g) ∈ H2,−1 it follows that g̃(t) = g(t)(1 + t)−1 ∈ L2((0,∞)). If Φj,k =
L(φj,k) is a frame for H2 there exist constants Aφ, Bφ such that

Aφ‖g̃‖22 ≤
∑
j,k

| 〈g̃, φj,k〉 |2 ≤ Bφ‖g̃‖22,

i.e.,

Aφ‖g‖22,−1 ≤
∑
j,k

| 〈g̃, φj,k〉 |2 ≤ Bφ‖g‖22,−1.

Now

〈g̃, φj,k〉 =
〈
g, (1 + t)−1φj,k

〉
.

We would like to choose a frame Φj,k for H2 so that

φj,k = (1 + t)(1 + 2j)−1ψj,k,

where Ψ is the mother wavelet Ψ(y) = L(t2e−t/2) = (1 + iy)−3, Ψj,k = 2j/2Ψ(2jy −
b0k), and Ψj,k = L(2−j/2(2−jt)2e−2−j(t−ib0k)).

Our next result is an analogue of Theorem B.
THEOREM 3.1. Suppose that Ψ(y) ∈ H2(C+) and that Ψj,k(y) = 2j/2Ψ(2jy−kb0),

j, k ∈ Z. Define the system Φj,k by φj,k(t) = (1 + t)(1 + 2j)−1ψj,k(t). Suppose further
that

inf
0<t<∞

(1 + t)2
∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2 > 0,

sup
0<t<∞

(1 + t)2
∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2 <∞,

and if γ(s) = sup0<t<∞(1 + t)2∑(1 + 2j)−2|ψ(2−jt)||ψ(2−jt + s)| decays at least as
fast as (1+|s|)−(1+ε) with ε > 0, then there exists a b̃0 > 0 such that the Φj,k constitute
a frame for H2 for all b0 < b̃0. For such b0 the following equalities are frame bounds
for the Φj,k:

A−1 =
2π
b0

{
inf

0<t<∞
(1 + t)2

∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2

−
∞∑

k=−∞
k 6=0

[
γ

(
2π
b0
k

)
γ

(
−2π
b0

k

)]1/2
}
,

B−1 =
2π
b0

{
sup

0<t<∞
(1 + t)2

∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2

+
∞∑

k=−∞
k 6=0

[
γ

(
2π
b0
k

)
γ

(
−2π
b0

k

)]1/2
}
.
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Suppose that G = Lg ∈ H2. We proceed to analyze
∑
j,k | 〈g, φj,k〉 |2 using the

method of Daubechies:

∑
j,k

| 〈g, φj,k〉 |2 =
∑
j,k

∫ ∞
0

g(t)φj,k(t)dt
∫ ∞

0
g(t′)φj,k(t′)dt′

=
∑
j,k

(1 + 2j)−2
∫ ∞

0
g(t)(1 + t)ψj,k(t)dt

×
∫ ∞

0
g(t′)(1 + t′)ψj,k(t′)dt′

=
∑
j,k

(1 + 2j)−22−j
∫ ∞

0
g(t)(1 + t)ψ(2−jt)e−i2

−jb0ktdt

×
∫ ∞

0
g(t′)(1 + t′)ψ(2−jt′)ei2

−jb0kt
′
dt′

=
2π
b0

∑
j,k

(1 + 2j)−2
∫ ∞

0

∫ ∞
0

g(t)g(t′)(1 + t)ψ(2−jt)(1 + t′)ψ(2−jt′)

× δ(t′ − t− 2πk2jb−1
0 ) dt dt′

=
2π
b0

∑
j,k

(1 + 2j)−2
∫ ∞

0
g(t)g(t− 2π2jb−1

0 k)(1 + t)ψ(2−jt)

× (1 + t− 2πk2jb−1
0 )ψ(2−jt− 2πkb−1

0 )dt

=
2π
b0

∑
j

(1 + 2j)−2
∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)|2dt+ rest(g),

where in the fourth line we have used the Poisson summation formula
∑
l∈Z exp(ilax) =

2πa−1∑
k∈Z δ(x− 2πka−1). This is justified by supposing first that g is smooth and

has compact support and then proceeding by a standard density argument. If

m = inf
0<t<∞

(1 + t)2
∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2,

M = sup
0<t<∞

(1 + t)2
∞∑
−∞

(1 + 2j)−2|ψ(2−jt)|2

we have

m‖g‖22 ≤
∑
j

(1 + 2j)−2
∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)|2dt ≤M‖g‖22.(3.4)

3.3. Analysis of rest(g). We have

rest(g) =
2π
b0

∑
j

∑
k 6=0

(1 + 2j)−2
∫ ∞

0
g(t)g(t− 2πk2jb−1

0 )(1 + t)ψ(2−jt)

×(1 + t− 2πk2jb−1
0 )ψ(2−jt− 2πkb−1

0 )dt.
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TABLE 3.1
Estimates of A−1 and B−1 in Theorem 1.1.

b0 A−1 B−1
0.25 13.699 65.524
0.5 6.797 32.814
1.0 0.775 19.031
1.1 −0.324 18.330

By the Cauchy–Schwarz inequality for integrals we have

| rest(g)| ≤ 2π
b0

∑
j

∑
k 6=0

(1+2j)−2
{∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)||ψ(2−jt− 2πkb−1

0 )|dt
}1/2

×
{∫ ∞

0
|g(t− 2πk2jb−1

0 )|2(1 + t− 2πk2jb−1
0 )2|ψ(2−jt)||ψ(2−jt− 2πkb−1

0 )|dt
}1/2

.

We make the substitution t− 2πk2jb−1
0 7→ t in the second integral and deduce that

| rest(g)| ≤ 2π
b0

∑
j

∑
k 6=0

(1+2j)−2
{∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)||ψ(2−jt− 2πkb−1

0 )|dt
}1/2

×
{∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)||ψ(2−jt+ 2πkb−1

0 )|dt
}1/2

.

Next we apply the Cauchy–Schwarz inequality for sums to the sum indexed by j and
obtain

| rest(g)| ≤ 2π
b0

∑
k 6=0

∑
j

(1 + 2j)−2
∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)||ψ(2−jt− 2πkb−1

0 )|dt


1/2

×

∑
j

(1 + 2j)−2
∫ ∞

0
|g(t)|2(1 + t)2|ψ(2−jt)||ψ(2−jt+ 2πkb−1

0 )|dt


1/2

.

Therefore, if we write

γ(s) = sup
0<t<∞

(1 + t)2
∑
j

(1 + 2j)−2|ψ(2−jt)||ψ(2−jt+ s)|,

we obtain

| rest(g)| ≤ 2π
b0

∞∑
k=−∞
k 6=0

[
γ

(
2π
b0
k

)
γ

(
−2π
b0

k

)]1/2

.(3.5)

Combining (3.4) with (3.5), we obtain the conclusion of Theorem 3.1.
We apply Theorem 3.1 to the considerations above with Ψ(y) = (1 + iy)−3. Since

ψ(t) = 2−1t2e−t it is easy to see that the hypotheses of the theorem are satisfied. We
refer to Table 3.1 for estimates of frame bounds for different b0. This completes the
proof of Theorem 1.1 in the case m = −1.
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4. Proof of Theorem 1.2. Although H2,m is a Hilbert space and so, by the
Riesz–Fréchet theorem, is its own dual, we identify (H2,m)∗ with H2,−m by means of
the following pairing:

〈F,G〉 =
∫
FG, F ∈ H2,m, G ∈ H2,−m.

In fact, the map M(1+t)2m : H2,m → H2,−m, F (s) 7→ (Lf(t)(1 + t)2m)(s) is an
isometric isomorphism. (For further details, see [21].) Note also that | 〈F,G〉 | ≤
‖F‖2,m‖G‖2,−m and that sup{| 〈F,G〉 | : ‖G‖2,−m = 1} = ‖F‖2,m.

4.1. Atomic decompositions of H 2,m . A useful tool for establishing atomic
decompositions for a Banach space is Banach’s closed range theorem, which we state
below for the convenience of the reader. We refer to the articles of Bonsall [6], [7] (see
also [14]) and the references contained therein for further information.

For a subset E of a normed space X let E⊥ = {φ ∈ X∗ : φ(x) = 0 for x ∈ X};
for a subset F of X∗ let F⊥ = {x ∈ X : φ(x) = 0 for φ ∈ X∗}.

THEOREM C (Banach’s closed range theorem). Let T be a bounded linear mapping
of a Banach space X into a Banach space Y .

(i) If T ∗Y ∗ is closed in X∗, then TX is closed in Y and TX = (kerT ∗)⊥.
(ii) If TX is closed in Y , then T ∗Y ∗ is closed in X∗ and T ∗Y ∗ = (kerT )⊥.
LEMMA 4.1. The adjoint S∗ from (H2,m)∗ = H2,−m to (`2((1 + 2j)2m))∗ =

`2((1 + 2j)−2m) is given by the formula

S∗ : G 7→ {〈G,Ψj,k〉}, G ∈ H2,−m.

Proof. Suppose that G ∈ H2,−m and let φG be the functional corresponding to
G. Then, for any sequence λ = (λj,k) belonging to `2((1 + 2j)2m), it follows from the
definition of S∗ that

(S∗φG)(λ) = 〈G,Sλ〉
=
∑
j,k

λj,k 〈G,Ψj,k〉 .

Thus S∗ maps G 7→ 〈G,Ψj,k〉.
LEMMA 4.2. S∗ has zero kernel.
Proof. By definition, if G ∈ H2,−m,

‖S∗G‖22,−m = sup
λ∈`2((1+2j)2m)

|(S∗G)(λ)|2

‖λ‖22,m

= sup
λ∈`2((1+2j)2m)

∣∣∣∑j,k λj,k 〈G,Ψj,k〉
∣∣∣2

‖λ‖22,m
.(4.1)

We now define the sequence (λj,k) by

λj,k = 〈G,Ψj,k〉(1 + 2j)−2m.

Then

‖(λj,k)‖22,m =
∑
j,k

| 〈G,Ψj,k〉 |2(1 + 2j)−4m(1 + 2j)2m

=
∑
| 〈G,Ψj,k〉 |2(1 + 2j)−2m

≤ B−m‖G‖22,−m
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by Theorem 1.1, and so is a candidate for the supremum in equation (4.1). Therefore

‖S∗G‖22,−m ≥

(∑
j,k | 〈G,Ψj,k〉 |2(1 + 2j)−2m

)2

∑
j,k |〈G,Ψj,k〉|2 (1 + 2j)−2m

=
∑
j,k

| 〈G,Ψj,k〉 |2(1 + 2j)−2m

≥ A−m‖G‖22,−m,(4.2)

by Theorem 1.1. This completes the proof.
LEMMA 4.3. S∗ has closed range.
Proof. Let ((λnj,k))n be a Cauchy sequence in `2(1 + 2j)−2m in the range of S∗,

so that ((λnj,k))n → (λj,k). Then each sequence (λnj,k) = S∗Gn, where Gn belongs to
H2,m. By the inequality derived in (4.2) it follows that (Gn) is a Cauchy sequence
in H2,−m so that Gn → G. Therefore, it follows from the continuity of S∗ that
(λj,k) = S∗(G) and we have the desired result.

The first part of Theorem 1.2 follows immediately from Lemmas 4.1, 4.2, 4.3, and
Banach’s closed range theorem.

The lower bound in (1.3) follows immediately from an elementary duality argu-
ment. To obtain the upper bound let N = kerS and X = `2((1 + 2j)2m)/N and
define U : X → H2,m by U [λ] = Sµ, (µ ∈ [λ] ∈ X). Plainly, U is a bounded linear
bijection of X onto H2,m and so, by Banach’s isomorphism theorem, has a bounded
inverse. Therefore U∗ is a bounded linear bijection from H2,−m onto X∗. From the
proof of Lemma 4.2 we know that

A−m‖G‖22,−m ≤ sup{‖(S∗G)(λ)‖22,−m : λ ∈ `2((1 + 2j)2m)}
= sup{‖ 〈F,U [λ]〉 : [λ] ∈ X, ‖[λ]‖ ≤ 1}
= ‖U∗G‖.

Hence ‖U−1‖ = ‖(U∗)−1‖ ≤ A−1
−m. This completes the proof of Theorem 1.2.

Remark. The usefulness of Banach’s closed range theorem in establishing atomic
decompositions is clear from papers of D. H. Luecking (see, for example, [29] and [30]),
who used it to prove decompositions of Bergman and Hardy spaces. In particular, a
duality proof of the Coifman–Rochberg decomposition of Lpa, p > 1, was given [9]. In
[6] Bonsall gave an abstract formulation of this method giving various applications,
and in [7] he gave an elementary proof of a general atomic decomposition theorem.

5. Proof of Theorem 1.3. We consider the operator

TF =
∑
〈F,Ψj,k〉Ψj,k, F ∈ H2,m,(5.1)

where 〈·, ·〉 is the L2-inner product. We proceed to show that T is bounded on both
H2,1 and H2,−1 and in fact is a bijection. Note that T is symmetric with respect to
〈·, ·〉 and bounded on H2.

LEMMA 5.1. T is a bounded operator H2,m → H2,m for both m = 1 and m = −1.
Proof. Let TN be the partial sum operator

TN =
∑

|j|,|k|≤N
〈·,Ψj,k〉Ψj,k.
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Let F ∈ H2,m and G ∈ H2,−m. Then, by the Cauchy–Schwarz inequality,

| 〈TNF,G〉 |2 =
∣∣∣〈∑ 〈F,Ψj,k〉Ψj,k, G

〉∣∣∣2
=
∣∣∣∑ 〈F,Ψj,k〉 〈G,Ψj,k〉

∣∣∣2
≤
∑
| 〈F,Ψj,k〉 |2(1 + 2j)2m

∑
| 〈G,Ψj,k〉 |2(1 + 2j)−2m

≤ Bm‖F‖22,m ×B−m‖G‖22,−m,

by Theorem 1.1. Now, by duality,

‖TNF‖22,m = sup
G∈H2,−m

| 〈TNF,G〉 |2
‖G‖22,−m

≤ BmB−m‖F‖22,m,

so that TN is bounded (independently of N) on H2,m and so must T be. By the
symmetry of T (with respect to the duality pairing given by 〈·, ·〉) we conclude also
that T is bounded on H2,−m.

Next we wish to establish that T is a bijection H2,m → H2,m, for m = 1 and
m = −1. To do this we estimate ‖TF‖22,m from below. It follows from duality that

‖TF‖2,m = sup
G∈H2,−m

| 〈TF,G〉 |
‖G‖2,−m

= sup
G∈H2,−m

|
∑
j,k 〈F,Ψj,k〉 〈G,Ψj,k〉|
‖G‖2,−m

.

We need to find a suitable candidate for G so that we may show that ‖TF‖22,m ≥
Km‖F‖22,m. We proceed to analyze

∑
j,k 〈F,Ψj,k〉 〈G,Ψj,k〉 =

∑
j,k 〈f, ψj,k〉 〈g, ψj,k〉

using the same technique as in the proof of Theorem 3.1. We obtain

∑
j,k

〈F,Ψj,k〉〈G,Ψj,k〉 =
2π
b0

∑
j

∫ ∞
0

f(t)g(t)|ψ(2−jt)|2dt

+
2π
b0

∑
j

∑
k 6=0

∫ ∞
0

f(t)g(t− 2πk2jb−1
0 )ψ(2−jt)ψ(2−jt− 2πkb−1

0 )dt.

(5.2)

It is clear in view of (5.2) that an appropriate candidate for G is given by g(t) =
f(t)(1 + t)2m (so that ‖g‖22,−m = ‖f‖22,m). Next we analyze the second sum on the
right of (5.2) with this choice of g, which we denote by rest(f). We deduce

| rest(f)| ≤ 2π
b0

∑
j

∑
k 6=0

I1 × I2,

where

I1 =
{∫ ∞

0
|f(t)|2(1 + t)2m(1 + t− 2πk2jb−1

0 )2m|ψ(2−jt)||ψ(2−jt− 2πkb−1
0 )|dt

}1/2

and

I2 =
{∫ ∞

0
|f(t− 2πk2jb−1

0 )|2(1 + t− 2πk2jb−1
0 )2m(1 + t)−2m|ψ(2−jt)|

×|ψ(2−jt− 2πkb−1
0 )|dt

}1/2
.
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TABLE 5.1
Estimates of the lower bound for ‖TF‖2,1.

b0 0.1 0.2 0.25 0.3 0.5
K 33.947 16.974 13.578 11.297 −4.222

We define

µ = inf
0<t<∞

∑
j

|ψ(2−jt)|2,

δm1 (s) = sup
0<t<∞

∑
j

(1 + t+ 2js)2m|ψ(2−jt)||ψ(2−jt+ s)|,

δm2 (s) = sup
0<t<∞

∑
j

(1 + t+ 2js)−2m|ψ(2−jt)||ψ(2−jt+ s)|.

If
∑
k 6=0{δm1 ( 2πk

b0
)δm2 ( 2πk

b0
)}1/2 =

∑
k 6=0{δ

−m
1 ( 2πk

b0
)δ−m2 ( 2πk

b0
)}1/2 converges and dimin-

ishes to 0 with b0, there exists b̃0 such that for b < b̃0, the quantity K = 2π
b0

(µ −∑
k 6=0{δm1 ( 2πk

b0
)δm2 ( 2πk

b0
)}1/2) > 0, and we obtain ‖TF‖2,m ≥ K‖F‖2,m. Plainly, we

can apply this argument to the mother wavelet Ψ(y) = (1 + iy)−3. We refer to
Table 5.1 for estimates of the constant K for Ψ(y) and for different b0. Note that
for b0 = 0.5 the value of K is negative, and so we cannot deduce that T is bounded
below.

As in section 4 it is now plain that T : H2,m → H2,m has closed range. Next we
observe that {TF : F ∈ H2,m} is dense in H2,m. Suppose that G ∈ H2,−m and that

〈TF,G〉 = 〈F, TG〉 = 0, F ∈ H2,m.

If we take F = Lf defined by f(t) = g(t)(1 + t)−2m, we deduce that

0 =
sup | 〈TF,G〉 |
‖G‖2,−m

≥ K‖G‖2,−m,

and so G = 0. It follows from the Hahn–Banach theorem that the set {TF : F ∈
H2,m} is dense in H2,m. Hence, since T has closed range in H2,m, we deduce that
range(T ) = H2,m. This completes the proof of Theorem 1.3.

Remark. The proof given here should be compared with the proof of Proposition
2.12 in [12], which unfortunately contains an error. However, we achieve similarly
symmetric lower and upper bounds for ‖TF‖2,m, and as Daubechies points out in
Remark 2, it follows by interpolation that T is bounded above and below on H2,m′

for −1 ≤ m′ ≤ 1. (See section IX.4, particularly Example 3 (rigged Hilbert spaces),
in [41].)

5.1. Proof of Theorem 1.1: General case. To obtain Theorem 1.1 for −1 ≤
m ≤ 1 it is simplest to proceed (as a referee has observed) by interpolation. The
upper bound ∑

j,k

| 〈F,Ψj,k〉 |2(1 + 2j)2m ≤ Bm‖F‖22,1(5.3)

is obtained by applying a theorem of Stein (Theorem 3.6 in Chapter 4 of [4]) to the
operator R defined by

RF = (〈F,Ψj,k〉),
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which, as we have seen, can be regarded as a bounded operator between weighted
Hilbert spaces as follows:

R : L2(0,∞; (1 + t)(1−2θ)dt)→ `2((1 + 2j)(1−2θ))

for θ = 0 and 1. Hence, by Stein’s theorem, it is bounded for all intermediate values
of θ, and we can take B(1−2θ) ≤ B1−θ

1 Bθ−1.
The lower bound is now most simply obtained by duality between H2,m and

H2,−m. Namely, by Theorem 1.3 we can find a constant Cm > 0 such that ‖TF‖ ≥
Cm‖F‖ for each F ∈ H2,m. Then there exists a normalized vector G ∈ H2,−m such
that

| 〈TF,G〉 | ≥ Cm‖F‖2,m.

Hence, by the Cauchy–Schwarz inequality,∑
| 〈F,Ψj,k〉 |2(1 + 2j)2m

∑
| 〈G,Ψj,k〉 |2(1 + 2j)−2m ≥ C2

m‖F‖22,m

and so ∑
| 〈F,Ψj,k〉 |2(1 + 2j)2m ≥ C2

mB
−2
−m‖F‖22,m,

as required.

6. Wavelets for the half-plane algebra. An interesting class of wavelets is
obtained when p = 1 in section 1.3. That is, Ψ(y) = (1 + iy)−1 is the Cauchy kernel.
This wavelet does not fall under the Daubechies theory since is does not have vanishing
mean value, but the system Ψj,k does constitute a fundamental set for the half-plane
algebra A(C+), and so one can use the Cauchy kernel to obtain approximations in
the uniform norm. In [16] it was shown using the Hayman–Lyons theory that certain
sets of Cauchy kernels formed complete model sets in the disc algebra. By using
inequalities due to Borwein and Erdélyi [8] it was shown how these model sets could
be used for worst-case identification.

In this section we consider the half-plane analogue of the main results in [16]. Since
they are deduced from [16] by conformal mapping the proofs will be abbreviated.

Let D be the unit disc andA(D) = {f(z) : f(z) is analytic inD and continuous inD}
be the disc algebra. Next let Qj,k be the Whitney cube partition of D defined for
j = 1, 2, . . . and k = 1, 2, . . . , 2j by

Qj,k =
{
z : 1− 1

2j
≤ |z| ≤ 1− 1

2j+1 ,
2kπ
2j
≤ arg z ≤ 2(k + 1)π

2j

}
.

If A ⊂ D we set Aj,k = A ∩Qj,k and zj,k =
(
1− 1

2j
)

exp 2πik
2j . Finally, we define s(θ)

by

s(θ) = s(θ,A) =
∑

Aj,k 6=∅

(
1− |zj,k|
|zj,k − eiθ|

)2

.(6.1)

We say that A satisfies the Hayman–Lyons condition if, and only if, s(θ) = +∞ for
all θ ∈ [0, 2π]. In [16] the following result was established.
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THEOREM D. Suppose that A ⊂ D and that A satisfies the Hayman–Lyons con-
dition. Then if f ∈ A(D) and ε > 0, there exists λ1, . . . , λn ∈ C and a1, . . . , aN ∈ A
such that ∥∥∥∥∥f(z)−

N∑
k=1

λk
1

1− akz

∥∥∥∥∥
∞

< ε.

That is, the set W = {Cw(z) : w ∈ A}, where Cw(z) = (1 − wz)−1 is a fundamental
set for A(D).

Our next result is a half-plane version of Theorem D. Let A(C+) be the half-plane
algebra for C+, that is, the set of F (s) analytic in C+, continuous up to the imaginary
axis and such that limy→±∞ F (iy) exists. Plainly, the map Mz = (1 − z)(1 + z)−1

gives an isometric isomorphism between A(C+) and A(D).
THEOREM 6.1. Let C ′w(s) = (w+ s)−1 be the Cauchy kernel for C+ and L ⊂ C+

be the lattice

L = {Zj,k : <(Zj,k) = 2−j ,=(Zj,k) = k2−j , j, k ∈ Z}.

Then the set W = {1} ∪ {C ′w(iy) : w ∈ L} is a fundamental set for A(C). That is,
given F (s) ∈ A(C+) and ε > 0 there exists λ1, . . . , λN ,K ∈ C and w1, . . . , wN ∈ L
such that ∥∥∥∥∥F (s)−

N∑
k=1

λk
1

wk + s
−K

∥∥∥∥∥
∞

< ε.

We sketch the proof. We need to reformulate the Hayman–Lyons condition. Let
Q̃j,k be the Whitney cube division of C+ defined by

Q̃j,k =
{
s = x+ iy :

1
2j
≤ x ≤ 1

2j−1 ,
k

2j
≤ y ≤ (k + 1)

2j

}
.

For a set A in C+ let Aj,k = A ∩ Qj,k and Zj,k = Xj,k + iYj,k = 2−j + ik2−j .
It is easy to see by conformal transformation that the series in the Hayman–Lyons
condition (6.1) takes the form

S(iy) = S(iy, A) =
∑

Aj,k 6=∅

(
Xj,k

|Zj,k − iy|

)2

.

If iy is infinite S(∞) is defined by

S(∞) = S(∞, A) =
∑

Aj,k 6=∅

(
Xj,k

|Zj,k|

)2

.

It is then straightforward to show that if S(iy) = ∞ for all y in R where for each y
we sum over all those cubes Qj,k which meet a disc with center iy, that {C ′w(iy) :
w ∈ A} ∪ {1} is a fundamental set for A(C+). Suppose that G(s) ∈ A(C+). Then
G((1−z)(1+z)−1) ∈ A(D). Let A be the inverse image of A by (1−s)(1+s)−1. Then,
since the hyperbolic metric is conformally invariant it follows that s(eiθ,A) = +∞
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for θ ∈ [0, 2π], so that given ε > 0, there exists λ1, . . . , λN ∈ C and a1, . . . , aN ∈ A
such that ∥∥∥∥∥G

(
1− z
1 + z

)
−

N∑
k=1

λk
1

1− akz

∥∥∥∥∥
∞

< ε.(6.2)

Suppose that ak = (1− wk)(1 + wk)−1 and z = (1− s)(1 + s)−1. Then

1
1− akz

=
1 + s

(1− ak) + s(1 + ak)

=
1 + wk

2
(
1 + (1− wk)C ′wk(s)

)
.

Hence (6.2) takes the form∥∥∥∥∥G(s)−
N∑
k=1

λ′kC
′
wk

(s)−K
∥∥∥∥∥
∞

< ε.

Plainly, the lattice L satisfies the Hayman–Lyons condition for the right half-plane,
and so for A in the above argument we may take the lattice L and deduce that the
corresponding set of wavelets W is a fundamental set for A(C+)

Remark. The Hayman–Lyons condition can be formulated in a potential theoretic
way: let A ⊂ C+ and define the sequence A′j,k to be Aj,k if Aj,k 6= ∅ and ∅ otherwise.
Let Zj,k be a point in A′j,k and K(Zj,k, δ) be a hyperbolic ball with center Zj,k. Then
S(iy0, A) =∞ if the union of hyperbolic balls K(Zj,k, δ) is not minimally thin at iy0
(see [18] for more on this topic).

An interesting application of Theorem 6.1 is given to a problem in robust identifi-
cation. Here one is given corrupted frequency response measurements ak = F (iyk) +
ηk, k = 1, . . . , n, on the imaginary axis of an unknown function F (s) in the half-plane
algebra A(C+), where ηk is the measurement error (sometimes called noise, although
it could for example be due to deterministic effects such as nonlinearities), which is
assumed to be small (say, |ηk| ≤ ε) for each k. Then the intention is to produce
an approximate model F̃ ∈ A(C+) for F in such a way that the following robust
convergence condition is satisfied:

lim
n→∞
ε→0

sup
‖η‖≤ε

‖F̃ − F‖∞ = 0 for all F ∈ A(C+).(6.3)

An algorithm for reconstructing F (s) is given by applying the following result [38].
THEOREM E. Let X be a separable infinite-dimensional normed space over a field

F, and let {φk}∞k=1 be a uniformly bounded sequence of elements in the dual space X∗.
Then there exist maps Tn : F→ X such that

lim
n→∞
ε→0

sup
‖η‖≤ε

‖xn − x‖ = 0 for all x ∈ X,

with xn = Tn((φk(x) + ηk)nk=1), if and only if there exists δ > 0 with

sup |φk(x)| ≥ δ‖x‖ for all x ∈ X.

In order to implement Theorem E we first note that for φk we can take evaluation
functionals φk(F ) = F (iyk) and then we choose a complete model set {Xp}p≥1 for
A(C+); that is, a sequence of finite-dimensional subspaces {Xp}p≥1 of A(C+) which
satisfies the following two conditions:
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(i) X1 ⊂ X2 ⊂ X3 ⊂ · · · ,
(ii) ∪∞p=1Xp is dense in A(C+).
The vectors Tn(a1, . . . , an) are then constructed to be solutions Gp ∈ Xp of the

minimax problem:

s = min
G∈Xp

max
1≤k≤n

|φk(G)− ak|,

where ak = Fk(x) + ηk. Here p is chosen, depending on n, to be as large as possible
such that

max
1≤k≤n

|φk(G)| ≥ (δ/2)‖G‖∞ for all G ∈ Xp.

Since this optimization problem can be solved by linear programming, the computa-
tional burden is not excessive.

We have just shown in Theorem 6.1 that {Cw(iy) : w ∈ L} ∪ {1} is a complete
model set for A(C+), and we may for instance take Xp to be the finite-dimensional
space spanned by the set

{1} ∪ {C ′w(iy) : s = 2−j + ik2−j ,−p ≤ k ≤ p, 0 ≤ j ≤ p}.

On transforming to the disc, this subspace corresponds to a subspace X̃p of the disc
algebra spanned by Cauchy kernels Ca(z) = 1/(1 − āz), where the points a lie on a
finite lattice Lp, say. Now if w = u+ iv and a = (1− w)/(1 + w), then the following
identity holds:

1−
∣∣∣∣1− w1 + w

∣∣∣∣2 =
4|u|
|1 + w|2 ,

and this implies that the points of Lp are not too close to the unit circle. Specifically,
we easily obtain the uniform bound 1− |a|2 ≥ (2/3)2−p, which implies that the poles
of the functions in X̃p lie in the region {|z| ≥ R}, where (R+ 1)/(R− 1) ≤ 6.2p.

We may now use the Borwein–Erdélyi extension of Bernstein’s inequality which
applies to rational functions with poles in a region {|z| ≥ R}, namely,

‖g′‖∞ ≤ N
R+ 1
R− 1

‖g‖∞

where dim X̃p = N [8], and perform a calculation similar to that of [16] to show that,
provided that the interpolation points (iyk), k = 1, . . . , n(p), on the imaginary axis
are chosen so that the maximum gap ∆n between their images (1− iyk)/(1 + iyk) on
the unit circle is sufficiently small, one does indeed have

max |G(iyk)| ≥ (1/2)‖G‖∞ for all G ∈ Xp.

In the example we are considering this condition is satisfied if ∆n ≤ 1/(6N2p) and
N = 2p2 + 3p+ 3.

This means that the Cauchy kernels can be used as a complete model set for
identification purposes along the lines of [38, 16].

7. Error estimates. There is extensive literature on the model reduction of
infinite-dimensional linear systems, both in the H∞ norm [22, 23, 24, 26] and the H2

norm [25, 1]. Recent research has focused on two approaches which can be applied
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to a wide class of systems. First, there is the use of orthogonal basis functions such
as Laguerre and Kautz models [26, 31, 37, 27, 43] where the poles normally lie in a
fixed finite set. Second, there is the approach based on rational wavelets [39, 40, 15]
where the poles lie on some appropriate infinite lattice, and this is the approach we
have adopted in this paper.

In order to illustrate the techniques involved, we shall consider the class of re-
tarded delay systems in the sense of Bellman and Cooke [3]. These have perhaps the
simplest irrational transfer functions that occur frequently and, unlike the transfer
functions obtained from partial differential equations, tend to be difficult to approxi-
mate efficiently. Other examples, the discrete-time fractional filters, were considered
by analogous methods in [15], and delay systems were considered by transforming
them to the disc.

In this section we shall specialize to delay systems of the form R(s)e−sT , R(s)
rational, because the results on approximation of such systems have a particularly
simple form. However, general retarded delay systems (of the form N(s)/D(s) where
N and D are sums of terms of the form p(s)e−Ts with p a polynomial and T > 0)
can be analyzed by similar means (the techniques for decomposing such systems can
be found in [23, 25, 37]).

For a delay system of the form G(s) = R(s)e−sT , where R(s) is asymptotic to
Cs−k at infinity, the following approximation results are known [22, 23, 24, 25].

There exist constants A, B > 0 such that the minimal achievable error in H∞

and H2 rational approximation by degree-n systems satisfies

An−k ≤ E∞n (G) ≤ Bn−k

and

An−k+1/2 ≤ E2
n(G) ≤ Bn−k+1/2.

This implies immediately that the H2,1 error must satisfy

E2,1
n (G) ≥ An−k+1/2,

but it seems that a tight upper estimate is not known.
Now if we consider the integral operator Ω on L2(0,∞) defined by

(Ωu)(t) =
∫ ∞

0
w(t)h(t+ τ)w(τ)u(τ) dτ,(7.1)

where w is a suitable weight function, then its rank is the same as the rank of the
usual Hankel operator and its Hilbert–Schmidt norm squared is∫ ∞

t=0

∫ ∞
τ=0
|w(t)|2|h(t+ τ)|2|w(τ)|2 dt dτ,

which equals ∫ ∞
r=0

∫ r

t=0
|w(t)|2|h(r)|2|w(r − t)|2 dt dr.

Choosing w(t) =
√

(2
√
t+ b/

√
t) gives a Hilbert–Schmidt norm squared of∫ ∞

0
(r2 + 4br + 2b2)|h(r)|2π/2 dr,
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since one has∫ r

0
(2
√
t+ b/

√
t)(2
√
r − t+ b/

√
r − t) dt = (r2 + 4br + 2b2)π/2.

We do not know a weight w such that∫ r

0
|w(t)|2 |w(r − t)|2 dt = (r + 1)2,

or even r2 + 1, but by choosing b = 1/
√

2 we have the bounds

(r + 1)2 ≤ r2 + 4br + 2b2 ≤ (1/2 + 1/
√

2)(r + 1)2

for r ≥ 0, and so we have the fairly tight inequality

(π/2)‖h‖22,1 ≤ ‖Ω‖2HS ≤ ((
√

2 + 1)π/4)‖h‖22,1,

with corresponding bounds for rational approximation errors in theH2,1 norm. Namely,
if the singular values of Ω are (ωr)r≥1, then we have the following error bound for
‖h− hn‖2,1 when hn is the impulse response of any degree-n system and corresponds
to an operator Ωn of rank n:

‖h− hn‖22,1 ≥ C‖Ω− Ωn‖2HS

≥ C
∞∑

r=n+1

ω2
r ,

where C = 4(
√

2− 1)/π. Similar weighted Hankel integral operators were considered
in [25] for the purposes of estimating error bounds in L2 approximation, and in [11]
for the purposes of estimating the singular values of Hankel operators on Bergman
spaces. Here we have the additional complication that it does not seem possible to
choose w in closed form so that the Hilbert–Schmidt norm of Ω and the H2,1 norm
of h are equal, although we can obtain equivalence of norms.

The following result generalizes both Theorem 3.2 of [25] and Lemma 14 of [11].
It applies directly to transfer functions of the form (e−sT − 1)/s with T > 0, and, by
standard decomposition techniques [37], to many other delay systems.

THEOREM 7.1. Let w(t) be a smooth positive function in L2(0, T ) and let h(t) =
χ[0,T ](t). Then the singular values of the scaled Hankel operator Ω defined by (7.1)
satisfy rωr → J(w), where

J(w) =
1
π

∫ T

0
w(t)w(T − t) dt.

Proof. The proof here is a simple modification of the proof given in [25], so we
shall omit many of the details. The operator Ω is self-adjoint and solving for its
eigenvalues leads directly to the Sturm–Liouville differential equation

d

dt

(
v′(t)

w(T − t)2

)
+
v(t)w(t)2

λ2 = 0,

with boundary conditions v(T ) = 0 = v′(0). Analysis of this equation by the
Liouville–Green method [33, 35] shows that its eigenvalues are asymptotic to those
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of the equation z′′ + z/λ2 over the interval [0, X] with boundary conditions z(0) =
z(X) = 0, where

X =
∫ T

0
w(t)w(T − t) dt,

and this gives the result.
Unfortunately, for the weights w considered above, the integral J(w) cannot be

obtained in closed form, although it can be estimated numerically.
We conclude this section with a further result which applies particularly to delay

systems, and can be regarded as an appendix to Theorem 1.1 above. There we
considered the wavelet coefficients 〈F,Ψj,k〉 for F ∈ H2,1 regarded as functions of j.
It would clearly be useful to be able to estimate them as functions of k as well (so that
an infinite series could be truncated to a finite sum by discarding the less significant
terms) and this is what we now do.

LEMMA 7.2. Suppose that f(y), g(y) ∈ L2(R) satisfy |f(y)| ≤ A|y|−m and |g(y)| ≤
B|y − C|−n, where m, n > 1/2 and C > 0. Then the following inequality holds:

〈f, g〉 ≤ B‖f‖2√
2n− 1(C/2)n−1/2

+
A‖g‖2√

2m− 1(C/2)m−1/2
.

Proof. Using the Cauchy–Schwarz inequality we have, for any r with 0 < r < C,

〈f, g〉 ≤ ‖f‖2
(∫ r

−∞
|g(y)|2 dy

)1/2

+ ‖g‖2
(∫ ∞

r

|f(y)|2 dy
)1/2

,

and this easily gives the result when we take r = C/2.
The conditions of the following theorem will apply to any strictly proper delay

system, and one can always take m ≥ 1. Clearly, the result is of greatest use when
j < 0, because then we obtain a good approximation with fewer translates Ψj,k.

THEOREM 7.3. Let Ψ(y) = (1 + iy)−3 and let Ψj,k(y) = 2j/2Ψ(2jy − kb0) where
j, k ∈ Z, and let 〈·, ·〉 be the usual L2-inner product.

Suppose that |F (iy)| ≤ A|y|−m, where m > 1/2. Then for k 6= 0 the wavelet
coefficients 〈F,Ψj,k〉 satisfy

〈F,Ψj,k〉 ≤
25/2‖f‖2√
5|kb0|5/2

+
A‖Ψ‖2√

2m− 1(|kb0|2−j−1)m−1/2
.

Proof. Clearly, we may assume without loss of generality that k > 0. We now
apply Lemma 7.2, with g = Ψj,k, noting that ‖Ψj,k‖2 = ‖Ψ‖2 and that

|Ψj,k(y)| ≤ 2−5j/2|y − kb02−j |−3.

8. Applications to system modeling. It is desired to approximate an infinite-
dimensional model by a finite-dimensional model in the Hardy–Sobolev norm. That
is, given a transfer function in H2,1, we desire to approximate F (s) by a degree n
rational function. The framework developed in this paper gives a method by which
we can approximate F (s) by a sum of degree 3 rational functions.

In order to implement the techniques of Theorems 1.2 or 1.3 in the model re-
duction of a transfer function in the Hardy–Sobolev space H2,1, we present three
algorithms.
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ALGORITHM 1. This is based on Theorem 1.2 and a matching pursuit (MP)
algorithm of Mallat and Zhang [32]. With Ψ(y) as in Theorem 1.2, it follows that the
linear span of the collection D = {Ψj,k(y) : j, k ∈ Z} is dense in H2,1. Let 〈·, ·〉2,1 be
the H2,1-inner product. Take 0 < α ≤ 1 and F1 ∈ H2,1. Choose Ψj1,k1(y) such that

| 〈F1,Ψj1,k1〉2,1 | ≥ α sup
Ψj,k∈D

| 〈F1,Ψj,k〉2,1 |.

There exists F2 in the orthogonal complement of the subspace spanned by Ψj1,k1 with
F1 = 〈F1,Ψj1,k1〉2,1 Ψj1,k1 + F2. Next we choose Ψj2,k2 ∈ D such that

| 〈F2,Ψj2,k2〉2,1 | ≥ α sup
Ψj,k∈D

| 〈F2,Ψj,k〉2,1 |.

There exists F3 in the orthogonal complement of the subspace spanned by Ψj2,k2 with
F2 = 〈F2,Ψj2,k2〉2,1 Ψj2,k2 + F3. Proceeding in this manner we obtain a sequence
{Ψjn,kn}∞n=1 and a sequence of residual vectors {Fn}∞n=1 such that

Fn = 〈Fn,Ψjn,kn〉2,1 Ψjn,kn + Fn+1

and

‖Fn‖22,1 = | 〈Fn,Ψjn,kn〉2,1 |
2 + ‖Fn+1‖22,1.

Therefore,

F1 =
m−1∑
n=1

(Fn − Fn+1) + Fm

=
m−1∑
n=1

〈Fn,Ψjn,kn〉2,1 Ψjn,kn + Fm,

and

‖F1‖22,1 =
m−1∑
n=1

(‖Fn‖22,1 − ‖Fn+1‖22,1) + ‖Fm‖22,1

=
m−1∑
n=1

| 〈Fn,Ψjn,kn〉2,1 |
2 + ‖Fm‖22,1.

Mallat and Zhang (Theorem 1, [32]) prove that ‖Fm‖2,1 → 0, and so

F1 =
∞∑
n=1

〈Fm,Ψjn,kn〉2,1 Ψjn,kn

and ‖F1‖22,1 =
∑∞
n=1 | 〈Fn,Ψjn,kn〉2,1 |2.

ALGORITHM 2. This is an adaptation of Algorithm 1. MP may converge some-
what slowly (see [15, section 4.2]), but it is possible to adapt it so that we obtain
geometric convergence in the H2,1 norm by projecting onto larger subspaces. For
example, let Vn = span{Ψj,k : −n ≤ j ≤ n,−2n ≤ k ≤ 2n} and let PVn be the
projection onto Vn in the L2 norm. Let 〈·, ·〉 denote the L2-inner product.
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To proceed with the algorithm fix a positive ε and F1 ∈ H2,1. By Theorem 1.1
we may choose n1 so large that

(A1 − ε)‖F1‖22,1 ≤
∑

|k|,|j|≤n1

| 〈F1,Ψj,k〉 |2(1 + 2j)2.(8.1)

The vector F2 = F1 − PVn1
F1 is orthogonal to Vn1 in L2 and so 〈F2,Ψj,k〉 = 0.

Therefore 〈F1,Ψj,k〉 =
〈
PVn1

F1,Ψj,k

〉
, |j|, |k| ≤ n1. Therefore, by (8.1) and Theorem

1.1, we have

(A1 − ε)‖F1‖22,1 ≤
∑

|k|,|j|≤n1

|
〈
PVn1

F1,Ψj,k

〉
|2(1 + 2j)2 ≤ B1‖PVn1

F1‖22,1.

Thus B1‖PVn1
F1‖22,1 ≥ (A1−ε)‖F1‖22,1. Increasing n1 if necessary, we obtain similarly

that B1‖PVn1
F1‖22,1 ≥ (A1 − ε)‖PVn1

F1 − F2‖22,1. By the parallelogram law we have

‖F2‖22,1 + ‖PVn1
F1‖22,1 =

1
2

(‖F1‖22,1 + ‖PVn1
F1 − F2‖22,1).

Therefore

‖F2‖22,1 ≤
(

1
2
−
(

1− B1

2(A1 − ε)

)
(A1 − ε)
B1

)
‖F1‖22,1

=
(

1− (A1 − ε)
B1

)
‖F1‖22,1.(8.2)

With the same ε and F1 replaced by F2 we repeat the procedure. Continuing in this
manner we obtain a sequence {Fk}k≥1 such that Fk = PVnkFk + Fk+1, where the
PVnkFk and Fk+1 are orthogonal in the L2 norm and such that

‖Fk+1‖22,1 ≤
(

1− A1 − ε
B1

)k
‖F1‖22,1.

In (8.2) we have assumed b0 is chosen so that B1 < 2A1. We may take, for example,
b0 = 0.5 and estimate by computer A1 = 4.503 and B1 = 6.789.

Remark. It is perhaps surprising that the algorithm given is based on taking
projections in the L2 norm and obtaining an expansion which converges in the Hardy–
Sobolev norm.

ALGORITHM 3. This is based on ideas in Theorem 1.3. Since the operator TF
is not a positive operator on H2,1 it does not follow immediately that we can choose
some constant K such that ‖I −KT‖2,1 < 1. However, using a simple manipulation
of Daubechies’ techniques one may establish the following elementary result.

PROPOSITION 8.1. Let Ψj,k be as in Theorem 1.3, and

RF = F −K
∑
j,k

〈F,Ψj,k〉Ψj,k, F ∈ H2,1.

Define

m = inf
0<t<∞

∑
j

|ψ(2−jt)|2, M = sup
0<t<∞

∑
j

|ψ(2−jt)|2,

β1(s) = sup
0<t<∞

(1 + t)−2
∑
j

|ψ(2−jt)||ψ(2−jt− s)|,

β2(s) = sup
0<t<∞

(1 + t)2
∑
j

|ψ(2−jt)||ψ(2−jt+ s)|.
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If K = b0/π(m+M), then

‖RF‖2,1 ≤
M −m+ 2

∑
k 6=0

{
β1

(
2π
b0
k
)
β2

(
2π
b0
k
)}1/2

m+M
‖F‖2,1.

Proof. The proof follows the lines of the proof of Theorem 1.3, and so the details
are only sketched. We let G belong to H2,−1 and estimate the modulus of

〈RF,G〉 = 〈Rf, g〉

= 〈f, g〉 −K
∑
j,k

〈f, ψj,k〉 〈g, ψj,k〉

=
∫ ∞

0
f(t)g(t)dt− 2πK

b0

∑
j

∫ ∞
0

f(t)g(t)|ψ(2−jt)|2dt+ rest(f, g)


=
∫ ∞

0
f(t)g(t)

1− 2πK
b0

∑
j

|ψ(2−jt)|2
 dt+ rest(f, g).(8.3)

Analyzing the rest term we obtain with β1(s) and β2(s) defined above that

| rest(f, g)| ≤ 2π
b0

∑
k 6=0

{
β1

(
2π
b0
k

)
β2

(
2π
b0
k

)}1/2

‖f‖2,1‖g‖2,−1.(8.4)

Therefore, substituting (8.4) into (8.3), we deduce

‖RF‖2,1 ≤

1− 2πK
b0

m−∑
k 6=0

{
β1

(
2π
b0
k

)
β2

(
2π
b0
k

)}1/2
 ‖F‖2,1.

With K = b0/2π(m+M) we obtain the conclusion of the proposition.
In a forthcoming paper it is intended to present some numerical results on the

model reduction of several systems using the methods which appear in this study.
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Abstract. Sliding modes are used to analyze a class of dynamical systems that solve convex
programming problems. The analysis is carried out using concepts from the theory of differential
equations with discontinuous right-hand sides and Lyapunov stability theory. It is shown that the
equilibrium points of the system coincide with the minimizers of the convex programming problem,
and that irrespective of the initial state of the system the state trajectory converges to the solution
set of the problem. The dynamic behavior of the systems is illustrated by two numerical examples.

Key words. sliding modes, differential inclusions, convex programming, stability, continuous
algorithms, gradient system
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1. Introduction. Most of the traditional methods for solving constrained opti-
mization problems are iterative algorithms [17]. However, over the past two decades
considerable effort has been given to developing continuous-time methods for solving
constrained optimization problems. The impetus for much of the early development
in this area was a desire to solve constrained optimization problems using an elec-
tronic analog computer. Perhaps the first to develop a continuous-time algorithm was
Pyne [18], who in 1956 proposed a method for solving linear programming problems
using an electronic analog computer. Soon after, other methods [12, 21, 22] were
proposed for solving various mathematical programming problems on an electronic
analog computer. More recently, a class of analog systems known as artificial neural
networks have been used to solve certain constrained optimization problems; see, for
example, [3, 4, 13, 15, 16, 19, 23]. Many of these networks are suitable for mono-
lithic implementation and are thus well suited for applications that require on-line
optimization.

An approach commonly used in developing analog optimizers is to first convert
the constrained optimization problem into an associated unconstrained optimization
problem, and then design an analog network that solves the unconstrained problem.
Such a network is typically an implementation of the dynamic gradient system for
minimizing the objective function of the unconstrained problem. (See [6, 9, 8, 11, 14,
5] and references therein for other continuous-time methods for solving constrained
optimization problems.)

One method for converting a constrained optimization problem into an uncon-
strained optimization problem is the penalty function method [17]. The idea behind
the penalty function method is to replace the constrained optimization problem

minimize f(x)
subject to x ∈ Ω
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with an unconstrained problem of the form

minimize f(x) + ζp(x),

where f : Rn → R is continuous on Rn, Ω ⊂ Rn, ζ is a positive constant, and
p : Rn → R is continuous on Rn and satisfies

(i) p(x) ≥ 0 for all x ∈ Rn

and

(ii) p(x) = 0 if and only if x ∈ Ω.

If for a finite value of the penalty parameter ζ the solution of the unconstrained
problem coincides with the solution of the constrained problem, then the penalty
function p is said to be exact. Bertsekas [2] has shown that except for trivial cases
an exact penalty function must not be everywhere differentiable. Quite often we
can find an exact penalty function that results in the function f(x) + ζp(x) being
piecewise smooth. However, the dynamic gradient system for such a function will
have a discontinuous right-hand side. As such, an analysis of its behavior cannot
be carried out using only methods derived from the classical theory of differential
equations. Rather, the analysis of the system must be carried out using other methods,
for example, those reported in [7, 1]. Such an approach was taken by Karpinskaya [12],
and more recently by Utkin [25] and Żak et al. [27], among others.

Rodŕıguez-Vázquez et al. [19] proposed a class of neural networks for optimization
problems whose design is based on concepts from the penalty function method. This
class of optimizers is particularly attractive for two reasons. First, their design does
not require the calculation of a penalty parameter. Second, these networks can be
realized using switched-capacitor technology, and thus are suitable for monolithic
implementation. In light of these properties we feel that a rigorous analysis of the
dynamics of these systems is in order. Since such an analysis is not provided in [19],
we do so here.

In this paper we perform an analysis of the dynamics of the analog networks
proposed in [19] when applied to a broad class of convex programming problems. The
paper is organized as follows. The statement of the problem is given in section 2. The
main results of the paper are presented in section 3. In section 4 we illustrate the
dynamic behavior of the analyzed networks by presenting the results of two computer
simulations. Concluding remarks are offered in section 5.

2. Problem statement. We consider the constrained optimization problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,(1)

where x ∈ Rn, f : Rn → R, and gi : Rn → R, i = 1, 2, . . . ,m. Before proceeding
further we first introduce some notation. We let Ω denote the feasible region for
problem (1); that is,

Ω =
m⋂
i=1

{x : gi(x) ≤ 0} .

The collection of all interior points of Ω is denoted by Ωo, and the boundary points
of Ω are denoted by ∂Ω. Also, we define

∆i = {x : gi(x) = 0} , i = 1, 2, . . . ,m,
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and

∆ =
m⋃
i=1

∆i.

We let Γ denote the collection of all relative minimizers of problem (1). Lastly, we
introduce the index sets

I(x) = {i : gi(x) = 0}

and

J(x) = {i : gi(x) > 0} .

We assume the following.
A1. The sets {x : gi(x) > 0}, i = 1, 2, . . . ,m, are all nonempty.
A2. The functions f and gi, i = 1, 2, . . . ,m, are convex over Rn and have contin-

uous first partial derivatives on Rn; that is, f ∈ C1 and gi ∈ C1, i = 1, 2, . . . ,m.
A3. The set Ω is nonempty and bounded.
A4. The constraints are everywhere regular; that is, the vectors ∇gi(x), i ∈ I(x),

are linearly independent for any x ∈ Rn.
Remark 1. Note that there is no loss of generality by assuming A1. Indeed, when

treating a constrained optimization problem we can simply ignore any constraints
that are satisfied everywhere.

Remark 2. It follows from A2 that problem (1) is a convex programming problem.
Specifically, by A3, we are asked to minimize a convex function f over a compact
convex set Ω.

Remark 3. It follows from A1–A4 that
1. the sets {x : gi(x) < 0}, i = 1, 2, . . . ,m, are all nonempty;
2. the points in ∆i define a smooth (n − 1)-dimensional surface in Rn that

separates the regions {x : gi(x) > 0} and {x : gi(x) < 0}, i = 1, 2, . . . ,m;
3. Ωo =

⋂m
i=1 {x : gi(x) < 0}, ∂Ω = Ω ∩∆, and both Ωo and ∂Ω are nonempty.

The class of analog networks proposed by Rodŕıguez-Vázquez et al. [19] for solving
problem (1) is modeled by

τ ẋ(t) = h(x(t))

=
{
−µ
∑
i∈J(x(t))∇gi(x(t)) if x(t) /∈ Ω,
−∇f(x(t)) if x(t) ∈ Ω,

(2)

x(t0) = x0,

where τ and µ are positive design constants. Observe that the function h is piecewise
continuous over Rn and, in general, discontinuous on the surfaces ∆1,∆2, . . . ,∆m.
As such, our analysis must use methods from the theory of differential equations with
discontinuous right-hand sides. Here, as in [7], we take a solution of (2) to be a
solution of the differential inclusion

τ ẋ(t) ∈ H(x(t)),(3)

where for each x, H(x) is the smallest closed convex set containing the cluster values
of the function h(y) as y → x, y /∈ ∆. That is, a solution of (2) is an absolutely con-
tinuous function x(t) defined on an interval or segment L for which τ ẋ(t) ∈ H(x(t))
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almost everywhere on L [7]. Observe that if the function h is continuous at a point
x, that is, x /∈ ∆, then H(x) consists of a single point, namely h(x), and the solution
satisfies (2) in the usual sense. However, if x ∈ ∆, then x lies on one or more of
the surfaces ∆1,∆2, . . . ,∆m. Denoting the elements of I(x) by i1, i2, . . . , ik it follows
from A4 that for sufficiently small δ > 0 the surfaces ∆i1 ,∆i2 , . . . ,∆ik partition the
δ-neighborhood of x into 2k regions, R1,R2, . . . ,R2k , in each of which the function h
is continuous. Let hj denote the function h restricted to the region Rj . Then, H(x)
is the smallest closed convex set containing the set

2k⋃
j=1

∞⋂
n=1

hj

({
y ∈ Rj : ‖y − x‖ ≤ 1

n

})
.

We note that a rigorous justification for using (3) to analyze the behavior of
system (2), as well as theorems guaranteeing the existence of solutions of system
(2), is provided in [7, Chapter 2]. We also point out that differential inclusions are
also used in continuous-time algorithms for solving nonsmooth convex programming
problems; see, for example, [9, 8].

Our goal is to show that the solution set, Γ, of the optimization problem (1)
is precisely the set of equilibrium points of system (2), and that all trajectories of
system (2) converge to Γ, where convergence is understood in the sense of the following
definition.

DEFINITION 1. A trajectory x : [t0,∞) → Rn is said to converge to the solution
set, Γ, if

lim
t→∞

d(x(t),Γ) = 0,

where

d(x,Γ) = inf
y∈Γ
‖x− y‖2.

Recalling the well-known result that any relative minimizer of a convex program-
ming problem is a global minimizer, it then follows from A2 and A3 that Γ is both
closed and bounded. Therefore, the infimum in Definition 1 is achieved; that is,

d(x,Γ) = min
y∈Γ
‖x− y‖2.

3. Main results. In this section we show that the equilibrium points of system
(2) coincide with the minimizers of problem (1), and that all trajectories of system (2)
converge to the solution set, Γ, of problem (1). Before proceeding further, we make
a remark concerning the analysis of system (2). A phenomenon commonly occurring
in systems such as (2) is the so-called sliding mode, where the motion of the system
is confined to one or more of the discontinuity surfaces—see [14, 24, 25] for accounts
of sliding modes and their applications in control and optimization. Consequently,
we must consider two cases when analyzing the dynamic behavior of system (2). The
first case is when the motion of the system is not confined to any of the surfaces
∆1,∆2, . . . ,∆m. The second case is when the system is in a sliding mode on one or
more of the surfaces ∆1,∆2, . . . ,∆m. We only need to consider these two cases, for
every trajectory of system (2) is composed of these two types of motion. Namely,
every trajectory x(t) of system (2) can be broken up over a countable number of
intervals, (t0, t1), (t1, t2), (t2, t3), . . ., on each of which both index sets I(x(t)) and
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J(x(t)) are constant. If I(x(t)) is not empty, then the system is in a sliding mode on
that interval, and if I(x(t)) is empty, then the system is not in a sliding mode.

We begin our analysis by introducing the function V : Rn → R as

V (x) =
m∑
i=1

max {gi(x), 0} ,

or equivalently,

V (x) =
{ ∑

i∈J(x) gi(x) if x /∈ Ω,
0 if x ∈ Ω.

(4)

Remark 4. It follows from A2 that the function V is continuous and convex on
Rn. Also, by definition, V (x) > 0 for all x /∈ Ω, and V (x) = 0 for all x ∈ Ω.

We first show that every trajectory of system (2) reaches the feasible region Ω in
finite time, and is thereafter confined to Ω. To prove the claim we need the following
technical result.

LEMMA 1. V is a decreasing function of time when evaluated on any trajectory
of system (2).

Proof. Let x : [t0,∞) → Rn be any particular trajectory of system (2). It
follows directly from Remark 4 and the fact that x(t) is absolutely continuous that
to prove the lemma it is enough to show that d

dtV (x(t)) ≤ 0 almost everywhere
on {t : x(t) /∈ Ω}. As noted earlier, we must consider two cases when analyzing the
dynamic behavior of system (2).

Case 1. Suppose that on the interval (tl−1, tl) the trajectory x(t) does not inter-
sect Ω or any of the surfaces ∆1,∆2, . . . ,∆m; that is,

x(t) /∈ Ω ∪∆ for all t ∈ (tl−1, tl).(5)

Given t′ ∈ (tl−1, tl), let Ṽ : Rn → R be the function defined as

Ṽ (x) =
∑

i∈J(x(t′))

gi(x).

It follows from (5) and the fact that x(t) is absolutely continuous that I(x(t)) = ∅
and J(x(t)) = J(x(t′)) 6= ∅ for all t ∈ (tl−1, tl). Thus, on the interval (tl−1, tl), the
trajectory x(t) must satisfy (2) in the usual sense; that is,

τ ẋ(t) = −µ∇Ṽ (x(t))

almost everywhere on the interval (tl−1, tl). Also, it follows from (4) that V (x(t)) =
Ṽ (x(t)) for all t ∈ (tl−1, tl). Applying the chain rule yields

d

dt
V (x(t)) = −µ

τ

www∇Ṽ (x(t))
www2

2
(6)

almost everywhere on the interval (tl−1, tl). This concludes the analysis for the first
case.

Case 2. Suppose that on the interval (tl−1, tl) the trajectory x(t) is confined to
one or more of the surfaces ∆1,∆2, . . . ,∆m and does not intersect Ω. Specifically,
suppose there exist nonempty index sets Ĩ and J̃ such that

(i) I(x(t)) = Ĩ for all t ∈ (tl−1, tl), and
(ii) J(x(t)) = J̃ for all t ∈ (tl−1, tl).
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Let i1, i2, . . . , ik denote the elements of Ĩ, and let S denote the surface to which the
trajectory x(t) is confined on the interval (tl−1, tl); that is,

S =
⋂
i∈Ĩ

∆i.

As in Case 1, let

Ṽ (x) =
∑
i∈J̃

gi(x).

We next define the function G̃ : Rn → Rn×k as

G̃(x) =
[
∇gi1(x) ∇gi2(x) · · · ∇gik(x)

]
.

We note that it follows from A4 that G̃(x) is of full rank for any x ∈ S. Given
t′ ∈ (tl−1, tl), it follows from A4 and (i) above that for sufficiently small δ > 0 the
surfaces ∆i1 ,∆i2 , . . . ,∆ik partition the δ-neighborhood of x(t′) into 2k regions, in
each of which the function h is continuous. One can show that H(x(t′)) is the set of
all vectors w having the form

w = −µ∇Ṽ (x(t′))− µ
2k−1∑
j=0

αjG̃(x(t′))uj ,(7)

where αj ≥ 0, j = 0, 1, . . . , 2k − 1,

2k−1∑
j=0

αj = 1,

and uj ∈ Rk, j = 0, 1, . . . , 2k − 1, are defined as

u0 =
[

0 0 0 · · · 0 0 0
]T
,

u1 =
[

0 0 0 · · · 0 0 1
]T
,

u2 =
[

0 0 0 · · · 0 1 0
]T
,

u3 =
[

0 0 0 · · · 0 1 1
]T
,

...
u2k−3 =

[
1 1 1 · · · 1 0 1

]T
,

u2k−2 =
[

1 1 1 · · · 1 1 0
]T
,

u2k−1 =
[

1 1 1 · · · 1 1 1
]T
.

Let T (x) denote the tangent plane to the surface S at the point x. Observe that
ẋ(t) ∈ T (x(t)) almost everywhere on the interval (tl−1, tl) because the trajectory
x(t) is confined to the surface S on the interval (tl−1, tl). Thus, x(t) is an absolutely
continuous function that satisfies

τ ẋ(t) ∈ H(x(t)) ∩ T (x(t))

almost everywhere on the interval (tl−1, tl). We note that since the trajectory x(t)
is confined to the surface S on the interval (tl−1, tl), the set H(x(t)) ∩ T (x(t)) is
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by assumption nonempty for all t ∈ (tl−1, tl). In particular, we see that H(x(t′)) ∩
T (x(t′)) is the set of all vectors w that have the form (7) and also lie on the tangent
plane T (x(t′)). Observe, however, that

2k−1∑
j=0

αjG̃(x(t′))uj ∈ span
{
∇gi(x(t′)) : i ∈ Ĩ

}
and thus is orthogonal to T (x(t′)). Therefore, the set H(x(t′)) ∩ T (x(t′)) contains
exactly one element, namely, the orthogonal projection of the vector −µ∇Ṽ (x(t′)) on
the tangent plane T (x(t′)). Hence, for each t ∈ (tl−1, tl) the set H(x(t)) ∩ T (x(t))
contains exactly one element, and thus ẋ(t) is uniquely determined almost everywhere
on the interval (tl−1, tl). Specifically,

τ ẋ(t) = −µPx(t)∇Ṽ (x(t))

almost everywhere on the interval (tl−1, tl), where Px is the orthogonal projector
onto the tangent plane T (x); that is,

Px = In − G̃(x)
(
G̃
T

(x)G̃(x)
)−1

G̃
T

(x),

where In denotes the n × n identity matrix. Note that from (4) and (ii) above,
V (x(t)) = Ṽ (x(t)) for all t ∈ (tl−1, tl). Applying the chain rule yields

d

dt
V (x(t)) = −µ

τ
∇T Ṽ (x(t))Px(t)∇Ṽ (x(t))

almost everywhere on the interval (tl−1, tl). Observing that

Px = P T
x = P 2

x,

we conclude that
d

dt
V (x(t)) = −µ

τ

wwwPx(t)∇Ṽ (x(t))
www2

2
(8)

almost everywhere on the interval (tl−1, tl). This completes the analysis for the second
case.

It follows directly from (6) and (8) that d
dtV (x(t)) ≤ 0 almost everywhere on

{t : x(t) /∈ Ω}. This completes the proof of the lemma.
Before stating the next result we introduce the following notation. For y ∈ Rn

and r > 0, we let B(y, r) denote the open ball with center y and radius r; that is,

B(y, r) = {x : ‖x− y‖2 < r} .

THEOREM 1. Every trajectory of system (2) reaches the feasible set, Ω, in finite
time and is thereafter confined to Ω.

Proof. Let x : [t0,∞) → Rn be any particular trajectory of system (2). To
prove the theorem, we must show that there exists a number TΩ(x0) ≥ t0 such that
x(t) ∈ Ω for all t ≥ TΩ(x0). It follows from Remark 4 and Lemma 1 that TΩ(x0) = t0
if x0 ∈ Ω. We now consider the case when x0 /∈ Ω. Once again, we need to consider
two cases when analyzing the dynamic behavior of system (2). In the proof, we use
the fact that the sublevel set

{x : V (x) ≤ a}

is bounded for any a ∈ R (see, for example, [25, p. 229]).
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Case 1. Consider again the analysis presented in Case 1 of the proof of Lemma
1. By the boundedness of the sublevel sets of V , there exist y ∈ Ωo and r(x0) > 0
such that

B(y, r(x0)) ⊃ {x : V (x) ≤ V (x0)} .

Observe that by A2, the function Ṽ is convex over Rn and has continuous first partial
derivatives on Rn. Consequently, the inequality

∇T Ṽ (x(t)) (x(t)− y) ≥ Ṽ (x(t))− Ṽ (y)(9)

is satisfied for all t ∈ (tl−1, tl). Applying the Cauchy–Schwarz inequality to (9) yieldswww∇Ṽ (x(t))
www

2
‖x(t)− y‖2 ≥ Ṽ (x(t))− Ṽ (y)(10)

for all t ∈ (tl−1, tl). We see from Remark 3 that Ṽ (y) < 0. Also, by definition,
Ṽ (x(t)) > 0 for all t ∈ (tl−1, tl). Combining these two facts together with (10), we
conclude that www∇Ṽ (x(t))

www
2
≥ − Ṽ (y)
‖x(t)− y‖2

(11)

for all t ∈ (tl−1, tl). It follows from the fact that B(y, r(x0)) ⊃ {x : V (x) ≤ V (x0)}
and from Lemma 1 that x(t) ∈ B(y, r(x0)) for all t ∈ (tl−1, tl). Hence, ‖x(t)−y‖2 ≤
r(x0) for all t ∈ (tl−1, tl). This fact, together with (11), implies thatwww∇Ṽ (x(t))

www
2
≥ − Ṽ (y)

r(x0)
(12)

for all t ∈ (tl−1, tl). Now let η̃(x0) be the positive constant defined as

η̃(x0) =
µ

τ

(
Ṽ (y)
r(x0)

)2

.(13)

Then, it follows from (6), (12), and (13) that

d

dt
V (x(t)) ≤ −η̃(x0)(14)

almost everywhere on the interval (tl−1, tl). However, (14) combined with the fact
that there is a finite number of constraints, that is, m is finite, implies the existence
of a number η1(x0) > 0 such that

d

dt
V (x(t)) ≤ −η1(x0)(15)

almost everywhere on {t : x(t) /∈ Ω ∪ ∆}. This concludes the analysis for the first
case.

Case 2. Consider again the analysis presented in Case 2 of the proof of Lemma
1. By the boundedness of the sublevel sets of V , there exist y ∈ Ωo and r(x0) > 0
such that

B(y, r(x0)) ⊃ {x : V (x) ≤ V (x0)} .
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Following the argument of our analysis for Case 2 of the proof of Lemma 1, we conclude
that there exist nonnegative constants βi1 , βi2 , . . . , βik , such that

Px(t′)∇Ṽ (x(t′)) = ∇Ṽ (x(t′)) +
∑
j∈Ĩ

βj∇gj(x(t′)).(16)

Let V̂ : Rn → R be the function defined as

V̂ (x) = Ṽ (x) +
∑
j∈Ĩ

βjgj(x).

By virtue of A2, the function V̂ is convex over Rn and has continuous first partial
derivatives on Rn. Using arguments similar to those used in Case 1, we havewww∇V̂ (x(t′))

www
2
≥ − Ṽ (y)

r(x0)
.

It then follows from (16) and the definition of V̂ thatwwwPx(t)∇Ṽ (x(t))
www

2
=
www∇V̂ (x(t))

www
2
≥ − Ṽ (y)

r(x0)

for all t ∈ (tl−1, tl). As in Case 1, we conclude that there exists a number η2(x0) > 0,
such that

d

dt
V (x(t)) ≤ −η2(x0)(17)

almost everywhere on {t : x(t) ∈ ∆ \ Ω}. This concludes the analysis for the second
case.

Let η(x0) = min{η1(x0), η2(x0)}. Then, combining (15) and (17) we obtain

d

dt
V (x(t)) ≤ −η(x0)(18)

almost everywhere on {t : x(t) /∈ Ω}. Let

TΩ(x0) = t0 +
V (x0)
η(x0)

.(19)

By Lemma 1, Remark 4, (18), and (19), the trajectory x(t) ∈ Ω for all t ≥ TΩ(x0).
This completes the proof.

Having established this last result, we now turn our attention to analyzing the
dynamic behavior of system (2) when its motion is confined to the feasible set Ω. We
begin by introducing the function F : Rn → R as

F (x) = f(x)− f∗,

where f∗ is the optimal value of f for problem (1).
Remark 5. It follows from A2 that the function F is convex over Rn and has

continuous first partial derivatives on Rn. Also, by definition, F (x) = 0 for all x ∈ Γ,
and F (x) > 0 for all x ∈ Ω \ Γ.
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We will show that F tends to zero with time when evaluated on any trajectory
of system (2). We need the following technical result.

LEMMA 2. F is a decreasing function of time when evaluated on any trajectory
of system (2) while it is confined to the feasible set Ω.

Proof. Let x : [t0,∞)→ Rn be any particular trajectory of system (2). It follows
from Remark 5 and the fact that x(t) is absolutely continuous that to prove the lemma
it is enough to show that d

dtF (x(t)) ≤ 0 almost everywhere on {t : x(t) ∈ Ω}. As
before, we consider two cases when analyzing the dynamic behavior of system (2).

Case 1. Suppose that x(t) ∈ Ωo for all t ∈ (tl−1, tl). Using arguments similar to
those used in Case 1 of the proof of Lemma 1, we conclude that

τ ẋ(t) = −∇f(x(t))(20)

almost everywhere on the interval (tl−1, tl). Applying the chain rule, we obtain

d

dt
F (x(t)) = −1

τ
‖∇f(x(t))‖22(21)

almost everywhere on the interval (tl−1, tl). This concludes the analysis for the first
case.

Case 2. Suppose that x(t) ∈ ∂Ω and I(x(t)) is constant for all t ∈ (tl−1, tl). We
use the same notation as in Case 2 of the proof of Lemma 1. The first part of the
proof is almost identical to that of Case 2 of the proof of Lemma 1, and we omit the
details. We only observe that now we have the following.

(i) H(x(t′)) is the set of all vectors w having the form

w = −α0∇f(x(t′))− µ
2k−1∑
j=1

αjG̃(x(t′))uj ,

where αj ≥ 0, j = 0, 1, . . . , 2k − 1,
∑2k−1
j=0 αj = 1, and uj ∈ Rk, j = 1, 2, . . . , 2k − 1,

are as defined in the proof of Lemma 1.
(ii) Suppose ŵ ∈ H(x(t′)) ∩ T (x(t′)), with

ŵ = −α̂0∇f(x(t′))− µ
2k−1∑
j=1

α̂jG̃(x(t′))uj ,(22)

where α̂j ≥ 0, j = 0, 1, . . . , 2k − 1, and
∑2k−1
j=0 α̂j = 1. Then, the vector ŵ must

satisfy the equation

ŵ = −α̂0Px(t′)∇f(x(t′)).(23)

It follows from (22) and (23) that

−α̂0
(
In − Px(t′)

)
∇f(x(t′)) = µ

2k−1∑
j=1

α̂jG̃(x(t′))uj .(24)

Now, let U ∈ Rk×(2k−1) be the matrix with columns u1,u2, . . . ,u2k−1, and let α̂ ∈
R2k−1 be the column vector with components α̂1, α̂2, . . . , α̂2k−1; that is,

U =
[
u1 u2 · · · u2k−1

]
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and

α̂ =
[
α̂1 α̂2 · · · α̂2k−1

]T
.

Using the above notation, we can rewrite (24) as

− α̂0

µ

(
In − Px(t′)

)
∇f(x(t′)) = G̃(x(t′))Uα̂.(25)

Premultiplying both sides of (25) by
(
G̃
T

(x(t′))G̃(x(t′))
)−1

G̃
T

(x(t′)), we obtain

− α̂0

µ

(
G̃
T

(x(t′))G̃(x(t′))
)−1

G̃
T

(x(t′))∇f(x(t′)) = Uα̂.

Taking the 1-norm yields

α̂0

µ

wwww(G̃T
(x(t′))G̃(x(t′))

)−1
G̃
T

(x(t′))∇f(x(t′))
wwww

1
= ‖Uα̂‖1 .

Hence,

α̂0

µ

wwww(G̃T
(x(t′))G̃(x(t′))

)−1
G̃
T

(x(t′))
wwww

1
‖∇f(x(t′))‖1 ≥ ‖Uα̂‖1 .(26)

However,

‖Uα̂‖1 ≥
2k−1∑
j=1

α̂j = 1− α̂0.(27)

Moreover, by A2 and the fact that Ω ∩ S is by definition compact, there exist non-
negative constants M1 and M2 such that

M1 ≥
wwww(G̃T

(x)G̃(x)
)−1

G̃
T

(x)
wwww

1
for all x ∈ Ω ∩ S,(28)

and

M2 ≥ ‖∇f(x)‖1 for all x ∈ Ω ∩ S.(29)

Using (26)–(29) we obtain

α̂0M1M2

µ
≥ 1− α̂0,

which implies that α̂0 > 0. Therefore

M1M2

µ
≥ 1− α̂0

α̂0
=

1
α̂0
− 1,

and hence

α̂0 ≥
µ

µ+M1M2
.(30)
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Let σ = µ
µ+M1M2

; then (23) and (30) imply that

H(x(t)) ∩ T (x(t)) ⊂
{
−αPx(t)∇f(x(t)) : σ ≤ α ≤ 1

}
(31)

for all t ∈ (tl−1, tl), and therefore

τ ẋ(t) ∈
{
−αPx(t)∇f(x(t)) : σ ≤ α ≤ 1

}
(32)

almost everywhere on the interval (tl−1, tl). Applying the chain rule and observing
that Px = P T

x = P 2
x, we obtain

d

dt
F (x(t)) ∈

{
−α
τ

wwPx(t)∇f(x(t))
ww2

2 : σ ≤ α ≤ 1
}

almost everywhere on the interval (tl−1, tl). Hence,

d

dt
F (x(t)) ≤ −σ

τ

wwPx(t)∇f(x(t))
ww2

2(33)

almost everywhere on the interval (tl−1, tl). This concludes the analysis for the second
case.

It now follows from (21) and (33) that d
dtF (x(t)) ≤ 0 almost everywhere on

{t : x(t) ∈ Ω}. The proof is complete.
Before presenting the next lemma we introduce the following notation. For each

ε > 0, let

Φε = Ω ∩ {x : F (x) < ε} .

LEMMA 3. F tends to zero with time when evaluated on any trajectory of system
(2).

Proof. Let x : [t0,∞) → Rn be any particular trajectory of system (2). To
prove the lemma, it is enough to show that given any ε > 0, there exists a number
T (x0, ε) ≥ t0 such that x(t) ∈ Φε for all t ≥ T (x0, ε). By Theorem 1, there is a
number TΩ(x0) ≥ t0 such that x(t) ∈ Ω for all t ≥ TΩ(x0). It follows from Theorem 1
and Lemma 2 that

T (x0, ε) = TΩ(x0) if x (TΩ(x0)) ∈ Φε.

We now consider the case when x (TΩ(x0)) /∈ Φε. Once again, we must consider two
cases when analyzing the dynamic behavior of system (2).

Case 1. Consider again the analysis presented in Case 1 of the proof of Lemma 2,
and suppose that x(t) ∈ Ω \ Φε/2 for all t ∈ (tl−1, tl). Let y ∈ Γ and r > 0 such that
B(y, r) ⊃ Ω. The existence of an open ball with this property is a consequence of A3.
By Remark 5

∇TF (x(t))(x(t)− y) ≥ F (x(t))− F (y)(34)

for all t ∈ (tl−1, tl). Applying the Cauchy–Schwarz inequality to (34) yields

‖∇F (x(t))‖2 ‖x(t)− y‖2 ≥ F (x(t))− F (y)(35)

for all t ∈ (tl−1, tl). Observe from Remark 5 that F (y) = 0. Also, by definition,
F (x(t)) ≥ ε/2 for all t ∈ (tl−1, tl). Combining these two facts together with (35), we
obtain

‖∇F (x(t))‖2 ≥
ε

2‖x(t)− y‖2
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for all t ∈ (tl−1, tl). However, ‖x(t) − y‖2 ≤ r for all t ∈ (tl−1, tl) since B(y, r) ⊃ Ω
and x(t) ∈ Ω for all t ∈ (tl−1, tl). Hence,

‖∇F (x(t))‖2 ≥
ε

2r

for all t ∈ (tl−1, tl). Let η1(ε) be the positive constant defined as

η1(ε) =
ε2

4τr2 .

It now follows from (21) and the definition of F that

d

dt
F (x(t)) ≤ −η1(ε)(36)

almost everywhere on
{
t : x(t) ∈ Ωo \ Φε/2

}
. This concludes the analysis for the first

case.
Case 2. Consider again the analysis presented in Case 2 of the proof of Lemma 2,

and suppose that x(t) ∈ Ω \ Φε/2 for all t ∈ (tl−1, tl). Let y ∈ Γ and r > 0 such
that B(y, r) ⊃ Ω. It follows from (22), (23), and (30) that there exist nonnegative
constants βi1 , βi2 , . . . , βik such that

Px(t′)∇f(x(t′)) = ∇f(x(t′)) +
∑
j∈Ĩ

βj∇gj(x(t′)).(37)

Let F̃ : Rn → R be the function defined as

F̃ (x) = F (x) +
∑
j∈Ĩ

βjgj(x).

Observe that by virtue of A2 and Remark 5, the function F̃ is convex over Rn and
has continuous first partial derivatives on Rn. Therefore, the inequality

∇T F̃ (x(t′))(x(t′)− y) ≥ F̃ (x(t′))− F̃ (y)

holds. Applying the Cauchy–Schwarz inequality and observing that F̃ (y) ≤ 0 and
F̃ (x(t′)) ≥ ε/2, we obtainwww∇F̃ (x(t′))

www
2
≥ ε

2‖x(t′)− y‖2
.

However, ‖x(t′)− y‖2 ≤ r since x(t′) ∈ Ω and B(y, r) ⊃ Ω. Therefore,www∇F̃ (x(t′))
www

2
≥ ε

2r
.

Taking into account (37) and the definition of F̃ it follows thatwwPx(t)∇f(x(t))
ww

2 ≥
ε

2r
(38)

for all t ∈ (tl−1, tl). Now let η̃(ε) be the positive constant defined as

η̃(ε) =
σε2

4τr2 .
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It then follows from (33) that

d

dt
F (x(t)) ≤ −η̃(ε)(39)

almost everywhere on the interval (tl−1, tl). However, (39) combined with the fact
that there is a finite number of constraints, that is, m is finite, implies the existence
of a constant η2(ε) > 0 such that

d

dt
F (x(t)) ≤ −η2(ε)(40)

almost everywhere on
{
t : x(t) ∈ ∂Ω \ Φε/2

}
. This concludes the analysis for the

second case.
Let η(ε) = min{η1(ε), η2(ε)}. It follows directly from (36) and (40) that

d

dt
F (x(t)) ≤ −η(ε)(41)

almost everywhere on
{
t : x(t) ∈ Ω \ Φε/2

}
. Now let

T (x0, ε) = TΩ(x0) +
F (x(TΩ(x0)))− ε

2

η(ε)
.(42)

Then, by Theorem 1, Lemma 2, (41), and (42), we have x(t) ∈ Φε for all t ≥ T (x0, ε),
which completes the proof of the lemma.

We are now ready to present the main results of this paper. Before doing so we
introduce the following notation. For each δ > 0, let

Γδ = Ω ∩ {x : d(x,Γ) < δ} .

THEOREM 2. Every trajectory of system (2) converges to the solution set, Γ, of
problem (1).

Proof. Let x : [t0,∞) → Rn be any particular trajectory of system (2). To
prove the theorem, it is enough to show that given any δ > 0, there exists a number
Tδ(x0) ≥ t0 such that x(t) ∈ Γδ for all t ≥ Tδ(x0). Let

ε = ε(δ)
= min {F (x) : x ∈ Ω ∩ {x : d(x,Γ) = δ}} .

Note that ε is well defined since, by definition, the function F is continuous and the
set Ω ∩ {x : d(x,Γ) = δ} is compact. Also, observe that, by definition, ε > 0. Now
it is a direct consequence of the fact that F is a convex function and Ω is a convex
set that Φε/2 ⊂ Γδ. By Lemma 3, there exists a number T (x0, ε/2) ≥ t0 such that
x(t) ∈ Φε/2 for all t ≥ T (x0, ε/2). Let Tδ(x0) = T (x0, ε/2). Then, we have x(t) ∈ Γδ
for all t ≥ Tδ(x0). This completes the proof.

We now show that the equilibrium points of system (2) coincide with the mini-
mizers of the optimization problem (1).

THEOREM 3. A point x∗ ∈ Rn is an equilibrium point of system (2) if and only
if it is a minimizer of problem (1).

Proof. It follows from Theorem 2 that any equilibrium point of system (2) must
be contained in Γ. Thus, it remains to show that every point in Γ is an equilibrium
point of system (2). To this end, let x : [t0,∞) → Rn be any particular trajectory
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of system (2) with x0 ∈ Γ. Note that by Remarks 4 and 5, and Lemmas 1 and 2,
x(t) ∈ Γ for all t ≥ t0. When analyzing the behavior of the trajectory x(t) we need
only consider the two cases considered in the proof of Lemma 2.

Case 1. Consider again the analysis presented in Case 1 of the proof of Lemma 2.
It follows from the first-order necessary conditions for problem (1), and the fact that
x(t) ∈ Γ for all t ≥ t0, that ∇f(x(t)) = 0 for all t ∈ (tl−1, tl). It then follows from (20)
that ẋ(t) = 0 almost everywhere on the interval (tl−1, tl). This concludes the analysis
for the first case.

Case 2. Consider again the analysis presented in Case 2 of the proof of Lemma 2.
It follows from the first-order necessary conditions for problem (1), and the fact that
x(t) ∈ Γ for all t ≥ t0, that there exist nonnegative constants, λi1 , λi2 , . . . , λik , such
that

∇f(x(t′)) +
∑
j∈Ĩ

λj∇gj(x(t′)) = 0.(43)

It now follows from (43) and (22) that 0 ∈ H(x(t′)) ∩ T (x(t′)). However, we see
from (31) that all of the elements of H(x(t′))∩T (x(t′)) differ by a positive multiplica-
tive constant. Therefore, H(x(t′)) ∩ T (x(t′)) = {0}, and hence, H(x(t)) ∩ T (x(t)) =
{0} for all t ∈ (tl−1, tl). Using (32), we conclude that ẋ(t) = 0 almost everywhere on
the interval (tl−1, tl). This concludes the analysis for the second case.

It now follows from the above arguments that ẋ(t) = 0 almost everywhere on the
interval [t0,∞), and hence, x(t) = x0 for all t ≥ t0. This completes the proof.

We see from (20) and (32) that while confined to Ω, (2) can be viewed as a
continuous-time gradient projection method. We note that a discrete-time gradient
projection method for nonlinear programming was first proposed by Rosen [20] and
that other continuous-time methods using gradient projections are reported in [5] and
references therein.

Similarities between the dynamic system approach to solving optimization prob-
lems and the so-called interior point methods are discussed in [26]. For a review
of interior point methods, as well as path-following methods, we refer the reader to
Gonzaga [10].

4. Examples. In this section, we illustrate the dynamic behavior of system (2)
by presenting the results of two computer simulations.

Example 1. In this example, we consider the quadratic programming problem

minimize 1
2x

TQx+ cTx, x ∈ R2,
subject to Ax ≤ b,

where

Q =
[

4 1
1 2

]
, c =

[
−12
−10

]
, A =

 5 1
−5 1
−1 −2

 , and b =

 0
10
10

 .
The above optimization problem clearly satisfies A1–A4, and one can verify that
the point x∗ =

[
−19/22 95/22

]T is a unique minimizer for the problem; that is,
Γ = {x∗}. Note that x∗ ∈ ∆1. A phase-plane portrait for system (2) that solves the
above optimization problem is shown in Figure 1. Observe that each of the trajectories
in the phase-plane portrait converges to the point x∗ while sliding along the surface
∆1.
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FIG. 1. Phase-plane portrait for the system in Example 1.

Example 2. In this example, we consider the convex programming problem

minimize 1
2x

TQx+ cTx, x ∈ R2,
subject to gi(x) ≤ 0, i = 1, 2, 3,

where

g1(x) = x2
1 + (x2 − 4)2 − 64,

g2(x) = (x1 + 3)2 + x2
2 − 36,

g3(x) = (x1 − 3)2 + x2
2 − 36,

and Q and c are as defined in Example 1. One can easily verify that the above
optimization problem satisfies A1–A4 and that the point x∗ =

[
1.776 3.629

]T
is a unique minimizer for the problem; that is, Γ = {x∗}. Note that x∗ ∈ ∆2. A
phase-plane portrait for system (2) solving the above optimization problem is shown
in Figure 2. Note that each of the trajectories in the phase-plane portrait converges
to the point x∗ while sliding along the surface ∆2.

We close this section by noting that both of the simulations were performed on a
Northgate 486 personal computer using the SIMNON software package.

5. Conclusions. We analyzed a class of dynamic systems proposed by Rodŕıguez-
Vázquez et al. [19] for solving convex programming problems. We showed that the
equilibrium points of the system coincide with the minimizers of the convex program-
ming problem, and that all trajectories of the system converge to the solution set of
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FIG. 2. Phase-plane portrait for the system in Example 2.

the problem. In carrying out the analysis we used concepts from the theory of differ-
ential equations with discontinuous right-hand sides and Lyapunov stability theory.
Our analysis method can also be applied to other classes of analog dynamic optimizers
whose designs are based on exact penalty functions. An open problem is to extend
the results obtained herein to a more general class of mathematical programming
problems.

Acknowledgment. We gratefully acknowledge the constructive remarks of the
SICON editor, J. Burke, and the reviewers.
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Abstract. For a nonlinear optimal control problem with state constraints, we give conditions
under which the optimal control depends Lipschitz continuously in the L2 norm on a parameter.
These conditions involve smoothness of the problem data, uniform independence of active constraint
gradients, and a coercivity condition for the integral functional. Under these same conditions, we
obtain a new nonoptimal stability result for the optimal control in the L∞ norm. And under an
additional assumption concerning the regularity of the state constraints, a new tight L∞ estimate is
obtained. Our approach is based on an abstract implicit function theorem in nonlinear spaces.
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1. Introduction. We consider the following optimal control problem involving
a parameter:

minimize
∫ 1

0
hp(x(t), u(t))dt(1)

subject to
ẋ(t) = fp(x(t), u(t)) a.e. t ∈ [0, 1], x(0) = x0,

gp(x(t)) ≤ 0 for all t ∈ [0, 1], u ∈ L∞, x ∈W 1,∞,

where the state x(t) ∈ Rn, ẋ ≡ d
dtx, the control u(t) ∈ Rm, the parameter p lies

in a metric space, the functions hp : Rn × Rm → R, fp : Rn × Rm → Rn, and
gp : Rn → Rk. Throughout the paper, Lα(J ; Rm) denotes the usual Lebesgue space
of functions u : J → Rm with |u(·)|α integrable, equipped with its standard norm

‖ u ‖Lα=
(∫

J

|u(t)|αdt
)1/α

,

where | · | is the Euclidean norm. Of course, α = ∞ corresponds to the space of
essentially bounded functions. LetWm,α(J ; Rn) be the usual Sobolev space consisting
of vector-valued functions whose jth derivative lies in Lα for all 0 ≤ j ≤ m; its norm
is

‖ u ‖Wm,α =
m∑
j=0

‖ u(j) ‖Lα .

When either the domain J or the range Rn is clear from context, it is omitted. We let
Hm denote the space Wm,2, and Lip denote W 1,∞, the space of Lipschitz continuous
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http://www.siam.org/journals/sicon/36-2/29931.html
†Mathematical Reviews, University of Michigan, Ann Arbor, MI 48107 (ald@math.ams.org).
‡Department of Mathematics, University of Florida, Gainesville, FL 32611-8105 (hager@

math.ufl.edu).

698



LIPSCHITZ STABILITY FOR STATE CONSTRAINED CONTROL 699

functions. Subscripts on spaces are used to indicate bounds on norms; in particular,
Wm,α
κ denotes the set of functions in Wm,α with the property that the Lα norm of the

mth derivative is bounded by κ, and Lipκ denotes the space of Lipschitz continuous
functions with Lipschitz constant κ. Throughout, c is a generic constant, independent
of the parameter p and time t, and Ba(x) is the closed ball centered at x with radius
a. The L2 inner product is denoted 〈·, ·〉, the complement of a set A is Ac, and the
transpose of a matrix B is BT. Given a vector y ∈ Rm and a set A ⊂ {1, 2, . . . ,m},
yA denotes the subvector consisting of components associated with indices in A. And
if Y ∈ Rm×n, then YA is the submatrix consisting of rows associated with indices in
A.

We wish to study how a solution to either (1) or the associated variational system
representing the first-order necessary condition depends on the parameter p. We
assume that the problem (1) has a local minimizer (x, u) = (x∗, u∗) corresponding to
a reference value p = p∗ of the parameter, and the following smoothness condition
holds.

Smoothness. The local minimizer (x∗, u∗) of (1) lies in W 2,∞× Lip. There exists a
closed set ∆ ⊂ Rn×Rm and a δ > 0 such that Bδ(x∗(t), u∗(t)) ⊂ ∆ for every t ∈ [0, 1].
The function values and first two derivatives of fp(x, u), gp(x, u), and hp(x, u), and the
third derivatives of gp(x), with respect to x and u, are uniformly continuous relative
to p near p∗ and (x, u) ∈ ∆. And when either the first two derivatives of fp(x, u) and
hp(x, u) or the first three derivatives of gp(x), with respect to x and u, are evaluated
at (x∗, u∗), the resulting expression is differentiable in t, and the L∞ norm of the time
derivative is uniformly bounded relative to p near p∗.

Let A, B, and K be the matrices defined by

A = ∇xf∗(x∗, u∗), B = ∇uf∗(x∗, u∗), and K = ∇xg∗(x∗).

Here and elsewhere the * subscript is always associated with p∗. Let A(t) be the set
of indices of the active constraints at (x∗(t), p∗); that is,

A(t) = {i ∈ {1, 2, · · · , k} : g∗(x∗(t))i = 0}.

We introduce the following assumption.
Uniform independence at A. The set A(0) is empty and there exists a scalar

α > 0 such that ∣∣∣∣∣∣
∑
i∈A(t)

viKi(t)B(t)

∣∣∣∣∣∣ ≥ α|vA(t)|

for each t ∈ [0, 1] where A(t) 6= ∅ and for each choice of v.
Uniform independence implies that the state constraints are first-order (see [12]

for the definition of the order of a state constraint). This condition can be generalized
to higher order state constraints (see Maurer [17]), however, the generalization of the
stability results in this paper to higher order state constraints is not immediate.

It is known (see, for instance, Theorem 7.1 of the recent survey [12] and the
regularity analysis in [8]) that under appropriate assumptions, the first-order necessary
conditions (Pontryagin’s minimum principle) associated with a solution (x∗, u∗) of (1)
can be written in the following way. There exist ψ∗ ∈W 2,∞ and ν∗ ∈ Lip such that
x = x∗, ψ = ψ∗, u = u∗, and ν = ν∗ are a solution at p = p∗ of the variational system:

ẋ = fp(x, u), x(0) = x0,(2)
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ψ̇ = −∇xHp(x, ψ, u, ν), ψ(1) = 0,(3)
0 = ∇uHp(x, ψ, u, ν),(4)

gp(x) ∈ N(ν), ν(1) ≤ 0, ν̇ ≥ 0 a.e.(5)

Here Hp is the Hamiltonian defined by

Hp(x, ψ, u, ν) = hp(x, u) + ψT fp(x, u)− νT∇gp(x)fp(x, u),

and the set-valued map N is defined in the following way: given a nondecreasing
Lipschitz continuous function ν, a continuous function y lies in N(ν) if and only if

y(t) ≤ 0, ν̇(t)Ty(t) = 0 for a.e. t ∈ [0, 1], and ν(1)Ty(1) = 0.

Defining

Q = ∇xxH∗(w∗), M = ∇xuH∗(w∗), and R = ∇uuH∗(w∗),

where w∗ = (x∗, ψ∗, u∗, ν∗), let B be the quadratic form

B(x, u) =
1
2

∫ 1

0
x(t)TQ(t)x(t) + u(t)TR(t)u(t) + 2x(t)TM(t)u(t)dt,

and let L be the linear and continuous operator from H1 × L2 to L2 defined by
L(x, u) = ẋ − Ax − Bu. We introduce the following growth assumption for the
quadratic form.

Coercivity. There exists a constant α > 0 such that

B(x, u) ≥ α〈u, u〉 for all (x, u) ∈M,

where

M = {(x, u) : x ∈ H1, u ∈ L2, L(x, u) = 0, x(0) = 0}.(6)

In the terminology of [12], the form of the minimum principle we employ is the
“indirect adjoining approach with continuous adjoint function.” A different approach,
found in [13], for example, involves a different choice for the multipliers and for the
Hamiltonian. The multipliers in these two approaches are related in a linear fashion
as shown in [11]. Normally, the multiplier ν, associated with the state constraint,
and the derivative of ψ have bounded variation. In our statement of the minimum
principle above, we are implicitly assuming some additional regularity so that ν and
ψ̇ are not only of bounded variation, but Lipschitz continuous. This regularity can
be proved under the uniform independence and coercivity conditions (see [8]).

In section 3 we establish the following result.
THEOREM 1.1. Suppose that the problem (1) with p = p∗ has a local minimizer

(x∗, u∗) and that the smoothness and the uniform independence conditions hold. Let
ψ∗ and ν∗ be the associated multipliers satisfying the variational system (2)–(5) with
ψ∗ ∈W 2,∞ and ν∗ ∈ Lip. If the coercivity condition holds, then there exist a constant
µ and neighborhoods V of p∗ and U of w∗ = (x∗, ψ∗, u∗, ν∗) in W 1,∞×W 1,∞×L∞×
L∞, such that for every p ∈ V , there is a unique solution w = (x, ψ, u, ν) ∈ U to the
first-order necessary conditions (2)–(5) with the property that (ẋ, ψ̇, u, ν) ∈ Lipµ and
(x, u) is a local minimizer of the problem (1) associated with p. Moreover, for every
pi ∈ V, i = 1, 2, if wi = (xi, ψi, ui, νi) is the corresponding solution of (2)–(5), the
following estimate holds:

‖x1 − x2‖H1 + ‖ψ1 − ψ2‖H1 + ‖u1 − u2‖L2 + ‖ν1 − ν2‖L2 ≤ cE2,(7)
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where

Eα = ‖fp1(x1, u1)− fp2(x1, u1)‖Lα + ‖∇xHp1(w1)−∇xHp2(w1)‖Lα
+‖∇uHp1(w1)−∇uHp2(w1)‖Lα + ‖gp1(x1)− gp2(x1)‖W 1,α .

In addition, we have

‖x1 − x2‖W 1,∞ + ‖ψ1 − ψ2‖W 1,∞ + ‖u1 − u2‖L∞ + ‖ν1 − ν2‖L∞ ≤ cE2/3
2 .

The proof of Theorem 1.1 is based on an abstract implicit function theorem
appearing in section 2. In section 4 we show that the L∞ estimate of Theorem 1.1
can be sharpened if the points where the state constraints change between active and
inactive are separated. In section 5 we comment briefly on related work.

2. An implicit function theorem in nonlinear spaces. The following lemma
provides a generalization of the implicit function theorem that can be applied to
nonlinear spaces. To simplify the notation, we let ‖x − y‖X denote the distance
between the elements x and y of the metric space X.

LEMMA 2.1. Let X and Π be metric spaces with X complete, let Y be a subset
of Π, and let P be a set. Given w∗ ∈ X and r > 0, let W denote the ball Br(w∗) in
X and suppose that T : W × P → Y and F : X → 2Π (the subsets of Π) have the
following properties.

(P1) T (w∗, p∗) ∈ F (w∗) for some p∗ ∈ P .
(P2) For some β > 0, ‖T (w∗, p∗)− T (w∗, p)‖Π ≤ β for all p ∈ P .
(P3) For some ε > 0, ‖T (w1, p) − T (w2, p)‖Π ≤ ε‖w1 − w2‖X for all w1, w2 ∈ W

and p ∈ P .
(P4) F−1 restricted to Y is single-valued and Lipschitz continuous, with Lipschitz

constant λ.
If ελ < 1 and r ≥ λβ/(1 − ελ), then for each p ∈ P , there exists a unique w ∈ W
such that T (w, p) ∈ F (w). Moreover, for every pi ∈ P, i = 1, 2, if wi denotes the w
associated with pi, then we have

‖w1 − w2‖X ≤
λ

1− λε‖T (w1, p1)− T (w1, p2)‖Π.(8)

Proof. Fix p ∈ P and define Φ(w) = F−1(T (w, p)) for w ∈W . Observe that

‖Φ(w1)− Φ(w2)‖X = ‖F−1(T (w1, p))− F−1(T (w2, p))‖X
≤ λ‖T (w1, p)− T (w2, p)‖Π ≤ λε‖w1 − w2‖X

for each w1, w2 ∈W . Since λε < 1, Φ is a contraction on W with contraction constant
λε. Let w ∈W . Since w∗ = F−1(T (w∗, p∗)) and r ≥ λβ/(1− ελ), we have

‖w∗ − Φ(w)‖X = ‖F−1(T (w∗, p∗))− F−1(T (w, p))‖X
≤ λ(‖T (w, p)− T (w∗, p)‖Π + ‖T (w∗, p)− T (w∗, p∗)‖Π)
≤ λ(εr + β) ≤ r.

Thus Φ maps W into itself. By the Banach contraction mapping principle, there exists
a unique w ∈W such that w = Φ(w). Since w = Φ(w) is equivalent to T (w, p) ∈ F (w)
for w ∈ W , we conclude that for each p ∈ P , there is a unique w(p) ∈ W such that
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T (w(p), p) ∈ F (w(p)). Defining w1 = w(p1) and w2 = w(p2), we have

‖w1 − w2‖X = ‖F−1(T (w1, p1))− F−1(T (w2, p2))‖X
≤ λ‖T (w1, p1)− T (w2, p2)‖Π
≤ λ‖T (w1, p1)− T (w1, p2)‖Π + λ‖T (w1, p2)− T (w2, p2)‖Π
≤ λ‖T (w1, p1)− T (w1, p2)‖Π + λε‖w1 − w2‖X .

Rearranging this inequality, the proof is complete.
Let X, Y , and P be metric spaces and let w∗ ∈ X. Using the terminology of [3],

f : X × P → Y is strictly stationary at w = w∗, uniformly in p near p∗, if for each
ε > 0, there exists δ > 0 with the property that

‖f(w1, p)− f(w2, p)‖Y ≤ ε‖w1 − w2‖X

for all w1, w2 ∈ Bδ(w∗) and p ∈ Bδ(p∗).
THEOREM 2.2. Let X be a complete metric space, let Π be a linear metric space,

let Y be a subset of Π, and let P be a metric space. Suppose that F : X → 2Π, that
T : X×P → Π, that L : X → Π is continuous, and that for some w∗ ∈ X and p∗ ∈ P
we have:

(Q1) T (w∗, p∗) ∈ F(w∗);
(Q2) T (w∗, · ) is continuous at p∗;
(Q3) T (w, p)− L(w) is strictly stationary at w = w∗, uniformly in p near p∗;
(Q4) (F − L)−1 restricted to Y is single-valued and Lipschitz continuous, with

Lipschitz constant λ;
(Q5) T − L maps a neighborhood of (w∗, p∗) into Y .

Then for each λ+ > λ, there exist neighborhoods W of w∗ and P of p∗ such that for
each p ∈ P , a unique w ∈ W exists satisfying T (w, p) ∈ F(w); moreover, for every
pi ∈ P, i = 1, 2, if wi denotes the w ∈W associated with pi, then we have

‖w1 − w2‖X ≤ λ+‖T (w1, p1)− T (w1, p2)‖Π.

Proof. By (Q5) there exist neighborhoods U ′ of w∗ and P ′ of p∗ such that
T (w, p) − L(w) ∈ Y for each w ∈ U ′ and p ∈ P ′. We apply Lemma 2.1 with the
following identifications: X, Y , and Π are as defined in the statement of the theorem,
F (w) = F(w)− L(w), and T (w, p) = T (w, p)− L(w). (P1) and (P4) follow immedi-
ately from (Q1) and (Q4), respectively. Choose ε > 0 such that ε < (λ+ − λ)/(λ+λ).
Since λ+ > λ, it follows that for this choice of ε, we have ελ < 1 and λ/(1−λε) < λ+.
By (Q3) and the identity T (w1, p1) − T (w1, p2) = T (w1, p1) − T (w1, p2), there exist
neighborhoods P = Br(p∗) ⊂ P ′ of p∗ and W = Br(w∗) ⊂ U ′ of w∗ such that (P3)
of Lemma 2.1 holds. Let β satisfy λβ/(1 − ελ) ≤ r, and by (Q2), choose P smaller
if necessary so that (P2) holds. By Lemma 2.1, for each p ∈ P , there exists a unique
w ∈ W such that T (w, p) ∈ F (w), and the estimate (8) holds. Since T (w, p) ∈ F (w)
if and only if T (w, p) ∈ F(w), the proof is complete.

A particular case of Theorem 2.2 corresponds to the well-known Robinson implicit
function theorem [20] in which X is a Banach space, Π is its dual X∗, F(w) = NΩ(w),
Ω is a closed, convex set in X, NΩ(w) is the normal cone to the set Ω at the point
w, T is differentiable with respect to w, both T and its derivative ∇wT are contin-
uous in a neighborhood of (w∗, p∗), and L(w) = T (w∗, p∗) + ∇wT (w∗, p∗)(w − w∗)
is the linearization of T . The Robinson framework is applicable to control problems
with control constraints after the range space X∗ is replaced by a general Banach
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space Y (see the discussion in section 5). However, for problems with state con-
straints, there are difficulties in applying Robinson’s theory since stability results for
state constrained quadratic problems, analogous to the results for control constrained
problems, have not been established. In our previous paper [3], we extend Robinson’s
work in several different directions. For the solution map of a generalized equation
in a linear metric space, we showed that Aubin’s pseudo-Lipschitz property, that the
existence of a Lipschitzian selection, and that local Lipschitzian invertibility are “ro-
bust” under nonlinear perturbations that are strictly stationary at the reference point.
In Theorem 2.2, we focus on the latter property, giving an extension of our earlier
result to nonlinear spaces. In this nonlinear setting, we are able to analyze the state
constrained problem, obtaining a Lipschitzian stability result for the solution.

3. Lipschitzian stability in L2. To prove Theorem 1.1, we apply Theorem 2.2
using the following identifications. First, we define

w = (x, ψ, u, ν),(9)

where

x, ψ ∈W 2,∞
µ (with the H1 norm), x(0) = x0, ψ(1) = 0,(10)

u, ν ∈ Lipµ (with the L2 norm), ν(1) ≤ 0 and ν̇ ≥ 0 a.e.(11)

An appropriate value for µ is chosen later in the analysis. The space X consists of the
collection of functions x, ψ, u, and ν satisfying (10) and (11) with the norm defined
in (10) and (11). Observe that the norms we use are not the natural norms. For
example, the u and ν components of elements in X lie in W 1,∞, but we use the L2

norm to measure distance. Despite the apparent mismatch of space and norm, X is
complete by Lemma 3.2 below.

The functions T and F of Theorem 2.2 are selected in the following way:

T (w, p) =


ẋ− fp(x, u)

ψ̇ +∇xHp(x, u, ψ, ν)
∇uHp(x, u, ψ, ν)

gp(x)

 and F(w) =


0
0
0

N(ν)

 .(12)

The continuous operator L is obtained by linearizing the map T (·, p∗) in L∞ at the
reference point w∗ = (x∗, ψ∗, u∗, ν∗). In particular,

L(w) =


ẋ−Ax−Bu

ψ̇ +ATψ +Qx+Mu− (K̇T +ATKT)ν
Ru+MTx+BTψ −BTKTν

Kx

 .(13)

Defining π∗ = T (w∗, p∗)−L(w∗), let a∗, s∗, r∗, and b∗ denote the components of π∗:

a∗ = −f∗(x∗, u∗) +Ax∗ +Bu∗,

s∗ = ∇xH∗(w∗)−ATψ∗ −Qx∗ −Mu∗ + (K̇T +ATKT)ν∗,
r∗ = ∇uH∗(w∗)−Ru∗ −MTx∗ −BTψ∗ +BTKTν∗,

b∗ = g∗(x∗)−Kx∗.
The space Π is the product L2 × L2 × L2 ×H1, while the elements π in Y have

the form π = (a, s, r, b), where

a, s, r ∈ Lip (with the L2 norm), b ∈W 2,∞ (with the H1 norm),

‖a− a∗‖W 1,∞ + ‖r − r∗‖W 1,∞ + ‖s− s∗‖W 1,∞ + ‖b− b∗‖W 2,∞ ≤ κ,
(14)
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where κ is a small positive constant chosen so that two related quadratic programs,
(37) and (41), introduced later have the same solution. As we will see, the constant µ
associated with the space X must be chosen sufficiently large relative to κ. Note that
the inverse (F − L)−1π is the solution (x, ψ, u, ν) of the linear variational system:

ẋ = Ax+Bu− a, x(0) = x0,(15)
ψ̇ = −ATψ −Qx−Mu+ (K̇ +ATKT)ν − s, ψ(1) = 0,(16)
0 = Ru+MTx+BTψ −BTKTν + r,(17)
Kx+ b ∈ N(ν), ν(1) ≤ 0, ν̇ ≥ 0 a.e.(18)

Referring to the assumptions of Theorem 2.2, (Q1) holds by the definition of
X, and by the minimum principle, (Q2) follows immediately from the smoothness
condition. In Lemma 3.3, we deduce (Q3) from the smoothness condition and a Taylor
expansion. In Lemma 3.6, (Q5) is obtained by showing that for w near w∗ and p near
p∗, T (w, p)− L(w) and its associated derivatives are near those of π∗ = T (w∗, p∗)−
L(w∗). Finally, in a series of lemmas, (Q4) is established through manipulations of
quadratic programs associated with (15)–(18).

To start the analysis, we show that X is complete using the following lemma.
LEMMA 3.1. If u ∈ Lipµ([0, 1]; R1), then we have

‖u‖L∞ ≤ max{
√

3‖u‖L2 , 3
√

3µ‖u‖2/3L2 } .

Proof. Since u is continuous, its maximum absolute value is achieved at some
time tm on the interval [0, 1]. Let um = u(tm) denote the associated value of u. We
consider two cases.

Case 1. um > µ. Let us examine the maximum ratio between the ∞-norm and
the 2-norm:

maximize {‖u‖L∞/‖u‖L2 : ‖u‖L∞ = um, u ∈ Lipµ}.

Since um > µ, the maximum is attained by the linear function v satisfying v(0) = um
and v̇ = −µ. The 2-norm of this function is readily evaluated:

‖v‖2L2 = u2
m(3− 3α+ α2)/3, where α = µ/um.

Since α ∈ [0, 1] and since 3 − 3α + α2 ≥ 1 on this interval, we have ‖v‖2L2 ≥ u2
m/3.

Taking square roots gives

‖v‖L∞/‖v‖L2 ≤
√

3,

which establishes the lemma in Case 1.
Case 2. um ≤ µ. In this case, let us examine the maximum ratio between the

∞-norm and the 2-norm to the 2/3-power:

maximize {‖u‖L∞/‖u‖2/3L2 : ‖u‖L∞ = um, u ∈ Lipµ}.

The maximum is attained by the piecewise linear function v satisfying v(0) = um,
v̇ = −µ on [0, um/µ], and v = 0 elsewhere. Since

‖v‖2L2 =
u3
m

3µ
,
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it follows that

‖v‖L∞/‖v‖2/3L2 ≤ 3
√

3µ,

which completes the proof of Case 2.
LEMMA 3.2. The space X of functions w satisfying (9), (10), and (11) is com-

plete.
Proof. Suppose that wk = (xk, uk, ψk, νk) is a Cauchy sequence in X. We analyze

the ν-component of wk. The sequence νk is a Cauchy sequence in L∞ by Lemma
3.1. Since L∞ is complete, there exists a limit point ν̄ ∈ L∞. Since the νk converge
pointwise to ν̄ and since each of the νk is Lipschitz continuous with Lipschitz constant
µ, ν̄ is Lipschitz continuous with Lipschitz constant µ. Since each of the νk is non-
decreasing, it follows from the pointwise convergence that ν̄ is nondecreasing; hence,
˙̄ν ≥ 0. Since νk(1) ≤ 0 for each k, the pointwise convergence implies that ν̄(1) ≤ 0.
This shows that the ν-component of X is complete. The other components can be
analyzed in a similar fashion.

LEMMA 3.3. If the smoothness condition holds, then for T and L defined in (12)
and (13), respectively, T − L is strictly stationary at w∗, uniformly in p near p∗.

Proof. Only the first component of T (w, p) − L(w) is analyzed, since the other
components are treated in a similar manner. To establish strict stationarity for the
first component, we need to show that for any given ε > 0,

‖(fp(x, u)− fp(y, v))−A(x− y)−B(u− v)‖L2 ≤ ε‖x− y‖H1 + ε‖u− v‖L2 ,(19)

for p near p∗ and for (x, u) and (y, v) ∈ W 2,∞
µ × Lipµ near (x∗, u∗) in the norm of

H1 × L2, where A = ∇xf∗(x∗, u∗) and B = ∇uf∗(x∗, u∗). By Lemma 3.1, (x, u) and
(y, v) are also near (x∗, u∗) in L∞. After writing the difference fp(x, u)− fp(y, v) as
an integral over the line segment connecting (x, u) and (y, v), we have

(fp(x, u)− fp(y, v))−A(x− y)−B(u− v) = (Ap −A)(x− y) + (Bp −B)(u− v),

where (Ap, Bp) is the average of the gradient of fp along the line segment connecting
(x, u) and (y, v). By the smoothness condition, ‖Ap−A‖L∞ → 0 and ‖Bp−B‖L∞ → 0
as p approaches p∗ and as both (x, u) and (y, v) approach (x∗, u∗) in L∞. This
completes the proof.

LEMMA 3.4. If the smoothness condition holds, then for T and L defined in (12)
and (13), respectively, and for any choice of the parameter κ > 0 in (14), there exists
δ > 0 such that T (w, p)− L(w) ∈ Y for all p ∈ Bδ(p∗) and w ∈ Bδ(w∗) ∩X.

Proof. Again, we focus on the first component of T −L, since the other components
are treated in a similar manner. Referring to the definition of Y , we should show that

‖(fp(x, u)− f∗(x∗, u∗))−A(x− x∗)−B(u− u∗)‖W 1,∞ ≤ κ/4(20)

for p near p∗ and for (x, u) ∈W 2,∞
µ ×Lipµ near (x∗, u∗) in the norm of H1×L2. The

W 1,∞ norm in (20) is composed of two norms, the L∞ norm of the function values,
and the L∞ norm of the time derivative. By the same expansion used in Lemma 3.3,
we obtain the bound

‖(fp(x, u)− f∗(x∗, u∗))−A(x− x∗)−B(u− u∗)‖L∞ ≤ κ/8

for p near p∗ and for (x, u) near (x∗, u∗). Differentiating the expression within the
norm of (20) gives

d
dt(fp(x, u)− f∗(x∗, u∗)−A(x− x∗)−B(u− u∗))

= (∇xfp(x, u)−A)ẋ+ (∇ufp(x, u)−B)u̇− Ȧ(x− x∗)− Ḃ(u− u∗).
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By the smoothness condition, Ȧ and Ḃ lie in L∞, and by the definition of X, we have
‖u̇‖L∞ ≤ µ. By the triangle inequality and by Lemma 3.1,

‖ẋ‖L∞ ≤ ‖ẋ∗‖L∞ + ‖ẋ− ẋ∗‖L∞ ≤ ‖ẋ∗‖L∞ + 3
√

3µ‖x− x∗‖2/3H1

for x near x∗. Moreover, by Lemma 3.1 and by the smoothness condition, ∇xfp(x, u)
approaches A and ∇ufp(x, u) approaches B in L∞ as p approaches p∗ and (x, u)
approaches (x∗, u∗). Hence, for p near p∗ and (x, u) near (x∗, u∗), we have∥∥∥∥ ddt(fp(x, u)− f∗(x∗, u∗)−A(x− x∗)−B(u− u∗))

∥∥∥∥
L∞
≤ κ/8.

Analyzing each of the components of T − L in this same way, the proof is complete.

We now begin a series of lemmas aimed at verifying (Q4). After a technical
result (Lemma 3.5) related to the constraints, a surjectivity property (Lemma 3.6) is
established for the linearized constraint mapping. Then we study a quadratic program
corresponding to the linear variational system (15)–(18). We show that the solution
(Lemma 3.9) and the multipliers (Lemma 3.10) depend Lipschitz continuously on the
parameters. And utilizing the solution regularity derived in [8], the solution and the
multipliers lie in X for µ sufficiently large.

To begin, let I be any map from [0, 1] to the subsets of {1, 2, . . . , k} with the
property that the following sets Ii are closed for every i:

Ii = I−1(i) = {t ∈ [0, 1] : i ∈ I(t)} .

We establish the following decomposition property for the interval [0, 1].
LEMMA 3.5. If uniform independence at I holds, then for every α′, 0 < α′ < α,

there exist sets J1, J2, . . . , Jl, corresponding points 0 = τ1 < τ2 < · · · < τl+1 = 1, and
a positive constant ρ < mini(τi+1 − τi) such that for each t ∈ [τi − ρ, τi+1 + ρ]∩ [0, 1],
we have I(t) ⊂ Ji, and if Ji is nonempty, then∣∣∣∣∣∣

∑
j∈Ji

vjKj(t)B(t)

∣∣∣∣∣∣ ≥ α′|vJi |(21)

for every choice of v. The set J1 can always be chosen empty.
Proof. For each t ∈ (0, 1) with I(t)c 6= ∅, there exists an open interval O centered

at t with O ⊂ ∩i∈I(t)cIci . If t = 0 or 1, then we can choose a half-open interval O,
with t the closed end of the interval, such that O ⊂ ∩i∈I(t)cIci . If I(t)c is empty, take
O = [0, 1]. For any fixed t ∈ [0, 1] with I(t) 6= ∅, choose O smaller if necessary so that∣∣∣∣∣∣

∑
i∈I(t)

viKi(s)B(s)

∣∣∣∣∣∣ ≥ α′|vI(t)|(22)

for each s ∈ O and for each choice of v. Since B and K are continuous, it is possible
to choose O in this way. Observe that by the construction of O, we have I(s) ⊂ I(t)
for each s ∈ O and (22) holds if I(t) is nonempty. Given any interval O on (0, 1), let
O1/2 denote the open interval with the same center but with half the length; for the
open intervals associated with t = 0 or 1, let O1/2 denote the half-open interval with
the same endpoint, 0 or 1, but with half the length. The sets O1/2 form an open cover
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of [0, 1]. Let O1, O2, . . . , Ol be a finite subcover of [0, 1] and let t1, t2, . . . , tl denote
the associated centers of interior intervals, and the closed endpoint of the intervals
associated with t = 0 or 1. It can be arranged so that no Oi is contained in the
union of other elements of the subcover (by discarding these extra sets if necessary).
Arrange the indices of the Oi so that the left side of Oi is to the left of the left side
of Oi+1 for each i. Let τ1, τ2, . . . , τl−1 denote the successive left sides of the Oi, and
let ρ be 1/4 of the length of the smallest Oi. Defining Ji = I(ti) for i ≥ 1, it follows
from the construction of the Oi that I(t) ⊂ Ji and (22) holds for each t in an interval
associated with ti and with length twice that of Oi. Since (τi, τi+1) ⊂ Oi, we have (21).
By taking ρ smaller if necessary, we can enforce the condition ρ < mini(τi+1 − τi).

LEMMA 3.6. If uniform independence at I holds, then for each a ∈ L∞ and
b ∈ W 1,∞, there exist x ∈ W 1,∞ and u ∈ L∞ such that L(x, u) + a = 0, x(0) = x0,
and

Kj(t)x(t) + bj(t) = 0 for each j ∈ I(t), t ∈ [0, 1].(23)

This (x, u) pair is an affine function of (a, b), and for each α ≥ 1, there exists a
constant c > 0 such that

‖x1 − x2‖W 1,α + ‖u1 − u2‖Lα ≤ c(‖a1 − a2‖Lα + ‖b1 − b2‖W 1,α)(24)

for every (ai, bi) ∈ L∞ ×W 1,∞, i = 1, 2, where (xi, ui) is the pair associated with
(ai, bi).

Proof. We use the decomposition provided by Lemma 3.5 to enforce the equations

ẋ(t)−A(t)x(t)−B(t)u(t) + a(t) = 0, x(0) = x0,(25)
Kj(t)x(t) + bj(t) = 0 for each j ∈ Ji \ Ji−1, t ∈ [τi + ρ, τi+1],(26)
Kj(t)x(t) + bj(t) = 0 for each j ∈ Ji ∩ Ji−1, t ∈ [τi, τi+1],(27)

i = 2, 3, . . . , l. Since J1 is empty, (23) holds trivially on [τ1, τ2] = [0, τ2]. Suppose
that i > 1, and let us consider (23) on the interval [τi, τi+1]. Since I(t) ⊂ Ji for
t ∈ [τi, τi+1], we conclude that any j ∈ I(t) is contained in either Ji∩Ji−1 or Ji \Ji−1.
If j ∈ Ji ∩ Ji−1, then by (27), (23) holds. If j ∈ Ji \ Ji−1, then by the construction of
the Ji, j 6∈ I(t) for t ∈ [τi, τi + ρ]. Hence, (26) implies that (23) holds.

Suppose that j ∈ Ji and let σj be any given Lipschitz continuous function. Ob-
serve that if

Kj(τi)x(τi) + σj(τi) = 0 and
d

dt
(Kj(t)x(t) + σj(t)) = 0 a.e. t ∈ [τi, τi+1],(28)

then Kj(t)x(t) +σj(t) = 0 for all t ∈ [τi, τi+1]. Carrying out the differentiation in the
second relation of (28) and substituting for ẋ using the state equation (25), we obtain
a linear equation for u. By Lemma 3.5, this equation has a solution, and for fixed t
and x, the minimum norm solution can be written:

u(t, x) = Mi(t)[−σ̇Ji(t) +KJi(t)a(t)− K̇Ji(t)x−KJi(t)A(t)x],(29)

where

Mi(t) = (KJi(t)B(t))T[KJi(t)B(t)(KJi(t)B(t))T]−1.(30)

In the special case where Ji is empty, we simply set u(t, x) = 0.
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These observations show how to construct x and u in order to satisfy (26) and (27).
On the initial interval [0, τ2], u is simply 0 and x is obtained from (25). Assuming
x and u have been determined on the interval [0, τi], their values on [τi, τi+1] are
obtained in the following way: the control is given in feedback form by (29), where
for j ∈ Ji ∩ Ji−1,

σj(t) = bj(t) for t ∈ [τi, τi+1].(31)

For j ∈ Ji \ Ji−1, σj(t) = bj(t) for t ∈ [τi + ρ, τi+1], while σj is linear on [τi, τi + ρ]
with

σj(τi) = −Kj(τi)x(τi) and σj(τi + ρ) = bj(τi + ρ).(32)

With this choice for σ, the first equation in (28) is satisfied, and with x and u given
by (25) and (29), respectively, the second equation in (28) is satisfied. Also, by the
choice of σ,

Kj(t)x(t) + σj(t) = Kj(t)x(t) + bj(t) = 0

for each j ∈ Ji∩Ji−1 and t ∈ [τi, τi+1], and for each j ∈ Ji \Ji−1 and t ∈ [τi+ρ, τi+1].
Hence, (26) and (27) hold, which yields (23).

For j ∈ Ji, it follows from the definition of σ that

|σ̇j(t)| ≤ c(|x(τi)|+ ‖b‖W 1,∞) a.e. t ∈ [τi, τi+1].

When u in (29) is inserted in (25) and this bound on |σ̇j(t)| is taken into account,
we obtain by induction that x ∈ W 1,∞ and u ∈ L∞. By the equations (25) for the
state, (29) for the control, and (31)–(32) for σ, (x, u) is an affine function of (a, b).
Moreover, the change (δx, δu) in the state and control associated with the change
(δa, δb) in the parameters satisfies

‖δx‖W 1,α([0,τi]) + ‖δu‖Lα([0,τi]) ≤ c(‖δa‖Lα([0,τi]) + ‖δσ̇‖Lα([0,τi])),(33)

for each i where σ is specified in (31)–(32).
To complete the proof, we need to relate the σ term of (33) to the b term of (24).

For j ∈ Ji, δσj(t) = δbj(t) if t ∈ [τi + ρ, τi+1] or if j ∈ Ji−1 and t ∈ [τi, τi + ρ]. For
j ∈ Ji \ Ji−1 and t ∈ [τi, τi + ρ], we have

|δσ̇j(t)| ≤ (|δbj(τi + ρ)|+ |Kj(τi)δx(τi)|)/ρ ≤ c(‖δb‖L∞ + |δx(τi)|)
≤ c(‖δb‖W 1,α + |δx(τi)|).

Consequently, for almost every t ∈ [τi, τi+1],

|δσ̇(t)| ≤ c(‖δb‖W 1,α + |δḃ(t)|+ |δx(τi)|).(34)

Since δx(0) = 0, let us proceed by induction and assume that

|δx(τi)| ≤ c(‖δa‖Lα + ‖δb‖W 1,α) for i = 1, 2, . . . , j.

Combining this with (34) and (33) for i = j + 1 gives

‖δx‖W 1,α([0,τj+1]) + ‖δu‖Lα([0,τj+1]) ≤ c ( ‖δa‖Lα + ‖δb‖W 1,α ) .

Since |δx(τj+1)| ≤ ‖δx‖W 1,α([0,τj+1]), the induction step is complete.
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In the following lemma, we prove a pointwise coercivity result for the quadratic
form B. See [4] and [7] for more general results of this nature.

LEMMA 3.7. If coercivity holds, then there exists a scalar α > 0 such that

B(x, u) ≥ α[〈x, x〉+ 〈u, u〉+ 〈ẋ, ẋ〉] for all (x, u) ∈M(35)

and

vTR(t)v ≥ αvTv for every t ∈ [0, 1] and v ∈ Rm.(36)

Proof. If (x, u) ∈ M, then L(x, u) = 0 and x(0) = 0. Hence, the L2 norm of x
and ẋ are bounded in terms of the L2 norm of u, and (35) follows directly from the
coercivity condition. To establish (36), we consider the control uε defined by

uε(s) =
{
v for t− ε/2 ≤ s ≤ t+ ε/2,
0 otherwise.

Let the state xε be the solution to L(xε, uε) = 0, xε(0) = 0. For any t ∈ (0, 1), we
have

lim
ε→0

B(xε, uε)
ε

= vTR(t)v and lim
ε→0

〈uε, uε〉
ε

= vTv.

Combining this with the coercivity condition gives (36).
Consider the following linear-quadratic problem involving the parameters a, s,

r ∈ L∞ and b ∈W 1,∞:

minimize B(x, u) + 〈s, x〉+ 〈r, u〉(37)
subject to

L(x, u) + a = 0, x(0) = x0,

KI(t)(t)x(t) + bI(t)(t) ≤ 0 for all t ∈ [0, 1],

x ∈W 1,∞([0, 1]; Rn), u ∈ L∞([0, 1]; Rm).

If the feasible set for (37) is nonempty, then coercivity implies the existence of a unique
minimizer over H1×L2. Using the following lemma, we show that this minimizer lies
in W 1,∞ × L∞, and that it exhibits stability relative to the L2 norm.

LEMMA 3.8. If coercivity and uniform independence at I hold, then (37) has a
unique solution for every a, r, s ∈ L∞ and b ∈ W 1,∞. Moreover, the change (δx, δu)
in the solution to (37) corresponding to a change (δa, δb, δs, δr) in the parameters
satisfies the estimate

‖δx‖H1 + ‖δu‖L2 ≤ c(‖δa‖L2 + ‖δb‖H1 + ‖δs‖L2 + ‖δr‖L2).(38)

Proof. By Lemma 3.6, uniform independence at I implies that the feasible set
for (37) is nonempty, while the coercivity condition implies the existence of a unique
solution (x∗, u∗) in H1×L2. From duality theory (for example, see [10]), there exists
λ ∈ L∞ with the property that u = u∗ is the minimum with respect to u of the
expression

B(x, u) + 〈s, x〉+ 〈r, u〉+ 〈λ, ẋ−Ax−Bu+ a〉

over all u ∈ L∞. It follows that

R(t)u∗(t) +M(t)Tx∗(t) + r(t)−B(t)Tλ(t) = 0,(39)
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and by (36), u∗(t) is uniformly bounded in t. From the equations L(x∗, u∗) = 0 and
x∗(0) = x0, x∗ ∈W 1,∞.

The estimate (38) can be obtained, as in Lemma 5 in [2], by eliminating the
perturbation in the constraints. Let Λ be the affine map in Lemma 3.6 relating the
feasible pair (x, u) to the parameters (a, b). By making the substitution (x, u) =
(y, v) + Λ(a, b), we transform (37) to an equivalent problem of the form

minimize B(y, v) + 〈σ, y〉+ 〈ρ, v〉(40)
subject to

L(y, v) = 0, y(0) = 0,
KI(t)(t)y(t) ≤ 0 for all t ∈ [0, 1],

y ∈W 1,∞([0, 1]; Rn), v ∈ L∞([0, 1]; Rm).

Here σ and ρ are affine functions of a, b, s, and r. Utilizing the coercivity condition
and the analysis of [9, section 2], we obtain the following estimate for the change
(δy, δv) corresponding to the change (δσ, δρ):

α(‖δy‖2H1 + ‖δv‖2L2) ≤ ‖δσ‖L1‖δy‖L∞ + ‖δρ‖L2‖δv‖L2

≤ ‖δσ‖L1‖δy‖H1 + ‖δρ‖L2‖δv‖L2 .

Hence,

‖δy‖H1 + ‖δv‖L2 ≤ c(‖δσ‖L1 + ‖δρ‖L2).

Taking into account the relations between (x, u), (y, v), (σ, ρ), and (a, b, s, r), the proof
is complete.

Now let us consider the full linear-quadratic problem where the subscript I on
the state constraint has been removed:

minimize B(x, u) + 〈s, x〉+ 〈r, u〉(41)
subject to

L(x, u) + a = 0, x(0) = x0,

K(t)x(t) + b(t) ≤ 0 for all t ∈ [0, 1],
x ∈W 1,∞([0, 1]; Rn), u ∈ L∞([0, 1]; Rm).

The first-order necessary conditions for this problem are precisely (15)–(18). Observe
that x∗, u∗, ψ∗, and ν∗ satisfy (15)–(18) when π = π∗. Since the first-order necessary
conditions are sufficient for optimality when coercivity holds, (x∗, u∗) is the unique
solution to (41) at π = π∗. In addition, if uniform independence holds, we now show
that the multipliers ψ and ν satisfying (16)–(18) are unique; hence, x∗, u∗, ψ∗, and
ν∗ are the unique solution to (15)–(18) for π = π∗.

To establish this uniqueness property for the multipliers, we apply Lemma 3.5
to the active constraint map A of section 1. Let Ji be the index sets associated
with I = A in Lemma 3.5. Since A(t) ⊂ Ji for each t ∈ [τi, τi+1], the complementary
slackness condition ν∗(1)Tg∗(1) = 0, associated with the condition (5) of the minimum
principle, implies that (ν∗)Jcl = 0 on [τl, 1], while (21) along with (16) and (17)
imply that (ν∗)Jl and ψ∗ are uniquely determined on [τl, 1]. Proceeding by induction,
suppose that ψ∗ and ν∗ are uniquely determined on the interval [τi+1, 1]. Since (ν∗)Jci
is constant on [τi, τi+1], it is uniquely determined by the continuity of ν∗, while (ν∗)Ji
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and ψ∗ on [τi, τi+1] are uniquely determined by (21), (16), and (17). This completes
the induction step.

We now use Lemma 3.8 to show that the solution to (41) depends Lipschitz
continuously on the parameters when coercivity and uniform independence at A hold.
We do this by making a special choice for the map I. Again, let Ji be the index sets
associated with I = A by Lemma 3.5. Since A(t) ⊂ Ji for each t ∈ [τi, τi+1], the
parameter

εi = − sup{(g∗)j(t) : t ∈ [τi, τi+1], j ∈ Jci }(42)

is strictly positive for each i. Setting ε = .5 min εi, we consider (37) in the case I = Aε
where Aε(t) is the index set associated with the ε-active constraints for the linearized
problem:

Aε(t) = {i : Ki(t)x∗(t) + (b∗)i(t) ≥ −ε} = {i : (g∗)i(t) ≥ −ε}.(43)

Since Aε(t) ⊂ Ji for each t ∈ [τi, τi+1], Lemma 3.5 implies that uniform independence
at Aε holds.

We now observe that the solution (x∗, u∗) of (41) at π = π∗ is the solution of
(37) for I = Aε and π = π∗. First, (x∗, u∗) is feasible in (37) since there are fewer
constraints than in (41). By the choice I = Aε, all feasible pairs for (37) near (x∗, u∗)
are also feasible in (41). Since (x∗, u∗) is optimal in (41), it is locally optimal in (37) as
well, and by the coercivity condition and Lemma 3.7, (x∗, u∗) is the unique minimizer
of (37) for π = π∗. By Lemma 3.8, we have an estimate for the change in the solution
to (37) corresponding to a change in the parameters. Since ‖δx‖L∞ ≤ ‖δx‖H1 , it
follows that for small perturbations in the data, the solution to (37) is feasible, and
hence optimal, for (41). Hence, our previous stability analysis for (37) provides us
with a local stability analysis for (41). We summarize this result in the following way.

LEMMA 3.9. If coercivity and uniform independence at A hold, then for s, r,
and a in an L∞ neighborhood of s∗, r∗, and a∗, respectively, and for b in a W 1,∞

neighborhood of b∗, there exists a unique minimizer of (41), and the estimate (38)
holds. Moreover, taking I = Aε with ε = .5 min εi, where εi is defined in (42), the
solutions to (37) and (41) are identical in these neighborhoods.

Now let us consider the multipliers associated with (41).
LEMMA 3.10. If coercivity and uniform independence at A hold, then for s, r,

and a in an L∞ neighborhood of s∗, r∗, and a∗, respectively, and for b in a W 1,∞

neighborhood of b∗, there exists a unique minimizer of (41) and associated unique
multipliers satisfying the estimate:

‖δψ‖H1 + ‖δν‖L2 ≤ c(‖δa‖L2 + ‖δb‖H1 + ‖δs‖L2 + ‖δr‖L2).(44)

Proof. Let Aε be the ε-active constraints defined by (43), where ε = .5 min εi.
Let Ji be the index sets and let ρ be the positive number associated with I = A
by Lemma 3.5. Consider π = π∗ + δπ where δπ is small enough that the active
constraint set for (41) is a subset of Aε(t) for each t. By the same analysis used
to establish uniqueness of (ψ∗, ν∗), there exist unique Lagrange multipliers (ψ, ν) =
(ψ∗, ν∗) + (δψ, δν) corresponding to π = π∗ + δπ. We will show that

‖δψ‖H1 + ‖δν‖L2 ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2).(45)

Combining this with Lemma 3.9 yields Lemma 3.10.
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We prove (45) by induction. Let us start with the interval [τl − ρ, 1]. If i ∈ Jcl ,
then νi(t) = 0 for each t ∈ [τl − ρ, 1]. Hence, δνJcl = 0 on [τl − ρ, 1]. Multiplying (17)
by KB, we can solve for δνJl and substitute in (16) to eliminate ν. Since ψ(1) = 0,
it follows that

‖δψ‖H1([σ−ρ,1]) + ‖δν‖L2([σ−ρ,1]) ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2)(46)

for σ = τl.
Proceeding by induction, suppose that (46) holds for σ = τj+1; we wish to show

that it holds for σ = τj . If i ∈ Jcj , then νi(t) is constant on [τj − ρ, τj+1], and we have∫ τj+1

τj−ρ
δνi(t)2dt =

τj+1 − τj + ρ

ρ

∫ τj+1

τj+1−ρ
δνi(t)2dt.

Combining this with (46) for σ = τj+1, it follows that

‖δνi‖L2([σ−ρ,1]) ≤ c(‖δx‖L2 + ‖δu‖L2 + ‖δs‖L2 + ‖δr‖L2)

for σ = τj . Again, multiplying (17) by KB, we solve for δνJj and substitute in (16).
Since |δψ(τj)| ≤ ‖δψ‖H1([τj ,1]), the induction bound (46) for σ = τj+1 coupled with
the bound already established for δνi, i ∈ Jcj , gives (46) for σ = τj . This completes
the induction.

LEMMA 3.11. Suppose that smoothness, coercivity, and uniform independence at
A hold and let κ be small enough that Y is contained in the neighborhoods defined in
Lemmas 3.9 and 3.10. Then for some µ > 0 and for each π ∈ Y , there exists a unique
solution (x, u) to (41) and associated multipliers (ψ, ν) satisfying the estimates (38)
and (44), (x, ψ, u, ν) = (F − L)−1π, and we have ẋ, ψ̇, u, ν ∈ Lipµ.

Proof. If w = (x, ψ, u, ν) denotes (F − L)−1π, then w satisfies the first-order
necessary conditions (15)–(18) associated with (41). Lemmas 3.9 and 3.10 tell us that
the unique solution and multipliers for (41) satisfy the estimates (38) and (44) for π
near π∗. Since the first-order necessary conditions are sufficient for optimality when
coercivity holds, the variational system (15)–(18) has a unique solution, for π near
π∗, that is identical to the solution and multipliers for (41), and the estimates (38)
and (44) are satisfied.

To complete the proof, we need to show that ẋ, ψ̇, u, ν ∈ Lipµ for some con-
stant µ > 0. This follows from the regularity results of [8], where it is shown that
the solution to a constant coefficient, linear-quadratic problem satisfying the uniform
independence condition and with R positive definite, Q positive semidefinite, and
M = 0 has the property that the optimal u and associated ν are Lipschitz continuous
in time, while the derivatives of x and ψ are Lipschitz continuous in time. Moreover,
the Lipschitz constant in time is bounded in terms of the constant α in the uniform
independence condition and the smallest eigenvalue of R. Exactly the same analy-
sis applies to a linear-quadratic problem with time-varying coefficients; however, the
bound for the Lipschitz constant of the solution depends on the Lipschitz constants
of the matrices of the problem and of the parameters a, r, s, and ḃ, as well as on
a uniform bound for the smallest eigenvalue of R(t) on [0, 1] and for the parameter
α in the uniform independence condition. By Lemma 3.9 and with the choice for I
given in the statement of the lemma, the quadratic programs (37) and (41) have the
same solution for s, r, and a in an L∞ neighborhood of s∗, r∗, and a∗ and for b in
a W 1,∞ neighborhood of b∗. Hence, for parameters in this neighborhood of π∗, the
indices of the active constraints are contained in I(t) for each t, and the indepen-
dence condition (21) holds. Lemma 3.7 provides a lower bound for the eigenvalues of
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R(t). If (a, s, r, b) ∈ Y , then the Lipschitz constants for a, s, r, and ḃ are bounded
by those for a∗, s∗, r∗, and ḃ∗ plus κ. Hence, taking µ sufficiently large, the proof is
complete.

Proof of Theorem 1.1. We apply Theorem 2.2 with the identifications given at
the beginning of this section and with µ chosen sufficiently large in accordance with
Lemma 3.11. The completeness of X is established in Lemma 3.2, (Q1) is immediate,
(Q2) follows from smoothness, (Q3) is proved in Lemma 3.3, (Q4) follows from Lemma
3.11, and (Q5) is established in Lemma 3.4. Applying Theorem 2.2, the estimate (7) is
established. Under the uniform independence condition, coercivity is a second-order
sufficient condition for local optimality (see [4, Theorem 1]) which is stable under
small changes in either the parameters or the solution of the first-order optimality
conditions. Finally, we apply Lemma 3.1 to obtain the L∞ estimate of Theorem
1.1.

We note that the coercivity condition we use here is a strong form of a second-
order sufficient optimality condition; it not only provides optimality, but also guar-
antees Lipschitz continuity of the optimal solution and multipliers when uniform
independence holds. As recently proved in [6] for finite-dimensional optimization
problems, Lipschitzian stability of the solution and multipliers necessarily requires a
coercivity condition stronger than the usual second-order condition. For the treat-
ment of second-order sufficient optimality under conditions equivalent to coercivity,
see [18] and [21]. These sufficient conditions can be applied to state constraints of
arbitrary order. For recent work concerning the treatment of second-order sufficient
optimality in state constrained optimal control, see [16], [19], and [22].

4. Lipschitzian stability in L∞ . One way to sharpen the L∞ estimate of
Theorem 1.1 involves an assumption concerning the regularity of the solution to the
linear-quadratic problem (41). The time t is a contact point for the ith constraint of
Kx+ b ≤ 0 if (K(t)x(t) + b(t))i = 0 and there exists a sequence {tk} converging to t
with (K(tk)x(tk) + b(tk))i < 0 for each k.

Contact separation. There exists a finite set I1, I2, . . . , IN of disjoint, closed inter-
vals contained in (0, 1) and neighborhoods of (a∗, r∗, s∗) in W 1,∞ and of b∗ in W 2,∞

with the property that for each a, r, s, and b in these neighborhoods, and for each
solution to (41), all contact points are contained in the union of the intervals Ii with
exactly one contact point in each interval and with exactly one constraint changing
between active and inactive at this point.

Observe that if for (1) with p = p∗, there are a finite number of contact points,
at each contact point exactly one constraint changes between active and inactive,
and each contact point in the linear-quadratic problem (41) depends continuously on
the parameters, then contact separation holds. The finiteness of the contact set is a
natural condition in optimal control; for example, in [5] it is proved that for a linear-
quadratic problem with time invariant matrices and one state constraint, the contact
set is finite when uniform independence and coercivity hold.

THEOREM 4.1. Suppose that the problem (1) with p = p∗ has a local minimizer
(x∗, u∗) and that smoothness, contact separation, and uniform independence at A
hold. Let ψ∗ and ν∗ be the associated multipliers satisfying the first-order necessary
conditions (2)–(5). If the coercivity condition holds, then there exist neighborhoods V
of p∗ and U of w∗ = (x∗, ψ∗, u∗, ν∗) in W 1,∞×W 1,∞×L∞×L∞, such that for every
p ∈ V , there exists a unique solution w = (x, ψ, u, ν) ∈ U to the first-order necessary
conditions (2)–(5) and (x, u) is a local minimizer of the problem (1) associated with
p. Moreover, for every pi ∈ V, i = 1, 2, if wi = (xi, ψi, ui, νi) is the corresponding
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solution of (2)–(5), the following estimate holds:

‖x1 − x2‖W 1,∞ + ‖ψ1 − ψ2‖W 1,∞ + ‖u1 − u2‖L∞ + ‖ν1 − ν2‖L∞ ≤ cE∞.

To prove this result, we need to supplement the 2-norm perturbation estimates
provided by Lemmas 3.9 and 3.10 with analogous ∞-norm estimates.

LEMMA 4.2. If coercivity, uniform independence at A, and contact separation
hold, then there exist neighborhoods of (a∗, r∗, s∗) in W 1,∞ and of b∗ in W 2,∞ such
that for each ai, ri, si, and bi, i = 1, 2, in these neighborhoods, the associated solutions
(xi, ui) of (41) satisfy

‖δx‖W 1,∞ + ‖δψ‖W 1,∞ + ‖δu‖L∞ + ‖δν‖L∞
≤ c(‖δa‖L∞ + ‖δb‖W 1,∞ + ‖δr‖L∞ + ‖δs‖L∞).

(47)

Proof. Letting Aε denote the ε-active set defined in (43), we again choose ε =
.5 min εi, where εi is defined in (42). We consider parameters a, r, s, and b chosen
within the neighborhoods of the contact separation condition, and sufficiently close
to a∗, r∗, s∗, and b∗ that the active constraint set for the solution of the perturbed
linear-quadratic problem (41) is contained in Aε(t) for each t. By eliminating the
perturbations in the constraints, as we did in the proof of Lemma 3.8, there is no
loss of generality in assuming that a = b = 0. We refer to the quadratic programs
corresponding to the parameters (r1, s1) and (r2, s2) as Problems 1 and 2.

Let (x, u) be either (x1, u1) or (x2, u2). If t ∈ (0, 1) is a time for which Ki(t)x(t) =
0 for some i, then d

dt (Kix) = K̇ix + Kiẋ = 0. Substituting for ẋ using the state
equation ẋ = Ax+Bu and for u using the necessary condition (17) yields

KiBR
−1(KB)Tν = −K̇ix−KiAx+KiBR

−1(BTψ +MTx+ r).

This equation has the form

Niν = Six+ Tiψ + Uir(48)

for suitable choices of the row vectors Ni, Si, Ti, and Ui. Hence, at any time t where
Ki(t)x1(t) = Ki(t)x2(t) = 0, the change in solution and multipliers corresponding to
a change in parameters satisfies the equation

Ni(t)δν(t) = Si(t)δx(t) + Ti(t)δψ(t) + Ui(t)δr(t).(49)

By the contact separation condition, Problems 1 and 2 have the same active
set near t = 1. Since the components of ν corresponding to inactive constraints
are constant and since νi(1) = 0 if Ki(1)x(1) < 0, it follows that δνi(t) = 0 for
t near 1 when Kix1(1) < 0 > Kix2(1). The relation (49) combined with uniform
independence, with the L2 estimates provided in Lemmas 3.9 and 3.10, and with a
bound for the L∞ norm in terms of the H1 norm, gives

‖δν‖L∞[t,1] ≤ c(‖δr‖L∞ + ‖δs‖L∞).(50)

Using the bound (36) of Lemma 3.7 in (17) and applying Gronwall’s lemma to (16),
we have

‖δx‖W 1,∞[t,1] + ‖δψ‖W 1,∞[t,1] + ‖δu‖L∞[t,1] + ‖δν‖L∞[t,1]

≤ c(‖δr‖L∞ + ‖δs‖L∞)
(51)
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for all t < 1 in some neighborhood of t = 1. As t decreases, this estimate is valid until
the first contact point is reached for either Problem 1 or Problem 2. Proceeding by
induction, suppose that we have established (51) up to some contact point; we now
wish to show that (51) holds up to the next contact point.

Again, by the contact separation condition, there is precisely one constraint, say
constraint j, that makes a transition between active and inactive at the current contact
point. Suppose that on the interval (α, β), the active sets for Problems 1 and 2 differ
by the element j, and let τ be the first contact point to the left of α for either Problem
1 or Problem 2. If there is no such point, we take τ = 0. By the contact separation
condition, the difference α− τ is uniformly bounded away from zero for all choices of
the parameters s and r near s∗ and r∗. There are essentially two cases to consider.

Case 1. Constraint j is active in Problem 2 to the left of t = β, and constraint j
is active in Problem 1 to the left of t = α.

Case 2. Constraint j is active in Problem 2 to the right of t = α, and constraint
j is active in Problem 1 to the right of t = β.

Case 1. Since constraint j is active in both Problems 1 and 2 at t = α, it follows
from (49) and from the uniform independence condition that

|δνΓ(α)| ≤ c(‖δr‖L∞ + ‖δs‖L∞) + c|δνΓc(α)|,

where Γ is the set of indices of active constraints at t = α. Since δνi is constant for
i ∈ Γc on (α, β), the induction hypothesis yields

|δνΓc(α)| = |δνΓc(β)|L∞ ≤ c(‖δr‖L∞ + ‖δs‖L∞).(52)

Hence, we have

|δν(α)| ≤ c(‖δr‖L∞ + ‖δs‖L∞).(53)

Since νj is constant in Problem 1 on (α, β), and since it is monotone in Problem 2,
the bound (53) coupled with the bound (51) at t = β implies that

‖δνj‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(54)

Since δνi is constant on (α, β) for i ∈ Γc, it follows from (51) that

‖δνΓc‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(55)

Relation (49), for i ∈ Γ− = Γ \ {j}, along with (54) and (55) yield

‖δνΓ−‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(56)

Combining (54)–(56) gives

‖δν‖L∞([α,β]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(57)

On the interval from t = α down to the next contact point τ , precisely the same
constraints are active in both Problems 1 and 2. Again, the relation (49) combined
with uniform independence, with the L2 estimates provided in Lemmas 3.9 and 3.10,
and with a bound for the L∞ norm in terms of the H1 norm gives

‖δν‖L∞([τ,α]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).(58)
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Relation (50) for t = β, along with (57) and (58), gives

‖δν‖L∞([τ,1]) ≤ c(‖δr‖L∞ + ‖δs‖L∞).

And combining this with (15)–(17) gives (51) for t = τ . This completes the induction
step in Case 1.

Case 2. The mean value theorem implies that for some γ ∈ (τ, α), we have

(α− τ)
d

dt
Kj(t)δx(t)| t=γ = Kj(α)δx(α)−Kj(τ)δx(τ)

≤ 2‖Kj‖L∞‖δx‖L∞ ≤ c(‖δr‖L∞ + ‖δs‖L∞).

Hence, even though the derivative of Kjxi may not vanish on (τ, α), the derivative
of the change Kjδx is still bounded by the perturbation in the parameters at some
γ ∈ (τ, α): ∣∣∣∣ ddt (Ki(t)δx(t))

∣∣∣∣
t=γ
≤ c(‖δr‖L∞ + ‖δs‖L∞)/(α− τ).(59)

Since α and τ lie in disjoint closed sets Ik associated with the contact separation
condition, α− τ is bounded away from zero by the distance between the closest pair
of sets. Focusing on the left side of (59), we substitute δẋ = Aδx + Bδu, and we
substitute for δu using (17) to obtain the relation

Nj(γ)δν(γ) = Sj(γ)δx(γ) + Tj(γ)δψ(γ) + Uj(γ)δr(γ) + ∆j ,(60)

where |∆j | ≤ c(‖δr‖L∞ + ‖δs‖L∞)/(α − τ). Let Γ denote the set of indices of the
active constraints at t = β. Combining (60) with (49) for i ∈ Γ− = Γ \ {j} gives

|δνΓ(γ)| ≤ c(‖δr‖L∞ + ‖δs‖L∞) + c|δνΓc(γ)|.

The analysis for Case 1 can now be applied, starting with (52) but with α replaced
by γ.

Remark 4.3. In the proof of Lemma 4.2, we needed to ensure that the difference
α − τ , appearing in Case 2, was bounded away from zero. The contact separation
condition ensures that this difference is bounded away from zero, since α and τ lie in
disjoint closed intervals Ik. On the other hand, any condition that ensures a positive
separation for the contact points α and τ in Case 2 can be used in place of the contact
separation assumption of Theorem 4.1 and Lemma 4.2.

Proof of Theorem 4.1. The functions T , F , and L and the sets X, Π, and Y are
the same as in the proof of Theorem 1.1 except that L2 is replaced by L∞ and H1 is
replaced by W 1,∞ everywhere. Except for this change in norms, and the replacement
of the L2 estimates (38) and (44) referred to in Lemma 3.11 by the corresponding
L∞ estimate (47) of Lemma 4.2, the same proof used for Theorem 1.1 can be used to
establish Theorem 4.1.

5. Remarks. As mentioned in section 2, Theorem 2.2 is a generalization of
Robinson’s implicit function theorem [20] to nonlinear spaces. His theorem assumes
that the nonlinear term is strictly differentiable and that the inverse of the linearized
map is Lipschitz continuous. In optimal control, the latter condition amounts to
Lipschitz continuity in L∞ of the solution-multiplier vector associated with the linear-
quadratic approximation. For problems with control constraints, this property for the
solution is obtained, for example, in [1] or [4].
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In this paper, we obtain Lipschitzian stability results for state constrained prob-
lems utilizing a new form of the implicit function theorem applicable to nonlinear
spaces. We obtain optimal Lipschitzian stability results in L2 and nonoptimal sta-
bility results in L∞ under the uniform independence and the coercivity conditions.
And with an additional contact separation condition, we obtain a tight L∞ stability
result. These are the first L∞ stability results that have been established for state
constrained control problems.

The uniform independence condition was introduced in [8], where it was shown
that this condition together with the coercivity condition yield Lipschitz continuity
in time of the solution and the Lagrange multipliers of a convex state and control
constrained optimal control problem. Using Hager’s regularity result, Dontchev [1]
proved that the solution of this problem has a Lipschitz-type property with respect
to perturbations. Various extensions of these results have been proposed by several
authors. A survey of earlier results is given in [2].

In a series of papers (see [14], [15], and the references therein), Malanowski studied
the stability of optimal control problems with constraints. In [15] he considers an
optimal control problem with state and control constraints. His approach differs from
ours in the following ways: he uses an implicit function theorem in linear spaces and
a compactness argument, and the second-order sufficient condition he uses is different
from our coercivity condition. Although there are some similar steps in the analysis
of L2 stability, the two approaches mainly differ in their abstract framework.

A prototype of Lemma 3.5 is given in [1, Lemma 2.5]. Lemma 3.6 is related to
Lemma 3 in [2], although the analysis in Lemma 3.6 is much simpler since we ignore
indices outside of A(t). In the analysis of the linear-quadratic problem (37), we follow
the approach in [4].

Acknowledgment. The authors wish to thank both Kazimierz Malanowski for
his comments on an earlier version of this paper and the reviewers for their construc-
tive suggestions.
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Abstract. We present a simple method for obtaining rate of convergence estimates for ap-
proximations in optimal control problems. Although the method is applicable to a wide range of
approximation problems, it requires in all cases some type of smoothness of the quantity being ap-
proximated. We illustrate the method by presenting a number of examples, including finite difference
schemes for stochastic and deterministic optimal control problems. A general principle can be ab-
stracted, and indeed the method may be applied to a variety of approximation problems, such as the
numerical approximation of nonlinear PDEs not a priori related to control theory.

Key words. optimal control, numerical approximation, rate of convergence, finite differences,
ergodic control, reflected diffusions, nonlinear PDE
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1. Introduction. A fundamental problem in numerical analysis is the determi-
nation of the rate of convergence of approximation schemes. In general, the rate of
convergence depends on the nature of the approximation and on the smoothness of
the quantity being approximated. For example, the standard finite difference scheme
for Laplace’s equation in a smooth domain converges with a rate proportional to the
discretization step size.

In optimal control theory, one is often faced with the problem of computing the
minimal cost function, also referred to as the value function. In many cases, the
value function can be characterized as an appropriate solution to a Hamilton–Jacobi–
Bellman (HJB) equation that takes the form of a nonlinear PDE. In general, one
cannot compute the value function explicitly, and instead must resort to a numerical
approximation. Various approximation schemes are available (e.g., finite difference or
finite element), and convergence results are either analytic (e.g., Crandall and Lions
[5], Barles and Souganidis [1]) or probabilistic (e.g., Kushner [18], Kushner and Dupuis
[19]). There are two types of results available on the rate of convergence. One is a
global rate of convergence for deterministic problems which makes few assumptions
regarding the regularity of the minimal cost function. The first paper to obtain results
of this type was [5]. The rate is in the form of an upper bound on the error and is
proportional to the square root of the discretization step size. Later papers considered
a number of extensions, such as deterministic control problems (e.g., Capuzzo Dolcetta
and Falcone [3], Capuzzo Dolcetta and Ishii [4], Gonzalez and Rofman [17]) and
differential games (Souganidis [26]). In all these papers the same type of global but
locally suboptimal rate estimate as in [5] is obtained. A second type of rate was
obtained by Menaldi [23] in the context of control of a nondegenerate diffusion process

∗Received by the editors May 16, 1994; accepted for publication (in revised form) February 4,
1997.

http://www.siam.org/journals/sicon/36-2/26778.html
†Division of Applied Mathematics, Brown University, Providence, RI 02912 (dupuis@

cfm.brown.edu). The research of this author was supported in part by the Air Force Office of
Scientific Research (F49620-93-1-0264) and the Army Research Office (DAAH04-93-G-0070).
‡Department of Engineering, Faculty of Engineering and Information Technology, Aus-

tralian National University, Canberra, ACT 0200, Australia (Matthew.James@anu.edu.au,
http://spigot.anu.edu.au/people/mat/home.html).

719



720 PAUL DUPUIS AND MATTHEW JAMES

with discounted cost. Here the regularity of the minimal cost function was exploited
to obtain sharp rates of convergence.

In this paper we present a simple method for obtaining rate of convergence es-
timates that is applicable to a range of approximation problems, including the im-
portant case of numerical approximation. The approach is closer in spirit to that
of Menaldi rather than Crandall and Lions in that we exploit, wherever possible,
smoothness of the minimal cost to obtain sharp rates and in some cases an expan-
sion of the error in terms of the discretization parameter. A minimal requirement
for the applicability of our method is local smoothness of the quantity that is being
approximated. For example, in the setting of deterministic optimal control problems
we obtain a rate of convergence that is proportional to the discretization step size
in these regions. The practice of considering separately those regions where greater
regularity applies is standard in numerical analysis, and the information so obtained
is often more useful than a global but locally suboptimal rate of convergence.

The basic idea is as follows. In the problems we consider, the quantity V to be
approximated is represented as a functional of some process x, and the approximating
quantity V h is analogously represented as a functional of an approximating process
xh. For a very simple (uncontrolled) example, suppose that V has a representation
of the form

V (x) = Ex

[∫ ∞
0

e−λtk(xt)dt
]
,

where x is, say, a diffusion process. Suppose also that V h has the representation

V h(x) = Ex

[∫ ∞
0

e−λtk(xht )dt
]

in terms of an approximating process xh, which for simplicity we will assume to
be Markov. As we illustrate via several examples below, the assumed regularity
properties of V allow one to derive a second representation for V , this time in terms
of the process xh:

V (x) = Ex

[∫ ∞
0

e−λt
(
k(xht ) + eh(xht )

)
dt

]
.

The function eh = V − V h is given explicitly in terms of the function V and the
generators of the processes x and xh. Since V h is supposed to be close to V , one
would expect xh to be close in some sense to x. In fact, one typically has the weak
convergence of xh to x. When this convergence is coupled with the explicit form for
the error eh, a comparison of the two representations of V gives a rate of convergence,
and also formulas for rate coefficients when enough regularity is available.

The rate of convergence has a number of uses, the most obvious being as a guide
in the selection of step sizes and the comparison of algorithms in numerical approxi-
mations. A second use in this setting is in comparing the contributions to the overall
error made by various “parts” of an approximation; e.g., one can consider a problem
that is posed on a bounded domain and compare the contributions made by approxi-
mations on the interior and approximations to the boundary condition. This is done
for a reflecting diffusion problem with ergodic cost in section 4.

To show that the basic idea can be used in a variety of situations, we give the
details for a number of problems that are quite different. In section 2, we consider
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the stochastic control problem analyzed by Menaldi [23], where the value function
is known to be smooth: V ∈ C2,α and the (global) rate of convergence for a finite
difference scheme is O(hα). Our approach appears to be simpler than Menaldi’s.
The focus shifts in section 3 to a general class of approximations to a finite time
deterministic optimal control problem, including finite difference schemes. In section
4 we treat an ergodic control problem for a reflecting diffusion process.

Other types of approximations arise in control theory. For example, a diffusion
model is often a surrogate for a more realistic and more complicated controlled process.
Underlying this replacement is (implicitly or explicitly) an approximation argument,
in which it is supposed that the realistic process is embedded in a sequence of processes
whose weak limit is the controlled diffusion process. Rate of convergence estimates
are also useful in this context, and the method we discuss can in some cases be used
here as well. We conclude with remarks on such possibilities and other extensions in
section 5.

2. A stochastic optimal control example. In this section we introduce the
basic method for calculating rates of convergence. In order to place it in perspective, it
is appropriate that we begin by considering one of the few stochastic control problems
for which a rate of convergence is known, namely, the stochastic control problem
studied by Menaldi [23].

The dynamics are given by the controlled stochastic differential equation (SDE)

dxt = b(xt, ut) dt+ dwt,(2.1)

and the value function is defined by

V (x) .= inf
u∈U

Ex

[∫ τ

0
e−λtk(xt, ut) dt

]
(2.2)

for x ∈ D. Here, D ⊂ Rn is a smooth bounded domain, τ = τ(x) = inf{t > 0 : xt 6∈
D} is the exit time from D, λ > 0, U is a set of admissible U -valued control processes,
U ⊂ Rm is compact, b ∈ C∞(Rn×Rm,Rn) and k ∈ C∞(Rn×Rm) are bounded and
uniformly Lipschitz continuous, and Ex denotes expectation conditioned on x0 = x.
For the definition of admissible controls, see [23].

Although in certain cases (e.g., uncontrolled systems or one-dimensional prob-
lems) V may be more regular, it is known [16], [23, pp. 601–602] that in general
V ∈ C2,α(D̄) for some 0 < α < 1, and also that V is a classical solution of the
dynamic programming or HJB equation{

λV (x) = minu∈U [LuV (x) + k(x, u)] in D,

V (x) = 0 on ∂D.
(2.3)

In the last display Lu is the controlled diffusion generator defined for f ∈ C2(Rn) by

Luf(x) .= 〈b(x, u), fx(x)〉+
1
2

tr[fxx(x)],

where trA denotes the trace of a square matrix A, and where fx(x) and fxx(x) denote
the gradient and Hessian of f at x, respectively.

For a real-valued function g(y) we define g+(y) = g(y)∨0 and g−(y) = −(g(y)∧0).
For h > 0 let hZn = {hz : zi ∈ Z, i = 1, 2, . . . , n}. There are a number of ways to
construct an approximation to V that has domain hZn. We focus for now on the
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method that is probably most familiar. Thus we replace the differential operator Lu
by the finite difference operator Lhu defined by

Lhuf(x) .=
1
2

n∑
i=1

[f(x+ hei) + f(x− hei)− 2f(x)] /h2

+
n∑
i=1

b±i (x, u) [f(x± hei)− f(x)] /h,

where x ∈ hZn and ei, i = 1, . . . , n, are the standard unit vectors in Rn. Let us fix
h0 > 0, and suppose that D′ is an open set containing the closed h0-neighborhood of
D. Given a function f ∈ C2,α(D̄), there exists a function f ′ ∈ C2,α

0 (D′) such that
f = f ′ in D̄ (see [16, Lemma 6.37]). Henceforth, we assume h ≤ h0 and simply write f
for the extension f ′. By Taylor’s theorem, we see that the operator Lhu approximates
Lu in the sense that if we define the “error”

ehf (x, u) .= Luf(x)− Lhuf(x),(2.4)

then

|ehf (x, u)| = O(hα) uniformly in D̄ × U(2.5)

for all f ∈ C2,α(D̄). Note that this estimate is well defined, in view of our convention
of extension. The finite difference replacement of (2.3) that we consider is{

λV h(x) = minu∈U
[
LhuV

h(x) + k(x, u)
]

in Dh,

V h(x) = 0 on ∂Dh,
(2.6)

where Dh = D ∩ hZn and ∂Dh = (Rn\D) ∩ hZn.
For v ∈ Rn and p ∈ [1,∞) define ‖v‖p

.= (|v1|p + · · ·+ |vn|p)1/p. The equation
(2.6) can be interpreted as the HJB equation for a controlled Markov chain problem.
To see this, multiply both sides of the first equation in (2.6) by ∆th(x), add V h(x),
and then divide by (1 + λ∆th(x)). We thereby obtain the equation

V h(x) = min
u∈U

 ∑
z∈Nh(x)

1
1 + λ∆th(x)

(
ph(x, z|u)V h(z) + ∆th(x)k(x, u)

) ,(2.7)

where

∆th(x) .=
h2

n+ hmaxu∈U ‖b(x, u)‖1
(2.8)

is a time interpolation scale, and the functions ph(x, z|u) are transition probabilities
defined by

ph(x, z|u) .=



h(maxu∈U ‖b(x, u)‖1 − ‖b(x, u)‖1)
n+ hmaxu∈U ‖b(x, u)‖1

if z = x,

1/2 + hb±i (x, u)
n+ hmaxu∈U ‖b(x, u)‖1

if z = x± hei, some i = 1, . . . , n,

0 otherwise.
(2.9)
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The functions ph and ∆th(x) are defined as they are so that equation (2.7) can be
interpreted as an HJB equation for a problem involving a controlled Markov chain.
If {ξhk , k = 0, 1, . . .} is a controlled Markov chain satisfying

Ph
x

(
ξhk+1 = z | ξhl , ul, l = 0, . . . , k

)
= ph(ξhk , z|uhk),

then V h has the representation

V h(x) = inf
u∈Uh

Eh
x

Nh−1∑
k=0

(
k−1∏
l=0

1
1 + λ∆th(ξhl )

)
k(ξhk , u

h
k)∆th(ξhk )

 .(2.10)

Here, Nh is the exit time from Dh and Uh is an appropriate set of control policies
[19]. The minimal cost V h(x) for this problem is well defined and also the unique
solution to (2.6) [18, 19]. It is easy to formally check that (2.6) is the HJB equation
for (2.10). For a rigorous proof, we refer the reader to [25].

The original motivation for (2.6) is as a finite difference replacement for (2.3).
The replacement of the problem (2.3) by the problem (2.6) could be viewed as an
approximation at the level of the PDE. An alternative point of view is to approximate
at the level of the process, and this is the perspective naturally associated with (2.7)
and the representation (2.10). More precisely, for the transition probabilities and
interpolation interval defined by (2.8) and (2.9), we have

Eh
x

[
ξhk+1 − ξhk | ξhl , ul, l = 0, . . . , k

]
= b(ξhk , u

h
k)∆th(ξhk )(2.11)

and

(2.12)

covhx
[
ξhk+1 − ξhk | ξhl , ul, l = 0, . . . , k

]
= I∆th(ξhk ) +O(h)∆th(ξhk ) + [O(∆th(ξhk ))]2,

where cov stands for conditional covariance. These equations imply that an inter-
polated version of the chain {(ξhk , uhk)} that uses the interpolation intervals ∆th(ξhk )
is a good approximation to the original controlled process (2.1) in the sense of weak
convergence (see [19] and section 3). Although in this section we have motivated the
forms of the transition probabilities and interpolation interval by starting with finite
difference approximations, in later sections we will find it more convenient to con-
struct them directly. We refer the reader to [19, Chapter 5] for an in-depth discussion
on methods for constructing these interpolation times and transition functions and
for a precise statement of the conditions they should satisfy.

Using either weak convergence methods [18, 19] or viscosity solution methods
[1, 14], one can show that the approximation V h converges to V :

lim
h→0

sup
x∈Dh

|V h(x)− V (x)| = 0.

A rate of convergence result was obtained by Menaldi [23], in a more general setting.
Here we show that the same rate estimate can be obtained easily by employing a
probabilistic representation for V in terms of the controlled Markov chain. Indeed,
using (2.3) and (2.4), we see that V satisfies

λV (x) = min
u∈U

[
LhuV (x) + k(x, u) + eh(x, u)

]
in Dh.(2.13)



724 PAUL DUPUIS AND MATTHEW JAMES

A comparison of (2.13) with (2.6) indicates that V has a representation of exactly the
same form as (2.10), save that the perturbed running cost k + eh is used; viz.,

(2.14)

V (x) = inf
u∈Uh

Eh
x

Nh−1∑
k=0

(
k−1∏
l=0

1
1 + λ∆th(ξhl )

)(
k(ξhk , u

h
k) + eh(ξhk , u

h
k)
)

∆th(ξhk )

 .
Note in particular that the two representations are in terms of the same controlled
Markov chain. This easily leads to the following rate of convergence result.

THEOREM 2.1. Given that V ∈ C2,α(D̄), we have

sup
x∈Dh

|V h(x)− V (x)| = O(hα)(2.15)

as h ↓ 0.
Proof. For ε > 0 consider an ε-optimal control policy for the right-hand side of

(2.10), and let {(ξhk , uhk)} denote the associated controlled chain. Thus

V h(x) ≥ Eh
x

Nh−1∑
k=0

(
k−1∏
l=0

1
1 + λ∆th(ξhl )

)
k(ξhk , u

h
k)∆th(ξhk )

− ε.
From the representation (2.14) we obtain the estimate

V (x)− V h(x) ≤ Eh
x

Nh−1∑
k=0

(
k−1∏
l=0

1
1 + λ∆th(ξhl )

)
eh(ξhk , u

h
k)∆th(ξhk )

+ ε.

The definition of ∆th(x) implies the existence of 0 < γ1 ≤ γ2 <∞ such that γ1h
2 ≤

∆th(x) ≤ γ2h
2 for all x ∈ hZh. Using the bound (2.5), the last equation implies

V (x)− V h(x) ≤
[ ∞∑
k=0

(
1

1 + λγ1h2

)k
γ2h

2

]
O(hα) + ε = O(hα) + ε,

where O(hα) is uniform in all admissible controls and x ∈ Dh. Since ε > 0 is
arbitrary we have V (x)−V h(x) ≤ O(hα) uniformly in x ∈ Dh. The reverse inequality
V h(x)− V (x) ≤ O(hα) is proved in the same way, save that we consider policies that
are ε-optimal for the right-hand side of (2.14).

Remark 2.2. The results of this section continue to hold if the SDE (2.1) has a
uniformly elliptic diffusion coefficient σ(x, u).

A formula for the rate. If V enjoys greater regularity than was used above,
and if there exist a unique (in law) optimal policy u∗ and process x∗ for each initial
condition x ∈ D, then one can derive an explicit formula for the rate of convergence.
For example, if V ∈ C3,α(D̄), then

eh(x, u)
h

= −1
2

n∑
i=1

|bi(x, u)|Vxixi(x) +O(hα).

To simplify, we assume that all points where the controlled chain might be stopped lie
in ∂G. It turns out that the assumed uniqueness allows one to show that interpolated
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versions of the optimal discrete time process and control converge weakly to the
optimal control and process for the continuous time problem. This can in turn be
used to show that

lim
h→0

V h(x)− V (x)
h

= Ex

[∫ τ

0
e−λt

1
2

n∑
i=1

|bi(x∗t , u∗t )|Vxixi(x∗t ) dt
]
.(2.16)

The analogous argument for a different control problem will be given in detail in
section 3.

As an example of how such information might be useful, suppose that instead
of the one-sided approximations to 〈b(x, u), fx(x)〉 used above, we consider instead a
central difference approximation:

〈b(x, u), fx(x)〉 →
n∑
i=1

bi(x, u) (f(x+ hei)− f(x− hei)) /2h.

In this case V h(x) has an interpretation as a functional of a controlled Markov chain
if and only if h|bi(x, u)| ≤ 1 for all i, x, and u of interest. Let us assume that
this condition holds. Then, under the assumption that V ∈ C3,α(D̄), we obtain
V h(x) − V (x) = O(h1+α). Under additional regularity one can obtain an even more
refined expression in the spirit of (2.16).

Remark 2.3. Although we have used in a crucial way the fact that V solves the
HJB equation (2.3), it is not actually necessary to make an analogous assumption
with respect to the value functions for the approximations. This can be useful in
cases where the HJB equations for the prelimit problems are not sufficiently well
understood. In such cases an additional argument is needed to show that the minimal
costs for the prelimit problems can be arbitrarily well approximated by problems for
which the associated HJB equations are known to hold rigorously, e.g., approximation
in terms of a countable state space controlled Markov chain. This can be established
in wide generality by means of weak convergence techniques [19]. However, even if
they hold only in a formal sense the relations between the HJB equations for the
limiting and prelimit control problems are very useful in motivating the general line
of reasoning that we use.

3. A deterministic optimal control example. Consider the following deter-
ministic control system: {

ẋs = b(xs, us), t < s < T,

xt = x,
(3.1)

and finite-horizon value function

V (x, t) = inf
u∈Ut

[∫ T

t

k(xs, us) ds+ g(xT )

]
,(3.2)

where b, k, etc., are as in section 2, Ut consists of all measurable functions u :
[t, T ]→ U , and g ∈ C∞(Rn) is bounded and uniformly Lipschitz continuous. Define
Luf(x, t) = 〈b(x, u), fx(x, t)〉. Then V ∈ C(Rn × [0, T ]) is Lipschitz continuous and
is the unique (viscosity) solution of the HJB equation [14] Vt + min

u∈U
[LuV (x, t) + k(x, u)] = 0 in Rn × (0, T ),

V (x, T ) = g(x) for x ∈ Rn.
(3.3)
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In this section we will consider a general class of approximations to V . In the
previous section we assumed that the solution to the appropriate HJB equation was
regular on the entire domain of interest. In contrast, in these deterministic examples
we can consider the case where the solution may be regular only on a subset of the
domain. In the first subsection we introduce a class of approximations to (3.2). In the
second and third subsections we consider the cases where the value function is globally
regular and regular only on a subset, respectively. Besides proving a rate result, we
also show how under certain conditions the coefficients can be identified. Finally, in
section 3.4 we give examples from finite difference numerical approximation.

3.1. A general approximation. The class of approximations to (3.1) and (3.3)
we consider can be thought of as discrete time “small noise” approximations. Included
are small noise optimal control problems associated with the large deviation theory
for small noise discrete time stochastic systems, as well as explicit finite difference
schemes for the numerical approximation of V . Let δ > 0 denote the approximation
parameter. We will restrict δ to values such that T/δ is an integer. While this is
done in part just for convenience, it also turns out that this assumption plays a role
in determining the specific form for the rate of convergence. See the remark after
Theorem 3.3.

For each such δ > 0, x ∈ Rn, and u ∈ U , let µδx,u denote a probability measure
on Rn. In order to have the processes we work with well defined, we assume that the
mapping (x, u) → µδx,u(A) is Borel measurable for each Borel set A ⊂ Rn. Define
tδk = kδ and Nδ = T/δ. We consider controlled discrete time processes {ξδi } that
evolve according to

Pδ
x,tδk

(
ξδi+1 − ξδi

δ
∈ A

∣∣∣∣∣ (ξδj , uδj), j ∈ {k, . . . , i}
)

= µδξδi ,uδi
(A).

Here Pδ
x,tδk

denotes probability conditioned on ξδk = x.
We consider the family of value functions

V δ(x, tδk) .= inf
uδ∈Uδ

Eh
x,tδk

Nδ−1∑
i=k

k(ξδi , u
δ
i )δ + g(ξδNδ)

 .
The admissible controls in this case can be taken to be the feedback control laws
(i.e., each uδk is simply a measurable function from Rn to U), which implies that the
controlled process is a nonstationary Markov chain. In order for V δ to be close to V
we must impose some conditions on µδx,u. Define bδ(x, u) to be the mean of µδx,u(dy):

bδ(x, u) .=
∫

Rn

yµδx,u(dy).

We require that

bδ(x, u) = b(x, u) +O(δ) and
∫

Rn

‖y‖2µδx,u(dy) = O(1),(3.4)

where the O(δ) and O(1) are uniform on compact subsets of Rn×U . For convenience
we will also assume that the supports of the measures µδx,u(dy) are bounded uniformly
for all δ > 0, x ∈ Rn, and u ∈ U , which automatically implies the second part of
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(3.4). A less restrictive assumption that could be used instead is a uniform bound on
the moment generating functions: for each α ∈ Rn

sup
δ>0,u∈U,x∈Rn

∫
Rn

exp〈α, y〉µδx,u(dy) <∞.(3.5)

Of course, this condition is implied by the assumption of a uniform bound on the
supports. These conditions are usually easy to check.

The minimal costs V δ satisfy the following HJB equation [2]:

∂δt V
δ(x, tδk) + min

u∈U

[
LδuV

δ(x, tδk+1) + k(x, u)
]

= 0 in Rn × {0, . . . , Nδ − 1},

V δ(x, T ) = g(x) for x ∈ Rn,

(3.6)

where

∂δt f(x, tδk) .=
(
f(x, tδk+1)− f(x, tδk)

)
/δ

and

Lδuf(x, t) .=
∫

Rn

(f(x+ δy, t)− f(x, t))µδx,u(dy)/δ.

By weak convergence methods [18, 19] (or, alternatively, by viscosity solution
methods [1, 14]), one can prove convergence for this scheme:

lim
δ→0

sup
x∈Rn, |x|≤C

sup
k=0,1,...,Nδ

|V δ(x, tδk)− V (x, tδk)| = 0

for each C < ∞. The rate of convergence depends on the smoothness of the value
function V . In general, V is merely Lipschitz continuous and may fail to be dif-
ferentiable everywhere. However, when V is smooth a rate estimate can easily be
established.

3.2. The globally smooth case. Assume now that V ∈ C2(Rn × [0, T ]). To
obtain a rate of convergence we follow the same procedure as in section 2. Thus the
first step is to obtain a representation for V in terms of the controlled chain. By
Taylor’s theorem, V satisfies the discrete equation

∂δt V (x, tδk) + min
u∈U

[
LδuV (x, tδk+1) + k(x, u) + eδ(x, u, tδk)

]
= 0(3.7)

in Rn × {0, . . . , Nδ − 1}, where

eδ(x, u, t) .=
(
LuV (x, t)− LδuV (x, t)

)
+
(
Vt(x, t)− ∂δt V (x, t)

)
.

We therefore have the representation

V (x, tδk) = inf
uδ∈Uδ

Eδ
x,tδk

Nδ−1∑
i=k

(
k(ξδi , u

δ
i ) + eδ(ξδi , u

δ
i , t

δ
i )
)
δ + g(ξδNδ)

 .(3.8)

Equation (3.4) implies eδ(x, u, t) = O(δ) uniformly on compact subsets.
This representation leads to the following result, whose proof is exactly analogous

to the proof of Theorem 2.1.
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THEOREM 3.1. Assume that V ∈ C2(Rn × [0, T ]) and that (3.4) holds. Then for
each C <∞ we have

sup
x∈Rn, |x|≤C

sup
k=0,1...,Nδ

|V δ(x, tδk)− V (x, tδk)| = O(δ)(3.9)

as δ ↓ 0.
Remark 3.2. Similar results can be obtained for differential game problems, and

also for implicit schemes [19].
If V enjoys a greater degree of regularity and (3.4) is replaced by a stronger as-

sumption, we can refine this result and obtain an explicit expression for the coefficient
in the rate of convergence. Let B be any n × n symmetric matrix. In place of (3.4)
we assume

bδ(x, u) = b(x, u) + δs(x, u) + o(δ),∫
Rn

〈By, y〉µδx,u(dy) = q(x, u,B) + o(1),
(3.10)

where s(x, u) and q(x, u,B) are continuous in (x, u,B), and where the o(δ) and o(1)
terms are uniform in compact subsets of Rn × U . We will also need to make the
following assumption:

minu∈U [b(x, u) · p+ k(x, u)] attains a unique minimum

at U∗(x, p), where U∗ is of class C1.
(3.11)

Define

r(x, u, t) .= 〈Vx(x, t), s(x, u)〉+ q(x, u, Vxx(x, t)) +
1
2
Vtt(x, t).

Note that −eδ(x, u, t)/δ → r(x, u, t) uniformly on compact sets.
THEOREM 3.3. Assume that V ∈ C3(Rn × [0, T ]) and (3.10), (3.11) hold. Then

we have the explicit rate of convergence

lim
δ→0, xδ→x, tδk→t

V δ(xδ, tδk)− V (xδ, tδk)
δ

=
∫ T

t

r(x∗s, u
∗
s, s) ds,(3.12)

uniformly on compact subsets, where x∗s is the optimal trajectory corresponding to the
unique optimal feedback control u∗s = u∗(x∗s, s) = U∗(x∗s, Vx(x∗s, s)), t ≤ s ≤ T , with
initial condition x∗t = x.

Proof. We first prove that u∗ is the unique optimal control. Let ũs be any control
and let x̃s be the associated controlled trajectory that starts at x at time t [24]. We
follow the convention of saying that ũ = u∗ if and only if ũs = u∗s for almost every
(a.e.) s ∈ [t, T ]. From equation (3.3) we obtain

Vs(x, s) + LũsV (x, s) + k(x, ũs) ≥ 0,

with equality if and only if ũs = u∗(x, s). Integrating along the trajectory yields

∫ T

t

k(x̃s, ũs) ds+ g(x̃T ) ≥ V (x, t),(3.13)
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with equality if and only if ũs = u∗(x̃s, s) for a.e. s ∈ [t, T ]. Since the solution
to φ̇s = b(φs, u∗(φs, s)) is unique for any initial condition (i.e., x̃ = x∗), we obtain
equality if and only if ũ = u∗.

We now prove the rate result. Following the argument of Theorem 2.1, we let
{(ξδi , uδi )} be a δ2-optimal chain and control for the representation of V (xδ, tδk) given
in (3.8). Define interpolated state and control processes xδ, uδ by xδs = ξδi , uδs = uδi on
[tδi , t

δ
i+1) [18, 19]. It follows from the boundedness of the supports of the measures µδx,u

that the random processes {(xδ, uδ), δ > 0} are tight (for the precise topology used
on the control process, see [19]). It follows from (3.4) and an elementary martingale
argument that any limit satisfies (3.1) with probability 1 (w.p.1). Since we have
equality in (3.13) if and only if ũ = u∗, the fact that V δ(xδ, tδk) → V (x, t) (Theorem
3.1) and an argument by contradiction imply the weak convergence

xδ, uδ =⇒ x∗, u∗

as δ → 0, xδ → x, tδk → t. Now since {(ξδi , uδi )} is δ2-optimal in the representation
(3.8),

V δ(xδ, tδk)− V (xδ, tδk)
δ

≤ Eδ
xδ,tδk

Nδ−1∑
i=k

(
r(ξδi , u

δ
i , t

δ
i ) + o(1)

)
δ

+ δ,

where the o(1) term is uniform on compact sets. Thus, by the dominated convergence
theorem,

lim sup
δ→0,xδ→x, tδk→t

V δ(xδ, tδk)− V (xδ, tδk)
δ

≤
∫ T

t

r(x∗s, u
∗
s, s) ds.

The opposite inequality is proven similarly, completing the proof.
Remark 3.4. Although the assumption that T/δ is an integer is not needed for

convergence or even Theorem 3.1, it is needed if we wish to identify the rate coefficient
as in the last theorem.

3.3. The general case. In general, V is not smooth everywhere, and conse-
quently one obtains a slower global rate of convergence (see the discussion in the
following subsection on rates for numerical schemes). However, because V is smooth
in certain regions N ⊂ Rn × [0, T ] [11, 12], one might expect the rate to be faster in
these regions of smoothness. We now show that the rate is O(δ) in such regions.

Let N be an open, bounded subset of Rn × [0, T ]. Following [12, 13], the set N
is called a region of strong regularity (RSR) provided

1. V ∈ C3(N̄ ).
2. Assumption (3.11) holds.
3. Given (x, t) ∈ N , denote by x∗s and u∗s = u∗(x∗s, s) = U∗(x∗s, Vx(x∗s, s)), t ≤
s ≤ T , the unique optimal state trajectory and control with initial condition
x∗t = x. Define

σ = σx,t = inf {s > t : (x∗s, s) 6∈ N} ,

y = yx,t = x∗(σ), z = zx,t = (y, σ).

Then (x, t) ∈ N implies (x∗s, s) ∈ N , t ≤ s < σ, and σx,t = T .
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4. ∂N = Γ1∪Γ2, where Γ1 = {zx,t : (x, t) ∈ N} is an open subset of Rn×{T}.
For information regarding the existence of RSRs, we refer the reader to [11, 12].

THEOREM 3.5. Assume (3.10) and let N be an RSR. Then

lim
δ→0, xδ→x, tδk→t

V δ(xδ, tδk)− V (xδ, tδk)
δ

=
∫ T

t

r(x∗s, u
∗
s, s) ds(3.14)

uniformly on compact subsets of N . Consequently,

|V δ − V | = O(δ) in N

as δ → 0.
Proof (sketch). This result is proven by modifying the proof of Theorem 3.3 along

the lines of [12, 13]. However, in this proof we use a slightly modified representation
for V (x, t). In place of (3.8) we exploit the strong Markov property to write

V (x, tδk) = inf
uδ∈Uδ

Eδ
x,tδk

Mδ−1∑
i=k

(
k(ξδi , u

δ
i ) + eδ(ξδi , u

δ
i , t

δ
i )
)
δ + V (zδ)

 ,
where M δ = inf{i > k : (xδi , t

δ
i ) 6∈ N} is the discrete time of first exit from N ,

σδ = tδMδ , and zδ = (ξδMδ , σ
δ). We can also write an analogous representation for

V δ(x, tδk) in terms of this stopping time and location. If we let {(ξδi , uδi )} be δ2-optimal
for V as in the proof of Theorem 3.3, then we obtain

V δ(xδ, tδk)− V (xδ, tδk)
δ

≤ Eδ
xδ,tδk

Mδ−1∑
i=k

(
r(ξδi , u

δ
i , t

δ
i ) + o(1)

)
δ +

V δ(zδ)− V (zδ)
δ

+ δ.

Recall that the bound (3.5) holds for the moment generating functions of the
distributions µδx,u. Because of this bound an upper large deviation principle holds for
the interpolated processes xδs [7, 8]. The large deviation upper bound implies that if
xδ → x and tδk → t as δ → 0, then given η > 0, there exists c > 0 such that for all
sufficiently small δ > 0,

Pδ
xδ,tδk

(
sup

tδk≤s≤T
|xδs − x∗s| > η

)
≤ e−c/δ,

and thus by parts (iii) and (iv) of the definition of a RSR, for all sufficiently small
η > 0,

Pδ
xδ,tδk

(
|zδ − z| > η

)
≤ e−c/δ.

Since V (x, t) and V δ(x, t) are uniformly bounded in (x, t) ∈ Rn× [0, T ] and δ ∈ (0, 1),
(V δ(zδ)−V (zδ))/δ is uniformly bounded above by some constant times 1/δ. Therefore

V δ(xδ, tδk)− V (xδ, tδk)
δ

≤ Eδ
xδ,tδk

[(∫ T∧σδ

tδk

r(xδs, u
δ
s, s) ds+ o(1)

)
1{|zδ−z|<η}

]

+ O(e−c/δ) (1 +O(1/δ)) ,

and we can conclude as in the proof of Theorem 3.3.
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3.4. Numerical approximations. In this subsection we specialize from the
previous two subsections to the case of an explicit finite difference approximation V h

to V . As in section 2, let h > 0 denote the space discretization step size, ∆th denote
the time discretization, etc. Select v > 0 such that

v ≥ max
x∈Rn, u∈U

‖b(x, u)‖1,

and define the time step size

∆th .= h/v.

We restrict attention to values of h > 0 such that Nh = T/∆th is an integer. We
define the discrete times thk

.= k∆th and consider the transition probabilities

ph(x, z|u) .=


1− ‖b(x, u)‖1/v if z = x,

b±i (x, u)/v if z = x± hei for some i = 1, . . . , n,

0 otherwise.

We fit this example into the general framework by setting δ .= h/v and defining
µδx,u by

µδx,u(A) .=
∑

w∈Zn:vw∈A
ph(x, x+ hw|u)

for all Borel sets A ⊂ Rn. These definitions imply∫
Rn

yµδx,u(dy) = b(x, u),

∫
Rn

〈By, y〉µδx,u(dy) =
n∑
i=1

vBii|bi(x, u)|,

where B = (Bij). Hence equation (3.4) holds and we may apply Theorem 3.1. The
function r(x, u, t) in this example takes the form

v
n∑
i=1

Vxixi(x, t)|bi(x, u)|+ 1
2
Vtt(x, t),

and under the appropriate conditions Theorems 3.3 and 3.5 hold as well.
As an application of the rate of convergence results, consider the following modifi-

cation of the numerical approximation. It is well known that it is at least theoretically
advantageous to allow the interpolation times ∆th to depend on the state and control:
∆th = ∆th(x, u). While it is obvious that such added flexibility in the selection of
a numerical scheme can only help, it may not be the case that the additional effort
required to program such schemes is worth the improvement in accuracy. The rate re-
sult allows one to estimate the improvement before implementing a more complicated
scheme. Note also that the total time taken to complete the numerical computations
may be reduced if the interpolation times are allowed to depend on the state and
control.

We consider such a modification for the example that was just considered. The
underlying reason why one expects state- and control-dependent interpolation times
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to improve numerical performance is because they allow one to reduce the probability
that the controlled chain remains at any given state; i.e., they allow one to design
chains for which ph(x, x|u) = 0 [19, Chapter 5]. With only a little effort, one can mod-
ify the proofs of the theorems stated above to allow such state and control dependency
of the interpolation times. (Note that if ∆th(x) is state- or control-dependent then for
any given x one does not know a priori which continuous times correspond to the inter-
polation times chosen by the discrete algorithm. Because of this, one must keep track
of the interpolation times used as one iterates backward when solving the discrete HJB
equation and define V h(x, 0) via an interpolation.) The state-dependent interpolation
times and transition probabilities that are appropriate are ∆th(x, u) = h/|b(x, u)‖1
and

ph(x, z|u) =


0 if z = x,

b±i (x, u)/‖b(x, u)‖1 if z = x± hei for some i = 1, . . . , n,

0 otherwise.

The measures µδx,u are defined as before. With these definitions, we again have∫
Rn yµ

δ
x,u(dy) = b(x, u), but now

r(x, u, t) = ‖b(x, u)‖1
n∑
i=1

Vxixi(x, t)|bi(x, u)|+ 1
2
Vtt(x, t).

Since v ≥ ‖b(x, u)‖1 for all x and u, one expects the rate with the new transition
probabilities and interpolation times to often be better than that of the previous
setup. If v is much larger than “typical values” of ‖b(x, u)‖1, then the extra pro-
gramming effort may indeed be worthwhile. However, if one has a bound such as
a ≤ infx,u ‖b(x, u)‖1 ≤ supx,u ‖b(x, u)‖1 ≤ Ca, where C is not very large, then it is
probably not worthwhile.

4. An example with ergodic cost and a reflecting diffusion. In order to
demonstrate the versatility of the approach, in this section we will consider a variation
on the numerical approximation problem considered in section 2. More precisely, we
treat the analogous problem where the cost to be minimized is an ergodic cost, and
where a reflecting diffusion replaces the model (2.1). In order to define the reflecting
diffusion model we must specify a reflection direction for each point of ∂D. Let n(x)
denote the inward unit normal to ∂D at x ∈ ∂D. The reflection direction will be
denoted by a unit vector r(x). We will assume that 〈r(x), n(x)〉 > 0 for all x ∈ ∂D,
and that r ∈ C∞(Rm). Since ∂D is smooth, we can assume that the function n
is defined and smooth in an open neighborhood O of ∂D, and that 〈r(x), n(x)〉 is
uniformly bounded below away from zero on O.

We next describe the reflected diffusion model. Since the theory of such equations
is not our focus here, the description will only be heuristic. A precise definition can
be found in [21] or [6]. The replacement for (2.1) takes the form

dxt = b(xt, ut) dt+ dwt + dzt,(4.1)

where b satisfies all the assumptions used in section 2. The process zt is a w.p.1
bounded variation function of t that constrains xt to remain in D̄. It acts in the
following way. As long as xt ∈ D (recall that D is open), zt does not affect the
process xt at all, which means that dzt = 0 for all such t. If xt ∈ ∂D, then zt can
“push” the process so as to maintain xt ∈ D̄. The requirements on the “push” are:
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• that it be in the direction r(xt),
• that xt ∈ D̄ for all t w.p.1.

These requirements are formalized by the equations

|z|t =
∫ t

0
I{xs∈∂D}d|z|s and zt =

∫ t

0
r(xs)d|z|s,

where |z|t denotes the total variation of z on the interval (0, t]. Under the assumptions
made above on b, r, and D, a solution to (4.1) exists and is unique. For precise
statements and more discussion, we refer the reader to [21, 6, 19].

The reflecting diffusion model described above is especially useful when the con-
trolled process is considered on an infinite time horizon, since it allows the domain
on which the process is defined to be bounded without actually stopping the process
when it hits ∂D. In some problems, there is a cost proportional to the constraining
action of the process zt. Because of this, we consider the minimal cost defined by

γ
.= inf

u∈U
lim sup
T→∞

1
T

Ex

[∫ T

0
k(xt, ut) dt+

∫ T

0
l(xt) d|z|t

]
,(4.2)

where l ∈ C∞(Rn) is bounded and uniformly Lipschitz continuous. Although a priori
the minimal cost might depend on the initial condition x, it turns out under our
assumptions that the cost is independent of x.

The appropriate HJB equation for this problem is
γ = min

u∈U
[LuV (x) + k(x, u)] in D,

0 = l(x) + 〈Vx(x), r(x)〉 on ∂D,
(4.3)

where Lu is again defined by

Luf(x) .= 〈b(x, u), fx(x)〉+
1
2

tr[fxx(x)].

The solution to this equation is the pair (γ, V (·)). Note that if (γ, V (·)) solves (4.3),
then so does (γ, V (·) + c) for any c ∈ R. It turns out that this is exactly the form of
nonuniqueness associated with the solutions to (4.3); i.e., if (γ1, V1(·)) and (γ2, V2(·))
both solve (4.3), then γ1 = γ2 and V1(·)− V2(·) is a constant. We will assume, as in
section 2, that V ∈ C2,α(D̄) (see [22]).

A general reference for the Markov chain optimal control problems discussed in
this section is section 5 of Chapter 7 in [19]. Recall the definitionDh .= D∩hZn. While
the process xt is in D it is the same as the process of section 2. This suggests that
we can continue to use the transition probabilities and interpolation intervals defined
by (2.9) and (2.8), respectively. However, we must still define the approximations for
the boundary condition. Define the operator A by

Af(x) = 〈fx(x), r(x)〉

for f ∈ C1(Rn). Then the boundary condition can be written 0 = l(x) + AV (x) for
x ∈ ∂D. Let ∂Dh

+ be a set that contains all points in (Rn\D) ∩ hZn that can be
reached from some point in Dh in one step for some choice of the control, i.e., all y
such that

ph(x, y|u) > 0 for some x ∈ Dh and u ∈ U.
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We interpret ∂Dh
+ as the “discrete reflecting boundary.” Although one can often

take ∂Dh
+ to be exactly those points that can be reached in one step from Dh, the

formulation as given above, which allows a bigger set, is sometimes needed. We will
assume that for all h sufficiently small, ∂Dh

+ ⊂ O, and remind the reader that O is
an open set on which both n(·) and r(·) are defined.

We next consider the transition probabilities for x ∈ ∂Dh
+. The role of these

transitions will be to “mimic” the behavior of the reflecting term zt. The construction
of the transition functions obviously depends on the shape of ∂D, Dh∪∂Dh

+, and the
function r(·). For most problems the construction is straightforward and intuitive,
since we are dealing here with only first-order boundary operators. Since it is not
our goal to discuss methods for constructing these functions, we will simply assume
the existence of transition probabilities that satisfy the local consistency equations
(4.4) and (4.5) below, and refer the reader to Chapters 5 and 8 of [19] for further
information.

Let ph(x, y) be the transition function for points x ∈ ∂Dh
+. (Note that we do not

include a control for such states. This is because in our setup the reflection direction
is not controlled. An interesting example where the reflection direction is controlled
appears in [20].) Let αh(x)r(x)+sh(x) denote the decomposition of the mean discrete
reflection mh(x) .=

∑
y∈Dh∪∂Dh+

[y − x] ph(x, y) into the orthogonal projection onto
the subspace spanned by r(x) and its complement. Then the minimal type of “local
consistency” we require of the functions ph(x, y) is

inf
h>0,x∈∂Dh+

αh(x)/h > 0,

sh(x)/h→ 0 uniformly in x ∈ ∂Dh
+,(4.4)

and

ch(x)/h .=
∑

y∈Dh∪∂Dh+

[
y − x−mh(x)

] [
y − x−mh(x)

]′
ph(x, y)/h→ 0(4.5)

uniformly in x ∈ ∂Dh
+. This last equation is automatic if ph is only supported on

neighboring points. The essential consequence of these conditions is that sh(x)/αh(x)→
0 and ch(x)/αh(x) → 0 uniformly in ∂Dh

+, the first of which shows that the compo-
nent orthogonal to r(x) vanishes faster than the component in the direction r(x), and
the second of which shows that the quadratic variation around the mean vanishes
faster than αh(x). It is often the case that one can choose the probabilities so that
sh(x) ≡ 0. We must also assume that the “radius” of ∂Dh

+ tends to zero:

sup
x∈∂Dh+

inf
y∈Dh

‖x− y‖ → 0(4.6)

as h→ 0.
Define the operator Ah by

Ahf(x) =
∑

y∈Dh∪∂Dh+

[f(y)− f(x)]
ph(x, y)
αh(x)

for points x ∈ ∂Dh
+. Then the conditions given above imply for all f ∈ C1(Rn) that∣∣Af(x)−Ahf(x)

∣∣ = o(1)
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D

x1

x2

FIG. 4.1. Boundary portion ∂Dh+.

uniformly in x ∈ ∂Dh
+, which is sufficient for convergence. However, in order to specify

a rate of convergence, we need to be more precise in describing how fast sh(x) and
ch(x) tend to zero. We will assume that

sh(x) = O(h2), ch(x) = O(h2)(4.7)

uniformly in x ∈ ∂Dh
+. (Note that if we want to identify coefficients, then more is

needed; i.e., we need expansions of the form

sh(x) = h2s̃(x) + o(h2), ch(x) = h2c̃(x) + o(h2)

for some continuous functions s̃(x) and c̃(x).)
Example 4.1. We consider the case n = 2, D = {x : ‖x‖ ≤ 1}, and r(x) = n(x).

Suppose h = 1/k, where k is an integer. In this case we can take the set ∂Dh
+ to be

as in Figure 4.1. The definition is

ph(x, y) =



x∓1
|x1|+ |x2|

if y = x± h(1, 0),

x∓2
|x1|+ |x2|

if y = x± h(0, 1),

0 otherwise.

For this example, we have

mh(x) = hr(x)‖x‖2/‖x‖1, αh(x) = h‖x‖2/‖x‖1, sh(x) = 0,

and

ch(x) = h2x
2
2|x1|+ x2

1|x2|
‖x‖31

(
1 1
1 1

)
.

The transition probabilities at the points of ∂Dh
+ will play the role of the con-

straining process z in (4.1); i.e., if the process attempts to leave Dh then it is returned
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instantly by a “push” in the appropriate direction [19]. Because of the instantaneous
nature of the push, the interpolation interval that is correct for the points in ∂Dh

+ is
∆th(x) = 0.

The discrete replacement for (4.3) is γh = min
u∈U

[
LhuV

h(x) + k(x, u)
]

in Dh,

0 = l(x) +AhV h(x) on ∂Dh
+,

(4.8)

where Lhu is as in section 2.
For an admissible control {uhk , k = 0, 1, . . .}, let {ξhk , k = 0, 1, . . .} be the corre-

sponding controlled Markov chain; i.e.,

Ph
x

(
ξhk+1 = z | ξhl , ul, l = 0, . . . , k

)
= ph(ξhk , z|uhk) if x ∈ Dh,

and

Ph
x

(
ξhk+1 = z | ξhl , ul, l = 0, . . . , k

)
= ph(ξhk , z) when x ∈ ∂Dh

+.

Define T hN =
∑N−1
i=0 ∆th(ξhi ). Note that when ξhi ∈ ∂Dh

+ the corresponding summand
in ThN is zero. Equation (4.8) is the HJB equation for the Markov chain stochastic
optimal control problem whose transition probabilities are those given above and for
which the cost to be minimized is

γh = lim sup
N→∞

Eh
x

[(
N−1∑
i=0

k(ξhi , u
h
i )∆th(ξhi ) +

N−1∑
i=0

I{ξhi ∈∂Dh+}l(ξ
h
i )αh(ξhi )

)
/ThN

]

(cf. [19, Chapter 7]). One can easily check that the chain is ergodic for any time
independent feedback control. Because of this, the limit superior is actually a limit,
and the limiting value is independent of x. The equation (4.8) exhibits the same
type of nonuniqueness as the original HJB equation (4.2), namely, if (γh1 , V

h
1 (·)) and

(γh2 , V
h
2 (·)) both solve (4.8), then γh1 = γh2 and V h1 (·)− V h2 (·) is a constant.

Define the boundary error

gh(x) .= AV (x)−AhV (x).

Thanks to our assumptions on V and (4.7), we have

|gh(x)| = O(h).

We can then rewrite (4.3) in a form analogous to that of (4.8):{
γ = minu∈U

[
LhuV (x) + k(x, u) + eh(x, u)

]
in Dh,

0 = l(x) +AhV (x) + gh(x) on ∂Dh
+,

(4.9)

where eh is defined as in section 2 by

eh(x, u) .= LuV (x)− LhuV (x).

(Recall that |eh(x, u)| = O(hα).) Thus γ has a representation as the minimal cost for
the Markov chain optimal control problem whose transition probabilities are the same
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as those for γh and for which the cost to be minimized is

γ = lim sup
N→∞

Eh
x

[(
N−1∑
i=0

[
k(ξhi , u

h
i ) + eh(ξhi , u

h
i )
]

∆th(ξhi )

+
N−1∑
i=0

I{ξhi ∈∂Dh+}
[
l(ξhi ) + gh(ξhi )

]
αh(ξhi )

)
/ThN

]
.

A comparison of these two representations allows us to prove the following rate
of convergence.

THEOREM 4.2. Assume (4.7) and all the smoothness conditions assumed of b, k,
∂D, etc., in this section and section 2. Given that V ∈ C2,α(D̄), we have

sup
x∈Dh

|V h(x)− V (x)| = O(hα)(4.10)

as h ↓ 0.
Proof. We can use the same proof as that of Theorem 2.1 as soon as we show

that

lim sup
N→∞

Eh
x

[(
N−1∑
i=0

eh(ξhi , u
h
i )∆th(ξhi ) +

N−1∑
i=0

I{ξhi ∈∂Dh+}g
h(ξhi )αh(ξhi )

)
/ThN

]
= O(hα)

(4.11)

uniformly in all admissible controls and x ∈ Dh.
The main difficulty in proving such a bound is in dealing with the second term

in the sum. Let θ(x) (a C2 function from Rn → R) and η > 0 be such that for all
sufficiently small h > 0

inf
x∈∂Dh+

〈
αh(x)r(x) + sh(x)

αh(x)
, θx(x)

〉
≥ η.(4.12)

Then for any k = 0, 1, 2, . . .,

θ(ξhk )− θ(ξh0 ) =
k−1∑
i=0

[
θ(ξhi+1)− θ(ξhi )

]
=
k−1∑
i=0

〈ξhi+1 − ξhi , θx(ξhi )〉+
1
2

k−1∑
i=0

(
ξhi+1 − ξhi

)′
θxx(ξ̃hi )

(
ξhi+1 − ξhi

)
,

where ξ̃hi is an appropriately selected point between ξhi and ξhi+1. We rewrite this last
equation as

k−1∑
i=0

I{ξhi ∈∂Dh+}〈ξ
h
i+1 − ξhi , θx(ξhi )〉+

1
2

k−1∑
i=0

I{ξhi ∈∂Dh+}
(
ξhi+1 − ξhi

)′
θxx(ξ̃hi )

(
ξhi+1 − ξhi

)
= θ(ξhk )− θ(ξh0 )

−
k−1∑
i=0

I{ξhi ∈Dh}〈ξ
h
i+1 − ξhi , θx(ξhi )〉 − 1

2

k−1∑
i=0

I{ξhi ∈Dh}
(
ξhi+1 − ξhi

)′
θxx(ξ̃hi )

(
ξhi+1 − ξhi

)
.
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By using (4.12), the fact that ch(x) = o(αh(x)) uniformly in x, and equations (2.11)
and (2.12), we obtain

η

2
Eh
x

k−1∑
i=0

I{ξhi ∈∂Dh+}α
h(ξhi ) ≤ 2‖θ‖∞ +KEh

xT
h
k ,

for all sufficiently small h > 0, where K <∞ is independent of both h and k.
For T ∈ [0,∞), define the stopping time MT = min{k : Thk ≥ T}. Note that

T hMT
/T → 1 uniformly. It follows from the last display and the fact that MT is a

stopping time that

η

2
Eh
x

MT−1∑
i=0

I{ξhi ∈∂Dh+}α
h(ξhi ) ≤ 2‖θ‖∞ +KEh

xT
h
MT

.(4.13)

We can now bound (4.11). According to equation (2.5) in section 2 |eh(ξhi , u
h
i )| =

O(hα). Thus

lim sup
N→∞

Eh
x

[(
N−1∑
i=0

eh(ξhi , u
h
i )∆th(ξhi )

)
/ThN

]
= O(hα).

On the other hand, we recall that
∣∣gh(x)

∣∣ =
∣∣AV (x)−AhV (x)

∣∣ = O(h). By combining
this with (4.13), we obtain

lim sup
N→∞

Eh
x

[(
N−1∑
i=0

I{ξhi ∈∂Dh+}g
h(ξhi )αh(ξhi )

)
/ThN

]

= lim sup
T→∞

Eh
x

[(
MT−1∑
i=0

I{ξhi ∈∂Dh+}g
h(ξhi )αh(ξhi )

)
/ThMT

]
= O(h),

which proves (4.11).
An examination of the proof just given shows that the errors in the approximations

to the boundary condition are of smaller order than the approximations on the interior.
As in other sections, with added regularity one can identify the coefficient of the

rate of convergence. In this problem one finds two terms in the rate. One term is a
functional of the xs process and represents errors due to approximation on D, while
the other is a functional of the boundary local time process zs and represents errors
due to the approximation of the boundary condition.

5. Comments and extensions. In this final section we make some general
comments and discuss some extensions of our methodology.

5.1. General method. The general method we have employed can be summa-
rized with the following heuristics.

Consider the problem of approximating the solution V to the equation

A(V ) + k = 0(5.1)

by an approximation V h given by

Ah(V h) + k = 0.(5.2)
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The key to our method lies in the use of appropriate representations to solutions of
equations of the type (5.2). Let us suppose that

V h = Rh(k),(5.3)

for some representation operator Rh. The operators A, Ah, and Rh are in general
nonlinear. We have assumed that they are obtainable from linear operators via min,
max, min-max, or max-min operations. Let us write

eh = A(V )−Ah(V ).

Then equation (5.1) can be rewritten as

Ah(V ) + [eh + k] = 0,

and consequently V has a representation determined by the method of approximation:

V = Rh(eh + k).(5.4)

To compare V with V h, we formally use the fact that Rh is obtained from a linear
operator by one or more minimization or maximization operations. This allows us to
write

V = Rh(eh + k) = Rh(k) +O(|eh|).(5.5)

Thus if |eh| = O(hα), depending on the smoothness of V , this yields the rate of
convergence estimate

V h − V = O(hα).(5.6)

More detailed information is available with stronger assumptions. Suppose that
eh = hαφ+O(hα+δ), for some δ > 0, and (5.5) is improved:

V = Rh(eh + k) = Rh(k) +Rh1 (eh).(5.7)

Then we have the explicit limit

lim
h→0

V h − V
hα

= R1(φ).(5.8)

5.2. Partial differential equations. Our approach is applicable to PDEs which
need not have any a priori connection to control theory. The simplest instance is
that of linear equations. For example, consider a linear uniformly elliptic PDE with
smooth coefficients, boundary, and boundary data. Such a boundary value problem
has a smooth solution, of sufficient regularity to apply our theory and obtain rate of
convergence estimates for a variety of approximation methods. The representation for
linear equations and their approximations is quite simple, in that no minimizations
or maximizations are required (cf. Feynman–Kac formulas).

A second instance of interest is the case of quasi-linear or even fully nonlinear
uniformly elliptic/parabolic PDE. Smooth classical solutions are often available; see
[16]. To apply our approach, a representation is needed, and indeed this can be
obtained in a great many cases using control or game theory.
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To illustrate, let us consider an example similar to the problem of section 2. We
wish only to communicate the general idea, and omit technical details. Suppose that
the fully nonlinear equation{

λV (x) = F (Vxx(x)) + k(x) in D,

V (x) = 0 on ∂D,
(5.9)

has a unique classical solution V ∈ C2,α(D̄), where F is a smooth nonlinear function
with bounded gradient satisfying

(i) ξ′FXX(X)ξ ≥ c|ξ|2, c > 0, and
(ii) lim|X|→∞ |F (X)|/|X| = 0.
We have not assumed that F is convex, nor any other specific form. Following [9]

(see also [10]), F admits a max-min representation:

(5.10)

F (X) = max
v∈Rn2

min
u∈Rn2

 n∑
i,j=1

(∫ 1

0

∂F

∂Xij
((1− r)v + ru) dr

)
(Xij − vij) + F (v)

 .
In view of this, let us write

F (X) + k = max
v∈Rn2

min
u∈Rn2

 n∑
i,j=1

aij(u, v)Xij + k̂(x, u, v)

 ,
where the matrix aij(u, v) is defined from (5.10) and k̂(x, u, v) = k(x) −∑n
i,j=1 aij(u, v)vij + F (v). Suppose that we can write a(u, v) = 1

2σ(u, v)σ(u, v)′

for some Lipschitz matrix function σ.
The desired game theoretic representation for V is

V (x) = inf
u.

sup
v.

Ex

[∫ τ

0
e−λtk̂(xt, ut, vt) dt

]
,(5.11)

where

dxt = σ(ut, vt) dwt.

For precise information concerning games and their strategies, see [15].
A finite difference approximation V h can be constructed, along the same lines as

in section 2, which will have a game representation. Note that the various quantities
will depend on the additional control variable v. Then a straightforward modification
of the proof of Theorem 2.1 yields the rate of convergence estimate

sup
x∈Dh

|V h(x)− V (x)| = O(hα)

as h ↓ 0.

REFERENCES

[1] G. BARLES AND P. E. SOUGANIDIS, Convergence of approximation schemes for fully nonlinear
second order equations, J. Asymptotic Anal., 4 (1991), pp. 271–283.



RATES OF CONVERGENCE FOR APPROXIMATIONS IN CONTROL 741

[2] D. BERTSEKAS AND S. SHREVE, Stochastic Optimal Control: The Discrete Time Case, Aca-
demic Press, New York, 1978.

[3] I. CAPUZZO DOLCETTA AND M. FALCONE, Discrete dynamic programming and viscosity so-
lutions of the Bellman equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989),
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Abstract. We propose a new value iteration method for the classical average cost Markovian
decision problem, under the assumption that all stationary policies are unichain and that, further-
more, there exists a state that is recurrent under all stationary policies. This method is motivated
by a relation between the average cost problem and an associated stochastic shortest path problem.
Contrary to the standard relative value iteration, our method involves a weighted sup-norm con-
traction, and for this reason it admits a Gauss–Seidel implementation. Computational tests indicate
that the Gauss–Seidel version of the new method substantially outperforms the standard method for
difficult problems.
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1. Introduction. We consider a controlled discrete-time dynamic system with
n states, denoted 1, . . . , n. At each time, if the state is i, a control u is chosen
from a given finite constraint set U(i), and the next state is j with given probability
pij(u). An admissible policy is a sequence of functions from states to controls, π =
{µ0, µ1, . . .}, where µk(i) ∈ U(i) for all i and k. The average cost corresponding to π
and initial state i is

Jπ(i) = lim sup
N⇀∞

1
N
E

{
N−1∑
k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}
,

where xk is the state at time k and g is a given cost function. A stationary policy is
an admissible policy of the form π = {µ, µ, . . .}, and its corresponding cost function
is denoted by Jµ(i). For brevity, we refer to {µ, µ, . . .} as the stationary policy µ. We
want to solve the classical problem of finding an optimal policy, that is, an admissible
policy π such that Jπ∗(i) = minπ Jπ(i) for all i.

A stationary policy is called unichain if it gives rise to a Markov chain with a
single recurrent class. Throughout the paper, we assume the following.

Assumption 1: All stationary policies are unichain. Furthermore, state n is re-
current in the Markov chain corresponding to each stationary policy.

It is well known that under Assumption 1, the optimal cost J∗(i) has a common
value for all initial states, which is denoted by λ∗,

J∗(i) = λ∗, i = 1, . . . , n.

Furthermore, λ∗ together with a differential cost vector h =
(
h(1), . . . , h(n)

)
satisfies

Bellman’s equation

(1) λ∗ + h(i) = min
u∈U(i)

g(i, u) +
n∑
j=1

pij(u)h(j)

 , i = 1, . . . , n.
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FIG. 1. Transition probabilities for an average cost problem and its associated stochastic shortest
path problem. The latter problem is obtained by introducing, in addition to 1, . . . , n, an artificial ter-
mination state t to which we move from each state i with probability pin(u), by setting all transition
probabilities pin(u) to 0, and by leaving unchanged all other transition probabilities.

In addition, a stationary policy µ is optimal if and only if µ(i) attains the minimum
in the above equation for all i. These results can be shown under the assumption
that all stationary policies are unichain, without requiring the additional condition
that there is a common recurrent state to all stationary policies. However, for the
methods of this paper, the existence of a common recurrent state is essential, at least
for the purposes of analysis. From the computational point of view, the existence
of a common recurrent state is less significant, as long as all stationary policies are
unichain. One may modify the problem so that Assumption 1 holds by adding a very
small positive ε to all transition probabilities of the form pin(u). The effect on the
average cost per stage of each stationary policy will be O(ε).

Under Assumption 1 we can make an important connection of the average cost
problem with an associated stochastic shortest path problem, which has been the basis
for a recent textbook treatment of the average cost problem [Ber95, Vol. I, section
7.4]. This problem is obtained by leaving unchanged all transition probabilities pij(u)
for j 6= n, by setting all transition probabilities pin(u) to 0, and by introducing an
artificial cost-free and absorbing termination state t to which we move from each
state i with probability pin(u); see Fig. 1. The expected stage cost at state i of the
stochastic shortest path problem is g(i, u) − λ, where λ is a scalar parameter. Let
hµ, λ(i) be the cost of stationary policy µ for this stochastic shortest path problem,
starting from state i; that is, hµ, λ(i) is the total expected cost incurred starting from
state i up to reaching the termination state t. We refer to this problem as λ-SSP.
Let hλ(i) = minµ hµ, λ(i) be the corresponding optimal cost of the λ-SSP. Then the
following can be shown (see Fig. 2).

(a) For all µ and λ, we have

(2) hµ, λ(i) = hµ, λµ(i) + (λµ − λ)Nµ(i), i = 1, . . . , n,

where Nµ(i) is the average number of steps required to reach n under µ starting from
state i, and λµ is the average cost corresponding to µ.

(b) The functions

(3) hλ(i) = min
µ
hµ, λ(i), i = 1, . . . , n,
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λµλ∗ λ

hµ,λ (n) = (λµ - λ )Nµ

hλ (n)

FIG. 2. Relation of the costs of stationary policies in the average cost problem and the associated
stochastic shortest path problem.

are concave, monotonically decreasing, and piecewise linear as functions of λ, and

(4) hλ(n) = 0 if and only if λ = λ∗.

Furthermore, the vector hλ∗ satisfies Bellman’s equation (1) together with λ∗.
From Fig. 2, it can be seen that λ∗ can be obtained by a one-dimensional search

procedure that brackets λ∗ within a sequence of nested and diminishing intervals; see
[Ber95, Vol. II, Fig. 4.5.2]. This method is probably inefficient because it requires the
(exact) solution of several λ-SSPs, corresponding to several different values of λ. An
alternative method, which is also inefficient because it requires the exact solution of
several λ-SSPs, is to update λ by an iteration of the form

(5) λk+1 = λk + γkhλk(n),

where γk is a positive stepsize parameter. This iteration is motivated by Fig. 2, where
it is seen that λ < λ∗ (or λ > λ∗) if and only if hλ(n) > 0 (or hλ(n) < 0, respectively).
Indeed, it can be seen from Fig. 2 that the sequence {λk} generated by (5) converges
to λ∗ provided the stepsize γk is the same for all iterations and does not exceed the
threshold value 1/maxµNµ(n). Such a stepsize is sufficiently small to guarantee that
the difference λ − λ∗ does not change sign during the algorithm (5). Note that each
λ-SSP can be solved by value iteration, which has the form

(6) hk+1(i) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)hk(j)

− λ, i = 1, . . . , n,

with λ kept fixed throughout the value iteration method.
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In this paper we propose algorithms based on the λ-SSP, which are more efficient
than the algorithms mentioned above. In particular, we change λ during the value
iteration process (6) by using an iteration of the form (5), but with hλk(n) replaced
by an approximation, the current value iterate hk+1(n). Such an algorithm may be
viewed as a value iteration algorithm for a slowly varying stochastic shortest path
problem. It has the form

(7) hk+1(i) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)hk(j)

− λk, i = 1, . . . , n,

(8) λk+1 = λk + γkhk+1(n),

where γk is a positive stepsize. We prove convergence of this method for the case
where γk is a sufficiently small constant. Convergence can also be similarly proved
for a variety of other stepsize rules.

Our method should be contrasted with the standard relative value iteration
method for average cost problems due to [Whi63], which takes the form (see, e.g.,
[Ber95], [Put94])

(9) λk+1 = min
u∈U(n)

g(n, u) +
n∑
j=1

pnj(u)hk(j)

 ,

(10) hk+1(i) = min
u∈U(i)

g(i, u) +
n∑
j=1

pij(u)hk(j)

− λk+1, i = 1, . . . , n.

If we use (7) to write iteration (8) in the equivalent form

λk+1 = (1− γk)λk + γk min
u∈U(n)

g(n, u) +
n−1∑
j=1

pnj(u)hk(j)

 ,
we see that if γk = 1 for all k, the new value iteration (7)–(8) becomes similar to the
standard value iteration (9)–(10): the updating formulas are the same in both methods
(because we have hk(n) = 0 for all k ≥ 1 in the iteration (9)–(10)), but the order of
updating λ is just reversed relative to the order of updating h. Despite the similarity
of the two methods, the proof of convergence of the standard method (9)–(10) (as
given, for example, in [Ber95, Vol. II] or [Put94]) does not seem to be applicable to
the new method. The line of proof given in the next section is substantially different,
and makes essential use of Assumption 1 and the connection with the stochastic
shortest path problem. Furthermore, one can construct examples where Assumption
1 is violated because state n is transient under some stationary policy, and where the
new method (7)–(8) does not converge while the known method (9)–(10) converges.
Conversely, it can be seen that the standard aperiodicity assumption required for
convergence of the standard method (9)–(10) (see, e.g., [Ber95], [Put94]) is not needed
for the new method. We note also that there is a variant of the standard method (9)–
(10) that does not require an aperiodicity assumption and involves interpolations
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between hk and hk+1 according to a stepsize parameter (see [Sch71, [Pla77], [Var78],
[PBW79], [Put94], [Ber95]). However, the new method does not seem as closely
related to this variant.

A significant improvement in the algorithm, which guarantees that bounded it-
erates will be generated for any choice of stepsize, is to calculate upper and lower
bounds on λ∗ from iteration (7) and then modify iteration (8) to project the iterate
λk+γkhk(n) on the interval of the bounds. In particular, based on the Odoni bounds
[Odo69] for the relative value iteration method (see, e.g., [Ber95, Vol. II, p. 209], it
can be seen that

βk ≤ λ∗ ≤ βk,

where

(11) βk = λk + min
[
min
i6=n

[
hk+1(i)− hk(i)

]
, hk+1(n)

]
,

(12) β
k

= λk + max
[
max
i6=n

[
hk+1(i)− hk(i)

]
, hk+1(n)

]
.

Thus we may replace the iteration λk+1 = λk + γkhk+1(n) (cf. (8)) by

(13) λk+1 = Πk

[
λk + γkhk+1(n)

]
,

where Πk[c] denotes the projection of a scalar c on the interval

(14)
[

max
m=0,...,k

βm, min
m=0,...,k

β
m
]
.

We note that the issue of stepsize selection is crucial for the success of our algo-
rithm. In particular, if γk is a chosen constant but very small, or diminishing at the
rate of 1/k (as is common in stochastic approximation algorithms), then λ changes
slowly relative to h, and the iteration (8) essentially becomes identical to iteration
(5) but with a very small stepsize, which leads to slow convergence. On the other
hand, if γk is too large, λk will oscillate and diverge. One may keep the stepsize γk

constant at a value found by trial and error, but there are some better alternatives.
One possibility that has worked quite reliably and efficiently in our tests is to start
with a fairly large γk and gradually diminish it if hk(n) changes sign frequently; for
example, we may use

(15) γk = m(k̂)γ,

where
(a) γ is the initial stepsize (a positive constant),
(b) m(k̂) is a decreasing function of k̂, which is defined as the number of indexes

t ≤ k such that ht−1(n)ht(n) < 0 and |ht(n)| is greater than some fixed threshold θ.
Examples of functions m(·) that we tried are

(16a) m(k̂) =
1

k̂ + 1

and

(16b) m(k̂) = ξk̂,
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where ξ is a fixed scalar from the range (0, 1), so that γk is decreased by a factor ξ each
time k̂ is incremented. Our experience indicates that it is best to choose the initial
stepsize γ in the range [1, 5]. Typically, the stepsize is reduced quickly according to
(15) to an appropriate level (which depends on the problem) and then stays constant
for the remaining iterations. In our experiments, we have used the preceding choices
of γk with γ = 1, ξ = 0.95, and θ = 1.

The motivation for our method is that value iteration for stochastic shortest path
problems involves a contraction. In particular, consider the mapping F : <n → <n
with components given by

Fi(h) = min
u∈U(i)

g(i, u) +
n−1∑
j=1

pij(u)h(j)

 , i = 1, . . . , n.

It is known (see, e.g., [BeT89, p. 325] or [Tse90]) that, under Assumption 1, F is
a contraction mapping with respect to some weighted sup-norm; that is, for some
positive scalars v1, . . . , vn, and some scalar α ∈ (0, 1), we have

(17) max
i=1,...,n

|Fi(h)− Fi(h)|
vi

≤ α max
i=1,...,n

|h(i)− h(i)|
vi

∀ h, h ∈ <n.

Note here that while there is coupling between the iteration of h as per (7) and the
iteration for λ as per (8), the latter iteration can be made much slower than the former
through the use of the stepsize γ, so that the weighted sup-norm contraction character
of the iteration (7) is preserved. Furthermore, even when the stepsize γ is not small,
the contraction property of F is analytically convenient, as will be seen, for example,
in the analysis of section 3. By contrast, the standard relative value iteration method
(9)–(10) does not involve a weighted sup-norm contraction, and in fact it may not
involve a contraction of any kind, unless an additional aperiodicity assumption on the
Markov chains corresponding to the stationary policies is imposed. We speculate that
the sup-norm contraction structure may be helpful in other contexts, beyond those
discussed in this paper; for example, in Q-learning (stochastic approximation) variants
of the method and when parallel asynchronous variations are considered. In fact, an
analysis of Q-learning variants of our method that admit a parallel asynchronous
implementation is the subject of a forthcoming report [ABB97].

The new method (7)–(8) can be viewed as a Jacobi type of method, since all the
components of h are simultaneously updated. A particularly interesting fact is that
the weighted sup-norm contraction property of the mapping F can also be exploited
to construct valid Gauss–Seidel variants, where the components of h are updated
sequentially in some order. In particular, the method of proof of the next section can
be used to show convergence for the Gauss–Seidel version of the method, given by

hk+1(i) = Gi(hk, λk), i = 1, . . . , n,

λk+1 = λk + γkhk+1(n),

where G : <n+1 → <n is the Gauss–Seidel mapping based on F , having components
given by

G1(h, λ) = min
u∈U(1)

g(1, u) +
n−1∑
j=1

p1j(u)h(j)

− λ,
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Gi(h, λ) = min
u∈U(i)

g(i, u) +
i−1∑
j=1

pij(u)Gj(h, λ) +
n−1∑
j=i

pij(u)h(j)

−λ, i = 2, . . . , n.

By contrast, we do not know of any convergent Gauss–Seidel version of the standard
value iteration (9)–(10). In fact, simple counterexamples show that the straightfor-
ward Gauss–Seidel variant of the standard method may diverge.

Note that the Odoni bounds (11)–(12) are not available when the Gauss–Seidel
variant is used. However, it is still possible to use the projection (13)–(14) by perform-
ing once in a while (say, every 10 iterations) the regular (Jacobi) version (7)–(8) of the
method, and obtain corresponding Odoni bounds that can be used for projection at
all subsequent iterations. This device proved to be very effective in our experiments.

Regarding a theoretical comparison of the performance of the new methods and
the standard method, it can be seen with simple examples that neither type of method
dominates the other. Suppose, for instance, that there is only one policy and that the
corresponding transition probability matrix is(

ε 1− ε
1− ε ε

)
,

where ε is a scalar from [0, 1]. Then both methods (7)–(8) and (9)–(10) become linear
iterations, and their rate of convergence is governed by the eigenvalues of the cor-
responding iteration matrix. The eigenvalues corresponding to the standard relative
value iteration (9)–(10) can be shown to be 0 and 1 − 2ε, so that the method con-
verges very fast for ε ∼ 1/2 and slowly for ε ∼ 0 or ε ∼ 1. It can also be verified that,
for a constant but well-chosen value of γ, the eigenvalue structure of the new value
iteration method (7)–(8) is worse than the one for the standard method for ε ∼ 1/2,
more favorable for ε ∼ 0, and comparably unfavorable for ε ∼ 1.

Our limited computational experiments also indicate that the Jacobi version (7)–
(8) of the new method, when properly implemented with the adaptive stepsize rule
(15) and the projection scheme of (11)–(14), is competitive with the relative value
iteration method of (9)–(10). There are problems where one method outperforms the
other and vice versa. When the initial stepsize γ in (15) is equal to 1, the performance
of the two methods appears to be quite similar for many problems (see, e.g., Tables
2 and 3 in section 4). On the other hand, our computational results indicate that
the Gauss–Seidel variant of the new method substantially outperforms the standard
method for relatively difficult problems. This is not surprising, since Gauss–Seidel
methods are known to have better performance than their Jacobi counterparts when
a weighted sup-norm contraction is involved. Both the standard method and the new
methods can be very slow on unfavorably structured problems. This is to be expected,
since these methods exhibit convergence rate behavior similar to linear iterations and
are subject to ill-conditioning.

The paper is organized as follows. In the next section we prove a convergence
result for the Jacobi version of the new method. In section 3 we extend this result
to apply to the Gauss–Seidel variant. The method of proof can also be used to prove
convergence of a variety of other variants involving different orders of updating the
components of the vector h, as well as asynchronous versions. All this flexibility is
possible thanks to the weighted sup-norm contraction property of the mapping F .
Finally, in section 4 we describe some of our computational experience. In particular,
we compare the standard method (9)–(10) with implementations of the Jacobi and
Gauss–Seidel versions of our method, which involve an adaptive stepsize rule like the
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one of (15) and the projection scheme of (11)–(14). We find that the Gauss–Seidel
method outperforms the other methods on the more difficult problems.

2. Convergence analysis. We now investigate the convergence of the new value
iteration algorithm. For convenience, let us denote by ‖ · ‖ the weighted sup-norm
with respect to which the contraction property of (17) holds; that is,

‖h‖ = max
i=1,...,n

|h(i)|
vi

∀ h ∈ <n.

Let us also normalize the vector v so that its last coordinate is equal to 1; that is,

vn = 1.

Note that since hλ is the optimal cost vector of the λ-SSP, we have that hλ is the
unique fixed point of the contraction mapping F (h)− λe; that is,

(18) hλ = F (hλ)− λe ∀ λ ∈ <.
By writing for all stationary policies µ, states i, and scalars λ and λ′,

hµ, λ(i) = hµ, λ′(i) +Nµ(i)(λ′ − λ),

and by using the definition hλ(i) = minµ hµ,λ(i), we obtain the following relation:

(19) hλ′(i)+N(λ′−λ) ≤ hλ(i) ≤ hλ′(i)+N(λ′−λ) ∀ i = 1, . . . , n, and λ, λ′ ∈ <,
where N and N are the positive scalars

N = min
µ

min
i=1,...,n

Nµ(i), N = max
µ

max
i=1,...,n

Nµ(i).

We can write (19) in the equivalent form

(20) N |λ′ − λ| ≤ |hλ(i)− hλ′(i)| ≤ N |λ′ − λ|, ∀ i and λ, λ′ ∈ R.
We can interpret N and N as uniform lower and upper bounds on the slope of the
piecewise linear function hλ(i), viewed as a function of λ (see Fig. 2).

The following is our main result.
PROPOSITION 1. There exists a positive scalar γ such that if

(21) γ ≤ γk ≤ γ

for some positive scalar γ and all k, the sequence (hk, λk) generated by iteration (7), (8)
converges to (hλ∗ , λ∗) at the rate of a geometric progression.

Proof. We will show that there exists a threshold value γ > 0 and a continuous
function c(γ) with 0 ≤ c(γ) < 1 for all γ ∈ (0, γ] such that for any B > 0, the relations

(22) ‖hk − hλk‖ ≤ B and |λk − λ∗| ≤ B

N

imply that

(23) ‖hk+1 − hλk+1‖ ≤ c(γk)B and |λk+1 − λ∗| ≤ c(γk)B
N

.

This implies that for a stepsize sequence satisfying the assumptions of the proposition,
the sequence |λk − λ∗| converges to zero at the rate of a geometric progression, and
the same is true of the sequence ‖hk − hλk‖. Since, using (20), we have

‖hk − hλ∗‖ ≤ ‖hk − hλk‖+ ‖hλk − hλ∗‖ ≤ ‖hk − hλk‖+O
(
|λk − λ∗|

)
,

we see that ‖hk − hλ∗‖ also converges to zero at the rate of a geometric progression.
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We first show two preliminary relations. We have, using (18),

‖hλk+1 − hλk‖ = ‖F
(
hλk+1

)
− λk+1e− F

(
hλk
)

+ λke‖
≤ ‖F

(
hλk+1

)
− F

(
hλk
)
‖+ ‖(λk+1 − λk)e‖

≤ α‖hλk+1 − hλk‖+ |λk+1 − λk|‖e‖.

Thus

(24) ‖hλk+1 − hλk‖ ≤
‖e‖

1− α |λ
k+1 − λk|.

Also, by subtracting the relations

hk+1(n) = Fn(hk)− λk,

hλk(n) = Fn(hλk)− λk,

we have

(25) |hk+1(n)− hλk(n)| = |Fn(hk)− Fn(hλk)| ≤ α‖hk − hλk‖.

Using this relation and (19), we obtain

(26) |hk+1(n)| ≤ |hk+1(n)− hλk(n)|+ |hλk(n)| ≤ α‖hk − hλk‖+N |λk − λ∗|.

We will now derive functions c1(·) and c2(·) for which the first and the second
relations in (22), respectively, hold. We will then use c(γ) = max

[
c1(γ), c2(γ)

]
in

(22). Regarding the first relation in (23), we note that

(27)

‖hk+1 − hλk+1‖ = ‖F (hk)− λke− F
(
hλk+1

)
+ λk+1e‖

≤ ‖F (hk)− F
(
hλk+1

)
‖+ |λk+1 − λk| ‖e‖

≤ α‖hk − hλk+1‖+ |λk+1 − λk| ‖e‖
≤ α‖hk − hλk‖+ α‖hλk − hλk+1‖+ |λk+1 − λk| ‖e‖.

Using the above inequality and (22), (24), and (26), we obtain

(28)

‖hk+1 − hλk+1‖ ≤ αB +
(

α

1− α + 1
)
|λk+1 − λk| ‖e‖

= αB +
‖e‖γk
1− α |h

k+1(n)|

≤ αB +
‖e‖γk
1− α

(
α‖hk − hλk‖+N |λk − λ∗|

)
≤ αB +

‖e‖γk
1− α

(
αB +

NB

N

)
= c1(γk)B,

where c1(·) is the function

(29) c1(γ) = α+
γ‖e‖(α+N/N)

1− α .
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λ∗

λ

hλ (n)

αB
B

λ~λ
_

FIG. 3. Definition of λ and λ̃ in the proof of Proposition 1.

Note that if

γ <
(1− α)2

‖e‖(α+N/N)
,

we have c1(γ) < 1.
We now turn to the second relation in (23); that is, we show that

|λk+1 − λ∗| ≤ c2(γk)B
N

for an appropriate continuous function c2(γ). Let λ and λ̃ be the unique scalars such
that

(30) hλ(n) = B, hλ̃(n) = αB

(see Fig. 3). Also let λ̂ be the midpoint between λ and λ̃:

(31) λ̂ =
λ+ λ̃

2
.

Note that from (19), we have

(32)
(1− α)B

N
≤ λ̃− λ ≤ (1− α)B

N
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and that

αB

N
≤ λ∗ − λ̃ ≤ αB

N
,

B

N
≤ λ∗ − λ ≤ B

N
.

From the last three relations, we also obtain

(33)
(1 + α)B

2N
≤ λ∗ − λ̂ ≤ (1 + α)B

2N
,

(34)
(1− α)B

2N
≤ λ̃− λ̂ ≤ (1− α)B

2N
.

We assume that λk ≤ λ∗; the complementary case where λk ≥ λ∗ is handled
similarly. We distinguish between two cases:

(a) λk ≤ λ̂,
(b) λ̂ < λk ≤ λ∗.
In the case where λk ≤ λ̂, we have, using (19) and (30)–(32),

(35) hλk(n) ≥ hλ̂(n) ≥ hλ̃(n) +N(λ̃− λ̂) = αB +N(λ̃− λ̂) ≥ αB +
(1− α)BN

2N
.

On the other hand, from (22) and (25), we have |hk+1(n)− hλk(n)| ≤ αB so that

(36) hk+1(n) ≥ hλk(n)− αB.

By combining (35) and (36), we obtain

hk+1(n) ≥ (1− α)B

2N
2 .

We now have, using the above equation,
(37)

λ∗ − λk+1 = λ∗ − λk − γkhk+1(n) ≤ B

N
− γk(1− α)BN

2N
=

B

N2

(
1− γk(1− α)N

2N

)
,

and we also have, using (25), (22), and (19)
(38)
λ∗−λk+1 = λ∗−λk−γkhk+1(n) ≥ λ∗−λk−γk

(
hλk(n)+αB

)
≥ (1−γkN)(λ∗−λk)−γkαB.

It can be seen now from (38) that for γk ∈ (0, 1/N ], we have λ∗ − λk+1 ≥ −γkαB,
and it follows using also (37) that

|λ∗ − λk+1| ≤ c2(γk)B
N

,

where c2(·) is the continuous function

c2(γ) = max
[
1− γ(1− α)N2

2N
, γαN

]
.
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Since there exists a threshold value γ > 0 such that the continuous function c2(γ)
satisfies 0 < c(γ) < 1 for all γ ∈ (0, γ], the desired relation (23) is proved in the case
λk ≤ λ̂.

In the case where λ̂ < λk ≤ λ∗, there are two possibilities.
(1) hk+1(n) ≥ 0. Then λk ≤ λk+1, and by also using (33), we have

(39) λ∗ ≤ λ̂+
(1 + α)B

2N
≤ λk +

(1 + α)B
2N

≤ λk+1 +
(1 + α)B

2N
.

Furthermore, from (22) and (26), we have

λk+1 = λk + γkhk+1(n) ≤ λ∗ + γk
(
αB +

NB

N

)
.

Thus, by choosing γk sufficiently small, we can guarantee that

(40) λk+1 ≤ λ∗ +
(1 + α)B

2N
.

From (39) and (40), it follows that for γk less than some positive constant, we have

|λk+1 − λ∗| ≤ (1 + α)B
2N

,

proving the second relation in (23), with c2(γ) = (1 + α)/2.
(2) hk+1(n) < 0. In this case, since from (22) and (25) we have

(41) hλk(n) ≤ hk+1(n) + αB ≤ αB,

and since hλ̃(n) = αB and hλ(n) is monotonically decreasing in λ, it follows that
λ̃ ≤ λk. Since λk ≤ λ∗, we also have 0 ≤ hλk(n) ≤ αB, so that by using (41) and the
fact hλk(n) ≥ 0, we obtain |hk+1(n)| ≤ αB and

|γkhk+1(n)| ≤ γkαB.

By choosing

(42) γk ∈
(

0,
1− α
2αN

]
,

the above inequality, together with (34), yields

|γkhk+1(n)| ≤ (1− α)B
2N

≤ λ̃− λ̂ ≤ λk − λ̂.

Thus, we have

λk+1 = λk + γkhk+1(n) ≥ λ̂,

and from (33), using also the fact λk+1 ≤ λk ≤ λ∗, we obtain for γk satisfying (42),

|λk+1 − λ∗| ≤ (1 + α)B
2N

,

proving the second relation in (23) for the case hk+1(n) < 0 as well.
Thus, (23) holds with c(·) given by

c(γ) = max
[
α+

γ‖e‖(α+N/N)
1− α , 1− γ(1− α)N2

2N
, γαN,

1 + α

2

]
.
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3. Convergence analysis of the Gauss–Seidel version. In this section, we
prove the result of Proposition 1 for the Gauss–Seidel version of the method, given by

(43) hk+1(i) = Gi(hk, λk), i = 1, . . . , n,

(44) λk+1 = λk + γkhk+1(n),

where the components of the mapping G = (G1, . . . , Gn) are given by

(45) G1(h, λ) = min
u∈U(1)

g(1, u) +
n−1∑
j=1

p1j(u)h(j)

− λ,
(46)

Gi(h, λ) = min
u∈U(i)

g(i, u) +
i−1∑
j=1

pij(u)Gj(h, λ) +
n−1∑
j=i

pij(u)h(j)

−λ, i = 2, . . . , n.

The proof of Proposition 1 essentially carries through with the aid of the following
result.

PROPOSITION 2. The mapping G of (45) and (46) satisfies for all h ∈ <n, h ∈ <n,
λ ∈ <, and λ ∈ <:

(47)
|Gi(h, λ)−Gi(h, λ)|

vi
≤ α‖h− h‖+ δi|λ− λ| ∀ i = 1, . . . , n,

where α is the contraction modulus of F , v1, . . . , vn are the weights of the sup-norm
‖ · ‖ with respect to which F is a contraction (cf. (17)), and δ1, . . . , δn are defined
recursively by

(48) δ1 =
1
v1
, δi =

1 + maxj=1,...,i−1 δj
vi

, i = 2, . . . , n.

In particular, by taking the maximum over i in (47), we obtain

(49) ‖G(h, λ)−G(h, λ)‖ ≤ α‖h−h‖+ δ|λ−λ| ∀ h ∈ <n, h ∈ <n, λ ∈ <, λ ∈ <,

where

δ = max
i=1,...,n

δi.

Proof. We prove (47) by induction. For the case where i = 1, we have from the
contraction property of the mapping F (cf. (17)):

|G1(h, λ)−G1(h, λ)|
v1

≤ α max
i=1,...,n

|h(i)− h(i)|
vi

= α‖h− h‖.

Therefore,

G1(h, λ)
v1

≤ G1(h, λ)
v1

+ α‖h− h‖

≤ G1(h, λ)
v1

+ α‖h− h‖+
|λ− λ|
v1

.
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Similarly, we obtain

G1(h, λ)
v1

≤ G1(h, λ)
v1

+ α‖h− h‖+
|λ− λ|
v1

.

By combining the last two relations, we see that

|G1(h, λ)−G1(h, λ)|
v1

≤ α‖h− h‖+ δ1|λ− λ|,

so that (47) is proved for i = 1.
Assume that (47) holds for i = 1, . . . ,m − 1. We will show that it holds for

i = m. We have from the contraction property of the mapping F and the induction
hypothesis

|Gm(h, λ)−Gm(h, λ)|
vm

≤ αmax
{

max
i=1,...,m−1

|Gi(h, λ)−Gi(h, λ)|
vi

, max
i=m,...,n

|h(i)− h(i)|
vi

}
≤ α‖h− h‖.

Using this relation and the induction hypothesis, we obtain

Gm(h, λ)
vm

≤ Gm(h, λ)
vm

+ α‖h− h‖

=
1
vm

min
u∈U(m)

g(m,u) +
m−1∑
j=1

pmj(u)Gj(h, λ) +
n−1∑
j=m

pmj(u)h(j)


− λ

vm
+ α‖h− h‖

≤ 1
vm

min
u∈U(m)

g(m,u) +
m−1∑
j=1

pmj(u)Gj(h, λ) +
n−1∑
j=m

pmj(u)h(j)

− λ

vm

+
|λ− λ|
vm

+ max
j=1,...,m−1

δj
|λ− λ|
vm

+ α‖h− h‖

=
Gm(h, λ)

vm
+ δm|λ− λ|+ α‖h− h‖.

Similarly, we obtain

Gm(h, λ)
vm

≤ Gm(h, λ)
vm

+ δm|λ− λ|+ α‖h− h‖,

thus proving (47) for i = m. This completes the induction.
Note that Proposition 1 implies that for any λ, G(·, λ) is a weighted sup-norm

contraction when viewed as a function of h. It can be easily verified that

hλ = G(hλ, λ) ∀ λ ∈ <,

so it follows that for all λ, the mapping G(·, λ) has hλ as its unique fixed point.
The following result proves convergence of the Gauss–Seidel method and parallels
Proposition 1.



756 DIMITRI P. BERTSEKAS

TABLE 1

n Sparsity STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 0.5 16 39 40
20 0.5 9 39 75
30 0.5 9 48 105
40 0.5 8 46 55
50 0.5 8 56 90
10 0.1 674 727 185
20 0.1 202 203 160
30 0.1 38 66 130
40 0.1 36 77 75
50 0.1 21 63 110
10 0.05 114 294 70
20 0.05 131 145 100
30 0.05 49 53 235
40 0.05 259 226 205
50 0.05 313 313 325

TABLE 2

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 211 211 180
20 2658 2658 2070
30 29638 29647 20615
40 286550 286765 222855
50 13219 13217 9035

PROPOSITION 3. There exists a positive scalar γ such that if

γ ≤ γk ≤ γ

for some positive scalar γ and all k, the sequence (hk, λk) generated by the Gauss–
Seidel iteration (43), (44) converges to (hλ∗ , λ∗) at the rate of a geometric progression.

Proof. The proof is essentially identical to the one of Proposition 1. The only
difference is that the three relations (27), (28), and (29) must be modified to involve
the mapping G and to make use of Proposition 2. In particular, (27) becomes

‖hk+1 − hλk+1‖ ≤ α‖hk − hλk‖+ α‖hλk − hλk+1‖+ δ|λk+1 − λk|,

and (28) becomes

‖hk+1 − hλk+1‖ ≤ c1(γk)B,

where the function c1(·) of (29) is now given by

c1(γ) = α+ γ

(
α‖e‖
1− α + δ

)(
α+

N

N

)
.

The remainder of the proof goes through with no modification.

4. Implementation and experimentation. In this section we describe some
of our computational experience with the standard method (9)–(10) and with the
new Jacobi and Gauss–Seidel methods. The latter methods were implemented with
an adaptive stepsize rule of the form γk = m(k̂)γ (cf. (15)), using an initial stepsize
γ equal to 1. We used the function m(k̂) of (16a) for the test results of Tables 1–
3 and the function m(k̂) of (16b) for the test results of Table 4. The projection
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TABLE 3

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
10 121 119 80
20 826 825 545
30 18020 18026 13465
40 2186 2186 1360
50 5942 5941 4770
75 7978 7984 5000
100 9035 9028 6880
125 10306 10323 7440
150 9011 9015 6870

TABLE 4

n STANDARD SSP-JACOBI SSP-Gauss–Seidel
250 939 940 420
500 4724 4725 470
750 1257 1257 740
1000 710 711 1040
1250 1693 1693 1425
1500 2870 2870 1890
1750 5605 5609 4230
2000 4691 4693 3180

scheme of (11)–(14) was also used. To obtain error bounds on which to project in the
Gauss–Seidel method, we performed one Jacobi iteration following nine consecutive
Gauss–Seidel iterations. Each Jacobi iteration yielded an upper and a lower bound for
λ∗, and the λ-iterate obtained by each iteration was projected on the interval of the
best upper and lower bounds obtained so far. For each problem, the three methods
were initialized with h = 0 and (for the case of the new methods) λ = n/2. Note that
because of the device of projection on the error bound range, the initial choice of λ is
not critical.

Our computational results with randomly generated problems are summarized in
Tables 1–4 for the three methods labeled STANDARD (which is the known iteration
(9)–(10)), SSP-JACOBI (which is the Jacobi version of the new method (7)–(8)), and
SSP-Gauss–Seidel (which is the Gauss–Seidel version of the new method (43)–(44)).
Let us describe how the test problems were generated. Regarding cost structure, in all
problems and for each pair (i, u), the one-stage cost at state i was randomly selected
from the range (0, n) according to a uniform distribution. Regarding the transition
probabilities, in all the problems, we specified the structure of the transition probabil-
ity graph by specifying for each state-control pair (i, u), according to some (possibly
random) rule, the states j for which the transition probability pij(u) is nonzero. We
then generated each of the nonzero transition probabilities by randomly selecting a
corresponding number from the interval (0, 1) according to uniform probability dis-
tribution, and by normalizing so that

∑n
j=1 pij(u) = 1 for all pairs (i, u). The test

problems were generated as follows.
(1) Problems of Table 1. Here there is only one control available at each state. The

sparsity of the transition probability graph is controlled by a parameter q ∈ (0, 1). In
particular, each possible transition probability is selected to be nonzero with a given
probability q. We used sparsity parameters q = 0.5, q = 0.1, and q = 0.05 in our
tests.

(2) Problems of Table 2. Here also there is only one control available at each
state. At states i with 1 < i < n, the nonzero transition probabilities are the ones to
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the states i − 1, i, and i + 1. At state 1 the nonzero transition probabilities are to
states 1 and 2, and at state n the nonzero transition probabilities are to states n− 1
and n. This type of transition probability graph arises in queueing systems.

(3) Problems of Table 3. Here there are two controls available at each state, call
them u1 and u2. Under u1, the transition probabilities are specified in the same way
as for the problems of Table 2. Under u2, at each state i with 1 < i < n, the nonzero
transition probabilities are the ones to the states i− 1 and i+ 1. At state 1 the only
nonzero transition probabilities are the ones to the states 1 and 2, and at state n the
only nonzero transition probabilities are the ones to the states n− 1 and n.

(4) Problems of Table 4. Here there are three controls available at each state, call
them u1, u2, and u3. Under u1, the transition probabilities are specified in the same
way as for the problems of Table 2. Under u2, at each state i with 1 < i < n − 10,
the nonzero transition probabilities are the ones to the states i − 1 and i + 10. At
state 1 the only nonzero transition probabilities are the ones to the states 1 and 11,
and at states i = n − 10, n − 9, . . . , n the only nonzero transition probabilities are
the ones to the states i − 1 and n. Under u3, at each state i with 10 < i < n, the
nonzero transition probabilities are the ones to the states i− 10 and i+ 1. At states
i = 1, . . . , 10, the only nonzero transition probabilities are the ones to the states 1
and i+ 1, and at state n the only nonzero transition probabilities are the ones to the
states n− 10 and n.

Tables 1–4 give the number of iterations required by each method for the difference
between the upper and lower bounds to become smaller than 10−3. Each entry of the
tables represents the average of two problems. We should note here that the number
of iterations varies a great deal from one problem to another, so the variance of the
number of iterations for a given type of problem is very large. For example, one of
the two problems in the fourth entry of Table 2 is extremely difficult and requires a
much larger number of iterations than the other. However, it is generally true that if
a problem is difficult for one method (requires a lot of iterations), it is also difficult
for all the other methods.

It can be seen that the problems of Table 1 are generally much easier than the
problems of Tables 2–4. Generally, it appears that these problems become more
difficult as the sparsity of the transition probability graph increases. On some of these
problems (generally the easier ones), the standard method performs extremely well
and much better than the new methods. This is probably due to the need for stepsize
selection in the new methods. The adaptive stepsize rule that we used generally works
well, but on occasion may end up with a stepsize that is either too large or too small
for optimal performance. We believe that the subject of appropriate stepsize selection
method is a potential topic for theoretical or empirical research.

On the more difficult problems of Tables 2 and 3, the Gauss–Seidel version of the
new method is uniformly faster than the other methods. In fact, the Gauss–Seidel
method has substantially outperformed the other methods on every single problem
with the queueing structure that we tried. The Jacobi version of the new method
performs comparably to the standard method on the problems of Tables 2 and 3.
What happens here is that for the problems of Tables 2 and 3, the difference between
the iterations (7)–(8) and (9)–(10) are minor, particularly when the number of states
is large (see the discussion following (9)–(10)).

For the larger problems of Table 4, again the Jacobi version of the new method
performs comparably to the standard method. The Gauss–Seidel version of the new
method is generally faster than the other methods, but the factor of superiority is
problem dependent and its variance is substantial.
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5. Conclusions. The methods of this paper were derived by exploiting the con-
nection between average cost and stochastic shortest path problems. We developed
a new value iteration method that involves the same type of weighted sup-norm con-
traction that arises in stochastic shortest path problems. This method is the first,
to our knowledge, that admits a convergent Gauss–Seidel implementation. We also
believe that the weighted sup-norm contraction property inherent in our method is
likely to prove useful in other related contexts.
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Abstract. The main features of finite multidimensional behaviors are introduced as properties of
the trajectories supports and connected with the polynomial matrices adopted for their description.

Observability and local detectability are shown to be equivalent to the kernel representation of
a behavior via some parity check matrix HT . The main properties of locally undetectable behaviors
as well as their connections with the notion of constrained variables are investigated, and a general
representation result for finite support behaviors is derived.

The input-output representation via generator matrices is finally discussed, and some connec-
tions between matrix primeness and the constraints every trajectory imposes on the support of the
corresponding input are analyzed.

Key words. multidimensional systems, behavior theory, polynomial matrices, parity checks,
observability, local detectability/undetectability
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1. Introduction. Behavior theory is the study of the trajectories a dynamical
system produces according to its evolution laws. It originated in the analysis of
one-dimensional (1D) systems and was developed in a complete and useful form by
J. C. Willems in the past two decades. In a series of papers [18, 19, 20], Willems
provided a thorough description of the ways a system interacts with its environment,
as well as a clear conceptual apparatus for analyzing and identifying the attributes
a family of trajectories possibly exhibits. Perhaps the most important of the notions
he introduced is external controllability, which displays the way memory function
operates and hence constitutes a powerful tool for obtaining state space models of
infinite behaviors.

Recently, purely ring-theoretic extensions of Willems theory have been obtained
by F. Fagnani, S. K. Mitter, and S. Zampieri in [3, 22]. The new field of research
is relevant for the investigation of many classes of systems and makes it quite clear
how several concepts of behavior theory depend on the nature of the underlying
algebraic structures. Nevertheless, a certain continuity with Willems’s former results
is apparent, if for no other reason than that the analysis is normally developed and
thought of in a standard 1D time domain.

A second stage in the development of behavior theory, initiated by P. Rocha
and J. C Willems at the end of the 1980s [13, 14], resulted in the absorption of
two-dimensional (2D) signals into the theory. The analysis of 2D behaviors has led
to new insights into the classical theory of 2D systems and to new investigations
of Laurent polynomial operators, centering around the algebra of matrix pairs and
various primeness conditions for polynomial matrices.
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Another development in behavior theory is the work of G. D. Forney and M. D.
Trott on the behavioral approach to group systems [8]. Like the original work on
minimal bases of rational spaces [7], Forney’s papers find several applications in the
theory of convolutional codes. At the same time, however, they draw on duality theory
and suggest new problems on observability and memory span. Also, they emphasize
the importance of topological groups in behavior and coding theory.

During the last few years, there has been an increasing interest in convolutional
coding of multidimensional (nD) data [4, 16], motivated to a large extent by the
possibility of investigating code performances and properties in a behavior context.
Also, multidimensional convolutional codes have been a fruitful source of problems and
conjectures, both in polynomial modules algebra and in signal processing of discrete
data arrays [15].

The aim of this paper is to present, in as self-contained a manner as possible,
the behavior theory of finite support multidimensional signals. The finite support
assumption is motivated by the fact that in several applications the independent vari-
ables represent spatial coordinates, and the phenomenon one aims to model regards
only a finite region of the space. So, infinite behaviors, which constitute the core
of Willems’s theory, are only marginally touched on here. A detailed analysis of
the main connections between finite and infinite nD signals falls within the scope of
duality theory, and as far as the 2D case is concerned, has been carried on in [16].

Not intending to be inclusive of all aspects of the subject, we have concentrated
on what seem to be the most interesting topics to be investigated and have included
some preliminary material, as necessary for the discussion. Particular attention has
been devoted to the supports of the signals and to certain elementary operations
(restriction, extension, and concatenation) which have a concrete meaning from the
signal processing standpoint. Actually, several “internal” properties of a behavior
have been introduced in terms of these operations and expressed as possibilities of
“cutting and pasting together” pieces of different trajectories into a new one.

As each of these features mirrors a particular polynomial matrix representation,
an explicit link between the parity checks description of an nD behavior and the
concept of observability is derived; indeed, the support of the parity check matrix
measures the range of action of the system laws and provides useful bounds on the
region where parity checks apply when detecting if some signal is a legal sequence.

The trajectories of an observable behavior can be expressed as the solutions of
a system of multidimensional difference equations, and hence can be recognized by
means of local testing procedures. Locally undetectable behaviors, instead, exhibit
opposite properties, because every finite signal can be completed into a legal trajectory
and no local recognition procedure can be successfully implemented. Interestingly
enough, these two classes of behaviors allow every finite behavior to be described via
intersection operations.

A point of view somewhat complementary to detection calls for an input-output
analysis of the way behavior trajectories are generated, and the supports of the tra-
jectories are related to the corresponding inputs. This problem appears particularly
relevant when the behavior sequences are injectively generated, and hence a given
trajectory is produced by a unique input. Although no general statement can be
made about the way these supports are related, specific assumptions on the structure
of the generating matrices allow us to uniformly confine the support of each input
signal into a suitable extension of the support of the associated output trajectory.

The use of nD Laurent polynomial (L-polynomial) matrices is pervasive through-
out the paper; no attempt has been made, however, to give a complete account of



762 ETTORE FORNASINI AND MARIA ELENA VALCHER

their algebraic properties. For these we may refer the reader to recent books [2] and
articles [5, 17, 21] dealing with that part of abstract algebra. A certain attention,
however, has been paid to the analysis of the supports of nD L-polynomial vectors,
and some results obtained in this context seem to be original.

The paper is organized as follows. The first part introduces the basic definitions
and properties of nD finite behaviors; in particular, operations which involve only the
supports are sufficient to define the notions of (external) controllability and observ-
ability. While controllability is well established [8, 14], and in the context of finite
support signals, it follows from linearity and shift invariance, the observability defini-
tion we will adopt comes from duality issues and is fully justified when a parity-checks
description of the behavior trajectories is adopted. Actually, as shown in section 3, an
observable behavior is characterized by a finite set of parity checks one has to apply
in order to recognize its trajectories. This result allows observable behaviors to be
identified with kernels of polynomial matrix operators or, in more abstract terms, as
maximal submodules of given rank in the module of all finite support signals.

In section 4 the notions of unconstrained variables and locally undetectable be-
haviors are introduced. A general representation result is then provided, showing
that every finite behavior can be expressed as the intersection of an observable and a
(generally not unique) locally undetectable behavior.

In the last part of the paper we develop the theory of input-output generation of
nD behaviors and present some relevant connections between support conditions on
the input-output pairs and primeness requirements on the generator matrices.

2. Finite support behaviors: Preliminary definitions and basic proper-
ties. Let F be an arbitrary field and denote by z the n-tuple (z1, z2, . . . , zn), so that
F[z] and F[z, z−1] are shorthand notations [1] for the polynomial and the Laurent
polynomial (L-polynomial) rings in the indeterminates z1, . . . , zn, respectively.

For any sequence w = {w(h)}h∈Zn , taking values in Fp, the support of w is the set
of points where w is nonzero, i.e., supp(w) := {h = (h1, h2, . . . , hn) ∈ Zn : w(h) 6= 0}.
Also, w can be represented via a formal power series∑

hi∈Z
w(h1, h2, . . . , hn) zh1

1 zh2
2 · · · zhnn =

∑
h∈Zn

w(h) zh,

where h stands for the n-tuple (h1, h2, . . . , hn) and zh for the term zh1
1 zh2

2 . . . zhnn .
On the other hand, power series can be viewed as representing vectors with entries
in F∞ := FZn , thus setting a bijective map between nD sequences taking values in
Fp and formal power series with coefficients in Fp. This allows us to identify nD
sequences with the associated power series, in particular, finite support nD signals
with L-polynomial vectors, and to denote both of them with the same symbol w.
Sometimes, mostly when a power series w is obtained as a Cauchy product, it will be
useful to denote the coefficient of zh in w as (w, zh).

Linear operators on the sequence space are represented by appropriate matrices
with elements in F[z, z−1], whose primeness features find a counterpart in terms of
properties of the associated operators. The main primeness notions which arise in the
nD context are the following.

DEFINITION 2.1. An L-polynomial matrix G ∈ F[z, z−1]p×m, p ≥ m, is
• unimodular if p = m and detG is a unit in F[z, z−1], i.e., detG = czh for

some nonzero c ∈ F and some h ∈ Zn;
• right factor prime (rFP) if in every factorization G = ḠT , with Ḡ ∈ F[z, z−1]p×m

and T ∈ F[z, z−1]m×m, T is a unimodular matrix;
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• right minor prime (rMP) if its maximal order minors have no common fac-
tors;
• right variety prime (rVP) if the ideal IG, generated by its maximal order mi-

nors, includes (nonzero) L-polynomials in F[zi, z−1
i ] for every i = 1, 2, . . . , n;

• right zero prime (rZP) if the ideal IG is the ring F[z, z−1] itself.
The support of a matrix G ∈ F[z, z−1]p×m is the union of the supports of its elements.

An nD (finite) behavior B with p components is a set of finite support signals
(trajectories) taking values in Fp and endowed with the following properties.

(L) [Linearity]. If w1 and w2 belong to B, then αw1 + βw2 ∈ B for all α, β in
F.

(SI) [Shift-invariance]. w ∈ B implies v = zhw ∈ B for every h ∈ Zn; i.e., B is
invariant with respect to the shifts along the coordinate axes in Zn.

As every nD behavior B can be viewed as an F[z, z−1]-submodule of F[z, z−1]p,
which is a Noetherian module [11], B is finitely generated; i.e., there exists a finite
set of column vectors g1,g2, . . . ,gm in F[z, z−1]p such that

(2.1) B ≡
{

m∑
i=1

giui : ui ∈ F[z, z−1]

}
= {w = Gu : u ∈ F[z, z−1]m} =: ImG.

The L-polynomial matrix G := row{g1,g2, . . . ,gm} is called the generator matrix of
B.

G1 ∈ F[z, z−1]p×m1 and G2 ∈ F[z, z−1]p×m2 are generator matrices of the same
behavior if and only if there exist P1 ∈ F[z, z−1]m1×m2 and P2 ∈ F[z, z−1]m2×m1

such that G1P1 = G2 and G2P2 = G1. Consequently, G1 and G2 have the same
rank r over the field of rational functions F(z). Being an invariant with respect to
all generator matrices of B, r is called the rank of B. It somehow represents a
complexity index of the behavior, as r independent trajectories can be found in B,
while r + 1 trajectories (w1,w2, . . . ,wr+1) always satisfy an autoregressive equation
w1p1 + w2p2 + · · ·+ wr+1pr+1 = 0, with at least one nonzero pi ∈ F[z, z−1].

A behavior B of rank r is free if it admits a full column rank generator matrix, that
is, a generator matrix G with r columns. This amounts to saying that each trajectory
w in B is uniquely expressed as a linear combination w = g1u1 + g2u2 + · · ·+ grur,
ui ∈ F[z, z−1], of the columns of G.

The main properties of a finite behavior B are connected with certain elementary
operations we can perform on the system trajectories. These operations essentially
reduce to “pasting” pieces of different trajectories into legal elements of B or to
“cutting” a set of samples out of a given trajectory, so as to obtain a new behavior
sequence.

One of the pillars of Willems’s behavior theory is the notion of (external) control-
lability. For 1D controllable behaviors the past has no lasting implications about the
future [19], which means that the restriction of a 1D trajectory to (−∞, t] does not
provide any information about the values the trajectory takes on [t + δ,+∞), when
δ > 0 is properly chosen. In a multidimensional context the notions of “past” and
“future” are quite elusive and, in many cases, unsuitable for classifying and processing
the available data. What seems more reasonable, instead, is to investigate to what
extent the values a trajectory w assumes on a subset S1 ⊂ Zn influence the values
on a subset S2, disjoint from S1, and to check if there exists a lower bound on the
distance

(2.2) d(S1,S2) := min

{
n∑
i=1

|hi − ki| : (h1, h2, . . . , hn) ∈ S1, (k1, k2, . . . , kn) ∈ S2

}
,
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which guarantees that w|S2, the restriction to S2 of the sequence w, is independent
of w|S1. This point of view led to the following definition [13].

(C1) [Controllability]. A finite behavior B is controllable if there exists an integer
δ > 0 such that, for any pair of nonempty subsets S1,S2 of Zn, with d(S1,S2) ≥ δ,
and any pair of trajectories w1 and w2 ∈ B , there exists v ∈ B such that

(2.3) v|S1 = w1|S1 and v|S2 = w2|S2.

While definition (C1) requires pasting together different signals into a new one,
the following statement refers to the possibility of finding a legal extension for every
portion w|S of a behavior trajectory w by adjusting the sample values in a small area
surrounding S. More precisely, by introducing for ε ≥ 0 the ε-extension of the set S

Sε := {h ∈ Zn : d(h,S) ≤ ε},

one can give the following definition.
(C2) [Zero-controllability]. A finite behavior B is zero-controllable if there exists

an integer ε > 0 such that, for any nonempty set S of Zn and any w ∈ B, there exists
v ∈ B satisfying

(2.4) v|S = w|S and supp(v) ⊆ Sε.

Properties (C1) and (C2) make sense for both finite and infinite support behaviors,
and the proof of (C1) ⇔ (C2) given below holds for both of them. However, while
conditions (C1) and (C2) are always met by a finite behavior B, and essentially follow
from the module structure of B, for an infinite behavior, controllability constitutes
an additional constraint with respect to linearity and shift-invariance [13, 14].

PROPOSITION 2.2. Controllability and zero-controllability are equivalent.
Proof. (C1) ⇒ (C2) Assume that B meets condition (C1). Given w ∈ B and

S ⊂ Zn, take in (C1) w1 = w, w2 = 0, S1 = S, and S2 = CSδ, where CS denotes the
complementary set of S. Then the trajectory v which fulfills (2.3) satisfies (2.4) with
ε = δ.

(C2)⇒ (C1) Assume that B satisfies condition (C2). Given w1 and w2 ∈ B and
S1,S2 ⊂ Zn, with d(S1,S2) > ε, by (C2) there exist v1 and v2 ∈ B such that

vi|Si = wi|Si, supp(vi) ⊂ Sεi , i = 1, 2.

Thus v := v1 + v2 ∈ B satisfies v|Si = wi|Si, i = 1, 2, and (C1) holds for δ = ε+ 1.

PROPOSITION 2.3. A finite behavior B is controllable.
Proof. Suppose that G ∈ F[z, z−1]p×m is a generator matrix of B, and let η be

a positive integer such that B(0, η), the ball of radius η and center in the origin,
includes supp(G). Consider any set S ⊂ Zn and w = Gu ∈ B. If ū is the sequence
which coincides with u on Sη and is zero elsewhere, the trajectory v := Gū satisfies
v|S = w|S and has support which does not exceed S2η. So (C2) is met with ε = 2η.

Given two disjoint sets S1 and S2 which are far enough apart, controllability ex-
presses the possibility of steering any behavior sequence known in S1 into another
element of B assigned on S2, meanwhile producing a legal trajectory. Like controlla-
bility, observability will also be introduced without reference to the concept of state,
according to some recent works of Forney et al. [8, 12]. Observability formalizes the
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FIG. 2.1.

possibility of pasting into a legal sequence any pair of trajectories that take the same
values on a sufficiently large subset of Zn. This is equivalent to saying that, however
a sequence w ∈ B and a subset S ⊂ Zn are chosen, the possible extensions of w|S
only depend on the values of w on a boundary region of S.

Under this viewpoint, observability endows a behavior with a “separation prop-
erty” that allows us to take into account only a small amount of data in order to
extend a portion of the behavior sequence. Furthermore, once we think of the sam-
ples in S as the information about the past dynamics of the system, observability
enables us to design the “future” evolution by considering only the most “recent”
data (those on the boundary), thus reminding us of the notion of state.

(O1) [Observability]. A finite behavior B is observable if there exists an integer
δ > 0 such that, for any pair of nonempty subsets S1,S2 of Zn, with d(S1,S2) ≥ δ,
and any pair of trajectories w1, w2 ∈ B, satisfying w1|C(S1 ∪ S2) = w2|C(S1 ∪ S2),
the trajectory

(2.5) v(h) =

w1(h), h ∈ S1,
w1(h) = w2(h), h ∈ C(S1 ∪ S2),
w2(h), h ∈ S2,

is an element of B (see Fig. 2.1).
Observability can be equivalently restated as follows: if the support of a behavior

sequence w can be partitioned into a pair of disjoint subsets, which are far enough
apart, the restrictions of w to each subset represent legal trajectories.

(O2) [Zero-observability]. A finite behavior B is zero-observable if there exists an
integer ε > 0 such that for any w ∈ B satisfying w|(Sε \ S) = 0, S a nonempty set
in Zn, the sequence

(2.6) v(h) =
{

w(h), h ∈ S,
0 elsewhere

belongs to B (see Fig. 2.2).
PROPOSITION 2.4. Observability and zero-observability are equivalent.
Proof. (O1) ⇒ (O2) Assume that B fulfills condition (O1). Given S ⊂ Zn and

w ∈ B such that w|(Sδ \ S) = 0, take in (O1) w1 = w, w2 = 0, S1 = S, and
S2 = CSδ. The trajectory v ∈ B satisfying (2.5), also satisfies (2.6), with ε = δ.
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(O2) ⇒ (O1) Assume that B fulfills condition (O2). Given S1,S2 ⊂ Zn, with
d(S1,S2) > ε, and w1, w2 ∈ B satisfying w1|C(S1∪S2) = w2|C(S1∪S2), the sequence
w1 −w2 ∈ B satisfies (w1 −w2)|C(S1 ∪ S2) = 0. As a consequence, the sequence w
given by

w(h) =
{

w1(h)−w2(h), h ∈ S1,
0 elsewhere,

is in B, and v := w + w2 ∈ B fulfills (2.5). So, (O1) holds for δ = ε+ 1.

3. Parity checks and trajectory recognition. Underlying the definition of
controllability is the idea of driving a portion of a trajectory into another one, pro-
vided that there is room enough for adjustments. In rough terms, one’s objective is
to manipulate the control variables to cause the system to behave in S2 in a more
desirable manner than is expected by watching the system trajectory on S1. So,
controllability is naturally connected with the generation of B as the image of some
matrix G, acting on the input space.

Observability is somehow related to the “dual” issue of recognizing whether a
given sequence v ∈ F[z, z−1]p is an element of B. This problem, which typically
arises in fault detection and convolutional encoding contexts, can be managed by
resorting to a linear filter (residual generator or syndrome former) that produces an
identically zero output signal when the input is an admissible trajectory of B. From a
mathematical point of view, this requires us to find a set of sequences (parity checks)
endowed with the property that their convolution with every element of B is zero.

So, for a given behavior B ⊆ F[z, z−1]p, a (finite) parity check is a column vector
s ∈ F[z, z−1]p that satisfies sTw = 0 for all w ∈ B. The set B

⊥ of all finite parity
checks of B is the orthogonal behavior, and as a submodule of F[z, z−1]p, it is generated
by the columns of some matrix H ∈ F[z, z−1]p×q, that is,

(3.1) B
⊥ = {s ∈ F[z, z−1]p : s = Hx,x ∈ F[z, z−1]q} = ImH.

Condition sTw = 0, ∀ s ∈ B
⊥, however, need not imply w ∈ B. In general,

(3.2) B
⊥⊥ := {w ∈ F[z, z−1]p : sTw = 0∀ s ∈ B

⊥}
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properly includes B and is the set of all L-polynomial vectors obtained by combining
the columns of G over the field of rational functions F(z). It is clear that B can be
identified via a finite set of parity checks if and only if B = B

⊥⊥ or, equivalently,

(3.3) B = kerHT := {w ∈ F[z, z−1]p : HTw = 0}.

In this setting, observability finds a somewhat more substantial interpretation. Ac-
tually, if B = kerHT , the restriction of a trajectory to a set S still provides a legal
signal every time the distance between S and the remaining support of the trajectory
exceeds the range of action of the parity check matrix H.

Proposition 3.1 below shows that kernel representations are possible, as can be
expected, only for observable behaviors, and makes it clear that observability induces
further constraints on the structure of B, in addition to linearity and shift-invariance.

PROPOSITION 3.1. A behavior B ⊆ F[z, z−1]p is observable if and only if there
exist an integer h > 0 and an L-polynomial matrix HT ∈ F[z, z−1]h×p such that B =
kerHT .

The proof of the proposition depends on a couple of technical lemmas.
LEMMA 3.2. Let R be an integral domain, and consider the polynomial in R[z],

m(z) = α0 z
r − α1 z

r−1 + α2 z
r−2 + · · ·+ (−1)rαr.

For any ρ ≥ 0 there is a p(z) ∈ R[z] such that p(z)m(z) ∈ R[zρ+1].
Proof. Let Q be the field of fractions of R, and L the algebraic closure of Q. Then

m(z) can be written as m(z) = α0
∏r
i=1(z − ξi), where ξi ∈ L, i = 1, 2, . . . , n, and

(3.4)
∑
i

ξi = α1/α0,
∑
i<j

ξiξj = α2/α0, . . . ξ1ξ2 · · · ξr = αr/α0.

Consider the following polynomial in L[z]:

p̃(z) =
r∏
i=1

(zρ + ξiz
ρ−1 + ξ2

i z
ρ−2 + · · ·+ ξρ−1

i z + ξρi )

=
∑

0≤i1,i2,...,ir≤ρ
zrρ−i1−i2−···−irξi11 ξ

i2
2 · · · ξirr =

rρ∑
t=0

zrρ−t
∑

i1+i2+···+ir=t
0≤i1,i2,...,ir≤ρ

ξi11 ξ
i2
2 · · · ξirr .

Each coefficient of p̃(z) is a symmetric polynomial in the indeterminates ξ1, ξ2, . . . , ξr,
with integer coefficients, and hence it is expressible [11] as a polynomial in the ele-
mentary symmetric polynomials defined in (3.4), again with integer coefficients. Thus
p̃(z) is in Q[z], the denominators of its coefficients are powers of α0, and there exists
a positive integer ν such that p(z) := ανo p̃(z) belongs to R[z]. To conclude the proof,
we note that p(z)m(z) is an element of R[zρ+1] since

p(z)m(z) = ανo

r∏
i=1

[(zρ + ξiz
ρ−1 + ξ2

i z
ρ−2 + · · ·+ ξρi )(z − ξi)]

= ανo

r∏
i=1

(zρ+1 − ξρ+1
i ).

LEMMA 3.3. Let m(z) be in F[z]. For any integer ρ > 0 there is p(z) ∈ F[z] s.t.

(3.5) m(z)p(z) ∈ F[zρ] := F[zρ1 , . . . , z
ρ
n].
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Proof. As m(z) = m(z1, . . . , zn) can be viewed as an element of F[z1, . . . , zn−1]
[zn], by Lemma 3.2 there exists p1(z1, . . . , zn) ∈ F[z1, . . . , zn−1][zn] such that

m1(z1, . . . , z
ρ
n) := m(z1, . . . , zn)p1(z1, . . . , zn) ∈ F[z1, . . . , zn−1][zρn].

Looking at m1(z1, . . . , z
ρ
n) as a polynomial in F[z1, . . . , zn−2, z

ρ
n][zn−1], we know that

there exists p2(z1, . . . , zn−1, z
ρ
n) such that

m2(z1, . . . , z
ρ
n−1, z

ρ
n) := m1(z1, . . . , zn−1, z

ρ
n)p2(z1, . . . , zn−1, z

ρ
n) ∈ F[z1, . . . , zn−2, z

ρ
n][zρn−1].

In n steps we end up with a polynomial

mn(zρ1 , z
ρ
2 , . . . , z

ρ
n) : = m(z1, . . . , zn)p1(z1, . . . , zn)

· p2(z1, z2, . . . , zn−1, z
ρ
n) . . . pn(zρ1 , z

ρ
2 , . . . , z

ρ
n) ∈ F[zρ1 , z

ρ
2 , . . . , z

ρ
n],

and (3.5) holds with p = p1 p2 . . . pn.
Proof of Proposition 3.1. Assume that B = ImG, G ∈ F[z, z−1]p×m, is an

observable behavior, and let B
⊥ = Im H, H ∈ F[z, z−1]p×q, denote the orthogonal

behavior introduced in (3.1). We will show that B ≡ kerHT . Since HTG = 0, it is
clear that kerHT ⊇ B. To prove the converse, express w ∈ kerHT as w = Gn/d(z),
d ∈ F[z],n ∈ F[z, z−1]m×1. By Lemma 3.3, for every integer ρ > 0, there is a suitable
polynomial p(z) such that p(z)d(z) ∈ F[zρ1 , . . . , z

ρ
n]. If property (O2) holds for ε > 0,

and r > 0 is an integer such that supp(w) ⊆ B(0, r), we choose ρ > 2r + ε. So, the
behavior sequence p(z)d(z)w = Gnp(z) can be written as∑

i1,i2,...,in

ci1,i2,...,inz
ρi1
1 zρi22 · · · zρinn w

and thus is the sum of disjoint shifted copies of w, and the distance between two
arbitrary copies exceeds ε. So, by (O2), each copy of w, and hence w itself, is in B.

Conversely, let B = kerHT and set ε = 2s, with s > 0 an integer s.t. B(0, s) ⊇
supp(HT ). If S is a subset of Zn and w ∈ B satisfies w|(Sε \ S) = 0, the sequence

v(h) =
{

w(h), h ∈ S,
0 elsewhere

is in kerHT and hence in B. Consequently, B is zero-observable.
The kernel description given in Proposition 3.1 leads to new insights into the

internal structure of an observable behavior. Observability, indeed, expresses a sort
of “localization” of the system laws or, equivalently, the existence of a bound on the
size of all windows (in Zn) we have to look at when deciding whether a signal belongs
to B. Denoting by B|S := {w|S : w ∈ B} the set of all restrictions to S of behavior
trajectories, the above localization property finds a formal statement as follows.

(O3) [Local detectability]. A finite behavior B is locally detectable if there is an
integer ν > 0 such that every signal w satisfying w|S ∈ B|S for every S ⊂ Zn with
diam(S) ≤ ν is in B.

PROPOSITION 3.4. Local detectability and observability are equivalent.
Proof. Assume that B satisfies (O3) for a certain ν > 0. Given S ⊂ Zn and

w ∈ B such that w|(Sν \ S) = 0, define v as follows:

(3.6) v(h) =
{

w(h), h ∈ Sν ,
0 elsewhere.
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Consider any window W, with diam(W) ≤ ν. If W is included in Sν , then v|W =
w|W ∈ B|W; otherwise we have W ∩ S = ∅, and therefore

(3.7) v|W = 0|W ∈ B|W.

So, by (O3), v is a legal trajectory, and (O2) holds for ε = ν.
Conversely, assume that B is observable. By Proposition 3.1, there exists an L-

polynomial matrix H ∈ F[z, z−1]p×q such that B = kerHT . Let ν > 0 be an integer
such that supp(HT ) ⊆ B(0, ν), and suppose that v is any signal satisfying v|S ∈ B|S
for every S ⊂ Zn with diam(S) ≤ 2ν. If S̄ := −supp(HT ), the computation of the
coefficient of zk in HTv involves only samples of v indexed in

(3.8) k + S̄ := {h ∈ Zn : h− k ∈ S̄} = −supp(zkHT ).

On the other hand, since diam(k + S̄) ≤ 2ν, there exists wk ∈ B which satisfies
v|(k + S̄) = wk|(k + S̄), and this result holds for every k ∈ Zn. So, the coefficient of
zk in HTv is the same as in HTwk ≡ 0, and hence v ∈ kerHT = B.

The equivalent descriptions of observability given in (O1) ÷ (O3) rely on the
trajectories’ supports, whereas Proposition 3.1 involves parity checks and kernel rep-
resentations. A different approach to this notion consists of regarding behaviors with
p components as elements in the lattice of submodules of F[z, z−1]p, and investigating
whether observable elements enjoy some special ordering properties.

In keeping with the same spirit, we may investigate how an observable behavior
is affected by certain “extension operations” that merge lattice elements into larger
ones. There are essentially two natural ways to perform these extensions: one consists
of embedding F[z, z−1]p, and therefore each of its submodules, in the rational vector
space F(z)p, the other of considering F[z, z−1]p as a submodule of Fp∞, the set of nD
trajectories with p components, whose supports possibly extend to the whole space
Zn.

Once a behavior B with p components is given, in the first case we have to
consider the smallest vector subspace of F(z)p including B,

(3.9) Brat :=

{
r∑
i=1

wiai : wi ∈ B, ai ∈ F(z), r ∈ N
}
,

and restrict our attention to the submodule Brat ∩ F[z, z−1]p of finite support se-
quences. In general, this properly includes B, and hence is a larger element of the
lattice. In the other case, we merge B in

(3.10) B∞ :=

{
r∑
i=1

wiai : wi ∈ B, ai ∈ F∞, r ∈ N
}
,

the smallest F[z, z−1]-submodule of Fp∞ which includes B. Again, we have to confine
ourselves to the set of its finite elements B∞ ∩ F[z, z−1]p, which clearly includes all
trajectories of B.

PROPOSITION 3.5. Let B ⊆ F[z, z−1]p be a behavior of rank r. The following
statements are equivalent:

i) B is observable;
ii) B ≡ B∞ ∩ F[z, z−1]p;
iii) B ≡ Brat ∩ F[z, z−1]p;
iv) B is maximal in the set of all submodules of F[z, z−1]p of rank r;
v) sw ∈ B ⇒ w ∈ B for every w ∈ F[z, z−1]p and every nonzero s ∈ F[z, z−1];
vi) B = B

⊥⊥.
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Proof. i) ⇒ ii) As B is observable, there exists H ∈ F[z, z−1]p×q such that B =
kerHT = {w ∈ F[z, z−1]p : HTw = 0}. If w ∈ B∞ ∩ F[z, z−1]p, then w =

∑
i wiai,

ai ∈ F∞,wi ∈ B, and therefore HTw = HT (
∑
i wiai) =

∑
i(H

Twi)ai = 0. Thus
w ∈ kerHT = B, which implies B ⊇ B∞ ∩ F[z, z−1]p. The reverse inclusion is
obvious.

ii)⇒ iii) This follows immediately from B ⊆ Brat∩F[z, z−1]p ⊆ B∞∩F[z, z−1]p.
iii)⇒ iv) If B

′ ⊇ B and rankB′ = rankB, it is clear that B and B
′ generate the

same F(z)-subspace of F(z)p and, consequently, Brat ∩ F[z, z−1]p = B
′
rat ∩ F[z, z−1]p.

So, the inclusions chain Brat ∩ F[z, z−1]p ⊇ B
′ ⊇ B and assumption iii) together

imply B
′ = B, which means that B is maximal.

iv) ⇒ v) Suppose sw ∈ B, s ∈ F[z, z−1]. The behavior B
′ generated by B and

w has the same rank of B, and hence, by the maximality assumption, coincides with
B.

v) ⇒ vi) As B and B
⊥⊥ have the same rank r and B

⊥⊥ ⊇ B, both behaviors
generate the same F(z)-subspace of F(z)p. In particular, w ∈ B

⊥⊥ implies w ∈
(B⊥⊥)rat = Brat. So, there exist pi, si ∈ F[z, z−1] and wi ∈ B, such that w =∑r
i=1 wi pi/si, which implies sw ∈ B, where s is the least common multiple (`.c.m.)

of the si’s. By assumption v), also, w is in B.
vi) ⇒ i) Since B

⊥ is a submodule of F[z, z−1]p, there exists a suitable L-
polynomial matrix H such that B

⊥ = ImH. So

B
⊥⊥ = (B⊥)⊥ = {w ∈ F[z, z−1]p : vTw = 0∀v ∈ ImH} = kerHT .

By assumption vi), B coincides with kerHT and hence is observable.

4. Behavior decomposition. In this section we take a first step toward a struc-
tural analysis of finite support behaviors. The scope of structure theory is to describe
general behaviors in terms of some simpler ones—simpler in some perceptible way,
perhaps concreteness, or tractability. Of essential importance, after one has decided
upon these simpler objects, is to find a method of passing down to them and to
discover how they weave together to yield the general behavior with which we began.

Observable behaviors constitute good candidates for these simpler objects, as each
behavior can be embedded into an observable one. In order to represent a general
behavior B, then, we have to slice out of its enveloping observable behavior B⊥⊥ a
certain part. This can be done by intersecting B⊥⊥ with a suitable, not necessarily
unique, element of a behavior class that exhibits properties which are as far as possible
from observability and hence from local detectability. The definition of this class
depends on the notion of constrained variables which we now introduce.

DEFINITION 4.1. Let B ⊆ F[z, z−1]p be a finite support behavior and {i1, i2, . . . ,
ir}, r < p, a subset of {1, 2, . . . , p}. We call wi1 , wi2 , . . . , wir constrained variables
of B if for every pair of trajectories v,v′ ∈ B, vj = v′j for every j 6∈ {i1, i2, . . . , ir}
implies v = v′.

As shown in the following lemma, the maximum number of constrained variables
of a behavior B in F[z, z−1]p can be expressed in terms of the rank and the number
of components of B.

LEMMA 4.2. Let B ⊆ F[z, z−1]p be a behavior of rank r. The maximum number
of constrained variables of B is p− r.

Proof. Let G ∈ F[z, z−1]p×m be a generator matrix of B and suppose, for sake of
simplicity, that the first r rows of G are linearly independent, so that in

G =
[
G1
G2

]
}r
}p− r ,
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G1 has full row rank. The components wi, i = r + 1, r + 2, . . . , n, are constrained
variables. If not, there would be a trajectory w = [ 0

w2
] in B, with w2 6= 0, and hence

an L-polynomial vector u ∈ F[z, z−1]m s.t. [ G1
G2

]u = [ 0
w2

]. This is a contradiction,
however, because

rank G1 = rank
[
G1
G2

]
⇒ ker G1 = ker

[
G1
G2

]
.

It remains to prove that the number of constrained variables cannot exceed p − r.
Suppose, instead, that k > p− r variables of B, say the last k, are constrained, and
partition the generator matrix G into

G =
[
Ĝ1
Ĝ2

]
}p− k
}k .

As r =rank G > rankĜ1, kerĜ1 properly includes kerG. Consequently, there exists u
s.t. Ĝ2u 6= 0 and both [ 0

0 ] and [ 0
Ĝ2u

], Ĝ2u 6= 0, are in B, which contradicts the
assumption that the last k components are constrained.

A behavior B devoid of constrained variables exhibits the very peculiar feature
that for every finite set S ⊂ Zn, B|S coincides with F[z, z−1]p | S. This property,
which appears somehow opposite to local detectability, makes it impossible to recog-
nize the trajectories of B by resorting to a local checking procedure.

(LU) [Local undetectability]. A behavior B ⊆ F[z, z−1]p is locally undetectable
if there exists δ > 0 s.t. for every sequence v ∈ F[z, z−1]p and every set S ⊂ Zn, a
trajectory w ∈ B can be found satisfying

(4.1) w|S = v|S and supp(w) ⊆ Sδ.

PROPOSITION 4.3. Let B ⊆ F[z, z−1]p be a finite support behavior. The following
facts are equivalent:

i) B is devoid of constrained variables;
ii) B is the image of some L-polynomial matrix G ∈ F[z, z−1]p×m with rank p;
iii) B is locally undetectable.
Proof. i) ⇔ ii) The proof is immediate from Lemma 4.1.
ii) ⇒ iii) Let v be an arbitrary sequence in F[z, z−1]p and S a finite set. If B =

ImG, for some G ∈ F[z, z−1]p×m of rank p, v can be obtained as the image of some
rational vector u ∈ F(z)p, i.e., v = Gu. Consider a power series expansion of u with
support in a suitable cone of Zn, and introduce the finite sequence

ū(h) :=
{

u(h), h ∈ Sε,
0 elsewhere,

where ε is the radius of a ball centered in the origin and including the support of G.
The behavior sequence v̄ := Gū coincides with v on S and has support included in
S2ε. So, (4.1) holds with δ = 2ε.

iii) ⇒ ii) Suppose that B is locally undetectable and assume, by contradiction,
that B = ImG, for some G ∈ F[z, z−1]p×m with rank less than p. Then there exists a
nonzero L-polynomial vector h ∈ F[z, z−1]p satisfying hTG = 0. Consider a sequence
v ∈ F[z, z−1]p s.t. hTv 6= 0 and a set T ⊂ Zn which includes both supp(v) and
supp(hTv), and define S := T ρ, where ρ is the radius of a ball, centered in the origin,
which includes supp(h). If property (LU) holds for some δ > 0, there is a trajectory
w ∈ B that can be expressed as w = v + r for some r with support in Sδ \ S (see
Fig. 4.1). As w = Ga, for some a ∈ F[z, z−1]m, it follows that



772 ETTORE FORNASINI AND MARIA ELENA VALCHER

-

6

��

@@

@@ ��

@@

@@

@
@
@@

@@

@
@
@
@�

�
�
�

�
�
��

r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r r r rr r r r r rr r r r r rr r r r r rr r r r r rr r r r r rr r r r r r r r r r r rr r r r r r r r r rr r r r r r r r
r r r r r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r rr r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r r rr r r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

-

-

T

S

Sδ

FIG. 4.1.

0 = hTGa = hTw = hTv + hT r.

This is not possible, however, since T includes the support of hTv without intersecting
supp(hT r).

PROPOSITION 4.4. For every behavior B ⊆ F[z, z−1]p there exist an observable
behavior B0 and a locally undetectable behavior Blu in F[z, z−1]p s.t.

(4.2) B = B0 ∩Blu.

Moreover, B0 is uniquely determined as B
⊥⊥, the smallest observable behavior in-

cluding B.
Proof. Let B = ImG and B0 := B⊥⊥ = kerHT . Clearly, B0 is an observable

behavior including B. If G has rank r, we can assume, for the sake of simplicity, that
its first r rows are linearly independent. So, G can be partitioned as

G =
[
G1
G2

]
}r
}p− r ,

where G1 is a full rank matrix. Let

Glu :=
[
G1 0
0 Ip−r

]
and Blu := ImGlu. Clearly, Blu is a locally undetectable behavior, and it includes B

as

G =
[
G1
G2

]
=
[
G1 0
0 Ip−r

] [
I
G2

]
.

So, one obviously gets B ⊂ B0 ∩Blu.
To prove the reverse inclusion, consider w ∈ B0∩Blu. Clearly, w satisfies HTw =

0 and can be expressed as

w =
[
G1u1
u2

]
.
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Factoring G into the product of a (full column rank) right factor prime matrix Ḡ and
a full row rank rational matrix Q [17], one gets[

G1
G2

]
= G = ḠQ =

[
Ḡ1
Ḡ2

]
Q.

As the columns of Ḡ generate the F(z)-vector space orthogonal to the rows of HT ,
there exists v ∈ F(z)r s.t. w = Ḡv. But then Ḡ1v = G1u1 = Ḡ1Qu1 implies
v = Qu1, and thus u2 = Ḡ2v = Ḡ2Qu1 and

w =
[
G1u1
u2

]
=
[
Ḡ1
Ḡ2

]
Qu1 = Gu1.

This implies that w is in B.
It remains to prove the uniqueness of B0 in the above representation. To this end

we need the following technical lemma.
LEMMA 4.5. Let Bi ⊂ F[z, z−1]p, i = 1, 2, be finite support behaviors with p

components. If B = B1 ∩B2, then

(4.3) Brat = (B1)rat ∩ (B2)rat.

Proof. Let G,G1, and G2 be generator matrices of B, B1 and B2, respectively.
Clearly, Brat = ImF(z)G := {v ∈ F(z)p : v = Gu,u rational}, and similarly, (Bi)rat =
ImF(z)Gi, i = 1, 2. Therefore, v ∈ Brat implies v = Gn/d, for some L-polynomial
vector n and some L-polynomial d, and hence dv ∈ B = B1 ∩B2. But then dv =
G1u1 = G2u2 for suitable L-polynomial vectors u1 and u2, which implies v ∈ (B1)rat∩
(B2)rat.

Conversely, if v ∈ (B1)rat ∩ (B2)rat, it can be expressed as v = G1n1/d1 =
G2n2/d2, for suitable L-polynomial vectors ni and L-polynomials di, i = 1, 2. If
d := `.c.m. (d1, d2), it is clear that dv is an element of B1 ∩ B2, and hence of B.
Consequently, v is in Brat.

We now return to the proof of the uniqueness of B0. Suppose, by contradiction,
that B = B̂0 ∩ B̂lu for some observable behavior B̂0 6= B

⊥⊥ and some locally
undetectable behavior B̂lu. As B

⊥⊥ is the smallest observable behavior including B

and is maximal in the class of modules of rank r, B̂0 must have rank greater than r.
Consequently, (B̂0)rat

⊃
6= (B⊥⊥)rat. On the other hand

(Blu)rat = (B̂lu)rat = F(z)p,

and therefore (B⊥⊥)rat ∩ (Blu)rat = (B⊥⊥)rat
⊂
6= (B̂0)rat = (B̂0)rat ∩ (B̂lu)rat. But this

is not possible, as B
⊥⊥ ∩Blu = B = B̂0 ∩ B̂lu should imply, by the above lemma,

(B⊥⊥)rat ∩ (Blu)rat = (B̂0)rat ∩ (B̂lu)rat.

5. Input-output description and trajectory generation. The analysis we
carried out in the previous sections focused on the properties of behavior trajecto-
ries without concern for the way they are generated. Once a behavior B is repre-
sented via a finite set of generators g1,g2, . . . ,gm, however, it is natural to look at
G := [g1 g2 · · · gm] as a transfer matrix, and hence to consider B as the image of
an input-output map acting on F[z, z−1]m. This point of view seems particularly
appropriate when B is a convolutional code [4, 16], as it is customary to regard it
as the result of an encoding process, and, consequently, its trajectories (codewords)
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as the outputs of a dynamical encoder. In a wider context, the trajectories of B

are obtained from certain processing operations applied to multidimensional data, or
from different transformations (desired or not) performed on the original signal. In
both cases the analysis of the algebraic properties of the generator matrices makes
possible a detailed knowledge of the behavior structure.

When an input-output description is adopted, it is often imperative to associate
trajectories of B and input sequences bijectively. In data transmission the meaning
of this requirement is clear, as input signals represent information messages to be
retrieved from the received codewords, and an unambiguous decision at the decoding
stage is possible when each codeword encodes a unique information sequence. This
amounts to saying that the encoder G induces a 1-1 map.

Throughout this section we steadily assume that B has a full column rank gener-
ator matrix G, and hence is free. Under this assumption, G admits (possibly infinitely
many) rational left inverses G−1. Each of them, when applied to a behavior trajectory
w = Gu, uniquely retrieves the (finite) input sequence u. When B represents a finite
convolutional code, this implies that every estimate ŵ ∈ B of the codeword w pro-
duces a finite error eu := u−G−1ŵ = G−1(w− ŵ) in reconstructing the information
sequence u. Consequently, when a codeword estimator is available, no catastrophic
error can arise [4, 6]. However, if we apply the “decoder” G−1 directly to the noisy
sequence v = w + r, as r generally is not an element of B, the decoding algorithm
possibly gives an infinite support sequence, which differs from the correct input in
infinitely many points and clearly is not even an admissible information sequence.
This drawback can be avoided if and only if G−1 is an L-polynomial matrix.

Proposition 5.1 below provides equivalent conditions for the existence of an L-
polynomial inverse, and in particular shows that such an inverse exists if and only if
G is left zero prime.

DEFINITION 5.1. Let G be in F[z, z−1]p×m and Ĝ = zhG = zh1
1 · · · zhnn G in

F[z]p×m for some h ∈ Nn. If K denotes the algebraic closure of F, the L-variety
VL(G) of the maximal order minors of G is the algebraic set

(5.1) VL(G) := V(Ĝ) \
{

(k1, k2, . . . , kn) : ki ∈ K,
∏
i

ki = 0

}
,

where V(Ĝ) denotes the variety (in K) of the maximal order minors of Ĝ.
The above definition is well posed, as (5.1) does not depend on the choice of Ĝ.
PROPOSITION 5.2. Let G be a p ×m L-polynomial matrix. The following state-

ments are equivalent:
i) G is rzp;
ii) there exists an L-polynomial matrix P ∈ F[z, z−1]m×p such that PG = Im;
iii) VL(G) is empty;
iv) Im GT = F[z, z−1]m.
Proof. i) ⇒ ii) Let mi(G) denote the ith maximal order minor of G, i =

1, 2, . . . ,
(
p
m

)
. By the zero primeness assumption, there exist L-polynomials hi ∈

F[z, z−1] such that
∑
i himi(G) = 1. If Si is the m× p matrix which selects in G the

m rows corresponding to mi(G), from Im =
∑
i himi(G)Im =

∑
i hi
(
adj(SiG)

)
(SiG),

we find that P :=
∑
i hi
(
adj(SiG)

)
Si is a left inverse of G with elements in F[z, z−1].

ii)⇒ iii) Let zr = zr11 · · · zrnn be a suitable term such that P̂ = zrP is in F[z]m×p.
By applying the Binet–Cauchy formula [9] to equation P̂ Ĝ = zh1+r1

1 · · · zhn+rn
n Im, we
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FIG. 5.1.

get

(5.2)
∑
i

mi(P̂ )mi(Ĝ) = z
m(h1+r1)
1 z

m(h2+r2)
2 · · · zm(hn+rn)

n ,

where mi(P̂ ) and mi(Ĝ) are corresponding maximal order minors of P̂ and Ĝ, re-
spectively. Then V(Ĝ) is included in the variety of zm(h1+r1)

1 z
m(h2+r2)
2 · · · zm(hn+rn)

n ,
which is a subset of K := {(k1, k2, . . . , kn) : ki ∈ K,

∏
i ki = 0}.

iii) ⇒ i) As K is the variety of z = z1 · · · zn, by assumption iii), V(Ĝ) is included
in the variety of z. So, by Hilbert’s Nullstellensatz [11], an integer r > 0 exists such
that zr1 · · · zrn belongs to the ideal generated in F[z] by the maximal order minors of
Ĝ:

(5.3) zr1 · · · zrn =
∑
i

h̄i mi(Ĝ), h̄i ∈ F[z].

As each maximal order minor mi(Ĝ) differs from mi(G) in a unit of F[z, z−1], the
zero primeness of G easily follows after dividing both members of (5.3) by zr1 · · · zrn.

ii) ⇔ iv) This is obvious.
When the generator matrix G has an L-polynomial inverse, a uniform bound can

be found on the support of the input sequences which correspond to the behavior
trajectories. Actually, if P is such an inverse, w ∈ B is generated by the input signal
u = Pw whose support cannot exceed “too much” that of w (see Fig. 5.1). This
feature, which we will refer to as the wrapping input property, is quite appealing, as
the mere recognition of the support of a trajectory allows the derivation of a uniformly
tight bound on the support of the corresponding input sequence. In particular, in
the context of finite convolutional codes, the above property guarantees that small
errors in the codeword estimate reflect into small errors in the information sequence
reconstruction.

(WI) [Wrapping input property]. A finite behavior B has the wrapping input
property if there exist a full column rank generator matrix G and a positive integer δ
such that w = Gu implies

(5.4) supp(u) ⊆
(
supp(w)

)δ
.
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It is worthwhile to notice that property (WI) does not depend on the particular
full column rank generator matrix of B we are considering. In fact, it is easily seen
that if (5.4) holds for any one of these generator matrices, then it holds for all of
them (in general, for a different δ). On the other hand, when noninjective generator
matrices of B are considered and the uniqueness of the input sequence producing a
given trajectory is lost, a particular input can be found whose support satisfies (5.4),
as shown by the following proposition.

PROPOSITION 5.3. Assume that B has the (WI) property for some full column
rank matrix G and some integer δ > 0. Then, for every generator matrix Ḡ ∈
F[z, z−1]p×q, an integer δ̄ > 0 can be found s.t. each trajectory w ∈ B can be expressed

as w = Ḡū for some input ū with supp(ū) ⊆
(
supp(w)

)δ̄
.

Proof. Since G and Ḡ are generator matrices of the same behavior, there exists a
full column rank L-polynomial matrix Q such that G = ḠQ. Let τ be the radius of a
ball, with center in the origin, including supp(Q), and consider w ∈ B. By property
(WI), there is u such that w = Gu and supp(u) ⊆

(
supp(w)

)δ. So, ū := Qu satisfies

w = Gu = ḠQu = Gū, and supp(ū) = supp(Qu) ⊆
(
supp(u)

)τ ⊆ (supp(w)
)τ+δ

.
Consequently, the proposition holds for δ̄ = τ + δ.

Interestingly enough, the zero primeness of G is not only sufficient but also neces-
sary for property (WI). So, free behaviors satisfying property (WI) can be identified
with behaviors that are generated by ` zero prime matrices.

PROPOSITION 5.4. A finite behavior B has the (WI) property if and only if it
admits an rzp generator matrix.

Proof. The “if” part has already been proved. To show the converse, we need the
following characterization of rZP matrices.

LEMMA 5.5. Let G ∈ F[z, z−1]p×q be a Laurent polynomial matrix and denote
by F[[z, z−1]] the space of bilateral scalar formal power series in the indeterminates
z1, . . . , zn. Then G is rzp if and only if

(5.5) Gs = 0

for some sequence s ∈ F[[z, z−1]]q implies s = 0.
Proof. Introduce in F[z, z−1]q × F[[z, z−1]]q the following nondegenerate bilinear

form

〈·, ·〉q : F[z, z−1]q × F[[z, z−1]]q → F

defined by : 〈u,v〉q = (uvT , 1) =
∑

h∈Zn u(h)vT (−h).
With this position, the space F[[z, z−1]]q is naturally viewed as L(F[z, z−1]q),

the algebraic dual of F[z, z−1]q [10, 16]. In fact, we can associate with every v ∈
F[[z, z−1]]q the linear functional on F[z, z−1]q defined by

(5.6) fv(·) = 〈·,v〉q,

and, conversely, every linear functional on F[z, z−1]q can be represented as in (5.6)
for an appropriate choice of v ∈ F[[z, z−1]]m. Upon identifying F[[z, z−1]]q with
L(F[z, z−1]q), we can resort to the well-known relation

ker∞G := {s ∈ F[[z, z−1]]q : Gs = 0}
≡ {s ∈ F[[z, z−1]]q : sTv = 0 ∀v ∈ ImGT } =: (ImGT )⊥⊥.

If ImGT = F[z, z−1]q, all canonical vectors ei and all monomial vectors zh1 z
k
2 ei belong

to ImGT , and therefore s ∈ (ImGT )⊥⊥ implies 〈zh1 zk2 ei, s〉q = 0, h, k ∈ Z, and i =
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1, 2, . . . , q, and hence s = 0. So, it is clear that ker∞G = {0} if and only if ImGT =
F[z, z−1]q, and this happens if and only if G is rZP.

Suppose, now, that B has the (WI) property with respect to some positive integer
δ and some full column rank generator matrix G. We aim to prove that G is rZP. If
not, there would be a sequence s ∈ F[[z, z−1]]q satisfying (5.5). Let η be the radius
of a ball, B(0, η), centered in the origin and including supp(G). If k is an element of
supp(s), the finite support sequence

u(h) :=
{

s(h), h ∈ B(k, 2δ + η),
0 elsewhere

generates a behavior sequence w := Gu that does not fulfill (5.4).
The (WI) property introduces very severe constraints on the supports of the input

sequences which produce the behavior trajectories. So, it is not unexpected that it re-
flects into the strongest primeness property a generator matrix can be endowed with,
i.e., zero primeness. Obviously, weaker requirements on the supports of the generat-
ing sequences correspond to weaker primeness properties of G. In particular, minor
primeness guarantees that the signal producing a behavior sequence w exhibits a sup-
port which slightly exceeds a parallelepipedal box including supp(w), whereas variety
primeness ensures that each projection of u and w onto a coordinate hyperplane gives
a pair of signals with the (WI) property.

A standpoint which proves to be quite fruitful in analyzing the above-mentioned
connections is to regard an arbitrary finite support sequence w ∈ F[z, z−1]p as a vector
with entries in certain L-polynomial rings that properly include F[z, z−1]. Actually, w
can be thought of as an element of F(zci )[zi, z

−1
i ] := F(z1, . . . , zi−1, zi+1, . . . , zn)[zi, z−1

i ],

w =
∑
hi∈Z

whi(z
c
i )z

hi
i ,

or as an element of F(zi)[zci , (z
c
i )
−1] := F(zi)[z1, . . . , zi−1, zi+1, . . . , zn, z

−1
1 , . . . , z−1

i−1,
z−1
i+1, . . . , z

−1
n ]

w =
∑

h1,...,hi−1,hi+1,...,hn∈Z
wh1,..,hi−1,hi+1,..,hn(zi)zh1

1 · · · z
hi−1
i−1 z

hi+1
i+1 · · · zhnn .

Correspondingly, we are led to introduce the following support sets:

suppi(w) := {(h1, . . . , hn) ∈ Zn : whi(z
c
i ) 6= 0},

suppic(w) := {(h1, . . . , hn) ∈ Zn : wh1,...,hi−1,hi+1,...,hn(zi) 6= 0}.

LEMMA 5.6 (see [17]). Let G ∈ F[z, z−1]p×m be a full column rank matrix. Then
i) G is rMP if and only if G is right (zero) prime in F(zci )[zi, z

−1
i ] for every

i = 1, 2, . . . , n;
ii) G is rVP if and only if G is rZP in F(zi)[zci , (z

c
i )
−1] for every i = 1, 2, . . . , n.

PROPOSITION 5.7. Let B be a finite behavior. Then
i) B has a rMP generator matrix if and only if there exist an integer δ > 0 and

a full column rank generator matrix G, such that w ∈ B implies w = Gu with

(5.7) supp(u) ⊆
n⋂
i=1

(
suppi(w)

)δ
;
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ii) B has a rVP generator matrix if and only if there exist an integer δ > 0 and
a full column rank generator matrix G, such that w ∈ B implies w = Gu with

(5.8) supp(u) ⊆
n⋂
i=1

(
suppic(w)

)δ
.

Proof. i) It is easy to realize that condition (5.7) is equivalent to the set of
conditions suppi(u) ⊆ (suppi(w))δ, i = 1, 2, . . . , n. These hold true if and only if G is
an rZP matrix in F(zci )[zi, z

−1
i ] for every i = 1, 2, . . . , n; namely, G is rMP in F[z, z−1].

ii) The result is shown along the same lines as i), after replacing F(zci )[zi, z
−1
i ]

with F(zi)[zci , (z
c
i )
−1].

6. Conclusions. In this paper we have focused on some features of finite support
nD behaviors which are relevant for multidimensional signal generation and recogni-
tion. Two opposite situations have been considered, namely the case when a local
testing procedure suffices to decide whether a given signal belongs to the behavior,
and the case when every finite signal can be completed into a legal trajectory, and
hence behavior sequences cannot be recognized by means of local checks.

Observable and locally undetectable behaviors, which correspond to these two
situations, have been characterized in terms of both their internal properties and their
polynomial matrix descriptions. Any finite support behavior, being the intersection
of an observable and an unconstrained behavior, exhibits intermediate properties.

Finally, adopting an input-output point of view, the connections between the sup-
port of a behavior trajectory and that of its generating input have been enlightened.

Acknowledgments. The authors are indebted to S. Zampieri for shortening the
proof of Proposition 5.3.
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Abstract. Ordinary differential and functional-differential inclusions with compact right-hand
sides are considered. Stability theorems of Filippov’s type in the convex and nonconvex case are
proved under a one-sided Lipschitz condition, which extends the notions of Lipschitz continuity,
dissipativity, and the uniform one-sided Lipschitz condition for set-valued mappings. The accuracy
of approximation of the solution sets by means of the Euler discretization scheme for both types of
inclusions is estimated.

Key words. one-sided Lipschitz continuity, differential inclusions, Filippov theorem, Euler
method
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1. Introduction. Let I be the interval [0,1], X = Rn, and K0 be a compact
subset of X. We consider a multifunction F from I × X to the set of all convex
compact subsets of X. We study the following initial value problem:

ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ I, x(0) ∈ K0 ,(1.1)

where x(·) is an absolutely continuous (AC) vector function from I to X.
Stability properties of the solutions of differential equations and inclusions with

respect to various perturbations are of great importance for their qualitative and
quantitative analysis. They are closely related to existence and relaxations theory, on
the one hand, and to sensitivity and approximations analysis, on the other.

In this sense the stability theorem, published by Filippov [11], and sometimes
referred to as the Gronwall–Filippov–Ważewski theorem (see [3] for a more general
setting), takes a central place in the theory of differential inclusions. It gives an
estimate of sensitivity of the reachable set of (1.1) with respect to perturbations in
the initial condition and the right-hand side. The assumptions, for which the theorem
was originally proven in [11], are

1◦. F (·, ·) is Hausdorff continuous with nonempty closed values.
2◦. F (t, ·) is Lipschitz continuous; i.e., there is a nonnegative integrable function

L : I → R such that

haus(F (t, x′), F (t, x′′)) ≤ L(t)|x′ − x′′| for any x′, x′′ and a.e. t ∈ I.

FILLIPPOV’S THEOREM [11]. Let y : I → X be absolutely continuous and
dist(ẏ(t), F (t, y(t))) ≤ g(t) for a.e. t ∈ I, where g(·) is summable. Let 1◦, 2◦ be satis-
fied in the region {(t, x) : t ∈ I, |x−y(t)| ≤ b}, K0 = {x0} be such that |x0−y(0)| < b,
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and

m(t) =
∫ t

0
L(r)dr, v(t) = em(t)

(
|x0 − y(0)|+

∫ t

0
e−m(s)g(s)ds

)
.

Then there is a solution x(·) of (1.1) on the interval ∆ = [t : t ∈ I, v(t) ≤ b] that
satisfies

|x(t)− y(t)| ≤ v(t), for all t ∈ ∆, x(0) = x0,

|ẋ(t)− ẏ(t)| ≤ L(t)v(t) + g(t) for a.e. t ∈ ∆.

It is worth stressing the wide range of applications of this theorem. It is a basic
tool in studying the relations between the original and the convexified problem (or so-
called “relaxed problem”) (cf. [2], [5]), implying density of the solution set of (1.1) in
the solution set of the relaxed problem. Naturally, it is very helpful in perturbations
analysis and studying various discrete approximations (see, e.g., [7], [22]).

We should mention that this work was inspired by Veliov’s paper [22], where a
refinement of the above theorem had been proved and applied to singularly perturbed
differential inclusions.

The aim of this paper is to weaken the continuity assumptions of the theorem in a
manner that admits inference of the same estimate for the trajectories. The Lipschitz
continuity (LC) of F (t, ·) is replaced by a one-sided Lipschitz (OSL) condition and
upper semicontinuity. Convexity of the right-hand side compensates for the lack of
continuity of F (t, ·) and ensures existence of a solution to (1.1). A growth condition
appears to bound the derivatives, which are not necessarily bounded anymore. One
should note that for the OSL right-hand side the estimate holds true for the state
variables, but not for the velocities.

The OSL condition we use is introduced in [8], [10] and naturally generalizes the
existing notions of LC, of dissipativity (or monotonicity; cf., e.g., [2], [5]), and the
(uniform) OSL condition [15], [7] of set-valued maps. It does not, however, imply con-
tinuity of F (t, ·), as the Lipschitz condition, nor uniqueness of the trajectory starting
from a given point, as the latter (uniform) OSL condition.

Nevertheless, it assures stability of the attainable set, which is important for
the sensitivity and approximations analysis of (1.1). This gives a positive answer
to Artstein’s question [1] of whether there is some general condition other than the
Lipschitz one leading to stability of the attainable set.

We give an implementation of the above-mentioned theorem to obtain error esti-
mates for Euler discrete approximation of differential inclusions.

Let us now formulate the Euler approximation for (1.1).
For any natural N divide I into N equal subintervals by ti = ih, i = 0, 1, . . . ,N ,

where h = 1
N . Approximate the solutions of (1.1) by piecewise linear functions x :

I → X satisfying{
x(t) = x(ti) + (t− ti)fi for all t ∈ [ti, ti+1], x(0) ∈ K0,

where fi ∈ F (ti, x(ti)), i = 0, 1, . . . ,N − 1.
(1.2)

This discretization has been studied by different authors (see, e.g., the survey
[7]). We note here papers [6], [19], where an error of order O(h) is obtained for
Lipschitz continuous F (t, ·); Artstein’s paper [1], containing error estimates in terms
of the modulus of continuity of F (·, ·) provided it is uniformly continuous and the
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attainable set satisfies a stability condition; and the result of Lempio [18], achieving
rate of convergence O(h) for a “strengthened one-sided Lipschitz continuous” F (t, ·),
which may be discontinuous with respect to the state variable.

Our estimate involves moduli of continuity of the right-hand side that are uniform
with respect to the state variable and averaged with respect to the time. It implies
an error of order O(hα) for F (t, ·) Hölder continuous of degree α and with uniformly
bounded 1/α-variation with respect to the time variable.

A notion of OSL continuity for the following system with time lag is defined:

ẋ(t) ∈ F (t, xt), x0 = ϕ,(1.3)

where xt, ϕ belong to the space E = C([−θ, 0], X) of the continuous functions from
the interval [−θ, 0] to X, xt : [−θ, 0] → X is defined by xt(s) = x(t + s), and
F is a set-valued function defined for every t ∈ I and xt ∈ E. Assuming that
F (t, x) is nonconvex-valued, Hausdorff continuous in x, and OSL, an “asymptotic”-
type stability theorem is proved for (1.3): for every ε > 0 there exists a solution of
(1.3), which satisfies Filippov’s inequality for the trajectories with a defect ε. This
result holds true for nonconvex-valued ordinary differential inclusion (1.1) as a special
case of (1.3). Error estimates for the Euler approximation of the system (1.3) are also
obtained.

The paper is organized as follows: section 2 is devoted to the OSL condition.
Comparisons with the existing notions and some examples are given there. The
main theorem for OSL inclusion (1.1) is proven in section 3. The Euler discrete
approximations of (1.1) are studied in section 4. All the respective results for the
functional-differential inclusion (1.3) are grouped in section 5. Section 6 contains
some additional examples with applications of the OSL constants.

2. OSL continuous multifunctions. Let X = Rn and denote by 〈·, ·〉 the
inner product, and by | · | the norm in X, and let U be the unit ball and S the unit
sphere in X.

Let K be the set of all nonempty compacts and KK the family of all convex
compacts in X. Let A,B ∈ K and x ∈ X. The distance from x to A is given by
dist(x,A) = inf{|x− a| : a ∈ A}, the one-sided excess of A from B is

ex(A,B) = inf{α > 0 : A ⊂ B + αU},

and Hausdorff metrics in K are defined as

haus(A,B) = max{ex(A,B), ex(B,A)}.

Endowed with the Hausdorff distance, K becomes a complete separable metric
space. We denote |A| = sup{|a| : a ∈ A}. Denote the support function of the set
A ∈ K by

σ(x,A) = max{〈x, a〉 : a ∈ A}.

Note that σ can be defined for nonconvex sets. For convex A, σ(·, A) uniquely deter-
mines A. Remember that for A,B ∈ KK

haus(A,B) = max{|σ(e,A)− σ(e,B)| : e ∈ S}.

Let Y be a normed space. A multifunction F : Y → K is called upper-semicontin-
uous (USC) [resp., lower-semicontinuous (LSC)] in a point xo ∈ Y , if for every ε > 0
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there exists δ > 0 such that F (x) ⊂ F (x0) + εU (resp., F (x0) ⊂ F (x) + εU) ∀x ∈
x0 + δU . It is called continuous in xo if it is USC and LSC in xo, i.e., continuous
with respect to the Hausdorff distance. F : I × Y → K is called almost USC (resp.,
almost LSC, or almost continuous) if for every ε > 0 there is a compact Iε ⊂ I with
meas(I\Iε) < ε such that F is USC (LSC, continuous) on Iε × Y .

DEFINITION 2.1. The set-valued mapping F : I × X → K is called one-sided
Lipschitz (OSL) continuous (with respect to x) if there is an integrable function L :
I → R such that for every x, y ∈ X, t ∈ I, and v ∈ F (t, x), there exists w ∈ F (t, y)
such that

〈x− y, v − w〉 ≤ L(t)|x− y|2.

Let us give an equivalent definition in terms of the support function: there exists
integrable L(·) such that for any x, y ∈ X and t ∈ I

σ(x− y, F (t, x))− σ(x− y, F (t, y)) ≤ L(t)|x− y|2.

In other words, there is an integrable function L(·) such that for each direction e ∈ S
and every x ∈ X, the scalar function φ : I×R→ R, defined by φ(t, s) = σ(e, F (t, x+
se)), is OSL continuous, i.e., satisfies the inequality

(φ(t, s)− φ(t, r))(s− r) ≤ L(t)(s− r)2

for every s, r ∈ R and t ∈ I.
Note that an OSL mapping is characterized by its support function in each di-

rection, i.e., only by the behavior of its support faces. Besides, for Lipschitz convex-
valued maps the absolute value of the support functions difference is bounded, while
for OSL mappings the bound is one-sided and the support function may decrease in
an arbitrary way in some directions.

Remark 2.1. It is easy to prove that F is OSL iff coF is OSL.
Remark 2.2. As follows from Definition 2.1, the OSL condition extends the notion

of OSL continuity for vector-valued functions (cf. [4]) and also the notions of Lipschitz
continuity, dissipativity (monotonicity; cf. [2], [5]), and (uniform) OSL continuity for
set-valued mappings [15], [7]. Remember that G : X → K is dissipative if 〈x− y, v −
w〉 ≤ 0 for all x, y ∈ X and v ∈ F (x), w ∈ F (y). Then the map −G is called
monotone. The dissipativity notion was weakened by Kastner-Maresch [15], replacing
the zero in the definition by L|x − y|2. Such mappings were called (uniformly) one-
sided Lipschitz (UOSL) continuous in [15], [7]. By simple use of Gronwall’s inequality
one can see that UOSL inclusions have at most one trajectory starting from a given
point [15]. The uniqueness of the trajectory is the main difference between UOSL
and OSL inclusions. An OSL system may have many solutions. Error estimates
for implicit Runge–Kutta approximations of UOSL inclusions are presented in [15],
provided the unique trajectory possesses suitable smoothness properties. Lempio [18]
introduced a strengthened UOSL condition that ensures an O(h) rate of convergence
for Euler’s method, even for right-hand side, discontinuous in the state variable.

The following simple examples show that the OSL continuity is an essential ex-
tension of LC, the uniform OSL continuity, and the dissipativity.

Example 2.1 (discontinuous OSL interval function which is neither LC nor UOSL).

F (x) =
{

[0, 1] for x < 0,

[−1, 1] for x ≥ 0.
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Example 2.2. Consider the following control system:

ẋ(t) = f(t, x, u), x(0) = x0; u ∈ U,

where f : R1+n+m → Rn is continuous in u, U is compact in Rm, and f(t, ·, u) is an
OSL continuous vector function, uniformly in u ∈ U . Then F (t, ·) = f(t, ·, U) is an
OSL continuous mapping in the sense of Definition 2.1 but may not be UOSL in the
sense of [15], [7], as the next example shows.

Example 2.3 (continuous OSL interval function, neither Lipschitz nor UOSL).
Let m = n = 1, U = [−1, 1], and f(x, u) = −x 1

3 + u. Then the map

F (x) = f(x, U) = −x 1
3 + [−1, 1]

is a continuous OSL mapping that does not satisfy the UOSL condition of [15], [7].

3. Filippov Theorem for convex one-sided Lipschitz differential inclu-
sions. The following basic assumptions are made.

A1. F is defined on I × X, with nonempty compact and convex values, F (·, x)
measurable for each x, and F (t, ·) USC for all t.

A2. (integrably linear growth of F ). There is an integrable function λ : I → R+
such that |F (t, x)| ≤ λ(t)(1 + |x|) for all x ∈ X and almost all t ∈ I.

A3. F is OSL continuous with an integrable function L(·).
We first prove boundedness of the approximate trajectories set. Naturally, if the

growth condition A2 is satisfied, an easy application of the Gronwall inequality will
give the needed boundedness. We show here that the OSL condition implies bound-
edness of the state variable, provided the set F (·,K0) =

⋃
x∈K0

F (·, x) is integrably
bounded.

LEMMA 3.1. Let F satisfy A1, A3 and the function |F (·,K0)| be bounded by an
integrable function µ(·) : I → R+, and let g : I → R+ be summable. Then all the
solutions of the inclusion

ẋ(t) ∈ F (t, x(t)) + g(t)U, x(0) ∈ K0 + doU,

are contained in a ball of radius M = |K0|+ maxt∈I |v(t)|, centered in the origin.
Here v(t) = {doem(t) +

∫ t
0 e

m(t)−m(s)(µ(s) + g(s))ds} and m(t) =
∫ t

0 L(r)dr.
Proof. Given a solution x(·) of the given inclusion and t ∈ I, choose x0 ∈ K0 such

that |x(0)− x0| ≤ do and z ∈ g(t)U for which ẋ(t) + z ∈ F (t, x(t)).
By A3 there is a w ∈ F (t, x0) satisfying

〈x(t)− x0, ẋ(t) + z − w〉 ≤ L(t)|x(t)− x0|2.

Therefore

〈x(t)− x0, ẋ(t)〉 ≤ 〈x(t)− x0, w − z〉+ L(t)|x(t)− x0|2

≤ (|F (t, x0)|+ g(t))|x(t)− x0|+ L(t)|x(t)− x0|2.

Denoting s(t) = |x(t) − x0|, it is easy to verify that s(·) is an absolutely continuous
function. At every t ∈ I, for which s(·) is differentiable, we have the inequality

s(t) · ṡ(t) =
1
2
d

dt
s2(t) = 〈x(t)− x0, ẋ(t)〉 ≤ L(t)s2(t) + (µ(t) + g(t))s(t).
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Define the set T = {t ∈ I : s(t) = 0} and let T ′ be the set of all density points
of T . It is well known that meas(T ′) = meas(T ). If t /∈ T, then ṡ(t) ≤ L(t)s(t) +
µ(t) + g(t), since s(t) > 0. If t ∈ T ′ and if ṡ(t) exists, then ṡ(t) = 0. Hence
ṡ(t) ≤ L(t)s(t) + µ(t) + g(t) for a.e. t ∈ I. We calculate d

dt [e
−m(t)(s(t) − v(t))] ≤ 0.

Therefore e−m(t)(s(t) − v(t)) ≤ s(0) − v(0) ≤ 0; i.e., s(t) ≤ v(t) for all t ∈ I. Hence
|x(t)| ≤ |x0|+ s(t) ≤M.

Remark 3.1. Note that by the OSL condition we estimate only the norm of
the solutions and not the norm of the derivatives. Generally, the velocities may
be unbounded, and we need some growth condition so as to ensure existence of a
trajectory. Clearly, if in addition A2 holds, then for every solution x(·) of (1.1),
|ẋ(t)| ≤ λ(t)(1 + M). These bounds provide extendability of the solutions on the
whole interval I (the proof of this fact is standard and reiterated in Proposition 5.3).

The main result of this section follows.
THEOREM 3.2. Suppose A1, A2, A3 hold and y : I → X is an AC function

satisfying dist(ẏ(t), F (t, y(t))) ≤ g(t) for a.e. t ∈ I, where g is integrable. Then for
every K0 ∈ K there exists a solution x(·) of (1.1) on the interval I, such that

|x(t)− y(t)| ≤ dem(t) +
∫ t

0
em(t)−m(s)g(s)ds,(3.1)

where d = dist(y(0),K0), m(t) =
∫ t

0 L(s)ds.
Proof. Consider the ordinary differential inclusion

ẋ(t) ∈ G(t, x(t)), x(0) = x0,(3.2)

where x0 ∈ K0 satisfies |y(0) − x0| = dist(y(0),K0), G(t, x) = F (t, x) ∩H(t, x), and
H(t, x) is determined by

H(t, x) = {v ∈ X|〈y(t)− x, ẏ(t)− v〉 ≤ L(t)|y(t)− x|2 + g(t)|y(t)− x|}.

We will prove that (3.2) has a solution on I that satisfies the desired inequality
by use of a known existence theorem for USC differential inclusions (cf. [5, Theorem
5.2]). It suffices to verify that

(i) G(t, x) is nonempty, convex, and closed-valued, measurable in t;
(ii) for each t, G(t, ·) has a closed graph, which implies that G(t, ·) is USC;
(iii) G(·, ·) satisfies the growth condition A2.
We first prove that G(t, x) 6= ∅ for each t, x. Given t, x, let w ∈ F (t, y(t)) be

such that |ẏ(t) − w| = dist(y(t), F (t, y(t))). By the OSL condition we can choose
v ∈ F (t, x) so as to satisfy 〈y(t)− x,w − v〉 ≤ L(t)|y(t)− x|2. Hence

〈y(t)− x, ẏ(t)− v〉 = 〈y(t)− x, ẏ(t)− w〉+ 〈y(t)− x,w − v〉

≤ |y(t)− x|g(t) + L(t)|y(t)− x|2, i.e., v ∈ G(t, x) .

Obviously G(t, x) is convex, closed-valued, measurable in t, and satisfies A2 since F
does. Moreover,

Graph G(t, ·) = Graph F (t, ·)
⋂
Graph H(t, ·),

and it is closed because the graphs of F (t, ·) and H(t, ·) are closed. From Theorem
5.2 of [5] we conclude that there exists a solution x(·) of (3.2) on I. Denoting s(t) =
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|x(t)− y(t)|, one gets that s(·) is an AC function. Furthermore, if ṡ(t) exists, then

s(t) · ṡ(t) =
1
2
d

dt
s2(t) = 〈x(t)− y(t), ẋ(t)− ẏ(t)〉 ≤ L(t)s2(t) + g(t)s(t).

As in the previous lemma, we infer that ṡ(t) ≤ L(t)s(t) + g(t) for a.e. t ∈ I, and
the proof is completed by a simple comparison argument that repeats the one of
Lemma 3.1.

Let 0 ≤ t0 ≤ t ≤ 1. Denote by A(t, t0,K) the attainable set of (1.1) with initial
condition x(t0) ∈ K.

A direct consequence of Theorem 3.2 is the following stability condition, used by
Artstein [1] to get a global error estimate for the attainable set in the Euler method.

COROLLARY 3.3. Under the conditions of Theorem 3.2, if F is OSL with a con-
stant L, then for given a ≤ t0 ≤ t ≤ b and K1,K2 ∈ K

haus(A(t, t0,K1), A(t, t0,K2)) ≤ (1 + LeL(b−a)(t− t0))haus(K1,K2).

Proof. The proof comes directly from Theorem 3.2 and the inequality eL(t−t0) ≤
1 + LeL(b−a)(t− t0) for a ≤ t0 ≤ t ≤ b.

Remark 3.2. The function L in OSL and (3.1) can take negative values. This
advantage is used in some examples in section 6 for getting better estimates via the
OSL constant.

Remark 3.3. Let us note that this theorem does not generalize Filippov’s The-
orem. As was mentioned in the Introduction, Filippov proved it without convexity
of the right-hand side, assuming LC of F (t, ·) and getting convergence of the succes-
sive approximations method for the velocities and trajectories and thus the existence
of a solution. We replace here the continuity of F (t, ·) by convexity and upper-
semicontinuity, to ensure existence of a solution of (3.2). Note that for an OSL
system a solution may exist without convergence of the successive approximations
method (see the example in [16, p. 37]).

As is well known (cf. [5]), there are differential inclusions, discontinuous with
respect to the state variable, that have no solution. The case when F (t, ·) is continuous
and nonconvex-valued is considered in section 5 (Theorem 5.4). The result proved
there holds for ordinary differential inclusions as well.

Remark 3.4. Note that measurability of the function dist(ẏ(t), F (t, y(t))) (cf. [3])
is not necessary, if we need only an estimate from above. Its integrable boundedness
is sufficient.

Remark 3.5. A general form of Filippov’s theorem, that is less known, was proven
by Plís [20] for measurable F (·, x), that satisfies a Kamke-type continuity condition
with respect to x, instead of the Lipschitz one. A one-sided extension of Plís’ theorem
can be obtained for F (·, ·) satisfying a general one-sided Kamke-type condition [10]
by obvious modifications in the proof.

4. Euler method. Suppose that A ⊂ X is compact and F : I × A → KK is
uniformly bounded, measurable in the first argument, and continuous in the second
one, i.e., almost continuous (cf. [5]). For given t ∈ I, x ∈ A we define two local moduli
of continuity of F (·, ·) with respect to each argument:

χ(F,A, t, h) = sup {haus(F (t, x), F (t, y)) : |y − x| ≤ h, x, y ∈ A},

τ(F,A, t, h) = sup { sup (haus(F (s, x), F (r, x)) : s, r ∈ [t− h/2, t+ h/2] ∩ I) : x ∈ A}.
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These two moduli are measurable functions of t since for a.e. t ∈ I they can be
represented as supremum of countably many measurable functions of t, obtained for
values of x in a countable dense subset of X.

Note that these moduli are local only in t and global in x ∈ A. The corresponding
averaged Lp-moduli are

χ(F,A, h)p =
(∫ 1

0
χ(F,A, t, h)pdt

) 1
p

, τ(F,A, h)p =
(∫ 1

0
(τ(F,A, t, h))pdt

) 1
p

,

where 1 ≤ p < ∞. For p = 1 we denote τ(F,A, h) = τ(F,A, h)1, χ(F,A, h) =
χ(F,A, h)1. For additional information about averaged moduli of continuity we refer
the reader to [21], [6], and [9].

Let us note that if F is integrably Hölder continuous in x of degree α (i.e., there ex-
ists an integrable function L : I → X such that for any x, y ∈ A, haus(F (t, x), F (t, y)) ≤
L(t)|x− y|α), then χ(F,A, h)p = O(hα). If F has bounded p-variation in t, uniformly
in x ∈ A, i.e.,

Wp(F ) = sup
k

{
k−1∑
i=1

sup
x∈A

(haus(F (x, ti+1), F (x, ti)))
p
, 0 ≤ t1 ≤ · · · ≤ tk ≤ 1

}
<∞,

then τ(F,A, h)p = O(h
1
p ) [14], [9].

Consider the discrete approximation (1.2) of the initial problem (1.1). Obviously,
if F has compact convex images, then for all t ∈ I the attainable set of (1.2) coincides
with the attainable set of the differential inclusion{

ẋ(t) ∈ F (ti, x(ti)) for a.e. t ∈ (ti, ti+1), i = 0, 1, . . . ,N − 1 ,
x(0) ∈ K0.

(4.1)

This technical note means that one can work with trajectories of (4.1) instead of (1.2)
and vice versa. It is used in some further proofs.

Denote by R1, R2 the solution sets of (1.1) and (1.2), respectively, metrized by
the C-norm of the solutions and the Hausdorff metrics for the solution sets.

We prove first boundedness of the discrete trajectories.
LEMMA 4.1. Let A2 hold with a Riemann integrable λ(·). Then every trajectory

x(·) of (1.2) is bounded by

max
t∈I
|x(t)| ≤ eΛ(|K0|+ Λ), where Λ = sup

N∈N

1
N

N∑
i=0

λ(ti) .

Proof. Note that Λ is finite because of the Riemann integrability of λ(·). Let x(·)
be a solution of (1.2). Denote for i = 0, 1, . . . ,N , xi = x(ti), λi = λ(ti). Clearly, it
is sufficient to estimate xi, i = 1, . . . ,N . From the equality xi+1 = xi + hfi, where
|fi| ≤ λi(1 + |xi|), and A2 we obtain

|xi+1| ≤ (1 + hλi)|xi|+ hλi ≤ · · ·

≤
i∏

k=0

(1 + hλk)|x0|+ h

i−1∑
k=0

λk

i∏
j=k+1

(1 + hλj) .
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The simple observation that 1+hλj ≤ ehλj implies
∏N
j=1(1+hλj) ≤ exp(h

∑N
j=1 λj) ≤

eΛ. Then

max{|xi| | 0 ≤ i ≤ N} ≤ eΛ

(
|K0|+ h

N−1∑
k=1

λk

)
≤ eΛ(|K0|+ Λ).

Remark 4.1. Lemmas 3.1 and 4.1 give boundedness of all “almost” trajectories,
being continuous or discrete, i.e., satisfying the inclusions (1.1) or (1.2) with some
integrably bounded defect g(·) (see Lemma 3.1). In the discrete case we require
Riemann integrability of g(·). If λ(·) is integrable (or Riemann integrable in the
discrete case), then the velocities are integrably bounded. If λ is a constant, then all
the trajectories of (1.1), (1.2), and (4.1) are contained in a bounded set A, and all the
velocities, in a bounded set B.

LEMMA 4.2. Suppose A1, A2, A3 are satisfied with a constant λ, and F (t, ·) is
continuous. Then, for every solution x(·) of (1.1), there exists a trajectory y of (4.1)
such that

max
t∈[0,1]

|x(t)− y(t)| ≤ c(τ(F,A, h) + χ(F,A, h)),

where c = em(1) max(2, |B|), m(t) is defined in Lemma 3.1, and A,B are defined in
the previous remark.

Proof. Let y(0) = x(0) and suppose y(·) exists on [0, ti]. We prove inductively
that it exists on Ii = [ti, ti+1] (i = 0, 1, . . . ,N − 1).

For given t ∈ Ii and u ∈ X consider the map G(t, u) = F (ti, y(ti)) ∩ H(t, u),
where

H(t, u) = {v ∈ X|〈v − ẋ(t), u− x(t)〉 ≤ |x(t)− u|[L(t)|x(t)− u|
+ ex(F (t, u), F (ti, y(ti))]} ,

where ex(A,B) is the one-sided excess of A from B. As in Theorem 3.2 we get
existence of a solution of the initial problem

ẏ(t) ∈ G(t, y), y(ti) known.

In order to apply the existence theorem ([5, Theorem 5.2]), we verify that G(·, ·)
satisfies (i), (ii), (iii).

(i) G is nonempty for every t, u. Indeed, there is a z ∈ F (t, u) such that 〈x(t)−
u, ẋ(t)− z〉 ≤ L(t)|x(t)− u|2. Further, for z we find v ∈ F (ti, y(ti)) satisfying

|z − v| = dist(z, F (ti, y(ti))) ≤ ex(F (t, u), F (ti, y(ti))).

Then 〈x(t) − u, ẋ(t) − v〉 ≤ L(t)|x(t) − u|2 + |x(t) − u|ex(F (t, u), F (ti, y(ti))); i.e.,
v ∈ G(t, u). Obviously G(·, ·) is convex and closed-valued, measurable in t on Ii.

(ii) For fixed t, G(t, ·) has a closed graph, as H(t, ·) has. This fact follows from
the upper-semicontinuity of the function ex(F (t, ·), A) when F (t, ·) is USC.

(iii) G(·, ·) trivially satisfies a growth condition being a subset of F (ti, x(ti)).
This way we infer existence of y(·) on Ii, i = 0, 1, . . . ,N − 1. Denote ∆(t) =

x(t)− y(t). Then for t ∈ Ii
1
2
d

dt
∆2(t) = 〈∆(t), ∆̇(t)〉 ≤ |∆(t)| [L(t)|∆(t)|+ haus(F (t, y(t)), F (t, y(ti)))

+ haus(F (t, y(ti)), F (ti, y(ti)))] .
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We repeat the arguments from Theorem 3.2 to obtain that for a.e. t ∈ I

d

dt
|∆(t)| ≤ L(t)|∆(t)|+ χ(F,A, t, |B|h) + τ(F,A, t, 2h), ∆(0) = 0 .

The proof is completed by a comparison argument and the observation that
χ(F,A, |B|h) ≤ |B|χ(F,A, h) and τ(F,A, 2h) ≤ 2τ(F,A, h) (cf. [21]).

THEOREM 4.3. Under the conditions of the previous lemma

haus(R1, R2) ≤ co(τ(F,A, h) + χ(F,A, h) + h),

where co = max{em+(1) max(2, |B|), |B|} and m+(t) =
∫ t

0 max{L(s), 0} ds.
Proof. Let x(·) be a solution of the discrete system (1.2). Then

dist(ẋ(t), F (t, x(t))) ≤ ex(F (ti, x(ti)), F (t, x(t)))

≤ haus(F (ti, x(ti)), F (t, x(ti))) + haus(F (t, x(ti)), F (t, x(t)))

≤ τ(F,A, t, 2h) + χ(F,A, t, |B|h) .

Applying Theorem 3.2, we obtain

dist(x(·), R1)

≤
∫ 1

0
em(1)−m(t)(τ(F,A, t, 2h) + χ(F,A, t, |B|h))dt

≤ em+(1)(2τ(F,A, h) + |B|χ(F,A, h)) .

Let y(·) be a solution of (1.1). The previous lemma gives the existence of a solution
z(·) of (4.1) with the desired property.

Now, take the piecewise-linear approximation of z(·),

x(t) = z(ti) + (t− ti)
(z(ti+1)− z(ti))

h
for t ∈ [ti, ti+1], i = 0, 1, . . . ,N − 1.

Obviously, maxt∈I |x(t)−z(t)| ≤ |B|h, and by the triangle inequality we complete the
proof.

COROLLARY 4.4. If additionally F (t, x) is integrably Hölder continuous in x of de-
gree 1

p , 1 ≤ p <∞, and has uniformly bounded p-variation in t, then haus(R1, R2) =

O(h
1
p ).
Remark 4.2. If L < 0 and τ(F,A, t, h) ≤ Phα, χ(F,A, t, h) ≤ Qhβ (0 < α, β ≤ 1),

the following inequality holds:

haus(R1, R2) ≤ 1
|L| (1− e

L)[P (2h)α +Q(|B|h)β ] + |B|h.

If, additionally, F does not depend on t, then

haus(R1, R2) ≤ 1
|L| (1− e

L)Q(|B|h)β + |B|h.
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5. The functional-differential case. In this section we will extend our results
to the case of functional-differential inclusion (1.3). We will follow the style of [13].

The extension of OSL condition in this case possesses some specific problems.
The state variable xt and the velocities are not elements of the same space. These
problems are overcome in the case of functional-differential equations in [17], where a
Razumikhin-type Lipschitz condition is exploited.

Denote E0 = {α ∈ E : |α(0)| = max{|α(s)| : s ∈ [−θ, 0]}}. The mapping F : E →
K is Lipschitz continuous (in Razumikhin sense) iff haus(F (α), F (β)) ≤ L|α−β|E for
all α, β ∈ E such that α− β ∈ E0. We introduce a Razumikhin-type OSL condition,
which will be called OSL here for the reader’s convenience.

DEFINITION 5.1. The multifunction F : I ×E → K is said to be OSL when there
exists an integrable function L(·) such that

σ(α(0)− β(0), F (t, α))− σ(α(0)− β(0), F (t, β)) ≤ L(t)|α(0)− β(0)|2

for every α, β ∈ E such that α− β ∈ E0.
Remark 5.1. Note that the conditions hold true not for all α, β, but only when

α − β ∈ E0. In the proof of the stability theorem we cannot use the same approach
to obtain existence as in the previous sections, since the mapping G(·, ·), defined in
Theorem 3.2 would not be USC anymore. In order to apply the existence theory
for LSC mappings, we suppose that F (t, .) is continuous. In this case we cannot use
negative OSL constants.

The main assumptions in this section follow.
H1. F is nonempty, compact-valued, and integrably bounded on bounded sets.
H2. F is OSL with integrable function L(t), and F (·, α) is measurable, while

F (t, ·) is continuous.
As was noted, in this case we suppose that L(t) ≥ 0 or replace it by L+(t) =

max{0, L(t)}.
Denote for A ∈ K the set F (I, A) =

⋃
t∈I,x∈A F (t, x).

PROPOSITION 5.2. Let F be bounded on the bounded sets and OSL with a constant
L. Then the multifunction α→ F (I, α+ U) is also OSL with constant L.

Proof. Let α−β ∈ E0. Fix ε > 0. Therefore there exist t̃ ∈ I and l̃ ∈ U such that
σ(α(0)−β(0), F (I, α+U)) ≤ σ(α(0)−β(0), F (t̃, α+ l̃))+ε. The following inequalities
complete the proof, since ε > 0 is arbitrary:

σ(α(0)− β(0), F (I, α+ U))− σ(α(0)− β(0), F (I, β + U))

≤ σ(α(0)− β(0), F (t̃, α+ l̃))− σ(α(0)− β(0), F (t̃, β + l̃)) + ε

≤ L|α(0)− β(0)|2 + ε.

We approximate the solutions of (1.3) by polygonal functions{
x(t) = x(ti) + (t− ti)fi for t ∈ [ti, ti=1],
where fi ∈ F (ti, xti), i = 0, 1, . . . ,N − 1, x(0) ∈ K0.

(5.1)

As in section 4, if F has compact convex images, the attainable set of (5.1) coincides
with the attainable set of the inclusion{

ẋ(t) ∈ F (ti, xti) for t ∈ (ti, ti+1), i = 0, 1, . . . ,N − 1,
x(0) ∈ K0.

(5.2)

Denote by R3, R4 the solution sets of (1.3) and (5.1), respectively, metrized by
the C-norm of the solutions and the Hausdorff metrics for the solution sets.
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If L(.) is not a constant, the conclusion of Proposition 5.2 need not be valid. Next
we prove the following proposition.

PROPOSITION 5.3. Under H1, H2 the solutions’ set of (1.3) is bounded and every
solution is extendable on the whole I.

Proof. Let x(·) be a solution of (1.3). Denote s(t) = |xt|E . Let xt /∈ E0. Then
there exists h > 0 such that |xt+h(0)| < |xt+h|E , since x(.) is continuous. So in
this case ṡ(t) ≤ 0. If xt ∈ E0, then 〈x(t), ẋ(t)〉 ≤ σ(x(t), F (t, xt)) ≤ L(t)|x(t)|2 +
|F (t, 0)||x(t)|. Therefore ṡ(t) ≤ L+(t)s(t) + |F (t, 0)|, s(0) = |φ|E . Hence s(t) ≤
em(t)(|φ|+

∫ 1
0 e
−m(τ)|F (τ, 0)| dτ). Thus x(·) is bounded. Let x(·) be defined on [0, T )

with T < 1. Then x(·) is AC, since F is integrably bounded on the bounded sets.
Therefore x(T ) = limt→T− x(t) exists and hence x(·) may be extended on some larger
interval. Applying the Zorn lemma, one proves that x(.) exists on the whole I.

Remark 5.2. Let ẋ(t) ∈ F (I, xt + U). If the conditions of Proposition 5.2 hold,
then it is easy to show as above that

d

dt
|x(t)| ≤ L+|x(t)|+ |F (I, U)|, therefore |x(t)| ≤ eL+t{|φ|+ |F (I, U)|} = M.

Denote V = MU,W = |F (I,MU)|. Then x(.) is Lipschitz with a constant W . If
Wh < 1, then every solution of (5.2) is also a solution of

ẋ(t) ∈ F (I, xt + U), x0 ∈ K0.

Hence, if the requirements of Proposition 5.2 hold, then for every solution of (1.3)
or of (5.2), x(t) ∈ V , |F (t, xt)| ≤ W . Therefore, without loss of generality, we can
suppose that the right-hand side F is bounded by the constant W .

Now we will prove a Filippov-type theorem for the nonconvex case.
THEOREM 5.4. Suppose H1 and H2 hold and that y(·) is an AC function with

dist(ẏ(t), F (t, yt)) ≤ f(t) for some integrable f(·). Then for every ε > 0 and every
x0 ∈ X there exists a solution x(·) of (1.3) such that

|x(t)− y(t)| ≤ dem(t) +
∫ t

0
em(t)−m(s)f(s) ds+ ε, x(0) = x0,(5.3)

where d = |x0 − y(0)|, m(t) =
∫ t

0 L+(s) ds, L+(t) = max{L(t), 0}.
Proof. For δ > 0 define the multifunction

Gδ(t, u) =


F (t, u), u− yt 6∈ Eo,
{v ∈ F (t, yt) : |v − ẏ(t)| = dist(ẏ(t), F (t, yt))}, u = yt,

cl{v ∈ F (t, u) : 〈y(t)− u(0), ẏ(t)− v〉
< L(t)|y(t)− u(0)|2 + |y(t)− u(0)|(f(t) + δ)} elsewhere.

We are going to prove that the differential inclusion

ẋ(t) ∈ Gδ(t, xt)

has a solution. In order to use the existence theorem of [12], we prove that Gδ(·, ·)
has closed values and is almost LSC. Observe that, as in the proof of Theorem 3.2,
Gδ(·, ·) is nonempty, compact-valued.

Further, we prove that Gδ(·, ·) is almost LSC. Since E is separable, one can apply
the Scorza–Dragoni theorem. Fix ν > 0. From the Scorza–Dragoni theorem and
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Lusin’s theorem there exists Iν ⊂ I with meas(I \ Iν) < ν such that ẏ(·), f(·), L(·)
are continuous on Iν and F (·, ·) is continuous on Iν ×E. Let t ∈ Iν , u− yt ∈ Eo, u 6=
yt, v ∈ Gδ(t, u). Suppose t = limi→∞ ti, u = limi→∞ ui. Hence f(t) = limi→∞ f(ti),
F (t, u) = limi→∞ F (ti, ui), ẏ(t) = limi→∞ ẏ(ti). Let

〈y(t)− u(0), ẏ(t)− v〉 = L(t)|y(t)− u(0)|2 + |y(t)− u(0)|(f(t) + δ − µ)

where µ > 0. Since yt−u ∈ Eo and yt 6= u, it follows that |y(t)−u(0)| > 0. Therefore

〈y(t)− u(0), ẏ(t)− v〉 = L(t)|y(t)− u(0)|2 + |y(t)− u(0)|(f(t) + δ)− c,

where c > 0. Define vi ∈ F (ti, ui) such that |v−vi| = dist(v, F (ti, ui)). The continuity
of F (·, ·) implies limi→∞ vi = v. Moreover, vi ∈ Gδ(ti, ui) for sufficiently large i. If
ui−yt /∈ Eo, then obviously limi→∞Gδ(ti, ui) = limi→∞ F (ti, ui) ⊃ Gδ(t, u). If u = yt,
let vi ∈ F (ti, ui) be such that |v − vi| = dist(v, F (ti, ui)). Because of the continuity
of F (·, ·), ẏ(·), f(·), L(·), we get limi→∞ vi = v. Thus Gδ(., .) is almost LSC. From
Theorem 1 of [12] we infer that the upper inclusion admits a solution x(·). As in the
previous proof, by use of Lemma 2.1 of [17], one can show that

|x(t)− y(t)| ≤ dem(t) +
∫ t

o

em(t)−m(s)(δ + f(s))ds.

Evidently choosing appropriate small δ, one completes the proof.
COROLLARY 5.5. Under the conditions of Theorem 5.4, if F is also convex-valued,

one can replace ε by zero.
Proof. The solution set of (1.3) is compact, since F is convex compact-valued. Let

xn(·) be a sequence of solutions of (1.3), satisfying the conditions of Theorem 5.4 with
ε = 1

n . Passing to subsequences, if necessary, one concludes that limn→∞ xn(t) = x(t),
where x(.) obviously satisfies the conclusion.

Remark 5.3. Obviously, the proof of Theorem 5.4 is valid for ordinary differen-
tial inclusions. Generally, without the convexity assumption, the defect ε cannot be
removed. Nevertheless, this result is sufficient for many applications.

In the rest of this section we will suppose as follows.
H3. L(·) is constant and F is convex-valued and bounded on bounded sets.
The following lemma corresponds to Lemma 4.2 for the functional-differential

case.
LEMMA 5.6. Suppose F : I × E → KK satisfy H1, H2, H3. If x(·) is a solution

of (1.3), then there exists an AC solution y(·) of (5.2), such that |x(t)− y(t)| ≤ r(t),
where r(·) is a nonnegative function satisfying

ṙ(t) = L+r(t) + 2χ(F, V, t, h) +Wτ(F, V, t, h),

and V,W are as defined in Remark 5.2.
Proof. Let 0 = t0 < t1 < · · · < tN = 1 be a uniform grid of I with h = 1

N .
Suppose y(·) is constructed on [0, ti] and t ∈ [ti, ti+1]. Fix ε > 0 and for given yi, t, u
define the map

Gε(t, u) =


F (ti, yi), u− xt 6∈ Eo,
{v ∈ F (ti, yi) : |v − ẋ(t)| = dist(ẋ(t), F (ti, yi))}, u = xt,

cl{v ∈ F (ti, yi) : 〈x(t)− u(0), ẋ(t)− v〉 < ψ(t, u, yi)} elsewhere,
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where yi = yti , ψ(t, u, yi) = L+|x(t)−u(0)|2 + |x(t)−u(0)|[ε+haus(F (t, u), F (t, yi))+
haus(F (ti, yi), F (t, yi))]. As above, one can show that Gε(·, ·) is compact-valued and
almost LSC. Since F (ti, yi) is bounded, it follows that the differential inclusion

ẏ(t) ∈ Gε(t, yt), y(ti) fixed, t ∈ [ti, ti+1]

has a solution yε(·) in [ti, ti+1]. If we denote rε(t) = max−θ≤s≤θ |x(t+ s)− yε(t+ s)|
and suppose yεo = φ, then

ṙε(t) ≤ Lrε(t) + ε+ haus(F (ti, yεi ), F (t, yεt )), rε(0) = 0 or ṙε(0) = 0.

Or ṙε(t) ≤ 0. Now it is easy to show by induction that

rε(t) ≤ eL+t

{
εt+

i−1∑
k=0

∫ tk+1

tk

haus(F (tk, yεk), F (s, yεs))ds+
∫ t

ti

haus(F (ti, yεi ), F (s, yεs))ds

}
.

Since the solution set of the upper inclusions is compact and decreasing for ε > 0
decreasing, one gets existence of a trajectory y(·) such that |x(t)− y(t)| ≤ r(t), where

r(t) ≤ eL+t

{
i−1∑
k=0

∫ tk+1

tk

haus(F (tk, yk), F (s, ys)) ds+
∫ t

ti

haus(F (ti, yi), F (s, ys)) ds

}
.

By induction one can extend this y(.) on the whole I. Furthermore, haus(F (tk, yk),
F (s, ys)) ≤ haus(F (tk, yk), F (s, yk)) + haus(F (s, yk), F (s, ys)) ≤ τ(F, V, t, 2h)+
χ(F, V, t,Wh). Hence

ṙ(t) = L+r(t) + χ(F, V, t,Wh) + τ(F, V, t, 2h).

Now it is easy to prove the main result of this section.
THEOREM 5.7. Under the conditions of the previous lemma

haus(R3, R4) ≤ c1(2τ(F, V, h) +Wχ(F, V, h) + h),

where c1 = max{eL+ max(2,W ),W}.
The proof is similar to the proof of Theorem 4.3 and is omitted.
Remark 5.4. As the reader has noted, the exposition of this section is similar to

the previous one. Some specific technical difficulties have been overcome by modifying
the definitions and proofs. Moreover, Theorem 5.4 also holds for infinite-dimensional
spaces, assuming some compactness conditions to get the existence of solutions. In this
case the OSL condition should be defined as in [8], where it is called “a dissipative
type condition.” Besides, Lemma 5.6 and Theorem 5.7 are valid in Hilbert spaces
(under some additional compactness assumptions again). We will not go into details
of the infinite-dimensional case, since it is more complicated and goes beyond the
scope of this paper. Finally, we present two examples.

Example 5.1. Consider the following system with maximum:

ẋ(t) ∈ −x+−x3/5 + max
t∈[−θ,0]

|x3/5(t+ s)|+ y + [−1, 1], x(s) = 0, s ∈ [−θ, 0],

ẏ(t) ∈ −y + [0, 1], y(0) = 0.

Since the OSL condition holds for xt ∈ E0, this system is OSL with constant
L = −

√
2. So we have to replace L by 0. Moreover, this system is Hölder continuous of

degree α = 3/5. Therefore there exists a constant C such that haus(R3, R4) ≤ Ch3/5.
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Example 5.2. This example presents an integrodifferential inclusion

ẋ(t) ∈ −x5/7 +
∫ 0

−τ
x(t+ s) ds+ [−1, 1], x(s) = 0, s ∈ [−τ, 0].

Obviously, the right-hand side is OSL with constant less than 1 and Hölderian of
degree 5/7. Hence haus(R3, R4) ≤ Ch5/7, where C can be estimated by Theorem 5.7.

6. Examples. Let l,m ∈ N, α = 2l+1
2m+1 . First, we prove the useful fact that if

|x−y| = h, then |xα−yα| ≤ 21−αhα. Let f(x) = (x+h)α−xα. Then f ′(x) exists for
every x 6= 0. Calculating f(0) = f(−h) = hα, we see that f(.) has a maximal value
when f ′(x) = 0, i.e., for x = −h2 .

Let us give some examples.
Example 6.1 (continuous OSL system that is not Lipschitz).

ẋ(t) ∈ −x− x3/5 + y + [−1, 1], x(0) = 0,

ẏ(t) ∈ −y + [0, 1], y(0) = 0.

It is easy to calculate 0 ≤ y(t) ≤ 1−exp (−t). Besides, for |x| ≤ 1, one has |x| ≤ |x|3/5.
Thus ẋ(t) ≤ −2x + y + 1. Hence x(t) ≤ 1 − exp (−t). Thus 0 ≤ y(t) ≤ 1 − exp (−t)
and −1 + exp (−t) ≤ x(t) ≤ 1 − exp (−t). Obviously, every discrete trajectory also
approximately satisfies the same inequalities. Hence, without loss of generality, one
can suppose

|F (x, y)| ≤
√

[(1− e−1)3/5 + (3− 2e−1)]2 + (2− e−1)2

<
√

(1− e−1)6/5 + 2(1− e−1) + (3− 2e−1)2 + (2− e−1)2

≤
√

20− 25e−1 + 9e−2 < 3.7.

Denote z = (x, y). Then

haus(F (z1), F (z2)) ≤
√

3(x1 − x2)2 + 3(x3/5
1 − x2/5

2 )2 + 4(y1 − y2)2

≤ 2|z1 − z2|+
√

3 · 23/5|z1 − z2|3/5.

Indeed, we showed in the beginning of this section that |a3/5 − b3/5| ≤ 2|a−b2 |3/5.
Clearly, also,

σ(z1 − z2, F (z1))− σ(z1 − z2, F (z2))

= −(x1 − x2)2 − (x1 − x2)(x3/5
1 − x3/5

2 ) + (x1 − x2)(y1 − y2)− (y1 − y2)2

≤ −1
2

[|x1 − x2|2 + |y1 − y2|2] = −1
2
|z1 − z2|2.

By these facts and Theorem 4.3 we obtain

haus(R1, R2) ≤ 3.7(3h+
√

3 · 22/5h3/5).

Example 6.2 (OSL system that is not Lipschitz on a dense set). Let {xk}∞k=1
be the set of all rational numbers in [0, 1] ordered in sequence. Consider the following
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system:

ẋ(t) ∈ −2x+
∞∑
k=1

1
2k

(xk − x)5/7 + [0, 1], x(0) = 0.

Then

σ(x− y, F (x))− σ(x− y, F (y)) ≤ −2|x− y|2.

Moreover, for every measurable g(t) ∈ [0, 1],

2− 2x ≥ −2x+
∞∑
k=1

1
2k

(xk − x)5/7 + g(t) > −3x,

i.e., for every solution 0 ≤ x(t) ≤ 1− e−2t. The last inequality is also valid for every
discrete trajectory. Thus |F (x)| ≤ 2. As in the beginning of this section one can prove
that |x5/7−y5/7| ≤ 2|x−y2 |5/7. Therefore haus(F (x), F (y)) < 2|x−y|+22/7|x−y|5/7.
Thus, by Remark 4.2,

haus(R1, R2) ≤ 1
2

(1− e−2)(4h+ 2h5/7) + 2h ≤ 4h+ h5/7.

Even when the right-hand side F is Lipschitz, sometimes the OSL constant gives
a better estimate.

Example 6.3 (Lipschitz continuous multifunction with better OSL constant).

ẋ(t) ∈ −6x+ y +G(t), x(0) = 0,

ẏ(t) ∈ x− 6y +H(t), y(0) = 0.

Denote again z = (x, y). Therefore

haus(F (z1), F (z2)) =
√

37(x1 − x2)2 + 37(y1 − y2)2 − 24(x1 − x2)(y1 − y2).

Hence the Lipschitz constant is L = 7. Furthermore

σ(z1 − z2, F (z1))− σ(z1 − z2, F (z2))

−6(x1 − x2)2 + 2(x1 − x2)(y1 − y2)− 6(y1 − y2)2 ≤ −5|z1 − z2|2.

Let G(t) ⊂ [0, 1] and let H(t) ⊂ [0, 1]. It is easy to calculate 0 ≤ ẋ(t) ≤ 1−6x+y and
0 ≤ ẏ(t) ≤ 1 + x − 6y. Now one can conclude that 0 ≤ x(t) ≤ 1/5, 0 ≤ y(t) ≤ 1/5.
Hence |F (x, y)| ≤

√
(1 + 1/5)2 + (1 + 1/5)2 = 6

√
2

5 ≤ 2. If, moreover, H(t) ≡ G(t) ≡
[0, 1], then by Remark 4.2, haus(R1, R2) ≤ 14

5 (1 − e−5)h + 2h ≤ 5h. This estimate
is much better than the one obtained with the ordinary Lipschitz constant L = 7:
haus(R1, R2) ≤ (e7 − 1)h.
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Abstract. We explore variations of Young measures in order to establish equilibrium conditions
for minimizers of generalized variational principles where Young measures enter the minimization
problem. The slicing measure decomposition is extremely useful in rendering equilibrium conditions
tractable; they usually yield information on the support of generalized minimizers. It also enables
us to describe new, equivalent variational principles where these equilibrium constraints are taken
into account. The only case where computations can be made explicit is the scalar, one-dimensional
case.
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1. Introduction. Nonconvex variational problems are important from the point
of view of applications. For emerging, interesting problems in optimization and the
calculus of variations, lack of convexity leads to the analysis of generalized or relaxed
principles that provide information on the behavior of minimizing sequences for the
original problem. Young measures are fundamental to this approach since they furnish
the competing objects for these new variational problems. Some basic references for
nonconvexity, Young measures, and applications to several situations in continuum
mechanics and in the theory of optimal control (where Young measures were originally
introduced) are [2], [5], [6], [7], [8], [9], [14], [15], [16], [17], [18], [19], [27], [28], [29].

Let us consider the problem of finding a minimizer for

J(u) =
∫

Ω
W (x, u(x),∇u(x)) dx, u ∈W 1,p(Ω), u− U ∈W 1,p

0 (Ω),

where Ω ⊂ RN is a regular domain and U is a given function in W 1,p(Ω). The
integrand

W : Ω×Rm ×Mm×N → R

is assumed to be as smooth as we may need to avoid technicalities in the derivation
of equilibrium conditions, and verifies the bounds

(1.1)

c (|A|p + |λ|p − 1) ≤ W (x, λ,A) ≤ C (|A|p + |λ|p + 1) ,∣∣∣∣∂W∂A (x, λ,A)
∣∣∣∣ ≤ C(|A|p−1 + |λ|p−1 + 1),∣∣∣∣∂2W

∂A2 (x, λ,A)
∣∣∣∣ ≤ C(|A|p−2 + |λ|p−2 + 1)

for p > 1 for the bounds on the first derivative, p > 2 for the bounds on the second
derivative, and 0 < c < C. The condition that guarantees existence of minimizers for
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J is the property of quasiconvexity (for the vector case m > 1) or convexity (for the
scalar case m = 1) [1], [3], [4], [10], [12], [13], [24]. W is said to be quasiconvex if

(1.2) W (x, λ, F ) ≤ 1
|Ω|

∫
Ω
W (x, λ, F +∇w(y)) dy

for every pair (x, λ) ∈ Ω × Rm, every matrix F ∈ Mm×N , and every test function
w. When the integrand W enjoys this property, the direct method of the calculus of
variations provides minimizers for our problem. The quasiconvexity condition (1.2)
together with the bounds (1.1) ensures the weak lower semicontinuity property of
the functional J in W 1,p(Ω) [1]. For the scalar case (m = 1) (1.2) reduces to plain
convexity.

If the quasiconvexity condition (1.2) fails, the problem might not have minimizers;
minimizing sequences converge weakly, but weak limits may not be minimizers. In
fact, in many situations of interest minimizers do not exist. In some others, existence
of minimizers may be established with different techniques (there is a rather large
amount of papers on this issue, but we do not include any specific reference because
it is not relevant to our discussion here). We would like to place ourselves in the
situation where we do not have minimizers so that the quasiconvexity condition (1.2)
fails to hold. At this stage, the analysis may proceed in two ways. We may consider
the so-called relaxed problem, defined by

QJ(u) =
∫

Ω
QW (x, u(x),∇u(x)) dx, u ∈W 1,p(Ω), u− U ∈W 1,p

0 (Ω),

where QW is the quasiconvexification of W with respect to the gradient variable

QW (x, λ, F ) = inf
w

1
|Ω|

∫
Ω
W (x, λ, F +∇w(y)) dy.

The infimum is taken over the set of test functions w [11], [12], [13], [22], [23]. Al-
ternately, we may retain the functional J and allow Young measures to enter the
minimization problem; this viewpoint is extensively studied in [26]. The crucial point
here is to make sure that the admissible Young measures for our problem are gener-
ated by sequences of gradients. Under the bounds (1.1), we call those W 1,p-Young
measures: they are generated as the parametrized measure corresponding to the gra-
dients of a bounded sequence in W 1,p(Ω) [5]. We define J on families of probability
measures ν = {νx}x∈Ω by putting

J(ν) =
∫

Ω

∫
Mm×N

W (x, u(x), A) dνx(A) dx,

where ν is a W 1,p-Young measure such that

(1.3) ∇u(x) =
∫

Mm×N
Adνx(A), a.e. x ∈ Ω,

u ∈W 1,p(Ω), and u− U ∈W 1,p
0 (Ω). Equation (1.3) gives the link between ν and u.

W 1,p-Young measures are intimately connected to the quasiconvexity condition.
Indeed, this class of Young measures are characterized by Jensen’s inequality for qua-
siconvex functions [20], [21]. Precisely, we have the following theorem. For notational
convenience, set

A =
{
∇u : u ∈W 1,p(Ω), u− U ∈W 1,p

0 (Ω)
}
,

A =
{
ν = {νx}x∈Ω : ν is associated with a sequence in A

}
.



EQUILIBRIUM CONDITIONS FOR YOUNG MEASURES 799

THEOREM 1.1. ν = {νx}x∈Ω belongs to A if and only if
1. ∇u(x) =

∫
Mm×N Adνx(A) for some u ∈ A;

2.

ϕ(∇u(x)) ≤
∫

Mm×N
ϕ(A) dνx(A)

for a.e. x ∈ Ω and every quasiconvex function ϕ with growth of order less than p at
infinity;

3. ∫
Ω

∫
Mm×N

|A|p dνx(A) dx <∞.

The significance of the different variational principles discussed above and the
relationship between them is established in the following important relaxation theorem
[10], [12], [13], [21], [26].

THEOREM 1.2.
1.

inf
A
J = inf

A
QJ = inf

A
J ;

2. the last two infima are attained;
3. if ν = {νx}x∈Ω is a minimizer for J in A, u ∈ A determined by

(1.4) ∇u(x) =
∫

Mm×N
Adνx(A), a.e. x ∈ Ω,

is a minimizer for QJ and

(1.5) QW (x, u(x),∇u(x)) =
∫

Mm×N
W (x, u(x), A) dνx(A), a.e. x ∈ Ω;

conversely, if u ∈ A is a minimizer for QJ and ν = {νx}x∈Ω is such that (1.4) and
(1.5) hold, ν is a minimizer for J in A;

4. if ν is a minimizer for J in A,

supp(νx) ⊂ {W (x, u(x), ·) = QW (x, u(x), ·)} , a.e. x ∈ Ω.

This result is the main motivation for our present analysis. It says that under the
bounds (1.1), the functional J always admits minimizers in A regardless of the con-
vexity properties of the integrand W . We would like to derive necessary (equilibrium)
conditions that these minimizers should verify, and that may help in understanding
their properties. In particular, new, equivalent variational principles may be consid-
ered incorporating, as part of admissibility, these equilibrium conditions. Notice that
by (1.4) and (1.5), those equilibrium conditions should essentially yield information
on the quasiconvexification (or convexification) of functions. Our point of view, how-
ever, does not preclude any a priori information on the convex hulls of the integrands
involved. We believe that our main contribution here is the way to understand and
manipulate “variations” of Young measures (section 2) so that analytical equilibrium
conditions can be derived more or less explicitly. On the other hand we provide a
clear variational interpretation of some well-known facts about convex hulls of scalar
functions.

We concentrate in this paper especially on the scalar (m = 1), one-dimensional
(N = 1) case where the equilibrium conditions lead to specific and concrete conclu-
sions. Notice that in this case quasiconvexity reduces to convexity in the usual sense.
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The vector case or even the scalar higher-dimensional case are much more delicate. It
is not clear whether equilibrium conditions may provide explicit, nontrivial, helpful
information in either of these two situations.

Our analysis is close to that considered in [9]. In this work, the authors talk about
Young measures minimizers and Young measures equilibria. The restrictions under
which they pursue their analysis (nonlinear elasticity, vector case m > 1, rotation,
and symmetry invariance) make hard to describe equilibrium as we intend to do here.
They pay attention to variations of the domain, and get some helpful equilibrium
criteria.

We proceed in several steps of increasing complexity. In section 3, we restrict at-
tention to the scalar, one-dimensional case, where W depends only upon the derivative
variable. Spatial dependence does not play a role in this case, and the analysis of the
first and second variations lead to restrictions on the support of the minimizer ν. The
next step (section 4) allows for the full generality for W depending on x and u as well,
but still in the scalar, one-dimensional case. The final section consists of a description
of the difficulties with the scalar, higher-dimensional case and the vector case. Some
examples to illustrate our results are considered.

2. Variations of Young measures. The basic issue in deriving necessary con-
ditions for equilibrium is to understand “variations” of Young measures: a continuous
family of admissible Young measures depending on one parameter. Assume that

ν(0) =
{
ν(0)
x

}
x∈Ω
∈ A

is a minimizer for J in A

J(ν(0)) = inf
A
J.

Let {∇uj} be a generating sequence for ν(0) so that {uj} ⊂ A is minimizing for J
in A. For any sequence {wj} such that wj ∈ W 1,p

0 (Ω) and any t we may consider
{uj + twj} ⊂ A. Therefore, the Young measure associated with {∇(uj + twj)},
ν(t) = {ν(t)

x }x∈Ω, is admissible, and hence

J(ν(t)) ≥ J(ν(0)) for all t.

The function g(t) = J(ν(t)) has a minimum for t = 0. This is the classical idea of
equilibrium. The issue here is how to manipulate this function g.

Let µ = {µx}x∈Ω be the Young measure corresponding to the sequence of pairs
{(∇uj ,∇wj)}. Clearly, ν(t)

x is defined via the formula

〈ν(t)
x , ϕ〉 =

∫
Mm×N×Mm×N

ϕ(A0 + tA1) dµx(A0, A1).

The clue to finding interesting equilibrium conditions is to consider the slicing measure
decomposition for µx. In general terms, this is a way of decomposing any measure
(not just product measures) supported on a product space. In this regard it may
be considered as a generalization of Fubini’s theorem. The following theorem can be
found in [15].

THEOREM 2.1. Let µ be a nonnegative, finite, Radon measure on Rn+m, and let
σ be its canonical projection onto Rn (σ(E) = µ(E ×Rm)). For σ-a.e x ∈ Rn there
exists a probability measure νx on Rm such that
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i) the map

x 7→
∫

Rm

f(x, y) dνx(y)

is σ-measurable;
ii) for every bounded, continuous function f ,∫

Rn+m
f(x, y) dµ(x, y) =

∫
Rn

(∫
Rm

f(x, y) dνx(y)
)
dσ(x).

A useful way to shorten the statement in ii) is to write

µ(x, y) = νx(y)⊗ σ(x).

An interesting remark is that this theorem can be the starting point of a treatment
of Young measures based on slicing measure decompositions, as was the motivation
in [15].

If we apply Theorem 2.1 to each µx, we can write

µx(A0, A1) = µ(A0)
x (A1)⊗ ν(0)

x (A0),

so that if Ψ : Mm×N ×Mm×N → R is bounded and continuous, then∫
Mm×N×Mm×N

Ψ(A0, A1) dµx(A0, A1)

=
∫

Mm×N

(∫
Mm×N

Ψ(A0, A1) dµ(A0)
x (A1)

)
dν(0)
x (A0).

This same identity holds if Ψ is integrable with respect to µx; it is enough to consider
bounded truncations of Ψ and conclude by monotone convergence.

Going back to our derivation of equilibrium conditions, we have that g(t) = J(ν(t))
becomes

(2.1)
∫

Ω

∫
Mm×N

(∫
Mm×N

W (x, u0(x) + tw(x), A0 + tA1) dµ(A0)
x (A1)

)
dν(0)
x (A0) dx,

where, again,

∇u0(x) =
∫

Mm×N
Adν(0)

x (A) =
∫

Mm×N×Mm×N
A0 dµx(A0, A1)

and

(2.2) ∇w(x) =
∫

Mm×N×Mm×N
A1 dµx(A0, A1), w ∈W 1,p

0 (Ω).

Notice that the first projection of µx is precisely ν
(0)
x and the second one is the

parametrized measure generated by {∇wj} so that ∇w in (2.2) is its weak limit.
Under suitable smoothness assumptions on W the function g is smooth and the

equilibrium conditions (first and second variations) become g′(0) = 0 and g′′(0) ≥ 0.
The condition on the first derivative (first variation) is written explicitly in the form
(the hypotheses assumed on W allow derivation under the integral sign)∫

Ω

∫
Mm×N

[
∂W

∂λ
(x, u0(x), A0)w(x)

+
∂W

∂A
(x, u0(x), A0)

∫
Mm×N

A1 dµ
(A0)
x (A1)

]
dν(0)
x (A0) dx = 0
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for any such measure µ. If we let

(2.3) Υ1(x,A0) =
∫

Mm×N
A1 dµ

(A0)
x (A1)

so that

(2.4) ∇w(x) =
∫

Mm×N×Mm×N
A1 dµx(A0, A1) =

∫
Mm×N

Υ1(x,A0) dν(0)
x (A0)

and w ∈W 1,p
0 (Ω), the first necessary condition may be put in the following way:

(2.5)

∫
Ω

∫
Mm×N

[
∂W

∂λ
(x, u0(x), A0)w(x)

+
∂W

∂A
(x, u0(x), A0) Υ1(x,A0)

]
dν(0)
x (A0) dx = 0.

The connection between w and Υ1 is given in (2.4). Equation (2.5) should be valid for
all possible Υ1 coming from all admissible µ corresponding to all pairs {(∇uj ,∇wj)}
as indicated. The analysis and characterization of the possible test fields Υ1 are vital.

All this formalism based on the slicing measure decomposition is nothing more
than a convenient way of manipulating the function

g(t) = lim
j→∞

∫
Ω
W (x, uj(x) + twj(x),∇uj(x) + t∇wj(x)) dx.

As we have seen, the derivative of g at the origin can be computed by differentiating
formally the above limit, interchanging the limit and the derivative

g′(0) =
∫

Ω

∫
Mm×N×Mm×N

[
∂W

∂λ
(x, u0(x), A0)w(x)

+
∂W

∂A
(x, u0(x), A0)A1

]
dµx(A0, A1) dx

= lim
j→∞

∫
Ω

[
∂W

∂λ
(x, uj(x),∇uj(x))wj(x)

+
∂W

∂A
(x, uj(x),∇uj(x))∇wj(x)

]
dx.

For the second variation we get something similar but more complicated to write.
The condition is

(2.6)

∫
Ω

∫
Mm×N

[
∂2W

∂λ2 (x, u0(x), A0)w(x)w(x)

+2
∂2W

∂λ∂A
(x, u0(x), A0)w(x)Υ1(x,A0)

+
∂2W

∂A2 (x, u0(x), A0) Υ2(x,A0)
]
dν(0)
x (A0) dx ≥ 0,

where Υ1 and w are as in (2.3) and (2.4) and Υ2(x,A0) is the tensor of second moments
of µ(A0)

x , in short form,

(2.7) Υ2(x,A0) =
∫

Mm×N
A1A1 dµ

(A0)
x (A1).
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Understanding (2.6) would require comprehending the conditions on the tensor of
second moments Υ2 for all admissible µ as before, and its relationship to Υ1 and w.

We pursue in subsequent sections the analysis of (2.5) and (2.6) in cases of in-
creasing complexity. This amounts to characterizing the test fields Υ1 and Υ2 in each
case. Remember that these are associated with the slicing decomposition of µ and this
in turn is the Young measure associated to pairs of sequences {(∇uj ,∇wj)} where
uj ∈ A and wj ∈ W 1,p

0 (Ω). Our main task consists of understanding restrictions on
Young measures associated with pairs of gradients.

3. The simplest problem. We start by looking at the equilibrium necessary
conditions for the simplest case: the scalar, one-dimensional problem when the inte-
grand W depends only on the derivative. Our functional is

J(ν) =
∫

Ω

∫
R
W (A) dνx(A) dx,

where Ω = (0, 1), W is assumed to be sufficiently smooth and verifying

(3.1)

c (|A|p − 1) ≤ W (A) ≤ C (|A|p + 1) ,

|W ′(A)| ≤ C
(
|A|p−1 + 1

)
,

|W ′′(A)| ≤ C
(
|A|p−2 + 1

)
for p > 1 or p > 2, 0 < c < C. The admissibility conditions on ν reduce in this case
to requiring ∫

Ω

∫
R
Adνx(A) dx = λ,

∫
Ω

∫
R
|A|p dνx(A) dx <∞.

The number λ is given and determined by the boundary conditions. Notice that
quasiconvexity reduces to convexity and therefore Jensen’s inequality does not place
any restriction on ν. Let A denote again the class of admissible measures ν.

By Theorem 1.2, J admits minimizers in A. An elementary observation is that,
since there is no dependence on x, there always exist minimizers ν(0) not depending
on x. Said differently, if ν(0) = {ν(0)

x }x∈Ω is a minimizer, the probability measure
obtained by “averaging” (see [21]) will also be a minimizer. The converse is also true:
if ν(0) is a minimizer with no spatial dependence, any admissible Young measure whose
“average” is ν(0) will also be a minimizer. The real issue is to find the homogeneous
minimizers. We simplify accordingly the setup of the problem:

J(ν) =
∫

R
W (A) dν(A), ν ∈ A,

A =
{
ν : λ =

∫
R
Adν(A),

∫
R
|A|p dν(A) <∞

}
.

Clearly, we are looking for CW (λ), where CW is the convexification of W and ν(0) is
such that

CW (λ) = J(ν(0)).

In this case the restriction on the pth powers in A does not play a real role. Indeed,
by Carathéodory’s theorem (see, for instance, [13]), we know that

CW (λ) = inf {tW (α) + (1− t)W (β) : tα+ (1− t)β = λ, t ∈ [0, 1]} .
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Under the coerciveness assumption (3.1) there always exists a minimizer of the form

ν(0) = tδα + (1− t)δβ .
We would like, however, to find necessary equilibrium conditions that must verify all
minimizers, not only those supported on two points, and possibly some other elements
in A.

In this case the first necessary condition (2.5) becomes (recall that we do not have
dependence on x)

(3.2)
∫

R
W ′(A0)Υ1(A0) dν(0)(A0) = 0

for all first moments

Υ1(A0) =
∫

R
A1 dµ

(A0)(A1),

where

µ(A0, A1) = µ(A0)(A1)⊗ ν(0)(A0)

is the slicing decomposition of µ generated by a sequence
{

(u′j , w
′
j)
}

, uj , wj ∈W 1,p(Ω),
uj(1) − uj(0) = λ, wj(1) = wj(0). Let zj denote the pairs

{
(u′j , w

′
j)
}

so that
zj : Ω ⊂ R → R2. {zj} is not a sequence of scalar-valued functions. Yet, since
the dimension of Ω is one (N = 1), Jensen’s inequality does not place any restriction
on Young measures generated by derivatives because quasiconvexity collapses to con-
vexity in this case as well (for a full discussion see [13] and [26]). Accordingly, the
only constraints on µ to be generated by such sequence of pairs are

(3.3)

∫
R×R

A0 dµ(A0, A1) = λ,∫
R×R

A1 dµ(A0, A1) = 0,∫
R×R

|Ai|p dµ(A0, A1) <∞, i = 0, 1.

The restrictions that we obtain on the test fields Υ1(A0) are

(3.4)

∫
R

Υ1(A0) dν(0)(A0) = 0,∫
R
|Υ1(A0)|p dν(0)(A0) <∞.

If (3.4) holds, the measure

µ(A0, A1) = δΥ1(A0)(A1)⊗ ν(0)(A0)

verifies (3.3).
PROPOSITION 3.1 (first necessary condition). Equation (3.2) is equivalent to the

existence of a constant k ∈ R such that

supp(ν(0)) ⊂ {W ′ = k} .
Proof. The proof reduces to examining (3.2) under the constraints (3.4). Let

Υ(A0) be any function such that∫
R
|Υ(A0)|p dν(0)(A0) <∞.
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In this case, Υ1(A0) = Υ(A0)−Υ satisfies (3.4), where

Υ =
∫

R
Υ(A) dν(0)(A).

Put

k =
∫

R
W ′(A) dν(0)(A) ∈ R.

After some manipulation (3.2) becomes, for this choice of Υ1,∫
R

(W ′(A0)− k) Υ(A0) dν(0)(A0) = 0

for all such Υ. To conclude, take any Υ such that

Υ(A) =
W ′(A)− k

|W ′(A)− k|(p−2)/(p−1)

if W ′(A)− k 6= 0, which is admissible.
The converse is immediate.
The treatment of the second variation follows along the same lines. Equation

(2.6) is simplified to

(3.5)
∫

R
W ′′(A0)Υ2(A0) dν(0)(A0) ≥ 0

for all second moments

Υ2(A0) =
∫

R
(A1)2

dµ(A0)(A1),

where, again,

µ(A0, A1) = µ(A0)(A1)⊗ ν(0)(A0).

The constraints on Υ2(A0) simply are

(3.6) Υ2 ≥ 0,
∫

R
|Υ2(A0)|p/2 dν(0)(A0) <∞.

This is elementary to derive. Notice that in order to consider the second variation we
take p ≥ 2 so that the power function with exponent p/2 is convex. If (3.6) holds for
Υ2, the measure

µ(A0, A1) =
1
2

(
δ√Υ2(A0)(A1) + δ−

√
Υ2(A0)(A1)

)
⊗ ν(0)(A0)

satisfies (3.3).
PROPOSITION 3.2 (second necessary condition). Equation (3.5) is equivalent to

supp(ν(0)) ⊂ {W ′′ ≥ 0} .

Proof. It is enough to take

Υ2(A0) = χ{W ′′<0}(A0)

(χ stands for the characteristic function of the corresponding set) in (3.5). This choice
is permitted according to (3.6).

We gathered the two preceding propositions in the following statement.
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THEOREM 3.3. Let ν(0) be a minimizer for J in A. There exists a constant k
such that

(3.7) supp(ν(0)) ⊂ {W ′ = k} ∩ {W ′′ ≥ 0} .

It is interesting to notice that these conditions on the support of minimizers do
not determine the minimizers themselves so that there might be many equilibrium
Young measures. Consider the typical example

W (A) =
(
A2 − 1

)2
, p = 4,

and take λ = 0. A few easy computations show that (3.7) is verified by a one-
parameter family of probability measures

(3.8) να = t(α)δα + (1− t(α)) δβ(α),

where α ∈ [1/
√

3, t0], t30 − t0 = 2/(3
√

3), β3 − β = α3 − α, β ∈ [−t0,−1/
√

3], and t is
determined by 0 = tα + (1 − t)β. Of all those, the unique minimizer corresponds to
α = 1

ν1 =
1
2
δ1 +

1
2
δ−1.

We also notice, in view of this example, that there are variations not captured by our
scheme in section 2. The family given in (3.8) cannot be reproduced by a variation
of the form discussed in section 2. The reason is that the one-parameter family of
probability measures obtained as variations of ν(0), ν(t), comes from a measure on
the product R ×R, µ, and is such that the two projections are ν(0) and any other
admissible Young measure ν ∈ A. In this simplified situation, unless ν = ν(0), µ has
to be a product measure and therefore ν(t) is supported in four different points. It
can never be supported in two points, as is the case with the probabilities in (3.8).

Our conclusions for the case we are analyzing in this section are elementary and
well known. They can be easily derived by basic geometric and/or analytical argu-
ments. Indeed, under our coerciveness assumptions on W ,

(3.9) CW (λ) = min {tW (α) + (1− t)W (β) : λ = tα+ (1− t)β} .

By Theorem 3.3,

CW (λ) = min {tW (α) + (1− t)W (β) : λ = tα+ (1− t)β,
W ′(α) = W ′(β),W ′′(α) ≥ 0,W ′′(β) ≥ 0} .

The equilibrium condition W ′(α) = W ′(β) is actually recovered by solving the con-
strained problem (3.9). This is a good calculus exercise. After some algebra we find

CW (λ) = tW (α) + (1− t)W (β),

where

W (α)−W (β)
α− β = W ′(α) = W ′(β),

W ′′(α) ≥ 0, W ′′(β) ≥ 0,
λ = tα+ (1− t)β.

It is remarkable that these facts can be interpreted as some sort of equilibrium criterion
of a clear variational nature.
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4. The scalar, one-dimensional case. We consider in this section the general
scalar, one-dimensional case. The functional J is

J(ν) =
∫

Ω

∫
R
W (x, u(x), A) dνx(A) dx,

where Ω = (0, 1) and the set of admissible measures, ν, is

A =
{
ν = {νx}x∈Ω : u′(x) =

∫
R
Adνx(A), u ∈W 1,p(Ω), u(0) = 0,

u(1) = λ,

∫
Ω

∫
R
|A|p dνx(A) dx <∞

}
.

W is assumed to satisfy the coerciveness hypothesis (1.1), and λ is given a priori. The
first necessary condition (2.5) becomes in this situation

(4.1)

∫
Ω

∫
R

[
∂W

∂λ
(x, u0(x), A0)w(x)

+
∂W

∂A
(x, u0(x), A0) Υ1(x,A0)

]
dν(0)
x (A0) dx = 0.

Remember that

u′0(x) =
∫

R
A0 dν

(0)
x (A0).

Υ1 and w are given by

Υ1(x,A0) =
∫

R
A1 dµ

(A0)
x (A1),

w′(x) =
∫

R×R
A1 dµx(A0, A1) =

∫
R

Υ1(x,A0) dν(0)
x (A0),

where µ = {µx}x∈Ω can be any measure supported on R × R with first projection
ν(0) = {ν(0)

x }x∈Ω and verifying

(4.2)

∫
Ω

∫
R×R

A0 dµx(A0, A1) dx = λ,∫
Ω

∫
R×R

A1 dµx(A0, A1) dx = 0,∫
Ω

∫
R×R

|Ai|p dµx(A0, A1) dx <∞, i = 0, 1.

The restrictions that we obtain on the test fields Υ1(x,A0) are

(4.3)

∫
Ω

∫
R

Υ1(x,A0) dν(0)
x (A0) dx = 0,∫

Ω

∫
R
|Υ1(x,A0)|p dν(0)

x (A0) dx <∞.

If (4.3) holds, the family of measures

µx(A0, A1) = δΥ1(x,A0)(A1)⊗ ν(0)
x (A0)

verifies (4.2) trivially.
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Relying on this description of the test fields Υ1 we can identify the first necessary
condition.

PROPOSITION 4.1. Let

F (x) =
∫

R

∂W

∂A
(x, u0(x), A0) dν(0)

x (A0),

G(x) =
∫

R

∂W

∂λ
(x, u0(x), A0) dν(0)

x (A0)

for x ∈ Ω. Equation (4.1) is equivalent to
1. G− F ′ = 0 (in a weak sense);
2.

supp(ν(0)
x ) ⊂

{
∂W

∂A
(x, u0(x), ·) = F (x)

}
, a.e. x ∈ Ω.

Proof. Let Υ(x,A0) be any function such that∫
Ω

∫
R
|Υ(x,A0)|p dν(0)

x (A0) dx <∞.

Consider

Υ1(x,A0) = η(x)
[
Υ(x,A0)−Υ(x)

]
+ ξ′(x),

which is admissible in (4.1) for any arbitrary smooth function η and any test function
ξ, where

Υ(x) =
∫

R
Υ(x,A0) dν(0)

x (A0).

Equation (4.1) reduces in this case to∫
Ω
η(x)

∫
R

∂W

∂A
(x, u0(x), A0)

[
Υ(x,A0)−Υ(x)

]
dν(0)
x (A0) dx

+
∫

Ω
ξ(x) (G(x)− F ′(x)) dx = 0.

Taking η ≡ 0, the arbitrariness of ξ leads to 1 in the statement of the proposition,
and taking ξ ≡ 0, the arbitrariness of η implies∫

R

∂W

∂A
(x, u0(x), A0)

[
Υ(x,A0)−Υ(x)

]
dν(0)
x (A0) = 0, a.e. x ∈ Ω.

This identity can be rewritten as∫
R

[
∂W

∂A
(x, u0(x), A0)−

∫
R

∂W

∂A
(x, u0(x), A) dν(0)

x (A)
]

Υ(x,A0) dν(0)
x (A0) = 0.

If we choose Υ(x,A0) such that

Υ(x,A0) =

∂W

∂A
(x, u0(x), A0)−

∫
R

∂W

∂A
(x, u0(x), A) dν(0)

x (A)∣∣∣∣∂W∂A (x, u0(x), A0)−
∫

R

∂W

∂A
(x, u0(x), A) dν(0)

x (A)
∣∣∣∣(p−1)/(p−2)

whenever the denominator does not vanish, we are led to 2.
The converse is immediate.
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For the second variation, when p ≥ 2 we get

(4.4)

∫
Ω

∫
R

[
∂2W

∂λ2 (x, u0(x), A0)w(x)w(x)

+2
∂2W

∂λ∂A
(x, u0(x), A0)w(x)Υ1(x,A0)

+
∂2W

∂A2 (x, u0(x), A0) Υ2(x,A0)
]
dν(0)
x (A0) dx ≥ 0,

where Υ1 and w are as before, and Υ2(x,A0) is the second moment of µ(A0)
x

Υ2(x,A0) =
∫

R
A1A1 dµ

(A0)
x (A1).

The relationship between Υ1 and Υ2 is clear. Indeed, the constraints on the pair
(Υ1,Υ2) to be admissible are∫

Ω

∫
R

Υ1(x,A) dν(0)
x (A) dx = 0,∫

Ω

∫
R
|Υ2(x,A)|p/2 dν(0)

x (A) dx <∞,

Υ2 ≥ Υ2
1 ≥ 0.

To show this, it is enough to consider the family of probability measures

µx(A0, A1) =
[
δΥ1(x,A0)(A1) +

1
2
(
δΥ(x,A0)(A1) + δ−Υ(x,A0)(A1)

)]
⊗ ν(0)

x (A0),

where Υ(x,A0) =
√

Υ2(x,A0)−Υ1(x,A0)2, which is clearly admissible.
PROPOSITION 4.2. Equation (4.4) is equivalent to
1.

supp(ν(0)
x ) ⊂

{
∂2W

∂A2 (x, u0(x), ·) ≥ 0
}
, a.e. x ∈ Ω;

2. for all admissible Υ1∫
Ω

∫
R

[
∂2W

∂λ2 (x, u0(x), A0)w(x)w(x)

+2
∂2W

∂λ∂A
(x, u0(x), A0)w(x)Υ1(x,A0)

+
∂2W

∂A2 (x, u0(x), A0) Υ2
1(x,A0)

]
dν(0)
x (A0) dx ≥ 0,

where, again,

w′(x) =
∫

R
Υ1(x,A0) dν(0)

x (A0)

is a test function.
The proof consists in examining (4.4), keeping in mind the restrictions on the

pairs (Υ1,Υ2). Notice that part 1 is the usual condition yielding further information
on the support of ν(0). Condition 2 expresses the interplay of the different partial
derivatives of W . It cannot be easily simplified.
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THEOREM 4.3. Let ν(0) be a minimizer for J in A and put

F (x) =
∫

R

∂W

∂A
(x, u0(x), A0) dν(0)

x (A0),

G(x) =
∫

R

∂W

∂λ
(x, u0(x), A0) dν(0)

x (A0)

for x ∈ Ω, where

u′0(x) =
∫

R
A0 dν

(0)
x (A0).

Then G− F ′ = 0 in a weak sense and

supp(ν(0)
x ) ⊂

{
∂W

∂A
(x, u0(x), ·) = F (x)

}
∩
{
∂2W

∂A2 (x, u0(x), ·) ≥ 0
}
, a.e. x ∈ Ω.

Let us examine several examples. Take first

W (x,A) =
(
A2 + 2x− 1

)2
, x ∈ Ω = (0, 1),

independent of u. In this case G ≡ 0 and F is constant. The Young measures
equilibria, ν = {νx}x∈Ω, satisfy

supp (νx) ⊂
{
∂W

∂A
(x, ·) = k

}
∩
{
∂2W

∂A2 (x, ·) ≥ 0
}

for some constant k that varies with ν. For this example

supp (νx) ⊂
{
A ∈ R : 4

(
A2 + 2x− 1

)
A = k

}
∩
{
A ∈ R : 3A2 + 2x− 1 ≥ 0

}
.

Since W is a polynomial of degree four, the conditions on the support of ν imply that
all Young measures equilibria are a convex combination of two deltas

νx = t(x)δα1(x) + (1− t(x))δα2(x),

where for some k

(4.5)
4
(
αi(x)2 + 2x− 1

)
αi(x) = k, i = 1, 2,

3αi(x)2 + 2x− 1 ≥ 0, i = 1, 2,

and we take α1 ≤ α2. Finally, t(x) ∈ [0, 1] is determined by the condition

(4.6)
∫

Ω
[t(x)α1(x) + (1− t(x))α2(x)] dx = λ.

The Young measure minimizer would correspond to particular values of k and t(x) in
such a way that we can set up a new, equivalent (in the sense that it shares the same
minimizers) variational principle where pairs (k, t(x)) are the competing objects. In
fact set

I(k, t) =
∫

Ω

[
t(x)

(
α1(x)2 + 2x− 1

)2
+ (1− t(x))

(
α2(x)2 + 2x− 1

)2]
dx,

where αi are determined uniquely by (4.5) and the function t verifies the constraint
(4.6).

We claim that if

(4.7) |λ| ≤
∫ 1/2

0

√
1− 2x dx,
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the minimizers are of the form

νx = δ0, x ≥ 1
2
,

νx = t(x)δ√1−2x + (1− t(x))δ−√1−2x, x ≤ 1
2
,

where t(x) is such that∫ 1/2

0
t(x)
√

1− 2x dx =
1
2

(
λ+

∫ 1/2

0

√
1− 2x dx

)
.

Observe that (4.7) permits us to have t(x) ∈ [0, 1]. The value of the minimum, m, is

m =
∫ 1

1/2
(2x− 1)2

dx.

These facts are easy to derive because αi have been chosen to be pointwise a minimum
of W .

Another example is

W (x, u,A) =
(
A2 − 1

)2
+ (u− f(x))2

,

where f is a given, smooth function. All of our conditions hold for p = 4. In this case
the conditions for equilibrium are

F (x) =
∫

R
4A
(
A2 − 1

)
dνx(A),

G(x) = 2 (u(x)− f(x)) ,

u′(x) =
∫

R
Adνx(A),

supp (νx) ⊂
{

4A(A2 − 1) = F (x)
}
∩
{(
−∞,− 1√

3

]
∪
[

1√
3
,∞
)}

.

The equation G− F ′ = 0 is

2 (u(x)− f(x))− F ′ = 0,

so that

u(x) = f(x) +
1
2
F ′(x)

and

u′(x) = f ′(x)− 1
2
F ′′(x)

must be the first moment of νx. Let Ik stand for the convex hull of the set of roots of
the equation

4A
(
A2 − 1

)
= k.

For the field F we get the restrictions

(4.8)
f ′(x) +

1
2
F ′′(x) ∈ IF (x),

F ′(0) = −2f(0),
F ′(1) = 2 (λ− f(1)) .
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For any such F there exists a unique ν = {νx}x∈Ω, equilibrium measure, which is of
the form

νx = t(x)δα1(x) + (1− t(x))δα2(x),

where αi are uniquely determined by the conditions

(4.9)
4αi

(
α2
i − 1

)
= F, i = 1, 2,

α1 ∈
(
−∞,− 1√

3

]
, α2 ∈

[
1√
3
,∞
)
,

and t is chosen so that

(4.10) t(x)α1(x) + (1− t(x))α2(x) = f ′(x) +
1
2
F ′′(x).

Consider the functional

I(F ) =
∫

Ω

[
t(x)

(
α1(x)2 − 1

)2
+ (1− t(x))

(
α2(x)2 − 1

)2
+

1
4

(F ′(x))2
]
dx,

under the admissibility conditions (4.8). This problem has a minimizer, F0, that
corresponds exactly to the minimizer ν(0) = {ν(0)

x }x∈Ω of J . Notice that by the basic
properties of IF (x) we should have

4
(
f ′(x)− 1

2
F ′′(x)

)((
f ′(x)− 1

2
F ′′(x)

)2

− 1

)
= F (x)

whenever |F (x)| > 8/(3
√

3). In a subsequent work, [25], we will pursue the analysis
of this type of variational principle and how it can help in finding ν(0).

5. Final remarks. We would like to point out the main difficulties with the
scalar, higher-dimensional and the vector cases. Concerning the latter, the difficulties
are clear. Jensen’s inequality with respect to quasiconvex functions places a real and
fundamental restriction on Young measures generated by gradients that we do not
really understand. What is quite surprising is that almost the same troubles arise in
the scalar, higher-dimensional case even though quasiconvexity reduces to convexity
in this case.

The whole point is that the class of variations we are considering are associated
to Young measures, µ, generated by “pairs” of sequences of gradients {(∇uj ,∇wj)}.
Even though each uj and wj are scalar-valued, the pair is vector-valued, so that there
are restrictions on µ in the form of Jensen’s inequality for quasiconvex functions unless
the domain Ω is one dimensional. The description of the test fields Υ1 is the same:

Υ1(x,A0) =
∫

R2
A1 dµ

(A0)
x (A1),

µx(A0, A1) = µ(A0)
x (A1)⊗ ν(0)

x (A0).

But now the constraints we have on Υ1 are not simply∫
R2

Υ1(x,A0) dν(0)
x (A0) = ∇w(x), w ∈W 1,p

0 (Ω),∫
Ω

∫
R2
|Υ1(x,A0)|p dν(0)

x (A0) dx <∞,

but also the fact that µ has to be generated by gradients. As we know, this is a
profound restriction on µ and the analysis should go deeper than the one carried out
in this work.
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Abstract. A zero-sum differential game with an unbounded control and no coercivity assump-
tions is investigated. By means of suitable reparameterization techniques one is able to avoid the
serious drawbacks which derive from the lack of a sufficiently fast growth hypothesis. In particular,
one achieves a remarkable regularization of the two related Hamilton–Jacobi boundary value prob-
lems. One also proves that the latter admit unique continuous solutions, which coincide necessarily
with the upper and lower values of the game.

Key words. slow growth, differential games, upper and lower values
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1. Introduction. In this paper dynamic programming is investigated for a zero-
sum, finite horizon, differential game defined as follows: the dynamics is given by the
differential equation {

ẋ = f(t, x, a, c),
x(t̄) = x̄,

while the payoff has the form

P [t̄, x̄; a, c] .=
∫ T

t̄

l(t, x, a, c) dt+ g(x(T )),

where the antagonist controls a and c take values in a compact subset A ⊂ Rq and
a cone C ⊂ Rm, respectively. Though no bounds are imposed on the values of the
control c, the latter is subject to an integral bound of the form∫ T

t̄

|c(t)| dt ≤ K − k̄,

where, just like t̄ and x̄, k̄ (∈ [0,K]) has to be considered as an initial data of the
problem. Besides some mild regularity conditions, we assume that the dynamics f
and the Lagrangian l are sublinear in the unbounded control c, in a sense made precise
in section 2. The player maneuvering the conventional control a, say, the a-Player,
wishes to minimize the functional P , while the c-Player pursues the goal of maximizing
P . Of course, the policies of the two players are described as strategies (see section
2).

Let us remark that in most cases involving unbounded controls (but an exception
is represented by [5]), a superlinear growth assumption involving f and h allows one
to exclude the occurrence of controls c which take values larger than a fixed constant
which depends on the sole initial data (t̄, x̄) (see, e.g., [27]). This makes the problem
locally equivalent to the one where only bounded controls are allowed.
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On the contrary, the crucial slow growth assumption on f and l can make the
exploitation of larger and larger values of c necessary. This is clearly a phenomenon of
the same kind as those occurring in connection with problems of calculus of variations
with slow growth.

A motivation for studying slow growth differential games (with integral con-
straints) is trivially represented by the fact that in some practical situations it hap-
pens that (the dynamics and the Lagrangian are sublinear and) one of the two con-
trols coincides with the (unbounded) derivative (i.e., the rate of expenditure) of some
stocked quantity (see, e.g., [10], [12], [15], [17], [23], [26]). A further motivation comes
from H∞ control problems, with a sublinear performance index replacing the usual
quadratic one (see, e.g., [28], [6] for a general account on H∞ control problems).

The first question to be answered concerns the regularity of the upper value U
and the lower value V, here defined according to Roxin, Varaya, Elliott, and Kalton
(see, e.g., [13]). This question has been treated in a preliminary paper [24], where
some continuity properties of both V and U have been proved.

In the present paper we complete the program started in [24] by establishing
upper value boundary value problems UVBVP and lower value boundary value prob-
lems LVBVP (see section 6), whose unique continuous solutions turn out to coincide
with U and V, respectively. It is already known from analogous questions arising in
control theory (see [21], [22]) that in the general case a formal extension of the dy-
namic programming approach finds serious drawbacks. For instance, because of the
lack of sufficient growth assumptions, the formal Hamiltonians turn out to be highly
discontinuous. Moreover, unless strong commutativity hypotheses are assumed on f
and l, no measure-theoretical interpretation of the dynamics accounts for the limits
of trajectories corresponding to controls c which take larger and larger values (see,
e.g., [8]).

Let us mention incidentally that differential games with measures, appearing lin-
early with constant coefficients, has been investigated by Yong [29] within the frame-
work of impulse control problems introduced by Bensoussans and Lions [7]. It is easy
to see that the involved trajectories are limits of trajectories with unbounded ordi-
nary controls. However, though the dynamics considered in Yong’s work represents
the simplest case in the class of dynamics we study here, the associated payoff is not a
Boltz functional. In particular, Yong’s problem cannot be regarded as a representation
of a standard problem with unbounded controls and slow growth.

The present paper is organized as follows. In section 2 the game is described and
the upper and lower value maps are introduced. These maps depend on the initial
data (t̄, x̄) and on the constant k̄ ∈ [0,K] appearing in the integral constraint on
c. Hence they turn out to be defined on the domain [0, T [×Rn × [0,K]. Moreover,
in [24] it has been proved that these maps are continuous and can be continuously
extended to t̄ = T . In section 3, by suitably developing arguments already exploited
in the study of slow growth control problems (see [18], [8], [19], [20]), we define
the reparameterized space-time game. This game turns out to be equivalent to the
original one; i.e., it has the same values. However, it enjoys the advantage of involving
controls with bounded values. Afterwards, we prove a dynamic programming principle
(DPP; see section 4) which differs from the usual one in that it involves intervals of
integration varying with the controls c. Moreover, this principle takes a special form
at the points where V > g or U > g. This turns out to be essential when one
derives the boundary conditions at t̄ = T . Successively, this DPP is converted into
a reparameterized dynamic programming principle (RDPP). The latter allows one to
establish Isaacs equations with continuous Hamiltonians (see section 5). In section
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6 we study the boundary conditions of the problem. They are relatively simple, in
that they just involve a subsolution relation and a Dirichlet inequality. Unlike the
equations, the boundary conditions for the lower value coincide with the ones for the
upper value. Though this is true in the conventional case as well, it is not so obvious
in the present case. In fact, in a recent paper [5] boundary conditions for the lower
value are established which differ from the ones of the upper value.

In section 6 it is also shown that the lower and upper values are the unique
solutions of the corresponding boundary value problems. From the uniqueness result
one infers an Isaacs condition that has a standard form (i.e., it consists of the identity
of two Hamiltonians).

In section 7 we specialize our results to a particular problem, which has already
been investigated by Barron, Jensen, and Menaldi [5], with a different approach. In
fact, they consider the case where (the state x and) the control c is scalar and belongs
to C .= {c ∈ R : c ≥ 0}. Moreover, they assume that the dynamics and the Lagrangian
reduce to

(∗) f(t, x, a, c) = f0(t, x, a) + f1(t, a)c,
h(t, x, a, c) = h0(t, x, a) + h1(t, a)c,

respectively. (Actually, the results in [5] can be easily extended to the case when
h1—but not f1—depends on x; in particular, this allows the authors to show that the
classical minimax control problem is a particular case of the game they are investigat-
ing.) On the one hand, the fact that f1 is independent of x is crucial and allows the
authors of [5] to adopt a measure-theoretical definition of trajectory. On the other
hand, this approach cannot be extended to the larger class of problems investigated
here. Moreover, the Hamiltonians utilized in [5] are discontinuous, and their values
are calculated by means of minimizations over sets which depend on the gradient of
the value functions themselves. On the contrary, the Isaacs equation we derive in
section 5 involves continuous Hamiltonians whose values are the results of min-max
operations over a compact, constant set. Finally, the boundary conditions established
here are quite standard, whereas the ones in [5] need the resolution of an auxiliary
boundary value problem.

2. The game. We consider the following zero-sum differential game of fixed
duration: a dynamics is given of the form

ẋ = f(t, x, a, c), x(t̄) = x̄, t ∈ [t̄, T ],(2.1)

where 0 ≤ t̄ < T , a(·) ranges on a compact subset A ⊂ Rq, and the control c(·) takes
values in a closed cone C ⊂ Rm (by cone we mean a subset of a real vector space closed
under multiplication by nonnegative scalars). The admissible controls a(·) are Borel
measurable maps from [t̄, T ] into A, and we denote this set by A(t̄). These controls
may be thought as implemented by a player, say, the a-Player. The opponent will be
called the c-Player. Let K > 0 be an upper bound for the L1 norm of the control c(·)
maneuvered by the c-Player. For every nonnegative k̄ ≤ K let us define the family
C(t̄, k̄) of admissible controls for the c-Player as the set of integrable maps c(·) from
[t̄, T ] into C satisfying the inequality∫ T

t̄

|c(t)|dt ≤ K − k̄.

Throughout the paper we shall assume hypotheses (i) and (ii) below, which, for
every control pair (a, c) ∈ A(t̄) × C(t̄, k̄), guarantees global existence, uniqueness,
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and exponential growth of each solution to (2.1). Let us denote such a solution by
x[t̄, x̄; a, c] or, whenever the initial data are meant from the context, by x[a, c]. Let
g : Rn → R be a continuous bounded function and let l = l(t, x, a, c) be a scalar
function defined on the domain of f . Let us consider the payoff:

P [t̄, x̄; a, c] .= g(x[a, c](T )) +
∫ T

t̄

l(t, x[a, c](t), a(t), c(t)) dt.

Whenever the initial condition is meant by the context we shall write P [a, c] instead
of P [t̄, x̄; a, c].

We shall assume the following hypotheses on the maps l and f .
Hypotheses.
(i) (Regularity) The functions f and l are continuous on [0, T ] × Rn × A × C.

Moreover, for every compact subset Q ⊂ Rn, there exists a constant L > 0 such that

|(f, l)(t′, x′, a, c)− (f, l)(t, x, a, c)| ≤ L(1 + |c|)|(t′, x′)− (t, x)|(2.2)
∀(t′, x′, a, c), (t, x, a, c) ∈ [0, T ]×Q×A× C.

(ii) (Sublinear growth in c) There exist continuous maps l∞ and f∞, called the
recession function of l and f , respectively, such that

lim
r→+∞

r−1l(t, x, a, rc) = l∞(t, x, a, c),

lim
r→+∞

r−1f(t, x, a, rc) = f∞(t, x, a, c),

uniformly on compact sets of [0, T ] × Rn × A × C, with Q compact. Moreover, for
suitable constants M,N ≥ 0, the map l verifies

|l(t, x, a, c)| ≤M +N |c|

for all (t, x, a, c) ∈ [0, T ]× Rn ×A× C.
Under hypothesis (i), for every admissible pair (a, c) ∈ A(t̄)× C(t̄, k̄), the trajec-

tory x[a, c] and the payoff P [a, c] are well defined. Moreover, it is straightforward to
check (see [20, Thm. 2.1]) that if x̄ ∈ Q, with Q a compact subset, then there exists
a compact set Q′ ⊃ Q such that all trajectories starting at t̄ from x̄ remain inside
Q′ during the time-interval [t̄, T ]. Obviously, hypothesis (i) can be replaced by any
else condition guaranteeing existence, uniqueness, and a priori boundedness of the
trajectories.

On the contrary, hypothesis (ii) is not conventional and makes the problem hardly
confrontable by means of standard arguments. In fact, on one hand the formal Hamil-
tonians are highly discontinuous. On the other hand, no a priori bounds can be
assumed on the values of the control c.

As in the case with bounded controls, the game consists of the following: at almost
each instant t̃ ∈ [t̄, T ] the a-Player, with knowledge of the control implemented by
the c-Player in the past interval [t̄, t̃], chooses the control a in order to minimize the
payoff, while the c-Player chooses c (with knowledge of a on [t̄, t̃]) at almost each
instant with the goal of maximizing the payoff. To make the notion of game precise
we need a notion of strategy. This goal will be achieved by formally adapting Roxin,
Varaya, Elliot, and Kalton’s definition of strategy (see, e.g., [13]).

DEFINITION 2.1. A strategy for the a-Player relative to the initial data (t̄, k̄) is a
map α : C(t̄, k̄)→ A(t̄) which satisfies the following condition: ∀t̃ ∈ [t̄, T ] and for any
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pair of controls c1, c2 ∈ C(t̄, k̄),

if c1(t) = c2(t) for almost every t ∈ [t̄, t̃]

then α(c1)(t) = α(c2)(t) for almost every t ∈ [t̄, t̃].

The set of strategies for the a-Player relative to the initial data (t̄, k̄) will be denoted
by ∆(t̄, k̄).

A strategy for the c-Player relative to the initial data (t̄, k̄) is a map γ : A(t̄) →
C(t̄, k̄) which satisfies the following condition: ∀t̃ ∈ [t̄, T ] and for any pair of controls
a1, a2 ∈ A(t̄),

if a1(t) = a2(t) for almost every t ∈ [t̄, t̃]

then γ(v1)(t) = γ(v2)(t) for almost every t ∈ [t̄, t̃].

The set of strategies for the c-Player relative to the pair (t̄, k̄) will be denoted by
Γ(t̄, k̄).

We recall that maps like α and γ are called nonanticipating.
DEFINITION 2.2. For every (t̄, x̄, k̄) ∈ [0, T [×Rn × [0,K] let us set

V(t̄, x̄, k̄) .= inf
α∈∆(t̄,k̄)

sup
c∈C(t̄,k̄)

P [t̄, x̄, α(c), c]

and

U(t̄, x̄, k̄) .= sup
γ∈Γ(t̄,k̄)

inf
a∈A(t̄)

P [t̄, x̄, a, γ(a)].

The maps V and U are called the lower value and the upper value of the game,
respectively.

Theorem 2.1 below has been proved in [24].
THEOREM 2.1. The functions U and V are bounded and continuous. Moreover,

they can be continuously extended to the closed domain [0, T ]× Rn × [0,K].

3. Reparameterization of the game. A reparameterization technique (ex-
tending one already exploited in optimal control problems (see, e.g., [8], [19], [20],
[18])) is now introduced in order to obtain an equivalent (space-time) game where
only bounded controls and bounded strategies are implemented. In turn, this will allow
us to establish dynamic programming equations for V and U which involve continu-
ous Hamiltonians. Let us begin by introducing the notions of space-time control and
space-time strategy.

DEFINITION 3.1. The set C̃(t̄, k̄) of space-time controls for the c-Player consists of
all (bounded) measurable maps (w0, w) from an interval [0, L], T − t̄ ≤ L ≤ T +K −
t̄ − k̄, into Rm+1, enjoying the following properties: (1) for almost every s ∈ [0, L],
|(w0, w)(s)| = 1 and w(s) ∈ C; (2) w0(s) > 0 for almost every s ∈ [0, L], and∫ L

0 w0(s) ds = T− t̄ ; (3) the map w satisfies the integral bound
∫ L

0 |w(s)| ds ≤ K−k̄.
DEFINITION 3.2. Let c ∈ C(t̄, k̄) and let s(t) .=

∫ t
t̄
|(1, c(τ))| dτ , Lc = s(T ). Let us

define the map c∗ = (w0, w) : [0, Lc] → [0,∞) × Rm by setting, for every s ∈ [0, Lc],
c∗(s) = (w0, w)(s) =

(
dt
ds (s), dtds (s) · c ◦ t(s)

)
for every s ∈ [0, Lc], where t(s) is the

inverse of s(t).
Conversely, for any (w0, w) ∈ C̃(t̄, k̄), let s(t) be the inverse map of t(s) .= t̄ +∫ s

0 w0(σ) dσ and let us define the map (w0, w)∗ = c : [t̄, T ] → Rm by setting c(t) .=
w
w0
◦ s(t) for every t ∈ [t̄, T ].
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With standard arguments one can check that for every c ∈ C(t̄, k̄) one has c∗ ∈
C̃(t̄, k̄). Conversely, for every (w0, w) ∈ C̃(t̄, k̄) one has (w0, w)∗ ∈ C(t̄, k̄). Moreover,
it is easy to prove the following.

PROPOSITION 3.1. For all c ∈ C(t̄, k̄) and (w0, w) ∈ C̃(t̄, k̄) one has

(c∗)∗ = c, ((w0, w)∗)∗ = (w0, w).

In other words, the map c 7→ c∗ establishes a one-to-one correspondence between
the sets C(t̄, k̄) and C̃(t̄, k̄), and the map (w0, w) 7→ (w0, w)∗ is its inverse.

We denote the set of Borel measurable maps from [0, 1] into A by Ã. It will be
called the set of space-time controls for the a-Player.

Let ρt̄ denote the unique increasing linear transformation from [t̄, T ] onto [0, 1],
and let τt̄ be the inverse of ρt̄. For any a ∈ A(t̄) and v ∈ Ã let us set

a∗
.= a ◦ τt̄, v∗

.= v ◦ ρt̄.

It is trivial to verify that a→ a∗ is a bijection and v → v∗ is its inverse.
For every mapping ν : C̃(t̄, k̄) → Ã let us define the map ν∗ : C(t̄, k̄) → A(t̄) by

setting, for every c ∈ C(t̄, k̄),

ν∗(c)
.=
(
ν(c∗)

)
∗.

Conversely, if α maps C(t̄, k̄) into A(t̄), let α∗ : C̃(t̄, k̄) → Ã be the function
defined by

α∗(w0, w) .=
(
α((w0, w)∗)

)∗
for every (w0, w) ∈ C̃(t̄, k̄).

DEFINITION 3.3. A map ν : C̃(t̄, k̄) → Ã is called a space-time strategy for the
a-Player provided ν∗ is a strategy (i.e., ν∗ is nonanticipating). We shall denote the
set of space-time strategies for the a-Player by ∆̃(t̄, k̄).

PROPOSITION 3.2. For all strategies α ∈ ∆(t̄, k̄) and for all space-time strategies
ν ∈ ∆̃(t̄, k̄) one has

(α∗)∗ = α, (ν∗)∗ = ν.

In particular, α∗ is a space-time strategy if and only if α is a strategy.
By Proposition 3.2 the map α 7→ α∗ establishes a one-to-one correspondence

between the set of strategies ∆(t̄, k̄) and the set of space-time stategies ∆̃(t̄, k̄). More-
over, the map ν 7→ ν∗ is the inverse of α 7→ α∗.

We now recall from [20] the notion of space-time extension of the pair (l, f).
DEFINITION 3.4 (see [21]). Let (l, f) be a pair satisfying hypotheses (i) and (ii).

For every (t, x, a, w0, w) ∈ [0, T ]× Rn ×A× [0,+∞)× C we set

(l, f)(t, x, a, w0, w) .=

{
w0 · (l, f)(t, x, a, w/w0) if w0 6= 0,
(l∞, f∞)(t, x, a, w) if w0 = 0,

where l∞ and f∞ are the recession functions introduced with hypothesis (i). The
vector field f (resp., the map l) will be called the space-time extension of f (resp., of
l).



820 FRANCO RAMPAZZO

Let us introduce the space-time version of the differential game. Given a control
(v, w0, w) ∈ Ã×C̃(t̄, k̄), let us consider the solution (t, z), defined on the domain [0, L]
of (w0, w), of 

t′(s) = w0(s),
z′(s) = f

(
t(s), z(s), v∗ ◦ t(s), w0(s), w(s)

)
,

(t, z)(0) = (t̄, x̄)
(3.1)

and the corresponding payoff

P [t̄, x̄; v, w0, w] .= g(z(L)) +
∫ L

0
l
(
t(s), z(s), v∗ ◦ t(s), w0(s), w(s)

)
ds.

We shall denote the solution of (3.1) by (t, z)[t̄, x̄; v, w0, w]. Whenever the initial
condition is known by the context we shall write (t, z)[v, w0, w] and P [v, w0, w] instead
of (t, z)[t̄, x̄; v, w0, w] and P [t̄, x̄; v, w0, w], respectively.

The relationship occurring between the original game and its space-time version
is illustrated by Propositions 3.3 and 3.4 below.

PROPOSITION 3.3. Let us consider a control c ∈ C(t̄, k̄) and a strategy α ∈ ∆(t̄, x̄).
Let us set Lc

.=
∫ T
t̄
|1, c(t)| dt, (w0, w) .= c∗, and t(s) .= t̄ +

∫ s
0 w0(σ) dσ. Then, for

every s ∈ [0, Lc], one has

x[α(c), c] ◦ t(s) = z[α∗(c∗), c∗](s)

and

P [α(c), c] = P [α∗(c∗), c∗].

As a corollary, in view of Propositions 3.1 and 3.2, one also has the converse
passage from space-time trajectories to ordinary ones.

PROPOSITION 3.4. Let us consider a space-time control (w0, w) ∈ C̃(t̄, x̄) and a
space-time strategy ν ∈ ∆̃(t̄, x̄). Then, for every t ∈ [t̄, T ], one has

z[ν(w0, w), (w0, w)] ◦ s(t) = x[ν∗((w0, w)∗), (w0, w)∗](t)

and

P [ν(w0, w), (w0, w)] = P [ν∗((w0, w)∗), (w0, w)∗],

where s(·) denotes the inverse of t(s) .= t̄+
∫ s

0 w0(σ) dσ.
Proof of Proposition 3.3. Let us set x(t) .= x[α(c), c](t), z(s) = z[α∗(c∗), c∗](s),

(w0, w) .= c∗. Then, if s(·) denotes the inverse of t(·) one has

(x ◦ t)′(s) = t′(s) · f
(
t, x(t), α(c)(t), c(t)

)
|t=t(s)

= w0(s) · f
(
t, x(t), α(c)(t),

w

w0
◦ s(t)

)
|t=t(s)

= f
(
t(s), x ◦ t(s),

(
α∗(c∗)

)
∗ ◦ t(s), w0(s), w(s)

)
= f

(
t(s), x ◦ t(s),

(
α∗(c∗)

)
∗ ◦ t(s), c

∗(s)
)
.

By the uniqueness of the solution to (3.1) we conclude that the former equality of the
thesis is verified. The latter equality is a straightforward consequence of the former.
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As a consequence of the previous results we obtain that the value of the original
game and of its space-time version do coincide. Indeed, let us set

j(t̄, x̄, k̄, α) .= sup
c∈C(t̄,k̄)

P [t̄, x̄, k̄, α(c), c],

j̃(t̄, x̄, k̄, ν) .= sup
(w0,w)∈C̃(t̄,k̄)

P [t̄, x̄, k̄, ν(w0, w), (w0, w)],

Ṽ(t̄, x̄, k̄) .= inf
ν∈∆̃(t̄,k̄)

j̃(t̄, x̄, k̄, ν).

The map Ṽ will be called the lower value of the space-time version of the game.
Observe that, by definition, V(t̄, x̄, k̄) = infα∈∆(t̄,k̄) j(t̄, x̄, k̄, α). By Propositions 3.3
and 3.4 it follows that, ∀α ∈ ∆(t̄, k̄) and ∀ν ∈ ∆̃(t̄, k̄),

j̃(α∗) ≤ j(α), j(ν∗) ≤ j̃(ν).

Hence, by j(α) = j
(
(α∗)∗

)
≤ j̃(α∗), one obtains

j̃(α∗) = j(α),

which, by ν = (ν∗)∗, implies

j(ν∗) = j̃(ν)

as well.
From the previous identities and Proposition 3.2 one infers that the lower value

of the original game and of the reparameterized one do coincide.
PROPOSITION 3.5. For every (t̄, x̄, k̄) ∈ [0, T [×Rn × [0,K] one has

V(t̄, x̄, k̄) = Ṽ(t̄, x̄, k̄).

Similarly, a space-time extension of the notion of strategy for the c-Player can
be introduced. We just write down the definitions and the related results, the proofs
being quite similar to the ones concerning the lower value case.

Let (ξ0, ξ) be a mapping from Ã into C̃(t̄, k̄) and let us define the function (ξ0, ξ)∗ :
A(t̄)→ C(t̄, k̄) by setting, for every a ∈ A(t̄),

(ξ0, ξ)∗(a) .= [(ξ0, ξ)(a∗)]∗.

DEFINITION 3.5. The map (ξ0, ξ) is called a space-time strategy for the c-Player
provided (ξ0, ξ)∗ is a strategy (i.e., it is nonanticipating). The set of space-time strate-
gies for the c-Player will be denoted by Γ̃(t̄, k̄).

On the other hand, for every map γ : A(t̄) → C(t̄, k̄) let us define the function
γ∗ : Ã → C̃(t̄, k̄) by setting, for every v ∈ Ã,

γ∗(v) .= [γ(v∗)]∗.

PROPOSITION 3.6. For every strategy γ ∈ Γ(t̄, k̄) and every space-time control
(ξ0, ξ) ∈ Γ̃(t̄, x̄), one has

(γ∗)∗ = γ, [(ξ0, ξ)∗]∗ = (ξ0, ξ).

In particular γ∗ is a space-time strategy if and only if γ is a strategy.
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By Proposition 3.6 we obtain that the map γ 7→ γ∗ establishes a one-to-one
correspondence between the set of strategies Γ(t̄, k̄) and the set of space-time stategies
Γ̃(t̄, k̄). Moreover, the map (ξ0, ξ) 7→ (ξ0, ξ)∗ is the inverse of γ 7→ γ∗. Propositions
3.7 and 3.8 below are the anologues of Propositions 3.3 and 3.4 for the upper value.

PROPOSITION 3.7. Let us consider a control a ∈ A(t̄) for the a-Player and
a strategy γ ∈ Γ(t̄, x̄) for the c-Player. Then, for every s ∈ [0, Lγ(a)], Lγ(a)

.=∫ T
t̄
|1, γ(a)(t)| dt, one has

x[a, γ(a)] ◦ t(s) = z[a∗, γ∗(a∗)](s)

and

P [a, γ(a)] = P [a∗, γ∗(a∗)],

where t(s) .= t̄+
∫ s

0 w0(σ) dσ.
PROPOSITION 3.8. Let us consider a space-time control v ∈ Ã and a strategy

(ξ0, ξ) ∈ Γ̃(t̄, x̄), and let us set (w0, w) .= (ξ0, ξ)(v). Then, for every t ∈ [t̄, T ], one has

z[v, (ξ0, ξ)(v)] ◦ s(t) = x[v∗, (ξ0, ξ)∗(v∗)](t)

and

P [v, (ξ0, ξ)(v)] = P [v∗, (ξ0, ξ)∗(v∗)],

where s(t) denotes the inverse of t(s) .= t̄+
∫ s

0 w0(σ) dσ.
Let us set

i[t̄, x̄, k̄, γ] .= inf
a∈A(t̄)

P [t̄, x̄, k̄, a, γ(a)],

ĩ[t̄, x̄, k̄, (ξ0, ξ)]
.= inf
v∈Ã

P [t̄, x̄, k̄, v, (ξ0, ξ)(v)],

Ũ(t̄, x̄, k̄) .= sup
(ξ0,ξ)∈Γ̃(t̄,k̄)

ĩ[t̄, x̄, k̄, (ξ0, ξ)].

The map Ũ will be called the upper value of the space-time version of the game. Just
as in the case of the lower value, we have

ĩ[γ∗] = i[γ], i[(ξ0, ξ)∗] = ĩ[(ξ0, ξ)],

from which the following proposition follows.
PROPOSITION 3.9. For every (t̄, x̄, k̄) ∈ [0, T [×Rn × [0,K] one has

U(t̄, x̄, k̄) = Ũ(t̄, x̄, k̄).

4. Dynamic programming. Let us set, for every c ∈ C(t̄, k̄) and t ∈ [t̄, T ],

sc(t)
.=
∫ t

t̄

|1, c(τ)| dτ,

and let tc : [0, sc(T )] → [t̄, T ] be the inverse of sc. Notice that, for every c ∈ C(t̄, k̄),
one has [0, T − t̄] ⊆ [0, sc(T )].
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In Theorem 4.1 below and throughout the paper we shall adopt the following
convention: whenever an initial condition (t̄, x̄, k̄), a control (a, c), and a pair (x, k)(·)
appear in the same formula, it is meant that

(x, k)(t) .=
(
x[t̄, x̄; a, c](t), k̄ +

∫ t

t̄

|c(τ)| dτ
)
.

For every σ > 0 let us define the subset Cσ(t̄, k̄) ⊂ C(t̄, k̄) as the set of those controls
c such that the domain [0, Lc] of the corresponding c∗ and of tc contains the interval
[0, σ], i.e.,

Cσ(t̄, k̄) .=

{
c ∈ C(t̄, k̄) :

∫ T

t̄

|(1, c)| > σ

}
.

Observe that Cσ(t̄, k̄) 6= ∅ for every σ ∈]0,max{T − t̄, K − k̄}[, in that the constant
control c .= (K − k̄)/(T − t̄) belongs to Cσ(t̄, k̄). Let us also define the subset of
strategies Γσ(t̄, k̄) ⊂ Γ(t̄, k̄) by setting

Γσ(t̄, k̄) .=
{
γ ∈ Γ(t̄, k̄) | γ(a) ∈ Cσ(t̄, k̄) ∀a ∈ A(t̄)

}
.

Since the constant mappings from A(t̄) into C(T̄ , k̄) are strategies, for every σ ∈
]0,max{T − t̄, K − k̄}[ we have that Γσ(t̄, k̄) 6= ∅ as well. It is also straightforward to
check that for every σ < T − t̄ one has Cσ(t̄, k̄) = C(t̄, k̄),Γσ(t̄, k̄) = Γ(t̄, k̄). Before
stating a Dynamic Programming Principle for our problem let us show that as soon
as U > g (resp., V > g) one can replace the set Γ (resp., C) in the definition of U
(resp., V) with a subset Γσ (resp., Cσ), for a suitable choice of σ.

PROPOSITION 4.1. Let Q ⊂ Rn be a compact subset and let η > 0. Then there
exists a constant σ̂ such that for every (t̄, x̄, k̄) ∈ [0, T [×Q×[0,K] verifying U(t̄, x̄, k̄)−
g(x̄) ≥ η (resp., V(t̄, x̄, k̄)− g(x̄) ≥ η) one has

U(t̄, x̄, k̄) = sup
γ∈Γσ(t̄,k̄)

inf
a∈A(t̄)

P [t̄, x̄; a, γ(a)]

(resp.,

V(t̄, x̄, k̄) = inf
α∈∆(t̄)

sup
c∈Cσ(t̄,k̄)

P [t̄, x̄;α(c), c])

for all σ ≤ σ̂.
Proof. The fact that the right-hand sides are less than or equal to the correspond-

ing left-hand sides is trivial. Let us prove that the converse inequalities hold true. We
claim that for every ε > 0 there exists a σ such that the set reachable from (t̄, x̄, k̄)
with controls (a, c) ∈ A(t̄)× (C(t̄, k̄)\Cσ(t̄, k̄)) is contained in the ball B[(t̄, x̄, k̄); ε] of
center (t̄, x̄, k̄) and radius ε. Indeed, if c ∈ C(t̄, k̄)\Cσ(t̄, k̄), one has

T − t̄ ≤ σ, k(T )− k̄ .=
∫ T

t̄

|c(t)|dt ≤ σ.

Moreover, for every (a, c) ∈ A(t̄)× C(t̄, k̄), one has

x[t̄, x̄; a, c](T )− x̄ = z[t̄, x̄; a∗, c∗](sc(T ))− x̄.
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Hence the claim follows from a trivial application of Gronwall’s lemma to the space-
time system (3.1), in that the controls (a∗, c∗) take values in the compact set A ×
{(w0, w) ∈ Rm+1 : |(w0, w)| = 1}.

Therefore, in view of the assumptions on l and of the uniform continuity of g on
Q, we can infer the existence of a σ̂ such that for every σ ≤ σ̂ one has

|P [t̄, x̄; a, c]− g(x̄)| = |P [t̄, x̄; a∗, c∗]− g(x̄)| ≤ η

2
for all (a, c) ∈ A(t̄)×(C(t̄, k̄)\Cσ(t̄, k̄)). Since the values U(t̄, x̄, k̄) and V(t̄, x̄, k̄) belong
to the closure of the set

{
P [t̄, x̄; a, c] : (a, c) ∈ A(t̄)× C(t̄, k̄)

}
, it follows that

U(t̄, x̄, k̄) > sup
γ∈(Γ(t̄,k̄)\Γσ(t̄,k̄))

inf
a∈A(t̄)

P [t̄, x̄; a, γ(a)]

and

V(t̄, x̄, k̄) > inf
α∈∆(t̄)

sup
c∈(C(t̄,k̄)\Cσ(t̄,k̄)

P [t̄, x̄;α(c), c],

which implies the thesis.
THEOREM 4.1 (Dynamic Programming Principle (DPP)). For every (t̄, x̄, k̄) ∈

[0, T [×Rn × [0,K] and 0 < σ < T − t̄ one has

V(t̄, x̄, k̄) = inf
α∈∆(t̄,k̄)

sup
c∈C(t̄,x̄)

{∫ tc(σ)

t̄

l
(
t, x(t), α(c)(t), c(t)

)
dt

+ V
(
tc(σ), x ◦ tc(σ), kc ◦ tc(σ

)) }(4.1)

and

U(t̄, x̄, k̄) = sup
γ∈Γ(t̄,k̄)

inf
a∈A(t̄)

{∫ tγ(a)(σ)

t̄

l
(
t, x(t), a(t), γ(a)(t)

)
dt

+ U
(
tγ(a)(σ), x ◦ tγ(a)(σ), k ◦ tγ(a)(σ)

) }
,

(4.2)

where, for every c ∈ C(t̄, k̄), tc is defined as in the beginning of this section.
Moreover, if Q ⊂ Rn is a compact subset and (t̄, x̄, k̄) ∈ [0, T [×Q× [0,K[ satisfies

U(t̄, x̄, k̄)− g(x) ≥ η > 0 (resp., V(t̄, x̄, k̄)− g(x) ≥ η > 0), there exists a σ̂ > 0 such
that

V(t̄, x̄, k̄) = inf
α∈∆(t̄,k̄)

sup
c∈Cσ(t̄,x̄)

{∫ tc(σ)

t̄

l
(
t, x(t), α(c)(t), c(t)

)
dt

+ V
(
tc(σ), x ◦ tc(σ), kc ◦ tc(σ)

) }(4.3)

(resp.,

U(t̄, x̄, k̄) = sup
γ∈Γσ(t̄,k̄)

inf
a∈A(t̄)

{∫ tγ(a)(σ)

t̄

l
(
t, x(t), a(t), γ(a)(t)

)
dt

+ U
(
tγ(a)(σ), x ◦ tγ(a)(σ), k ◦ tγ(a)(σ)

) })
(4.4)

for all σ ≤ σ̂.
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Remark 4.1. The idea of the proof of this theorem is not far from the one exploited
in the conventional case (see, e.g., [13]), where only bounded controls are involved.
However, unlike the conventional case, the intervals of integration involved in (4.1)–
(4.4) are not constant for a fixed σ, and the variable k is constrained to be less than
or equal to K. Let us also remark that the validity of (4.3) and (4.4) does not find
a counterpart in the conventional case. These equalities mean that as soon as V
or U is greater than the cost function, one can take a smaller set of controls c in
the corresponding DPP. This fact will be essential when we establish the boundary
conditions for U and V on t = T (see Theorem 6.1).

Proof of Theorem 4.1. Denoting the right-hand side of (4.1) and (4.2) byW (t̄, x̄, k̄)
and Y (t̄, x̄, k̄), respectively, we shall limit ourselves to demonstrate that

W (t̄, x̄, k̄) ≥ V(t̄, x̄, k̄)(4.5)

and

Y (t̄, x̄, k̄) ≥ U(t̄, x̄, k̄),(4.6)

the proof of the converse inequality of (4.5) (resp., (4.6)) being quite similar to the
proof of (4.6) (resp., (4.5)). Moreover, in view of Proposition 4.1, the proofs of (4.3)
and (4.4) can be straightforwardly obtained by the ones of (4.1) and (4.2), respectively,
by formally replacing C(t̄, k̄) with Cσ(t̄, k̄) and Γ(t̄, k̄) with Γσ(t̄, k̄).

Let us fix a σ ∈]0, T − t̄[. For a given ε > 0 there exists a strategy α1 ∈ ∆(t̄, k̄)
such that

W (t̄, x̄, k̄) ≥ sup
c∈C(t̄,k̄)

{∫ tc(σ)

t̄

l
(
t, x(t), α1(c)(t), c

)
dt

+V
(
tc(σ), x ◦ tc(σ), k ◦ tc(σ)

) }
− ε.

(4.7)

For every c ∈ C(t̄, k̄) there is a strategy αc ∈ ∆
(
tc(σ), k(tc(σ))

)
such that

V
(
tc(σ), x ◦ tc(σ), k ◦ tc(σ)

)
(4.8)

≥ sup
c̃∈C
(
tc(σ),k◦tc(σ)

)P [tc(σ), x ◦ tc(σ);αc(c̃), c̃]− ε.

Let us define a strategy α2 ∈ A(t̄) by setting

α2(c)(t) .=

α1(c)(t) ∀t ∈ [t̄, tc(σ)[,

αc

(
c|[tc(σ),T ]

)
(t), t ∈ [tc(σ), T ],

where, for every c ∈ C(t̄, k̄), c|[tc(σ),T ]
denotes the restriction of c to the interval

[tc(σ), T ]. It is not difficult to verify that α2 is in fact nonanticipating. By (4.7),
(4.8), we obtain, for every c ∈ C(t̄, k̄),

W (t̄, x̄, k̄) ≥ P [α2(c), c]− 2ε,

which, by the arbitrariness of ε, yields (4.5).
In order to prove (4.6), let us select a strategy γ1 ∈ Γσ(t̄, k̄) satisfying

U(t̄, x̄, k̄) ≤ inf
a∈A(t̄)

P [t̄, x̄; a, γ1(a)] + ε.
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By the definition of Y one obtains

Y (t̄, x̄, k̄) ≥ inf
a∈A(t̄)

{∫ tγ1(a)(σ)

t̄

l
(
t, x(t), a(t), γ1(a)(t)

)
dt

+ U
(
tγ1(a)(σ), x ◦ tγ1(a)(σ), k ◦ tγ1(a)(σ)

) }
,

thence there exists an a1 ∈ A(t̄) so that

Y (t̄, x̄, k̄) + ε ≥
∫ tγ1(a1)(σ)

t̄

l
(
t, x(t), a1(t), γ1(a1)(t)

)
dt

+ U
(
tγ1(a1)(σ), x ◦ tγ1(a1)(σ), k ◦ tγ1(a1)(σ)

)
.

For every a ∈ A(tγ1(a1)(σ)) let us define a control â ∈ A(t̄) by setting

â(t) .=

{
a1 ∀t ∈ [t̄, tγ1(a1)(σ)],
a ∀t ∈]tγ1(a1)(σ), T ].

The function γ2 : A(tγ1(a1)(σ)) → C
(
tγ1(a1)(σ), k ◦ tγ1(a1)(σ)

)
, which maps a control

a ∈ A(tγ1(a1)(σ)) into the control

γ2(a)(t) .= (γ1(â))(t), t ∈ [tγ1(a1)(σ), T ],

turns out to belong to Γ
(
tγ1(a1)(σ), k ◦ tγ1(a1)(σ)

)
. Indeed, it is nonanticipating, and

for every a ∈ A(tγ1(a1)(σ)), one has∫ T

tγ1(a1)(σ)
|γ2(a)(t)|dt ≤ K − k̄ −

(
k ◦ tγ1(a1)(σ)− k̄

)
.

In particular, it follows that

U
(
tγ1(a1)(σ), x ◦ tγ1(a1)(σ), k ◦ tγ1(a1)(σ)

)
≥ inf
a∈A(tγ1(a1)(σ))

P [a, γ2(a)].

Hence, there exists a control a2 ∈ A(tγ1(a1)(σ)) so that

U
(
tγ1(a1)(σ), x ◦ tγ1(a1)(σ), k ◦ tγ1(a1)(σ)

)
≥ P [a2, γ2(a2)]− ε.

Finally, the previous inequalities imply that

Y (t̄, x̄, k̄) ≥
∫ tγ1(a1)(σ)

t̄

l (t, x(t), a1(t), γ1(a1)(t)) dt

+
∫ T

tγ1(a1)(σ)
l (t, x(t), a2(t), γ2(a2)(t)) dt+ g(x(T ))− 2ε

≥ P [â2, γ1(â2)]− 2ε ≥ inf
a∈A(t̄)

P [a, γ1(a)]− 2ε ≥ U(t̄, x̄, k̄)− 3ε,

from which (4.6) follows, in view of the the arbitrariness of ε.
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As a consequence of Theorem 4.1 and of Propositions 3.3–3.5 and 3.7–3.9, we
obtain the reparameterized dynamic programming principle (RDPP) below. In turn,
the latter allows us to establish boundary value problems for U and V involving
continuous Hamiltonians and rather simple boundary conditions (see sections 5 and
6). In the statetement of Theorem 4.2 below and in the rest of the paper we adopt
the following convention: whenever an initial condition (t̄, x̄, k̄), a control (v, w0, w),
and a triple (t, z, k)(·) appear in the same formula, it is meant that

(t, z, k)(s) .=
(
t̄+
∫ s

0
w0(η) dη, z[t̄, x̄; v, w0, w](s), k̄ +

∫ s

0
|w(η)| dη

)
for every s ∈ [0, 1].

Let us define the subsets C̃σ(t̄, k̄) and Γ̃σ(t̄, k̄) by setting

C̃σ(t̄, k̄) .=
{

(w0, w) ∈ C̃(t̄, k̄) | (w0, w)∗ ∈ Cσ(t̄, k̄)
}
,

Γ̃σ(t̄, k̄) .=
{

(ξ0, ξ) ∈ Γ̃(t̄, k̄) | (ξ0, ξ)∗ ∈ Γσ(t̄, k̄)
}
.

Clearly, for every σ ∈]0,max{T − t̄, K − k̄}[ one has C̃σ(t̄, k̄) 6= ∅ and Γ̃σ(t̄, k̄) 6= ∅.
THEOREM 4.2 (reparameterized dynamic programming principle (RDPP)). For

every (t̄, x̄, k̄) ∈ [0, T [×Rn × [0,K] and 0 < σ < T − t̄ one has

V(t̄, x̄, k̄) = inf
ν∈∆̃(t̄,k̄)

sup
(w0,w)∈C̃(t̄,k̄)

{∫ σ

0
l
(
t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)

)
ds

+V(t(σ), z(σ), k(σ))
}

and

U(t̄, x̄, k̄) = sup
(ξ0,ξ)∈Γ̃(t̄,k̄)

inf
v∈Ã

{∫ σ

0
l
(
t(s), z(s), v∗ ◦ t(s), ξ0(v)(s), ξ(v)(s)

)
ds

+ U(t(σ), z(σ), k(σ))
}
.

Moreover, if Q ⊂ Rn is a compact subset and (t̄, x̄, k̄) ∈ [0, T [×Q × [0,K[ verifies
U(t̄, x̄, k̄)− g(x) ≥ η > 0 (resp., V(t̄, x̄, k̄)− g(x) ≥ η > 0), there exists a σ̂ > 0 such
that

V(t̄, x̄, k̄) = inf
ν∈∆̃(t̄,k̄)

sup
(w0,w)∈C̃σ(t̄,k̄)

{∫ σ

0
l
(
t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)

)
ds

+V(t(σ), z(σ), k(σ))
}

(
resp.,

U(t̄, x̄, k̄) = sup
(ξ0,ξ)∈Γ̃σ(t̄,k̄)

inf
v∈Ã

{∫ σ

0
l
(
t(s), z(s), v∗ ◦ t(s), ξ0(v)(s), ξ(v)(s)

)
ds

+ U(t(σ), z(σ), k(σ))
}
.

)
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5. Hamilton–Jacobi equations for U and V. In this section we establish
Hamilton–Jacobi differential equations for U and V. These equations are not formal
extensions of the ones concerning games with bounded controls. Indeed, this would
imply the use of discontinuous Hamiltonians. On the contrary, the space-time version
of the game presented in section 3 and the consequent RDPP (Theorem 4.2) allow
one to obtain equations involving continuous Hamiltonians.

For the reader’s convenience let us recall the definition of viscosity solution (see,
e.g., [11], [16]).

DEFINITION 5.1. Let E be any subset of RN and let F : E×R×RN → R be a con-
tinuous function. A map u ∈ C0(E) is a viscosity subsolution (resp., supersolution)
at y ∈ E of the first-order partial differential equation

(PDE) F (y, u,∇u) = 0

if for any ϕ ∈ C∞(RN ) such that u− ϕ has a local maximum (resp., minimum) at y
on E, one has

F (y, u,∇ϕ) ≤ 0 (resp., F (y, u,∇ϕ) ≥ 0),

where ∇ϕ denotes the gradient of ϕ. A map u ∈ C0(E) is called a viscosity solution
of (PDE) at y if it is both a viscosity subsolution and a viscosity supersolution.

Let us set Ω .= [0, T [×Rn× [0,K[. Moreover, let us define the upper Hamiltonian
H+ and the lower Hamiltonian H− by setting, for every (t, x, pt, px, pk) ∈ (R×Rn)×
(R× Rn × R),

H+(t, x, pt, px, pk) .= min
a∈A

max
(w0,w)∈Sm+

{
ptw0 + px · f̄(t, x, a, w0, w)

+ l̄(t, x, a, w0, w) + pk|w|
}

and

H−(t, x, pt, px, pk) .= max
(w0,w)∈Sm+

min
a∈A

{
ptw0 + px · f̄(t, x, a, w0, w)

+ l̄(t, x, a, w0, w) + pk|w|
}
,

respectively, where Sm+
.= {(w0, w) : |(w0, w)| = 1, w0 ≥ 0}.

If Φ is a map defined on Ω, let us denote the gradients of Φ with respect to t, x,
and k by ∇tΦ, ∇xΦ, and ∇kΦ, respectively.

THEOREM 5.1. The maps V and U are viscosity solutions on Ω of the lower value
equation

(LVE) −H−(t, x,∇tΦ,∇xΦ,∇kΦ) = 0

and of the upper value equation

(UVE) −H+(t, x,∇tΦ,∇xΦ,∇kΦ) = 0,

respectively.
We will just outline the proof of this theorem. Actually, in view of the RDPP,

the proof is partially based on some arguments already exploited in the conventional
case [13]. However, some changes are needed, due to the fact that within our setting
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the integral constraint on c becomes a state constraint, while the finite horizon t = T
has to be regarded as a target.

Proof. Let us prove that V is a subsolution of (LVE). Let (t̄, x̄, k̄) ∈ Ω and let ϕ
be a smooth function such that V − ϕ has a local maximum at (t̄, x̄, k̄). Hence, in a
neighborhood of (t̄, x̄, k̄) one has

V(t, x, k)− V(t̄, x̄, k̄) ≤ ϕ(t, x, k)− ϕ(t̄, x̄, k̄).(5.1)

If we define

Q(t, x, k, a, w0, w)
.= ∇tϕ(t, x, k) · w0 +∇xϕ(t, x, k) · f̄(t, x, a, w0, w) + l̄(t, x, a, w0, w) +∇kϕ(t, x, k) · |w|,

the thesis is expressed by the inequality

− max
(w0,w)∈Sm+

min
a∈A

Q(t̄, x̄, k̄, a, w0, w) ≤ 0.

Assume by contradiction that

max
(w0,w)∈Sm+

min
a∈A

Q(t̄, x̄, k̄, a, w0, w) ≤ −θ,

with θ > 0. By Lemma 5.1 below there exists a strategy ν ∈ ∆̃(t̄, k̄) and a σ̄ ∈]0, T− t̄[
such that, for every (w0, w) ∈ C̃σ(t̄, k̄) and every σ ≤ σ̄, one has∫ σ

0
Q(t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)) ≤ −θσ

2
.

By applying the RDPP we obtain a contradiction. Indeed, for every σ ≤ min{σ̄, T− t̄}
one has

0 = inf
ν∈∆̃(t̄,k̄)

sup
(w0,w)∈C̃(t̄,k̄)

{∫ σ

0
l
(
t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)

)
ds

+ V(t(σ), z(σ), k(σ))− V(t̄, x̄, k̄)
}

≤ inf
ν∈∆̃(t̄,k̄)

sup
(w0,w)∈C̃(t̄,k̄)

{∫ σ

0
l
(
t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)

)
ds

+ϕ(t(σ)), z(σ), k(σ))− ϕ(t̄, x̄, k̄)
}

= inf
ν∈∆̃(t̄,k̄)

sup
(w0,w)∈C̃(t̄,k̄)

{∫ σ

0
Q
(
t(s), z(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)

)
ds

}
≤ −θσ

2
.

In view of Lemma 5.1 below, the proofs that V and U are a supersolution of (LVE)
and a solution of (UVE) on Ω, respectively, proceed similarly. Hence we omit them.

LEMMA 5.1. Let Q be defined as in the proof of the previous theorem. Then the
following hold.
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(i) If

max
(w0,w)∈Sm+

min
a∈A

Q(t̄, x̄, k̄, a, w0, w) ≤ −θ (resp., ≥ θ),

there exist a σ̄ ∈]0, T − t̄[ and a strategy ν ∈ ∆̃(t̄, k̄) (resp., an ε > 0 and a control
(w0, w) ∈ C̃(t̄, k̄) (= C̃σ̄(t̄, k̄)), with w0 ≥ ε) such that, for every (w0, w) ∈ C̃(t̄, k̄) (=
C̃σ̄(t̄, k̄)) (resp., every strategy ν ∈ ∆̃(t̄, k̄)) and every σ ≤ σ̄, one has∫ σ

0
Q(t(s), z(s), k(s), (ν(w0, w))∗ ◦ t(s), w0(s), w(s)) ≤ −θσ

2

(
resp., ≥ θσ

2

)
.

(ii) If

min
a∈A

max
(w0,w)∈Sm+

Q(t̄, x̄, k̄, a, w0, w) ≥ θ (resp., ≤ −θ) ,

there exist a σ̄ ∈]0, T − t̄[, an ε > 0, and a strategy (ξ0, ξ) ∈ Γ̃(t̄, k̄) (= Γ̃σ̄(t̄, k̄))
verifying ξ0(v) ≥ ε ∀v ∈ Ã (resp., a control v ∈ Ã) such that, for every v ∈ Ã (resp.,
every strategy (ξ0, ξ) ∈ Γ̃(t̄, k̄) (= Γ̃σ̄(t̄, k̄))) and every σ ≤ σ̄, one has∫ σ

0
Q(t(s), z(s), k(s), v∗ ◦ t(s), ξ0(v)(s), ξ(v)(s)) ≥ θσ

2

(
resp., ≤ −θσ

2

)
.

Proof. We shall limit ourselves to prove only the second of the statements in (i)
and the first of the statements in (ii), the proofs of the remaining two statements
being similar.

Let us assume

max
(w0,w)∈Sm+

min
a∈A

Q(t̄, x̄, k̄, a, w0, w) ≥ θ.

Hence there exists an ε > 0 and a (w̄0, w̄) ∈ Sm+ , with w̄0 > ε, such that

Q(t̄, x̄, k̄, a, w̄0, w̄) ≥ 3
4
θ

for every a ∈ A. Since A is a compact subset, by the hypotheses on f and l, there
exists a σ such that for every s ≤ σ and v ∈ Ã(t̄) one has

|(t(s), z(s), k(s))− (t̄, x̄, k̄)| ≤Ms,

where we have set
(
t(s), z(s), k(s)) .= ((t, z)[v, w̄0, w̄](s), k̄+

∫ s
0 |w̄|(η)dη

)
. Hence, since

Q is uniformly continuous, by choosing a suitable σ̄ > 0 one has

Q(t(s), z(s), k(s), (ν(w̄0, w̄))∗ ◦ t(s), w̄0, w̄) ≥ 1
2
θ

for every s ∈ [0, σ̄] and every ν ∈ ∆̃(t̄, x̄), from which the thesis follows, with
(w0, w)(s) .= (w̄0, w̄).

Now let us assume that

min
a∈A

max
(w0,w)∈Sm+

Q(t̄, x̄, k̄, a, w0, w) ≥ θ.
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By the continuity of Q and the compactness of A this implies that there exists an
ε > 0 such that

max
(w0,w)∈Sm+ ,w0≥ε

Q(t̄, x̄, k̄, a, w0, w) ≥ 5
6
θ

for every a ∈ A. Since the multivalued map

W (a) .= argmax
{
Q(t̄, x̄, k̄, a, w0, w), (w0, w) ∈ Sm+ , w0 ≥ ε

}
is upper semicontinuous, it admits a Borel measurable selection, say, (wa0 , w

a) ∈W (a)
(see, e.g., [1]). The map c̃ : A → C defined by c̃(a) .= wa

wa0
turns out to be Borel

measurable. Then it is easy to check that the functional γ which maps a control
a ∈ A(t̄) into the control

γ(a)(t) .=

{
c̃
(
a(t)

)
∀t ∈ [t̄, ta],

0 ∀t ∈]ta, T ],

with

ta
.= sup

{
t ∈ [t̄, T ] :

∫ t

t̄

|c̃ ◦ a(τ)| dτ ≤ K − k̄
}
,

is a nonanticipating map from A(t̄) into C(t̄, k̄); i.e., γ ∈ Γ(t̄, k̄). Let us consider
the strategy (ξ0, ξ)

.= γ∗ ∈ Γ̃(t̄, k̄). As in the first part of the proof, we can find a
σ̄ ∈]0, T − t̄[ such that, for every v ∈ Ã(t̄) and s ∈ [0, σ̄], one has

|Q
(
t(s), z(s), k(s), v∗ ◦ t(s), (ξ0, ξ)(v)(s)

)
−Q

(
t̄, x̄, k̄, v∗ ◦ t(s), (ξ0, ξ)(v)(s)

)
≤ 2

6
θ,

where

(t, z, k)(s) .=
(

(t, z)[t̄, x̄; v, (ξ0, ξ)(v)](s), k̄ +
∫ s

0
|ξ(v)(η)|dη

)
.

Since (ξ0, ξ)(v)(s) =
(
w
v∗(t(s))
0 , wv∗(t(s))

)
we obtain that, for every s ∈ [0, σ̄],

Q
(
t(s), z(s), k(s), v∗ ◦ t(s), (ξ0, ξ)(v)(s)

)
≥ 5

6
θ − 2

6
θ =

1
2
θ,

which yields the thesis.

6. Boundary value problems for U and V. In this section we establish the
LVBVP and the UVBVP below, whose unique bounded continuous solutions coincide
with V and U , respectively.

On the basis of Theorem 2.1 the maps U (= Ũ) and V (= Ṽ) can be continuously
extended on the closure of [0, T [×Rn × [0,K].

Let ∂Ω denote the boundary of Ω and let us set

∂TΩ .= {T} × Rn × [0,K], ∂′Ω .= ∂Ω\∂TΩ.

DEFINITION 6.1. We say that a continuous map Φ is a solution of the LVBVP
(resp., UVBVP) if the following hold: (1) Φ is a viscosity solution of (LVE) (resp.,
(UVE)) in Ω; (2) Φ(T, x, k) ≥ g(x) for every (T, x, k) ∈ ∂TΩ; (3) Φ is a viscosity
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subsolution of (LVE) (resp., of (UVE)) on ∂′Ω and at any point (T, x̄, k̄) ∈ ∂TΩ such
that Φ(T, x̄, k̄) > g(x̄).

THEOREM 6.1. The maps V and U are the unique bounded solutions of the LVBVP
and the UVBVP, respectively.

Proof. The fact that V and U satisfy (1) in Definition 6.1 coincides with the
statement of Theorem 5.1.

In order to prove that V and U verify (2) in Definition 6.1, let us consider the
constant space-time control (ŵ0, ŵ)(s) = (1, 0), s ∈ [0, 1

n ], which belongs to C̃(T −
1
n , k).

For each control v : [0, 1]→ A the trajectory

(t(s), z(s)) .= (t, z)[T − 1
n
, x̄, k; v, ŵ0, ŵ](s)

verifies ∣∣∣∣z( 1
n

)
− x̄
∣∣∣∣ ≤M 1

n
,(6.1) ∣∣∣∣∣

∫ 1
n

0
l̄(t(s), z(s), v∗ ◦ t(s), ŵ0(s), ŵ(s)) ds

∣∣∣∣∣ ≤M 1
n

for a suitable M > 0. For every strategy ν one has∫ 1
n

0
l̄(t(s), z(s), (ν(ŵ0, ŵ)∗) ◦ t(s), ŵ0(s), ŵ(s)) ds+ g

(
z

(
1
n

))
≤ sup

(w0,w)∈C̃(T− 1
n ,k)

{∫ L

0
l̄(t(s), z(s), (ν(w0, w)∗) ◦ t(s), w0(s), w(s)) ds+ g(z(L))

}
,

where the L in the expression in brackets denotes the right endpoint of the domain
of (w0, w). As a consequence, one has

V
(
T − 1

n
, x̄, k

)

≥ inf
ν∈∆̃(T− 1

n ,k)

{∫ 1
n

0
l̄(t(s), z(s), (ν(ŵ0, ŵ))∗ ◦ t(s), ŵ0(s), ŵ(s)) ds+ g

(
z

(
1
n

))}
for every natural number n. Together with 6.1, this implies

V(T, x̄, k) ≥ g(x̄).

On the other hand, for every n ∈ N, there exists a control v̂ ∈ Ã such that∫ 1
n

0
l̄(t(s), z(s), v̂∗ ◦ t(s), ŵ0(s), ŵ(s)) ds+ g

(
z

(
1
n

))

≤ inf
v∈Ã

{∫ 1
n

0
l̄(t(s), z(s), v∗ ◦ t(s), ŵ0(s), ŵ(s)) ds+ g

(
z

(
1
n

))}
+ ε

≤ U
(
T − 1

n
, x̄, k

)
+ ε,

which, in view of (6.1), implies

g(x̄) ≤ U(T, x̄, k).
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Let us prove that V and U verify condition (3) of Definition 6.1. The part of the
proof of Theorem 5.1 which concerns the subsolution properties of V and U can be
easily extended in order to include the points of [0, T [×Rn × {K}. Hence, in order
to verify (3) in Definition 6.1, it remains to prove that V (resp., U) is a viscosity
subsolution of (LVE) (resp., of (UVE)) at any point of ∂TΩ where V > g (resp.,
U > g).

Let (T, x̄, k̄) verify k̄ < K and V(T, x̄, k̄) > g(x̄), and let ϕ be a smooth function
such that V − ϕ has a maximum at (T, x̄, k̄) ∈ {T} × Rn × [0,K[. Hence, in a
neighborhood of (T, x̄, k̄), one has

V(t, x, k)− V(T, x̄, k̄) ≤ ϕ(t, x, k)− ϕ(T, x̄, k̄).

Setting, as in the proof of Theorem 5.1,

Q(t, x, k, a, w0, w) .= ∇tϕ(t, x, k)w0 +∇xϕ(t, x, k) · f̄(t, x, a, w0, w)

+ l̄(t, x, a, w0, w) +∇kϕ(t, x, k)|w|,

we have to prove that

max
(w0,w)∈Sm+

min
a∈A

Q(T, x̄, k̄, a, w0, w) ≥ 0.

Assume, by contradiction, that there exists a positive θ such that

min
a∈A

Q(T, x̄, k̄, a, w0, w) ≤ −θ

for all (w0, w) ∈ Sm+ . Rephrasing the second part of the proof of Lemma 5.1 one can
find a Borel measurable map v(w0, w) such that

Q(T, x̄, k̄, v(w0, w), w0, w) ≤ −θ

for every (w0, w) ∈ Sm+ . Let {t̄n} be a sequence converging to T from the left,
and let us define the strategies νn ∈ Γ̃(t̄n, k̄) as follows. If (w0, w) ∈ C̃(t̄n, k̄), set
tn(s) .= t̄n +

∫ s
0 w0(η) dη and let sn(·) denote the inverse of tn(·). Then it is not

difficult to check that the maps νn : C̃(t̄n, k̄)→ Ã defined by

νn(w0, w) .= (v ◦ (w0, w) ◦ sn)∗

are strategies (see Definition 3.1). From the inequality

Q(T, x̄, k̄, (νn(w0, w))∗ ◦ tn(s), w0(s), w(s)) ≤ −θ,

valid for every control (w0, w) ∈ C̃(t̄n, k̄) and every s ∈ [0, sn(T )], it follows that there
exist ε, σ̄ > 0 such that, if t̄n ∈ [T − ε, T ] and 0 ≤ s ≤ σ̄, one has

Q
(
tn(s), z(s), k(s), (νn(w0, w))∗ ◦ tn(s), w0(s), w(s)

)
≤ −θ

2
,

where (tn, z)(s)
.= (t, z)[t̄n, x̄, νn(w0, w), w0, w](s), k(s) .= k̄+

∫ s
0 |w(ξ)|dξ. Integrating

the terms in the last inequality, for every σ ≤ σ̄ and every (w0, w) ∈ C̃σ(t̄n, k̄), one
has ∫ σ

0
l̄
(
tn(s), z(s), (νn(w0, w))∗ ◦ tn(s), w0(s), w(s)

)
ds(6.2)

+ ϕ(tn(σ), z(σ), k(σ))− ϕ(t̄n, x̄, k̄) ≤ −θσ
2

.
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On the other hand, in a neighborhood of (T, x̄, k̄) one has V − g > η > 0. Hence, on
the basis of the RDPP (Theorem 4.2), there exists a σ̂ > 0 such that for every σ < σ̂

0 ≤ sup
(w0,w)∈C̃σ(t̄n,k̄)

{∫ σ

0
l̄
(
tn(s), z(s), (νn(w0, w))∗ ◦ tn(s), w0(s), w(s)

)
ds

+ V
(
tn(σ), z(σ), k(σ)

)
− V(t̄n, x̄, k̄)

}
.

In particular, for every σ < σ̂ and every n, there exists a control (wσ0 n, w
σ
n) ∈

C̃σ(t̄n, k̄) such that∫ σ

0
l̄(tσn(s), zσn(s), (νn(wσ0 n, w

σ
n))∗ ◦ tσn(s), wσ0 n(s), wσn(s)) ds(6.3)

+ V
(
tσn(σ), zσn(σ), kσn(σ)

)
− V(t̄n, x̄, k̄) > −θσ

4
,

where we have set

zσn(s) .= z[t̄n, x̄; νn(wσ0 n, w
σ
n), wσ0 n, w

σ
n](s),

kσn(s) .= k̄ +
∫ s

0
|wσn(µ)| dµ.

Setting

pσn
.=
∫ σ

0
l̄ (tσn(s), zσn(s), (νn(wσ0 n, w

σ
n))∗ ◦ tσn(s), wσ0 n(s), wσn(s)) ds,

by Ascoli–Arzelà’s theorem we obtain the existence of a subsequence {zσn′ , kσn′ , pσn′}
such that {zσn′} and {kσn′} converge to continuous maps zσ∞ and kσ∞, respectively,
uniformly on [0, σ], and {pσn′} converge to a constant pσ∞.

For any σ ∈]0,min{σ̄, σ̂}[, letting n tend to infinity in (6.2)–(6.3), one obtains

−θσ
4
≤ pσ∞ + V(T, zσ∞(σ), kσ∞(σ))− V(T, x̄, k̄)

≤ pσ∞ + ϕ(T, zσ∞(σ), kσ∞(σ))− ϕ(T, x̄, k̄) ≤ −θσ
2
,

a contradiction for every σ > 0. Let us prove now that U is a subsolution of (UVE)
at a point (T, x̄, k̄) such that k̄ < K and U(T, x̄, k̄) > g(x̄). Let ϕ be a smooth map
such that

U(t, x, k)− U(T, x̄, k̄) ≤ ϕ(t, x, k)− ϕ(T, x̄, k̄)

for every (t, x, k) in a neighborhood of (T, x̄, k̄). Let Q be defined as above. The thesis
amounts to proving that

min
a∈A

max
(w0,w)∈Sm+

Q(T, x̄, t̄, a, w0, w) ≥ 0.

Assume, by contradiction, that there is a θ > 0 such that

min
a∈A

max
(w0,w)∈Sm+

Q(T, x̄, t̄, a, w0, w) ≤ −θ.
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Then there exists an ā ∈ A such that

max
(w0,w)∈Sm+

Q(T, x̄, t̄, ā, w0, w) ≤ −θ.

It follows that, setting v(s) = ā ∀s ∈ [0, 1], for a σ̄ sufficiently small and t̄ sufficiently
close to T one has

Q(t(s), z(s), k(s), v∗ ◦ t(s), ξ0(a)(s), ξ(a)(s)) ≤ −θ
2

for every s ∈ [0, σ̄] and every strategy (ξ0, ξ) ∈ Γ̃(t̄, k̄). Integrating both terms, one
obtains ∫ σ

0
l̄(t(s), z(s), v∗ ◦ t(s), ξ0(v)(s), ξ(v)(s)) ds

+ ϕ
(
t(σ), z(σ), k(σ)

)
− ϕ(t̄, x̄, k̄) ≤ −θσ

2

for every σ ≤ σ̄ and every (ξ0, ξ) ∈ Γ̃σ(t̄, k̄). An argument analogous to the one
exploited for V now leads to a contradiction with the RDPP, according to which there
exists a σ̂ such that for every sequence {t̄n} converging to T and every σ < σ̂ one can
find strategies (ξσ0 n, ξ

σ
n) ∈ Γ̃(t̄n, k̄) verifying

∫ σ

0
l̄
(
tσn(s), zσn(s), v∗ ◦ tσn(s), ξσ0 n(v)(s), ξσn(v)(s)

)
+ U

(
tσn(σ), zσn(σ)kσn(σ)

)
− U

(
t̄n, x̄, k̄

)
> −θσ

4
,

with obvious meanings of tσn, z
σ
n , and kσn. This concludes the proof of condition (3) of

Definition 6.1.
The uniqueness property stated in the thesis is a straighforward consequence of

the comparison criterion below, which, in turn, is deduced—via suitable changes of
variable—from Theorem 1.1 of [3].

Remark 6.1. In the proof of the boundary conditions at t̄ = T , an essential role
is played by the fact that at the points of {T} ×Q× [0,K], where V − g ≥ η (resp.,
U − g ≥ η), the DPP for V (resp., U) (and its reparameterized version) holds for
every σ ∈]0, σ̂[, with σ̂ depending just on η (and Q). This fact reflects the essentially
impulsive nature of the problem.

PROPOSITION 6.1 (comparison). Let Gi : Ω → R, i = 1, 2, be continuous and
bounded and assume that G1 is a viscosity subsolution of (LVE) and G2 is a viscosity
supersolution of (LVE) in Ω. Moreover, let us assume that in ∂Ω either G1 ≤ G2 or
G1 is a subsolution of (LVE). Then G1 ≤ G2 in Ω. The same statement holds true if
we replace equation (LVE) with (UVE).

Proof. Let G be a lower bound for both G1 and G2 and, for some q > 0 to be fixed
later, consider the maps Fi defined by

Fi(t, x, k) .=
1

q(1 + t+ k)
log[Gi(T − t, x,K − k) +G+ 1], i = 1, 2.
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Then, setting

H̃−(t, x, k, r, pt, px, pk)

.= min
(w0,w)∈Sm+

max
a∈A

1 + t+ k

w0 + |w|

{
qptw0 − qpx · f̄(T − t, x, a, w0, w) + qpk|w|

− l̄(T − t, x, a, w0, w)
(1 + t+ k) exp(qr)

+ (q − 1)r(w0 + |w|)
}
,

one can easily check that the maps F1 and F2 are a viscosity subsolution and super-
solution of

(LVE′) F + H̃−(t, x, k,F ,∇F) = 0

in ]0, T ] × Rn×]0,K], respectively. Moreover, on ∂Ω, either F1 ≤ F2 or F1 is a
subsolution of (LVE′).

Let us observe that, in view of the hypotheses assumed on l, the map l̄ is bounded.
This implies that for a q sufficiently large the function

r 7→ H̃−(t, x, k, r, pt, px, pk)

is nondecreasing for every (t, x, k, pt, px, pk) ∈ [0, T ]×Θ× [0,K]× R1+n+1.
Hence it is straightforward to check that the Hamiltonian H̃− and the domain Θ

verify the hypotheses of Theorem 1.1 in [3], from which it follows that F1 ≤ F2 on Θ.
By inverting the considered change of (dependent and independent) coordinates,

one obtains the assertion concerning (LVE).
The results concerning (UVE) can be straightforwardly proved by just replacing

H̃− with the Hamiltonian

H̃+(t, x, k, r, pt, px, pk)

.= max
a∈A

min
(w0,w)∈Sm+

1 + t+ k

w0 + |w|

{
qptw0 − qpx · f̄(T − t, x, a, w0, w) + qpk|w|

− l̄(T − t, x, a, w0, w)
(1 + t+ k) exp(qr)

+ (q − 1)r(w0 + |w|)
}
.

As a corollary of Theorem 6.1 we obtain an Isaacs condition, i.e., a sufficient
condition for the game to have a value.

COROLLARY 6.1 (Isaacs condition). If

(IC) H+ = H−,

then the game has a value; i.e., V = U .
Remark 6.2. The case where both the dynamics f and the Lagrangian l are affine

in the unbounded control, which includes the problem investigated in [5] (see section
7), i.e.

f = f0(t, x, v) +
m∑
i=1

fi(t, x, v)ci,

l = l0(t, x, v) +
m∑
i=1

li(t, x, v)ci,

is particularly interesting: indeed, as soon as f0, . . . , fm, l0, . . . , lm are convex in v the
min-max theorem (see e.g., [2]) implies that (IC) is satisfied, so the game has a value.
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7. On a former result concerning a particular case. Barron, Jensen, and
Menaldi [5] have studied the particular case where c is scalar-valued and positive, i.e.
c ∈ C .= R+, and

f(t, x, v, c) = f0(t, x, v) + f1(t, v)c,(7.1)
l(t, x, v, c) = l0(t, x, v) + l1(t, v)c.

The fact that f1 is independent of the state x is crucial. Indeed, this allows the authors
to give a notion of (possibly discontinuous) trajectory even when c is a measure.

Remark 7.1. Incidentally, let us remark that such a trajectory depends strongly
on the values of v at the atoms of the measure c. However, this does not trouble
the dynamic programming approach pursued in [5], for each of these trajectories can
be interpreted as a space-time solution, according to [20]. And this allows one to
interpret these trajectories as elements of the closure—in a suitable topology—of the
set of trajectories corresponding to ordinary controls.

Let us begin by observing that the approach presented in [5] cannot be extended
to some cases of interest, which, instead, are included in our investigation. Indeed,
the arguments of [5] do not apply as soon as f1 depends on x. The main reason for
that relies on the fact that, unless very restrictive commutative conditions are in force
[9], no robust notion of t-parameterized solution can be given (see, e.g., [8], [14], [18],
[19], [25]).

Second, the approach proposed in the present paper, once specialized to the case
under consideration, yields a boundary value problem much more regular than the
one established in [5].

In order to be more precise, let us record the main result in [5] and afterwards let
us specialize Theorem 6.1 to the present case.

THEOREM 7.1 (see [5]). Let us assume that f and l are as in (7.1), and let K = 1,
x ∈ R.

Define the upper Hamiltonian Ĥ+ as

Ĥ+(t, x, px, pk) .= min
a∈A(t,px,pk)

{px · f0(t, x, a) + l0(t, x, a)} ,

where

A(t, pk, px) .= {a ∈ A : px · f1(t, a) + l1(t, a) + pk ≤ 0} .

If A(t, px, pk) = ∅ then one sets Ĥ+ = +∞.
Moreover, define the lower Hamiltonian Ĥ− as

Ĥ−(t, x, px, pk) .= min {px · β0 + δ0 : (β0, δ0, β1, δ1) ∈ R(t, x, px, pk)} ,

where

F(t, x) .= co
{(
f0(t, x, a), l0(t, x, a), f1(t, a), l1(t, a)

)
: a ∈ A

}
,

R(t, x, px, pk) .= {(β0, δ0, β1, δ1) ∈ F(t, x) : pxβ1 + δ1 + pk ≤ 0} .

The upper value U (resp., the lower value V) is the unique continuous (viscosity)
solution in ]0, T [×R×]0, 1[ of

(ÛV̂Ê) −∇tu− Ĥ+(t, x,∇xu,∇ku) = 0
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(resp.,

(L̂V̂Ê) −∇tu− Ĥ−(t, x,∇xu,∇ku) = 0)

in ]0, T [×R×]0, 1[ that satisfies the boundary conditions

(TC)

u(T, x, k) = min
a∈A

max
k≤χ≤1

{
g
(
x+ f1(T, a)(χ− k)

)
+ l1(T, a)(χ− k)

}
(

resp., u(T, x, k) = max
k≤χ≤1

min
a∈A

{
g
(
x+ f1(T, a)(χ− k)

)
+ l1(T, a)(χ− k)

})
and

(BC) u(t, x, 1) = r(t, x),

where r(t, x) is the value function of the minimum problem

minimize
a(·)∈A(t)

∫ T

t

l0(τ, x(τ), a(τ)) dτ,
dx

dτ
= f0(τ, x(τ), a(τ)), x(t) = x.

Remark 7.2. In the previous theorem an extension (due to Ishii [30]) of the
original notion of viscosity solution is adopted, in that the Hamiltonians Ĥ+ and Ĥ−

are discontinuous.
On the other hand, by specializing Theorem 6.1 to the problem considered in [5]

we obtain the following theorem.
THEOREM 7.2. The upper value U (resp., the lower value V) is the unique viscosity

solution in Ω .= [0, T [×R× [0, 1[ of the equation

(UVE) −H+(t, x,∇t,∇xu,∇ku) = 0

(resp.,

(LVE) −H−(t, x,∇t,∇xu,∇ku) = 0),

which satisfies the following boundary conditions: (1) for every (x, k) ∈ R × [0,K],
one has

U(T, x, k) ≥ g(x) (resp., V(T, x, k) ≥ g(x)].

(2) U (resp., V) is a viscosity subsolution of (UVE) (resp., of (LVE)) on ∂′Ω and at
the points of ∂TΩ where U − g > 0 (resp., V − g > 0).

Four main facts can be pointed out from comparing the two results.
1. Unlike the Hamiltonians Ĥ+ and Ĥ− exploited in [5], the Hamiltonians H+

and H− here considered are continuous.
2. The domains of minimization involved in the definitions of Ĥ+ and Ĥ− depend

on the gradient of the solution (this happens also in the minimax control
problem [4], which in fact can be considered (see [5]) as a particular case of
this problem); on the contrary, the domain involved in the definitions of H+

and H− is a constant, compact set.
3. The boundary conditions of (BC) need the resolution of an auxiliary bound-

ary value problem and, moreover, condition (TC) for the lower value does
not coincide with condition (TC) for the upper value; on the contrary, the
boundary conditions (1) and (2) established here, besides being common to
V and U , involve just a subsolution relation and a Dirichlet inequality.

4. The Isaacs condition established in [5] involves the final cost function g,
whereas the Isaacs condition found here (Corollary 6.1) has a standard form;
i.e., it reduces to the equality of the lower Hamiltonian and the upper one.
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Abstract. The asymptotic behavior of a distributed, asynchronous stochastic approximation
scheme is analyzed in terms of a limiting nonautonomous differential equation. The relation between
the latter and the relative values of suitably rescaled relative frequencies of updates of different
components is underscored.
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1. Introduction. There has been a resurgence of interest in stochastic approx-
imation algorithms, particularly as mechanisms for learning systems. They can, for
example, be a learning algorithm for neural networks [13] or a model of learning by
boundedly rational agents in a macroeconomic system [20], in addition to their tra-
ditional applications in adaptive engineering systems [2]. These applications call for
a distributed, asynchronous implementation of stochastic approximation schemes. In
engineering applications, this is a natural consequence of dealing with large intercon-
nected systems. In macroeconomics, it is simply the reality of life. It is not, however,
apparent that the traditional analysis of these schemes, extensively dealt with in [2],
automatically holds ground in the new scenario. Prompted by these and similar con-
cerns, there have been studies of distributed implementations of these algorithms [17,
18, 21, 22]. (See [3] for an extensive account of parallel distributed algorithms in
general). The present work is in the same spirit, but with some crucial differences.

1. Our model of asynchronism postulates a set-valued random process that marks
the indices to be updated at each iteration. This clumping of indices into sets can
be an artifice as long as causal relationships are not violated; thus the set-up is very
general indeed. We impose on this process a natural condition that requires all indices
to be updated comparably often in a precise sense.

2. In addition, we allow random, possibly nonstationary and unbounded delays
that are required to satisfy a mild conditional moment condition.

3. The analysis depends on proving that the algorithm asymptotically tracks a
nonautonomous ODE, in contrast to the traditional autonomous “ODE limit.” In
particular, it gives a handle on situations when the latter may not be feasible.

4. The ODE in question differs from the traditional one in that each component
of the driving vector field is now weighted by a time-varying nonnegative scalar.
These scalars add to 1 and may be interpreted as relative frequencies of updates of
different components after suitable time-scaling. This clearly brings out the desired
relationships between update schemes for different components and paves the way for
analyzing situations where they are not desirable (see remark 4 of the conclusion).
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The paper is organized as follows. The remainder of this section describes the
problem framework. The next section states the key assumptions and their immediate
consequences. The third section provides the convergence analysis. The final section
highlights some further possibilities.

Let TS (for tapering stepsize) denote the set of sequences {a(n)} in (0,1) satisfying

(1.1)
∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

The standard stochastic approximation algorithm is the recursive scheme in Rd, d ≥ 1,
described by

(1.2) X(n+ 1) = X(n) + a(n)F (X(n), ξ(n)),

where {a(n)} ∈ TS, X(n) = [X1(n), . . . , Xd(n)]T ∈ Rd with a prescribed X(0),
F (·, ·) : Rd × Rk → Rd, and {ξ(n)} is a stationary random process in Rk. For
simplicity, we take {ξ(n)} to be independently and identically distributed (i.i.d.) with
a common law ψ (say). The ith row of this vector iteration reads

(1.3) Xi(n+ 1) = Xi(n) + a(n)Fi(X1(n), . . . , Xd(n), ξ(n)).

A distributed but synchronous version of (1.2) could be as follows. Let I = {1, 2, . . . , d}
and S be a collection of nonempty subsets of I that cover I. Let {Yn} be an S-valued
random process that selects the coordinates to be updated at time n, and for each n,
let τij(n), i 6= j ∈ I, be random variables taking values in {0, 1, . . . , n} that represent
communication delays. We set τii(n) = 0 ∀i, n. The synchronous distributed version
of (1.3) is then

(1.4) Xi(n+ 1) = Xi(n) +a(n)Fi(X1(n− τi1(n)), . . . , Xd(n− τid(n)), ξ(n))I{i ∈ Yn}

for i ∈ I, n ≥ 0. Special instances of (1.4) were studied in [5, 6]. The reason this
is a synchronous version is that the decision to use stepsize a(n) at time n by the
processor updating the ith component (say) presupposes the availability of a global
clock to all processors. This is not reasonable in an asynchronous environment. The
asynchronous version we propose is as follows. Let {a(n, i)} ∈ TS, i ∈ I, and define

ν(n, i) =
n∑

m=0

I{i ∈ Ym}, i ∈ I, n ≥ 0,

a(n, i) = a(ν(n, i), i), i ∈ I, n ≥ 0.

The first of these is the total number of times the ith component was updated up
until time n. Assuming that each component of the iteration is assigned to one and
only one processor once and for all, a(n, i) is a random variable known to the ith
processor at time n. The proposed algorithm is

(1.5) Xi(n+1) = Xi(n)+a(n, i)Fi(X1(n−τi1(n)), . . . , Xd(n−τid(n)), ξ(n))I{i ∈ Yn}

for i ∈ I, n ≥ 0. This is the algorithm analyzed in this paper, under the assumptions
stipulated in the next section. We conclude this section with the remark that even
the implicit presence of an unobserved global clock in the background in (1.5) is not
really needed. The clumping of updated coordinates into Ym’s could be a complete
artifice as long as causal relationships are not violated and the additional assumptions
of the next section (notably (A3)) remain valid.
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2. Preliminaries. The additional assumptions and their consequences that we
present in this section concern, respectively, the stepsize routines {a(n, i)}, the sam-
pling process {Yn}, the communication delays {τij(n)}, and the function F . We
proceed in that order. These assumptions, (A1)–(A5), are enforced throughout the
paper without further mention.

Let ITS (for “ideal tapering stepsize”) denote the subset of TS consisting of {a(n)}
satisfying:

(i) a(n+ 1) ≤ a(n) from some n onwards;
(ii) there exists r ∈ (0, 1) such that

(2.1)
∑
n

a(n)1+q <∞, q ≥ r;

(iii) for x ∈ (0, 1),

(2.2) sup
n
a([xn])/a(n) <∞,

where [· · ·] stands for the integer part of “· · ·”;
(iv) for x ∈ (0, 1) and A(n) ,

∑n
i=0 a(i),

(2.3) A([yn])/A(n)→ 1

uniformly in y ∈ [x, 1].
By (i), (2.2) may be strengthened to

(2.4) sup
n

sup
y∈[x,1]

a([yn])/a(n) <∞.

It is easy to construct examples of {a(n)} in TS which violate (2.2). Condition (iv) can
be given an alternative formulation. Let h : R+ → R+ be an eventually nonincreasing
function satisfying h(n) = a(n), n ≥ 0. Then (2.3) is equivalent to

(2.5) lim
t→∞

∫ yt
0 h(s)ds∫ t
0 h(s)ds

= 1,

which, by l’Hôpital’s rule, reduces to

lim
t→∞

yh(yt)/h(t) = 1.

One needs this to hold uniformly in y ∈ [x, 1]. One sufficient condition for this would
be that the derivative of the left-hand side of (2.5) in y, which is th(yt)/

∫ t
0 h(s)ds, be

bounded uniformly in y, t, ensuring the equicontinuity in y for the ratio in (2.5). It
is not clear whether (iv) is implied by (i)–(iii). Examples of {a(n)} satisfying (i)–(iv)
are {1/n}, {1/n logn}, and {logn/n}, with suitable modification for n = 0, 1 where
needed.

One property of {a(n)} ∈ TS that we shall need later is the following.
LEMMA 2.1. For s ∈ (0, 1), a(n)−s/n→ 0.
Proof. It suffices to prove that (a(n)nx)−1 → 0 for x = 1/s > 1, or equivalently,

that (a(n) + n−x)/a(n)→ 1. Let h1, h2 : R+ → R+ be continuous functions linearly
interpolated from h1(n) = a(n) + n−x, h2(n) = a(n), n ≥ 0. Since

∫ t
0 h1(y)dy → ∞

as t→∞ and
∫∞

1 t−xdt <∞, we have

lim
t→∞

∫ t
0 h2(y)dy∫ t
0 h1(y)dy

= 1.

The claim now follows from l’Hôpital’s rule.
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Our first assumption then is:
(A1) {a(n, i)} ∈ ITS for i ∈ I.
Next, introduce for n ≥ 0 the σ-fields Fn = σ(X(m), Y (m),m ≤ n, τij(m), ξ(m),

m < n, i, j ∈ I) and Gn = σ(X(m), Y (m), τij(m), ξ(m),m ≤ n, i, j ∈ I). Our
assumption concerning {Yn} is as follows.

(A2) There exists a δ > 0 such that for any A, B ∈ S, the quantity

(2.6) P (Yn+1 = B/Yn = A,Gn)

is either always zero almost surely (a.s.) or always exceeds δ a.s. That is, having picked
A at time n, picking B at time n+1 is either improbable or probable with a conditional
probability of at least δ, regardless of n and the “history” Gn. Furthermore, if we draw
a directed graph with node set S and an edge from A to B whenever (2.6) exceeds
δ a.s., the graph is irreducible; i.e., there is a directed path from any A ∈ S to
any B ∈ S. (As will become apparent later, this may be replaced by the weaker
requirement that every communicating class of the directed graph comprises sets that
together cover I.)

This has the following important consequence. Let P(· · ·) denote the space of
probability vectors on “· · · .”

LEMMA 2.2. There exists a deterministic constant ∆ > 0 such that for any A ∈ S,

(2.7) lim inf
n→∞

1
n

n−1∑
m=0

I{Ym = A} ≥ ∆ a.s.

Proof. For A ∈ S, let DA = {B ∈ S| (2.6) exceeds δ a.s.} and VA = {u ∈
P(DA)|u(B) ≥ δ ∀B ∈ DA}, V =

∏
A VA. Define p : S × S × V → [0, 1] by

p(A,B, u) = uA(B), where uA is the Ath component of u. Define V -valued random
variables {Zn} by

ZnA(B) = P (Yn+1 = B/Gn)I{Yn = A}+ ψAI{Yn 6= A},

where ψA is a fixed element of VA for A ∈ S. Then (2.6) equals p(A,B,Zn) and
{Yn} may be viewed as an S-valued controlled Markov chain with action space V
and transition probability function p. (This is a pure artifice for the sake of the
proof. It is in no way implied that {Zn} is an actual control process.) In particular,
this allows us to conceive of a stationary policy π associated with a map π: S →
V . (A1) implies, in particular, that {Yn} will be an ergodic Markov chain under a
stationary policy π with a corresponding stationary distribution νπ ∈ P(S). Then
the left-hand side of (2.7) a.s. exceeds minπ νπ(A) > 0 by Lemmas 1.2 and 2.1 of
[4, pp. 56, 60].

For the communication delays, we assume the following. (Recall the r in (2.1).)
(A3) τij(n) ∈ {0, 1, . . . , n}, τii(n) = 0 ∀i, a. There exist b > r/(1− r), C > 0 such

that

(2.8) E[(τij(n))b/Fn] ≤ C a.s. ∀i, j, n.

(In particular, we do not require the delays to be either bounded or stationary.) Also,
{ξ(n)} is i.i.d. and independent of {X0, ξ(m), τij(m),m < n} for all n.

Next come the conditions on F .
(A4) F is assumed to be measurable and uniformly Lipschitz in the first argument;

i.e., for some K > 0,

‖F (x, z)− F (y, z)‖ ≤ K‖x− y‖ ∀ x, y, z.
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Other conditions on F will be given in terms of the function f : Rd → Rd defined
by

(2.9) f(x) =
∫
F (x, y)ψ(dy).

Under our conditions on F , f is Lipschitz with Lipschitz constant K. The traditional
analysis of (1.2) [2] proceeds by showing that it asymptotically tracks the ODE

(2.10) ẋ(t) = f(x(t)),

which in turn has trajectories converging to J = {x|f(x) = 0}.
(A5) J is assumed to be compact and nonempty.
We shall also have reason to consider a related nonautonomous ODE. Let D

denote the set of diagonal d× d matrices with nonnegative diagonal entries that add
to 1. For a > 0, say that M = diag(m1, . . . ,md) is a-thick if mi ≥ a ∀i. The ODE in
question is

(2.11) ẋ(t) = M(t)f(x(t)),

where t→M(t) is a D-valued measurable process.
We consider two scenarios.
Case 1: Strict Liapunov systems. A continuously differentiable function V : Rd →

R+ is said to be a strict Liapunov function for (2.10) if ∇V. f < 0 outside J . Call
(2.10) a strict Liapunov system if it has bounded trajectories and a strict Liapunov
function V exists. The latter implies the former if V (x)→∞ as ‖x‖ → ∞, which we
assume to hold. (Call this assumption (A6).) Examples of such systems can be found
among gradient systems and their variants, certain systems arising in neural networks
[14], and analog fixed point algorithms wherein f(x) = g(x) − x and g is either a
contraction under a ‖. ‖p-norm for p ∈ [1,∞] or nonexpansive under a ‖. ‖p- norm for
p ∈ (1,∞). (Here V (. ) = ‖.−x∗‖p, where x∗ ∈ J , will do. For p = ∞, this is not
continuously differentiable, but this does not pose any problems for contractions [7].)

Finally, a strict Liapunov system as above will be said to be a-robust for some
a > 0 if ∇V.Mf < 0 outside J for any a-thick M ∈ D.

Given T, δ > 0, a (T, δ)-perturbation of (2.10) (resp., (2.11)) is a function y :
R+ → Rd such that there exist 0 = T0 < T1 < · · · < Tn ↑ ∞ and solutions xj(t),
t ∈ [Tj , Tj+1], j ≥ 0, of (2.10) (resp., (2.11)) such that Tj+1 − Tj ≥ T for j ≥ 0 and

‖y(t)− xj(t)‖ < δ, Tj ≤ t ≤ Tj+1, j ≥ 0.

For ε > 0, let Jε = {x ∈ Rd| ‖x− y‖ < ε for some y ∈ J}.
LEMMA 2.3. Under (A6), we have: (a) For any T, ε > 0, there exists a δ0 =

δ0(T, ε) > 0 such that for δ ∈ (0, δ0), any (T, δ)-perturbation of (2.10) converges to
Jε. (In particular, solutions of (2.10) converge to J .)

(b) Suppose that (2.10) is a-robust for some a > 0 and M(t) in (2.11) is a-thick
for almost every t. Then, for any T, ε > 0, there exists a δ0 = δ0(T, ε, a) > 0 such
that for δ ∈ (0, δ0), any (T, δ)-perturbation of (2.11) converges to Jε. (In particular,
the solutions of (2.11) converge to J .)

These are straightforward adaptations of Theorem 1 of [14, p. 339].
Case 2: ∞-nonexpansive maps. In this case f(x) = g(x) − x, where g is ∞-

nonexpansive, i.e., ‖g(x)− g(y)‖∞ ≤ ‖x− y‖∞, x, y ∈ Rd. Thus J is the set of fixed
points of g. This case is important in dynamic programming applications [3, 7].
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For this case, we have the following analog of Lemma 2.3.
LEMMA 2.4. The conclusions of Lemma 2.3(a) continue to hold. Those of

Lemma 2.3(b) hold if M(t) is a-thick for almost every t, for some a > 0.
This is proved in Theorem 2.1 and Corollary 2.2 of [5].

3. Convergence. We start by establishing a link between (1.4) and (2.11). Our
first observation is that we may equivalently consider the recursion

(3.1) Xi(n+1) = Xi(n)+a(n, i)Fi(Xi(n−τij(n)), . . . , Xd(n−τid(n)), ξ̃(n))I{ϕn = i},

where {ϕn} is an I-valued random process satisfying the following statement. There
exists a deterministic constant η > 0 such that

(3.2) lim inf
n→∞

1
n

n−1∑
m=0

I{ϕn = i} ≥ η a.s. ∀i ∈ I

and ξ̃(n) = ξ(k(n)) for a nondecreasing map n → k(n), satisfying k(n + 1) − k(n) ∈
{0, 1}.

This is achieved simply by unfolding each iteration as follows.
Let Yn = {i1, . . . , ic(n)} (say) with the elements arranged in ascending order.

Replace the iteration (1.4) by c(n) distinct iterations such that the jth iteration
among them updates only the ijth component in accordance with (1.4). Next, relabel
the iteration index and the delays to obtain a correspondence with (3.1). Then (3.2)
is an immediate consequence of Lemma 2.2. Note that this blows up the delays at
most d fold, thus still retaining (A3). Note also that for m > n, ϕm = ϕn implies
k(m) > k(n). With these considerations, we proceed to analyze (3.1). We start with
some preliminaries.

Let U be the space of P(I)-valued trajectories µ = {µt, t ≥ 0} with the coarsest
topology that renders continuous the maps µ →

∫ T
0 h(t)µt(i)dt for T ≥ 0, i ∈ I,

h ∈ L2[0, T ]. U is compact metrizable. Say that µ ∈ P(I) is α-thick for some α > 0
if µ(i) ≥ α ∀i. Say that µ ∈ U is α-thick, α > 0, if µt is so for almost every t. Say
that µ (resp., µ) is thick if it is α-thick for some α > 0.

LEMMA 3.1. (a) For α > 0, {µ|µ is α-thick} is compact in U . (b) The map
(µ, x)→ x(. ) : U ×Rd → C([0,∞);Rd) defined via

(3.3) ẋ(t) = Mµ(t)f(x(t)), x(0) = x,

with Mµ(t) = diag(µt(1), . . . , µt(d)), is continuous.
Proof. (i) For i ∈ I, t > s, n ≥ 1, and any α-thick µ, α > 0,∫ t

s

µy(i)dy ≥ α(t− s).

The relation is preserved under limits in U , implying the claim.
(ii) Let (µn, xn)→ (µ∞, x∞). For n ≥ 1, let xn(. ) satisfy

(3.4) ẋn(t) = Mµn(t)f(xn(t)), xn(0) = xn.

Using the Gronwall lemma and the Arzela–Ascoli theorem, one verifies that {xn(. )} is
relatively compact in C([0,∞);Rd), and a straightforward limiting argument (keeping
in mind our topology on U) shows that any limit x∞(. ) thereof must satisfy (3.4) with
n =∞. The claim follows.
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Let ã(n) = a(n, ϕn) and rewrite (3.1) as

X(n+ 1) = X(n) + ã(n)W (n)

for appropriately definedW (n) = [W1(n), . . . ,Wd(n)]T . Redefine Fn by Fn = σ(X(m),
m ≤ k−1(n), ξ(m), m < k−1(n), τij(m), m < n, ϕm, m ≤ n), where k−1(n) =
min{j|k(j) = n}. Set Ŵ (n) = E[W (n)/Fn], n ≥ 0, the conditioning bring compo-
nentwise. Write Ŵ (n) = [Ŵ1(n), . . . , Ŵd(n)]T . Define f i : Rd → Rd by f ij(x) =
fi(x)δij , i, j ∈ I, δij being the Kronecker delta. Let b(n) = maxi a(n, i), n ≥ 0. Let
Q denote the set of sample points for which X̂ , supn ‖X(n)‖ <∞.

LEMMA 3.2. {b(n)} satisfies
∑
n b(n)1+r <∞ a.s., and for a ∈ (0, 1],

sup
n

sup
α∈[a,1]

b([αn])/b(n) <∞ a.s.

Proof. By (2.4) and (3.2), supn a(n, i)/a(n, i) < ∞ a.s., i ∈ I. Combining this
with property (2.1) for {a(n, i)}, we have

∑
a(n, i)1+r < ∞ a.s. The first claim

follows. The second follows easily from (2.4) applied to {a(n, i)}.
LEMMA 3.3. Almost surely on Q, there exist K1 > 0, N ≥ 1 (random) such that

for n ≥ N,

‖fϕn(X(n))− Ŵ (n)‖ < K1b(n)r.

Proof. Consider ω ∈ Q. Let K2 be an upper bound on {‖f(x)‖∞ | ‖x‖ ≤ X̂}.
Let W̃i(n) = fϕni (X1(n − τi1(n)), . . . , Xd(n − τid(n))). Let c = 1 − r. For i ∈ I, we
have

(3.5)

|fϕni (X(n))− Ŵi(n)| ≤ E[|fϕni (X(n))− W̃i(n)|I{τij(n) ≤ b(n)−c ∀i, j}/Fn]

+ E[|fϕni (X(n))− W̃i(n)|I{τij(n) > b(n)−c for some i, j}/Fn] a.s.

By (A3) and the conditional Chebyshev inequality, the second term is a.s. bounded
by 2K2Cd

2b(n)bc. Let n = [b(n)−c]. By Lemma 2.1, n is o(1) a.s. as n → ∞, and
outside a zero probability set, we may pick n large enough so that n > n. Then for
m ≤ n,

‖X(n)−X(n−m)‖ ≤ 2K2d
n∑

j=n−n
b(j) ≤ K3b(n)1−c

for a suitable (random) K3 > 0, by the above lemma. Thus the first term in (3.5) is
bounded by K4b(n)r for a suitable (random) K4 > 0. Since b > r/(1− r), the claim
follows.

Let T > 0. Define t0 = T0 = 0, tn =
∑n−1
m=0 ã(m), n ≥ 1, and Tn = min{tm|tm ≥

Tn−1 + T}, n ≥ 1. Then Tn = tm(n) for a strictly increasing sequence {m(n)}. Let
In = [Tn, Tn+1], n ≥ 0. Define xn(t), t ∈ In, by xn(Tn) = X(m(n)) and

xn(tm(n)+k+1) = xn(tm(n)+k) + ã(m(n) + k)fϕm(n)+k(xn(tm(n)+k)),

with linear interpolation on each interval [tm(n)+k, tm(n)+k+1]. Define x(t), t ≥ 0, by
x(tn) = X(n) with linear interpolation on each interval [tn, tn+1].
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LEMMA 3.4. limn→∞ supt∈In ‖x(t)− xn(t)‖ = 0 a.s. on Q.
Proof. Let n ≥ 1. For i ≥ m(n), we have

x(ti+1) = x(ti) + ã(i)fϕi(x(ti)) + ã(i)(Ŵ (i)− fϕi(x(ti))) + ã(i)(W (i)− Ŵ (i)).

Let M i =
∑i
j=0 ã(j)(W (j) − Ŵ (j)) and λi = M i − Mm(n), i ≥ m(n). Also, let

Mk
i =

∑k
j=0 ã(j)(W (j) − Ŵ (j))I{ϕj = k}, 1 ≤ k ≤ d. Recall that m > n and

ϕm = ϕn implies k(m) > k(n). Then, for each k, {Mk
i ,Fi} is a zero mean–bounded

increment vector martingale, and the quadratic variation process of each of its compo-
nent martingales is a.s. convergent onQ. By Proposition VII-3-(c) of [19, pp. 149–150],
each {Mk

i } and hence {M i} converges a.s. on Q. Fix a sample point for which this
convergence holds and let ε > 0. Then supi≥m(n) ‖λi‖ < ε/2 for sufficiently large n.
Let x̂i+1 = x(ti+1) − λi, i ≥ m(n), with x̂m(n) = X(m(n)). Then, for i ≥ m(n), we
have

x̂i+1 = x̂i + ã(i)fϕi(x̂i) + ã(i)(fϕi(x̂i + λi−1)− fϕi(x̂i)) + ã(i)(Ŵ (i)− fϕi(x(ti))).

Also,

xn(ti+1) = xn(ti) + ã(i)fϕi(xn(ti)).

Fix ω ∈ Q, where the foregoing and Lemma 3.3 hold. Subtracting and using
Lemma 3.3, we have, for n sufficiently large,

‖x̂i+1 − xn(ti+1)‖ ≤ (1 +Kã(i))‖x̂i − xn(ti)‖+ ã(i)‖λi−1‖K +K1ã(i)b(i)1+r.

By increasing n if necessary, we may suppose that∑
i≥n

b(i)1+r < ε/2.

Then using the inequality 1 + x ≤ exp(x) and iterating, we have

sup
m(n)≤i≤m(n+1)

‖x̂i − xn(ti)‖ ≤ eK(T+1)(K1 +K(T + 1))ε

for sufficiently large n. Since ‖x̂i − x(ti)‖ < ε/2, i ≥ m(n) for sufficiently large
n, supm(n)≤i≤m(n+1) ‖x(ti) − xn(ti)‖ ≤ K̃ε for a suitable K̃ > 0. Since ε > 0 was
arbitrary, the claim follows on noting that both x(. ) and xn(. ) are linearly interpolated
from their values at {ti}.

Next, define µ ∈ U by µt = the Dirac measure at ϕn for t ∈ [tn, tn+1), n ≥ 0.
Define x̃n(t), t ∈ In, by x̃n(tm(n)) = x(tm(n)) and

(3.6) ˙̃x
n
(t) = Mµ(t)f(x̃n(t)), t ∈ In.

LEMMA 3.5. limn→∞ supt∈In ‖x̃n(t)− xn(t)‖ = 0 a.s.
Proof. This follows easily from the Gronwall inequality.
For µ as above, define µt = {µt+s, i ≥ 0} ∈ U for t ≥ 0. Combining the foregoing

with Lemmas 2.3 and 2.4, we have the following theorem.
THEOREM 3.1. (a) Suppose there exists an a > 0 such that (2.10) is an a-robust

strict Liapunov system, (A6) applies, and all limit points of µt in U as t → ∞ are
a-thick a.s. Then the algorithm converges to J a.s. on Q.
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(b) For the ∞-nonexpansive case (Case 2), suppose all limit points of µt in U as
t→∞ are a-thick for some a > 0, a.s. Then the algorithm converges to J a.s. on Q.

Remark. For Case 1 without the a-robustness hypothesis, the above analysis
still gives some clue about the convergence of the algorithm: if all limit points of µt

are a-thick a.s., the algorithm will converge to the smallest closed set outside which
∇V.Mf < 0 for a-thick M .

Clearly, one would like P (Q) = 1 = P (X̂ < ∞). One observes that the bound-
edness of X̂ is used twice: in Lemma 3.3 and to prove almost sure convergence on
Q of {Mn}. In either case, it is unnecessary if f (or, in Case 2, g) is bounded.
If not, the problem of establishing P (Q) = 1 remains. This is so even for the
traditional “centralized” algorithm, and it is not unusual to find results that state
convergence if the iterates remain bounded or visit a neighborhood of the desired
attractor infinitely often, a.s. There is no general scheme for showing P (Q) = 1.
There are, however, problem-specific techniques for special problem classes. We list
a few recent ones below without details, referring the reader to the original works for
those.

(i) Martingale methods. These usually take the form of establishing the “almost
supermartingale” property [19, p. 33] for {V (X(n))}, where V : Rd → R+ is a
continuously differentiable “stochastic Liapunov function” satisfying V (x) → ∞ as
‖x‖ → ∞. This leads to the almost sure boundedness of {V (X(n))}, hence of {X(n)}.
For strict Liapunov systems, the Liapunov function therein will itself suffice in most
cases. The adaptation of this approach to the asynchronous case, however, is rendered
difficult by the presence of delays. Specific instances of it have been worked out, a
good example being the stochastic gradient schemes discussed in [3, section 7.8]. For
the “centralized” case without delays, see [2, p. 239].

(ii) Projection and related schemes. One way to escape the boundedness issue is
to alter the algorithm by projecting the iterates back onto a prescribed, large bounded
set whenever they exit from the same. The trade-off is that the limiting ODE becomes
more complicated. It is now confined to the said set and thus involves a “reflection at
the boundary” of the same in an appropriate sense. The analysis of such schemes for
the centralized case is by now standard, and an excellent exposition appears in [16,
pp. 191–194]. It seems possible to extend it to the present case. (See [1] for a specific
instance.)

In an ingenious boundedness proof for the case when F (x, y) is homogeneous of
degree 1 in its first argument (important in certain “learning” algorithms), Jaakola,
Jordan, and Singh [15] use the almost sure convergence of the algorithm with rescaling
to deduce the almost sure boundedness of the one without. See [1] for some extensions
of this idea and application to a specific asynchronous situation.

In a somewhat similar spirit, but using different techniques, Chen [8] discusses
stabilization of the (centralized) algorithm by truncating the iterates while slowly
increasing the truncation bounds.

(iii) Tsitsiklis conditions. For Case 2 (nonexpansive maps) studied above, Tsit-
siklis [21] gives a remarkable set of conditions for almost sure boundedness when
additional structure is available, such as an appropriate monotonicity property of
the map or contraction property under a suitable norm. These are very useful for
applications arising from dynamic programming.

In some special cases (e.g., when F (· , y) has a common fixed point), one may
adapt the conditions of [3, p. 433], for deterministic algorithms to prove almost sure
boundedness. See [5] for an instance of this.
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In [5], almost sure a-thickness of the limit points of {µt} for a suitable a >
0 is established for the synchronous case. That argument does not follow for the
asynchronous case. In fact, it will soon become clear that such a result need not hold
in general, and whether it does depends crucially on the relationships between the
sequences {a(n, i)} ∈ ITS, i ∈ I. We now consider an important special case where
things work out.

Say that the family {a(n, i)}, i ∈ I, is balanced if there exist aij > 0, i, j ∈ I, such
that

lim
n→∞

∑n
m=0 a(m, j)∑n
m=0 a(m, i)

= aij .

Equivalently, if hi, hj are continuous, eventually nonincreasing functions R+ → Rd

that restrict to {a(n, i)}, {a(n, j)}, respectively, at integer values of their arguments,
then

(3.7) lim
t→∞

∫ t
0 hj(s)ds∫ t
0 hi(s)ds

= aij .

Certain relations between aij ’s are obvious: aii = 1, aik = aijajk, aji = 1/aij . An
important special case is aij = 1 ∀i, j, which would be true, e.g., when all {a(n, i)}, i ∈
I, are identical. Let β(i) = a1i/a11 and β(i) = β(i)/

∑
j β(j). Then β(i) ∈ (0, 1) ∀i

and
∑
i β(i) = 1. Also aij = β(j)/β(i) ∀i, j. Set a = minβ(i).

THEOREM 3.2. If {a(n, i)}, i ∈ I, are balanced, the conclusions of Theorem 3.1(b)
hold. Those of Theorem 3.1(a) hold if, in addition, a ≤ a.

Proof. For i ∈ I, let q(i, n) =
∑n
m=0 I{ϕm = i}. By (3.2),

(3.8) lim inf
n→∞

q(i, n)/n ≥ η a.s., i ∈ I.

Fix i, j ∈ I. Then, for z > 0,

lim
t→∞

∫ t
z
µs(j)ds∫ t

z
µs(i)ds

= lim
n→∞

∑q(j,n)
m=0 a(m, j)∑q(i,n)
m=0 a(m, i)

= lim
n→∞

∫ q(j,n)
0 hj(s)ds∫ q(i,n)
0 hi(s)ds

= lim
n→∞

∫ q(j,n)
0 hj(s)ds∫ n

0 hj(s)ds
·
∫ n

0 hj(s)ds∫ n
0 hi(s)ds

·
∫ n

0 hi(s)ds∫ q(i,n)
0 hi(s)ds

= aij a.s.

uniformly in z in a compact interval, by (2.5) and (3.8).
Thus, for x > 0,

lim
t→∞

∫ x
0

∫ t
0 µs+y(j)dsdy∫ x

0

∫ t
0 µs+y(i)dsdy

= lim
t→∞

∫ t
0

∫ x
0 µs+y(j)dsdy∫ t

0

∫ x
0 µs+y(i)dsdy

= aij a.s.

By l’Hôpital’s rule,

lim
t→∞

∫ x
0 µt+y(j)dy∫ x
0 µt+y(i)dy

= aij a.s.
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It follows that, a.s., any limit point µ∗ of {µt} in U as t→∞ must satisfy
∫ x

0 µ
∗
t (j)dt/∫ x

0 µ
∗
t (i)dt = aij . Then so will µ∗t, t ≥ 0. Since x > 0 was arbitrary, we have

µ∗t (j)/µ
∗
t (i) = aij for almost every t, where we may drop the “almost every t” by

taking a suitable modification. Then we must have µ∗t (i) = β(i) ∀i, t, and the
matrix Mµ∗(t) is the constant diagonal matrix M∗ = diag(β(1), . . . , β(d)). The rest
is easy.

Remark. In the latter case, one may in fact replace the a-robustness condition
and the condition a ≤ a by the simpler condition ∇V.M∗f < 0 outside J .

In particular, if {a(n, i)} are identical, Mµ∗ is 1/d times the identity matrix,
implying that the rescaled time axis is apportioned equally to all components. One
may dub this the “asymptotic equipartition of time.”

4. Conclusions. The foregoing analysis raises several interesting issues, which
are listed below.

1. We have not presented any results on the convergence rate. For the ODE,
the rate of convergence to Jε for ε > 0 could be gleaned from the Liapunov function
and would be eventually mimicked by the interpolated algorithm x(·). There are two
catches here. One is that “eventually” could be a long way into the future. Second, the
passage from {X(n)} to x(·) involves a time-scaling n→ t(n), which has to be inverted
to obtain the actual convergence rate of {X(n)}. These aspects need further study.

2. It seems plausible that one could retain the above results if (3.7) were replaced
by the weaker requirement that the corresponding liminf be bounded away from zero.
One cannot then expect {µt} to a.s. converge to a fixed element, but it is conjectured
that one will still retain the property that all limit points of {µt} in U are a-thick for
some a > 0.

3. In engineering applications, {a(n, i)} are design parameters and can be chosen
to be balanced. This may not, however, be so in “emergent” computations or when
(1.4) is merely a computational paradigm for a natural process such as a macroeco-
nomic learning system. An interesting problem, then, is to let each agent (processor)
“learn” its stepsize scheme in real time based on observations of stepsizes used by, say,
“neighboring” agents. One may then try to show that under reasonable conditions,
this leads to balanced schemes.

4. If we had allowed some of the aij ’s to be zero, it is clear that the corresponding
diagonal elements of M∗ will be zero and M∗ is no longer thick. This reflects different
time scales in the speed of adjustment of different learners. It would be interesting to
analyze this situation using the theory of singularly perturbed differential equations.

5. If (1.2) had no extraneous randomness, i.e., F (X(n), ξ(n)) = H(X(n)) ∀n for a
suitable H, the foregoing shows that a stepsize scheme from ITS suppresses the effects
of communication delays in deterministic recursions under a mild conditional moment
condition (A3). This is in contrast to the usual role of ITS as a pure noise-suppressing
mechanism. Compare this with the fact that even linear recursions with constant
stepsize show very complex behavior in the presence of communication delays [12].

6. Yet another possibility to explore is the use of the Wentzell–Freidlin theory of
small noise asymptotics [10] to get a dynamic picture of the behavior of the algorithm
in the vicinity of J , in particular, to see if it favors certain points in J . This is in the
spirit of some recent work on annealing algorithms [11] and equilibrium selection in
evolutionary games [9].
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BOUNDARY VALUE PROBLEMS AND OPTIMAL BOUNDARY
CONTROL FOR THE NAVIER–STOKES SYSTEM:

THE TWO-DIMENSIONAL CASE∗
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Abstract. We study optimal boundary control problems for the two-dimensional Navier–Stokes
equations in an unbounded domain. Control is effected through the Dirichlet boundary condition
and is sought in a subset of the trace space of velocity fields with minimal regularity satisfying the
energy estimates. An objective of interest is the drag functional. We first establish three important
results for inhomogeneous boundary value problems for the Navier–Stokes equations; namely, we
identify the trace space for the velocity fields possessing finite energy, we prove the existence of a
solution for the Navier–Stokes equations with boundary data belonging to the trace space, and we
identify the space in which the stress vector (along the boundary) of admissible solutions is well
defined. Then, we prove the existence of an optimal solution over the control set. Finally, we justify
the use of Lagrange multiplier principles, derive an optimality system of equations in the weak sense
from which optimal states and controls may be determined, and prove that the optimality system
of equations satisfies in appropriate senses a system of partial differential equations with boundary
values.

Key words. optimal control, Navier–Stokes equations, boundary value problem, drag mini-
mization
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1. Introduction. Optimal control problems for fluid flows have been a subject
of interest to experimenters and designers since at least the time of Prandtl. In
more recent times, they have also become of substantial interest to mathematicians
and computational scientists. For the steady state Navier–Stokes system, complete
and systematic mathematical and numerical analyses of optimal control problems
of different types (e.g., having Dirichlet, Neumann, and distributed controls and also
finite-dimensional controls) were given in [15, 16, 17, 18]. Mathematical treatments of
optimal control problems for the time-dependent Navier–Stokes system were given in
[2], [6, 7, 8, 9, 10, 11, 12, 13], [20], and [24, 25, 26, 27]. In [6], free convection problems
with boundary heat flux controls were considered; the existence of optimal solutions
was proved and necessary conditions that characterize optimal controls and states
were derived. In [11, 12, 13], the existence of optimal distributed controls was shown,
an optimality system of equations was derived, and the question of the uniqueness
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of optimal solutions was resolved. Distributed controls were also considered in [20].
Various optimal control problems involving both distributed and boundary controls
were considered in [2], although detailed proofs were provided only for the case of
distributed controls. In [7, 8, 9, 10] and [24, 25, 26, 27] extensive studies of optimal
control problems were given for Dirichlet controls in a special case, namely, when the
control is of the separation-of-variable type.

In this paper we consider general Dirichlet controls for the time-dependent, two-
dimensional Navier–Stokes system in the exterior of a bounded domain. Our eventual
goal is to derive an optimality system from which optimal controls and states may be
determined. A feature of the Dirichlet boundary control problem is as follows: one
can derive an optimality system only in spaces of sufficiently smooth functions for
which the nonlinear terms of the Navier–Stokes system are subordinate to the linear
terms. (In the case of distributed control the situation is different; see [13].) In the
two-dimensional case, the space of minimal smoothness possessing this property is
the space of functions with “finite energy.” Therefore, we first identify the space of
boundary values which allows us to obtain finite energy solutions for the Navier–Stokes
equations. Then, we prove the existence of an optimal solution in the finite energy
space. Note that it would be easier to prove the solvability of an optimal control
problem in a certain space of nonsmooth functions, but such a result is useless for the
derivation of an optimality system. Finally, we use Lagrange multiplier techniques
to derive a boundary value problem that the optimal states and control must satisfy.
This boundary value problem is called the optimality system. We rigorously justify the
boundary conditions for this system by means of techniques for elliptic boundary value
problems in spaces of distributions and a theory, given below, about stress regularity
for solutions of the Navier–Stokes equations with nonhomogeneous Dirichlet boundary
conditions. In contrast to parabolic boundary value problems, it is here necessary to
fulfill the compatibility conditions for boundary and initial values even in the case of
nonsmooth solutions.

2. Formulation of the problem.

2.1. Derivation of the cost functional. We will formally derive the drag func-
tional for flows surrounding a finite body. We consider the motion of an incompressible
fluid in an unbounded domain that is described by the system

(2.1) ρ∂tv − µ∆v + ρv · ∇v +∇p = 0 and ∇ · v = 0 in (0, T )× Ω ,

(2.2) v|t=0 = v0 for x ∈ Ω , v|∂Ω = g for t ∈ (0, T ) ,

and

(2.3) v→ v∞ as |x| → ∞ .

Here, ∂t = ∂/∂t, Ω is the region exterior to a bounded body B ⊂ R2, and ∂Ω is
its boundary. For simplicity we assume ∂Ω is of class C∞ and is a connected closed
curve without self-intersections. Also, the density ρ is a constant and v∞ is a constant
vector; the exact nature of the behavior at infinity will be discussed later. Later on
we will add a condition on p so that, for given v0, g, and v∞, the problem (2.1)–(2.3)
has a unique solution. When g = 0, (2.1)–(2.3) is the problem of a fluid moving
around the body B with uniform velocity v∞ at infinity.

Denote by ∂Ωε a smooth closed curve in a neighborhood of ∂Ω, surrounding ∂Ω
and lying inside Ω; Ωε is the part of Ω bounded by ∂Ωε and containing the point at
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infinity. Let T = −pI + 2µD be the stress tensor; here, D = D(v) = 1
2 (∇v +∇vT ) is

the rate of deformation tensor for the flow. Then, for x ∈ ∂Ωε, (T n)(t,x) is the force
at a point x on ∂Ωε which acts on the fluid in Ωε at the time t; here, n denotes the
unit normal to the curve ∂Ωε which is outer with respect to Ωε. Thus,∫ T

0
dt

∫
∂Ωε

(v − v∞) · (T n) ds

is the work needed to overcome the drag exerted on the “body” Bε = R2\Ωε over the
time interval (0, T ). After passing to the limit as ε → 0, we obtain the work needed
to overcome the drag exerted on the given body B = R2\Ω:

W =
∫ T

0
dt

∫
∂Ω

(v − v∞) · (T n) ds .

Using the definitions of T and D, and taking into account that v∞ is a constant
vector, we have that

W =
∫ T

0
dt

∫
∂Ω

(v − v∞) · {−pn + µ(∇v +∇vT )n} ds

=
∫ T

0
dt

∫
∂Ω

(v − v∞) ·
{
−pn + µ

(
∇(v − v∞) +∇(v − v∞)T

)
n
}
ds .

Upon setting w = v − v∞,

(2.4) W =
∫ T

0

∫
∂Ω

w · {−pn + 2µD(w)n} ds dt .

Let ΩR = Ω ∩ {x ∈ R2 : |x| < R} and ΓR = ∂ΩR \ ∂Ω for sufficiently large R such
that the circle of radius R centered at the origin contains Ω. Using Green’s formula
we obtain

(2.5)

∫
ΩR

w ·
(
∇ · D(w)

)
dx

=
∫
∂Ω

w · D(w)n ds+
∫

ΓR
w · D(w)n ds−

∫
ΩR
D(w) : ∇w dx ,

where ∂j = ∂/∂xj ; i.e., ∂j denotes the partial derivative with respect to the jth
coordinate, ∇ · S for a two-tensor S = {Sij} is defined as the vector (∂jS1j , ∂jS2j)T ,
and the colon notation denotes the scalar product operation on two two-tensors; i.e.,
for two-tensors T = {Tij} and S = {Sij}, T : S = TijSij . Also, we have employed
the convention that repeated indices imply summation. From (2.1) we have that
w = v − v∞ satisfies ∇ ·w = 0 so that (2.5) and the identity

2∇ · D(w) = ∆w +∇(∇ ·w)

yield∫
∂Ω

w · D(w)n ds =
1
2

∫
ΩR

w ·∆w dx +
∫

ΩR
D(w) : ∇w dx−

∫
ΓR

w · D(w)n ds .

The symmetry of the tensor D(w) yields∫
ΩR
D(w) : ∇w dx =

∫
ΩR
D(w) : D(w) dx
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so that∫
∂Ω

w · D(w)n ds =
1
2

∫
ΩR

w ·∆w dx +
∫

ΩR
D(w) : D(w) dx−

∫
ΓR

w · D(w)n ds .

Since D(w) = D(v), the substitution of the last equation into (2.4) yields

W =
∫ T

0

∫
ΩR

w · (µ∆w −∇p) dx dt+ 2µ
∫ T

0

∫
ΩR
D(v) : D(v) dx dt

− 2µ
∫ T

0

∫
ΓR

w · D(w)n ds dt+
∫ T

0

∫
ΓR
pw · n ds dt

so that by taking the limit R→∞ we obtain

(2.6) W =
∫ T

0

∫
Ω

w · (µ∆w −∇p) dx dt+ 2µ
∫ T

0

∫
Ω
D(v) : D(v) dx dt .

From (2.1) we have that w = v − v∞ satisfies

ρ∂tw − µ∆w + ρv · ∇w +∇p = 0 .

Combining (2.6) and the last equation yields

(2.7)

W = 2µ
∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
Ω
∂t|w|2 dx

+ ρ

∫ T

0
dt

∫
Ω

(v · ∇w) ·w dx

= 2µ
∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
∂Ω
|w|2v · n ds

+
ρ

2

∫
Ω
|w(T,x)|2 dx− ρ

2

∫
Ω
|w(0,x)|2 dx .

The integral ρ2
∫

Ω |w(t,x)|2 dx is the (finite) kinetic energy of the difference flow w =
v − v∞. (Note that the kinetic energy of the flow ρ

2

∫
Ω |v(t,x)|2 dx = ∞.) We can

rewrite (2.7) as the energy equality

ρ

2

∫
Ω
|w(0,x)|2 dx +

∫ T

0
dt

∫
∂Ω

w · T n ds

=
ρ

2

∫
Ω
|w(T,x)|2 dx + 2µ

∫ T

0
dt

∫
Ω
D(v) : D(v) dx +

ρ

2

∫ T

0
dt

∫
∂Ω
|w|2v · n ds .

This relation may be interpreted as follows: the initial kinetic energy of the difference
flow plus the work due to drag is equal to the final, i.e., at t = T , value of the
kinetic energy of the difference flow plus the energy dissipated due to friction plus the
work done by the boundary control. Whenever the control is absent, i.e., whenever
v|∂Ω = g = 0, the third integral on the right-hand side of the last equation vanishes.
Since the initial kinetic energy of the difference flow is given, it is quite natural to
take the right-hand side of the last equation as the cost functional (for convenience,
we introduce a factor of one-half):

(2.8)
J (w) =

ρ

4

∫
Ω
|w(T,x)|2 dx + µ

∫ T

0
dt

∫
Ω
D(v) : D(v) dx

+
ρ

4

∫ T

0
dt

∫
∂Ω
|w|2v · n ds .
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2.2. Constraints on the control. For both physical and mathematical reasons,
the size of the control should be constrained. Physically, one cannot realize controls
of arbitrary size. Moreover, the cost of effecting control should be accounted for in the
optimization process; e.g., one would not usually want to reduce the drag by a small
amount if the cost of doing so is prohibitive. Limits on the size of the control are also
needed in order to obtain a mathematically meaningful problem, e.g., to guarantee
the existence of an optimal solution in a certain function class. Of course, the physical
and mathematical needs for limiting the size of the control are not unrelated.

It is simpler to explain the ideas concerning constraining the size of the control
in the steady state context in which we have the governing system

(2.9) −µ∆v + ρv · ∇v +∇p = 0 and ∇ · v = 0 in Ω ,

(2.10) v|∂Ω = g , and v→ v∞ as |x| → ∞

and the cost functional

(2.11) Js(v) =
∫
∂Ω

w · T n ds = µ

∫
Ω
D(v) : D(v) dx +

ρ

4

∫
∂Ω
|w|2v · n ds ,

where w = v − v∞, as noted previously. In all physically interesting situations one
would want to minimize the drag functional (2.11). If there are no constraints on
the control, i.e., on v along the boundary ∂Ω, then it is easy to find a trivial control
such that Js(v) = 0. Indeed, if we take v|∂Ω = v∞, then the solution of (2.9)–(2.10)
is given by v(x) = v∞ and ∇p = 0, and then, clearly, Js(v) = Js(v∞) = 0. This
implies that Js(v) can possibly be negative, thereby the object occupying the region
B is being propelled rather than being dragged, exactly the opposite of what we want
to study. Thus, constraining the control is not only natural from the physical point of
view of conserving resources, but is necessary for the minimization problem to model
properly the desired physical objectives. (Note that in the time-dependent case, we
cannot choose v = v∞ due to the initial condition of (2.2); however, we still want to
limit the size of the control for the same reasons as in the steady state case.)

There are two common ways of constraining the control. The first one is to impose
an explicit bound on the control. In the steady state case, we can impose

(2.12)
∫
∂Ω
|v|k ds ≤M for some k ≥ 3

or

(2.13) |v(x)| ≤M ∀x ∈ ∂Ω ,

where M is a prescribed positive constant. The constraint (2.12) allows the control
to concentrate on small portions of the boundary and is therefore more useful in
providing information about the locations where the control is most effective. Such
information will be helpful in the study of “local controls,” i.e., the application of
control at a number of chosen locations on the boundary. (We will study local control
problems elsewhere.) For this reason we will not pursue constraints of the type (2.13)
any further in this paper. The second way of constraining the control is to add some
norm of the control to the cost functional; e.g., instead of (2.11), we consider the
functional

(2.14) µ

∫
Ω
D(v) : D(v) dx +

ρ

4

∫
∂Ω
|w|2v · n ds+ ρN

∫
∂Ω
|v|k ds
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for some k ≥ 3 and N > 0. If k = 3, we will need N > 1
4 . In both ways of

constraining the control, one can use different norms to measure the control. The
physical problem does not tell us which norm to use, although desirable physical
properties, e.g., having no sharp peaks in the control along the boundary, should
influence the choice. The choice of norm is also influenced by the need to establish
the well-posedness of the problem, e.g., the existence of an optimal solution in some
function class, the regularity of the optimal solution, etc. For example, the constraints
on the value of k are motivated by the need to have the cost of control, i.e., the last
term in (2.14), dominate (in an appropriate sense that will be made clear later in this
paper) the second term.

Our interest in this paper is in the time-dependent problem, and we now discuss
how we can choose a convenient norm for measuring the control. Our starting point
is the requirement that solutions of the Navier–Stokes system have energy estimates
that will be needed later in this paper in studying the optimal control problems, and
particularly in the derivation of the optimality system of equations. The minimum
level of smoothness for the velocity field v at which the energy estimates are valid is v−
v∞ ∈ L2

(
0, T ; H1(Ω)

)
and ∂tv ∈ L2

(
0, T ; H−1(Ω)

)
. Note that these inclusions imply

a certain behavior at infinity. (The Sobolev space notation used here is established
in section 3.1.) The boundary control should belong to a subset of the trace space on
∂Ω of the space for the vector field v. The norm on the trace space will be shown to
be

‖v · n‖L2(0,T ;H1/2(∂Ω)) + ‖v · n‖H3/4(0,T ;H−1(∂Ω))

+ ‖v · τ‖L2(0,T ;H1/2(∂Ω)) + ‖v · τ‖H1/4(0,T ;L2(∂Ω)) ,

where τ denotes the counterclockwise unit tangent vector to ∂Ω. Naturally, the
control should be measured in a norm that is not weaker than the norm for the
desired trace space. For computational convenience, we will strengthen the fractional
time derivative to the first derivative ∂t in the functional. Also, the particular form
of the functional (2.8), i.e., the term

∫ T
0

∫
ΩD(v) : D(v) dxdt, implies that in order for

v to belong to the desired trace space, it is sufficient to use the norm∫ T

0

∫
∂Ω
|∂tv|2 ds dt

for the controls. Also, as in (2.12), we have to include the constraints connected with
the term

∫ T
0

∫
∂Ω |v|

k ds dt for some k ≥ 3.
Hence, the two approaches of constraining the control in the time-dependent case

can now be described as follows. The first approach, i.e., imposing an explicit bound
on the control, requires that, for some constant M > 0,

(2.15)
∫ T

0

∫
∂Ω
|v|k ds dt+

∫ T

0

∫
∂Ω
|∂tv|2 ds dt ≤M ,

where k ≥ 3. The second approach, i.e., adding a norm of the control to the functional,
uses the functional
(2.16)

JN (v) = µ

∫ T

0

∫
Ω
D(v) : D(v) dxdt+

ρ

4

∫ T

0

∫
∂Ω
|w|2v · n ds dt

+
ρ

4

∫
Ω
|w(T,x)|2 dx + ρN

(∫ T

0

∫
∂Ω
|v|k ds dt+

∫ T

0

∫
∂Ω
|∂tv|2 ds dt

)
,

where w = v − v∞, k ≥ 3, and N > 0 (N > 1
4 if k = 3).
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3. Precise statement of extremal problems. We will use the standard nota-
tions for the Lebesgue function space Lr(Ω) and the Sobolev spaces Wm,r(Ω), Hm(Ω),
W l,s(∂Ω), and H l(∂Ω) for real numbers r, m, l, s, where m, l are the smooth-
ness indices and r, s are the integrability indices. Also, Hm(Ω) = Wm,2(Ω) and
H l(∂Ω) = W l,2(∂Ω). For m ≥ 0, we introduce the subspaces of the Sobolev spaces
Wm,r(Ω):

Wm,r
0 (Ω) = the closure of C∞0 (Ω) in Wm,r(Ω)

and the dual spaces

W−m,r(Ω) =
(
Wm,r′

0 (Ω)
)∗
, where

1
r

+
1
r′

= 1, 1 < r, r′ <∞ .

Also, Hm
0 (Ω) = Wm,2

0 (Ω) and H−m(Ω) = W−m,2(Ω). The vector counterparts of
these spaces are denoted by Lr(Ω), Wm,r(Ω), Hm(Ω), Wl,s(∂Ω), Hl(∂Ω), Wm,r

0 (Ω),
and Hm

0 (Ω). For details, see [1] and [14]. We will also use the solenoidal spaces

Vm(Ω) =
{

u ∈ Hm(Ω) : ∇ · u = 0,
∫
∂Ω

u · n ds = 0
}

for m ≥ 0

and

Vm
0 (Ω) = the closure of C∞0 (Ω) ∩V0(Ω) in the Hm(Ω)-norm for m ≥ 0 ,

where when m = 0,
∫
∂Ω u · n ds is understood as the H−1/2(∂Ω)–H1/2(∂Ω) duality

pairing between the function (u · n) ∈ H−1/2(∂Ω) and the constant scalar function
1 ∈ H1/2(∂Ω). Note that in the definition of Vm(Ω) (Ω being unbounded), the
condition

∫
∂Ω u · n ds = 0 does not follow from div u = 0 unless some additional

assumptions are made on u at ∞. Note also that for simplicity, we have assumed ∂Ω
is a connected curve; otherwise, we need to require

∫
Γi

u ·n ds = 0 on each connected
component Γi of ∂Ω. Identifying

(
V0(Ω)

)∗ with V0(Ω) we introduce the dual spaces

V−m(Ω) = [Vm
0 (Ω)]∗ for m ≥ 1 .

The norms on Vm(Ω) and Vm
0 (Ω) are chosen to be that of Hm(Ω). We also introduce

the temporal-spatial function space, defined on Q = R × Ω,

H(s)(Q) = {f ∈ L2(R;Hs(Ω)
)

: ∂tf ∈ L2(R;Hs−2(Ω)
)
}

with norm

‖f‖2H(s)(Q) = ‖f‖2L2(R;Hs(Ω)) + ‖∂tf‖2L2(R;Hs−2(Ω)) ,

and the corresponding solenoidal function space

V(s)(Q) = {v ∈ L2(R; Vs(Ω)
)

: ∂tv ∈ L2(R; Vs−2(Ω)
)
}

with norm

‖v‖2V(s)(Q) = ‖v‖2L2(R;Vs(Ω)) + ‖∂tv‖2L2(R;Vs−2(Ω)) .

Analogously, we may define the function spaces H(s)(QT ) and V(s)(QT ) defined on
QT = (0, T )× Ω.
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With the help of the spaces defined above, we may define the solution for the
Navier–Stokes equations (2.1)–(2.3). We first quote a useful lemma.

LEMMA 3.1. The space V(1)(QT ) is continuously imbedded into C
(
[0, T ]; V0(Ω)

)
.

Proof. Solving in QT the equations ∂F (t, x)/∂x2 = u1, ∂F (t, x)/∂x1 = −u2, and∫
Ω F (t, x)dx = 0 almost everywhere (a.e.) t ∈ (0, T ) for an arbitrary u = (u1, u2) ∈
V(1)(QT ), we reduce the proof of the lemma to a proof of the continuity of the em-
bedding H(2)(QT ) ⊂ C([0, T ];H1(Ω)). The last assertion is proved in [4] or [21]. (For
an alternate proof, see [5] or [28].)

Below, for the sake of simplicity, we set the constant density ρ = 1 or, more
precisely, we introduce nondimensionalized variables so that now µ is the inverse of
the Reynolds number.

DEFINITION 3.2. v is said to be a solution of (2.1)–(2.3) if v = w + v∞, where
w ∈ V(1)(QT ) satisfies

(3.1)
〈∂tw(t), z〉+ 2µ

∫
Ω
D(w(t)) : D(z) dx +

∫
Ω

(
w(t) · ∇

)
w(t) · z dx

+
∫

Ω

(
v∞ · ∇

)
w(t) · z dx = 0 ∀ z ∈ V1

0(Ω), a.e. t ∈ (0, T ) ,

(3.2) w = b ≡ g − v∞ in L2
(
0, T ; H1/2(∂Ω)

)
,

and

w|t=0 = w0 ≡ v0 − v∞ in V0(Ω) .

Note that the initial condition in Definition 3.2 makes sense because of Lemma 3.1.
Here and elsewhere in this paper, 〈·, ·〉 denotes the duality pairing between a Banach
space and its dual space; the underlying Banach space may vary depending on the
context. In particular, 〈·, ·〉 in (3.1) denotes the duality pairing between V−1(Ω) and
V1

0(Ω). Also, note that we have used the identity

2
∫

Ω
D(w) : D(z) dx =

∫
Ω
∇w : ∇z dx ∀w ∈ V1(Ω), z ∈ H1

0(Ω) .

The extremal problems we study involve the objective of drag minimization.
Based on the two ways of constraining the control, we have the two functionals (2.8)
or (2.16) so that we state two extremal problems. It is more convenient to use the
variable w = v − v∞. Also, we will simply use w|∂Ω to denote the Dirichlet control
and, thus, we will not introduce a separate notation to denote the control variable and
the boundary condition (3.2) will not be explicitly imposed as a constraint. Extremal
solutions are sought in the space

Y =

{
w ∈ V(1)(QT ) : (∂tw)|∂Ω ∈ L2(0, T ; L2(∂Ω)

)
,

∫
∂Ω
∂tw · n ds = 0 , w|∂Ω ∈ Lk

(
(0, T )× ∂Ω

) }
equipped with the norm

‖w‖Y = ‖w‖V(1)(QT ) + ‖∂tw‖L2(0,T ;L2(∂Ω)) + ‖w‖Lk((0,T )×∂Ω) ,

where k ≥ 3 and n is the outward normal on ∂Ω.
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We also introduce the space

W = {w ∈ V0(Ω) : (w · n)|∂Ω ∈ H1/4(∂Ω) ∩ L1+k/2(∂Ω)} .

Since the trace γn,∂Ω(w) ≡ (w · n)|∂Ω is well defined and belongs to H−1/2(∂Ω) (see
[28]), the definition of W makes sense. Note that the restriction operator

γ0 : Y →W

defined by γ0w = w|t=0 is continuous. Indeed, we denote

Yδ =

{
w ∈ L2(0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T )× ∂Ω

)
:

∂tw ∈ L2((0, T )× ∂Ω
)
,

∫
∂Ω
∂tw ds ds = 0

}
.

Then, since the trace operators γn,∂Ω : Y → Yδ and γ0 : Yδ → H1/4(∂Ω)∩L1+k/2(∂Ω)
are continuous, the restriction γ0w for an arbitrary w ∈ Y possesses the property

γn,∂Ω(γ0w) = γ0(γn,∂Ωw) ∈ H1/4(∂Ω) ∩ L1+k/2(∂Ω) .

This proves that the imbedding γ0Y ⊂ W is continuous. We intend to look for
an extremal solution in the space Y . Thus, we are compelled to replace the initial
condition in Definition 3.2 by

(3.3) w|t=0 = w0 ≡ v0 − v∞ ∈W.

Problem I. Suppose that w0 ≡ v0 − v∞ ∈ W. Seek a w ∈ Y such that the
functional

(3.4)

JN (w) = µ

∫ T

0

∫
Ω
D(w) : D(w) dxdt

+
1
4

∫ T

0

∫
∂Ω
|w|2(w + v∞) · n ds dt+

1
4

∫
Ω
|w(T,x)|2 dx

+N

∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt

is minimized subject to the constraints (3.1) and (3.3), where k ≥ 3 and N > 0 with
N > 1

4 if k = 3.
Problem II. Suppose that w0 ≡ v0 − v∞ ∈ W. Seek a w ∈ Y such that the

functional

(3.5)
J (w) = µ

∫ T

0

∫
Ω
D(w) : D(w) dxdt+

1
4

∫ T

0

∫
∂Ω
|w|2(w + v∞) · n ds dt

+
1
4

∫
Ω
|w(T,x)|2 dx

is minimized subject to the constraints (3.1), (3.3), and

(3.6)
∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt ≤M ,

where k ≥ 3 and M > 0.
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Note that Lemma 3.1 ensures that the functionals (3.4) and (3.5) are well defined
on Y . We now give definitions for an admissible element and for a solution of Problem
I or II.

DEFINITION 3.3. An element w ∈ Y is called admissible if it satisfies (3.1) and
(3.3) in the case of Problem I and satisfies (3.1), (3.3), and (3.6) in the case of Problem
II. The set of admissible elements is denoted by Vad.

DEFINITION 3.4. An element ŵ ∈ Vad is called a solution of Problem I if

JN (ŵ) = inf
w∈Vad

JN (w) ,

where JN is defined by (3.4). An element ŵ ∈ Vad is called a solution of Problem II
if

J (ŵ) = inf
w∈Vad

J (w) ,

where J is defined by (3.5).

4. An extension theorem, solutions of the Navier–Stokes equations,
and the stress vector on the boundary. Our aim is to prove the existence of
optimal solutions for Problems I and II and to obtain optimality systems of partial
differential equations that optimal solutions must satisfy. To this end, we first prove
three results that are of considerable interest in their own right in the study of Dirichlet
boundary value problems for the Navier–Stokes equations.

The first result (section 4.1) is the identification of the trace space of V(1)(QT ) =
L2
(
0, T ; V1(Ω)

)
∩H1

(
0, T ; V−1(Ω)

)
, i.e., the collection of velocity boundary data that

can be extended into functions belonging to V(1)(QT ). The second result (section 4.2)
is the existence of a solution of the Navier–Stokes equations with boundary values in
these trace spaces along with a priori estimates for the solution. The third result
(section 4.3) is the identification of the space in which the trace of the stress vector
(on the boundary) of admissible solutions is well defined.

4.1. An extension theorem for boundary data. We prove some results con-
cerning the extension of functions from the lateral surface of the time-space cylinder
to the entire cylinder, i.e., from (0, T )× ∂Ω to (0, T )× Ω.

We set Q = R×Ω (the infinite time-space cylinder) and S = R×∂Ω (the lateral
surface of the infinite time-space cylinder). The problem we want to consider is to
describe the space of vector fields defined on S which can be extended to solenoidal
vector fields defined on Q which belong to the space V(1)(Q), where we recall, from
section 3, the definition

(4.1) V(s)(Q) = {v ∈ L2(R; V(s)(Ω)
)

: ∂tv ∈ L2(R; V(s−2)(Ω)
)
} .

Alternatively, the task here is to characterize the trace space of V(1)(Q). We will see
that it is necessary to examine the normal trace and tangential trace separately, as
they belong to different function spaces.

We denote by τ = (τ1, τ2)T and n = (n1, n2)T the unit counterclockwise tangent
and outward normal vectors, respectively, along ∂Ω. We have the following relations:

τ1 = n2 and τ2 = −n1 .

Given a boundary vector field

(4.2) b(t,x) = bn(t,x)n(x) + bτ (t,x)τ (x) a.e. (t,x) ∈ S
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satisfying

(4.3)
∫
∂Ω

b · n ds = 0 a.e. t ∈ R ,

where bn = b·n and bτ = b·τ , we seek a solenoidal extension u = (u1, u2)T ∈ V(1)(Q)
of the form (see [19])

(4.4) u1 = ∂2F and u2 = −∂1F ,

where F is the streamfunction for u and ∂iF = ∂F/∂xi. In other words, given a
boundary vector field b satisfying (4.3), we seek an F such that

(4.5) bn = −(∇F · τ )|S ≡ −∂τF |S

and

(4.6) bτ = (∇F · n)|S ≡ ∂nF |S .

Note that the assumption (4.3) is necessary since we are seeking a solenoidal extension
of the boundary data b.

With the assumption (4.3), the relation (4.5) is equivalent to

(4.7) F |S = h ≡ −
∫ x

x0

bn(t,x(s)) ds ,

where the line integral is taken along ∂Ω in the counterclockwise direction starting
from a fixed point x0 ∈ ∂Ω. Thus, for each given pair (bτ , h) defined on S, we want
to construct an F ∈ H(2)(Q) satisfying (4.6) and (4.7), where

H(s)(R ×Θ) = {u ∈ L2(R;Hs(Θ)
)

: ∂tu ∈ L2(R;Hs−2(Θ)
)
} .

Here s ∈ R, Θ is any spatial domain, and the norm on H(s)(R ×Θ) is defined by

‖F‖2H(s)(R×Θ) = ‖F‖2L2(R;Hs(Θ)) + ‖∂tF‖2L2(R;Hs−2(Θ)) ∀F ∈ H(s)(R ×Θ) .

We now prove that such an extension F exists provided that the boundary data
(bτ , h) belongs to an appropriate function space.

PROPOSITION 4.1. A pair of functions (bτ , h) defined on S possess an extension
F ∈ H(2)(Q) satisfying (4.6), (4.7),

(4.8)
‖F‖2H(2)(Q) ≤ C

{
‖bτ‖2L2(R;H1/2(∂Ω)) + ‖bτ‖2H1/4(R;L2(∂Ω))

+ ‖h‖2L2(R;H3/2(∂Ω)) + ‖h‖2H3/4(R;L2(∂Ω))

}
,

and

(4.9) F vanishes outside a neighborhood of S = R × ∂Ω ,

where C is a constant independent of bτ , h, and F , if and only if

(4.10) bτ ∈ L2(R;H1/2(∂Ω)
)
∩H1/4(R;L2(∂Ω)

)
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and

(4.11) h ∈ L2(R;H3/2(∂Ω)
)
∩H3/4(R;L2(∂Ω)

)
.

Proof. Given bτ and h satisfying (4.10)–(4.11), we construct an extension F
satisfying (4.6)–(4.9); the converse result is easily proved as well. ∂Ω being of class
C∞, we may choose a neighborhood U of ∂Ω and a coordinate system (x′1, x

′
2)T such

that U =
{
x = (x′1, x

′
2)T : (x′1, 0)T ∈ ∂Ω, x′2 ∈ [0, ε]

}
for some ε > 0. The space

H(2)(R × U) can be rewritten in the form

H(2)(R × U)

=
{
F (x′2, t, x

′
1) ∈ L2(0, ε;L2(R;H2(∂Ω))

)
∩ L2(0, ε;H1(R;L2(∂Ω))

)
:

∂x′2x′2F ∈ L
2(0, ε;L2(R;L2(∂Ω))

)}
.

By virtue of a trace theorem of [21], we have that the mappings γ0 : F 7→ F |x′2=0 and
γ1 : F 7→ ∂x′2F |x′2=0 are well defined on H(2)(R × U); furthermore, the mapping

F 7→ (γ0F, γ1F ) :

H(2)(R × U)→
[
L2(R;H2(∂Ω)

)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
3/4

×
[
L2(R;H2(∂Ω)

)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
1/4

is continuous and surjective. Here we have used the intermediate spaces [X ,Y]α,
α ∈ [0, 1], of the Hilbert spaces X and Y as defined in [21]. Using the definition of
these intermediate spaces (see [21]), we obtain[

L2(R;H2(∂Ω)
)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
3/4

= L2(R;H3/2(∂Ω)
)
∩H3/4(R;L2(∂Ω)

)
and [

L2(R;H2(∂Ω)
)
∩H1(R;L2(∂Ω)

)
, L2(R;L2(∂Ω)

)]
1/4

= L2(R;H1/2(∂Ω)
)
∩H1/4(R;L2(∂Ω)

)
.

Hence the mapping F 7→(γ0F, γ1F ) is continuous and surjective from H(2)(R×U)
to
[
L2
(
R;H3/2(∂Ω)

)
∩H3/4

(
R;L2(∂Ω)

)]
×
[
L2
(
R; H1/2(∂Ω)

)
∩H1/4

(
R; L2(∂Ω)

)]
.

Finally, we may choose another neighborhood Ũ of (0, ε)× ∂Ω such that the closure
of U is contained in Ũ . Well-known extension results allow us to extend continuously
the space H(2)(R × U) into the space

{
F ∈ H(2)(R × Ω) : F vanishes outside Ũ

}
.

We are now in a position to prove the main extension result. We denote the finite
time-space cylinder by QT = (0, T )× Ω and its lateral surface by ST = (0, T )× ∂Ω.

THEOREM 4.2. Assume that bn and bτ satisfy

(4.12)
∫
∂Ω
bn ds = 0 a.e. t ∈ [0, T ] ,

(4.13) bn ∈ L2(0, T ;H1/2(∂Ω)
)
∩H3/4(0, T ;H−1(∂Ω)

)
,
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and

(4.14) bτ ∈ L2(0, T ;H1/2(∂Ω)
)
∩H1/4(0, T ;L2(∂Ω)

)
.

Then, there exists a u ∈ V(1)(QT ) satisfying

(4.15) u|ST = b ≡ bnn + bττ

and the estimate

(4.16)
‖u‖2V(1)(QT ) ≤ C

{
‖bn‖2L2(0,T ;H1/2(∂Ω)) + ‖bn‖2H3/4(0,T ;H−1(∂Ω))

+ ‖bτ‖2L2(0,T ;H1/2(∂Ω)) + ‖bτ‖2H1/4(0,T ;L2(∂Ω))

}
,

where C is a constant independent of bn and bτ , and such that u vanishes outside a
neighborhood of (0, T )× ∂Ω.

Proof. By definition, the space Hr
(
0, T ;Hs(∂Ω)

)
with fractional indices r and

s is the restriction to (0, T ) × ∂Ω of Hr
(
R;Hs(∂Ω)

)
. Thus, we may extend the

data in time; i.e., there exists a b̃n ∈ L2
(
R;H1/2(∂Ω)

)
∩ H3/4

(
R;H−1(∂Ω)

)
and

b̃τ ∈ L2
(
R;H1/2(∂Ω)

)
∩H1/4

(
R;L2(∂Ω)

)
such that

b̃n = bn and b̃τ = bτ on (0, T )× ∂Ω ,

‖b̃n‖2L2(R;H1/2(∂Ω)) + ‖b̃n‖2H3/4(R;H−1(∂Ω))

≤ C
{
‖bn‖2L2(0,T ;H1/2(∂Ω)) + ‖bn‖2H3/4(0,T ;H−1(∂Ω))

}
and

‖b̃τ‖2L2(R;H1/2(∂Ω)) + ‖b̃τ‖2H1/4(R;L2(∂Ω))

≤ C
{
‖bτ‖2L2(0,T ;H1/2(∂Ω)) + ‖bτ‖2H1/4(0,T ;L2(∂Ω))

}
.

Furthermore, we may assume, without loss of generality, that∫
∂Ω
b̃n ds = 0 a.e. t ∈ R .

Indeed, we can reset ˜̃bn = b̃n − (
∫
∂Ω b̃n ds

/∫
∂Ω ds), if necessary. We define

h̃(t,x) = −
∫ x

x0

b̃n(t,x(s)) ds ∀x ∈ ∂Ω ,

where the line integral on the right-hand side is taken counterclockwise along ∂Ω,
starting from a given point x0 ∈ ∂Ω. Evidently, h̃ ∈ L2

(
R;H3/2(∂Ω)

)
∩

H3/4
(
R;L2(∂Ω)

)
. Then, Proposition 4.1 implies that there exists an F ∈ H(2)(Q)

which vanishes outside a neighborhood of R × ∂Ω such that

F |S = h̃ and ∂nF |S = b̃τ .

By setting

u = curlF =
(
∂2F
−∂1F

)
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we see that

u ∈ V(1)(Q) ,

(u · n)|S = curlF · n|S = −∇F · τ = −∂τF = −∂τ h̃ = b̃n ,

and

(u · τ )|S = curlF · τ |S = ∇F · n = ∂nF = b̃τ .

Hence, u|ST = b̃ ≡ b̃nn+ b̃ττ ; i.e., u satisfies (4.15). The estimate (4.16) follows from
Proposition 4.1.

REMARK. We see from the proofs of Proposition 4.1 and Theorem 4.2 that the re-
striction operator u 7→ (u·n)|∂Ω is continuous from V(1)(QT ) toH3/4

(
0, T ;H−1(∂Ω)

)
∩

L2
(
0, T ;H1/2(∂Ω)

)
. Also, the trace operator bn 7→ bn|t=0 is continuous from the space

H3/4
(
0, T ;H−1(∂Ω)

)
∩L2

(
0, T ;H1/2(∂Ω)

)
to H−1/2(∂Ω) (see [21]). Hence, the com-

position of these two operators, i.e., the operator u 7→ [(u · n)|∂Ω]|t=0, is continuous
from V(1)(QT ) to H−1/2(∂Ω). On the other hand, the composition of the operators
u 7→ u|t=0 and u|t=0 7→ (u|t=0 ·n)|∂Ω is continuous from V(1)(QT ) to H−1/2(∂Ω) (see
Lemma 3.1 and [28]). Hence, using the denseness of C∞(QT )∩V(1)(QT ) in V(1)(QT )
we obtain the following compatibility condition for the extension u of Theorem 4.2:

(u|t=0 · n)
∣∣
∂Ω =

(
(u · n)|∂Ω

)∣∣
t=0 ∀u ∈ V(1)(QT ) .

4.2. Estimates for the solutions of the Navier–Stokes equations with
nonhomogeneous Dirichlet boundary data. We now consider the boundary
value problem for the Navier–Stokes equation in the form introduced in Definition
3.2. The boundary data b is assumed to satisfy the compatibility condition (4.12).
Our goal here is, with the help of the extension theorem of section 4.1, to establish
the existence of a solution for (3.1)–(3.3) and derive estimates for the solutions in the
space of critical smoothness in terms of the data w0 and b.

Let bn and bτ be the normal and tangential components of the boundary value
b. We assume that bn and bτ satisfy (4.12)–(4.14) and that

(4.17) w0 ∈ V0(Ω) .

We also assume the compatibility condition

(4.18) (w0 · n)
∣∣
∂Ω = bn

∣∣
t=0

(see the remark at the end of section 4.1). We express the solution w of (3.1)–(3.3)
in the form

w = u + η ,

where u ∈ V(1)(QT ) is the vector field constructed in Theorem 4.2 satisfying (4.15)
and (4.16). Note that the fact that u ∈ V(1)(Q) implies that u|t=0 ∈ L2(Ω); see
Lemma 3.1. Substituting w = u + η into (3.1)–(3.3), we obtain for η

(4.19)
〈∂tη(t), z〉+ µ

∫
Ω
∇η(t) : ∇z dx +

∫
Ω

(
(η(t) + u(t) + v∞) · ∇

)
η(t) · z dx

+
∫

Ω

(
η(t) · ∇

)
u(t) · z dx = 〈f(t), z〉 ∀ z ∈ V1

0(Ω), a.e. t ∈ (0, T ) ,
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(4.20) η|ST = 0 in L2
(
0, T ; H1/2(∂Ω)

)
,

and

(4.21) η|t=0 = η0 ≡ w0 − u|t=0 in V0
0(Ω) ,

where

(4.22) 〈f(t), z〉 = −µ
∫

Ω
∇u(t) : ∇z dx− 〈∂tu(t), z〉 −

∫
Ω

[(u(t) + v∞) · ∇]u(t) · z dx .

LEMMA 4.3. Assume that the hypotheses of Theorem 4.2 hold. Let u be the vector
field constructed in Theorem 4.2. Assume also that the compatibility condition (4.18)
holds. Then, there exists a unique solution η ∈ V(1)(QT ) of system (4.19)–(4.21).
Moreover, η satisfies the estimate

‖∂tη‖2L2(0,T ;V−1(Ω)) + ‖η‖2L∞(0,T ;V0(Ω)) + ‖η‖2L2(0,T ;V1(Ω))

≤ A
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖V(1)(QT ) , ‖η0‖V0(Ω) , |v∞|

)
,

where A(·, ·, ·, ·) is a continuous positive function defined on R × R × R × R and
A(λ1, λ2, λ3, |v∞|)→ 0 as λ = (λ1, λ2, λ3)→ (0, 0, 0).

Proof. The existence and uniqueness of the solution η ∈ V(1)(QT ) for (4.19)–
(4.21) can be proved in exactly the same way as that for the two-dimensional Navier–
Stokes equations with homogeneous boundary conditions in exterior domains; see,
e.g., [19] or [28]. We only need to prove the estimate. (Note that η0 ∈ V0

0(Ω).)
Letting z = η(t, ·) in (4.19) yields

1
2
∂t‖η(t, ·)‖2L2(Ω) + µ‖∇η(t, ·)‖2L2(Ω) = 〈f(t, ·),η(t, ·)〉 −

∫
Ω

(η · ∇)u · η dx

≤ 1
µ
‖f(t, ·)‖2V−1(Ω) +

µ

4

(
‖∇η(t, ·)‖2L2(Ω) + ‖η(t, ·)‖2L2(Ω)

)
+ ‖∇u(t, ·)‖L2(Ω) ‖η(t, ·)‖2L4(Ω) .

Applying to the last term the Ladyzhenskaya inequality (see [19, Lemma 1])

‖η‖2L4(Ω) ≤
√

2 ‖η‖L2(Ω) ‖∇η‖L2(Ω) ∀ η ∈ H1(Ω)

and then integrating with respect to t, we obtain

‖η(t, ·)‖2L2(Ω) + µ

∫ t

0
‖∇η(t, ·)‖2L2(Ω) dt ≤ ‖η0‖2L2(Ω)

+
2
µ

∫ t

0
‖f(τ, ·)‖2V−1(Ω) dτ +

∫ t

0

(µ
2

+
4
µ
‖∇u(τ, ·)‖2L2(Ω)

)
‖η(τ, ·)‖2L2(Ω) dτ .

Then, the Gronwall inequality yields the estimate

‖η‖2L∞(0,T ;L2(Ω)) + ‖η‖2L2(0,T ;H1(Ω))

≤ A1
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖L2(0,T ;H1(Ω)) , ‖η0‖L2(Ω)

)
,

where A1(·, ·, ·) is a continuous positive function defined on R × R × R. Evidently,
this last estimate implies

(4.23)
‖η‖2L∞(0,T ;V0(Ω)) + ‖η‖2L2(0,T ;V1(Ω))

≤ A1
(
‖f‖L2(0,T ;V−1(Ω)) , ‖u‖V(1)(QT ) , ‖η0‖V0(Ω)

)
.
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Now, taking the supremum of (4.19) with respect to z ∈ V1
0(Ω) with ‖z‖V1

0(Ω) = 1
and again applying the Ladyzhenskaya inequality we obtain

‖∂tη(t, ·)‖V−1(Ω) ≤ µ‖η(t, ·)‖H1(Ω) + C‖η(t, ·)‖H1(Ω) ‖η(t, ·)‖L2(Ω)

+ C‖u(t, ·)‖1/2H1(Ω) ‖u(t, ·)‖1/2L2(Ω) ‖η(t, ·)‖1/2H1(Ω) ‖η(t, ·)‖1/2L2(Ω)

+ C|v∞|‖η(t, ·)‖L2(Ω) + ‖f(t, ·)‖V−1(Ω)

so that

‖∂tη(t, ·)‖2L2(0,T ;V−1(Ω))

≤ C‖η(t, ·)‖2L2(0,T ;H1(Ω)) + C‖η(t, ·)‖2L∞(0,T ;L2(Ω)) ‖η(t, ·)‖2L2(0,T ;H1(Ω))

+ C ‖u(t, ·)‖L∞(0,T ;L2(Ω)) ‖η(t, ·)‖L∞(0,T ;L2(Ω))

· ‖u(t, ·)‖L2(0,T ;H1(Ω)) ‖η(t, ·)‖L2(0,T ;H1(Ω))

+ C|v∞|2 ‖η(t, ·)‖2L2(0,T ;L2(Ω)) + C‖f(t, ·)‖2L2(0,T ;V−1(Ω)) .

Hence, using (4.23) and Lemma 3.1, we obtain the desired estimate.
Lemma 4.3 and Theorem 4.2 lead to the following result.
THEOREM 4.4. Let b and w0 satisfy (4.12)–(4.14) and (4.17)–(4.18). Then, there

exists a unique solution w ∈ V(1)(QT ) for the problem (3.1)–(3.3). Moreover, the
solution satisfies the estimate

(4.24)

‖w‖2V(1)(QT )

≤ B
(
‖w0‖L2(Ω) , ‖bn‖L2(0,T ;H1/2(∂Ω)) + ‖bn‖H3/4(0,T ;H−1(∂Ω)) ,

‖bτ‖L2(0,T ;H1/2(∂Ω)) + ‖bτ‖H1/4(0,T ;L2(∂Ω)) , |v∞|
)
,

where B(·, ·, ·, ·) is a continuous positive function defined on R × R × R × R.
Proof. Let u ∈ V(1)(QT ) be the extension of the data b into QT constructed in

Theorem 4.2 and let η be the solution of (4.19)–(4.21) with f defined by (4.22). The
existence and uniqueness of such an η is guaranteed by Lemma 4.3. Set w = u + η;
then w is clearly the unique solution of (3.1)–(3.3). Thus, it only remains to prove
the estimate (4.24).

From (4.22) and the fact (see Theorem 4.2) that u has bounded support, we have
that

(4.25)
‖f(t, ·)‖V−1(Ω) ≤ µ‖u(t, ·)‖H1(Ω) + ‖∂tu(t, ·)‖V−1(Ω)

+ ‖u(t, ·)‖L2(Ω)‖u(t, ·)‖H1(Ω) + |v∞| ‖u(t, ·)‖H1(Ω) .

Also, from (4.21), we have that

(4.26) ‖η0‖L2(Ω) ≤ ‖w0‖L2(Ω) + ‖u(0, ·)‖L2(Ω) .

Hence, (4.24) follows from Theorem 4.2, Lemmas 3.1 and 4.3, (4.25), and (4.26).

REMARK. We stress that the normal and tangential components of the boundary
condition for the Navier–Stokes equations have different smoothness. This is a feature
that is not exhibited in boundary value problems for general second-order parabolic
systems.



868 A. V. FURSIKOV, M. D. GUNZBURGER, AND L. S. HOU

4.3. The stress vector (on the boundary) of admissible solutions. We
now show that the stress vector on the boundary

(
−pI+µ(∇w+(∇w)T )

)
·n|(0,T )×∂Ω,

where w ∈ Y is an admissible solution in the sense of Definition 3.3 and p is an
associated pressure field, is well defined in a certain function space. This result will
be needed in section 6.4 in order to derive the optimality system in the form of a
boundary value problem for a system of partial differential equations. Note that the
requirement w ∈ Vad is stronger than w ∈ V(1)(QT ) merely being a solution of (3.1)
and (3.3). (We will actually show that each of (pn)|(0,T )×∂Ω, (∇w · n)|(0,T )×∂Ω, and
((∇w)T · n)|(0,T )×∂Ω is well defined.)

Let w ∈ Y be an admissible element; then w satisfies (3.1) and (3.3). From the
definition of Y we see that w|(0,T )×∂Ω is well defined and

w|(0,T )×∂Ω ∈ H1(0, T ; L2(∂Ω)
)
∩ L2(0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T )× ∂Ω

)
.

By de Rham’s lemma (see [14] and [28]), there exists a p ∈ L2
(
0, T ;L2

loc(Ω)
)

such
that ∇p ∈ L2

(
0, T ; H−1(Ω)

)
and

(4.27) ∂tw − µ∆w + [(w + v∞) · ∇]w +∇p = 0

in the sense of distributions on QT . To study the normal stress on ∂Ω, the behavior of
w and p at infinity is irrelevant and we can restrict our attention to a bounded domain
whose boundary contains ∂Ω. To this end, we let Θ ⊂ Ω be a bounded domain with
C∞ boundary ∂Θ such that ∂Θ ∩ ∂Ω = ∂Ω. We denote by γ the restriction operator
on ∂Θ. Let F be a streamfunction of w which can constructed as in section 4.1,
satisfying on Θ

(4.28) w1 = ∂2F and w2 = −∂1F .

Since w ∈ Y (QΘ) ⊂ V(1)(QΘ), where QΘ = (0, T )×Θ, we have F ∈ H(2)(QΘ). The
restriction of (4.27) and the divergence-free condition for w on QΘ yields

(4.29) ∂tw − µ∆w + [(w + v∞) · ∇]w +∇p = 0

and

(4.30) div w = 0 ,

where the derivatives are understood in the sense of distributions in QΘ. Applying
the curl operator to (4.29) and taking into account (4.28) we obtain

(4.31) ∂t∆F − µ∆2F = G ,

where

(4.32) G = −curl {[(w + v∞) · ∇]w} = −(w1 + v∞,1)∆w2 + (w2 + v∞,2)∆w1 .

LEMMA 4.5. Assume w ∈ Y is a solution of (3.1) and G is defined by (4.32).
Then, G ∈ L1

(
0, T ;W−1,α(Θ)

)
for every α ∈ (1, 2).

Proof. Let α′ and β be defined by

1
α′

+
1
α

= 1 and
1
β

+
1
α′

=
1
2
.
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Let φ ∈W 1,α′
0 (Θ) be given. By integration by parts and Hölder’s inequality, we have

that a.e. t ∈ (0, T ),

(4.33)

∣∣∣ ∫
Θ

(w1 + v∞,1)∆w2φdx
∣∣∣

=
∣∣∣ ∫

Θ

(
φ∇w1 · ∇w2 + (w1 + v∞,1)∇w2 · ∇φ

)
dx
∣∣∣

≤ ‖∇w1‖L2(Θ) ‖∇w2‖L2(Θ) ‖φ‖L∞(Θ)

+ ‖w1 + v∞,1‖Lβ(Θ) ‖∇w2‖L2(Θ) ‖∇φ‖Lα′ (Θ) .

Since α′ ∈ (2,∞) and β ∈ (2,∞), Sobolev imbedding theorems imply

‖φ‖L∞(Θ) ≤ C ‖φ‖W 1,α′ (Θ) and ‖w1 + v∞,1‖Lβ(Θ) ≤ C ‖w1 + v∞,1‖H1(Θ)

so that, from (4.33),

‖(w1 + v∞,1)∆w2‖L1(0,T ;W−1,α(Θ)) ≤ C
(
‖w‖2V(1)(QΘ) + |v∞|2

)
.

Similarly, we can show

‖(w2 + v∞,2)∆w1‖L1(0,T ;W−1,α(Θ)) ≤ C
(
‖w‖2V(1)(QΘ) + |v∞|2

)
.

It follows from the last two inequalities and (4.32) that G ∈ L1
(
0, T ;W−1,α(Θ)

)
.

Since F ∈ H(2)(QΘ), we have ∆F ∈ L2
(
0, T ;L2(Θ)

)
. From (4.31), (4.32), and

Lemma 4.5, we see that

∆(∂tF − µ∆F ) ∈ L1(0, T ;W−1,α(Θ)
)
.

We now introduce the space

Xα =
{
f ∈ L2(Θ) : ∆f ∈W−1,α(Θ)

}
equipped with the norm

‖f‖Xα = ‖f‖L2(Θ) + ‖∆f‖W−1,α(Θ) ∀ f ∈ Xα .

It is easy to verify that Xα is a Banach space. We will establish a trace theorem for
Xα. To this end, we first prove two lemmas.

LEMMA 4.6. Every bounded linear functional L on Xα has the representation

(4.34) Lf = (f, φ) + 〈∆f, ψ〉 ∀ f ∈ Xα ,

where φ ∈ L2(Θ), ψ ∈ W 1,α′
0 (Θ), (·, ·) denotes the L2(Θ)-inner product, and 〈·, ·〉

denotes the duality pairing between W−1,α(Θ) and W 1,α′
0 (Θ).

Proof. In L2(Θ) × W−1,α(Θ), we consider the subspace Π =
{

(f,∆f) : f ∈
Xα

}
. Clearly, Π is closed under the Cartesian norm for L2(Θ) ×W−1,α(Θ) and the

mapping π : f 7→ (f,∆f) establishes an isomorphism between Xα and Π. Let an
arbitrary bounded linear functional L on Xα be given. Then, there exists a unique
functional K on Π such that Lf = K(f,∆f). Using the Hahn–Banach theorem we
can extend the functional K defined on Π into a functional K̃ defined on the entire
space L2(Θ)×W−1,α(Θ) with the functional norm preserved, i.e., with ‖K̃‖ = ‖K‖.



870 A. V. FURSIKOV, M. D. GUNZBURGER, AND L. S. HOU

Since L2(Θ) ×W−1,α(Θ) is reflexive, there exist φ ∈ L2(Θ) and ψ ∈ W 1,α′
0 (Θ) such

that

K̃(f, g) = (f, φ) + 〈g, ψ〉 ∀ (f, g) ∈ L2(Θ)×W−1,α(Θ) ,

so that on the subspace Π,

K(f,∆f) = (f, φ) + 〈∆f, ψ〉 ∀ (f,∆f) ∈ Π .

The last relation is equivalent to (4.34).
LEMMA 4.7. C∞(Θ) is dense in Xα.
Proof. We need only show that if a bounded linear functional L on Xα satisfies

Lf = 0 for all f ∈ C∞(Θ), then L = 0. We assume that L is a bounded linear
functional on Xα satisfying Lf = 0 for all f ∈ C∞(Θ). By Lemma 4.6, there exist
φ ∈ L2(Θ) and ψ ∈W 1,α′

0 (Θ) such that

Lf = (f, φ) + 〈∆f, ψ〉 = 0 ∀ f ∈ C∞(Θ) .

This implies that, in the sense of distributions,

∆ψ = −φ .

As ψ ∈ W 1,α′
0 (Θ) and φ ∈ L2(Θ), we deduce from elliptic regularity that ψ ∈

W 1,α′
0 (Θ) ∩H2(Θ) and ∆ψ = −φ in L2(Θ), which in turn implies ∂nψ ∈ H1/2(∂Ω).

For each f ∈ C∞(Θ), we are justified in using integration by parts to obtain

0 = (f, φ) + 〈∆f, ψ〉 = (f, φ) + (∆f, ψ)
= (f, φ) + (f,∆ψ)− 〈∂nψ, f〉
= (f, φ) + (f,−φ)− 〈∂nψ, f〉 = −〈∂nψ, f〉

so that ∂nψ
∣∣
∂Ω = 0 and ψ ∈ H2

0 (Θ). Using the denseness of C∞0 (Θ) in H2
0 (Θ) we

may choose a sequence {ψn} ⊂ C∞0 (Θ) such that ψn → ψ in H2(Θ). Then, for each
f ∈ Xα we have

(f, φ) + 〈∆f, ψ〉 = (f, φ) + lim
n→∞

〈∆f, ψn〉

= (f, φ) + lim
n→∞

(f,∆ψn) = (f, φ) + (f,∆ψ) = (f, φ) + (f,−φ) = 0;

i.e., we have shown that

Lf = 0 ∀ f ∈ Xα .

Hence, L = 0.
In the sequel, we will make use of Besov spaces Bs,q(∂Θ), where s is the smooth-

ness index and q is the integrability index. For the definition of Besov spaces, see [4]
and [29], where the Besov spaces Bs,q(∂Θ) are denoted by Bsq,q(∂Θ). One can also
consult [1] for the definition of Besov spaces and the relations between Besov spaces
and Sobolev spaces. One important feature of Besov spaces is that they coincide with
the traces of Sobolev spaces. In particular, we have the following precise result: if we
denote by γ the mapping γf = f |∂Θ for functions defined in Θ, then the mapping

(4.35) (γ, γ∂n) : W 2,α′(Θ)→ B2−1/α′,α′(∂Θ)×B1−1/α′,α′(∂Θ)

is continuous and establishes an epimorphism; see [4] and [29].



BOUNDARY CONTROL OF THE NAVIER–STOKES SYSTEM 871

PROPOSITION 4.8. Assume that 1 < α < 2. Then, the operator γ, defined on
C∞(Θ) by γf = f |∂Θ, can be extended continuously into the trace operator

(4.36) γ ∈ L
(
Xα;B−1/α,α(∂Θ)

)
.

Proof. By (4.35), we can choose a continuous linear operator

(4.37) K : B1−1/α′,α′(∂Θ)→W 2,α′(Θ)

such that

(4.38) γKφ = 0 and γ∂nKφ = φ ∀φ ∈ B1−1/α′,α′(∂Θ) .

Let f ∈ Xα. We define a linear functional Z on B1−1/α′,α′(∂Θ) by

Zφ = ZK(φ) = (f,∆Kφ)− 〈∆f,Kφ〉 ∀φ ∈ B1−1/α′,α′(∂Θ) .

We claim that Z does not depend on the choice of K. Indeed, let K1 and K2 be two
continuous linear operators satisfying (4.37)–(4.38). Then, by (4.38),

γ(K1 −K2)φ = 0 and γ∂n(K1 −K2)φ = 0 ∀φ ∈ B1−1/α′,α′(∂Θ)

so that if f ∈ C∞(Θ), then integration by parts yields

ZK1(φ)− ZK2(φ) = (f,∆(K1 −K2)φ)− 〈∆f, (K1 −K2)φ〉 = 0 .

By virtue of Lemma 4.7, this equality is true for an arbitrary f ∈ Xα. Hence, we
have shown that ZK1 = ZK2 , i.e., that the operator Z is well defined. Evidently, ZK
is bounded on B1−1/α′,α′(∂Θ). Hence, by the Riesz theorem, there exists an element
Rf ∈ B−1/α,α(∂Θ) such that

(Rf, φ) = Z(φ) = (f,∆Kφ)− 〈∆f,Kφ〉 ∀φ ∈ B1−1/α′,α′(∂Θ) ,

where R is the Riesz map. If f ∈ C∞(Θ), then using Green’s formula in the last
equation we obtain Rf = γf . By virtue of Lemma 4.7 and the boundedness of the
operator in (4.37), we can extend the operator γ continuously into the mapping of
(4.36).

We introduce the set

Υ = {w ∈ Y : w satisfies (3.1)}

equipped with the topology generated by the norm of Y .
THEOREM 4.9. Let w ∈ Y be a solution of (3.1) and F ∈ H(2)(QΘ) be defined

by (4.28). Let G ∈ L1
(
0, T ;W−1,α(Θ)

)
, α ∈ (1, 2), be defined by (4.32). Then,

γ
(
∇w · n

)
∈ L1

(
0, T ; B−1/α,α(∂Θ)

)
and γ

(
(∇w)T · n

)
∈ L1

(
0, T ; B−1/α,α(∂Θ)

)
.

Moreover, the mappings w 7→ γ(∇w ·n) and w 7→ γ
(
(∇w)T ·n

)
are continuous from

the topological space Υ to L1
(
0, T ; B−1/α,α(∂Θ)

)
.

Proof. From the assumptions on F and G, we easily deduce that ∂tF − µ∆F ∈
L2
(
0, T ;L2(Θ)

)
and ∆(∂tF − µ∆F ) ∈ L1

(
0, T ;W−1,α(Θ)

)
. Hence, Proposition 4.8

implies that for almost every t ∈ (0, T ), the restriction γ
(
∂tF (t, ·)−µ∆F (t, ·)

)
is well

defined and

(4.39) γ(∂tF − µ∆F ) ∈ L1(0, T ;B−1/α,α(∂Θ)
)
,
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where 1 < α < 2. Since F ∈ H(2)(QΘ), we have that ∇∂tF ∈ H1
(
Θ;H−1(0, T )

)
.

Therefore, the restriction F 7→ γ(∂t∇F ) on (0, T ) × ∂Θ is well defined on the space
H1/2

(
∂Θ;H−1(0, T )

)
. Moreover, the fact that w = (∂2F,−∂1F ) ∈ Y implies γ∂t∇F ∈

L2
(
(0, T )× ∂Θ

)
. Hence

(4.40) γ∂t∂nF ∈ L2((0, T )× ∂Θ
)

and γ∂t∂τF ∈ L2((0, T )× ∂Θ
)
.

Relation (4.40) implies that

(4.41) γ∂tF ∈ L2(0, T ;H1(∂Θ)
)
.

By (4.39) and (4.41), we have that

(4.42) γ∆F ∈ L1(0, T ;B−1/α,α(∂Θ)
)

for 1 < α < 2. Since

(4.43) F ∈ H(2)(QΘ) ⊂ L2(0, T ;H2(Θ)
)
,

we see that

(4.44) γF ∈ L2(0, T ;H3/2(∂Θ)
)
, γ∂τF ∈ L2(0, T ;H1/2(∂Θ)

)
and

(4.45) γ∂nF ∈ L2(0, T ;H1/2(∂Θ)
)
.

We claim that

(4.46) γ∂nτF ∈ L2(0, T ;H−1/2(∂Θ)
)

and γ∂ττF ∈ L2(0, T ;H−1/2(∂Θ)
)
.

To prove this claim, we proceed as follows. We multiply F by a cut-off function
with support in a neighborhood of ∂Θ. We assume without loss of generality that
Θ coincides with the half-plane R2

+ = {(x1, x2) : x2 ≥ 0} and ∂Θ coincides with
{(x1, x2) : x2 = 0}. We set F1 = ∂τF and F2 = ∂ττF . From (4.43), we easily deduce
that

(4.47) F2 ∈ L2((0, T )× R2
+
)
, ∂ττF2 ∈ L2((0, T )× R+;H−2(R)

)
and

(4.48) ∆F2 = ∂ττ (∂nn + ∂ττ )F ∈ L2((0, T )× R+;H−2(R)
)
.

These in turn imply

(4.49) ∂nnF2 = ∆F2 − ∂ττF2 ∈ L2((0, T )× R+;H−2(R)
)
.

Relations (4.47)–(4.49) and the trace theorem [21, Chapter 5, section 3] yield the
second relation in our claim (4.46). We can similarly prove the first relation in (4.46).

By denoting the unit normal vector by n = (n1, n2) and the unit tangential vector
by τ = (n2,−n1), we obtain that

(4.50) ∂1F = n1∂nF + n2∂τF, ∂2F = n2∂nF − n1∂τF,
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and

(4.51) ∆F = ∂nnF + ∂ττF + ρ1∂nF + ρ2∂τF ,

where ρ1 and ρ2 are smooth functions. Expressing ∂nnF by ∆F , ∂ττF , ∂nF , and ∂τF
in (4.51) and taking into account (4.42), (4.44)–(4.46), and the imbedding

L2(0, T ;H−1/2(∂Θ)
)
⊂ L1(0, T ;B−1/α,α(∂Θ)

)
, 1 < α < 2 ,

we deduce that ∂nnF possesses a trace on ∂Θ and that the trace satisfies

(4.52) γ∂nnF ∈ L1(0, T ;B−1/α,α(∂Θ)
)
.

Equations (4.28) and (4.50) yield

∇w1 · n = n2∂nnF − n1∂nτF + β1∂nF + β2∂τF

and

∇w2 · n = −n1∂nnF − n2∂nτF + δ1∂nF + δ2∂τF ,

where β1, β2, δ1, and δ2 are smooth functions. These two relations give us the
expression for ∇w · n in terms of ∂nnF , ∂nτF , ∂nF , and ∂τF . Similarly, we obtain
the expression for (∇w)T · n in terms of ∂nnF , ∂nτF , ∂nF , and ∂τF :

(∂1w) · n = −n2∂ττF − n1∂nτF + b1∂nF + b2∂τF

and

(∂2w) · n = n1∂ττF − n2∂nτF + d1∂nF + d2∂τF ,

where b1, b2, d1, and d2 are smooth functions. These relations together with (4.44)–
(4.46) and (4.52) imply the assertions of the theorem.

Now we prove a trace result for the pressure field p that satisfies (4.27).
THEOREM 4.10. Assume w satisfies the hypotheses of Theorem 4.9 and let p be a

scalar field such that p ∈ L2
(
0, T ;L2

loc(Ω)
)
, ∇p ∈ L2

(
0, T ; H−1(Ω)

)
, and (4.27) holds.

Then p ∈ L1
(
0, T ;Xα(Θ)

)
and the restriction mapping γ : p 7→ (pn)

∣∣
∂Ω belongs to

L
(
L1
(
0, T ;Xα(Θ)

)
, L1
(
0, T ; B−1/α,α(∂Ω)

))
, where 1 < α < 2.

Proof. Taking the divergence of (4.27) and using the divergence-free condition
(4.30) for w, we obtain

(4.53) ∆p = E,

where E = −2[(∂1w1)2 + (∂1w2)(∂2w1)]. Let α′ be the reciprocal conjugate of α, i.e.,
(1/α) + (1/α′) = 1. Since α′ > 2, the imbedding W 1,α′(Θ) ↪→ C(Θ) is continuous so
that ∫ T

0

∫
Θ
E(t,x)φ(x) dx dt ≤ 2

∫ T

0
‖w‖2V1(Θ) dt ‖φ‖C(Θ)

≤ C ‖w‖2L2(0,T ;V1(Θ)) ‖φ‖W 1,α′ (Θ) ∀φ ∈W 1,α′(Θ) .

Hence ∆p ∈ L1
(
0, T ;W−1,α(Θ)

)
. Also, p ∈ L2

(
0, T ;L2(Θ)

)
. Hence we conclude

that p ∈ L1
(
0, T ;Xα

)
so that the desired result about the trace of p follows from

Proposition 4.8 and the fact that ∂Ω is of class C∞.
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Combining Theorems 4.9 and 4.10, we obtain the following result for the stress
vector on the boundary corresponding to admissible solutions.

COROLLARY 4.11. Assume that w and p satisfy the hypotheses of Theorems 4.9
and 4.10. Then, the stress vector

(
−pn+µ(∇w+(∇w)T

)
·n)|(0,T )×∂Ω on the boundary

belongs to L1
(
0, T ; B−1/α,α(∂Ω)

)
.

5. The existence of an optimal solution. In this section we prove the exis-
tence of an optimal solution for both Problem I and Problem II. We first establish a
useful lemma.

LEMMA 5.1. Let R > 0 be a constant such that ∂Ω ⊂
{
x : |x| < R

}
and define

ΩR = Ω ∩
{
x : |x| < R

}
. Then there exists a positive constant C depending only on

R such that

‖u‖H1(ΩR) ≤ C
(∫

ΩR
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(ΩR).

Proof. Assume the lemma is false; then we may choose a sequence {un} ⊂ H1(ΩR)
such that ‖un‖H1(ΩR) = 1 and

1 > n
(∫

ΩR
|D(un)|2 dx +

∫
∂Ω
|un|2 ds

)
so that

(5.1)
∫

ΩR
|D(un)|2 dx→ 0 and

∫
∂Ω
|un|2 ds→ 0 as n→∞;

i.e., D(un)→ O in L2(ΩR) (where O is the zero tensor) and un → u in L2(∂Ω). The
fact that ‖un‖H1(ΩR) = 1 implies that there exists a subsequence (still denoted by
{un}) such that as n→∞,

(5.2) un ⇀ u in H1(ΩR) , un → u in L2(ΩR), and un → u in L2(∂Ω)

for some u ∈ H1(ΩR), which in turn implies D(un) ⇀ D(u) in L2(ΩR). Hence we
have D(u) = O in L2(ΩR) and u = 0 in L2(∂Ω), i.e., D(u) ≡ O in ΩR and u ≡ 0 on
∂Ω. Hence u is a rigid-body motion which can be expressed in the form u = a+b×x
for all x ∈ ΩR, where a and b are constant vectors (see [22] or [23]). u being a linear
function and u ≡ 0 on ∂Ω easily leads us to a = 0 and b = 0, i.e., u ≡ 0 in ΩR. On
the other hand, we deduce from (5.1) and (5.2) that D(un) → D(u) in L2(ΩR) and
un → u in L2(ΩR). Then, using Korn’s second inequality (see, e.g., [22, p. 31]),∫

ΩR

(
|D(z)|2 + |z|2

)
dx ≥ C‖z‖2H1(ΩR) ∀ z ∈ H1(ΩR) ,

we conclude un → u in H1(ΩR) so that ‖u‖H1(ΩR) = limn→∞ ‖un‖H1(ΩR) = 1, i.e.,
u 6= 0. This gives a contradiction. Hence the lemma is proved.

As a consequence of Lemma 5.1, we obtain the following.
COROLLARY 5.2. There exists a constant C > 0 depending only on Ω such that

‖u‖H1/2(∂Ω) ≤ C
(∫

Ω
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(Ω).

Proof. We fix an R > 0 such that ∂Ω ⊂ {x : |x| < R} (R is determined, albeit
not uniquely, by Ω). Then by Lemma 5.1 and the trace theorem for H1(ΩR), there
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exists a constant C > 0 (depending only on R and Ω) such that

‖u‖H1/2(∂Ω) ≤ C
(∫

ΩR
|D(u)|2 dx +

∫
∂Ω
|u|2 ds

)
∀u ∈ H1(ΩR).

Thus the desired estimate follows from the last inequality and the fact that
ΩR ⊂ Ω.

THEOREM 5.3. There exists a solution w ∈ Y for Problem I; there exists a
solution w ∈ Y for Problem II.

Proof. The proofs for Problem I and Problem II are essentially the same, and
we will only consider Problem I. Theorem 4.4 guarantees that the admissible set Vad
is nonempty; indeed, we choose a boundary data in C∞

(
[0, T ] × ∂Ω

)
, and then by

Theorem 4.4, there exists a solution in V(1)(QT ) for the Navier–Stokes equations
satisfying this chosen smooth boundary data. This solution clearly belongs to Vad;
i.e., Vad; is nonempty. It is easy to verify that JN (·) is bounded from below in Y .
Thus, we may choose a sequence {wn} ⊂ Vad such that

lim
n→∞

JN (wn) = inf
w∈Vad

JN (w) ,

(5.3)
〈∂twn, z〉+ µ

∫
Ω
∇wn : ∇z dx +

∫
Ω

(
[wn + v∞] · ∇

)
wn · z dx

= 0 ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

and

wn|t=0 = w0 in V0(Ω) .

Using (3.4) and the conditions on k and N given in the definition of Problem I, we
obtain that

(5.4) µ

∫ T

0

∫
Ω
D(wn) : D(wn) dxdt+

∫ T

0

∫
∂Ω

(
|∂twn|2 + |wn|k

)
ds dt ≤ C .

The last inequality and Corollary 5.2 imply that

(5.5) ‖wn‖Lk((0,T )×∂Ω) + ‖wn‖H1(0,T ;L2(∂Ω)) + ‖wn‖L2(0,T ;H1/2(∂Ω)) ≤ C .

Thus, the estimate of Theorem 4.4 with (5.5) gives us the bound

‖∂twn‖L2(0,T ;V−1(Ω)) + ‖wn‖L2(0,T ;V1(Ω)) ≤ C,

which allows us to choose a weakly convergent subsequence

(5.6) wn ⇀ ŵ in L2(0, T ; V1(Ω)
)

and

(5.7) ∂twn ⇀ ∂tŵ in L2(0, T ; V−1(Ω)
)

for some ŵ ∈ V(1)(QT ). For each R > 0 we let BR = {x ∈ R2 : |x| < R}. Since the
space

V(1)
R (Ω ∩BR) ≡

{
u ∈ L2(0, T ; V1(Ω ∩BR)

)
: ∂tu ∈ L2(0, T ; V−1(Ω ∩BR)

)}
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equipped with the norm ‖u‖2
V(1)
R

(Ω∩BR)
= ‖u‖2L2(0,T ;V1(Ω∩BR))+‖∂tu‖2L2(0,T ;V−1(Ω∩BR))

is compactly imbedded into L2
(
(0, T )× (Ω∩BR)

)
, we may use (5.6) and (5.7) to con-

clude that

(5.8) wn → ŵ in L2((0, T )× (Ω ∩BR)
)
.

For each arbitrarily given z ∈ C∞0 (Ω) ∩V1
0(Ω), relations (5.6)–(5.8) allow us to pass

to the limit in (5.3) to deduce that

〈∂tŵ(t), z〉+ µ

∫
Ω
∇ŵ(t) : ∇z dx +

∫
Ω

(
[ŵ(t) + v∞] · ∇

)
ŵ(t) · z dx

= 0 a.e. t ∈ (0, T ) .

Then, using the denseness of C∞0 (Ω) ∩V1
0(Ω) in V1

0(Ω), we obtain

(5.9)
〈∂tŵ(t), z〉+ µ

∫
Ω
∇ŵ(t) : ∇z dx +

∫
Ω

(
[ŵ(t) + v∞] · ∇

)
ŵ(t) · z dx

= 0 ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T );

i.e., ŵ satisfies the weak form of the Navier–Stokes equations.
Relations (5.6) and trace theorems imply

wn ⇀ ŵ in L2(0, T ; H1/2(∂Ω)
)

so that

wn ⇀ ŵ in L2((0, T )× ∂Ω
)
.

The estimate (5.5) implies

wn ⇀ h in Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
for some h ∈ Lk

(
(0, T ) × ∂Ω

)
∩ H1

(
0, T ; L2(∂Ω)

)
∩ L2

(
0, T ; H1/2(∂Ω)

)
. Hence we

deduce that h = ŵ on (0, T )× ∂Ω so that

(5.10) wn ⇀ ŵ in Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
.

Thus, we have shown that ŵ ∈ Y . The continuous imbedding of V(1)(QT ) into
C
(
[0, T ]; V0

)
(see Lemma 3.1) yields that for each τ ∈ [0, T ], the trace operator

w 7→ w|t=τ is bounded from V(1)(QT ) into V0(Ω). Hence, using the weak convergence
wn ⇀ ŵ in V(1)(QT ) and the fact that bounded linear operators preserve weak
convergence we obtain

w0 = wn|t=0 ⇀ ŵ|t=0 in V0(Ω)

and

wn|t=T ⇀ ŵ|t=T in V0(Ω) .

Now, we pass to the limit in the functional JN . We first examine the term∫ T
0

∫
∂Ω |w|

2w · n ds dt in the functional. By the compact imbedding result (see [1])

Lk
(
(0, T )× ∂Ω

)
∩H1(0, T ; L2(∂Ω)

)
∩ L2(0, T ; H1/2(∂Ω)

)
↪→ H1/2((0, T )× ∂Ω

)
↪→↪→ L3((0, T )× ∂Ω

)
,
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we obtain from (5.10) that

wn|∂Ω → ŵ|∂Ω in L3((0, T )× ∂Ω
)

so that

lim
n→∞

∫ T

0

∫
∂Ω
|wn|2wn · n ds dt =

∫ T

0

∫
∂Ω
|ŵ|2ŵ · n ds dt .

All the remaining terms in the functional JN are sequentially weakly lower semi-
continuous; thus, using the weak convergence results obtained earlier, we have that

JN (ŵ) ≤ lim inf
n→∞

JN (wn) .

Hence, we have shown that ŵ ∈ Y is indeed a solution to Problem I.
REMARK. The proof of Theorem 5.2 for Problem II can proceed first by substi-

tuting w = wn into (3.5) and (3.6) to obtain the estimate (5.4) and then passing to
the limit as n→∞.

REMARK. Since the optimal solution is sought in the space Y whose boundary
values are more regular than the trace of V(1)(QT ), we expect the optimal solution to
be more regular than merely in V(1)(QT ).

REMARK. The result also holds for many other cost functionals such as the L2-
norm of the vorticity functional used in [2] or the velocity matching functional

K(w) =
1
2

∫ T

0

∫
Ω
|w −w0|2 dxdt+

1
2

∫ T

0

∫
∂Ω

(
|∂tw|2 + |w|2 + |∇sw|2

)
ds dt ,

where ∇s denotes the surface gradient on ∂Ω. Using similar arguments we may, for
example, conclude that there exists a ŵ ∈ Vad such that K(ŵ) = infw∈Vad K(w) .

6. The optimality system. Having proved that an optimal solution w exists,
we now use Lagrange multiplier principles to characterize the optimal solution; i.e., we
obtain an optimality system of partial differential equations that the optimal solution
w and Lagrange multipliers must satisfy. This optimality system can serve as the
basis for computing approximations to optimal solutions numerically.

6.1. Abstract Lagrange multiplier principles. We consider an abstract min-
imization problem. Let X1 and X2 be two Banach spaces. Let f : X1 → R and
gj : X1 → R be functionals and F : X1 → X2 be a mapping. We seek a w ∈ X1 such
that

(6.1) f(w) = inf
u∈Wad

f(u) ,

where

Wad =
{
u ∈ X1 : F (u) = 0, and gj(u) ≤ 0 for j = 1, . . . ,m

}
.

The Lagrange functional for the minimization problem (6.1) is defined by

L(w,λ, q) = λ0f(w) + 〈F (w), q〉+
m∑
i=1

λjgj(w)
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for all w ∈ X1, λ = (λ0, λ1, . . . , λm)T ∈ Rm+1, and q ∈ X∗2 . We quote a standard
abstract Lagrange principle in the following particular form (see [3]).

THEOREM 6.1. Let w be a solution of (6.1). Assume that the mappings f , gj, and
F are continuously differentiable and that the image of the operator F ′(w) : X1 → X2
is closed. Then there exists a q ∈ X∗2 and a λ = (λ0, λ1, . . . , λm)T ∈ Rm+1 such that
the pair (q,λ) 6= (0,0),

(6.2) 〈Lw(w,λ, q), h〉 = 0 ∀h ∈ X1 ,

(6.3) λj ≥ 0, j = 0, 1, . . . ,m , and λjgj(w) = 0, j = 1, . . . ,m ,

where Lw(·, ·, ·) denotes the Fréchet derivative of L with respect to the first argument.
Furthermore, if F ′(w) : X1 → X2 is an epimorphism and the constraints gi(w) ≤ 0
are absent in problem (6.1), then λ0 6= 0 and λ0 can be taken as 1.

6.2. The weak form of an optimality system. Now we apply the abstract
Lagrange principle to Problem I and Problem II to obtain an optimality system of
equations for each case. We first examine Problem I. We first derive the adjoint
equation, in the weak form, for the optimal control problem.

THEOREM 6.2. Assume w ∈ V(1)(QT ) is a solution for Problem I. Then there
exists a q ∈ V(1)(QT ) ∩ L2

(
0, T ; V1

0(Ω)
)

such that

(6.4)

2µ
∫ T

0

∫
Ω
D(w) : D(h) dxdt+ 2µ

∫ T

0

∫
Ω
D(h) : D(q) dxdt

+
∫ T

0

∫
Ω

{
(h · ∇)w + (w · ∇)h + (v∞ · ∇)h

}
· q dxdt

+
∫ T

0
〈∂th(t, ·) , q(t, ·)〉 dt

+N
(∫ T

0

∫
∂Ω

2∂tw · ∂th ds dt+ k

∫ T

0

∫
∂Ω
|w + v∞|k−2(w + v∞) · h ds dt

)
+

1
2

∫ T

0

∫
∂Ω

{
(w + v∞) · n(w · h) +

1
2

(h · n)|w|2
}
ds dt

+
1
2

∫
Ω

w(T,x) · h(T,x) dx = 0 ∀h ∈ Y0,

where Y0 ≡ {y ∈ Y : y|t=0 = 0}.
Proof. We use the Lagrange multiplier principle (Theorem 6.1) to prove the

desired result. We set X1 = Y0 and X2 = L2
(
0, T ; V−1(Ω)

)
. We define the mappings

f : X1 → R and F : X1 → X2 as follows:

f(y) = JN (w + y)

and

F (y) = ∂t(w + y)− µP∆(w + y) + P
[(

(w + y + v∞) · ∇
)
(w + y)

]
,

where P : H−1(Ω) → V−1(Ω) is the projection operator. Constraints gi ≤ 0 are
absent in Problem I. Then y = 0 is the solution of the corresponding extremal problem
and F ′(0) : X1 → X2 is defined by

〈F ′(0),y〉 = ∂ty − µP∆y + P
[
(y · ∇)w +

(
(w + v∞) · ∇

)
y
]
.
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To show that F ′(0) is an epimorphism, we first observe that this operator is continu-
ous. Next we need to show that for each f ∈ L2

(
0, T ; V−1(Ω)

)
the system

(6.5)

〈∂ty(t), z〉+ µ

∫
Ω
∇y(t) : ∇z dx +

∫
Ω

(
(w(t) + v∞) · ∇

)
y(t) · z dx

+
∫

Ω

(
y(t) · ∇

)
w(t) · z dx =

∫
Ω

f(t) · z dx ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

and

(6.6) y|t=0 = 0 in V0(Ω)

has a solution y ∈ Y0. We supplement this system with the boundary condition

(6.7) y|(0,T )×∂Ω = 0 .

Using the techniques in the proof of Theorem 4.4 we see that (6.5)–(6.7) indeed has
a (unique) solution y ∈ V(1)(QT ). (The situation now is even simpler, as the system
(6.5)–(6.7) is linear.) Clearly, y ∈ Y0. Hence, we have verified all the assumptions
in Theorem 6.1 and we conclude that there exists a q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)

such
that

(6.8)
〈
Ly
(
y,q

)
,h
〉
|y=0 = 0 ∀h ∈ Y0 ,

where the Lagrange functional for Problem I is defined by

(6.9)

L
(
y,q

)
= µ

∫ T

0

∫
Ω
|D(w + y)|2 dxdt+

1
4

∫
Ω
|w(T,x) + y(T,x)|2 dx

+
1
4

∫ T

0

∫
∂Ω

(w + y + v∞) · n|w + y|2 ds dt

+
∫ T

0

∫
Ω
∂t(w + y) · q dxdt+ 2µ

∫ T

0

∫
Ω
D(w + y) : D(q) dxdt

+
∫ T

0

∫
Ω

{
[(w + y) · ∇](w + y) + (v∞ · ∇)(w + y)

}
· q dxdt

+N
(∫ T

0

∫
∂Ω
|∂tw + ∂ty|2 ds dt+

∫ T

0

∫
∂Ω
|w + y + v∞|k ds dt

)
for all y ∈ X1 and q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)
. (Note that we have chosen λ0 = 1

in the definition (6.9); this is justified by Theorem 6.1 and the fact that F ′(0) is
an epimorphism.) Substituting (6.9) into (6.8) we obtain (6.4). By varying h in
E =

{
v ∈ C∞0

(
(0, T ) × Ω

)
: div v = 0

}
⊂ Y0, we obtain in the sense of distributions

defined on solenoidal vector fields:

(6.10) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q = µ∆w in E ′ ,

or equivalently,

−∂tq = µ∆q− q · (∇w)T + (w · ∇)q + (v∞ · ∇)q + µ∆w in E ′ .

From the fact that w ∈ V(1)(QT ) and q ∈ L2
(
0, T ; V1

0(Ω)
)
, we easily deduce ∂tq ∈

L2
(
0, T ; V−1(Ω)

)
. Hence, we have proved q ∈ V(1)(QT ).
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6.3. Green’s formulae. To interpret the weak optimality system (6.4) as a
system of partial differential equations with boundary conditions, we will need some
Green’s formulae for the optimal solution w, the Lagrange multiplier q, and their
associated pressure fields p and r, respectively.

We note that if q is a solution of (6.4) or (6.10), then by De Rham’s lemma (see
[14] and [28]), there exists an r̃ ∈ L2

(
0, T ;L2

loc(Ω)
)

such that ∇r̃ ∈ L2
(
0, T ; H−1(Ω)

)
and

(6.11) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r̃ = µ∆w

in the sense of distributions. Through the change of variable r = r̃ + p, where p
satisfies (4.27), we see that r ∈ L2

(
0, T ;L2

loc(Ω)
)
, ∇r ∈ L2

(
0, T ; H−1(Ω)

)
, and

(6.12) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = µ∆w −∇p

in the sense of distributions. We now prove the trace theorems for
(
(∇q)+(∇q)T

)
·n

and r as was done for
(
(∇w) + (∇w)T

)
· n and p in section 4.3; we will also derive

some Green’s formulae that are useful in interpreting the weak optimality system as
a boundary value problem for a system of partial differential equations.

LEMMA 6.3. Assume w is a solution for Problem I and let q ∈ V(1)(QT ) ∩
L2
(
0, T ; V1

0(Ω)
)

be a solution of (6.4). Let r ∈ L2
(
0, T ;L2

loc(Ω)
)

satisfy (6.12) and
∇r ∈ L2

(
0, T ; H−1(Ω)

)
. Then

(6.13) γ
[
(∇q)·n

]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
, γ
[
(∇q)T ·n

]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

(6.14) γ(rn) ∈ L1(0, T ; B−1/α,α(∂Ω)
)
,

and therefore

(6.15) γ
[(
−rI + (∇q) + (∇q)T

)
· n ∈ L1(0, T ; B−1/α,α(∂Ω)

)]
,

where 1 < α < 2.
Proof. As in section 4.3, we introduce the bounded subdomain Θ ⊂ Ω such that

∂Ω ⊂ ∂Θ. We introduce on Θ the streamfunction E for q = (q1, q2) such that

q1 = ∂2E and q2 = −∂1E .

Then, by applying the curl operator to (6.11), we obtain that

(6.16) ∆(∂tE + µE + µ∆F ) = G1,

where F is the streamfunction for w introduced in (4.28) and

G1 = 2(∂1w1)(∂2q1 +∂1q2)+2(∂2q2)(∂1w2 +∂2w1)+(w1 +v∞,1)∆q2−(w2 +v∞,2)∆q1 .

Also, the fact that q|ST = 0 allows us to choose E to satisfy E|ST = 0. Analogous to
the proof of Lemma 4.5, we obtain

(6.17) G1 ∈ L1(0, T ;W−1,α(Θ)
)
, 1 < α < 2 .

Since q ∈ V(1)(QT ) we have E ∈ H(2)(QT ). Thus, (6.16) and (6.17) yield

∂tE + µ∆E + µ∆F ∈ L1(0, T ;Xα), 1 < α < 2 .
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By virtue of Proposition 4.8 we obtain

(6.18) γ(∂tE + µ∆E + µ∆F ) ∈ L1(0, T ;B−1/α,α(∂Ω)
)
.

The fact that E|ST = 0 implies γ∂tE|ST = 0. Recall from (4.42) that γ∆F ∈
L1
(
0, T ;B−1/α,α(∂Ω)

)
so that from (6.18),

γ∆E ∈ L1(0, T ;B−1/α,α(∂Ω)
)
, 1 < α < 2 .

Repeating the arguments in the proof of Theorem 4.9 we obtain (6.13). To prove the
trace result for r, we proceed in the same way as in the proof of Theorem 4.10 for p.
Taking the divergence of (6.12) we obtain

−∆r = G2 + ∆p,

where

G2 = ∂1q2(∂1w2 − ∂2w1) + ∂2q1(∂2w1 − ∂1w2) + q1∆w1 + q2∆w2 .

Analogous to the proof of Lemma 4.5 we have

G2 ∈ L1(0, T ;W−1,α(Θ)
)
, 1 < α < 2 .

Hence, the last three relations and the fact that r ∈ L2
(
0, T ;L2(Θ)

)
and ∆p ∈

L1
(
0, T ;W−1,α(Θ)

)
yield

r ∈ L1(0, T ;Xα

)
,

so that from Proposition 4.8, γr ∈ L1
(
0, T ;B−1/α,α(∂Ω)

)
for 1 < α < 2; i.e., (6.14)

holds. Finally, (6.15) follows trivially from (6.13)–(6.14).
We now establish some Green’s formulae.
LEMMA 6.4. Let r ∈ Xα(Θ), 1 < α < 2. Then the distribution ∇r can be extended

continuously into the functional defined by

(6.19) 〈∇r,h〉 = 〈rn,h〉∂Ω −
∫

Θ
r div h dx

for every h ∈ C∞(Θ) which vanishes near (0, T ) × (∂Θ \ ∂Ω). Here 〈∇r, ·〉 denotes
the defined functional and 〈·, ·〉∂Ω denotes the duality pairing between B1/α,α′(∂Θ) and
B−1/α,α(∂Θ).

Proof. By Lemma 4.7 we may choose a sequence {rn} ⊂ C∞(Θ) such that rn → r
in Xα. Formula (6.19) holds for r = rn by the classical Stokes theorem. Since the
right side of (6.19) with r = rn converges as n → ∞ to the same expression with r,
formula (6.19) defines the desired functional for r ∈ Xα(Θ).

REMARK. On C∞(Θ), the definition of the operator ∇ found in Lemma 6.4 coin-
cides with the classical definition.

LEMMA 6.5. Let w ∈ Y be a solution of (3.1)–(3.3). Then there exists a sequence
of solutions of (3.1), {w(k)} ⊂ Y ∩ L∞

(
0, T ; V2(Θ)

)
, such that w(k) → w in Y .

Proof. Let U ⊂ Θ be a (bounded) neighborhood of ∂Ω such that the extension
u of the boundary data b constructed in Theorem 4.2 has support in U and we can
choose a coordinate system (x1, x2)T such that U = {(x1, x2)T ∈ R2 : 0 < x2 < d}
and ∂Ω = {(x1, x2)T ∈ R2 : x2 = 0}. We consider the sequence {u(k)} defined by

(6.20) u(k)(t,x) ≡
∫ T

0

∫
U

k3φ
(
k(t− s), k(x1 − y1), k(x2 − y2)

)
u(s, y1, y2) dy1 dy2 ds ,



882 A. V. FURSIKOV, M. D. GUNZBURGER, AND L. S. HOU

where φ ∈ C∞0 (R3),
∫
R3 φdt dx = 1, and suppφ ∈ {(t, x1, x2)T ∈ R3 : −1 < t <

1,−1 < x1 < 1,−1 < x2 < 0}. Evidently, each u(k) ∈ C∞
(
(0, T )×Θ

)
and

(6.21) ‖u− u(k)‖V(1)(QT ) → 0 as k →∞ .

We set

b(k) = u(k)|(0,T )×∂Ω .

We choose a sequence {w(k)
0 } ⊂ V2(Ω) such that

(6.22) w(k)
0 → w0 in V0(Ω)

and each w(k)
0 satisfies the compatibility condition

(w(k)
0 · n)|∂Ω = (b(k)

0 · n)|t=0 .

Moreover, we choose w(k)
0 such that w(k)

0 −u(k)|t=0 ∈ V1
0(Ω). We then consider (3.1)

with the boundary and initial conditions

(6.23) w|(0,T )×∂Ω = b(k) and w|t=0 = w(k)
0 .

Let b(k)
n and b

(k)
τ be the normal and tangential components of b(k), respectively:

b(k) = b(k)
n n + b(k)

τ τ .

Clearly, b(k)
n , b(k)

τ , and w(k)
0 satisfy conditions (4.12)–(4.14) and (4.18) of Theorem

4.4. Hence, by Theorem 4.4, there exists a solution w(k) ∈ Y for (3.1) and (6.23). We
now show that w(k) → w in Y . We obviously have

(w(k) −w)|(0,T )×∂Ω = b(k) − b→ 0

in H1
(
0, T ; L2(∂Ω)

)
∩ L2

(
0, T ; H1/2(∂Ω)

)
∩ Lk

(
(0, T ) × ∂Ω

)
. Thus we only need to

show w(k) → w in V(1)(QT ). We rewrite w −w(k) in the form

(6.24) w −w(k) = (u− u(k)) + η(k),

where η(k) satisfies (4.20), (4.21) with η(k)
0 = (w0 −w(k)

0 ) − (u − u(k))|t=0, and the
following analog of (4.19):

〈∂tη(k)(t), z〉+ µ

∫
Ω
∇η(k)(t) : ∇z dx +

∫
Ω

(η(k)(t) · ∇)w(t) · z dx

+
∫

Ω

(
(w(k)(t) + v∞) · ∇

)
η(k)(t) · z dx = 〈f (k)(t), z〉 ∀ z ∈ V1(Ω), a.e. t ∈ (0, T ),

where f (k) is defined by the following analog of (4.22):

〈f (k)(t), z〉 = −µ
∫

Ω
∇(u(t)− u(k)(t)) : ∇z dx− 〈∂t(u(t)− u(k)(t)), z〉

−
∫

Ω

(
(u(t)− u(k)(t)) · ∇

)
w(t) · z dx

−
∫

Ω

(
(w(k)(t) + v∞) · ∇

)
(u(t)− u(k)(t)) · z dx.
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We can estimate η(k) and f (k) as in the proof of Lemma 4.3 and (4.25) to obtain

‖η(k)‖V(1)(QT )

≤ A
(
‖f (k)‖L2(0,T ;V−1(Ω)), ‖u− u(k)‖V(1)(QT ), ‖η

(k)
0 ‖V0(Ω), ‖w‖V(1)(QT ), |v∞|

)
and

‖f (k)‖L2(0,T ;V−1(Ω)) ≤ C
(
‖u− u(k)‖V(1)(QT ) + ‖u− u(k)‖V(1)(QT ) ‖w‖V(1)(QT )

+ ‖u− u(k)‖V(1)(QT )
(
‖w(k)‖V(1)(QT ) + |v∞|

))
,

where A(·) is a continuous positive function on R5 and A(λ1, λ2, λ3, λ4, λ5) → 0 as
(λ1, λ2, λ3) → (0, 0, 0) for fixed λ4, λ5. Taking into account (6.21)–(6.22) and the
boundedness of ‖w(k)‖V(1)(QT ) (which follows from Theorem 4.4), we obtain

(6.25) ‖η(k)‖V(1)(QT ) → 0 as k →∞ .

Relations (6.21) and (6.25) imply the convergence w(k) → w in V(1)(QT ). Finally, we
prove that w(k) ∈ L∞

(
0, T ; V2(Θ)

)
. To this end, we write w(k) in the form

(6.26) w(k) = u(k) + ξ(k) .

Then ξ(k) is the solution of problem (4.19)–(4.21) with u replaced by u(k) and f
defined by (4.22), wherein f is replaced by f (k) and u is replaced by u(k). Note that
by (6.20) the inclusion u(k) ∈ C∞(Θ) holds. By (4.22) we have

(6.27) f (k) = P
(
µ∆u(k) − ∂tu(k) + [(u(k) + v∞) · ∇]u(k)

)
,

where P is the orthogonal projection from L2(Θ) onto V0
0(Θ). Since u(k) ∈ C∞(Θ),

we have f (k) ∈ L∞
(
0, T ; V0

0(Θ)
)
, ∂tf (k) ∈ L2

(
0, T ; V̂−1(Θ)

)
, and f (k)|t=0 ∈ V0

0(Θ),
where V̂−1 is the completion of V0

0 under the norm sup‖φ‖V1
0
=1

∫
Θ f · φdx. By (6.26)

and by properties of (w(k)−u(k))|t=0 we have that ξ(k)|t=0 ∈ V2(Ω)∩V1
0(Ω). Hence,

by a result in [28, pp. 299–302], we have ξ(k) ∈ L∞
(
0, T ; V2(Θ)

)
so that w(k) ∈

L∞
(
0, T ; V2(Θ)

)
.

We may prove a similar result for the solution q for the adjoint equation (6.12).
We consider the boundary value problem

(6.28) −∂tq(k)−µ∆q(k) +q(k) · (∇w(k))T − [(w(k) +v∞) ·∇]q(k) +∇r̃(k) = µ∆w(k),

(6.29) div q(k) = 0,

and

(6.30) q(k)|t=T = q(k)
0 ∈ V0

0(Θ), q(k)|(0,T )×∂Ω = 0 .

The existence and uniqueness of the solution q(k) ∈ V(1)(QT ) for (6.28)–(6.30) can be
shown by the standard techniques (see [19], [28]).

LEMMA 6.6. Let q ∈ V(1)(QT )∩L2
(
0, T ; V1

0(Ω)
)

and r̃ ∈ L2
(
0, T ;L2

loc(Ω)
)

be the
solution of (6.11), w(k) be the solution of (3.1) and (6.22), and q(k) be the solution
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of (6.28)–(6.30), where q(k)
0 ∈ V1

0(Ω) and ‖q(k)
0 − q(T, ·)‖V0

0(Ω) → 0 as k →∞. Then
for every k, q(k) ∈ L2

(
0, T ; V2(Θ)

)
and ‖q(k) − q‖V(1)(QT ) → 0 as k →∞.

Proof. By Lemma 6.5, ‖w(k) − w‖V(1)(QT ) → 0 as k → ∞. Subtracting (6.11)
from (6.28) and doing estimation as in Lemma 4.3 we obtain

‖q(k) − q‖V(1)(QT ) → 0 as k →∞ .

By Lemma 6.5, w(k) ∈ V(1)(QT )∩L∞
(
0, T ; V2(Θ)

)
. Also, q(k) ∈ V(1)(QT ). Thus we

have that

g ≡ µ∆w(k) − q(k) · (∇w(k))T − [(w(k) + v∞) · ∇]q(k) ∈ L2((0, T )×Θ
)
.

We rewrite (6.28) in the form

−∂tq(k) − µ∆q(k) +∇r̃(k) = g .

Applying to this last equation the regularity result for the Stokes equations (see [19])
we obtain q(k) ∈ L2

(
0, T ; V2(Θ)

)
.

LEMMA 6.7. Let w ∈ Y be a solution of problem (3.1)–(3.3) and q ∈ V(1)(QT ) ∩
L2
(
0, T ; V1

0(Ω)
)

be a solution of the adjoint equation (6.11). Then the distribution ∆w
defined on C∞0 (Ω) ∩V0(Ω) can be extended continuously into a functional defined by

(6.31)
∫

Θ
∆w · h dx =

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds− 2

∫
Θ
D(w) : D(h) dx

for every h ∈ C∞(Θ) which vanishes near (0, T ) × (∂Θ \ ∂Ω). Furthermore, the
time-dependent version of (6.31) also holds; i.e.,

(6.32)

∫ T

0

∫
Θ

∆w · h dx dt

=
∫ T

0

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds dt− 2

∫ T

0

∫
Θ
D(w) : D(h) dx dt

for every h ∈ C∞((0, T )×Θ) which vanishes near (0, T )×(∂Θ\∂Ω). Formulae (6.31)
and (6.32) also hold if w is replaced by q.

Proof. If w = w(k) ∈ L∞
(
0, T ; V2(Θ)

)
, (6.32) is the well-known Green’s formula

(see (2.5) and the ensuing formulae). We substitute into (6.32) the solution w(k) for
the problem (3.1) and (6.23) as constructed in Lemma 6.5. By this lemma we have
w(k) → w in V(1)(QT ), and therefore,∫ T

0

∫
Θ
D(w(k)) : D(h) dx dt→

∫ T

0

∫
Θ
D(w) : D(h) dx dt

as k → ∞. Theorem 4.9 yields that the operator w 7→ γ
(
(∇w) + (∇w)T

)
n is con-

tinuous from the set {w ∈ Y : w satisfies (3.1)} to the space L1
(
0, T ; B−1/α,α(∂Ω)

)
,

1 < α < 2. Hence,∫ T

0

∫
∂Ω

(
(∇w(k)) + (∇w(k))T

)
n · h ds dt→

∫ T

0

∫
∂Ω

(
(∇w) + (∇w)T

)
n · h ds dt

as k → ∞. Substituting w = w(k) into (6.32) and passing to the limit as k → ∞ in
the right-hand side of this formula we obtain the desired extension of the distribution
∆w which is defined by (6.32). The steady state formula (6.31) can be similarly
proved. The case of the distribution ∆q can be proved analogously.
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6.4. The optimality system in the form of a boundary value problem
for a system of partial differential equations. We now interpret the optimal-
ity system (3.1), (3.3), and (6.4) as a system of partial differential equations with
boundary conditions on the entire boundary of the cylinder QT = (0, T )× Ω.

We first recall from section 3 that

V0(Ω) = {v ∈ L2(Ω) : div v = 0}

and

V0
0(Ω) = the closure of C∞0 (Ω) ∩V0(Ω) in the L2(Ω)-norm .

We have the well-known Weyl decomposition (see [14] and [19])

L2(Ω) = V0
0(Ω)⊕

(
∇H1(Ω)

)
,

where ∇H1(Ω) = {∇g : g ∈ H1(Ω)}. We claim that

V0(Ω) = V0
0(Ω)⊕

(
∇Hπ

)
,

where ∇Hπ = {∇g : g ∈ H1(Ω), ∆g = 0}. Indeed, since for each w ∈ V0(Ω) we have
w = wσ +∇wπ from the Weyl decomposition with wσ ∈ V0

0(Ω) and wπ ∈ H1(Ω), we
obtain by taking the divergence of w that ∆wπ = div w − div wσ = 0.

We are now prepared to interpret the optimality system in the weak form as a sys-
tem of partial differential equations with boundary conditions on the entire boundary
of the cylinder QT = (0, T )× Ω.

THEOREM 6.8. Assume w ∈ Y is a solution for Problem I and q ∈ V(1)(QT )
is as defined in Theorem 6.2. Then there exist a p ∈ L2

(
0, T ;L2

loc(Ω)
)

and an r ∈
L2
(
0, T ;L2

loc(Ω)
)

such that the quadruplet (w, p,q, r) satisfies the partial differential
equations (in the sense of distributions)

(6.33) ∂tw − µ∆w + ((w + v∞) · ∇)w +∇p = 0 in (0, T )× Ω ,

(6.34) ∇ ·w = 0 in (0, T )× Ω ,

(6.35) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = µ∆w −∇p ,

and

(6.36) ∇ · q = 0 in (0, T )× Ω ,

the initial and terminal conditions

(6.37) w(0, ·) = w0(·) in V0(Ω) ,

and

(6.38) q(T, ·) +
1
2
wσ(T, ·) = 0 in V0

0(Ω),

and the (lateral) boundary condition

(6.39) q|ST = 0 ,
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where wσ(T, ·) is the projection of w(T, ·) onto V0
0(Ω). Moreover,

(6.40) ∂tt(γw) ∈ L1(0, T ; B−1/α,α(∂Ω)
)
,

(6.41) γ
[(

(∇w) + (∇w)T
)
· n
]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

(6.42) γp ∈ L1(0, T ;B−1/α,α(∂Ω)
)
,

∫
∂Ω
p ds = 0,

(6.43) γ
[(

(∇q) + (∇q)T
)
· n
]
∈ L1(0, T ; B−1/α,α(∂Ω)

)
,

and

(6.44) γr ∈ L1(0, T ;B−1/α,α(∂Ω)
)
,

∫
∂Ω
r ds = 0,

where 1 < α < 2 and the following boundary conditions hold:

(6.45) 2N∂2
tt(γw)−A(w)− T (w, p)n− T (q, r)n = η(t)n,

where

(6.46) T (w, p) = −pI + 2µD(w) and T (q, r) = −rI + 2µD(q) ,

(6.47) A(w) = γ
(
kN |w + v∞|k−2(w + v∞) +

1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)

and

(6.48) η(t) = −
∫
∂Ω
A(w) · n ds

/∫
∂Ω

ds .

Furthermore, the following compatibility conditions hold:

(6.49)
[
(γw) · n

]∣∣
t=0 = (γw0) · n ,

(6.50) (∂tγw) · τ |t=T = 0 and
(

1
2
γwπ + 2N∂tγw · n

)
|t=T = 0 ,

where τ is the unit tangential along ∂Ω and wπ(t, ·) is the primitive function of the
projection of w(t, ·) onto ∇Hπ determined by the condition

(6.51)
∫
∂Ω
wπ(t, ·) ds = 0 .

Proof. w ∈ V(1)(QT ) as a solution of Problem I satisfies (3.1) and (6.37). By the
De Rham lemma, or recall from (4.27), there exists a p ∈ L2

(
0, T ;L2

loc(Ω)
)

such that
(6.33) holds. Relation (6.49) follows from the inclusion w ∈ Y and the remark at the
end of section 4.1. For the Lagrange multiplier q ∈ V(1)(QT )∩L2

(
0, T ; V1

0
)

we recall
from (6.12) that there exists an r ∈ L2

(
0, T ;L2

loc(Ω)
)

such that (6.35) holds. (6.34)
and (6.36) simply follow from the fact that w ∈ V(1)(QT ) and q ∈ V(1)(QT ); (6.39)
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follows from the fact that q ∈ L2
(
0, T ; V1

0(Ω)
)
. From Theorem 4.10 and Lemma

6.3 we see that the traces of p and r live in the space L1
(
0, T ;B−1/α,α(∂Ω)

)
for

1 < α < 2. Also, note that in (6.33) and (6.35), we can add an arbitrary constant
to p and r so that, in particular, we can choose p and r satisfying

∫
∂Ω p ds = 0 and∫

∂Ω r ds = 0, respectively, where the integrals are understood as the duality pairings
〈p, 1〉 and 〈r, 1〉, respectively. This eliminates the arbitrary constant from p and r
and also will facilitate some later discussion. Hence (6.42) and (6.44) are verified.
Relations (6.41)–(6.44) follow from Theorems 4.9 and 4.10 and Lemma 6.3.

We now examine (6.45). By taking h ∈ C∞ in (6.4) with div h = 0, h|t=0 = 0,
h|t=T = 0 and integrating by parts (which is justified by Lemma 6.7), we obtain

(6.52)

∫ T

0

∫
Ω

(
− ∂tq− µ∆q + q · (∇w)T − [(w + v∞) · ∇]q− µ∆w

)
· h dxdt

+
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt = 0 ,

where A(w) is defined by (6.47). Also, the integrals are understood as duality pairings
if necessary. Equations (6.35) and (6.52) yield

(6.53)
−
∫ T

0

∫
Ω

(∇r +∇p) · h dxdt

+
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt = 0 .

Using Lemma 6.4 and the last equation, we obtain

(6.54)
∫ T

0

∫
∂Ω

(
2N∂tw · ∂th +

(
A(w) + T (p,w)n + T (r,q)n

)
· h
)
ds dt = 0 ,

where T is the stress tensor defined by (6.46). Since 1 < α < 2, we have the
continuous imbeddings B1/α,α′(∂Ω) ↪→ L∞(∂Ω), where α′ = α/(α − 1) so that
L1(∂Ω) ↪→ B−1/α,α(∂Ω). Hence,

γ
(

2kN |w+v∞|k−2(w+v∞)+
1
2
(
(w+v∞)·n

)
w+
|w|2

4
n
)
∈ L1(∂Ω) ↪→ B−1/α,α(∂Ω) .

Using Theorems 4.9 and 4.10, Lemma 6.3, and the last relation, we see that

(6.55) A(w) + T (p,w)n + T (r,q)n ∈ L1(0, T ; B−1/α,α(∂Ω)
)
.

Since h and ∂tw are solenoidal (from the definition of the spaces V(1)(QT ) and Y ),
we have ∫

∂Ω
h · n ds = 0 and

∫
∂Ω
∂tw · n ds = 0 .

Thus, from (6.54)–(6.55), we deduce (6.40) and

(6.56)
∫ T

0

∫
∂Ω

(
2N∂ttw −A(w)− T (p,w)n− T (r,q)n

)
· h ds dt = 0 .

Hence, (6.45) follows from (6.55) and (6.56) with η(t) defined by

(6.57) η(t) =
∫
∂Ω

n ·
(

2N∂ttw −A(w)− T (p,w)n− T (r,q)n
)
ds

/∫
∂Ω

ds .
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Note that for every φ(t) ∈ C∞0 (0, T ),∫ T

0

∫
∂Ω
∂ttw · n ds φ(t) dt =

∫ T

0

∫
∂Ω

w · n ds ∂ttφ(t) dt = 0

as
∫
∂Ω w · n ds = 0 for every divergence-free function w. Thus, for almost all t ∈

(0, T ),

(6.58)
∫
∂Ω
∂ttw · n ds = 0 .

Taking into account (6.42) we obtain for each φ(t) ∈ C∞0 (0, T ),

(6.59)

∫ T

0

∫
∂Ω

n · T (p,w)n ds φ(t) dt

=
∫ T

0

∫
∂Ω

(
n · µ

(
(∇w) + (∇w)T

)
n− p

)
ds φ(t) dt

=
∫ T

0

∫
∂Ω

(
n · µ

(
(∇w) + (∇w)T

)
n
)
ds φ(t) dt .

Let ε > 0 be given. For each s ∈ ∂Ω, we consider the normal ñ(s) to ∂Ω which is
directed into Ω. We choose the point K(ε, s) along ñ(s) such that the distance between
K(ε, s) and ∂Ω equals ε. If ε is sufficiently small, then the set {K(ε, s) : s ∈ ∂Ω} is a
C∞-manifold which we denote by ∂Ωε. Since w ∈ V0(Ω),∫

∂Ω
w · ñ ds = 0 and

∫
∂Ωε

w · ñε ds = 0,

where ñε is the outward normal to ∂Ωε. Hence,

(6.60)

∫ T

0

∫
∂Ω

(
n ·
(
(∇w) + (∇w)T

)
n
)
ds φ(t) dt

= 2
∫ T

0

∫
∂Ω
∂nw · n ds φ(t) dt

= lim
ε→0

1
ε

∫ T

0

(∫
∂Ω

w · n ds−
∫
∂Ωε

w · ñε ds
)
φ(t) dt = 0 .

Thus, (6.59) and (6.60) yield

(6.61)
∫
∂Ω

n · T (p,w)n ds = 0 for almost every t ∈ (0, T ) .

Similarly, we have

(6.62)
∫
∂Ω

n · T (r,q)n ds = 0 for almost every t ∈ (0, T ) .

From relations (6.58) and (6.61)–(6.62) we conclude that the function η(t) defined in
(6.57) equals the function defined in (6.48).
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Now we choose h ∈ C∞(QT ) in (6.4) with div h = 0 and h|t=0 = 0. Integration
by parts (which again is justified by Lemmas 6.4 and 6.7) yields

(6.63)

∫ T

0

∫
Ω

(
− ∂tq− µ∆q + q · (∇w)T − [(w + v∞)·]q− µ∆w

)
· h dxdt

+
∫ T

0

∫
∂Ω

(
− 2N∂ttw · h +

(
A(w) + 2µD(w)n + 2µD(q)n

)
· h
)
ds dt

+
∫

Ω

[
q(T,x) +

1
2
w(T,x)

]
· h(T,x) dx +

∫
∂Ω

2N∂tw(T,x) · h(T,x) ds = 0 .

Note that (6.53) and (6.56) hold for the present h so that using (6.35), (6.53), (6.56),
and (6.63), we are led to

(6.64)
∫

Ω

[
q(T,x) +

1
2
w(T,x)

]
· h(T,x) dx +

∫
∂Ω

2N∂tw(T,x) · h(T,x) ds = 0 .

Using the fact that q(T, ·) ∈ V0
0(Ω) and w(T, ·) ∈ V0(Ω) we obtain (6.38). Substi-

tuting (6.38) into (6.64) we obtain by integration by parts that∫
∂Ω

(1
2
wπ(T,x)n(x) · h(T,x) + 2N∂tw(T,x) · h(T,x)

)
ds = 0,

which implies (6.50) with (6.51).

6.5. The case of Problem II. We derive now the optimality system for Prob-
lem II.

THEOREM 6.9. Assume that v0 ≡ w0 + v∞ ∈ V1
0(Ω) and w ∈ Y is a solution

of Problem II. Then there exists a triplet (q, r, λ) ∈ V(1)(QT ) × L2
loc(QT ) × R+ and

p ∈ L2
loc(QT ) such that (q, r, λ) 6= (0, 0, 0) and the collection (w,q, p, r, λ) satisfies

(6.33)–(6.44) and the boundary conditions

(6.65) 2λ∂2
ttγw − Ã(w)− T (w, p)n− T (q, r)n = η̃(t)n,

where T (w, p) and T (q, r) are defined by (6.46),

(6.66) Ã(w) = γ
(
kλ|w + v∞|k−2(w + v∞) +

1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)
,

and

(6.67) η̃(t) = −
∫
∂Ω
Ã(w) · n ds

/∫
∂Ω

ds .

Moreover, the following compatibility conditions hold:

(6.68) (γw) · n|t=0 = (γw0) · n ,

(6.69) λ
[
(∂tγw) · τ

]∣∣
t=T = 0 , and

(1
2
γwπ + 2λ∂tγw · n

)∣∣∣
t=T

= 0 ,

where τ is the unit tangential along ∂Ω and wπ(t, ·) is the primitive function of the
projection of w(t, ·) onto ∇Hπ determined by the condition (6.51). Furthermore, the
conditions of nonnegativeness and complementary slackness are valid; i.e.,

(6.70) λ ≥ 0
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and

(6.71) λ
(∫ T

0

∫
∂Ω

(
|w + v∞|k + |∂tw|2

)
ds dt−M

)
= 0 .

Proof. Let w ∈ Y be a solution of Problem II. We fit Problem II into the
framework of Theorem 6.1. We set X1 = Y0 and X2 = L2

(
0, T ; V−1(Ω)

)
. The

Lagrange functional for Problem II is defined by

(6.72)

L
(
y,q

)
= λ0

(
µ

∫ T

0

∫
Ω
|D(w + y)|2 dxdt+

1
4

∫
Ω
|w(T,x) + y(T,x)|2 dx

+
1
4

∫ T

0

∫
∂Ω
|w + y|2(w + y + v∞) · n ds dt

)
+ λ

∫ T

0

∫
∂Ω

(
|w + y + v∞|k + |∂tw + ∂ty|2 −M

)
ds dt

+
∫ T

0

∫
Ω

(∂tw + ∂ty) · q dxdt+ 2µ
∫ T

0

∫
Ω
D(w + y) : D(q) dxdt

+
∫ T

0

∫
Ω

{
[(w + y) · ∇](w + y) + (v∞ · ∇)(w + y)

}
· q dxdt

for all y ∈ X1 and q ∈ X∗2 = L2
(
0, T ; V1

0(Ω)
)
. Note that (6.72) differs from (6.9)

in that λ0 has to be included in the Lagrangian functional and λ0 can be zero. We
define the functionals

f(y) = J (w + y)

and

g1(y) =
∫ T

0

∫
∂Ω

(∣∣w + y + v∞|k + |∂tw + ∂ty|2
)
ds dt−M ;

see (3.5)–(3.6). We define the mapping F : X1 → X2 as in the proof of Theorem 6.2.
Analogous to the proof of Theorem 6.2, we can verify that F ′(0) is an epimorphism,
and therefore the image of F ′(0) is closed. Hence, we have verified all the assumptions
in Theorem 6.1 and we conclude that there exist a q ∈ X∗2 = L2

(
0, T ; V1

0(Ω)
)

and a
(λ0, λ) ∈ R2 such that (q, λ0, λ) 6= (0, 0, 0),

(6.73)
〈
Ly(y,q),h

〉∣∣∣
y=0

= 0 ∀h ∈ Y ,

(6.74) λ0 ≥ 0 , λ ≥ 0 ,

and

(6.75) λ
(∫ T

0

∫
∂Ω

(
|∂tw|2 + |w + v∞|k

)
ds dt−M

)
= 0 .

As in Theorems 6.2 and 6.8, we derive from (6.73) relations (6.33)–(6.34), (6.36)–
(6.37), (6.39)–(6.44),

(6.76) −∂tq− µ∆q + q · (∇w)T − (w · ∇)q− (v∞ · ∇)q +∇r = λ0(µ∆w −∇p)
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and

(6.77) q(T, ·) +
λ0

2
wσ(T, ·) = 0 in V0

0(Ω) ,

where wσ(T, ·) is the projection of w(T, ·) onto V0
0(Ω). Moreover, we derive the

following boundary condition:

(6.78) 2λ∂2
ttγw − Ã(w)− T (w, p)n− T (q, r)n = η̃(t)n ,

where

Ã(w) = γ
{
kλ|w + v∞|k−2(w + v∞) + λ0

(1
2
(
(w + v∞) · n

)
w +

|w|2
4

n
)}

and

η̃(t) = −
∫
∂Ω
Ã(w) · n ds

/∫
∂Ω

ds .

Furthermore, the following compatibility conditions hold:[
(γw) · n

]∣∣
t=0 = (γw0) · n ,

(6.79)
(1

2
λ0γwπ + 2λ∂tγw · n

)
|t=T = 0 , (λ∂tγw) · τ |t=T = 0 ,

where wπ is the primitive for the projection ∇wσ of w onto ∇Hπ determined by
(6.51).

To complete the proof, it remains to show that λ0 6= 0 so that we can choose
λ0 = 1. Assume λ0 = 0. Then (6.76), (6.77), (6.36), and (6.39) yield q ≡ 0 by
standard techniques of energy estimates and the Gronwall inequality. Also, equation
(6.76) and the condition

∫
∂Ω r ds = 0 imply r = 0. We note that λ 6= 0 because

(q, λ0, λ, r) = (0, 0, λ, 0) 6= (0, 0, 0, 0). By (6.70), λ > 0. Then, by virtue of (6.71), w
is also a solution of the following modified minimization problem: seek a w ∈ Y such
that the functional (3.5) is minimized subject to the equality constraints (3.1), (3.3),
and

(6.80)
∫ T

0

∫
∂Ω

(|w + v∞|k + |∂tw|2) ds dt = M .

We now show that this minimization problem satisfies the conditions of Theorem 6.1.
Indeed, we set X1 = Y0 and X2 = L2

(
0, T ; V−1(Ω)

)
× R. We define the mapping f

by f(y) = J (w + y), where J is the functional (3.5) and define

F̃ (y) =
(
∂t(w + y)− µP∆(w + y) + P

[(
(w + y + v∞) · ∇

)
(w + y)

]∫ T
0

∫
∂Ω(|w + y + v∞|k + |∂tw + ∂ty|2) ds dt−M

)
,

where P : H−1(Ω)→ V−1(Ω) is the orthogonal projection. Then F̃ ′(0) : X1 → X2 is
defined by

〈F̃ ′(0),y〉 =
(

∂ty − µP∆y + P (y · ∇)w + P
(
(w + v∞) · ∇

)
y∫ T

0

∫
∂Ω(k|w + v∞|k−2(w + v∞) · y + 2∂tw · ∂ty) ds dt

)
.
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To show that F̃ ′(0) is an epimorphism, we first observe that this operator is con-
tinuous. Next we need to show that for each f ∈ L2

(
0, T ; V−1(Ω)

)
and ζ ∈ R, the

system

(6.81)
〈∂ty(t), z〉+ µ

∫
Ω
∇y(t) : ∇z dx +

∫
Ω

(
(w(t) + v∞) · ∇

)
y(t) · z dx

+
∫

Ω

(
y(t) · ∇

)
w(t) · z dx =

∫
Ω

f(t) · z dx ∀ z ∈ V1
0(Ω), a.e. t ∈ (0, T ) ,

(6.82) y|t=0 = 0 in V0(Ω),

and

(6.83)
∫ T

0

∫
∂Ω

(
k|w + v∞|k−2(w + v∞) · y + 2∂tw · ∂ty

)
ds dt = ζ

has a solution y ∈ Y0.
To this end we first look for a y ∈ γST Y0 satisfying (6.83). (γST Y0 is the space

of functions belonging to Y0 restricted to ST .) It suffices to show that there exists a
y ∈ γST Y0 for which the left side of (6.83) is not zero, for then we can obtain (6.83) by
multiplying y by a suitable constant. Suppose that for every y ∈ γST Y0 the equality∫ T

0

∫
∂Ω

(
k|w + v∞|k−2(w + v∞) · y + 2∂t(w + v∞) · ∂ty

)
ds dt = 0

holds. This equality and (6.79) with λ0 = 0 imply that w + v∞ satisfies the relations

(6.84) −2∂tt(w + v∞) + k|w + v∞|k−2(w + v∞) = 0 on (0, T )× ∂Ω

and

(6.85) ∂t(w + v∞)
∣∣
t=T = 0 on ∂Ω .

Note also that

(6.86) (w + v∞)
∣∣
t=0,x∈∂Ω = v0

∣∣
∂Ω ≡ 0 .

We multiply (6.84) by ∂t
(
w + v∞

)
and obtain

−∂t|∂t(w + v∞)|2 + ∂t|w + v∞|k = 0 on (0, T )× ∂Ω ,

which together with (6.85) implies

−|∂t(w + v∞)|2 + |w + v∞|k = |w(T, ·) + v∞|k on (0, T )× ∂Ω .

This equality taken at t = 0 yields

−
∣∣∂t(w(0,x) + v∞

)∣∣2 = |w(T,x) + v∞|k on ∂Ω ,

which implies∣∣∂t(w(0,x) + v∞
)∣∣2 = 0 and |w(T,x) + v∞|k = 0 on ∂Ω ,
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or we rewrite the last relation as

(6.87) w(T,x) + v∞ = 0 on (0, T )× ∂Ω .

We deduce from the differential equation (6.84) and boundary conditions (6.85) and
(6.87) that (w + v∞) = 0 on (0, T ) × ∂Ω. This contradicts (6.80). Therefore, there
exists a z ∈ γST Y0 satisfying (6.83), where y is replaced by z.

We supplement the system (6.81)–(6.82) with the boundary condition

(6.88) y|(0,T )×∂Ω = z .

Using the techniques in the proof of Theorem 4.4 we see that (6.81)–(6.82) and (6.88)
indeed has a (unique) solution y ∈ V(1)(QT ) (the situation now is even simpler, as
the system (6.81)–(6.82) is linear). Note that substituting z from (6.88) into (6.83)
in place of y makes (6.83) valid. Clearly, y ∈ Y0. Hence we have proved that F̃ ′(0)
is an epimorphism, so that we have verified all the assumptions in Theorem 6.1. By
virtue of Theorem 6.1, every Lagrange multiplier triplet (q̃, λ̃0, λ̃) such that (6.73)
holds where L is defined by (6.72) satisfies λ̃0 6= 0; in particular, (q, λ0, λ) is such a
triplet, and therefore λ0 6= 0. This contradicts the assumption λ0 = 0. Hence λ0 6= 0.

REMARK. Note that, since we have not employed a separate variable for the
control, the boundary condition (3.2) does not appear in the optimality systems of
sections 6.3–6.5. In fact, in order to satisfy (3.2) one merely has to choose, once w is
determined from the above optimality system, a control g such that g = w|∂Ω + v∞
for t ∈ (0, T ).

REMARK. The complexity of the optimality systems makes it nontrivial to study
the regularity of solutions for these systems. The regularity of solutions will be studied
elsewhere.
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Abstract. This paper is concerned with an optimal shape control problem for the stationary
Navier–Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined
to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. After
giving a precise formulation of the extremal problem in a function analytic setting, it is shown that
optimal solutions exist.

Key words. shape control, optimal design, Navier–Stokes equations, drag minimization
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1. Introduction. The control of fluid flow has long been a subject of interest to
engineers and scientists and, recently, due to interest in more complex technological
applications, it has also become a subject of intense study in the mathematical com-
munity. Broadly speaking, optimal control problems can be characterized by some
specified physical objective, e.g., drag reduction, and by a means of achieving that
objective, i.e., by specifying the control mechanisms. The latter can be divided into
two classes, namely, value controls and shape controls. Value controls include data ad-
justments such as external body forces, boundary stresses, boundary velocities, heat
sources, and heat fluxes and temperatures on the boundary. Meeting the objective
through the use of shape controls requires the identification of a shape of the domain,
i.e., of the boundary, among a specified class of domains. In this sense, a shape control
problem can be viewed as a “free boundary problem.”

It is believed that the Navier–Stokes equations describe general flows of fluids
ranging from certain gas motions to the lubrication of ball bearings. Thus, opti-
mal shape control problems associated with the Navier–Stokes equations, if settled
successfully, have wide and valuable application to aerodynamic and hydrodynamic
problems such as the design of car hoods, airplane wings, inlet shapes for jet engines,
etc. In this paper, we are concerned with some mathematical issues in a shape control
problem associated with flows governed by the stationary, two-dimensional, incom-
pressible Navier–Stokes equations. Such studies are in their infancy and at present,
only a scant mathematical literature is available. One of the first studies devoted to
an optimal shape design problem for the Navier–Stokes equations is found in [16];
there, attempts were made at determining a minimum drag profile submerged in a
homogeneous, steady, viscous fluid by utilizing optimal control theories for distributed
parameter systems. In [9], a finite difference method is used in some computational
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FIG. 1. The domain Ω(α) for flow through a channel with a bump.

experiments for determining minimal drag profiles. A successful application of opti-
mal shape theory in fluid mechanics can be found in the design of riblets as a drag
reduction device by considering a simplified boundary layer approximation of the
Navier–Stokes equations; see [1]. For drag reduction in linear Stokes flow, some rig-
orous mathematical results for the sensitivity analysis are given in [19]. While the
general objective in these studies was drag reduction, one may also consider optimal
shapes for other purposes, e.g., lift enhancement, the location of transitional points
from laminar to turbulent flow, etc.

In this paper, we deal with a specific drag minimization problem in two dimen-
sions. However, the approach used is discussed in general terms and is applicable
to many other optimal control problems involving different objectives and classes of
shape controls. Our aim here is to provide a systematic formulation of a problem
in which the viscous drag is minimized through the use of shape modifications and
to show the existence of optimal solutions. In subsequent papers we will discuss
sensitivity and numerical analyses for the shape control problem; these analyses will
include the derivation of a formula for the shape gradient that may be used within
an optimization algorithm to determine optimal shapes.

2. The model problem. We consider the two-dimensional incompressible flow
of a viscous fluid passing through a channel having a finite depth; see Figure 1. Let
g1 and g2 be the preset velocities at the inflow Γ1 and outflow Γ2 of the channel,
respectively. Along the bottom and top sides of the channel the velocity vanishes. (If
some other type of boundary conditions, e.g., specifying some components of the stress
vector, is specified along the left or right or top boundary, the results given below are
still valid, although the analyses may be more complicated.) The arc Γb(α), which is
part of the bottom boundary, represents the bump, which is to be determined.

Let the boundary shape corresponding to the bump be represented by the graph
of the curve α : [M1,M2] → [0, L). (We thus avoid the separation of the in- and
out-flows.) The domain Ω(α) is composed of two fixed rectangles and a domain with
an unknown boundary. Thus, the domain Ω(α) is determined by the shape of the
unknown boundary Γb(α), which we assume is given by

Γb(α) = {(x1, x2) ∈ [M1,M2]× [ 0, L) | x2 = α(x1)} ,

where α(x1) is a function to be determined by the optimization process. Let Γ(α) =
∂Ω(α) = ∪3

i=1Γi∪Γb(α), where Γ3 = Γ\(Γ1∪Γ2∪Γb(α)). Assume that both end points
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of Γb(α) are fixed (at x1 = M1, x2 = 0 and at x1 = M2, x2 = 0) for all admissible
domains. Since the domain Ω(α) is determined by the shape of Γb(α), one may define
the admissible family of curves defining Γb(α) as follows:

Uad ={α ∈ C0,1([M1,M2]) | 0 ≤ α(x1) ≤ L0 < L, |α(x1)− α(x1)| ≤ β|x1 − x1|,
∀x1, x1 ∈ [M1,M2], and α(M1) = α(M2) = 0 } ,

where β is a given fixed positive constant. We have denoted the set of Lipschitz
continuous functions in [M1,M2] by the symbol C0,1([M1,M2]).

The condition |α(x1) − α(x1)| ≤ β|x1 − x1| is invoked to prevent the “blow-up”
of the boundary, i.e., to suppress excessive oscillations of Γb(α) and to support the
uniform Lipschitz continuity of the moving boundary Γ(α). In [17], an example is
provided illustrating the observation that when the boundary is allowed to oscillate,
the limit of a sequence that minimizes the objective functional may have nothing to
do with the given optimization problem. Furthermore, equipped with this condition,
it is possible to show that all allowable domains Ω(α) have the uniform extension
property (see [5] and section 4).

We consider, for each α ∈ Uad, the viscous, incompressible, stationary Navier–
Stokes equations in nondimensional form in Ω(α). Let u = (u1, u2)T denote the
velocity and p the pressure. Then, we have

(2.1) −ν∆u + (u · ∇)u +∇p = f in Ω(α)

and

(2.2) ∇ · u = 0 in Ω(α)

along with the Dirichlet boundary conditions

(2.3) u = g =


g1 on Γ1,
g2 on Γ2,
0 on Γ3 ∪ Γb(α) ,

where f and gi, i = 1, 2, are given, fixed functions. Here, ∆ and ∇ denote the
Laplacian and gradient operators in R, respectively, f denotes the given external
force, and, in the nondimensional form of the Navier–Stokes equations, ν denotes
the reciprocal of the Reynolds number Re. Note that the constant density has been
absorbed into the pressure and the body force. For the compatibility and regularity
of solutions, we assume

(2.4) support of gi ⊂ Γi and
∫

Γ1

g1 · n dΓ +
∫

Γ2

g2 · n dΓ = 0 .

One can examine several objectives for determining the shape of the bump, e.g.,
the reduction of the drag due to viscosity or the identification of the velocity at a fixed
vertical slit downstream of the bump. To fix ideas, we focus on the minimization of the
cost functional (or, in the terminology of shape optimization, the design performance
functional)

(2.5)

J (α) = J
(

Ω(α),u(α)
)

= 2ν
∫

Ω(α)
D(u) : D(u) dΩ

=
ν

2

2∑
i,j=1

∫
Ω(α)

(
∂ui
∂xj

+
∂uj
∂xi

)2

dΩ ,
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where u(α) is a solution of (2.1)–(2.3) in Ω(α) and D(u) = 1
2 (∇u + (∇u)T ) is the

deformation tensor for the flow u. This functional represents the rate of energy dis-
sipation due to deformation. Physically, except for an unimportant additive constant
whose value depends on the boundary data g1 and g2, this functional represents the
viscous drag of the flow. In (2.5), the colon denotes the scalar product operator be-
tween two tensors. (Again, our results remain valid if we consider other functionals
such as the identification of the velocity at a location downstream of the bump.)

The extremal problem we consider is then given as follows:

(2.6)
min
α∈Uad

J (Ω(α),u(α)) such that, for some p(α),

(u(α), p(α)) is a solution of (2.1)–(2.3) in Ω(α) .

In preparation for showing the existence of optimal solutions satisfying (2.6), we
recast, in the next section, this problem into a precise function space setting.

3. Function space setting of extremal problem.

3.1. Notation. Throughout, depending on the context, I will denote the iden-
tity mapping or the identity matrix; C denotes a generic constant whose value also
depends on context. We denote by Hs(D), s ∈ R, the standard Sobolev space of order
s with respect to the set D, which is either the flow domain Ω, or its boundary Γ, or
part of its boundary. Whenever m is a nonnegative integer, the inner product over
Hm(D) is given by

(f, g)m,D = (f, g)0,D +
∑

0<|σ|≤m
(Dσf,Dσg)0,D ,

where (f, g)0 =
∫
D fg dD denotes the inner product over H0(D) = L2(D) and σ

denotes a multi-index. Hence, we naturally associate the norm on Hm(D) with
‖f‖m,D =

√
(f, f)m,D. Whenever there is no chance for confusion, we will, for the

flow domain Ω(α), let (·, ·)m,Ω(α) = (·, ·)m and ‖ · ‖m,Ω(α) = ‖ · ‖m.
For vector-valued functions and spaces, we use boldface notation. For example,

Hs(Ω) = [Hs(Ω) ]n denotes the space of R-valued functions such that each component
belongs to Hs(Ω). Of special interest to us is the space

H1(Ω) =
{
vj ∈ L2(Ω)

∣∣∣ ∂vj
∂xk

∈ L2(Ω) for j, k = 1, 2
}

equipped with the norm ‖v‖1 = (
∑2
i=1 ‖vi‖21)1/2. For Γs ⊂ Γ = ∂Ω with nonzero

measure, we also consider the subspace

H1
Γs(Ω) = {v ∈ H1(Ω) |v = 0 on Γs } ;

we let H1
0(Ω) = H1

Γ(Ω). For any v ∈ H1(Ω), we let

|||v||| = 2
(∫

Ω
D(v) : D(v) dΩ

)1/2

=
1
2

( 2∑
i,j=1

‖ ∂vi
∂xj

+
∂vj
∂xi
‖20
)1/2

.

By applying Korn’s inequality and a compactness argument, we obtain the following
result.
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LEMMA 3.1. Let Ω be a Lipschitz continuous bounded domain and let Γs be a
subset of Γ, the boundary of Ω, with a positive measure. Then, there exists a positive
constant C such that

(3.1) |||v||| ≥ C‖v‖1 for all v ∈ H1
Γs(Ω) .

Note that the constant C in (3.1) is independent of the choice of v. Thus, we have
that |||·||| is a norm which is equivalent to the norm ‖ · ‖1,Ω on H1

Γs(Ω). Hence, if we take

the inner product on H1
Γs(Ω) as ((u,v))1 = 2(D(u), D(v))0, then |||u||| = ((u,u))1/2

1 .
For each α ∈ C0,1([M1,M2]), let Γ0(α) = Γ3 ∪ Γb(α) and Γg = Γ1 ∪ Γ2 so that

Γ = Γ0(α) ∪ Γg. Since u = 0 on Γ0(α), we may take a generalized velocity space to
be

Vα = H1
Γ0(α)(Ω(α)) = {u ∈ H1(Ω(α)) | u = 0 on Γ0(α) } ;

Vα is the space of H1(Ω(α))-functions that vanish on Γ0(α); i.e., Vα is the space on
which the homogeneous essential boundary conditions are imposed. Let V∗α be the
dual space of Vα. Note that V∗α is a subspace of H−1(Ω(α)), where the latter is the
dual space of H1

0(Ω(α)). The duality between V∗α and Vα is denoted by 〈·, ·〉−1.
Let

L2
g(Γ) = { s ∈ L2(Γ) | s = 0 on Γ0(α) }

and let γg : Vα → L2
g(Γ) be the trace mapping. Let us define

Wα = γg(Vα) .

Let W∗
α denote its dual space and let 〈·, ·〉−1/2,Γg denote the duality pairing between

W∗
α and Wα. For each l ≥ 0, we denote by Hl(Γg) the space of the restrictions

to Γg of the functions of Hl(Γ), and by H−l(Γg), its dual space. It is clear that
the restrictions to Γg of the functions belonging to Wα form a closed subspace of
H1/2(Γg).

Now, let s be an element of Wα. It is well known that Wα is a Hilbert space
with the norm

‖s‖1/2,Γg = inf
v∈Vα, γgv=s

‖v‖1,Ω(α) ∀ s ∈Wα .

Let s∗ belong to W∗
α. By the definition of the dual norm, we note that

‖s∗‖−1/2,Γg = sup
s∈Wα, s6=0

〈s∗, s〉−1/2,Γg

‖s‖1/2,Γg
∀ s∗ ∈W∗

α .

For later use, we can derive an alternate definition for the norm ‖ · ‖−1/2,Γg .
LEMMA 3.2. It holds that

(3.2) ‖s∗‖−1/2,Γg = sup
v∈Vα,v 6=0

〈s∗, γgv〉−1/2,Γg

‖v‖1,Ω(α)
∀ s∗ ∈W∗

α .

Proof. Using the continuity of the trace mapping, it follows that for any s∗ ∈W∗
α,

〈s∗, γgv〉−1/2,Γg
≤ ‖s∗‖−1/2,Γg‖γgv‖1/2,Γg
≤ ‖s∗‖−1/2,Γg‖v‖1,Ω(α) ∀v ∈ Vα .
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Hence, we obtain

(3.3) sup
v∈Vα,v 6=0

〈s∗, γgv〉−1/2,Γg

‖v‖1,Ω(α)
≤ ‖s∗‖−1/2,Γg ∀ s∗ ∈W∗

α .

Now, given s ∈Wα, let ξ be an element in Vα such that γgξ = s and∫
Ω(α)

(
∇ξ : ∇η + ξ · η

)
dΩ = 0 ∀η ∈ H1

0(Ω(α)) .

Clearly, such a ξ is uniquely determined and ‖ξ‖1,Ω(α) ≤ ‖ψ‖1,Ω(α) for allψ ∈ Vα such
that γgψ = s = γgξ; then, by the definition of ‖ · ‖1/2,Γg , it follows that ‖s‖1/2,Γg =
‖ξ‖1,Ω(α). As a result, we have that for all s ∈Wα and s∗ ∈W∗

α,

〈s∗, s〉−1/2,Γg

‖s‖1/2,Γg
=
〈s∗, γgξ〉−1/2,Γg

‖ξ‖1,Ω(α)
≤ sup

v∈Vα,v 6=0

〈s∗, γgv〉−1/2,Γg

‖v‖1,Ω(α)
.

Then, from the definition of ‖ · ‖−1/2,Γg , we have that

(3.4) ‖s∗‖−1/2,Γg ≤ sup
v∈Vα,v 6=0

〈s∗, γgv〉−1/2,Γg

‖v‖1,Ω(α)
∀ s∗ ∈W∗

α .

The combination of (3.3) and (3.4) yields the desired result.
Since the pressure is determined only up to a constant in the mathematical for-

mulation of the Navier–Stokes equations with velocity boundary conditions, we define
the space of generalized pressures to be

S =
{
p ∈ L2(Ω(α))

∣∣∣ ∫
Ω(α)

p dΩ = 0
}
.

Thus, S consists of square integrable functions having zero mean over Ω(α).

3.2. Weak variational formulation of the state equations. For the weak
variational formulation, we will use the forms

a(u,v) = ((u,v))1 = 2
∫

Ω(α)
D(u) : D(v) dΩ

=
1
2

2∑
i,j=1

∫
Ω(α)

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)
dΩ ∀u, v ∈ H1(Ω(α)),

b(v, q) = −
∫

Ω(α)
q∇ · v dΩ = −

2∑
i=1

∫
Ω(α)

q
∂vi
∂xi

dΩ ∀u ∈ H1(Ω(α)) , q ∈ L2(Ω(α)) ,

and

c(w,u,v) =
∫

Ω(α)
(w · ∇)u · v dΩ =

2∑
i,j=1

∫
Ω(α)

wj
∂ui
∂xj

vi dΩ ∀u, v, w ∈ H1(Ω(α)) .

Obviously, a(·, ·) is a continuous bilinear form on H1(Ω(α)) × H1(Ω(α)) and b(·, ·)
is a continuous bilinear form on H1(Ω(α)) × L2(Ω(α)); also, c(·, ·, · ) is a continuous
trilinear form on H1(Ω(α)) × H1(Ω(α)) × H1(Ω(α)) which can be verified by the
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Sobolev embedding of H1(Ω(α)) ⊂ L4(Ω(α)) and Hölder’s inequality. Moreover, as a
consequence of (3.1), we have the coercivity property

a (v,v) ≥ C‖v‖21 ∀v ∈ Vα

and the inf-sup condition (or LBB condition)

(3.5) inf
q∈S

sup
v∈H1

0(Ω)

b(v, q)
‖v‖1‖q‖0

≥ C .

For details concerning these forms and their properties, one may consult [7], [8], [10],
[13], [21], or [22].

One can show that (2.1)–(2.3) have the following weak formulation: for each
α ∈ Uad, find u ∈ Vα, p ∈ S, and t ∈W∗

α satisfying

(3.6) νa(u,v) + c(u,u,v) + b(v, p)− 〈t, γgv〉−1/2,Γg = 〈f ,v〉−1 ∀v ∈ Vα ,

(3.7) b(u, q) = 0 ∀q ∈ S ,

and

(3.8) 〈s,u〉−1/2,Γg = 〈s,g〉−1/2,Γg ∀s ∈W∗
α .

In showing that (3.6) is a weak formulation of (2.1), it is convenient to replace the
viscous term in the latter with 2ν∇ · (D(u)); the equivalence of the two forms of
the viscous terms follows from the incompressibility constraint (2.2). Note that the
boundary condition on the velocity is enforced weakly through the use of Lagrange
multipliers; see [2], [11], and [12].

It can be shown that, in the sense of distributions, t is the stress vector on Γg;
i.e.,

t = −pn + 2νD(u) · n = −pn + ν(∇u + (∇u)T ) · n on Γg .

Existence and uniqueness results for solutions of the system (3.6)–(3.8) are con-
tained in the following theorem; for a proof, one may consult [8], [11], [13], [18], [21],
or [22].

THEOREM 3.3. Let α ∈ Uad be fixed and let the data satisfy f ∈ V∗α, g ∈ Wα,
and the compatibility condition (2.4). Then,

I. there exists at least one solution (u, p, t) ∈ Vα × S ×W∗
α of (3.6)–(3.8);

II. if S denotes a set of velocity fields that are solutions of (3.6)–(3.8), then S
is closed in H1(Ω(α)) and is compact in L2(Ω(α)); and

III. if ν > ν0(Ω(α); f ,g) for some positive constant ν0 whose value is determined
by the given data, then S is composed of a single element.

Note that the solutions of (3.6)–(3.8) exist for any Reynolds number; however,
III implies that uniqueness can be guaranteed only for “large enough” values of ν or
for “small enough” values of the data (f ,g) ∈ V∗α ×Wα.

3.3. The extremal problem. In the notation introduced in section 3.2, the
cost functional J defined in (2.5) can be expressed in the form

(3.9) J (α) = J
(

Ω(α),u(α)
)

= 2ν
∫

Ω(α)
D(u) : D(u) dΩ = ν((u,u))1 = ν|||u|||2 .
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We introduce the admissibility set of controls and velocities

Vad =
{

(α,u(α)) ∈ Uad ×Vα

∣∣∣ J (α,u(α)) <∞, and there exist p(α) ∈ S and

t(α) ∈W∗
α such that (u(α), p(α), t(α)) is a solution of (3.6)–(3.8)

}
.

Then, the extremal problem (2.6) can be restated in the following precise form:

(3.10) min
(α,u(α))∈Vad

J (α,u(α)) .

4. Convergence notions in sequences of domains. We introduce some con-
cepts dealing with convergence in function spaces and domains.

Let X be a normed vector space, X∗ its dual space, and let 〈·, ·〉X∗ denote the
duality pairing between functions belonging to X∗ and X. We use the notation
“xn ⇀ x” to denote the weak convergence of a sequence {xn} in X to x, i.e.,

xn ⇀ x ⇐⇒ 〈f, xn〉X∗
n→∞−−−−→ 〈f, x〉X∗ ∀ f ∈ X∗ .

Let Y be a subspace of X. Y is called a weakly closed subspace of X if, for every
sequence {xn} in Y , whenever xn ⇀ x∗ in X, we have x∗ ∈ Y . In connection with
optimal controls, the following result (see [20]) is very useful for verifying the weak
convergence of sequences.

LEMMA 4.1. Let X be a normed vector space. A sequence {xn} in X converges
weakly to x ∈ X if and only if supn ‖xn‖X < ∞ and 〈f, xn〉 → 〈f, x〉 for each
f ∈ F , where F is a linear span of a set which is dense in X∗. Moreover, if X is
a reflexive Banach space, each bounded sequence in X contains a weakly convergent
subsequence.

In general, the most crucial concept in optimization is semicontinuity, especially
when the cost functional contains the gradient of the function. Let S be a subset of
X and K be a real functional on S. We say that K is (weakly) lower semicontinuous
if, for every sequence {xn} in S, whenever

xn −→ x (xn ⇀ x) in X ,

we have

lim inf
n→∞

K(xn) ≥ K(x) .

Note that the notion of (weak) lower semicontinuity is a local property.
To deal with domain optimization, we need to define an appropriate convergence

criterion with respect to domains. Since domains and corresponding function spaces
are changing, we need a fixed domain Ω̂ such that ∪α∈UadΩ(α) ⊂ Ω̂ in order to discuss
the convergence of domains and corresponding functions. Thus, in the current setting,
we let Ω̂ and Ω0 denote the interiors of the rectangular shaded regions depicted in the
top and bottom pictures in Figure 2, respectively, so that⋃

α∈Uad

Ω(α) ⊂ Ω̂ and
⋃

α∈Uad

Γb(α) ⊂ Ω0 .

Note that the definition of Uad implies that the graph of α for each α ∈ Uad lies in
the rectangular region Ω0.
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FIG. 2. The domains Ω̂ (top) and Ω0 (bottom).

A domain class for which optimal shape problems usually have an optimal solution
has been studied in [5] and [6]. It was shown in [5] that the set of domains with the
cone property is compact for the strong L2(Ω̂)-topology of the characteristic functions
of its elements. Let χΩ denote the characteristic function of the domain Ω which is
included in Ω̂. The convergence of the sequence {Ωm} of domains having the cone
property may be defined by

Ωm → Ω ⇐⇒
∫

Ω̂
|χΩm − χΩ|2 dΩ→ 0 as m→∞ .

This method of convergence using characteristic functions is often used to solve some
specific shape optimization problems such as the transmission problem governed by a
pair of different elliptic equations over adjacent regions; see, e.g., [4] and [16]. However,
since the convergence of characteristic functions does not preserve the regularity of
domains, it is not appropriate for dealing with general shape optimization problems
in which the regularity of domains is a concern.

In our case, the domains {Ω(α)}α∈Uad are determined by the variable part Γb(α)
of the boundary Γ(α). Thus, it is more natural to define the convergence of domains
in terms of functions α belonging to Uad. Let {αn} be a sequence in Uad. For each
αn ∈ Uad, let Ωn = Ω(αn). We define the convergence of Ωn to Ω(α) by

Ωn → Ω(α) ⇐⇒ ‖αn − α‖∞ = max
M1≤x1≤M2

|αn(x1)− α(x1)| → 0 .

Remark. In general shape optimization problems, more stringent topologies are
often introduced to enforce the convergence of geometrical elements; see, e.g., [14] and
[16]. When the inclusive relation between subdomains of R is the main issue, as in
problems of domain identification, the topology induced by the following Hausdorff
metric is widely used: let A and B be two closed subsets of R and define the Hausdorff
metric δ by

δ(A,B) = max{ρ(A,B), ρ(B,A)} , where ρ(A,B) = sup
x∈A

inf
y∈B
|x− y|R .

Then, the topology on the closed subsets of R is defined by

Am −→ A ⇐⇒ δ(Am, A)→ 0 .
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The most important property of this topology is that it preserves the relation of
domain inclusions.

Remark. Another important topology can be used in conjunction with map-
ping techniques. Let A be a fixed domain in R. Suppose domain perturbations are
described by a family of bijective mappings having some regularities, for example,
Fk = {T (A) | T ∈ Ck and T is bijective}. Then, the convergence of domains can be
defined using the minimal norm ‖T − I‖ + ‖T−1 − I‖ among the mappings T such
that T (A) ∈ Fk.

Recall that α ∈ C0,1([M1,M2]) so that Ω(α) is Lipschitz continuous. In fact, Ω(α)
is a uniformly Lipschitz continuous domain for each α ∈ Uad so that the possibility of
domains {Ω(α)}α∈Uad having a cusp is excluded. Hence, for each α ∈ Uad, the domain
Ω(α) has the uniform extension property which we now discuss.

Let Γ denote the boundary of the domain Ω. Ω is said to have a cusp at x ∈ Γ if no
affine image in Ω of a finite cone has a vertex at x. We observe that if a certain domain
has the cone property , then using the homogeneity along a line segment emanating
from the vertex of the cone, a function with small support in a neighborhood of the
vertex may be perturbed into the whole cone. Based on this fact, the following result
is given in [5].

LEMMA 4.2. The open sets satisfying the cone property are the uniform Lipschitz
sets.

For domain perturbations, the following extension property given in, e.g., [15],
plays a central role.

PROPOSITION 4.3 (Calderón’s extension theorem). For every uniform Lipschitz
domain Ω in R and every positive integer m there exists a linear continuous extension
operator

(4.1) P : Hm(Ω) −→ Hm(R)

such that for each f ∈ Hm(Ω)

(4.2) ‖Pf‖m,R ≤ C ‖f‖m,Ω ,

where the positive constant C depends only on the cone embedded in Ω.
Let γΩ denote the restriction operator from R to Ω. Then, note that for each m,

γΩ ◦ P = IHm(Ω), the identity map over Hm(Ω). For this reason, P is often called a
lifting. For a domain Ω ⊂ R, if there exists an extension operator P satisfying (4.1) and
(4.2) for m, then the domain Ω is said to have an m-extension property . Proposition
4.3 states that Lipschitz continuous domains have the m-extension property for each
m. Hence, we have the following compact embedding property for bounded Lipschitz
continuous domains which can be proved using Rellich’s theorem for the compact
embedding of Hm+1

0 (Ω) into Hm
0 (Ω) and an approriately defined extension operator

P .
LEMMA 4.4. For a bounded Lipschitz continuous domain Ω, the natural injection

of Hm+1(Ω) into Hm(Ω) is compact.
Now, let us return to the setting of the extremal problem (3.10). For any v ∈ Vα,

let v̂ be its Calderón extension to H1(Ω̂), i.e.,

v̂ = PΩ̂v ,

where PΩ̂ is the Calderón extension operator (defined on Ω(α)) to Ω̂. Then, by
Proposition 4.3, there exists a positive constant C such that ‖v̂‖1,Ω̂ ≤ C ‖v‖1,Ω(α).
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Let {αn} be a sequence in Uad and let

Vαn = H1
Γ0(αn)(Ω(αn)) = {u ∈ H1(Ω(αn)) | u = 0 on Γ0(αn) } .

If vn ∈ Vαn and v ∈ Vα, the convergence “vn → v” is defined by

vn −→ v ⇐⇒ v̂n = PΩ̂vn ⇀ PΩ̂v ≡ v̂ in H1(Ω̂) .

A certain class of functionals with the lower semicontinuity property in domain
optimization problems was studied in [6]. We state one useful result.

LEMMA 4.5. Let Ω and {Ωm} be bounded domains having the cone property. Let
u and um be elements in H1(Ω) and H1(Ωm) such that um → u. Assume that f(s)
is continuous, nonnegative, and convex for s ∈ R. Then, the inequality∫

Ω
f(∇u(x)) dΩ ≤ lim inf

m→∞

∫
Ωm

f(∇um(x)) dΩ

holds.

5. Existence of optimal solutions. We now turn to the question of existence
of optimal solutions for the problem (3.10). We will use what is called a direct method
in the calculus of variations; i.e., we will try to minimize the cost functional directly
rather than to solve the Euler–Lagrange equations.

THEOREM 5.1. There exists at least one optimal solution (α∗,u(α∗)) ∈ Vad for
the problem (3.10).

Proof. The nonemptiness of Vad follows from Theorem 3.3 for the existence of
solutions of the weak variational formulation (3.6)–(3.8) of the Navier–Stokes system.

We define un = u(αn), where {αn,u(αn)} is a sequence in Vad. Let Ωn = Ω(αn)
and let pn = p(αn) and tn = t(αn), where (u(αn), p(αn), t(αn)) is a solution of
(3.6)–(3.7) for Ω(αn). Since J (α,u(α)) is obviously bounded from below for every
α ∈ Uad, there exists a minimizing subsequence, which is denoted by the same notation
{(αn,un)}; i.e, there exists a sequence {(αn,un)} ∈ Vad such that

lim
n→∞

J (αn,un) = inf
(α,u(α))∈Vad

J (α,u(α)) .

Since Ω0(αn) is contained in Ω̂ for {αn} ⊂ Uad, the latter is a family of uniformly
bounded equicontinuous functions. Hence, by the definition of Uad and the Ascoli–
Arzelà theorem, there exists a subsequence of {αn}, which we again denote by the
same notation {αn}, and an α∗ ∈ Uad such that αn → α∗ uniformly in [M1,M2].

Note that for any (α,u(α)) ∈ Vad, we have that

(5.1) νC1 ‖u(α)‖21,Ω(α) ≤ J (α,u(α)) = ν |||u(α)|||2 ≤ νC2 ‖u(α)‖21,Ω(α) ,

where C1 and C2 are positive constants. The first inequality follows from (3.1), and the
last, from the Cauchy–Schwarz inequality. Note that the constant C2 is independent
of u(α) and Ω(α); i.e., its value is independent of α. According to (5.1) and the
definition of Vad, there exists a positive constant K such that ‖un‖1,Ωn < K <∞ for
all n. Furthermore, due to the uniform extension property we can choose an extension
ûn of un to Ω̂ and a positive constant C that is independent of n such that

‖ûn‖1,Ω̂ ≤ C ‖un‖1,Ωn .
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Thus, ‖ûn‖1,Ω̂ is uniformly bounded in H1(Ω̂). From (3.5), (3.6), and the fact
that ‖un‖1,Ωn is uniformly bounded, we have that ‖pn‖0,Ωn is uniformly bounded.
Let p̂n be an extension by zero of pn to Ω̂, i.e., p̂n|Ωn = pn and p̂n|Ω̂/Ωn = 0;
clearly, ‖p̂n‖0,Ω̂ = ‖pn‖0,Ωn so that ‖p̂n‖0,Ω̂ is uniformly bounded. From (3.6),
Lemma 3.2, and the facts that ‖un‖1,Ωn and ‖pn‖0,Ωn are uniformly bounded, we
have that ‖tn‖−1/2,Γg is uniformly bounded. Consequently, using the compactness
of the continuous embeddings H1(Ω̂) ⊂ L2(Ω̂) and H1/2(Γg) ⊂ L2(Γg), one may ex-
tract from the sequence {ûn, p̂n, tn} a subsequence (denoted again by {ûn, p̂n, tn}) in
H1(Ω̂)× L2(Ω̂)×H−1/2(Γg) such that

(5.2)

ûn ⇀ û in H1(Ω̂),

ûn → û in L2(Ω̂),

p̂n ⇀ p̂ in L2(Ω̂),

tn ⇀ t in H−1/2(Γg),

γgûn ⇀ γg(û) in H1/2(Γg),

γgûn → γg(û) in L2(Γg)

for some (û, p̂, t) ∈ H1(Ω̂)× L2(Ω̂)×H−1/2(Γg).

Now, define u(α∗) = û
∣∣∣
Ω(α∗)

, p(α∗) = p̂
∣∣∣
Ω(α∗)

, and t(α∗) = t. We wish to show

that (u(α∗), p(α∗), t(α∗)) is a solution of (3.6)–(3.8) over Ω(α∗). To this end, let us
define the function spaces

Wn = {φ ∈ [C∞(Ωn)]2 | φ = 0 in a neighborhood of Γ0(αn) = Γ3 ∪ Γ(αn) }

and

W = {φ ∈ [C∞(Ω(α∗))]2 | φ = 0 in a neighborhood of Γ0(α∗) = Γ3 ∪ Γ(α∗) } .

Then, it is clear that

Vαn = H1
Γ0(αn)(Ωn) = the closure of Wn in H1(Ωn) and

V∗αn = H1
Γ0(α∗)(Ω(α∗)) = the closure of W in H1(Ω(α∗)) .

We may consider H1
Γ0(α∗)(Ω(α∗)) as a closed subspace of

H1
L(Ω̂) = {u ∈ H1(Ω̂) | u(x1, 0) = u(x1, L) = 0 }

by extending all the elements of H1
Γ0(α∗)(Ω(α∗)) by 0 in Ω̂ − Ω(α∗). Let us take

φ = (φ1, φ2)T ∈ W. Since αn → α∗ uniformly, φ ∈ Wm for sufficiently large m,
say, for m ≥ m0. We first consider the equation (3.6) over Ωm for m ≥ m0. If we
substitute φ for v, we obtain that

(5.3)
2ν
∫

Ωm
D(um) : D(φ) dΩ +

∫
Ωm

((um · ∇) um) · φ dΩ

−
∫

Ωm
pm∇ · φ dΩ− 〈tm,φ〉−1/2,Γg = 〈f ,φ〉−1,Ωm .
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We examine each term separately. We first note that∫
Ωm
D(um) : D(φ) dΩ =

∫
Ω̂
D(ûm) : D(φ) dΩ (by the extension of um to Ω̂)

m→∞−−−−→
∫

Ω̂
D(û) : D(φ) dΩ (by the first equation of (5.2))

=
∫

Ω(α∗)
D(u(α∗)) : D(φ) dΩ (since we chose φ ∈ W) .

In a similar fashion, using the third equation of (5.2),∫
Ωm
pm∇ · φ dΩ m→∞−−−−→

∫
Ω(α∗)

p(α∗)∇ · φ dΩ

and, using the fourth equation of (5.2),

〈tm,φ〉−1/2,Γg
m→∞−−−−→ 〈t(α∗),φ〉−1/2,Γg .

Next, we estimate the nonlinear convective term. Since um = 0 on Γ0(αm) for
every m, using integration by parts, we have that

(5.4)

∫
Ωm

((um · ∇) um) · φ dΩ =
∫

Γg
(um · n) (um · φ) dΓ

−
∫

Ωm
(∇ · um) (um · φ) dΩ−

∫
Ωm

((um · ∇)φ) · um dΩ .

Note that the outward unit normal vector n along Γg is fixed throughout the domain
perturbations. It follows from the last two equations of (5.2) that∫

Γg
(um · n) (um · φ) dΓ =

∫
Γg

(g · n) (g · φ) dΓ

=
∫

Γg
(ûm · n) (ûm · φ) dΓ

m→∞−−−−→
∫

Γg
(u(α∗) · n) (u(α∗) · φ) dΓ .

For the second and third terms of (5.4), we use the fact that every one of the compo-
nents φi and (∇φ)ij belongs to L∞(Ω(α∗)). Since ‖∇ · ûm‖L2(Ω̂) ≤ ‖ûm‖1,Ω̂ <∞ for
all m, we may extract a subsequence, which is again denoted by ∇ · ûm, such that

(5.5) ∇ · ûm ⇀ ∇ · û in L2(Ω̂) .

We note that∫
Ω̂
(∇ · ûm) (ûm · φ) dΩ−

∫
Ω̂
(∇ · û) (û · φ) dΩ

=
∫

Ω̂
(∇ · ûm)(ûm − û) · φ dΩ +

∫
Ω̂
(∇ · ûm −∇ · û)(û · φ) dΩ m→∞−−−−→ 0 ,
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using that ∇ · ûm is uniformly bounded in L2(Ω̂). Consequently, using (5.5) and the
uniform extension property, it holds that∫

Ωm
(∇ · um) (um · φ) dΩ =

∫
Ω̂
(∇ · ûm) (ûm · φ) dΩ

m→∞−−−−→
∫

Ω̂
(∇ · û) (û · φ) dΩ

=
∫

Ω(α∗)
(∇ · u(α∗)) (u(α∗) · φ) dΩ .

In a similar fashion, we have that∫
Ωm

((um · ∇)φ) · um dΩ m→∞−−−−→
∫

Ω(α∗)
((u(α∗) · ∇)φ) · u(α∗) dΩ .

Therefore, combining all the results for the three terms in (5.4), we have that∫
Ωm

((um · ∇) um) · φ dΩ

=
∫

Γg
(um · n) (um · φ) dΓ−

∫
Ωm

(∇ · um) (um · φ) dΩ−
∫

Ωm
((um · ∇)φ) · um dΩ

m→∞−−−−→
∫

Γg
(u(α∗) · n) (u(α∗) · φ) dΓ−

∫
Ω(α∗)

(∇ · u(α∗)) (u(α∗) · φ) dΩ

−
∫

Ω(α∗)
((u(α∗) · ∇)φ) · u(α∗) dΩ =

∫
Ω(α∗)

((u(α∗) · ∇) u(α∗)) · φ dΩ .

Collecting various results, we have, up to the present, shown that

ν

∫
Ω(α∗)

D(u(α∗)) : D(φ) dΩ +
∫

Ω(α∗)
((u(α∗) · ∇) u(α∗)) · φ dΩ

+
∫

Ω(α∗)
p(α∗)∇ · φ dΩ− 〈t,φ〉−1/2,Γg = 〈f ,φ〉−1,Ω(α∗)

for any φ ∈ W. Since W is dense in H1
Γ0(α∗)(Ω(α∗)), we can then conclude that

(u(α∗), p(α∗), t(α∗)) satisfies (3.6) over Ω(α∗).
In a similar manner it can be shown that (u(α∗), p(α∗), t(α∗)) also satisfies (3.7)

and (3.8) over Ω(α∗). Therefore, (α∗,u(α∗)) ∈ Vad and this implies that Vad is
weakly closed. Also, J (α,u(α)) is coercive and strongly continuous over Vα for each
α ∈ Uad. Moreover, it readily follows that J (α,u(α)) is convex with respect to u.
Hence J (α,u(α)) is weakly lower semicontinuous by Lemma 4.5. Since (αn,un) is a
minimizing sequence such that (αn,un)→ (α∗,u(α∗)) in Vad,

inf
(α,u(α))∈Vad

J (α,u(α)) = lim inf
n→∞

J (αn,un)

≥ J (α∗,u(α∗)) ≥ inf
(α,u(α))∈Vad

J (α,u(α)) .

Consequently we have J (α∗,u(α∗)) = inf(α,u(α))∈Vad J (α,u(α)) and (α∗,u(α∗)) is
an optimal solution for the problem (3.10).

Remark. Since the steady-state Navier–Stokes equations have multiple solutions
for large Reynolds numbers, we cannot expect a unique optimal solution. Even when
the state equation has a unique solution, the optimal shape need not be unique. This
was indicated in [3] for optimal shape control problems for elliptic state equations.
The same argument can also be applied to our case.



OPTIMAL SHAPE CONTROL FOR THE NAVIER–STOKES EQUATIONS 909

Acknowledgements. The authors wish to acknowledge the many helpful com-
ments and suggestions of one of the referees that resulted in an improved paper.

REFERENCES

[1] G. ARMUGAN AND O. PIRONNEAU, On the problem of riblets as a drag reduction device, Optim.
Control Appl. Meth., 10 (1989), pp. 93–112.
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Abstract. In autoregressive adaptive tracking, we prove that the least squares and the weighted
least squares algorithms possess the same asymptotic properties, sharing the same central limit
theorem and the same law of iterated logarithm. We also obtain the same asymptotic behavior and
show the limitations of these results in the autoregressive with moving average framework.

Key words. linear regression, least squares, central limit theorem, law of iterated logarithm

AMS subject classifications. 62J05, 93E24, 60F05, 60F15

PII. S0363012995294183

Notations. For any square matrix A, tr(A) is the trace of A and det(A) denotes
the determinant of A. In addition, λminA and λmaxA are the minimum and the
maximum eigenvalues of A, respectively. Finally, for any vectorial sequence X=(Xn)
and any integer p≥1, Xp

n=(Xt
n, . . . , X

t
n−p+1).

1. Introduction. Let (Ω,A, P ) be a probability space endowed with a filtration
F=(Fn)n≥0, where Fn is the σ-algebra of the events occurring up to time n. Consider
the controlled autoregressive with moving average (ARMA) model of order (p, r)
given, for all n ≥ 0, by

Xn+1 = θtΨn + Un + εn+1,(1)

where Xn, Un, and εn are, respectively, the d-dimensional system output, input, and
driven noise and Ψn = (Xp

n, ε
r
n)t. In order to estimate the unknown δ × d matrix θ

with δ = d (p+ r), we use the weighted least squares (WLS) algorithm that satisfies,
for all n ≥ 0,

θ̂n+1 = θ̂n + anS
−1
n (a)Φn

(
Xn+1 − Un − θ̂tnΦn

)
t,(2)

Sn(a) =
n∑
k=0

akΦkΦtk + S,(3)

ε̂n+1 = Xn+1 − Un − θ̂tn+1Φn, Φn = (Xp
n, ε̂

r
n)t ,(4)

where the initial value θ̂0 is arbitrarily chosen and S is a deterministic, symmetric,
and positive definite matrix. We set

Sn =
n∑
k=0

ΦkΦtk + S, sn = tr(Sn).(5)

The choice of the weighted sequence a=(an) is crucial. If

an = 1(6)

∗Received by the editors November 3, 1995; accepted for publication (in revised form) March 5,
1997.
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we find again the extended least squares (ELS) algorithm. Otherwise, if

an =
(

1
log sn

)1+γ

(7)

with γ > 0, we obtain the WLS algorithm proposed by Duflo and Bercu [4], [5]. For
these two algorithms, a wide literature concerning the strong consistency and the
optimality in adaptive tracking is available (see, e.g., [4], [5], [6], [8], [9], [10], [11],
[13], [15], [20], [26]). In these papers, it is always necessary to establish an excitation
property for the regressive sequence Φ = (Φn). To be more precise, for the strong
consistency, one has to prove that

λminSn −→ +∞, log λmaxSn = o(λminSn) almost surely (a.s.)(8)

and, for the optimality, that sn = O(n) a.s. In fact, one always has to show that
n = O(λminSn) and λmaxSn = O(n) a.s. In autoregressive (AR) adaptive tracking
with r = 0, we improve the previous results showing the almost sure convergence

Sn
n
−→ Lp,(9)

Lp = diag (Γ, . . . ,Γ), where Γ is the conditional covariance matrix of the driven noise.
This convergence allows us to obtain a central limit theorem (CLT) and a law of
iterated logarithm (LIL) for both LS and WLS algorithms. Since the WLS introduces
less weight to the more recent information than the LS, one may expect that WLS
may be inferior to LS in asymptotic properties. However, we prove that in the AR
framework, the LS and WLS algorithms possess the same asymptotic properties,
sharing the same CLT,

√
n(θ̂n − θ)

L−→ N (0, L−1
p ⊗ Γ),(10)

and the same LIL. In addition, we also obtain that the ELS and WLS algorithms have
the same asymptotic behavior in the ARMA framework. Finally, there is no loss in
asymptotic efficiency by using WLS, which has many other advantages [4], [5], [17],
[22] over LS or ELS in adaptive control theory.

The paper is organized as follows. In section 2, we establish in the AR framework
the same CLT and LIL for LS and WLS algorithms. In AR adaptive tracking, the
limit matrix given in (9) is positive definite, while this is no longer true in ARMA
adaptive tracking. In the ARMA framework, in order to obtain strong consistency
results, it is necessary to introduce an excitation on the adaptive tracking control. In
section 3, we prove that the effect of this excitation is to make the limit matrix in
(9) positive definite. Therefore, for the ARMA models of orders one, we establish the
same CLT and LIL for ELS and WLS algorithms. In section 4, we show by simulations
the limitation of these last results if the ARMA orders are greater than one. A short
conclusion is given in section 5. All technical proofs are collected in the Appendices.

2. AR adaptive tracking. We first consider the AR framework with r = 0.
Let x = (xn) be a predictable reference trajectory, to track, step by step, by the
observation X=(Xn). To this end, we use the adaptive tracking control proposed by
Aström and Wittenmark [1] given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn.(11)
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Relation (1) can then be rewritten as

Xn+1 − xn+1 = πn + εn+1,(12)

where πn = (θ− θ̂n)tΦn. Throughout the following, we assume that the reference
trajectory x satisfies

n∑
k=1

‖ xk ‖2= o(n) a.s.(13)

We also assume that the driven noise ε = (εn) is a martingale difference sequence
with

E [ εn+1ε
t
n+1 | Fn ] = Γ,(14)

where Γ is a positive definite deterministic covariance matrix. Finally, we assume that
ε satisfies the strong law of large numbers; i.e., if

Γn =
1
n

n∑
k=1

εkε
t
k,(15)

Γn converges a.s. to Γ. This is the case if, for example, ε has finite conditional moment
of order > 2 or ε is a white noise, i.e., if ε is independant and identically distributed
with mean 0 and covariance matrix Γ. Let (Cn) be the average cost matrix sequence
defined by

Cn =
1
n

n∑
k=1

(Xk − xk)(Xk − xk)t.(16)

The adaptive tracking is said to be optimal if Cn converges a.s. to Γ. Let Lp be the
block diagonal square matrix of order δp=dp,

Lp = diag(Γ, . . . ,Γ).(17)

THEOREM 2.1. Consider the AR framework with r=0. Assume that ε has finite
conditional moment of order > 2. Then, for the LS algorithm, we have

Sn
n
−→ Lp a.s.(18)

In addition, the tracking is optimal:

‖ Cn − Γn ‖= O

(
logn
n

)
a.s.(19)

We can be more precise in (19) as follows

1
logn

n∑
k=1

(Xk − xk − εk)(Xk − xk − εk)t −→ δpΓ a.s.(20)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
logn
n

)
a.s.(21)
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Proof. The proof is given in Appendix A.
THEOREM 2.2. Consider the AR framework with r= 0. Assume that either ε is

a white noise or ε has finite conditional moment of order > 2. Then, for the WLS
algorithm with a−1

n =(log sn)1+γ , where γ>0, we have

(logn)1+γ Sn(a)
n
−→ Lp a.s.(22)

In addition, the tracking is optimal:

‖ Cn − Γn ‖= o

(
(logn)1+γ

n

)
a.s.(23)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
(logn)1+γ

n

)
a.s.(24)

Proof. The proof is given in Appendix B.
Remark. Theorem 2.2 is similar to Theorem 2.1. On the one hand, it is not

necessary to require a conditional moment of order > 2 for the noise ε. On the other
hand, we note a loss in (log n)γ in the rates of convergence.

THEOREM 2.3. Consider the AR framework with r=0. Assume that ε has finite
conditional moment of order α > 2 and that x has the same regularity in norm as ε;
i.e., for all 2 < β < α,

n∑
k=1

‖ xk ‖β= O(n) a.s.(25)

Then, the LS and the WLS algorithms share the same CLT,

√
n(θ̂n − θ)

L−→ N (0, L−1
p ⊗ Γ),(26)

with L−1
p ⊗ Γ = diag(Γ−1 ⊗ Γ, . . . ,Γ−1 ⊗ Γ). In addition, for any vectors u∈ Rd and

v∈ Rdp, they also share the same LIL,

lim sup
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u = − lim inf
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u

= (vtL−1
p v)1/2(utΓu)1/2 a.s.(27)

In particular,(
λminΓ
λmaxΓ

)
≤ lim sup

n→∞

(
n

2 log logn

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ
λminΓ

)
a.s.(28)

Proof. The proof is given in Appendix C.
Remark. First, one can realize that (28) improves Theorem 3.1 of Guo [16] for

the LS algorithm. Next, we can also prove that Theorem 2.3 holds for the cost matrix
sequence (Cn). To be more precise, assume that ε satisfies the following CLT:

√
n(Γn − Γ) L−→ N (0,Λ),(29)
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where Λ is an appropriate deterministic covariance matrix. Then, by (19) or (23), it
immediately follows that

√
n(Cn − Γ) L−→ N (0,Λ)(30)

for both LS and WLS algorithms. Moreover, via (19) or (23), we can also obtain
an LIL for the sequence (Cn). Finally, in AR adaptive tracking, we can avoid the
restrictive assumption (13) on the reference trajectory x. Using the same approach
developed in Appendix A, we only need to assume that x satisfies the strong law of
large numbers

1
n

n∑
k=1

xkx
t
k −→ ∆ a.s.,(31)

where ∆ is a deterministic covariance matrix. Then, we just have to replace Γ by
Γ+∆ in relation (17).

3. ARMA adaptive tracking. We now consider the ARMA framework. We
always use the adaptive tracking control given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn,(32)

where the reference trajectory x satisfies (13). Relation (1) can be rewritten as

Xn+1 − xn+1 = πn + εn+1,(33)

where πn=θtΨn− θ̂tnΦn. Let Lr be the block diagonal square matrix of order δr=dr,

Lr = diag(Γ, . . . ,Γ).(34)

For s = inf{p, r}, let K be the rectangular matrix of dimension δp × δr with all
coefficients equal to 0 except its left superior block, which is the block diagonal square
matrix of order ds, Ls. Finally, let L be the square matrix of order δ=δp + δr:

L =
(
Lp K
Kt Lr

)
.(35)

Throughout the following, we make use of the traditional assumption of passivity: if
C is the matrix polynomial associated with the moving average (MA) part of (1) and
Id is the identity matrix of order d,

(P) C−1 − 1
2
Id

is strictly positive real. In the ARMA framework, many results concerning the track-
ing optimality are available (see, e.g., [2], [5], [11], [15], [16]). It is also well known
that we can’t directly obtain strong consistency for both ELS or WLS algorithms (see,
e.g., [5], [7], [11], [13], [17]). Nevertheless, we prove in the following lemma that con-
vergences (18) and (22) still hold here, replacing Lp by L. This can lead to interesting
asymptotic properties.

LEMMA 3.1. For the ARMA model, assume that (P) is satisfied. Then, for the
ELS algorithm, if ε has finite conditional moment of order > 2, we have

Sn
n
−→ L a.s.(36)
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In addition, for the WLS algorithm with a−1
n =(log sn)1+γ , where γ>0, if ε is a white

noise or if ε has finite conditional moment of order > 2, we have

(logn)1+γ Sn(a)
n
−→ L a.s.(37)

Proof. The proof is given in Appendix D.
THEOREM 3.2. For the ARMA model, assume that (P) is satisfied and consider

the regulation problem with x = 0. Assume that ε has finite conditional moment of
order > 2. For a positive, nonincreasing, and deterministic sequence (αn) such that
αn =O(n), assume that ‖ εn ‖2=O(αn). Let (λn) be a positive, nonincreasing, and
deterministic sequence such that ncαn=O(λn), n1+cαn=O(λ2

n) with 0<c<1 for the
ELS algorithm, and c=0 for the WLS algorithm. Finally, assume that

‖ Γn − Γ ‖= o

(
λn
n

)
a.s.(38)

Then, for both ELS and WLS algorithms, the tracking is optimal:

‖ Cn − Γ ‖= o

(
λn
n

)
a.s.(39)

Moreover, we also have ∥∥∥∥Snn − L
∥∥∥∥ = o

(
λn
n

)
a.s.(40)

Finally, on the one hand, it results for the ELS estimator that

‖ L1/2(θ̂n − θ) ‖2= o

(
λn

logn
n

)
a.s.(41)

On the other hand, we have for the WLS estimator that

‖ L1/2(θ̂n − θ) ‖2= o

(
λn
n

)
a.s.(42)

Remark. If ε has finite conditional moment of order α>2, we can take by Chow’s
lemma (see, e.g., Corollary 2.8.5 of Stout [23] or [12]) the sequence (λn) such that

∞∑
k=1

(
1
λn

)α/2
< +∞.(43)

We can choose, for example, λn = nβ with 2α−1 < β < 1. One can realize that (41)
improves Theorem 3.2 (i) of Guo [16].

Proof. By Theorem 1 of Guo and Chen [15] and Theorem 5 of Bercu [5] on the
prediction errors sequence (πn), respectively, we have

n∑
k=0

‖ πk ‖2= o(ncαn) a.s.(44)

with c>0 for the ELS algorithm and
n∑
k=0

‖ πk ‖2= o(a−1
n + αn) a.s.(45)
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for the WLS algorithm. Then, for these two algorithms, we find that
n∑
k=0

‖ πk ‖2= o(λn) a.s.(46)

By (33), we also have

‖ Cn − Γn ‖= O

(
1
n

n∑
k=1

‖ πk−1 ‖2
)

a.s.,(47)

and we immediately obtain relation (39). Therefore (33), (44), and (45), together
with the second assumption on the sequence λ = (λn), imply (40). Finally, for the
ELS estimator, by Theorem 1 of Lai and Wei [19], we have ‖ θ̂n+1 − θ ‖2=O(logn)
a.s. Moreover, by Theorem 1 of Bercu [5], the WLS estimator is always a.s. bounded,
‖ θ̂n+1 − θ ‖2=O(1). Therefore, (40) clearly implies (41) and (42), completing the
proof of Theorem 3.2.

In order to obtain strong consistency for ELS and WLS algorithms, we are brought
to introduce an excitation on the adaptive tracking control. As one can see below,
the effect of this excitation is to make the limit matrix in Lemma 3.1 positive definite.
First, we use the continually disturbed control given, for all n ≥ 0, by

Un = xn+1 − θ̂tnΦn + ξn+1,(48)

where the reference trajectory x satisfies (13) and ξ is an exogenous noise of dimension
d, adapted to F, with mean 0 and positive definite covariance matrix Λ. In addition,
we assume that ξ is independent of ε, of x, and of the initial state of the system. Let

∆n =
1
n

n∑
k=1

(εk + ξk)(εk + ξk)t.(49)

Assume that ξ satisfies the strong law of large numbers, so ∆n converges a.s. to Γ+Λ.
Relation (1) can be rewritten as

Xn+1 − xn+1 = πn + εn+1 + ξn+1.(50)

The adaptive tracking is said to be residually optimal if Cn converges a.s. to Γ+Λ.
Let H be the square matrix of order δ=δp + δr,

H =
(
Hp K
Kt Lr

)
,(51)

where Hp is the block diagonal square matrix of order δp=dp:

Hp = diag(Γ + Λ, . . . ,Γ + Λ).(52)

THEOREM 3.3. For the ARMA model, assume that (P) is satisfied. Assume that
ε has finite conditional moment of order > 2. Then, for the ELS algorithm, we have

Sn
n
−→ H a.s.(53)

In addition, the tracking is residually optimal:

‖ Cn −∆n ‖= O

(
logn
n

)
a.s.(54)
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Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
logn
n

)
a.s.(55)

Proof. The proof is given in Appendix D.
THEOREM 3.4. For the ARMA model, assume that (P) is satisfied. Assume that

either ε is a white noise or ε has finite conditional moment of order > 2. Then, for
the WLS algorithm with a−1

n =(log sn)1+γ , where γ>0, we have

(logn)1+γ Sn(a)
n
−→ H a.s.(56)

In addition, the tracking is residually optimal:

‖ Cn −∆n ‖= o

(
(logn)1+γ

n

)
a.s.(57)

Finally, θ̂n is a strongly consistent estimator of θ:

‖ θ̂n − θ ‖2= O

(
(logn)1+γ

n

)
a.s.(58)

Proof. The proof is given in Appendix D.
Remark. We note that Theorems 3.3 and 3.4 are similar to Theorems 2.1 and 2.2.

In addition, it is easy to see that the matrix H is positive definite. In fact, if p≤r, then
detH=(det Γ)r(det Λ)p, and if p>r, then detH=(det Γ)r(det Λ)r(det(Γ + Λ))p−r.

THEOREM 3.5. For the ARMA model, assume that (P) is satisfied, with p and r
equal to 1. Assume that ε and ξ have finite conditional moments of order α > 2. On
the one hand, assume that x satisfies (25) and

n∑
k=1

‖ xk ‖2= o

(
n

logn

)
a.s.(59)

for the ELS algorithm. On the other hand, assume that x satisfies (25) and

n∑
k=1

‖ xk ‖2= o

(
n

(logn)2+2γ

)
a.s.(60)

for the WLS algorithm with a−1
n = (log sn)1+γ , where γ > 0. Then, the ELS and the

WLS algorithms share the same CLT,

√
n(θ̂n − θ)

L−→ N (0, H−1 ⊗ Γ).(61)

For any vectors u∈ Rd and v∈ Rδ, they also share the same LIL,

lim sup
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u = − lim inf
n→∞

(
n

2 log logn

)1/2

vt(θ̂n − θ)u

= (vtH−1v)1/2(utΓu)1/2 a.s.(62)
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In particular,(
λminΓ
λmaxH

)
≤ lim sup

n→∞

(
n

2 log logn

)
‖ θ̂n − θ ‖2≤

(
λmaxΓ
λminH

)
a.s.(63)

Proof. The proof is given in Appendix E.

4. Simulations. The goal of this section is to show that Theorem 3.5 is no
longer true if the orders p or r are greater than 1. From relations (1) and (2), we have

Sn−1(a)(θ̂n − θ) = Mn(a)−Rn−1(a)θ,(64)

Mn(a) =M0+
n∑
k=1

ak−1Φk−1ε
t
k, Rn(a) =

n∑
k=0

akΦk(Φk −Ψk)t(65)

with M0 =S(θ̂0−θ). By Lemmas C.1 or C.2 in Appendix C, we know how to deal with
Mn(a). The remainder Rn(a) is much more complicated to study. This remainder
vanishes in the AR framework. Consequently, we can easily establish CLT and LIL
as in Theorem 2.3. In order to obtain similar results in the ARMA framework, we
have to prove that the remainder Rn(a) can be neglected. This was done with p and
r equal to 1 in Theorem 3.5. Unfortunately, if p or r is greater than 1, Rn(a) plays
a prominent part and is really very complicated to study. We shall now show it by
simulations for the ELS algorithm. Consider the following two models:

(I) Xn+1 =
5
4
Xn +

1
2
Xn−1 + Un +

3
4
εn + εn+1,

(II) Xn+1 =
5
4
Xn + Un +

3
4
εn +

1
4
εn−1 + εn+1,

where ε is a Gaussian white noise N(0, 1). For simplicity, we study the regulation
problem taking the reference trajectory x = 0. Therefore, we use the continually
disturbed control

Un = −θ̂tnΦn + ξn+1,(66)

where ξ is an exogenous Gaussian white noise N(0, 1). We base our simulations on
M = 500 realizations of sample size N = 10000. In order to keep this section brief,
we focus our attention on the behavior of the statistic

ZN =
√
NH1/2(θ̂N − θ),(67)

where the matrix H is for models (I) and (II), respectively: 2 0 1
0 2 0
1 0 1

 ,

 2 1 0
1 1 0
0 0 1

 .(68)

We expect at least that each component of ZN has N(0, 1) distribution. Figure 1
represents the three coordinates of ZN in model (I). One can realize that the second
coordinate is not N(0, 1). Figure 2 represents the three coordinates of ZN in model
(II). One can realize that the third coordinate is not N(0, 1). Next, if we consider
an ARMA model of orders p= 2 and r= 2, we can also see that the second and the
fourth coordinates of ZN are not N(0, 1). We can conclude that if p or r is greater
than 1, Rn(a) plays a prominent part which can’t be neglected. It would be very nice
to clarify the behavior of Rn(a) in ARMA adaptive tracking.
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FIG. 1.

5. Conclusion. In AR adaptive tracking, we have proved that the LS and the
WLS algorithms share the same CLT and LIL. We have also extended and shown
the limitations of these results in the ARMA framework. One can ask the natural
question: Why make use of the WLS algorithm?
• First, we have seen in this paper that WLS performs as well as ELS for parameter

estimation when the system is persistently excited. There is no loss in asymptotic
efficiency by using the WLS algorithm.
• Next, as it was shown in [5], the WLS algorithm is more convenient than

the ELS in the analysis of autoregressive with moving average and exogenous control
(ARMAX) adaptive tracking thanks to the behavior of the prediction errors sequence.
The convergence rates proved for the tracking optimality are in general better for the
WLS [5] than for the ELS [15].
• In the ARMAX framework, the leading matrix associated with the control is

usually called the high frequency gain. For ARX models with known or unknown
high frequency gain, strong consistency and tracking optimality results have been
established in [16]. It is reasonable to conjecture that CLT and LIL could also be
proved for ARX models with known high frequency gain. However, it would be
extremely difficult in the general case.
• Finally, Guo [17] has recently proved the almost sure self-convergence of the

WLS algorithm. This property can lead to various applications in adaptive control
theory such as adaptive pole-placement and LQG problems [17], [22] for ARMAX
models.
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Appendix A.
Proof of Theorem 2.1. By the strong law of large numbers and relation (12), we

easily prove that n = O(sn). By Lemma 1 of Guo and Chen [15] or Theorem 1 of
Bercu [3] on the prediction errors sequence (πn), we have

n∑
k=1

(1− fk) ‖ πk ‖2= O(log sn) a.s.,(A.1)

where fn = ΦtnS
−1
n Φn. If ε has finite conditional moment of order α > 2, using the

same approach as Chen and Guo [11], [15], we can show by (A.1) that ‖ Φn ‖2=O(sβn)
with 2α−1 < β < 1. We also find by (A.1) and (12) that

n∑
k=1

‖ πk ‖2= o(sβn log sn) a.s.,(A.2)

n∑
k=1

‖ Xk+1 ‖2= o(sβn log sn) +O(n) a.s.(A.3)

Finally, we obtain that sn=o(sn) + O(n), so sn=O(n). Consequently, we prove the
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tracking optimality, as by (12) and (A.2),

‖ Cn − Γn ‖= O(
1
n

n∑
k=1

‖ πk−1 ‖2) a.s.,(A.4)

n∑
k=1

‖ πk ‖2= o(n) a.s.(A.5)

We still have to establish the convergence rate given in (19). As the reference trajec-
tory x satisfies (13), we have already proven the almost sure convergence

1
n

n∑
k=0

XkX
t
k −→ Γ.(A.6)

Recalling (12), we have for 1≤ i≤p− 1 that

n∑
k=1

XkX
t
k−i =

n∑
k=1

(πk−1 + xk)Xt
k−i +

n∑
k=1

εkX
t
k−i.(A.7)

The right-hand side of (A.7) is a regressive sequence. Therefore, we have a.s.∥∥∥∥∥
n∑
k=1

XkX
t
k−i

∥∥∥∥∥ ≤
n∑
k=1

‖ πk−1+xk ‖‖ Xk−i ‖+o

(
n∑
k=1

‖ Xk−i ‖2
)
.(A.8)

We prove, by (13) and (A.5), together with the Cauchy–Schwarz inequality, that

n∑
k=1

XkX
t
k−i = o(n) a.s.,(A.9)

which implies the convergence (18). As the matrix Lp is positive definite, it clearly
follows that n=O(λminSn), ‖ Φn ‖2= o(n), and fn tends a.s. towards 0. Then, by
(A.1), we find that

n∑
k=1

‖ πk ‖2= O(logn) a.s.,(A.10)

and consequently, we obtain the relation (19). By a well-known result established in
Theorem 1 of Lai and Wei [19], [20] for the LS estimator, we also have

‖ θ̂n+1 − θ ‖2= O

(
log sn
λminSn

)
a.s.,(A.11)

which implies (21). Moreover, if θ̌n = θ̂n − θ, we immediately deduce from (28) that

‖ S1/2
n−1θ̌n ‖2= o(logn) a.s.(A.12)

By Duflo, Senoussi, and Touati [14, p. 560], we also have the almost sure convergence

1
logn

(
θ̌tnSn−1θ̌n +

n−1∑
k=0

(1− fk)πkπtk

)
−→ δpΓ.(A.13)

Finally, (A.12) and (A.13) imply (20), completing the proof of Theorem 2.1.
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Appendix B.
Proof of Theorem 2.2. By Theorem 1 of Bercu and Duflo [4], [5] on the prediction

errors sequence (πn), we have

∞∑
n=1

an(1− fn(a)) ‖ πn ‖2< +∞ a.s.,(B.1)

where fn(a) =anΦtnS
−1
n (a)Φn. Then, as a−1

n =O(sn), we find by (B.1) together with
Kronecker’s lemma that

n∑
k=1

‖ πk ‖2= o(sn) a.s.(B.2)

Contrary to the LS algorithm, we can easily prove that sn=O(n). In fact, (B.2) and
(12) immediately imply

n∑
k=1

‖ Xk+1 ‖2= o(sn) +O(n) a.s.(B.3)

Therefore, sn=o(sn) +O(n), so sn=O(n). Finally, we have established the tracking
optimality. In Appendix A, we have also shown that n−1Sn converges a.s. to Lp.
Consequently, as the weighting sequence a = (an) is nonincreasing, it results that
anSn ≤ Sn(a) so nan = O(λminSn(a)) and fn(a) tends a.s. towards 0. We can
conclude by (B.1) that

n∑
k=1

‖ πk ‖2= o(a−1
n ) a.s.,(B.4)

which implies relation (23) as sn has the same order as n, so a−1
n is a.s. equivalent to

(logn)1+γ . We can also deduce (24), as by Theorem 1 of Bercu and Duflo [4], [5],

‖ θ̂n+1 − θ ‖2= O

(
1

λminSn(a)

)
a.s.(B.5)

Now, we have

Sn(a) = an+1Sn +
n∑
k=1

bk
Sk
k

+R(B.6)

with bn=n(an − an+1) and R=S0(a)− a1S0. In addition,

n∑
k=1

bk =
n∑
k=1

ak − nan+1.(B.7)

Next, as a−1
n is a.s. equivalent to (log n)1+γ ,

n∑
k=1

bk ∼ (1 + γ)
nan
logn

,
n∑
k=1

bk = o(nan) a.s.(B.8)

Finally, (B.6), together with Toeplitz’s lemma, imply the convergence (22), completing
the proof of Theorem 2.2.
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Appendix C.
Proof of Theorem 2.3. In order to prove Theorem 2.3, we need the two following

lemmas on regressive sequences. They result from the CLT on triangular arrays
[18], [21], [25] and from the LIL on martingales [14], [23], [24]. Let ε = (εn) be a
d-dimensional noise, adapted to F, which satisfies (14) where Γ is a deterministic
covariance matrix. Let ϕ = (ϕn) be a δ-dimensional sequence of random vectors,
adapted to F. Set, for n ≥ 0,

Mn = M0 +
n∑
k=1

ϕk−1ε
t
k, Sn =

n∑
k=0

ϕkϕ
t
k + S.

LEMMA C.1. Let (cn) be a deterministic real sequence increasing to infinity.
Assume that, for all ε > 0,

(H1) c−1
n Sn−1

P−→ L,

(H2) c−1
n

n∑
k=1

E
[
‖ ∆Mk ‖2 1{‖∆Mk‖≥ε

√
cn} | Fk−1

] P−→ 0,

where ∆Mn = Mn −Mn−1. Then, c−1
n Mn tends a.s. towards 0 and

1
√
cn
Mn
L−→ N (0, L⊗ Γ).

In addition, if L is positive definite, we have the CLT

√
cnS

−1
n−1Mn

L−→ N (0, L−1 ⊗ Γ).

Remark. Assume that ε has finite conditional moment of order > 2. Then,
Lindeberg’s condition (H2) is satisfied if ‖ ϕn ‖2=o(cn) a.s.

LEMMA C.2. Let (cn) be a deterministic real sequence increasing to infinity.
Assume that the noise ε has finite conditional moment of order α> 2. Also assume
that

(H3) c−1
n Sn−1 −→ L a.s.,

(H4)
∞∑
n=1

(
‖ ϕn ‖√

cn

)β
< +∞ a.s.,

with 2<β≤α. Then, for any vector u∈ Rd and v∈ Rδ such that vtLv>0, we have

lim sup
n→∞

(
1

2cn log log cn

)1/2

vtMnu = − lim inf
n→∞

(
1

2cn log log cn

)1/2

vtMnu

= (vtLv)1/2(utΓu)1/2 a.s.

In addition, if L is positive definite, we have the LIL

lim sup
n→∞

(
cn

2 log log cn

)1/2

vtS−1
n−1Mnu = − lim inf

n→∞

(
cn

2 log log cn

)1/2

vtS−1
n−1Mnu

= (vtL−1v)1/2(utΓu)1/2 a.s.
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Theorem 2.3 is a direct application of Lemmas C.1 and C.2. By the relations (1)
and (2), we have

θ̂n − θ = S−1
n−1(a)Mn(a),(C.1)

Mn(a) = M0 +
n∑
k=1

ak−1Φk−1ε
t
k(C.2)

with M0 = S(θ̂0 − θ). On the one hand, for the LS algorithm, we choose ϕn = Φn
and cn = n. On the other hand, for the WLS algorithm, we take ϕn = anΦn and
cn=n/(logn)2+2γ . First, for the LS algorithm, (26) can be clearly deduced via Lemma
C.1 together with (18) and equation (C.1). In addition, if ε has finite conditional
moment of order α > 2, for all 2 < β < α, we have by Chow’s lemma (see, e.g.,
Corollary 2.8.5 of Stout [23]) that

n∑
k=1

‖ εk ‖β= O(n) a.s.(C.3)

Since the reference trajectory x satisfies (25), we show by (A.10) that

n∑
k=1

‖ Xk ‖β= O(n),
n∑
k=1

‖ Φk ‖β= O(n) a.s.(C.4)

Therefore, as β>2, (C.4) implies

∞∑
n=1

(
‖ Φn ‖√

n

)β
< +∞ a.s.(C.5)

Finally, we find (27) via Lemma C.2 together with (18) and equation (C.1). Next, for
the WLS algorithm, set

Qn(a) =
n∑
k=0

a2
kΦkΦtk + S.(C.6)

As in (22), we prove that c−1
n Qn(a) converges a.s. to Lp. Hence, (22) and equation

(C.1) clearly imply (26). In addition, if ε has finite conditional moment of order α>2,
for all 2<β<α, we have by Chow’s lemma [23], together with (B.4),

n∑
k=1

(ak ‖ Φk ‖)β = O(n) a.s.(C.7)

Then, it follows from (C.7) that

∞∑
n=1

(
an ‖ Φn ‖√

cn

)β
< +∞ a.s.(C.8)

Finally, we prove (27) via Lemma C.2 together with (22) and equation (C.1), com-
pleting the proof of Theorem 2.3.
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Appendix D.
Proof of Theorems 3.3 and 3.4. First, we prove Lemma 3.1 for both ELS and

WLS algorithms. On the one hand, relation (A.1) holds for the ELS algorithm in the
ARMAX framework [3], [11], [15]. In addition, by Theorem 1 of Lai and Wei [19],
[20], we also have

n∑
k=1

‖ Φk −Ψk ‖2= O(log sn) a.s.(D.1)

If ε has finite conditional moment of order α>2, we can show as in Appendix A that
‖ Φn ‖2=O(sβn) with 2α−1 < β < 1. Hence, we find by (A.1) and (33) that

n∑
k=1

‖ πk ‖2= o(sβn log sn) a.s.,(D.2)

n∑
k=1

‖ Xk+1 ‖2= o(sβn log sn) +O(n) a.s.(D.3)

Finally, (D.1) together with (D.3) imply that sn=o(sn) + O(n), so sn=O(n). Con-
sequently, we find by (D.2) that

n∑
k=1

‖ πk ‖2= o(n) a.s.(D.4)

We now recall that the reference trajectory x satisfies (13). Therefore, exactly as in
Appendix A, (33), (D.1), and (D.4) imply the convergence (36) for the ELS algo-
rithm. On the other hand, concerning the WLS algorithm, relation (B.1) holds in the
ARMAX framework [4], [5]. In addition, we also have, by Theorem 1 of Bercu [5],

∞∑
n=1

an ‖ Φn −Ψn ‖2< +∞ a.s.(D.5)

As a−1
n =(log sn)1+γ with γ>0, we find by (33), (B.2), and (D.5) together with Kro-

necker’s lemma that sn=o(sn) + O(n), so sn=O(n). Consequently, we immediately
obtain by (B.2) that

n∑
k=1

‖ πk ‖2= o(n) a.s.(D.6)

Therefore, (33), (D.5), and (D.6) imply the convergence (36) for the WLS algorithm.
Finally, via (B.6)–(B.8), we also find the convergence (37) for the WLS algorithm,
completing the proof of Lemma 3.1. We now prove Theorems 3.3 and 3.4. We
can easily switch to the continually disturbed tracking situation. Indeed, as ξ is
an exogenous noise that satisfies the strong law of large numbers, we prove by (50)
the convergences (53) and (56) exactly as in Lemma 3.1. Furthermore, since the
matrix H is positive definite, we find for the ELS algorithm that n=O(λminSn), and
for the WLS algorithm, that nan = O(λminSn(a)). Finally, as the relations (A.1),
(A.11) and (B.1), (B.5) hold in the ARMAX framework, Theorems 3.3 and 3.4 are
established.
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Appendix E.
Proof of Theorem 3.5. We finally prove Theorem 3.5 for both ELS and WLS

algorithms. On the one hand, for the ELS algorithm, by (1) and (2), we have

Sn−1(θ̂n − θ) = Mn −Rn−1θ,(E.1)

Mn = M0 +
n∑
k=1

Φk−1ε
t
k, Rn =

n∑
k=0

Φk(Φk −Ψk)t(E.2)

with M0 = S(θ̂0 − θ). In order to study the remainder Rn, it is enough by (D.1) to
work on

Pn =
n∑
k=0

Xkε̌
t
k, Qn =

n∑
k=0

εkε̌
t
k,(E.3)

where ε̌n = ε̂n − εn. The first equality of (4) can be rewritten as

ε̌n+1 = (1− fn)πn − fnεn+1(E.4)

with fn = ΦtnS
−1
n Φn. By (A.1) and (E.4) together with Chow’s lemma [23], we have

the almost sure convergence

1
logn

n∑
k=0

εkε̌
t
k −→ −δΓ.(E.5)

Therefore, we immediately obtain Qn = o(
√
n) a.s. In addition, by (A.1), we also

have ∥∥∥∥∥
n∑
k=1

πk−1ε̌
t
k

∥∥∥∥∥ = O(logn) a.s.(E.6)

Finally, as the trajectory x satisfies relation (59), we can conclude by (50), (A.1), and
the Cauchy–Schwarz inequality that Pn=o(

√
n), so Rn=o(

√
n) a.s. Lemmas C.1 and

C.2 together with (53) lead to (61) and (62) for the ELS algorithm. On the other
hand, for the WLS algorithm, by (1) and (2), we have

Sn−1(a)(θ̂n − θ) = Mn(a)−Rn−1(a)θ,(E.7)

Mn(a) =M0+
n∑
k=1

ak−1Φk−1ε
t
k, Rn(a) =

n∑
k=0

akΦk(Φk −Ψk)t(E.8)

with M0 =S(θ̂0 − θ). Set

Pn(a) =
n∑
k=0

akXkε̌
t
k, Qn(a) =

n∑
k=0

akεkε̌
t
k.(E.9)

The first equality of (4) can be rewritten as

ε̌n+1 = (1− fn(a))πn − fn(a)εn+1(E.10)

with fn(a)=anΦtnS
−1
n (a)Φn. The main property of the weighted sequence a=(an) is

that
∞∑
n=1

anfn(a) < +∞ a.s.(E.11)
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Therefore, as a=(an) is nonincreasing, we find by (B.1), (E.10), and (E.11) that∥∥∥∥∥
n∑
k=0

akεkε̌
t
k

∥∥∥∥∥ = o((logn)1+γ) a.s.,(E.12)

so Qn(a) = o(
√
cn) a.s. with cn = n/(logn)2+2γ . In addition, by (B.1) and (D.5), as

fn(a) tends a.s. towards 0,∥∥∥∥∥
n∑
k=1

πk−1ε̌
t
k

∥∥∥∥∥ = O(1) a.s.(E.13)

Finally, as the trajectory x satisfies relation (60), we can conclude by (50), (B.1),
and the Cauchy–Schwarz inequality that Pn(a) = o(

√
cn), so Rn(a) = o(

√
cn) a.s.

Lemmas C.1 and C.2, together with (56), lead to (61) and (62) for the WLS algorithm,
completing the proof of Theorem 3.5.

REFERENCES
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moindres carrés en poursuite adaptative, Note au C. R. Acad. Sci. Paris Sér. I, 320 (1995),
pp. 493–496.

[7] P. E. CAINES, Linear Stochastic Systems, John Wiley, New York, 1988.
[8] H. F. CHEN, Recursive Estimation and Control for Stochastic Systems, John Wiley, New York,

1985.
[9] H. F. CHEN AND L. GUO, Convergence rate of least squares identification and adaptive control

for stochastic systems, Internat. J. Control, 44 (1986), pp. 1459–1476.
[10] H. F. CHEN AND J. F. ZHANG, Convergence rates in stochastic adaptive tracking, Internat. J.

Control, 49 (1989), pp. 1915–1935.
[11] H. F. CHEN AND L. GUO, Identification and Stochastic Adaptive Control, Birkhäuser, Boston,
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STOCHASTIC NEAR-OPTIMAL CONTROLS: NECESSARY
AND SUFFICIENT CONDITIONS FOR NEAR-OPTIMALITY∗
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Abstract. Near-optimization is as sensible and important as optimization for both theory and
applications. This paper concerns dynamic near-optimization, or near-optimal controls, for systems
governed by the Ito stochastic differential equations (SDEs), where both the drift and diffusion terms
are allowed to depend on controls and the systems are allowed to be degenerate. Necessary and
sufficient conditions for a control to be near-optimal are studied. It is shown that any near-optimal
control nearly maximizes the “H-function” (which is a generalization of the usual Hamiltonian and
is quadratic with respect to the diffusion coefficients) in some integral sense, and vice versa if certain
additional concavity conditions are imposed. Error estimates for both the near-optimality of the
controls and the near-maximum of the H-function are obtained, based on some delicate estimates of
the adjoint processes. Examples are presented to demonstrate the results.

Key words. stochastic near-optimal control, necessary and sufficient condition, adjoint equa-
tion, H-function, Hamiltonian, Ekeland’s principle

AMS subject classifications. 93E, 49K

PII. S0363012996302664

1. Introduction. This paper is one in a series of papers studying near-optimal
controls. In view of both theory and applications, near-optimality makes as good sense
as the (exact) optimality. First, many more near-optimal controls are available than
optimal ones. Indeed, optimal controls may not even exist in many situations, while
near-optimal controls always exist. Second, it is usually much easier to obtain near-
optimal controls than optimal ones, both analytically and numerically. For example,
optimal production controls for a stochastic two-machine flowshop may involve very
complicated switching curves. However, Sethi and Zhou [11] showed that a near-
optimal control can be found in the class of the so-called threshold-type policies which
involve only two real parameters. Therefore, the original problem can be greatly
simplified in analysis, computation, and implementation by considering near-optimal
controls. Third, since there are many more candidates for near-optimal controls,
it is possible to select among them appropriate ones that are easier for analysis and
implementation. For example, optimal feedback controls for linear systems are usually
of “bang-bang” type, as is well known. These controls are not continuous in state,
making it very difficult to handle analytically. Indeed, even the existence of system
states under such controls are not clear in general. However, one can always modify
the bang-bang controls into Lipschitz continuous controls with only a small loss in the
objective value. Fourth, an optimal control is usually very sensitive for the external
perturbation because it is too “greedy” (by the nature of “optimality”!) and does not
usually leave allowance to accommodate changing situations. This pitfall becomes
significant for stochastic systems, where uncertainties and perturbations are inherent.
A good example is optimal production planning for manufacturing systems. The so-
called zero-inventory policy is in general optimal in deterministic cases [6], but is no
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longer optimal in stochastic cases, even for the simplest one-machine, one-product
systems [1]. The reason is that the zero-inventory policy, while resulting in zero
surplus cost, is prone to cause shortage (due to various uncertainties involved) which
is usually even more costly. Last but not least, for many real systems, insisting on
optimal solutions is not only unrealistic but also unnecessary, because a near-optimal
solution can satisfactorily serve the ultimate purpose of the decision makers in most
practical situations.

In the first two papers [13, 14] in this series, near-optimal controls for determin-
istic dynamic systems (governed by ordinary differential equations) are investigated.
Necessary and sufficient conditions of near-optimality are derived and dynamic pro-
gramming approach is employed to study the behavior of those “good-enough” con-
trols. Starting from this paper, we proceed to treat the stochastic cases. As mentioned
earlier, near-optimization makes even better sense in stochastic systems than in de-
terministic ones due to the presence of uncertainties.

The stochastic systems under consideration in this paper are of the diffusion type,
namely, they are governed by the Ito SDEs. As is well known, this kind of models
occur in many real-world systems, including those of finance, economy, and manufac-
turing. The specific purpose of this paper is to derive necessary and sufficient condi-
tions of near-optimality for the controlled diffusion processes. Elliott and Kohlmann
[4] studied the necessity part, but as in almost all the previous papers studying the
similar problem for deterministic cases based on the Ekeland variational principle,
their necessary conditions were derived only for some near-optimal controls (see [4,
Theorem 4.4]). In this paper, we shall derive necessary conditions for all near-optimal
controls. More specifically, we will show that any ε-optimal control nearly maximizes
the so-called H-function in an integral form with an error order of “almost” ε

1
3 (see

Theorem 4.1 for the precise meaning). Moreover, we prove that under certain con-
cavity conditions, an ε-maximum condition in terms of the H-function in the integral
form is sufficient for the near-optimality of order ε

1
2 . Our results are based on some

delicate estimates for the solutions of adjoint equations, which are linear backward
SDEs, along with the Ekeland principle.

The plan of the rest of the paper is as follows. In section 2, we formulate the
problem and define near-optimality. In section 3, we study some continuity of the
adjoint processes with respect to a prescribed metric in the set of admissible controls.
Sections 4 and 5 are devoted to the necessary and sufficient conditions for near-
optimal controls, respectively. Section 6 discusses the results obtained and presents
an example to demonstrate them. Finally, section 7 concludes the paper.

2. Problem formulation and preliminaries. We consider in this paper sto-
chastic optimal control problems of the following kind. For a given s ∈ [0, T ], by the
set of admissible controls Uad[s, T ] we mean the collection of (i) standard probability
spaces (Ω,F , P ) along with l-dimensional Brownian motions B = {B(t) : s ≤ t ≤ T}
with B(s) = 0, and (ii) Γ-valued Fst -adapted measurable processes u(·) = {u(t) : s ≤
t ≤ T}, where Fst is the natural filtration generated by B(t) augmented by all the
P -null sets in F , and Γ is a given closed set in some Euclidean space Rm. We denote
(Ω,F , P,B;u(·)) ∈ Uad[s, T ], but occasionally we will write only u(·) ∈ Uad[s, T ] if no
ambiguity arises.

Let (s, y) ∈ [0, T ) × Rn be given, representing the initial time and initial state,
respectively, of the system. For each (Ω,F , P,B;u(·)) ∈ Uad[s, T ], the corresponding
cost is
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J(s, y;u(·)) = E

{∫ T

s

L(t, x(t), u(t))dt+ h(x(T ))

}
,(2.1)

where x(·) = {x(t) : s ≤ t ≤ T} is the solution of the following Ito SDE on the filtered
space (Ω,F , P ;Fst ):{

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dB(t),
x(s) = y.

(2.2)

The solution x(·) of the above SDE is called the response of the control u(·) ∈ Uad[s, T ],
and (x(·), u(·)) is called an admissible pair. The objective of the optimal control
problem is to minimize the cost function J(s, y;u(·)), for a given (s, y) ∈ [0, T ) ×
Rn, over all u(·) ∈ Uad[s, T ]. We denote the above problem by Cs,y to recall the
dependence on the initial time s and the initial state y. The value function is defined
as

V (s, y) = inf
u(·)∈Uad[s,T ]

J(s, y;u(·)).(2.3)

An admissible pair (x∗(·), u∗(·)) is called optimal for Cs,y if u∗(·) achieves the infimum
of J(s, y;u(·)) over Uad[s, T ].

Since the objective of this paper is to study near-optimal rather than optimal
controls of the system, we give here the precise definition of the near-optimality,
following [13].

DEFINITION 2.1. For a given ε > 0, an admissible pair (xε(·), uε(·)), or simply
uε(·), is called ε-optimal with respect to (s, y) if

|J(s, y;uε(·))− V (s, y)| ≤ ε.

DEFINITION 2.2. Both a family of admissible pairs {(xε(·), uε(·))} parameterized
by ε > 0 and any element (xε(·), uε(·)), or simply uε(·), in the family are called
near-optimal with respect to (s, y) if

|J(s, y;uε(·))− V (s, y)| ≤ r(ε)

holds for sufficiently small ε, where r is a function of ε satisfying r(ε)→ 0 as ε→ 0.
The estimate r(ε) is called an error bound. If r(ε) = cεδ for some δ > 0 independent
of the constant c, then uε(·) is called near-optimal with order εδ.

In the above definitions, the terms “admissible,” “optimal,” “ε-optimal,” and
“near-optimal” are dependent on the initial time s and initial state y. In the following
discussion, however, the phrase “with respect to (s, y)” may be omitted if no confusion
would occur.

Notation. We make use of the following notation in this paper:

a · b : the inner product of any two vectors a and b;
|a| : = |a1|+ · · ·+ |an| for any vector a = (a1, . . . , an);
M∗ : the transpose of any vector or matrix M ;
ρx : the gradient or Jacobian of a function ρ with respect to the

variable x;
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ρxx : the Hessian of a scalar function ρ with respect to the
variable x;

χA : the indicator function of a set A;
X + Y : = {x+ y : x ∈ X, y ∈ Y } for any set X and Y ;

C,Ci, i = 1, 2, . . . : multiplicative constants required in the analysis.

Given a probability space (Ω,F , P ) with a filtration {Ft : a ≤ t ≤ b} (−∞ ≤ a <
b ≤ +∞), a Hilbert space X with the norm ‖ · ‖X , and p (1 ≤ p ≤ +∞), define the
Banach space LpF (a, b;X) = {φ(·) = {φ(t, ω) : a ≤ t ≤ b}| φ(·) is an Ft - adapted,
X-valued measurable process on [a, b], and E

∫ b
a
‖ φ(t, ω) ‖pX dt < +∞}, with the

norm

‖ φ(·) ‖F,p=
(
E

∫ b

a

‖ φ(t, ω) ‖pX dt

) 1
p

.

In the rest of this paper, we shall employ the usual convention of suppressing the
ω-dependence of all random functions whenever no confusion arises.

Assumptions. The following basic assumptions will be in force throughout this
paper:

(A1) f : [0, T ]×Rn×Γ→ Rn, σ : [0, T ]×Rn×Γ→ Rn×l, and L : [0, T ]×Rn×Γ→
R1 are measurable in (t, x, u), twice continuously differentiable in x for each
(t, u), and there exists a constant C > 0 such that for ρ = f, σ, L,

|ρ(t, x, u)| ≤ C(1 + |x|),(2.4)

|ρ(t, x, u)− ρ(t, x′, u)|+ |ρx(t, x, u)− ρx(t, x′, u)| ≤ C|x− x′|.(2.5)

(A2) h : Rn → R1 is twice continuously differentiable, and

|h(x)| ≤ C(1 + |x|),(2.6)

|h(x)− h(x′)|+ |hx(x)− hx(x′)| ≤ C|x− x′|.(2.7)

Remark 2.1. Under (A1) and (A2), the existence and uniqueness of (strong)
solutions of (2.2) hold for any given (Ω,F , P,B;u(·)) ∈ Uad[s, T ]. Moreover, it is well
known that for every solution x(·) of (2.2) and any p ≥ 0, it holds that

E sup
s≤t≤T

|x(t)|p ≤ C(p),(2.8)

where C(p) is a constant depending only on p.
Before concluding this section, let us recall the definition of the Clarke generalized

gradient as well as the Ekeland variational principle.
DEFINITION 2.3 (Clarke [2]). Let X be a convex set in Rd and let η(·) : X → R1

be a locally Lipschitz function. The generalized gradient of v at x̂ ∈ X, denoted by
∂xη(x̂), is a set defined by

∂xη(x̂) = {p ∈ Rd|p · ξ ≤ η0(x̂; ξ), for any ξ ∈ Rd},
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where η0(x̂; ξ) = lim supx∈X,x+hξ∈X,x→x̂,h→0+
η(x+hξ)−η(x)

h .
LEMMA 2.4 (Ekeland’s principle [3]). Let (S, d) be a complete metric space and

ρ(·) : S → R1 be lower-semicontinuous and bounded from below. For ε ≥ 0, suppose
uε ∈ S satisfies

ρ(uε) ≤ inf
u∈S

ρ(u) + ε.

Then for any λ > 0, there exists uλ ∈ S such that

ρ(uλ) ≤ ρ(uε),
d(uλ, uε) ≤ λ, and
ρ(uλ) ≤ ρ(u) + ε

λd(u, uλ) for all u ∈ S.

3. Adjoint equations: Backward SDEs. From now on, let us assume that
the initial time s and initial state y of the system are fixed, and the Brownian motion
B is one dimensional for notational simplicity. We also set Ft = Fst . Define a metric
on Uad[s, T ]:

d(u(·), u′(·)) = P̃{(t, ω) ∈ [s, T ]× Ω : u(t, ω) 6= u′(t, ω)},(3.1)

where P̃ is the product measure of the Lebesgue measure and P . Since Γ is closed,
it can be shown similarly to [4, Lemma 3.2] that Uad[s, T ] is a complete metric space
under d.

As is well known, the study of adjoint equations plays a key role in deriving the
necessary and sufficient conditions of optimality. In the stochastic (diffusion) case,
there are first-order and second-order adjoint processes corresponding to each given
admissible control. The equations which they satisfy are (linear) backward SDEs with
the terminal conditions given. This section is mainly devoted to investigating certain
continuity of the adjoint processes with respect to the metric d.

Our first lemma below, however, is concerned with the continuity of the state
processes under d.

LEMMA 3.1. For any 0 < α < 1 and p ≥ 0 satisfying αp < 1, there is a constant
C1 = C1(α, p) > 0 such that for any u(·), u′(·) ∈ Uad[s, T ] along with the corresponding
trajectories x(·), x′(·), it holds that

E sup
s≤t≤T

|x(t)− x′(t)|2p ≤ C1d(u(·), u′(·))αp.(3.2)

Proof. In the proof below, all the constants Ci are understood to be dependent
only on α and p. First we assume p ≥ 1. We can compute, for any r ≥ s,

E sup
s≤t≤r

|x(t)− x′(t)|2p

≤ C2E
∫ r
s
{|f(t, x(t), u(t))− f(t, x′(t), u′(t))|2p

+|σ(t, x(t), u(t))− σ(t, x′(t), u′(t))|2p}dt
≤ C3E

∫ r
s
{|f(t, x(t), u(t))− f(t, x(t), u′(t))|2p

+|σ(t, x(t), u(t))− σ(t, x(t), u′(t))|2p}χu(t)6=u′(t)(t)dt
+C3E

∫ r
s
{|f(t, x(t), u′(t))− f(t, x′(t), u′(t))|2p

+|σ(t, x(t), u′(t))− σ(t, x′(t), u′(t))|2p}dt.

(3.3)
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Taking q′ = 1
αp > 1 and p′ > 1 such that 1

p′ + 1
q′ = 1, and applying the Cauchy–

Schwarz inequality, we obtain

E
∫ r
s
{|f(t, x(t), u(t))− f(t, x(t), u′(t))|2p}χu(t)6=u′(t)(t)dt

≤
{
E
∫ r
s
|f(t, x(t), u(t))− f(t, x(t), u′(t))|2pp′

} 1
p′
{
E
∫ r
s
χu(t)6=u′(t)(t)dt

} 1
q′

≤ C4
{
E
∫ r
s

(1 + |x(t)|2pp′)dt
} 1
p′ d(u(·), u′(·))αp

≤ C5d(u(·), u′(·))αp.

(3.4)

The same inequality holds if f above is replaced by σ. Therefore, by noting (A1), we
conclude from (3.3) that

E sup
s≤t≤r

|x(t)− x′(t)|2p ≤ C6

{∫ r

s

E sup
s≤t≤θ

|x(t)− x′(t)|2pdθ + d(u(·), u′(·))αp
}
.

Hence (3.2) follows from the Gronwall inequality.
Now assume 0 ≤ p < 1. Then the Cauchy–Schwarz inequality yields

E sup
s≤t≤T

|x(t)− x′(t)|2p ≤ {E sup
s≤t≤T

|x(t)− x′(t)|2}p

≤ {C1d(u(·), u′(·))α}p

= Cp1d(u(·), u′(·))αp.

This completes the proof.
For any u(·) ∈ Uad[s, T ] and the corresponding state trajectory x(·), we define

the first-order adjoint process ψ(·) and the second-order adjoint process Q(·) as the
ones satisfying the following two backward SDEs, respectively:

dψ(t) = −{fx(t, x(t), u(t))∗ψ(t) + σx(t, x(t), u(t))∗K(t)
+ Lx(t, x(t), u(t))}dt+K(t)dB(t),

ψ(T ) = hx(x(T )),
(3.5)


dQ(t) = −{fx(t, x(t), u(t))∗Q(t) +Q(t)fx(t, x(t), u(t))

+ σx(t, x(t), u(t))∗Q(t)σx(t, x(t), u(t)) + σx(t, x(t), u(t))∗R(t)
+ R(t)σx(t, x(t), u(t)) + Λ(t)}dt+R(t)dB(t),

Q(T ) = hxx(x(T )),

(3.6)

where Λ(t) = Lxx(t, x(t), u(t))+
∑n
i=1{ψi(t)f ixx(t, x(t), u(t))+Ki(t)σixx(t, x(t), u(t))}.

Note that under assumptions (A1) and (A2), the first-order adjoint equation (3.5)
admits one and only one Ft-adapted solution pair (ψ,K) ∈ L2

F (0, 1;Rn)×L2
F (0, 1;Rn),

and the second-order adjoint equation (3.6) admits one and only one Ft-adapted so-
lution pair (Q,R) ∈ L2

F (0, 1;Rn×n)×L2
F (0, 1;Rn×n). Moreover, since fx, σx, Lx, and

hx are bounded by C by assumptions (A1) and (A2), there exists a constant C1 > 0,
independent of (x(·), u(·)), such that the solutions of (3.5) and (3.6) have the following
estimates:

E

{
sup
s≤t≤T

|ψ(t)|2 +
∫ T

s

|K(t)|2dt
}
≤ C1,(3.7)
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E

{
sup
s≤t≤T

|Q(t)|2 +
∫ T

s

|R(t)|2dt
}
≤ C1;(3.8)

(see [12, Corollaries 2.2, 2.4]). It should also be noted that no supremum estimates
for K(t) and R(t) are available.

The following lemma gives the pth moment continuity of the solutions to the
adjoint equations with respect to the metric d. It plays a key role in proving the
necessary condition in the next section.

LEMMA 3.2. For any 0 < α < 1 and 1 < p < 2 satisfying (1 + α)p < 2, there is a
constant C1 = C1(α, p) > 0 such that for any u(·), u′(·) ∈ Uad[s, T ] along with the cor-
responding trajectories x(·), x′(·) and the solutions (ψ(·),K(·), Q(·), R(·)), (ψ′(·),K ′(·),
Q′(·), R′(·)) of the corresponding adjoint equations, it holds that

E

∫ T

s

{|ψ(t)− ψ′(t)|p + |K(t)−K ′(t)|p}dt ≤ C1d(u(·), u′(·))
αp
2(3.9)

and

E

∫ T

s

{|Q(t)−Q′(t)|p + |R(t)−R′(t)|p}dt ≤ C1d(u(·), u′(·))
αp
2 .(3.10)

Proof. Once again, all the constants Ci below depend only on α and p. Note that
(ψ̄(t), K̄(t)) ≡ (ψ(t)− ψ′(t),K(t)−K ′(t)) satisfies the following backward SDE:

dψ̄(t) = − {fx(t, x(t), u(t))∗ψ̄(t) + σx(t, x(t), u(t))∗K̄(t)
+ f̄(t)}dt+ K̄(t)dB(t),

ψ̄(T ) = hx(x(T ))− hx(x′(T )),
(3.11)

where

f̄(t) = {fx(t, x(t), u(t))∗ − fx(t, x′(t), u′(t))∗}ψ′(t)
+ {σx(t, x(t), u(t))∗ − σx(t, x′(t), u′(t))∗}K ′(t)
+ {Lx(t, x(t), u(t))− Lx(t, x′(t), u′(t))}.

(3.12)

Now let ρ be the solution of the following linear (forward) SDE:
dρ(t) = {fx(t, x(t), u(t))ρ(t) + |ψ̄(t)|p−1sgn(ψ̄(t))}dt

+ {σx(t, x(t), u(t))ρ(t) + |K̄(t)|p−1sgn(K̄(t))}dB(t),
ρ(s) = 0,

where sgn(a) ≡ (sgn(a1), . . . , sgn(an))∗ for a vector a = (a1, . . . , an)∗. Note that the
existence and uniqueness of solutions to the above equation are verified by (A1) and
the fact that

E

∫ T

s

{∣∣∣|ψ̄(t)|p−1sgn(ψ̄(t))
∣∣∣2 +

∣∣∣|K̄(t)|p−1sgn(K̄(t))
∣∣∣2}dt < +∞.

Since 1 < p < 2, there is q > 2 such that 1
p + 1

q = 1. So

E sup
s≤t≤T

|ρ(t)|q ≤ C2E
∫ T
s
{|ψ̄(t)|pq−q + |K̄(t)|pq−q}dt

= C2E
∫ T
s
{|ψ̄(t)|p + |K̄(t)|p}dt.

(3.13)
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Note that the right side of (3.13) is bounded due to (3.7). On the other hand, by
applying the Ito formula to ψ̄(t) · ρ(t) and taking expectations, we obtain

E
∫ T
s

{
ψ̄(t) · [|ψ̄(t)|p−1sgn(ψ̄(t))] + K̄(t) · [|K̄(t)|p−1sgn(K̄(t))]

}
dt

= E
{∫ T

s
f̄(t) · ρ(t)dt+ [hx(x(T ))− hx(x′(T ))] · ρ(T )

}
≤ {E

∫ T
s
|f̄(t)|pdt} 1

p {E
∫ T
s
|ρ(t)|qdt} 1

q + {E|hx(x(T ))− hx(x′(T ))|p} 1
p {E|ρ(T )|q} 1

q

≤ C3

{
E
∫ T
s

[|ψ̄(t)|p + |K̄(t)|p]dt
} 1
q
{

[E
∫ T
s
|f̄(t)|pdt] 1

p + [E|hx(x(T ))− hx(x′(T ))|p] 1
p

}
.

Noting that the left side of the above inequality is equal to E
∫ T
s

[|ψ̄(t)|p + |K̄(t)|p]dt,
we deduce

E

∫ T

s

{|ψ̄(t)|p + |K̄(t)|p}dt ≤ C4E

{∫ T

s

|f̄(t)|pdt+ |hx(x(T ))− hx(x′(T ))|p
}
.

(3.14)

We proceed to estimate the right side of (3.14). First, noting that αp
2 < 1 − p

2 < 1,
we can apply Lemma 3.1 to get

E|hx(x(T ))− hx(x′(T ))|p ≤ CpE|x(T )− x′(T )|p ≤ C5d(u(·), u′(·))
αp
2 .(3.15)

Next, by repeatedly applying the Cauchy–Schwarz inequality, we can estimate

E
∫ T
s
|fx(t, x(t), u(t))∗ − fx(t, x′(t), u′(t))∗|p|ψ′(t)|pdt

≤ C6E
∫ T
s
{|fx(t, x(t), u(t))∗ − fx(t, x(t), u′(t))∗|p|ψ′(t)|p

+ |fx(t, x(t), u′(t))∗ − fx(t, x′(t), u′(t))∗|p|ψ′(t)|p}dt
≤ C7E

∫ T
s
{χu(t)6=u′(t)(t)|ψ′(t)|p + |x(t)− x′(t)|p|ψ′(t)|p}dt

≤ C7
{
E
∫ T
s
|ψ′(t)|2dt

} p
2 d(u(·), u′(·))1− p2

+ C7
{
E
∫ T
s
|ψ′(t)|2dt

} p
2
{
E
∫ T
s
|x(t)− x′(t)|

2p
2−p dt

}1− p2 .

(3.16)

Noting that 1− p
2 >

αp
2 and d(u(·), u′(·)) ≤ 1, we know that the first term of the right

side of (3.16) is bounded by C8d(u(·), u′(·))αp2 . Further, since αp
2−p < 1, we conclude

from Lemma 3.1 that

E

∫ T

s

|x(t)− x′(t)|
2p

2−p dt ≤ C9d(u(·), u′(·))
αp

2−p .

Hence the second term in the right side of (3.16) is also dominated by C10d(u(·), u′(·))αp2 .
So, (3.16) yields

E

∫ T

s

|fx(t, x(t), u(t))∗ − fx(t, x′(t), u′(t))∗|p|ψ′(t)|pdt ≤ C11d(u(·), u′(·))
αp
2 .(3.17)

Notice that the estimate in (3.16) involved only E
∫ T
s
|ψ′(t)|2dt and therefore is adapt-

able to terms involving K ′(t). Hence we can similarly prove that

E

∫ T

s

|σx(t, x(t), u(t))∗ − σx(t, x′(t), u′(t))∗|p|K ′(t)|pdt ≤ C12d(u(·), u′(·))
αp
2 .(3.18)
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Similarly (in fact, more easily) one can prove that

E

∫ T

s

|Lx(t, x(t), u(t))− Lx(t, x′(t), u′(t))|pdt ≤ C13d(u(·), u′(·))
αp
2 .(3.19)

It follows from (3.12), (3.17), (3.18), and (3.19) that

E

∫ T

s

|f̄(t)|pdt ≤ C14d(u(·), u′(·))
αp
2 .

The desired result (3.9) then follows immediately from (3.14) and (3.15). Similarly
one can prove (3.10).

4. Necessary conditions of near-optimality. Define the (usual) Hamiltonian

H(t, x, u, p, q) = −L(t, x, u)− p · f(t, x, u)− q · σ(t, x, u)(4.1)

for (t, x, u, p, q) ∈ [s, T ]×Rn × Γ×Rn ×Rn. Furthermore, we define the H-function
corresponding to a given admissible pair (x(·), u(·)) as follows:

H(x(·),u(·))(t, x, u) = H(t, x, u, ψ(t),K(t)−Q(t)σ(t, x(t), u(t)))

− 1
2
σ(t, x, u)∗Q(t)σ(t, x, u)

(4.2)

for (t, x, u) ∈ [s, T ] × Rn × Γ, where ψ(t), K(t), and Q(t) are determined by adjoint
equations (3.5) and (3.6) corresponding to (x(·), u(·)).

THEOREM 4.1. For any γ ∈ [0, 1
3 ), there exists a constant C1 = C1(γ) > 0 such

that for any ε > 0 and any ε-optimal pair (xε(·), uε(·)) of the problem Cs,y, it holds
that

E
∫ T
s

{
1
2 [σ(t, xε(t), u)− σ(t, xε(t), uε(t))]∗Qε(t)[σ(t, xε(t), u)− σ(t, xε(t), uε(t))]

+ ψε(t) · [f(t, xε(t), u)− f(t, xε(t), uε(t))]
+ Kε(t) · [σ(t, xε(t), u)− σ(t, xε(t), uε(t))]

+ L(t, xε(t), u)− L(t, xε(t), uε(t))
}
dt ≥ −C1ε

γ ,

(4.3)

where (ψε(·),Kε(·)) and (Qε(·), Rε(·)) are the solutions to (3.5) and (3.6), respectively,
corresponding to (xε(·), uε(·)).

Proof. First note that the multiplicative constants Ci required in the analysis
below do not depend on ε. By assumptions (A1) and (A2), it is easy to see that
J(s, y;u(·)) is continuous on Uad[s, T ] endowed with the metric d defined by (3.1).
By the Ekeland principle (Lemma 2.1) with λ = ε

2
3 , there is an admissible pair

(x̃ε(·), ũε(·)) such that

d(uε(·), ũε(·)) ≤ ε 2
3(4.4)

and

J̃(s, y; ũε(·)) ≤ J̃(s, y;u(·)) for any u(·) ∈ Uad[s, T ],(4.5)

where

J̃(s, y;u(·)) = J(s, y;u(·)) + ε
1
3 d(u(·), ũε(·)).(4.6)
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This means that (x̃ε(·), ũε(·)) is an optimal pair for the system (2.2) with a new
cost function J̃ . Next we use the spike variation technique to derive a “maximum
principle” for (x̃ε(·), ũε(·)). To this end, let t̄ ∈ [s, T ) and u ∈ Γ be fixed. For any
δ > 0, define uδ ∈ Uad[s, T ] by

uδ(t) =

{
u, t ∈ [t̄, t̄+ δ],
ũε(t), t ∈ [s, T ] \ [t̄, t̄+ δ].

(4.7)

The fact that

J̃(s, y; ũε(·)) ≤ J̃(s, y;uδ(·))

and

d(uδ(·), ũε(·)) ≤ δ

imply that

−ε 1
3 δ ≤ J(s, y;uδ(·))− J(s, y; ũε(·)).(4.8)

However, by (5.14) in [12] (with ε there replaced by δ), the right-hand side of the
above inequality is equal to

E
∫ t̄+δ
t̄

{
1
2 [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]∗Q̃ε(t)[σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

+ ψ̃ε(t) · [f(t, x̃ε(t), u)− f(t, x̃ε(t), ũε(t))]
+ K̃ε(t) · [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

+ [L(t, x̃ε(t), u)− L(t, x̃ε(t), ũε(t))]
}
dt+ o(δ).

Dividing (4.8) by δ and sending δ to 0, we conclude that

E
{

1
2 [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]∗Q̃ε(t)[σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

+ ψ̃ε(t) · [f(t, x̃ε(t), u)− f(t, x̃ε(t), ũε(t))]
+ K̃ε(t) · [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

+ [L(t, x̃ε(t), u)− L(t, x̃ε(t), ũε(t))]
}
≥ −ε 1

3 .

(4.9)

Now we are to derive an estimate for the term similar to the left side of (4.9) with
all the x̃ε(t), ũε(t), etc. replaced by xε(t), uε(t), etc. To this end, we first estimate the
following difference:

E
∫ T
s

{
K̃ε(t) · [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

− Kε(t) · [σ(t, xε(t), u)− σ(t, xε(t), uε(t))]
}
dt

= E
∫ T
s
{K̃ε(t)−Kε(t)} · {σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))}dt

+ E
∫ T
s
Kε(t) · {σ(t, x̃ε(t), u)− σ(t, xε(t), u)}dt

− E
∫ T
s
Kε(t) · {σ(t, x̃ε(t), ũε(t))− σ(t, xε(t), uε(t))}dt

= I1 + I2 + I3, say.
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For any γ ∈ [0, 1
3 ), let α = 3γ ∈ [0, 1). Fix a p ∈ (1, 2) so that (1 + α)p < 2. Take

q ∈ (2,+∞) with 1
p + 1

q = 1. Then, appealing to Lemma 3.2,

I1 ≤
{
E
∫ T
s
|K̃ε(t)−Kε(t)|pdt

} 1
p
{
E
∫ T
s
|σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))|qdt

} 1
q

≤ {C2d(uε(·), ũε(·))αp2 } 1
p
{
C2E

∫ T
s

(1 + |x̃ε(t)|q)dt
} 1
q

≤ C3ε
α
3 (note (4.4))

= C3ε
γ .

Next,

I2 ≤
{
E
∫ T
s
|Kε(t)|2dt

} 1
2
{
E
∫ T
s
|σ(t, x̃ε(t), u)− σ(t, xε(t), u))|2dt

} 1
2

≤ C4
{
E
∫ T
s
|x̃ε(t)− xε(t)|2dt

} 1
2

≤ C5{d(uε(·), ũε(·))α} 1
2

≤ C5{ε
2α
3 } 1

2

= C5ε
γ .

Further,

I3 = − E
∫ T
s
Kε(t) · {σ(t, x̃ε(t), ũε(t))− σ(t, x̃ε(t), uε(t))}dt

− E
∫ T
s
Kε(t) · {σ(t, x̃ε(t), uε(t))− σ(t, xε(t), uε(t))}dt

≤
{
E
∫ T
s
|Kε(t)|2dt

} 1
2
{
E
∫ T
s
|σ(t, x̃ε(t), ũε(t))

− σ(t, x̃ε(t), uε(t))|2χũε(t)6=uε(t)(t)dt
} 1

2 + C5ε
γ .

By the Cauchy–Schwarz inequality, one has

E
∫ T
s
|σ(t, x̃ε(t), ũε(t))− σ(t, x̃ε(t), uε(t))|2χũε(t)6=uε(t)(t)dt

≤
{
E
∫ T
s
|σ(t, x̃ε(t), ũε(t))− σ(t, x̃ε(t), uε(t))|4dt

} 1
2
{
E
∫ T
s
χũε(t)6=uε(t)(t)dt

} 1
2

≤ C6d(ũε(·), uε(·)) 1
2

≤ C6ε
1
3

≤ C6ε
γ .

Thus, we have proved that

E
∫ T
s

{
K̃ε(t) · [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

− Kε(t) · [σ(t, xε(t), u)− σ(t, xε(t), uε(t))]
}
dt

≤ C7ε
γ .

(4.10)

Similarly,

E
∫ T
s

{{ 1
2 [σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]∗Q̃ε(t)[σ(t, x̃ε(t), u)− σ(t, x̃ε(t), ũε(t))]

− 1
2 [σ(t, xε(t), u)− σ(t, xε(t), uε(t))]∗Qε(t)[σ(t, xε(t), u)− σ(t, xε(t), uε(t))]

}
+
{
ψ̃ε(t) · [f(t, x̃ε(t), u)− f(t, x̃ε(t), ũε(t))]
− ψε(t) · [f(t, xε(t), u)− f(t, xε(t), uε(t))]

}
+
{

[L(t, x̃ε(t), u)− L(t, x̃ε(t), ũε(t))]

− [L(t, xε(t), u)− L(t, xε(t), uε(t))]
}}
dt

≤ C8ε
γ .

(4.11)
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The inequality (4.3) therefore follows from combining (4.9), (4.10) and (4.11).
COROLLARY 4.2. Under the conditions of Theorem 4.1, it holds that

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), uε(t))dt

≥ sup
u(·)∈Uad[s,T ]

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), u(t))dt− C1ε
γ .

(4.12)

Proof. In the definition of the perturbed control uδ(·) in (4.7), the point u ∈ Γ can
be replaced by any admissible control u(·) ∈ Uad[s, T ], and the subsequent argument
still goes through. So (4.3) holds with u replaced by u(t) for any u(·) ∈ Uad[s, T ],
which is an easy variant of (4.12).

Let us now look at an example.
Example 4.1. Let n = l = 1, s = y = 0, T = 1, f = 0, σ = u, L = −u, h = 1

2x
2,Γ =

[0, 1]. For a given admissible pair (xε(·), uε(·)), the corresponding second-order adjoint
equation is {

dQε(t) = Rε(t)dB(t),
Qε(1) = 1.

By the uniqueness of its solutions, (Qε(t), Rε(t)) = (1, 0). Then for any admissible
control u(·) we have

H(xε(·),uε(·))(t, xε(t), u(t)) = u(t)− (Kε(t)−Qε(t)uε(t))u(t)− 1
2Q

ε(t)u2(t)
= − 1

2 (u(t)− uε(t) +Kε(t)− 1)2 + 1
2 (uε(t)−Kε(t) + 1)2

and

H(xε(·),uε(·))(t, xε(t), uε(t)) =
1
2

[uε(t)]2 − (Kε(t)− 1)uε(t).

Hence a simple calculation shows that if

uε(t)−Kε(t) + 1 ∈ Γ,(4.13)

then (4.12) gives

E

∫ 1

0
(Kε(t)− 1)2dt ≤ C1ε

γ .(4.14)

The above condition reveals the “minimum” qualification for the pair (xε(·), uε(·)) to
be ε-optimal. For example, the controls uε(t) ≡ 1−ε 1

2 are candidates for ε-optimality.
To see this, note that the first-order adjoint equation is{

dψε(t) = Kε(t)dB(t),
ψε(1) = xε(1).

It is clear that if we choose uε(t) ≡ 1 − ε
1
2 with the corresponding xε(t) = (1 −

ε
1
2 )B(t), then the unique solution pair of the first-order adjoint equation will be

(ψε(t),Kε(t)) = ((1− ε 1
2 )B(t), 1− ε 1

2 ). Hence (4.13) and (4.14) will be satisfied.
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Remark 4.1. Corollary 4.1 says that any ε-optimal control nearly maximizes the
H-function (in the integral sense) with an error bound of order of “almost” ε

1
3 . We

believe, although we are not able to prove at this moment, that the error bound can
be improved.

Remark 4.2. The necessary conditions of near-optimal controls are derived in
terms of the near-maximum condition of the H-function in an integral form. It is
well known that, for exact optimality, the integral form and the pointwise form of the
maximum condition are equivalent (cf. [7]), but it is certainly not the case for near-
optimality. On the other hand, when ε = 0, Theorem 4.1 reduces to the stochastic
maximum principle [9, 12].

5. Sufficient conditions of near-optimality. In this section, we will show
that, under certain concavity conditions, the near-maximum condition of the H-
function in the integral form is sufficient for near-optimality, with the following addi-
tional assumption:

(A3) ρ is differentiable in u for ρ = f, σ, L, and there is a constant C > 0 such
that

|ρ(t, x, u)− ρ(t, x, u′)|+ |ρu(t, x, u)− ρu(t, x, u′)| ≤ C|u− u′|.(5.1)

THEOREM 5.1. Let (xε(·), uε(·)) be an admissible pair, and (ψε(·),Kε(·)) be the
solution to (3.5) corresponding to (xε(·), uε(·)). Assume that H(t, ·, ·, ψε(t),Kε(t)) is
concave for a.e. t ∈ [s, T ], P − a.s., and h(·) is convex. If, for some ε > 0,

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), uε(t))dt ≥ sup
u(·)∈Uad[s,T ]

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), u(t))− ε,

(5.2)

then

J(s, y;uε(·)) ≤ inf
u(·)∈Uad[s,T ]

J(s, y;u(·)) + C1ε
1
2 ,(5.3)

where C1 > 0 is a constant independent of ε.
Proof. All the constants Ci appearing in this proof are independent of ε. The key

step in the proof is to show that Hu(t, xε(t), uε(t), ψε(t),Kε(t)) is very small and to
estimate it in terms of ε. To this end, let us fix an ε > 0. Define a new metric d̃ on
Uad[s, T ] as follows:

d̃(u(·), u′(·)) = E

∫ T

s

νε(t)|u(t)− u′(t)|dt,(5.4)

where

νε(t) = 1 + |ψε(t)|+ |Kε(t)|+ |Qε(t)|+ |Qε(t)||xε(t)| ≥ 1.(5.5)

Obviously d̃ is a metric, and it is a complete metric as a weighted L1 norm.
Define a functional W on Uad[s, T ] as follows:

W (u(·)) = E

∫ T

s

H(xε(·),uε(·))(t, xε(t), u(t))dt.

A simple calculation shows that

|W (u(·))−W (u′(·))| ≤ C2E

∫ T

s

νε(t)|u(t)− u′(t)|dt.
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Therefore, W is continuous on Uad[s, T ] with respect to d̃. By (5.2) and the Ekeland
principle, there exists a ũε(·) ∈ Uad[s, T ] such that

d̃(uε(·), ũε(·)) ≤ ε 1
2(5.6)

and

E

∫ T

s

H̃(t, xε(t), ũε(t))dt = max
u(·)∈Uad[s,T ]

E

∫ T

s

H̃(t, xε(t), u(t))dt,(5.7)

where

H̃(t, x, u) = H(xε(·),uε(·))(t, x, u)− ε 1
2 νε(t)|u− ũε(t)|.(5.8)

The integral-form maximum condition (5.7) implies a pointwise maximum condition,
namely, for a.e. t ∈ [s, T ] and P− a.s.,

H̃(t, xε(t), ũε(t)) = max
u∈Γ
H̃(t, xε(t), u).(5.9)

This, in turn, yields [2, Proposition 2.3.2]

0 ∈ ∂uH̃(t, xε(t), ũε(t)).(5.10)

By (5.8) and the fact that the generalized gradient of the sum of two functions is
contained in the sum of the generalized gradients of the two functions [2, Proposition
2.3.3], we deduce

∂uH̃(t, xε(t), ũε(t))
⊂ ∂uH̃(xε(·),uε(·))(t, xε(t), ũε(t)) + [−ε 1

2 νε(t), ε
1
2 νε(t)]

= ∂uH(t, xε(t), ũε(t), ψε(t),Kε(t)) + [−ε 1
2 νε(t), ε

1
2 νε(t)]

+ {σu(t, xε(t), ũε(t))∗Qε(t)(σ(t, xε(t), uε(t))− σ(t, xε(t), ũε(t)))}.

Since H is differentiable in u by assumption (A3), the inclusion (5.10) implies that
there is βε(t) ∈ [−ε 1

2 νε(t), ε
1
2 νε(t)] such that

Hu(t, xε(t), ũε(t), ψε(t),Kε(t))
= −βε(t)− σu(t, xε(t), ũε(t))∗Qε(t)(σ(t, xε(t), uε(t))− σ(t, xε(t), ũε(t))).

(5.11)

Consequently, by noting (A3),

|Hu(t, xε(t), uε(t), ψε(t),Kε(t)|
≤ |Hu(t, xε(t), uε(t), ψε(t),Kε(t))−Hu(t, xε(t), ũε(t), ψε(t),Kε(t))|

+ |Hu(t, xε(t), ũε(t), ψε(t),Kε(t))|
≤ C3ν

ε(t)|uε(t)− ũε(t)|+ |βε(t)|
+ |σu(t, xε(t), ũε(t))∗Qε(t)(σ(t, xε(t), uε(t))− σ(t, xε(t), ũε(t)))|

≤ C4ν
ε(t)|uε(t)− ũε(t)|+ ε

1
2 νε(t).

(5.12)

By the concavity of H(t, ·, ·, ψε(t),Kε(t)), we have

H(t, x(t), u(t), ψε(t),Kε(t))−H(t, xε(t), uε(t), ψε(t),Kε(t))
≤ Hx(t, xε(t), uε(t), ψε(t),Kε(t))(x(t)− xε(t))

+ Hu(t, xε(t), uε(t), ψε(t),Kε(t))(u(t)− uε(t))
(5.13)
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for any admissible pair (x(·), u(·)). Upon taking integrations on both sides and noting
(5.1) and (5.12), we obtain

E
∫ T
s
{H(t, x(t), u(t), ψε(t),Kε(t))−H(t, xε(t), uε(t), ψε(t),Kε(t))}dt

≤ E
∫ T
s
Hx(t, xε(t), uε(t), ψε(t),Kε(t))(x(t)− xε(t))dt+ C5{ε

1
2 + d̃(uε(·), ũε(·))}

≤ E
∫ T
s
Hx(t, xε(t), uε(t), ψε(t),Kε(t))(x(t)− xε(t))dt+ C6ε

1
2 .

(5.14)

On the other hand, the state equation (2.2) can be rewritten as

d(x(t)− xε(t))
= fεx(t)(x(t)− xε(t))dt+ σεx(t)(x(t)− xε(t))dB(t)

+ [−fεx(t)(x(t)− xε(t)) + f(t, x(t), u(t))− f(t, xε(t), uε(t))]dt
+ [−σεx(t)(x(t)− xε(t)) + σ(t, x(t), u(t))− σ(t, xε(t), uε(t))]dB(t),

where fεx(t) = fx(t, xε(t), uε(t)), etc. By applying the Ito formula to ψε(t) · (x(t) −
xε(t)) we have

E{
∫ T
s
Lεx(t) · (x(t)− xε(t))dt+ hx(xε(T )) · (x(1)− xε(1))}

= E
∫ T
s

{
ψε(t) · [−fεx(t)(x(t)− xε(t)) + f(t, x(t), u(t))− f(t, xε(t), uε(t))]

+ Kε(t) · [−σεx(t)(x(t)− xε(t)) + σ(t, x(t), u(t))− σ(t, xε(t), uε(t))]
}
dt.

Hence,

E
∫ T
s
{Hx(t, xε(t), uε(t), ψε(t),Kε(t))(x(t)− xε(t))

+ ψε(t) · [f(t, x(t), u(t))− f(t, xε(t), uε(t))]
+ Kε(t) · [σ(t, x(t), u(t))− σ(t, xε(t), uε(t))]}dt

= E{hx(xε(T ))(x(T )− xε(T ))}
≤ E{h(x(T ))− h(xε(T ))}.

(5.15)

Combining (5.14) and (5.15), we arrive at

J(uε(·)) ≤ J(u(·)) + C1ε
1
2 .

Since u(·) is arbitrary, the desired result follows.
COROLLARY 5.2. Under the assumptions of Theorem 5.1, a sufficient condition

for an admissible pair (xε(·), uε(·)) to be ε-optimal is

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), uε(t))dt

≥ sup
u(·)∈Uad[s,T ]

E

∫ T

s

H(xε(·),uε(·))(t, xε(t), u(t))−
(
ε

C1

)2

.

(5.16)

Example 5.1. Consider the problem presented in Example 4.1. Since the Hamil-
tonian

H(t, x, u, p, q) = u− qu
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is concave in (x, u), we can apply Corollary 5.1 to conclude that uε(t) ≡ 1 − ( ε
C1

)2

(which in view of Theorem 4.1 is a candidate for ε-optimality for sufficiently small ε)
is indeed an ε-optimal control.

Remark 5.1. Theorem 5.1 asserts that the ε-maximum condition of the H-
function implies near-optimality with order ε

1
2 . In Example 4.1, the control uε(t) =

1− ε 1
2 (with the corresponding Kε(t) = 1− ε 1

2 ) satisfies the ε-maximum condition of
the H-function; see the left-hand side of (4.14). However, the underlying cost function

J = −E
∫ 1

0
u(t)dt+

1
2
E

∫ 1

0
u(t)2dt =

1
2
E

∫ 1

0
[u(t)− 1]2dt− 1

2
.

Therefore, the minimum value of the cost function is −1
2 . Moreover, we see that

uε(t) = 1− ε 1
2 is actually a near-optimal control with order ε. This suggests that we

may lose some sharpness in estimating the error bound when applying Theorem 5.1.
just as with Theorem 4.1. The setback basically comes from the Ekeland principle
(Lemma 2.1), where a smaller value of λ results in a better knowledge about the
position of uλ at the cost of a less sharp estimate on the value of ρ(uλ).

Remark 5.2. If (5.2) holds with ε = 0, then Theorem 5.1 becomes a sufficiency
theorem for (exact) optimality. In this case, the sufficient condition (5.2) is equivalent
to Zhou’s sufficient condition [15]:

H(xε(·),uε(·))(t, xε(t), uε(t)) = max
u∈Γ
H(xε(·),uε(·))(t, xε(t), u), P − a.s., a.e. t ∈ [s, T ].

6. Some discussions. In sections 4 and 5, we established necessary and suffi-
cient conditions, respectively, for stochastic near-optimal controls in terms of a small
parameter ε. Here ε may appear in two different situations. First, it may reflect
the loss in the objective value allowed by the decision maker, who may have set this
“tolerance level” before he started to seek a near-optimal policy. Second, ε may be
a parameter representing the complexity of the original decision problem that can be
approximated by simpler models as ε is sufficiently small. For the second situation,
two good examples are hierarchical production models (see, e.g., [10, 11, 16]) and
discrete approximation (see, e.g., [5, 8]).

Many practical systems are so complicated that it is simply impossible to obtain
their optimal controls. A commonly used approach is to approximate the original
optimal control problems by simpler ones and then construct controls based on the
optimal controls of the approximating problems. Theorems 4.1 and 5.1 provide a
possible way to show analytically that the constructed controls are near-optimal for
the original complicated stochastic control problems. The idea behind it, in some
abstract form, is as follows. Suppose we have a family of stochastic control problems
Pε parameterized by ε > 0 and a stochastic control problem P which is much easier
to solve than each Pε. Let Uad,ε[s, T ] and Uad[s, T ] be the sets of admissible controls
for Pε and P, respectively. Now we solve P and obtain an optimal or near-optimal (in
terms of ε) control u∗(·). Then the stochastic maximum principle [9, 12] or Corollary
4.1 of this paper yields

H(x∗(·),u∗(·))(t, x∗(t), u∗(t)) = max
u∈Γ
H(x∗(·),u∗(·))(t, x∗(t), u), P − a.s., a.e. t.(6.1)
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or

E

∫ T

s

H(x∗(·),u∗(·))(t, x∗(t), u∗(t))dt

≥ sup
u(·)∈Uad[s,T ]

E

∫ T

s

H(x∗(·),u∗(·))(t, x∗(t), u(t))dt− C1ε
γ ,

(6.2)

depending on whether u∗(·) is optimal or near-optimal. Here H(x∗(·),u∗(·)) is the H-
function associated with problem P and (x∗(·), u∗(·)). We then construct uε(·) for
Pε from u∗(·) (the way of constructions depends on each particular situation). Let
H(xε(·),uε(·))
ε be the H-function associated with problem Pε and (xε(·), uε(·)). If we

can prove that

E
∫ T
s
H(xε(·),uε(·))
ε (t, xε(t), uε(t))dt

≥ E
∫ T
s
H(x∗(·),u∗(·))(t, x∗(t), u∗(t))dt− C ′εα

≥ sup
u(·)∈Uad[s,T ]

E
∫ T
s
H(x∗(·),u∗(·))(t, x∗(t), u(t))dt− C ′εβ

≥ sup
u(·)∈Uad,ε[s,T ]

E
∫ T
s
H(xε(·),uε(·))
ε (t, xε(t), u(t))dt− C ′′εδ,

(6.3)

where the second inequality above is due to (6.1) or (6.2) and the first and third
inequalities may be obtained by some estimates on the difference between the trajec-
tories xε(·) and x∗(·), then uε(·) is near-optimal for Pε with an error bound of order
εδ/2 if all the other assumptions of Theorem 5.1 are satisfied.

The above general idea has been applied to the hierarchical controls of stochastic
manufacturing systems [16] (although the controlled process there is piecewise deter-
ministic rather than of diffusion type). To be more specific, in [16], Pε is an optimal
production planning problem with stochastic machine capacity and ε representing
the reciprocal of the fluctuation rate of the machine capacity process, and P is a
deterministic problem where the random machine capacity has been averaged out.
Certainly, P is much easier to solve analytically than Pε. A near-optimal control for
Pε is constructed based on an optimal control for P and its near-optimality is proved
via a sequence of inequalities similar to (6.3) (see [16, section 5]).

Here we present another example which realizes the above idea.
Example 6.1. Consider the following problem:

minimize Jε(u(·)) = E{
∫ 1

0 εg(u(t))dt+ 1
2x(1)2}

subject to

{
dx(t) = u(t)dt+ u(t)dB(t),
x(0) = x0,

(6.4)

where ε > 0 is a small parameter and g (independent of ε) is a nonlinear, convex
function satisfying assumption (A3) (see (5.1)). Let the control region Γ = R1 and
denote the problem by Pε. The running cost is nonlinear, which becomes small if ε
becomes small. If one insists on solving the problem optimally, then he has to take
the nonlinearity into full account, and it may turn out to be very hard to obtain an
analytical solution. Let us do it differently. What we are going to show is that we can
easily get a near-optimal (feedback) control analytically based on the optimal control
of a simpler problem, called P, which is obtained by setting ε = 0 in (6.4), namely,
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by neglecting the nonlinearity. Indeed, P can be solved directly. To see this, applying
Ito’s formula yields

d(et−1x(t)2) = et−1(u(t) + x(t))2dt+ et−1u(t)dB(t).

Hence

Ex(1)2 = Ee−1x2
0 + E

∫ 1

0
et−1(u(t) + x(t))2dt.

It follows that the optimal control for problem P is a feedback u(t) = −x(t). Now we
are to prove that the same feedback control is near-optimal for the original problem
Pε when ε becomes sufficiently small. First, notice that the system dynamics are
the same with Pε and P (the only difference lies in the cost functions), thus the
state trajectories and all adjoint processes coincide for both problems under the same
controls. Denote optimal state and control under the feedback u(t) = −x(t) with
initial x0 by (x∗(·), u∗(·)) and the corresponding solutions to the first- and second-
adjoint equations by (ψ(·),K(·)) and (Q(·), R(·)), respectively. It is easy to show that
Q(t) ≡ 1. Then the H-function for P is

H(x∗(·),u∗(·))(t, x, u) = −1
2
u2 − (ψ(t) +K(t)− u∗(t))u.

Since u∗(·) is optimal, by stochastic maximum principle, it is necessary that u∗(t)
maximizes the H-function a.s., namely,

−u∗(t)− (ψ(t) +K(t)− u∗(t)) = 0, P − a.s., a.e. t.

So

ψ(t) +K(t) = 0, P − a.s., a.e. t.

However, the H-function for Pε is

H(x∗(·),u∗(·))
ε (t, x, u) = − 1

2u
2 − (ψ(t) +K(t)− u∗(t))u− εg(u)

= − 1
2u

2 + u∗(t)u− εg(u).

The above function is maximized at uε, which satisfies

uε = u∗(t)− εġ(uε).(6.5)

Hence

H(x∗(·),u∗(·))
ε (t, x, u∗(t))−max

u∈Γ
H(x∗(·),u∗(·))
ε (t, x, u)

= H(x∗(·),u∗(·))
ε (t, x, u∗(t))−H(x∗(·),u∗(·))

ε (t, x, uε)

= 1
2 (uε − u∗(t))2 + ε[g(uε)− g(u∗(t))]

≤ 1
2ε

2|ġ(uε)|2 + Cε2|ġ(uε)|

≤ C ′ε2.

Moreover, the Hamiltonian for problem Pε is

H(t, x, u, ψ(t),K(t)) = −εg(u)− ψ(t)u−K(t)u = −εg(u),
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which is concave. It follows then by Theorem 5.1 that u∗(·) is near-optimal for Pε
with an error order of ε when ε is sufficiently small.

It is worth mentioning that the idea in the above example may also apply to
some cases where there are nonlinearities in system dynamics. If those nonlineari-
ties are “small”, then one considers a (usually) simpler linear system (by ignoring
the nonlinearities) and solves the original nonlinear problem near-optimally based on
the solutions to the linear system. In a more general setting, many optimal control
problems are difficult because some small components of the systems are difficult to
handle. The whole problems might be insurmountable if we insist on taking those
components into consideration. However, the problems may become easily solvable
if we ignore those small but difficult parts and consider near-optimality instead. It
also should be noted that by saying some components are “small” we meant that
they are small compared with other components of the systems; so it is in a relative
sense. In hierarchical production planning, for instance, ε being small means that the
machine capacity process changes much faster than other processes involved, such as
discounting process. See [10, 11, 16] for details.

7. Concluding remarks. In this paper, we established necessary and suffi-
cient conditions for near-optimal stochastic controls in terms of a small parameter ε.
The theory developed in this paper is parallel to the classical Pontryagin maximum
principle in exact optimization. It would be interesting to investigate the dynamic
programming approach applied to near-optimality. Another challenging problem is to
improve the error bounds obtained in this paper. We hope to study these problems
in forthcoming papers.
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THE SYMMETRIC RENDEZVOUS-EVASION GAME∗
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Abstract. E. J. Anderson and R. R. Weber, J. Appl. Probab., 28 (1990), pp. 839–851, considered
the problem of two rendezvousers, R1, R2, randomly placed among n indistinguishable locations, who
seek to meet in least expected time, using the same mixed strategy. We retain their dynamics but
modify the rendezvousers’ aim to meeting each other before either encounters an enemy searcher S.
We solve this zero-sum game in minimal space (3 locations) and time (2 steps after placement), and
find that optimal play requires that the rendezvous team use a mixture over behavioral strategies.
While such complicated strategies are known to be necessary in principal for team games (the theory
of Isbell and Alpern), we believe this is the first naturally occuring game where such a solution is
derived. (An earlier paper by Lim solved a similar game in which R1 and R2 were allowed to use
different strategies and joint randomization.)

Key words. rendezvous search, zero-sum game

AMS subject classifications. 90D05, 90D10

PII. S0363012996309770

1. Introduction. The problem dealt with in this paper can best be introduced
in terms of the “telephone problem” posed by the first author about 20 years ago:
In two similar rooms in New York and San Francisco, there are n telephones strewn
about, which are randomly connected in pairs. The original problem asked how two
friends, placed in rooms in New York and San Francisco, should choose which phones
to pick up at a sequence of discrete time points. Their aim is to minimize the expected
time when they first pick up paired phones, subject to the restriction that they must
use the same mixed strategy (otherwise one would stay at a fixed phone, the other
would pick a permutation of the phones). This problem was reformulated by Anderson
and Weber [3] in terms of two players moving among n distinct locations, who meet
when they first occupy the same location. They found a family of strategies that give
an expected meeting time of 0.8288n for large n. This is markedly better than the
random strategy, which has expected meeting time n.

The rendezvous-evasion game, posed a few years ago by the first author, can be
put into the “telephone” setting by adding an enemy “phone-tapper” S (for Searcher)
who is placed in a Chicago room through which all n cables pass. At the times when
the rendezvousers R1, R2 pick up phones and say something, S picks a cable to “tap.”
The rendezvous team wins the game if they pick corresponding phones before either
talks on a line overheard by S. In terms of the distinct location version of Anderson
and Weber, the rendezvous team wins if they meet before either meets S (and before
the time runs out, if it is limited to m steps). Thus this game is something of a
hybrid between a search game in the sense of Gal [4] and a rendezvous problem in
the sense of Alpern [1]. (It may be viewed more generally as a geometric game, in
the sense of Ruckle [10].) The asymmetric version of the rendezvous-evasion game, in
which R1 and R2 are allowed to use different strategies, has been studied and solved
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for some cases by Lim [6]. (Unlike the pure rendezvous problem, where asymmetric
players could simply stay put and search exhaustively, respectively, Lim found that
complex joint randomization was required for optimal play by the rendezvous team.)
This problem has some similarities to that studied by Nakai [8], where two searchers
compete to find a stationary target first. In that problem, the target has a given
distribution and there is the added complexity of an overlook probability. Another
rendezvous problem involving more than two agents is studied in [7], but in that
version all agents have the common objective of minimizing the time required for a
group meeting.

The present paper deals with the symmetric version of the rendezvous-evasion
game on discrete locations. We consider the minimal problem in terms of space and
time, by assuming three locations, and a time limit of two steps after placement of
the players at distinct locations. (If no meeting has occured after two steps, we say
that S has won.) We consider that the three locations are placed in the plane, so that
all three agents have a common (clockwise) ordering of them. This common ordering
allows each individual strategy to simply be expressed as a sequence of positions
relative to the initial position.

The symmetry requirement for the rendezvous team can be viewed in terms of a
“team coordinator,” who broadcasts a strategy which is received by R1, R2 (but not
S) in each play of the game. The broadcast strategy must be behavioral, i.e., require
R1, R2 to (independently) randomize before each move; if they followed the same pure
strategy they would always stay in the same relative position and hence never meet.
Since the rendezvous team coordinator can also randomize before deciding which
behavioral strategy to broadcast, the rendezvous team’s most general strategy is a
mixture over behavioral strategies. In fact we shall see that such a complex strategy
is indeed required for optimal play.

Since the time-limited rendezvous-evasion game is apparently a finite, two-person,
zero-sum game, the necessity of mixtures over behavioral strategies requires some
explanation. Actually there are two explanations, depending on whether it is viewed
as an infinite game or a finite team game (game with repeated decisions, as in [2]).
If one takes the infinite game viewpoint, one says that the rendezvous coordinator’s
pure strategies (those to be actually used in an individual play of the game) are in
fact the behavioral strategies that he broadcasts. So the general theory of infinite
(compact) games says that some mixture over these strategies is optimal. The more
sophisticated viewpoint is to say that the game is finite, but it is a team game which
is equivalent to one with “repeated decisions.” This means that it is equivalent to one
with an extensive form where some paths pass through an information set more than
once (in fact, once for R1 and once for R2). The theory of such games [5], [2] says
that finite mixtures over behavioral strategies may be required, and [2] gives a bound
on the maximum number of behavioral strategies that must be used. In the game
considered here we find that the rendezvous team must mix over three behavioral
strategies. While the possible necessity of such mixed-behavioral strategies has been
noted in the theory of team games (and illustrated by examples), we believe this is
their first occurrence in a naturally arising game. We should observe that, for games
of the type considered here, no general solution algorithms have been developed. So
a pair of proposed solutions must be individually shown to ensure the same value. In
this sense the game studied here is like an infinite, compact game.

The paper is organized as follows. In section 2 we formally define and solve the
two-step, symmetric rendezvous-evasion game on three locations. In section 3 we
consider certain qualitative aspects of the solution obtained in section 2. We explain
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the need for the rendezvous team to use a mixture over behavioral strategies in terms of
the information structure of the game, and we show that no single behavioral strategy
is adequate. We also show that the optimal rendezvous strategy given in section 2
is stable with respect to unilateral deviations by an individual rendezvous agent,
and thus not subject to the Piccione–Rubinstein’s “absent-minded driver paradox.”
Finally, we show that, for asymmetric or symmetric rendezvous-evasion games on n
locations with m ≤ ∞ steps, the optimal solution is the same as for a pure rendezvous
game (i.e., with no enemy searcher) where the agents receive a fixed prize when they
meet, which they time discount with a common factor. This formulation shows that
the rendezvous team does better against the searcher when they are allowed to jointly
randomize over pure strategy pairs, winning with probability 36/81 instead of 24/81
for the symmetric problem. In section 4 we discuss what happens in the rendezvous-
evasion game if we drop the assumption of a common knowledge ordering of the three
locations. We show that the resulting game is better for the searcher in that the value
(optimal probability that the searcher wins) increases.

We conclude this introduction with a small technical note for those readers fa-
miliar with the Anderson–Weber formulation [3]. They begin their problem with a
random initial placement of the two agents, including the possibility that they are
placed on the same location. We consider a different but equivalent start in which
the three agents are placed according to a random permutation. This is what the
Anderson–Weber start gives in the nontrivial case that no two are at the same loca-
tion. Thus step k in our model corresponds to step k + 1 in theirs.

2. The rendezvous-evasion game. In this section we define and solve a
rendezvous-evasion game Γ played between a searcher S and a rendezvous team R
consisting of two agents called R1 and R2. The three are initially placed randomly
at three distinct locations, which we view as the vertices of a triangle. We assume
they all have a common notion of a clockwise direction around these vertices but
otherwise have no common labeling. (In the formal notation of rendezvous search
described in [1], this corresponds to the case where the given group G of symmetries
is the group of the three rotations of the triangle, the group generated by any cycle
of the three locations.) At each of two time steps, they may each move to any vertex
(including the one they currently occupy). This is a zero-sum game which is won
by the rendezvous team R (with payoff π = 0) if R1 and R2 meet each other before
either meets the enemy searcher S and before the game ends at the end of step two;
otherwise the searcher S wins (with π = 1). Thus the value of the game, if it exists,
is the probability that S wins, given optimal play on both sides. We assume that the
agents R1 and R2 have not met prior to play to agree which role each should play
(e.g., one stationary and one searching), and so must play the same mixed strategy.

To formally describe strategies, we assume that each agent labels his initial posi-
tion as 0 and labels the remaining two in a clockwise direction as 1 and 2. The pos-
sibility of such a labeling is justified by the symmetry assumptions described above,
formalized in the definition of G. Thus there are nine pure strategies,

{(0, 0) , (1, 2) , (2, 1) , (0, 1) , (1, 0) , (2, 2) , (0, 2) , (1, 1) , (2, 0)} ,

which we number in this order as wi, i = 1, . . . , 9. Note that in this numbering,

if wi = (x1, x2) , i = 1, . . . , 3, then wi+3j = (x1, x2 + jmod 3) .(2.1)

A probability distribution b over these nine strategies, with bi interpreted as the
probability of playing the pair wi, will be called a behavioral strategy. (The way
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we have described it would usually be called a mixed strategy, but it is certainly
equivalent to a behavioral strategy giving a distribution for x1 and a conditional
distribution for x2; we have reasons for preferring our chosen terminology.)

The times of meeting between pairs of agents depend on the random initial place-
ment and the strategies used. Specifically, suppose that the initial location of R1and
R2 in S-labels is denoted by (r1, r2), which is either (1, 2) or (2, 1). If the pure strate-
gies played by R1, R2, and S are denoted x, y, z, then the rendezvous meeting time
and the searcher meeting time are given, respectively, by

TR = min {t : xt − yt = r2 − r1} ,(2.2)
TS = min {t : zt = r1 + xt or r2 + yt} .

The payoff π to the maximizing searcher S is given by

π =
{

0 if TR ≤ min (TS − 1, 2) ,
1 otherwise.

We will be concerned with the four following behavioral strategies, the first three for
R and the fourth random strategy for S.

b̂1 = 1
3 (1, 1, 1, 0, 0, 0, 0, 0, 0) ,

b̂2 = 1
3 (0, 0, 0, 1, 1, 1, 0, 0, 0) ,

b̂3 = 1
3 (0, 0, 0, 0, 0, 0, 1, 1, 1) ,

ŝ = 1
9 (1, 1, 1, 1, 1, 1, 1, 1, 1) .

We will show that ŝ is optimal for the searcher S and that the mixture β = 1
3 b̂

1 +
1
3 b̂

2 + 1
3 b̂

3 of three behavioral strategies is optimal for the rendezvous team R. (An
optimal strategy for the controller of the rendezvous agents is to choose equiprobably
among the b̂k and to broadcast the chosen one for the two rendezvousers to use, with
each of them randomizing independently.)

We begin our analysis of the strategy β by showing that it has two important
properties; it has early rendezvous (TR small), and unpredictable paths for its agents.
These properties are established in the following two lemmas.

LEMMA 2.1. If the two rendezvous agents both use the same behavioral strategy
b̂k for some k = 1, 2, 3, then

Pr (TR = 1) = Pr (TR = 2) =
1
3
.

Proof. The simplest proof is a straightforward checking of the nine equiprobable
cases that arise from the common use of b̂k. We consider b̂1 in detail and then show
how the remaining two behavioral strategies give the same result. For b̂1 the nine
equiprobable cases are listed below, and for each pair the probability of rendezvous
in one or two steps is given.

(0, 0) (1, 2) (2, 1)
(0, 0) 0, 0 1/2, 1/2 1/2, 1/2
(1, 2) 1/2, 1/2 0, 0 1/2, 1/2
(2, 1) 1/2, 1/2 1/2, 1/2 0, 0

To see how the entries were calculated, consider for example the situation of R1
follows the path (0, 0) and stays still, while R2 follows path (1, 2) , a clockwise circuit.
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If R2 was initially placed one unit clockwise of R2, then TR = 2; otherwise TR = 1.
Since six of the nine pairs have entry 1/2, 1/2, we have that

Pr (TR = 1) = Pr (TR = 2) =
6
9
∗ 1

2
=

1
3
.

The corresponding result for the behavioral strategies b̂i, i = 2, 3 follows from that of
b̂1 and the equation noted above, wi+3j = (x1, x2 + jmod 3) . The behavior on step
1 is identical, while the behavior on step 2 is rotated by the same amount for both
players. (An equal rotation of two paths preserves their distance and hence their
rendezvous time.)

LEMMA 2.2. If an agent is following the mixed behavioral strategy β = 1
3 b̂

1 + 1
3 b̂

2 +
1
3 b̂

3, then
1. his position at step 1 is random, and
2. his position at step 2 is random and independent of his position at step 1.
Proof. Property 1 is obviously true of each constituent behavioral strategy b̂i and

hence also true for any mixture. Property 2 is not true of the constituent strategies
but is true of the mixture. Both properties can also be seen to hold from observing
that β choose each of the nine pure strategy pairs equiprobably.

THEOREM 2.3. If the rendezvous team R follows the mixed behavioral strategy
β = 1

3 b̂
1 + 1

3 b̂
2 + 1

3 b̂
3, then it wins against any pure strategy x of the searcher with

probability 24
81 . That is,

π (β, x) =
57
81
.

Proof. The searcher S can win the game in three mutually exclusive ways: by
meeting a rendezvouser on step 1, by meeting a rendezvouser on step 2, or if no
meetings at all have occurred by the end of step 2. Hence we have

Pr (S wins) = Pr (TS = 1) + Pr (TS = 2 ∧ TR > 1) + Pr (TS > 2 ∧ TR > 2) .

If we condition the above equation according to the three events TR = 1, 2, > 2,
which all have probability 1/3 by Lemma 2.1, we obtain

Pr (S wins) = 1
3

( 1
3 + 0 + 0

)
+ 1

3

( 2
3 + 1

9 + 0
)

+ 1
3 (1)

= 57
81 .

The above equation is explained easily as follows. If TR = 1, then by Lemma 2.2,
part 1, the search will be at their common meeting location on step 1 with probability
1/3, regardless of the search strategy. If TR = 2, then similarly at step 1 the searcher
will be at one of the two locations occupied by the rendezvousers with probability
2/3. Furthermore, if the searcher is not at either of these locations (which occurs
with probability 1/3), then at step 2 he will be at their common meeting place with
probability 1/3, by the second part of Lemma 2.2. (The independence asserted in
that part of the lemma is needed to show that the searcher cannot use any knowledge
gained in step 1 to improve his chances at step 2.) Finally, the third term is simply
the statement that S is defined to be the winner if no meeting has occurred in the
first two steps.

We now turn to a consideration of the searcher’s optimal strategy, which is simply
the random strategy denoted by ŝ, which picks the location on each step randomly and
independently of previous choices. According to the theory of games of this type, we
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must evaluate ŝ against any behavioral strategy of the opponent, since pure strategies
in general will do worse.

LEMMA 2.4. Suppose the searcher is employing the random strategy ŝ. Then the
rendezvous team R will not do worse by replacing any behavioral strategy b by the strat-
egy b′, which is the average of b on each of the three groups {w3k+1, w3k+2, w3k+3} , k =
0, 1, 2. That is, for any behavioral strategy b, we have

π (b′, ŝ) ≤ π (b, ŝ) , where b′3k+m =
3∑
j=1

b3k+j/3, k = 0, 1, 2, m = 1, 2, 3.

Furthermore, equality holds only for the three strategies b̂i, i = 1, 2, 3.
Proof. For i, j = 1, . . . , 9, let aij denote the probability that the random searcher

strategy ŝ wins when R1 and R2 follow the paths wi and wj , respectively. If R1 and
R2 follow a pair of paths for which the probability that TR = t is denoted pt, t = 1, 2,
then they win on step 1 if S misses their meeting place (probability 2/3) and they
win on step 2 if S missed both their positions at step 1 (probability 1/3) and also
missed their common position on step 2 (probability 2/3). Hence the team R wins
with probability 1 − π = p1(2/3) + p2 (2/9) . It turns out that there are only four
possible values for the pair (p1, p2), and the following table gives the value of π for
these pairs.

p1 p2 π
0 0 9/9
0 1/2 8/9
1/2 0 6/9
1/2 1/2 5/9

These pairs occur in the following situations. When both agents of R use the same
path, they cannot meet, and this gives the 9s on the diagonal in the matrix 9A below.
If they do the same thing on step 1 and different things on step 2, then we are in
the second row of the table and π = 8/9. Pairs that differ in step 1 then meet with
probability 1/2 and either never or always meet on step 2, giving the respective values
of 6/9 and 5/9 for π (rows three and four of the table). The complete matrix A = {aij}
is given below, with the fractions cleared.

(0, 0) (1, 2) (2, 1) (0, 1) (1, 0) (2, 2) (0, 2) (1, 1) (2, 0)

9A =

(0, 0)
(1, 2)
(2, 1)
(0, 1)
(1, 0)
(2, 2)
(0, 2)
(1, 1)
(2, 0)



9 5 5 8 6 6 8 6 6
5 9 5 6 8 6 6 8 6
5 5 9 6 6 8 6 6 8
8 6 6 9 5 5 8 6 6
6 8 6 5 9 5 6 8 6
6 6 8 5 5 9 6 6 8
8 6 6 8 6 6 9 5 5
6 8 6 6 8 6 5 9 5
6 6 8 6 6 8 5 5 9


Thus for any behavioral strategy (probability 9-vector) b, we have

π (b, ŝ) =
∑
i,j

bibjaij = b>Ab.
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Observe that we may write the averaged strategy b′ in terms of b according to the
equation

b′ = Cb,where C =

 M 0 0
0 M 0
0 0 M

 ,with M = (1/3)

 1 1 1
1 1 1
1 1 1

 ,

and the 0s in the matrix C denote the 3× 3 matrix of zeros. Thus we have that

π (b, ŝ)− π (b′, ŝ) = b>Ab− (Cb)>A (Cb) = b>(A− C>AC)b.

The matrix A − C>AC has 9 real eigenvalues 2,2,2,2,0,0,0,8,8. Since all are non-
negative, it is positive semi-definite. It follows that the right-hand side of the above
equation is nonnegative for any behavioral strategy b. Since there are only three zero
eigenvalues, there can be at most three linearly independent solutions to the equation
π (b, ŝ)− π (b′, ŝ) , and these must be the strategies b̂i, i = 1, 2, 3.

THEOREM 2.5. For any behavioral strategy b employed by the rendezvous team
R, the random searcher strategy wins with probability at least 57/81. Specifically,
π (b, ŝ) ≥ 57/81, with equality only for the three behavioral strategies b̂k, k = 1, 2, 3.

Proof. By the previous lemma, we may assume that the strategy b is already
averaged over each of the three groups, that is, b = (x, x, x, y, y, y, z, z, z) . It is easily
calculated that

π (b, ŝ) = [x(19x+ 20y + 20z) + y(20x+ 19y + 20z) + z(20x+ 20y + 19z)] /3

= (1/3) (x, y, z)

 19 20 20
20 19 20
20 20 19

 x
y
z

 ,

which has a minimum, over the set 0 ≤ x, y, z ≤ 1/3, x+y+z = 1/3, of 19/27 = 57/81.
This minimum is obtained exactly when one of the three variables is equal to 1/3,
which corresponds to one of the three strategies b̂i, i = 1, 2, 3.

Combining the last two theorems, we obtain the following corollary.
COROLLARY 2.6. The value of the game Γ is 57/81. An optimal strategy for

the rendezvous team is the equiprobable mixture of the three behavioral strategies
b̂k, k = 1, 2, 3, which optimize against the random strategy for the searcher. An optimal
strategy for the searcher is the random strategy.

3. Properties of the solution. In this section we consider some qualitative
and interpretative questions related to our proposed solution (β, ŝ) to the rendezvous-
evasion game Γ on three locations with two time steps. We consider whether and why
the rendezvous strategy β needs to be so complicated (mixed behavioral), and whether
one of the rendezvous agents would wish to deviate from it if allowed to do so. We
also show that the game Γ is in some sense equivalent to a pure rendezvous problem,
with no enemy searcher, in which the agents get a fixed prize when they meet, which
is discounted with respect to the meeting time. Thus this paper has something new
to say about the pure rendezvous problem, as well as extending it to a game theoretic
setting.

When the rendezvous players are viewed as agents of a team, this team player
has imperfect recall because neither agent is aware of the other’s previous choices.
Actually, the situation is even worse, as an agent who is asked by a referee to make a
choice does not know if he is the first or second agent to be asked such a question. That
is, the paths of the extensive form game will enter an information set more than once.
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Games of this type have been studied by Isbell [5] and Alpern [2], who have shown
that mixtures over behavioral strategies may be required. The latter paper also gives
a bound on the number of behavioral strategies needed, which for the three-location,
two-step game Γ solved in section 2 turns out to be 27. (We found that in fact
only three behavioral strategies were needed.) Recent interest in this problem has
been generated by the provocative paper of Piccione and Rubinstein [9], who consider
models of single-person decision making with this type of forgetting. Later in this
section we will consider whether our problem is subject to an intertemporal paradox
they find for certain games of this type. The first qualitative question we consider
in this section is whether a single behavioral strategy will suffice for the rendezvous
team in the sense of ensuring the value of the game. The following result answers this
question in the negative.

THEOREM 3.1. No behavioral strategy b for the rendezvous team ensures that the
searcher cannot win with probability greater than the value, i.e., that π (b, s) ≤ 57/81,
for all s.

Proof. Suppose that b is a behavioral strategy with π (b, s) ≤ 57/81 for every
behavioral strategy s of the searcher. Taking s equal to the random strategy ŝ, we
see that the only possibilities for b are the three strategies b̂k, k = 1, 2, 3, by the last
part of Theorem 2.5. However, the searcher has an effective answer to each of these
strategies. Against b̂1, the pure strategy w2 = (1, 2) is quite effective. The following
matrix gives the probability that w2 wins against each of the nine cases arising from
the use of b̂1 by the rendezvousers.

(0, 0) (1, 2) (2, 1)
(0, 0) 1 3/4 3/4
(1, 2) 3/4 1 1/2
(2, 1) 3/4 1/2 1

It follows that

π
(
b̂1, w2

)
=
(

3 ∗ 1 + 4 ∗ 3
4

+ 2 ∗ 1
2

)
/9 = 7/9 = 63/81 > 57/81.

A similar argument works for b̂2 and b̂3.
We now consider whether our proposed solution (β, ŝ) is subject to a variation of

the absent-minded driver paradox of [9]. More precisely, we consider whether a ren-
dezvous agent who has heard the announcement of one of the component behavioral
strategies b̂i, 1, 2, 3, and believes that his partner is following this behavioral strategy,
can improve the team’s payoff by deviating from the announced b̂i. A solution subject
to this problem would still be considered a valid solution to the symmetric form of
the rendezvous-evasion game as defined in section 2 but would restrict the interpreta-
tions of this game to scenarios in which the agents were constrained to follow orders.
However, we find that our solution is in fact immune to this problem, as stated below.

THEOREM 3.2. The solution (β, ŝ) is stable for the rendezvous agents in the fol-
lowing sense. Once a particular behavioral strategy b̂i, i = 1, 2, 3, is randomly selected
for common use, neither of the rendezvous agents can benefit from a unilateral devi-
ation.

Proof. It can be seen from the matrix 9A given in the proof of Lemma 2.4 that if
the searcher plays the random strategy ŝ and the row rendezvous agent chooses the
first three rows with probability 1/3 each (b̂1), then the values of 9 ·3 ·π corresponding



956 STEVE ALPERN AND WEI SHI LIM

to the nine columns are given by

(19, 19, 19, 20, 20, 20, 20, 20, 20) .

Consequently the column rendezvous agent minimizes π by choosing any behavioral
strategy concentrated on the first three columns; in particular, by choosing b̂1. A
similar argument applies to b̂i, i = 2, 3.

In the rendezvous-evasion game Γ of section 2, the enemy searcher S is introduced
to give an incentive to the rendezvous team to meet quickly. However, it may be
thought by some that the searcher unnecessarily complicates the basic rendezvous
problem. We now show that the game Γ is in fact strategically equivalent to a pure
rendezvous problem (with no enemy searcher). This result can be stated in somewhat
greater generality than our main result; we need no restriction on the number of
locations or time steps, except that the former still needs to be finite.

THEOREM 3.3. The symmetric rendezvous-evasion game Γ (n,m) on n locations
with rendezvous required by step m ≤ ∞ is equivalent to the following pure rendezvous
problem R (n,m), in the sense that an optimal rendezvous strategy for one determines
an optimal rendezvous strategy for the other.

R (n,m): Two indistinguishable agents rendezvous on n locations,
for m steps. They each get a fixed prize when they meet, which they
discount in time by the same factor.

Proof. Suppose the rendezvous team R in the game Γ (n,m) follows a strategy b
(either behavioral or mixed behavioral) where the probability that they meet for the
first time at time i = 1, 2, . . . is denoted by pi,

Pr (TR = i) = pi.

Suppose that the rendezvous team modifies this strategy by rotating each agent’s
position on each step i by a common amount ei, where the vector e is chosen (by the
controller) randomly according to the product measure on

∏
i=1,m {0, 1, 2} . It can be

seen that the modified strategy b′ has the same probabilities pi, by referring to the for-
mula (2.2) for the meeting time TR, and observing that xt−yt = (xt + et)−(yt + et) .
The modified strategy satisfies the same properties given in Lemma 2.2 for the mixed
behavioral strategy β (which in this language is the modification of b̂1). That is,
the position of each agent at each time is random (equiprobable) and independent of
previous positions. Consequently it follows exactly as in the proof of Theorem 2.3
that every pure searcher strategy does equally well against this modified rendezvous
strategy. Hence each pure searcher strategy is an optimal response, and therefore so
is the random searcher strategy (an average of optimal strategies is optimal).

In fact there is a more intuitive way of seeing that the random searcher strategy is
optimal. Note that if a random sequence of rotations et is applied to any pure searcher
strategy zt, the resulting strategy zt + et is what we have called the random searcher
strategy. It follows that if the rendezvous team applies a common random sequence
of rotations −et to their strategies, it is strategically equivalent to the situation where
they use their original strategies and the searcher is using his original strategy modified
by +et, i.e., a random strategy. Hence it is as if the rendezvous team can force the
searcher to use a random strategy, without any restrictions on their own strategy.
Hence if the searcher had a better strategy than the random strategy, the rendezvous
team could change that to a random strategy, so no other strategy is better.

Let qi denote the probability that team R wins at the i′th step,

qi = Pr (TR = i ∧ TS > i) .
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Then the probability that R wins, using b when S plays randomly, is

V = 1− π (b, ŝ) =
∑
i=1,m

qi,

Pr (TR = i ∧ TS > i− 1) = Pr (TR = i) Pr (TS > i− 1\TR = i)

= pi

(
n− 2
n

)i−1

,

qi = Pr (TR = i ∧ TS > i− 1) ∗ Pr (TS > i\TR = i ∧ TS > i− 1)

= pi

(
n− 2
n

)i−1

∗
(
n− 1
n

)
=
(
n− 1
n

)
pi

(
n− 2
n

)i−1

.

Therefore the payoff function V (b) is the same as if the team R is given (n− 1) /n
dollars when they meet, assuming their discount factor is (n− 2) /n, and step 1 takes
place at time zero and so is not discounted.

V (b) =
n− 1
n

∑
i=1,m

pi

(
n− 2
n

)i−1

.(3.1)

This is exactly the payoff function for the pure rendezvous problem R (n,m), where
the agents get a fixed prize when they meet which is discounted by both at

(
n−2
n

)
per

step, and so the rendezvousers’ aim for the problem or the game is to attain the p′is
which maximize (3.1).

The above reasoning applies equally well for an asymmetric rendezvous, in which
case the unmodified strategy b can be a pair of pure strategies (wk, wj) . Consider the
same setting as that of section 2, namely n = 3 locations and m = 2 time steps. In
this case it is clear that the maximum values of p1 and p2 are 1/2 each, obtained by the
strategy pair ((0, 0) , (1, 2)) , where one rendezvous agent waits and the other searches.
(An optimal strategy is then obtained by applying a common random rotation e1, e2,
giving the strategy pair (e1, e2) , (1 + e1, 2 + e2), which is an average over 9 pairs.)
Substituting into (3.1) gives the value V = 2

3 ( 1
2 ∗ 1 + 1

2
1
3 ) = 4

9 , which corresponds
to an optimal payoff (probability of S winning) π = 1 − V = 5/9 = 45/81, which
is much less than the 57/81 obtainable optimally when the rendezvous team acts
symmetrically. By the way, one optimal strategy for this game is an equiprobable
joint randomization over the pairs giving a 5 in the matrix 9A.

4. Rendezvous with full isometry group. In formalizing the rendezvous-
evasion game Γ discussed in section 2, we took the assumption that the players had
a common notion of a clockwise direction around the three locations. This would be
reasonable if the three locations were on a surface where the players had a common
notion of up. The associated group of isometries for the game Γ was the rotation group
generated by the unit’s clockwise rotation (with the identity and the anticlockwise
rotation as the other two elements). We now consider how the problem may change
if the full isometry group (six permutations of the three locations) is given. This
would be the relevant group to describe the problem if the three locations were three
arbitrary general position points in space. We denote the rendezvous-evasion game
on three locations, with two time steps and the full permutation group as Γ′, and its
value by V ′. We show that the searcher benefits from enlarging the set of symmetries,
in that V ′ is greater than V. (In both cases the value is the optimal probability that
the searcher wins.)
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When the rendezvous evasion game on three locations is played with the full
isometry group of the 3!=6 permutations of the three locations, the pure strategies
of the players can be condensed into the following form. For each player (actually
agent, in the case of the rendezvous team) let the initial position be labeled a, and
the subsequent positions b and c, if reached. (This is the labeling procedure used by
Anderson and Weber [3].) There are five possible strategies, {aa, bc, ab, bb, ba}, which
we label as zi, i = 1, . . . , 5. For example, the strategy z3 = ab says to stay still on step
1 and then go equiprobably to one of the two remaining locations at step 2. Strategy
z2 = bc says to move equiprobably to one of the other two locations at step 1 and then
to the remaining location at step 2. Since each of the zi involves at most one binary
choice, there are at most eight equiprobable scenarios associated with any triple of
strategies. Thus the probabilities Ak(i, j) that the searcher S wins when R1 follows
zi, R2 follows zj , and S follows zk are integers divided by eight. The rationalized
matrices 8Ak are given below.

8A1 =


8 4 4 4 4
4 8 4 8 8
4 4 8 4 4
4 8 4 8 6
4 8 4 6 8

 , 8A2 =


8 4 6 4 4
4 6 4 8 8
6 4 6 4 4
4 8 4 8 7
4 8 4 7 8

 , 8A3 =


8 4 8 6 6
4 6 4 8 8
6 4 6 4 4
4 8 4 8 7
4 8 4 7 8

 ,

8A4 =


8 4 8 6 6
4 6 6 5 6
8 6 8 5 6
6 5 5 6 5
6 6 6 5 6

 , 8A5 =


8 4 8 6 6
4 6 6 6 5
8 6 8 6 5
6 6 6 6 5
6 5 5 5 6

 .

For any behavioral strategies u (for the rendezvous team) and v (for the searcher),
i.e., distributions over the zi, the payoff (probability that S wins) is given by

π (u, v) = uAvu
>, where Av =

∑
i

viAi.

The theory of “games with forgetting” [5], [2] says that since no path passes through
an information set of S more than once, some single behavioral strategy is optimal
for S. This means that

V ′ = max
v

min
u
π (u, v) ≤ min

u
max
v

π (u, v) ,

where V ′ is the value of the game Γ′ with the full isometry group. (In order to
ensure equality, we must minimize over mixed behavioral strategies in the rightmost
expression.)

THEOREM 4.1. With optimal play, the searcher S does better in Γ′ (with the full
permutation group of isometries) than in the game Γ (with the rotation subgroup). In
particular, we have

57
81

= V <
58
81

< V ′ ≤ 59
81
,

where the values are the optimal probabilities of S winning.
Proof. To obtain the upper bound for V ′, assume that the rendezvous team plays

randomly. In this case (as in section 2) the best that S can do is also play randomly.
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Thus the rendezvous team wins at step 1 if they meet (1/3) and they don’t meet S
(2/3, conditionally). The rendezvous team wins at step 2 if the game proceeds to step
2 ( 2

3 ∗
1
3 ) and they meet each other (1/3) but not S (2/3, conditionally). Thus the

rendezvous team wins with probability

1
3

2
3

+
(

2
3

1
3

)(
1
3

2
3

)
=

22
81

under random play, or S wins with probability 59
81 , as claimed.

Observe that in the current notation, random play by the searcher S is denoted
by the probability distribution (1/9, 2/9, 2/9, 2/9, 2/9) . If we perturb this a bit in
the z2 direction, say (-e,4e,-e,-e,-e) with e=1/18, the resulting distribution is v̄ =
(1, 8, 3, 3, 3) /18. The minimum over u of the payoff function uAv̄u> is easily calculated
to be at u = (73, 184, 0, 4, 4) /265, with a minimum of 191/265, which is more than
58/81. A good approximation to the value V ′ and an optimal strategy for the searcher
could be obtained by analyzing the quadratic program V ′ = maxv minu π (u, v), but
we know of no algorithm for finding the optimal mixed behavioral strategy for the
rendezvous team.
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Abstract. The Byrnes–Martin integral invariance principle for ordinary differential equations
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1. Introduction. Suppose that ẋ = f(x) generates a semidynamical system on
RN with semiflow ϕ, and so, for each x0 ∈ RN , x(·) = ϕ(·, x0) is the unique maximal
forward-time solution of the initial-value problem ẋ = f(x), x(0) = x0. In [2], Byrnes
and Martin prove the following integral invariance principle: if ϕ(·, x0) is bounded
and

∫∞
0 l(ϕ(t, x0))dt < ∞ for some continuous function l : RN → R+ := [0,∞),

then ϕ(t, x0) tends, as t → ∞, to the largest invariant (with respect to the differ-
ential equation) set in l−1(0), the zero level set of l. This result has ramifications
in adaptive control, some of which are highlighted in the present paper. However,
we wish to consider the (adaptive) control problem in a fairly general setting that
allows time variation in the underlying differential equations, possible nonuniqueness
of solutions, and discontinuous feedback strategies; each of these features places the
problem outside the scope of [2]. For this reason we develop, in Theorem 2.10, an in-
tegral invariance principle for initial-value problems of the form ẋ ∈ X(x), x(0) = x0,
where the set-valued map X is defined on some open domain G ⊂ RN and is as-
sumed to be upper semicontinuous with nonempty, convex, and compact values. In
the case G = RN , Theorem 2.10 contains the following generalization of the Byrnes–
Martin result: if x(·) : R+ → RN is a bounded solution and

∫∞
0 l(x(s))ds < ∞ for

some lower semicontinuous l : RN → R+, then x(t) tends, as t → ∞, to the largest
weakly invariant (with respect to the differential inclusion) set in l−1(0). One par-
ticular consequence of Theorem 2.10 is to facilitate the derivation of a nonsmooth
extension, to differential inclusions, of LaSalle’s invariance principle for differential
equations; this extension may be of independent interest and is presented in Theo-
rem 2.11. The remainder of the paper is devoted to the application (in a collection
of five lemmas) of the generalized integral invariance principle to demonstrate, by
construction and for a variety of nonlinear system classes, the existence of a single
adaptive controller that achieves (without system identification, parameter estima-
tion, or injection of probing signals) some prescribed objective for every system in the
underlying class.
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2. Differential inclusions. Some known facts (tailored1 to our immediate pur-
pose) pertaining to differential inclusions are first assembled.

2.1. Maximal solutions. Consider the nonautonomous initial-value problem

ẋ(t) ∈ X(t, x(t)), x(t) ∈ G, x(t0) = x0,(2.1)

where G 6= ∅ is an open subset of RN . The set-valued map (t, x) 7→ X(t, x) ⊂ RN
in (2.1) is assumed to be upper semicontinuous2 on R × G, with nonempty, convex,
and compact values. This is sufficient (see, for example, [1, Chapter 2, Theorem
3]) to ensure that, for each (t0, x0) ∈ R × G, (2.1) admits a solution: an X-arc3

x ∈ AC([t0, ω);G), with x(t0) = x0.
DEFINITION 2.1. A solution x of (2.1) is said to be maximal if it does not have a

proper right extension which is also a solution of (2.1).
PROPOSITION 2.2. Every solution of (2.1) can be extended to a maximal solution.
DEFINITION 2.3. A solution x ∈ AC([t0, ω);G) of (2.1) is precompact if it is

maximal and the closure cl(x([t0, ω))) of its trajectory is a compact subset of G.
PROPOSITION 2.4. If x ∈ AC([t0, ω);G) is a precompact solution of (2.1), then

ω =∞.

2.2. Limit sets. Here, we specialize to the autonomous case of (2.1), rewritten
as

ẋ(t) ∈ X(x(t)), x(t) ∈ G, x(0) = x0,(2.2)

where, without loss of generality, t0 = 0 is assumed. The map x 7→ X(x) ⊂ RN (with
domain G) is upper semicontinuous with nonempty, convex, and compact values.

DEFINITION 2.5. Let x ∈ AC([0, ω);G) be a maximal solution of (2.2). A point
x̄ ∈ RN is an ω-limit point of x if there exists an increasing sequence (tn) ⊂ [0, ω)
such that tn → ω and x(tn) → x̄ as n → ∞. The set Ω(x) of all ω-limit points of x
is the ω-limit set of x.

DEFINITION 2.6. Let C ⊂ RN be nonempty. A function x ∈ AC([0, ω);G) is
said to approach C if dC(x(t)) → 0 as t → ω, where dC is the (Euclidean) distance
function for C defined (on RN ) by dC(v) := inf{‖v − c‖| c ∈ C}.

DEFINITION 2.7. Relative to (2.2), S ⊂ RN is said to be a weakly invariant set
if, for each x0 ∈ S ∩ G, there exists at least one maximal solution x ∈ AC([0, ω);G)
of (2.2) with ω =∞ and with trajectory x([0, ω)) in S.

PROPOSITION 2.8. If x is a precompact solution of (2.2), then Ω(x) is a non-
empty, compact, connected subset of G. Moreover, Ω(x) is the smallest closed set
approached by x and is weakly invariant.

2.3. Invariance principles. For later use, the following fact (a specialization
of a more general result [4, Theorem 3.1.7]) is first recorded.

1Variants of Propositions 2.2, 2.4, and 2.8 can be found in, for example, [8], [19]; for general
treatments of differential inclusions and related topics in set-valued analysis, nonsmooth control, and
optimization, see [1], [4], [6], [7], [8], and [12].

2The set-valued map X is upper semicontinuous if it is upper semicontinuous at every point ξ̄ of
its domain in the sense that, for each ε > 0 there exists δ > 0 such that X(ξ) ⊂ X(ξ̄) + εB for all ξ
with ‖ξ − ξ̄‖ < δ, where B (with closure B̄) denotes the open unit ball centred at 0 in RN .

3For an interval I ⊂ R and S ⊂ RN , AC(I;S) denotes the space of functions I → S that
are absolutely continuous on compact subintervals of I. For simplicity, we write AC(I) in place of
AC(I; I); the same notational convention applies to other function spaces. A function x ∈ AC(I;G)
is said to be an X-arc if it satisfies the differential inclusion in (2.1) almost everywhere.
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PROPOSITION 2.9. Let I = [a, b], let nonempty K ⊂ G be compact. If (xn) ⊂
AC(I;K) is a sequence of X-arcs and there exists a scalar Φ such that, for all n,
‖ẋn(t)‖ ≤ Φ for almost all t ∈ I, then (xn) has a subsequence converging uniformly
to an X-arc x ∈ AC(I;K).

We now arrive at the main result, which generalizes [2, Theorem 1.2].
THEOREM 2.10. Let l : G → R be lower semicontinuous. Suppose that U ⊂ G is

nonempty and that l(z) ≥ 0 for all z ∈ U . If x is a precompact solution of (2.2) with
trajectory in U and l ◦ x ∈ L1(R+), then x approaches the largest weakly-invariant
set in Σ := {z ∈ cl(U) ∩G| l(z) ≤ 0}.

Proof. By Proposition 2.4, x has maximal interval of existence R+ = [0,∞)
and, by Proposition 2.8, has nonempty ω-limit set Ω(x). Clearly Ω(x) ⊂ cl(U) ∩ G.
Let x̄ ∈ Ω(x), and so there exists (tn) ⊂ R+ with tn → ∞ and x(tn) → x̄ as
n → ∞. Define K := cl(x(R+)). By upper semicontinuity of X together with
compactness of its values, X(K) is compact, and so ẋ ∈ L∞(R+;RN ), with norm
‖ẋ‖∞. Write I = [0, 1] and define a sequence (xn) of X-arcs xn ∈ AC(I;K) by
xn(s) := x(s + tn). Evidently, xn(0) → x̄ as n → ∞. By Proposition 2.9 (with
Φ = ‖ẋ‖∞), (xn) has a subsequence, which we do not relabel, converging uniformly
to an X-arc x∗ ∈ AC(I;K), with x∗(0) = x̄.

Define λ∗ ∈ L1(I;R) by λ∗(s) := l(x∗(s)) and the sequence (λn) ⊂ L1(I;R) by
λn(s) := l(xn(s)). By lower semicontinuity of l, together with continuity of x, x∗

and (uniform) convergence of (xn) to x∗, it follows that λ∗ and λn, n ∈ N, are lower
semicontinuous with lim infn→∞ λn(s) ≥ λ∗(s) for all s ∈ I. By Fatou’s lemma,∫ t

0
λ∗(s)ds ≤

∫ t

0
lim inf
n→∞

λn(s) ds ≤ lim inf
n→∞

∫ t

0
λn(s) ds ∀ t ∈ I.

By the hypotheses, l(x(t)) ≥ 0 for all t and
∫∞

0 l(x(t))dt <∞. Therefore,

W (t) :=
∫ ∞
t

l(x(s))ds ∀ t ≥ 0

defines a monotone function W ∈ AC(R+) with W (t) ↓ 0 as t→∞. Hence,

0 = lim
n→∞

W (tn)− lim
n→∞

W (t+ tn) = lim
n→∞

∫ t+tn

tn

l(x(s))ds

= lim
n→∞

∫ t

0
l(x(s+ tn))ds = lim

n→∞

∫ t

0
λn(s)ds ≥

∫ t

0
λ∗(s)ds ∀ t ∈ I.

Seeking a contradiction, suppose ε := λ∗(0) > 0. Then, by lower semicontinuity of
λ∗, there exists t ∈ (0, 1] such that λ∗(s) > λ∗(0)− 1

2ε = 1
2ε for all s ∈ (0, t), whence

the contradiction

0 ≥
∫ t

0
λ∗(s)ds >

1
2
εt > 0.

Therefore, 0 ≥ λ∗(0) = l(x∗(0)) = l(x̄), and so x̄ ∈ Σ. Since x̄ ∈ Ω(x) is arbitrary,
we have Ω(x) ⊂ Σ. By Proposition 2.8, x approaches Ω(x) and the latter is a weakly
invariant set. Therefore, x approaches the largest weakly invariant set in Σ.

The next result is a nonsmooth extension, to differential inclusions, of LaSalle’s
theorem [11, Chapter 2, Theorem 6.4]; a smooth version (that is, restricted to smooth
functions V ) is given in [19, Theorem 1] and a nonsmooth version is proved in [23,
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Theorem 3]; the alternative proof given below is considerably simpler, by virtue of
its use of the integral invariance principle. First, we give Clarke’s [4] definition of a
generalized directional derivative V o(z;φ) of a locally Lipschitz function V : G → R
at z in direction φ:

V o(z;φ) := lim sup
y→z
h↓0

V (y + hφ)− V (y)
h

.

The map (z, φ) 7→ V o(z;φ) is upper semicontinuous (in the sense of real-valued func-
tions) and, for each z, the map φ 7→ V o(z;φ) is Lipschitz continuous.

THEOREM 2.11. Let V : G→ R be locally Lipschitz. Define

u : G→ R, z 7→ u(z) := max{V o(z;φ)| φ ∈ X(z)}.

Suppose that U ⊂ G is non-empty and that u(z) ≤ 0 for all z ∈ U . If x is a precompact
solution of (2.2) with trajectory in U , then, for some constant c ∈ V (cl(U) ∩ G), x
approaches the largest weakly invariant set in Σ ∩ V −1(c), where

Σ = {z ∈ cl(U) ∩G| u(z) ≥ 0}.

Proof. This result is essentially a corollary to Theorem 2.10 insofar as the essence
of the proof is to show that the hypotheses of Theorem 2.10 hold with l := −u.

We first show that u is upper semicontinuous (and so, l ≡ −u is lower semicon-
tinuous). Let z ∈ G be arbitrary and let (zn) ⊂ G be such that zn → z as n → ∞.
From (u(zn)) we extract a subsequence (u(znk)) with u(znk)→ lim supn→∞ u(zn) as
k → ∞. For each k, let φk be a maximizer of continuous V o(znk ; ·) over compact
X(znk), and so u(znk) = V o(znk ;φk). Let ε > 0. By upper semicontinuity of X, we
have X(znk) ⊂ X(z) + εB for all k sufficiently large. Since φk ∈ X(znk) and X(z) is
compact, (φk) contains a subsequence converging to φ∗ ∈ cl(X(z) + εB). Since ε > 0
is arbitrary and X(z) is compact, φ∗ ∈ X(z). Thus, invoking upper semicontinuity of
V o(·; ·), we may conclude that lim supn→∞ u(zn) ≤ V o(z;φ∗) ≤ u(z), whence upper
semicontinuity of u.

Observe that, for all z ∈ U ,

V+(z;φ) := lim inf
h↓0

V (z + hφ)− V (z)
h

≤ V o(z;φ) ≤ u(z) ≤ 0 ∀ φ ∈ X(z).(2.3)

By Proposition 2.4, x has interval of existence R+. Let O ⊂ R+ denote the set of
measure zero on which the derivative ẋ(t) fails to exist. Since V is locally Lipschitz,
for each t ∈ R+\O there exists a constant Lt such that, for all h > 0 sufficiently
small,

V (x(t+ h))− V (x(t)) ≤ V (x(t) + hẋ(t))− V (x(t)) + Lt|x(t+ h)− x(t)− hẋ(t)|
≤ V (x(t+ h))− V (x(t)) + 2Lt|x(t+ h)− x(t)− hẋ(t)|.

Therefore,

lim inf
h↓0

V (x(t+ h))− V (x(t))
h

= V+(x(t); ẋ(t)) ∀ t ∈ R+\O.(2.4)

Next, we prove that V ◦ x : t 7→ V (x(t)) is nonincreasing on R+. This we do by
showing that V ◦ x is nonincreasing on every compact subinterval. Let [α, β] ⊂ R+,
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and let K ⊂ G be compact and such that x([α, β]) ⊂ K. Since V is locally Lipschitz
on G, it is Lipschitz on K. Thus, the restriction of V ◦ x to [α, β] is a composition of
a Lipschitz function and an absolutely continuous function and so is itself absolutely
continuous. It now follows from (2.3) and (2.4) that

V (x(t))− V (x(τ)) =
∫ t

τ

(V ◦ x)′ ≤
∫ t

τ

u(x(s))ds ≤ 0 ∀ t, τ ∈ [α, β], t ≥ τ.

Therefore, t 7→ V (x(t)) is nonincreasing on [α, β]. Since [α, β] ⊂ R+ is arbitrary, we
conclude that V ◦ x is nonincreasing on R+ with

V (x(t))− V (x(τ)) ≤
∫ t

τ

u(x(s))ds ≤ 0 ∀ t, τ ∈ R+, t ≥ τ.(2.5)

By continuity of V and precompactness of x, we conclude that V (x(·)) is bounded.
Therefore, V (x(t)) ↓ c := inft∈R+ V (x(t)) ∈ R as t → ∞. It follows that (i) Ω(x) ⊂
V −1(c) and (ii) for all t ≥ 0,∫ t

0
l(x(s))ds ≡ −

∫ t

0
u(x(s))ds ≤ V (x(0))− V (x(t)) ≤ V (x(0))− c <∞.

An application of Theorem 2.10 completes the proof.

3. Adaptive control. Approaches to adaptive control may be classified into
methods that—either implicitly or explicitly—exhibit some aspect of identification
of the process to be controlled and methods that seek only to control. The latter
approach, to be adopted here and sometimes referred to as universal control, has its
origins in the work of Byrnes and Willems [3], [27], Mårtensson [13], [14], [15], Morse
[16], Nussbaum [17] and others (see [9] for a survey and comprehensive bibliography).
In common with its above-cited precursors, this section of the present paper is con-
cerned with demonstrating the existence—under relatively weak assumptions—of a
single controller that achieves some prescribed objective for every system in the under-
lying class. In contrast with its above-cited precursors (which deal mainly with classes
of linear systems, possibly subject to “mild” nonlinear perturbations, in a context of
adaptive linear feedback), the present paper considers strongly nonlinear systems and
nonsmooth feedback (for an overview of adaptive control of nonlinear systems in the
context of smooth feedback, see [18]). In essence, the ensuing two subsections provide
a unified analysis—unified through its use of the integral invariance principle—of var-
ious problems in nonlinear adaptive control (some closely related problems have been
individually investigated, via alternative analyses, in [5], [10], [20], and [21]).

3.1. Scalar systems. First, consider scalar systems of the form

ẏ(t) = f(p(t), y(t)) + bu(t), y(t), u(t) ∈ R, p(t) ∈ RP , y(t0) = y0,(3.1)

where parameters b ∈ R, P ∈ N, and functions f , p are unknown. The state y(t) is
available for feedback. We will identify (3.1) with the quadruple (b, f, p, P ).

For any function φ : R+ → R+ that is both continuous and positive definite
(φ(s) > 0 for all s 6= 0), we denote, by Nφ, the set of system quadruples (b, f, p, P )
satisfying the following three assumptions.

Assumption A. b 6= 0.
Assumption B. (p, y) 7→ f(p, y), RP × R → R is a continuous function and is

φ-bounded uniformly with respect to p in compact sets; precisely, for every compact
K ⊂ RP , there exists scalar µK such that |f(p, y)| ≤ µKφ(|y|) for all (p, y) ∈ K × R.
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Assumption C. p(·) ∈ L∞(R;RP ).
By virtue of Assumption C, without loss of generality, t0 = 0 may be assumed in

(3.1); this we will do, without further comment, throughout this subsection.
Examples. (a) Let φ : |y| 7→ exp(|y|). Then all polynomial systems, of arbitrary

degree, of the form ẏ(t) = p1(t) + p2(t)y(t) + · · · + pP (t)yP−1(t) + bu(t), with b 6= 0
and coefficient functions pi(·) ∈ L∞(R), are of class Nφ.

(b) Suppose that Assumptions A and C hold and that the only a priori information
on continuous f is its behavior “at infinity,” captured in the following manner: for
some known continuous φ̂ : R+ → R+, (p, y) 7→ f(p, y) is O(φ̂(|y|)) as |y| → ∞,
uniformly with respect to p in compact sets in the sense that, for every compact
K ⊂ RP , there exist scalars cK and CK such that, for all p ∈ K, |f(p, y)| ≤ cK φ̂(|y|)
for all |y| > CK . Then Assumption B holds with φ := 1 + φ̂, and so (b, f, p, P ) ∈ Nφ.

3.1.1. Adaptive stabilizer. Let φ : R+ → R+ be a continuous, positive-
definite function. Assuming only that the function φ and the instantaneous state
y(t) are available for control purposes, we will show that the following adaptive feed-
back strategy (appropriately interpreted) is a Nφ-universal stabilizer in the sense that
it assures that the state of (3.1) approaches {0} for all quadruples (b, f, p, P ) ∈ Nφ
while maintaining boundedness of the controller function λ(·):

u(t) = ν(λ(t))φ(|y(t)|)sgn(y(t)), λ̇(t) = φ(|y(t)|)|y(t)|, λ(0) = λ0,(3.2)

where ν is any continuous function R→ R with the properties

(a) lim sup
η→∞

1
η

∫ η

0
ν = +∞, (b) lim inf

η→∞

1
η

∫ η

0
ν = −∞.(3.3)

For example, ν : θ 7→ θ2 cos θ suffices.
In view of the discontinuous nature of the feedback (however, note that, if φ(0) =

0, then the feedback is continuous), we interpret the strategy (3.2) in the set-valued
sense

u(t) ∈ ν(λ(t))φ(|y(t)|)σ(y(t)), λ̇(t) = φ(|y(t)|)|y(t)|, λ(0) = λ0(3.4)

with y 7→ σ(y) ⊂ R given by

σ(y) :=

 {sgn(y)}, y 6= 0,

[−1,+1], y = 0 .
(3.5)

Let (b, f, p, P ) ∈ Nφ. By properties of f(·, ·) and boundedness of p(·), there exists a
scalar µ such that |f(p(t), y)| ≤ µφ(|y|) for all (t, y).

We embed the feedback-controlled system in a differential inclusion on R2:

ẋ(t) ∈ X(x(t)), x(t) = (y(t), λ(t)) ∈ G := R2, x(0) = x0 = (y0, λ0),(3.6)

where x 7→ X(x) ⊂ R2 is given by

X(x) ≡ X(y, λ) := {v + bu| |v| ≤ µφ(|y|), u ∈ ν(λ)φ(|y|)σ(y)} × {φ(|y|)|y|}.

X is upper semicontinuous on R2 with nonempty, convex, and compact values. There-
fore for each x0 ∈ R2, the initial-value problem (3.6) has a solution and, by Proposition
2.2, every solution can be extended to a maximal solution.
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LEMMA 3.1. Let x0 ∈ R2 be arbitrary and let x(·) = (y(·), λ(·)) be a maximal
solution of (3.6), defined on its maximal interval of existence [0, ω). Then (i) ω =∞;
(ii) limt→∞ λ(t) exists and is finite; (iii) y(t)→ 0 as t→∞.

Proof. The essence of the proof is to establish boundedness of x(·), whence, by
Proposition 2.4, assertion (i) and, by monotonicity, assertion (ii): state convergence
to zero (assertion (iii)) is then an immediate consequence of Theorem 2.10.

For almost all t ∈ [0, ω), we have

y(t)ẏ(t) ≤ [µ+ bν(λ(t))]φ(|y(t)|)|y(t)| = [µ+ bν(λ(t))]λ̇(t),(3.7)

which, on integration, yields

0 ≤ y2(t) ≤ y2(τ) + 2µ[λ(t)− λ(τ)] + 2b
∫ λ(t)

λ(τ)
ν ∀ t, τ ∈ [0, ω), t ≥ τ.(3.8)

Seeking a contradiction, suppose that solution component λ(·) (monotone increasing)
is unbounded. Fix τ such that λ(τ) ≥ 1. Dividing by λ(t) ≥ λ(τ) ≥ 1 in (3.8) gives

0 ≤ constant +
b

λ(t)

∫ λ(t)

λ(τ)
ν ∀ t ∈ [τ, ω).

Recalling that b 6= 0 and taking limit inferior as t ↑ ω (λ(t) ↑ ∞) lead to a contradiction
of one or the other of properties (3.3). Hence, λ(·) is bounded, and so, by (3.8), y(·) is
also bounded. Therefore, x(·) = (y(·), λ(·)) ∈ AC([0, ω);R2) is a precompact solution
of (3.6), and so, by Proposition 2.4, ω = ∞. Defining l : R2 → R+, x ≡ (y, λ) 7→
φ(|y|)|y|, for which l−1(0) = {0}×R and λ̇ = l ◦x, we may conclude, by boundedness
of λ(·), that l◦x ∈ L1(R+), and so, by Theorem 2.10 (with U = R2), x(·) = (y(·), λ(·))
approaches the set {0} × R. In particular, y(t) → 0 as t → ∞ and, by boundedness
and monotonicity of λ(·), limt→∞ λ(t) exists and is finite.

3.1.2. Adaptive servomechanism. We now turn attention to the servomecha-
nism problem for scalar systems (3.1), that is, the construction of controls that cause
the state to track, asymptotically, reference signals r(·) of some given class in the
sense that |y(t) − r(t)| → 0 as t → ∞. For the class of reference signals (previously
adopted in [20], [10], [21]) we take the (Sobolev) space R = W 1,∞(R) of functions
r ∈ (AC ∩ L∞) (R) with essentially bounded derivative ṙ ∈ L∞(R), equipped with
the norm ‖r‖1,∞ = ‖r‖∞ + ‖ṙ‖∞, where ‖ ‖∞ denotes the norm on L∞(R).

We impose a stronger assumption on the function f by requiring that Assumption
B should hold for some known, continuous, positive-definite, nondecreasing function
φ with the additional property that, for each R ≥ 0, there exists a scalar ρR such that

φ(|e+ r|) ≤ ρRφ(|e|) ∀ (e, r) ∈ R× [−R,R].(3.9)

Note that, by positive definiteness of φ together with property (3.9), φ(0) > 0.
Example. Let φ : |y| 7→ exp(|y|), which has the property (3.9), and so all poly-

nomial systems (of arbitrary degree and with coefficients in L∞(R)), as cited in a
previous Example, remain admissible.

Let φ be a continuous, positive-definite, nondecreasing function with property
(3.9). We claim that, in order to assure that the tracking error e(·) = y(·) − r(·)
approaches {0} for all reference signals r ∈ R and all quadruples (b, f, p, P ) ∈ Nφ, it
suffices to replace every occurrence of y(t) in (3.4) by e(t). Proof of this claim follows.
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Let (b, f, p, P ) ∈ Nφ. Write P̃ = P + 2 and define the continuous function

f̃ : RP̃ × R→ R, (p̃, e) ≡ (p, r, s, e) 7→ f(p, e+ r)− s.

Let K̃ ⊂ RP̃ be compact, and so there exist compact K ⊂ RP and R > 0 such that
K̃ ⊂ K × [−R,R]2. By properties of f and φ, there exist constants µK and ρR such
that, for all (p, r, s) ≡ p̃ ∈ K̃ ⊂ K × [−R,R]2,

|f̃(p̃, e)| ≤ |f(p, e+ r)|+ |s| ≤ µKφ(|e+ r|) +R ≤ µKρRφ(|e|) +R ≤ µ̃K̃φ(|e|),

with µ̃K̃ := µKρR + R/φ(0). Thus, f̃ is φ-bounded uniformly with respect to p̃ in
compact sets.

Let r ∈ R be arbitrary. Then p̃(·) := (p(·), r(·), ṙ(·)) ∈ L∞(R;RP̃ ), and so
(b, f̃ , p̃, P̃ ) ∈ Nφ. Expressed in terms of the tracking error e(t) = y(t) − r(t), the
system dynamics have the form

ė(t) = f̃(p̃(t), e(t)) + bu(t), p̃(t) = (p(t), r(t), ṙ(t)) ∈ RP̃ , e(0) = e0.

We are now in precisely the same context, modulo notation, as in the case of an
adaptive stabilizer, and so, replacing all occurrences of y(t) in (3.4) with e(t) to yield

u(t) ∈ ν(λ(t))φ(|e(t)|)σ(e(t)), λ̇(t) = φ(|e(t)|)|e(t)|, λ(0) = λ0,(3.10)

then the same argument (as used to establish Lemma 3.1) applies mutatis mutandis
to conclude that (3.10) is an (R,Nφ)-universal servomechanism: for each r(·) ∈ R
and (b, f, p, P ) ∈ Nφ, every solution (e(·), λ(·)) of the controlled system has maximal
interval of existence R+ with e(t)→ 0 as t→∞, and limt→∞ λ(t) exists and is finite.

3.1.3. Practical stabilization and tracking by continuous feedback. The
adaptive strategies outlined above are (generically) of a discontinuous feedback nature.
From a viewpoint of practical utility, this feature might be regarded as unpleasant.
Here, we investigate the possibility of adopting smooth approximations to the discon-
tinuous feedbacks. Of course, in so doing, one would expect to pay a price. It will be
shown that, if the objective of attractivity of the zero state (in the stabilization case)
or asymptotic tracking (in the case of a servomechanism) is weakened to requiring
global attractivity of any (arbitrarily small) prescribed neighborhood of zero or, for
the servomechanism problem, tracking to within any prescribed (arbitrarily small but
nonzero) error margin, then such approximations are feasible. We will present this re-
sult only in the context of the stabilization problem (imposing the additional property
(3.9), the corresponding result for the servomechanism problem is readily inferred by
analogy with section 3.1.2). The näıve idea, as developed in [10] and [21], is to inhibit
the adaption whenever the state lies within the prescribed neighborhood of zero.

Let ε > 0 be arbitrary and let dε denote the distance function for the set [−ε, ε];
thus, dε(x) := |x| − ε if |x| ≥ ε; dε(x) = 0 if |x| < ε.

Let φ : R+ → R+ be continuous and positive-definite. Let satε : R → R be any
continuous function (arbitrarily smooth) such that (i) |satε(x)| ≤ 1 for all x and (ii)
satε(x) = sgn(x) whenever |x| ≥ ε. We will show that the following strategy assures
that the state of (3.1) approaches the interval [−ε, ε] for all quadruples (b, f, p, P ) ∈
Nφ:

u(t) = ν(λ(t))φ(|y(t)|)satε(y(t)), λ̇(t) = φ(|y(t)|)dε(y(t)), λ(0) = λ0,

where, as before, ν is any continuous function with properties (3.3).
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Let (b, f, p, P ) ∈ Nφ, and so there exists constant µ such that |f(p(t), y)| ≤ µφ(|y|)
for all (t, y). Define the set-valued map y 7→ σε(y) by

σε(y) :=

 {sgn(y)}, |y| ≥ ε,

[−1,+1], |y| < ε.

Evidently, satε is a continuous selection from σε. We now embed the smooth-feedback–
controlled system in the following differential inclusion on R2:

ẋ(t) ∈ Xε(x(t)), x(t) = (y(t), λ(t)) ∈ R2, x(0) = x0 = (y0, λ0),(3.11)

where x 7→ Xε(x) ⊂ R2 is given by

Xε(x) ≡ Xε(y, λ) := {v + bu| |v| ≤ µφ(|y|), u ∈ ν(λ)φ(|y|)σε(y)} × {φ(|y|)dε(y)}.

Xε is upper semicontinuous on R2 with nonempty, convex, and compact values. There-
fore for each x0 ∈ R2, the initial-value problem (3.11) has a solution and every solution
has a maximal extension.

LEMMA 3.2. Let x0 ∈ R2 be arbitrary and let x(·) = (y(·), λ(·)) be a maximal
solution of (3.11), defined on its maximal interval of existence [0, ω). Then (i) ω =∞;
(ii) limt→∞ λ(t) exists and is finite; (iii) dε(y(t))→ 0 as t→∞.

Proof. For almost all t ∈ [0, ω),

(d/dt)(
1
2
d2
ε(y(t))) = dε(y(t))satε(y(t))ẏ(t)

≤ [µ+ bν(λ(t))]φ(|y(t)|)dε(y(t)) = [µ+ bν(λ(t))]λ̇(t),

which, on integration, yields

0 ≤ d2
ε(y(t)) ≤ d2

ε(y(τ)) + 2µ[λ(t)− λ(τ)] + 2b
∫ λ(t)

λ(τ)
ν(3.12)

valid for all t, τ ∈ [0, ω), with t ≥ τ . By precisely the same contradiction argument
as employed previously in the case of the discontinuous stabilizer, we may deduce
that x(·) = (y(·), λ(·)) ∈ AC([0, ω);R2) is a precompact solution of (3.11), and so,
ω = ∞. Defining l : R2 → R, x ≡ (y, λ) 7→ φ(|y|)dε(y) (and so, λ̇ = l ◦ x), we
conclude, by boundedness of λ(·), that l ◦ x ∈ L1(R+)). Therefore, by Theorem 2.10
(with U = R2), x(·) = (y(·), λ(·)) approaches the set l−1(0) ≡ {(y, λ)| dε(y) = 0}. In
particular, dε(y(t))→ 0 as t→∞ and, by monotonicity of bounded λ(·), limt→∞ λ(t)
exists and is finite.

3.1.4. Dynamically perturbed scalar systems. Let φ : R+ → R+ be con-
tinuous and positive definite. Let Σ1 = (b, f, p, P ) ∈ Nφ. We wish to consider the
situation wherein Σ1 is subject to perturbations generated through its interconnection
with a dynamical system Σ2 (Fig. 3.1).

System Σ2 is assumed to correspond to a differential equation (driven by the state
of the scalar system Σ1) on RN of the form

Σ2 : ζ̇(t) = g(y(t), ζ(t)), w(t) = h(ζ(t)), ζ(0) = ζ0 ∈ RN ,(3.13)
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Σ2 �

- yΣ1
-
-
w

u

FIG. 3.1.

with input y(t), and scalar output w(t) perturbing Σ1. Notationally, we identify the
system Σ2 with the triple (g, h,N). The overall system has representation (on R×RN ) ẏ(t) = f(p(t), y(t)) + h(ζ(t)) + bu(t),

ζ̇(t) = g(y(t), ζ(t)), (y(0), ζ(0)) = (y0, ζ0).
(3.14)

We will define, via Assumption D below, a class Pψ of admissible systems Σ2 =
(g, h,N), such that the Nφ-universal stabilizer of section 3.1.1 is readily modified to
yield a (Nφ,Pψ)-universal stabilizer. Before stating Assumption D, we cite Sontag’s
concept of input-to-state stability [24], [25] (see also [26]) in the context of (3.13),
with g assumed to be locally Lipschitz and with y(·) regarded as an independent
input of class L∞loc(R+;R). System (3.13) is input-to-state stable (ISS) if there exist a
continuous, strictly increasing function γ : R+ → R+, with γ(0) = 0, and a continuous
function β : R+×R+ → R+, with β(0, t) = 0 for all t and having the properties that,
for each t ≥ 0, β(·, t) is strictly increasing and, for each s ≥ 0, β(s, t) ↓ 0 as t → ∞,
such that, for every ζ0 ∈ RN and every y(·) ∈ L∞loc(R+;R), the (unique) maximal
solution ζ(·) of the initial-value problem (3.13) satisfies ‖ζ(t)‖ ≤ β(‖ζ0‖, t)+γ(‖yt‖∞)
for all t ≥ 0, where yt denotes the truncation of y at t, that is, yt(s) = y(s) if s ≤ t
and yt(s) = 0 if s > t. If (3.13) is ISS, then it is forward complete and has the
convergent-input, convergent-state property: for each ζ0 ∈ RN and y ∈ L∞loc(R+;R),
the unique solution ζ(·) of the initial-value problem has maximal interval of existence
R+ and, if y(t)→ 0 as t→∞, then ζ(t)→ 0 as t→∞.

For continuous ψ : R+ → R+, we denote by Pψ the set of system triples Σ2 =
(g, h,N) satisfying the following assumption.

Assumption D. (i) g : R × RN → RN is locally Lipschitz; (ii) system (3.13) is
ISS; (iii) h : RN → R is continuous; (iv) there exist a function α0 : R+ → R+ and
scalar α1 > 0, such that, for each (ζ0, y(·)) ∈ RN ×L∞loc(R+;R), the (unique) solution
ζ(·) of (3.13) satisfies∫ t

0
h(ζ(s))y(s)ds ≤ α0(‖ζ0‖) + α1

∫ t

0
ψ(|y(s)|)|y(s)|ds ∀ t ≥ 0.

While Assumption D is rather restrictive, it is not difficult to identify nontrivial
classes of systems for which the assumption holds. Three such examples follow, the
first of which is easily seen; the second and third can be verified by arguments invoking
[22, Theorem 2].

Examples. (a) Let ψ : |y| 7→ |y| and suppose (g, h,N) defines a linear system with
g : (y, ζ) 7→ Aζ + By, h : ζ 7→ Cζ. If A has spectrum, spec(A), in the open left half
complex plane C−, then (g, h,N) ∈ Pψ.

(b) More generally, let ψ : |y| 7→ |y|k, k ≥ 1. Assume g : R × RN → RN is
locally Lipschitz and h : RN → R is continuous. In addition, assume g and h are
positively homogeneous of degree k. If {0} is an asymptotically stable equilibrium of
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the unforced system ζ̇(t) = g(0, ζ(t)), then (g, h,N) ∈ Pψ. For example, with k = 3
and ψ : |y| 7→ |y|3, systems (with N = 1 and with unknown real parameters ai) of
the form ζ̇ = a1ζ

3 + a2ζ
2y + a3ζy

2 + a4y
3, with output w = a5ζ

3, are of class Pψ,
provided that a1 < 0.

(c) Let k > 0, kh ≥ 1 and ψ : |y| 7→ 1
2

(
|y|(k+1)kh−1 + |y|1/k

)
. Assume g :

R× RN → RN is locally Lipschitz and that h : RN → R is continuous and positively
homogeneous of degree kh. If, in addition, g is positively homogeneous of degree kg,
with 1 ≤ kg ≤ (k + 1)kh, and {0} is an asymptotically stable equilibrium of the
unforced system ζ̇(t) = g(0, ζ(t)), then (g, h,N) ∈ Pψ. For example, systems (with
N = 1 and unknown parameters ρ, ai ∈ R) of the form ζ̇ = |ζ|ρ[a1ζ+a2y], with linear
output y = a3ζ (in which case kh = 1), are of class Pψ, provided that a1 < 0 and
0 ≤ ρ ≤ k.

Let φ : R+ → R+ be continuous and positive definite. Let ψ : R+ → R+
be continuous. We will show that, for (Nφ,Pψ)-universal stabilization, it suffices to
replace both occurrences of φ in (3.4) with φ+ ψ to yield

u(t) ∈ ν(λ(t))(φ+ ψ)(|y(t)|)σ(y(t)), λ̇(t) = (φ+ ψ)(|y(t)|)|y(t)|, λ(0) = λ0.(3.15)

Let (b, f, p, P ) ∈ Nφ and (g, h,N) ∈ Pψ. Then there exists constant µ such that
|f(p(t), y)| ≤ µφ(|y|) for all (t, y). The feedback-controlled system (3.14)–(3.15) can
be embedded in a differential inclusion on RN+2: ẋ(t) ∈ X(x(t)), x(t) = (y(t), ζ(t), λ(t)) ∈ G := RN+2,

x(0) = x0 = (y0, ζ0, λ0),
(3.16)

where x = (y, ζ, λ) 7→ X(x) ⊂ RN+2 is given by

X(x) ≡ X(y, ζ, λ) := {h(ζ) + v + bu| |v| ≤ µφ(|y|), u ∈ ν(λ)(φ+ ψ)(|y|)σ(y)}
× {g(y, ζ)} × {(φ+ ψ)(|y|)|y|}.

X is upper semicontinuous on RN+2 with nonempty, convex, and compact values.
Therefore, for each x0 ∈ RN+2, the initial-value problem (3.16) has a solution and
every solution can be maximally extended.

LEMMA 3.3. Let x0 ∈ RN+2 be arbitrary and let x(·) = (y(·), ζ(·), λ(·)) be a
maximal solution of (3.16), defined on its maximal interval of existence [0, ω). Then
(i) ω =∞; (ii) limt→∞ λ(t) exists and is finite; (iii) (y(t), ζ(t))→ (0, 0) as t→∞.

Proof. For almost all t ∈ [0, ω), we have

y(t)ẏ(t) ≤ h(ζ(t))y(t) + µφ(|y(t)|)|y(t)|+ bν(λ(t))(φ+ ψ)(|y(t)|)|y(t)|
≤ h(ζ(t))y(t) + [µ+ bν(λ(t))]λ̇(t)

which, on integration, yields

0 ≤ y2(t) ≤ y2(τ) + 2
∫ t

τ

h(ζ(s))y(s)ds+ 2µ[λ(t)− λ(τ)] + 2b
∫ λ(t)

λ(τ)
ν

valid for all t, τ ∈ [0, ω), with t ≥ τ . Invoking Assumption D, we have

0 ≤ y2(t) ≤ y2(τ) + 2α0(‖ζ(τ)‖) + 2[α1 + µ][λ(t)− λ(τ)] + 2b
∫ λ(t)

λ(τ)
ν.(3.17)
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By the same contradiction argument as that employed in the proof of Lemma 3.1, we
may deduce that λ(·) is bounded. Boundedness of y(·) then follows from (3.17). That
ζ(·) is bounded is a consequence of the ISS property of Σ2 = (g, h,N). Therefore,
x(·) = (y(·), ζ(·), λ(·)) ∈ AC([0, ω);RN+2) is a precompact solution of (3.16), and so,
ω =∞. Defining l : RN+2 → R, x ≡ (y, ζ, λ) 7→ (φ+ψ)(|y|)|y| (and so λ̇ = l◦x), we
may conclude, by boundedness of λ(·), that l ◦ x ∈ L1(R+). Therefore by Theorem
2.10 (with U = RN+2), x(·) approaches the set {(y, ζ, λ)| y = 0}. In particular,
y(t)→ 0 as t→∞, and so, by the convergent-input, convergent-state property of the
ISS system Σ2 = (g, h,N), we may also conclude that ζ(t)→ 0 as t→∞. Finally, by
boundedness and monotonicity of λ(·), limt→∞ λ(t) exists and is finite.

Example. Linear, minimum-phase systems of relative degree one. This class has
played a central role in the development of universal adaptive control. In appropriate
coordinates, such systems have state space representations of the form

ẏ = A1y +A2ζ + CBu, ζ̇ = A3y +A4ζ.(3.18)

In the single-input, single-output case, we identify (3.18) and (3.14) with

f : (p, y) 7→ A1y, h : ζ 7→ A2ζ, b = CB, g : (y, ζ) 7→ A3y +A4ζ.

By the relative-degree-one assumption, b = CB 6= 0 and, by the minimum-phase
assumption, spec(A4) ⊂ C−. Defining φ ≡ ψ : |y| 7→ 1

2 |y|, we see that every single-
input, single-output, linear, minimum-phase system of relative degree one is of class
(Nφ,Pψ) and the control (3.15) reduces to the ubiquitous Byrnes–Willems strategy:
u(t) = ν(λ(t))y(t), λ̇(t) = y2(t), λ(0) = λ0.

Remarks. In considering the case of dynamically perturbed scalar systems, we
treated only the problem of adaptive stabilization. The adaptive servomechanism of
section 3.1.2 can also be modified to incorporate dynamically perturbed systems when
the dynamic perturbations are generated by linear systems ζ̇ = Aζ + By, w = Cζ,
spec(A) ⊂ C−, as described in the previous Example. For such perturbations, the
(modified) servomechanism ensures convergence to zero of the tracking error, conver-
gence to a finite limit of the adapting parameter, and boundedness of the evolution
t 7→ ζ(t) of the perturbing system. We omit full details here.

3.2. Planar systems. In all applications of the integral invariance principle in
section 3.1 above, the conclusion that x(t) tends, as t→∞, to the zero level set l−1(0)
proved sufficient for our purposes; the additional property that x(·) approaches the
largest weakly invariant subset of l−1(0) was redundant. Here, we treat a class of
systems for which the latter property can be fruitfully exploited. We consider planar
systems (with scalar control u) described by a second-order differential equation: ÿ(t) = d(t)ẏ(t) + f(p(t), y(t)) + bu(t), y(t), u(t), d(t) ∈ R, p(t) ∈ RP ,

(y(t0), ẏ(t0)) = (y0, v0),
(3.19)

where the parameters b ∈ R, P ∈ N, and functions d, f , p are unknown. The variable
y(t), but not its derivative ẏ(t), is available for feedback. We identify (3.19) with the
quintuple (b, d, f, p, P ). For δ > 0 and continuous, positive-definite, nondecreasing
function φ : R+ → R+, we denote, by Nδ,φ, the set of system quintuples (b, d, f, p, P )
for which Assumption A (that is, b 6= 0) holds, together with the following three
assumptions.

Assumption E. d ∈ (C ∩ L∞) (R) and, for some ε > 0, d(t) ≤ −δ − 2ε for all t.
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Assumption F. (p, y) 7→ f(p, y), RP × R → R is continuous and is continuously
differentiable in its first argument. Both f and D1f (≡ ∂f/∂p) are φ-bounded uni-
formly with respect to p in compact sets; precisely, for every compact K ⊂ RP , there
exists scalar µK such that |f(p, y)|+ ‖D1f(p, y)‖ ≤ µKφ(|y|) for all (p, y) ∈ K × R.

Assumption G. p(·) ∈W 1,∞(R;RP ).
By virtue of Assumptions E and G, without loss of generality, t0 = 0 may be

assumed in (3.19); this we will do, without further comment, throughout.
In section 3.2.1 below, we will show that (b, d, f, p, P ) ∈ Nδ,φ, for some known

δ > 0 and known continuous positive-definite nondecreasing function φ, is sufficient
a priori information for adaptive stabilizability of (3.19) by feedback of the variable
y(t) alone; in essence, Assumption E compensates for the inaccessibility of the veloc-
ity variable ẏ(t) by requiring that the system should exhibit dissipitive dependence
(loosely quantifiable by the known constant δ) on that variable.

Example. As motivation for (3.19), consider a single-degree-of-freedom mechan-
ical system with position, but not velocity, available for feedback and with some
constant (but unknown) natural damping d quantified by a known parameter δ in the
sense that d < −δ < 0. If we suppose that Assumption F holds with φ : |y| 7→ 1+ |y|3,
then, for example, the following particular realizations are admissible.

Nonlinear pendulum with disturbed support (disturbance p(·) ∈W 1,∞(R)):

ÿ(t) = dẏ(t) + (a+ p(t)) sin(y(t)) + bu(t), a, b ∈ R, b 6= 0.

Duffing equation with extraneous disturbance (p(·) ∈W 1,∞(R)):

ÿ(t) = dẏ(t) + a1y(t) + a2y
3(t) + p(t) + bu(t), a1, a2, b ∈ R, b 6= 0.

In the absence of control, such systems are potentially “chaotic.”

3.2.1. Adaptive stabilizer. Let δ > 0 and let φ : R+ → R+ be a continuous,
positive-definite, nondecreasing function. Assuming only that δ, φ and the instan-
taneous state y(t) are available for control purposes, our goal is to demonstrate the
existence of an adaptive feedback strategy that provides Nδ,φ-universal stabilization
in the sense that it assures that the state of (3.19) approaches {0} for all quintuples
(b, d, f, p, P ) ∈ Nδ,φ while maintaining boundedness of the controller function λ(·).

Define the continuous function γ : R+ → R+ by γ(ξ) := ξ+φ(ξ) and let Γ denote
its indefinite integral: Γ : R+ → R+, ξ 7→

∫ ξ
0 γ. We claim that the following (formal)

strategy is a Nδ,φ-universal stabilizer: u(t) = ν(η(t))γ(|y(t)|)sgn(y(t)), η(t) := δλ(t) + Γ(|y(t)|),

λ̇(t) = γ(|y(t)|)|y(t)|, λ(0) = λ0 ∈ R,
(3.20)

where ν is any continuous function with properties (3.3).
Let (b, d, f, p, P ) ∈ Nδ,φ. Introducing the coordinate transformation z(t) = ẏ(t) +

δy(t), we may express (3.19) in the form
ẏ(t) = −δy(t) + z(t),

ż(t) = (δ + d(t))(z(t)− δy(t)) + f(p(t), y(t)) + bu(t),

(y(0), z(0)) = (y0, z0).

(3.21)
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The feedback (3.20) is interpreted in the set-valued sense: u(t) ∈ ν(η(t))γ(|y(t)|)σ(y(t)), η(t) = δλ(t) + Γ(|y(t)|),

λ̇(t) = γ(|y(t)|)|y(t)|, λ(0) = λ0,
(3.22)

with the map y 7→ σ(y) defined as before in (3.5).
Writing x(t) = (y(t), z(t), λ(t)), the overall adaptive feedback controlled system

may be embedded in the following differential inclusion on R3:

ẋ(t) ∈ X(t, x(t)), x(0) = x0 = (y0, z0, λ0),(3.23)

where X : (t, x) ≡ (t, y, z, λ) 7→ {−δy + z} ×X2(t, x)× {γ(|y|)|y|} ⊂ R3, with

X2(t, x) := {(δ + d(t))(z − δy) + f(p(t), y) + bu| u ∈ ν(δλ+ Γ(|y|))γ(|y|)σ(y)}.

X is upper semicontinuous on R×R3 and takes nonempty, convex, and compact values
in R3. Therefore, for each x0 ∈ R3, the initial-value problem (3.23) has a solution
and every solution can be extended into a maximal solution.

LEMMA 3.4. Let x0 ∈ R3 be arbitrary and let x(·) = (y(·), z(·), λ(·)) be a maximal
solution of (3.23) defined on its maximal interval of existence [0, ω). Then (i) ω =∞;
(ii) limt→∞ λ(t) exists and is finite; (iii) (y(t), z(t))→ (0, 0) as t→∞.

Proof. On R, define the locally Lipschitz function Φ : r 7→ Γ(|r|), with directional
derivative at r in direction s given by

Φ†(r; s) = lim
h↓0

Φ(r + hs)− Φ(r)
h

=

 γ(|r|)sgn(r)s, r 6= 0,

γ(0)|s|, r = 0.
(3.24)

Let F1 ∈ AC([0, ω);R) denote the composition Φ◦y and let O1 ⊂ [0, ω) be the set (of
measure zero) of points t at which the derivative Ḟ1(t) fails to exist. A straightforward
argument (analogous to that yielding (2.4)) gives

Ḟ1(t) = Φ†(y(t); ẏ(t)) ∀ t ∈ [0, ω)\O1.(3.25)

By properties of f and p (Assumptions F and G), the function

F2 : t 7→
∫ y(t)

0
f(p(t), ξ) dξ

is of class AC([0, ω);R). Let O2 denote the set (of measure zero) of points t at which
ṗ(t) fails to exist. Again by properties of f and p, there exists µ > 0 such that

(3.26) Ḟ2(t) =
∫ y(t)

0
〈D1f(p(t), ξ), ṗ(t)〉 dξ + f(p(t), y(t))ẏ(t)

≥ −µφ(|y(t)|)|y(t)|+ f(p(t), y(t))z(t) ∀ t ∈ [0, ω)\O2.

Define Fc ∈ AC([0, ω);R), parameterized by c > 0, as Fc : t 7→ cF1(t) − F2(t). By
Assumptions F and G and the definition of Γ, Fc is such that, for all c sufficiently
large,

Fc(t) ≥
1
2
cy2(t) ∀ t.(3.27)
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Moreover, by (3.25) and (3.26),

(3.28) Ḟc(t) = cḞ1(t)− Ḟ2(t) = c[η̇(t)− δγ(|y(t)|)|y(t)|]− Ḟ2(t)
≤ cη̇(t) + (µ− cδ)γ(|y(t)|)|y(t)| − z(t)f(p(t), y(t)) ∀ t ∈ [0, ω)\(O1 ∪ O2).

Let Y := {t ∈ [0, ω)| (y(t), ẏ(t)) 6= (0, 0)} be the set of points t at which y(t) and ẏ(t)
are not both zero. Observe that (i) every point t of the subset O0 := {t ∈ Y | y(t) = 0}
is an isolated point implying that O0 is countable and so has measure zero, and (ii)
y(t) = ẏ(t) = z(t) = 0 for all t ∈ [0, ω)\Y . From these observations, together with
(3.24), (3.25), and writing O := O0 ∪ O1 ∪ O2 (of measure zero), we deduce that

∀ t ∈ [0, ω)\O, uz(t) = ν(η(t))[δγ(|y(t)|)|y(t)|+ Φ†(y(t); ẏ(t))](3.29)
= ν(η(t))η̇(t) ∀ u ∈ ν(η(t))γ(|y(t)|)σ(y(t)).

Define Vc ∈ AC([0, ω);R) by Vc(t) := Fc(t) + 1
2z

2(t). Invoking (3.28), (3.29), and
Assumption E,

V̇c(t) ≤ Ḟc(t)− 2εz2(t)− (d(t) + δ)δy(t)z(t)(3.30)
+ z(t)f(p(t), y(t)) + bν(η(t))η̇(t)

≤ [∆2/(4ε) + µ− cδ]γ(|y(t)|)|y(t)| − εz2(t) + [c+ bν(η(t))]η̇(t)

for almost all t ∈ [0, ω), wherein we have used the fact that

−(d(t) + δ)δy(t)z(t) ≤ ∆|y(t)z(t)| ≤ εz2(t) +
∆2

4ε
y2(t) ≤ εz2(t) +

∆2

4ε
γ(|y(t)|)|y(t)|,

with ∆ := (‖d(·)‖∞ + δ)δ. Now fix c sufficiently large so that ∆2(4ε)−1 + µ− cδ ≤ 0
and (3.27) holds, in which case, Vc(t) ≥ 1

2

[
cy2(t) + z2

(
t)] for all t and

V̇c(t) ≤ [c+ bν(η(t))]η̇(t) for a.a. t ∈ [0, ω),(3.31)

which, on integration, yields

0 ≤ 1
2
[
cy2(t) + z2(t)

]
≤ Vc(t) ≤ Vc(τ) + c[η(t)− η(τ)] + b

∫ η(t)

η(τ)
ν(3.32)

for all t, τ ∈ [0, ω), with t ≥ τ .
We first show that the function η(·) (and hence λ(·)) is bounded. By properties

(3.3) of ν, there exist increasing sequences (η̂n)n∈N and (η̃n)n∈N, with η̂n → ∞ and
η̃n →∞ as n→∞, such that

(a)
1
η̂n

∫ η̂n

η̂1

ν(θ)dθ → +∞, (b)
1
η̃n

∫ η̃n

η̃1

ν(θ)dθ → −∞(3.33)

as n→∞. Without loss of generality, we may assume η̂1, η̃1 ≥ 1. Seeking a contradic-
tion, suppose that η(·) is unbounded. Now, η(·) is bounded from below (in particular,
η(t) ≥ δλ0 for all t ≥ 0), and so, by the supposition, η(·) is unbounded from above.
Therefore, there exist increasing sequences (t̂n), (t̃n) ⊂ [0, ω) such that, for all n,

η(t̂n) = η̂n and η(t̃n) = η̃n.
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Now, either b > 0 or b < 0. If b > 0, then (3.32) and (3.33b) combine to yield the
contradiction

0 ≤ constant +
b

η̃n

∫ η̃n

η̃1

ν → −∞ as n→∞.

If b < 0, then (3.32) and (3.33a) combine to yield the contradiction

0 ≤ constant− |b|
η̂n

∫ η̂n

η̂1

ν → −∞ as n→∞.

Therefore η(·) (and hence, λ(·)) is bounded. Boundedness of η(·) and λ(·), together
with (3.32), imply boundedness of y(·) and z(·). This establishes assertion (i) and
assertion (ii) follows by monotonicity of λ(·). It remains to prove assertion (iii).

By boundedness of d(·), p(·), and x(·), there exists ρ > 0 such that X2(t, x(t)) ⊂
ρB̄ for all t ∈ [0,∞), and so, x(·) = (y(·), z(·), λ(·)) is a precompact solution of the
autonomous initial-value problem

ẋ(t) ∈ {−δy(t) + z(t)} × ρB̄× {γ(|y(t)|)|y(t)|}, x(0) = x0.(3.34)

Moreover, by boundedness of λ(·),∫ ∞
0

y2(s)ds ≤
∫ ∞

0
λ̇(s)ds <∞.

Therefore, by Theorem 2.10, x(·) approaches the largest weakly-invariant (relative
to the autonomous differential inclusion (3.34)) set W in {(y, z, λ)| y = 0}. Let
w̄ = (0, z̄, λ̄) ∈W . By definition of weak invariance, the initial-value problem

ẇ(t) = (ẇ1(t), ẇ2(t), ẇ3(t))∈{−δw1(t)+w2(t)}×ρB̄×{γ(|w1(t)|)|w1(t)|}, w(0) = w̄

has at least one solution w(·) = (w1(·), w2(·), w3(·)) with maximal interval of existence
R+ and with trajectory in W ⊂ {(y, z, λ)| y = 0}. Since ẇ1(t) = −δw1(t) + w2(t)
and w1(·) ≡ 0 in W , it follows that w2(·) ≡ 0, and so, z̄ = w2(0) = 0. There-
fore, we conclude that the largest weakly-invariant set in W is contained in the set
{(y, z, λ)| y = 0 = z}, and so the solution x(·) approaches the set {(0, 0)} × R. In
particular, (y(t), z(t))→ (0, 0) as t→∞.

3.2.2. Adaptive servomechanism. We now turn attention to the servomech-
anism problem for planar systems (3.21), that is, the construction of controls that
cause the system to track, asymptotically, any reference signal r(·) of some given
class, in the sense that both the tracking error e(t) = y(t) − r(t) and its deriva-
tive ė(t) = ẏ(t) − ṙ(t) tend to zero as t → ∞. For the class of reference signals
we take the (Sobolev) space R = W 3,∞(R) of functions r ∈

(
C2 ∩ L∞

)
(R) with

ṙ ∈
(
C1 ∩ L∞

)
(R) and r̈ ∈W 1,∞(R), equipped with the norm

‖r‖3,∞ = ‖r‖∞ + ‖ṙ‖∞ + ‖r̈‖∞ + ‖...r ‖∞.

For the servomechanism problem, we restrict the underlying class of systems by
imposing a stronger assumption on the function f . Assumption F∗ below should
hold for some known, continuous, positive-definite, nondecreasing function φ having
the additional property (3.9). Specifically, for real δ > 0 and continuous, positive-
definite, nondecreasing function φ : R+ → R+ with property (3.9), we denote, by
N ∗δ,φ, the set of quintuples (b, d, f, p, P ) satisfying Assumptions A, E, and F∗.
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Assumption F∗. (p, y) 7→ f(p, y), RP × R → R is continuously differentiable.
Both f and its gradient functionDf = (D1f,D2f) (≡ (∂f/∂p, ∂f/∂y)) are φ-bounded
uniformly with respect to p in compact sets; precisely, for every compact K ⊂ RP ,
there exists scalar µK such that |f(p, y)|+‖Df(p, y)‖ ≤ µKφ(|y|) for all (p, y) ∈ K×R.

Example. The function φ : |y| 7→ 1 + |y|3 has property (3.9) and the mechanical
systems described in the previous Example are admissible.

Let δ > 0 and let φ be a continuous, positive-definite, nondecreasing function
with property (3.9). We claim that, in order to assure convergence to zero of both the
tracking error e(t) = y(t)− r(t) and its derivative ė(t) for all reference signals r ∈ R
and all quintuples (b, d, f, p, P ) ∈ N ∗δ,φ, it suffices to replace every occurrence of y(t)
in (3.20) by e(t). Proof of this claim follows.

Let (b, d, f, p, P ) ∈ N ∗δ,φ. Write P̃ = P + 3 and define the continuous function

f̃ : RP̃ × R→ R, (p̃, e) ≡ (p, r, v, w, e) 7→ f(p, e+ r)− δv − w.

By properties of f , f̃ is continuously differentiable with respect to its first argument
(p̃), with D1f̃ given by

D1f̃(p̃, e) ≡ (∂f̃/∂p̃)(p̃, e) = (D1f(p, e+ r), D2f(p, e+ r),−δ,−1).

Let K̃ ⊂ RP̃ be compact, and so there exist compact K ⊂ RP and R > 0 such that
K̃ ⊂ K × [−R,R]3. By properties of f and φ, there exist constants µK and ρR such
that, for all (p, r, v, w) ≡ p̃ ∈ K̃ ⊂ K × [−R,R]3,

|f̃(p̃, e)|+ ‖D1f̃(p̃, e)‖ ≤ |f(p, e+ r)|+ δ|v|+ |w|+ ‖Df(p, e+ r)‖+ δ + 1
≤ µKφ(|e+ r|) + (1 + δ)(1 +R)
≤ µKρRφ(|e|) + (1 + δ)(1 +R) ≤ µ̃K̃φ(|e|),

with µ̃K̃ := µKρR + ((1 + δ)(1 +R))/φ(0). Therefore, f̃ satisfies Assumption F.
Let r ∈ R ≡ W 3,∞(R). Then t 7→ p̃(t) := (p(t), r(t), ṙ(t), r̈(t)) ∈ RP̃ is of class

W 1,∞(R;RP̃ ), and so (b, d, f̃ , p̃, P̃ ) ∈ Nδ,φ. Expressed in terms of the tracking error
e(t) = y(t)− r(t) and adopting the coordinate transformation z(t) = ė(t) + δe(t), the
underlying dynamics have the form

ė(t) = −δe(t) + z(t),

ż(t) = (δ + d(t))(z(t)− δe(t)) + f̃(p̃(t), e(t)) + bu(t),

(e(0), z(0)) = (e0, z0).

(3.35)

We are now in precisely the same context, modulo notation, as in the case of an
adaptive stabilizer, and so, replacing all occurrences of y(t) in (3.20) by e(t), viz. u(t) ∈ ν(η(t))γ(|e(t)|)σ(e(t)), η(t) = δλ(t) + Γ(|e(t)|),

λ̇(t) = γ(|e(t)|)|e(t)|, λ(0) = λ0,
(3.36)

then the same argument, as used to establish Lemma 3.4, applies mutatis mutandis
to conclude that (3.36) is an (R,N ∗δ,φ)-universal servomechanism; for each r(·) ∈ R
and (b, d, f, p, P ) ∈ N ∗δ,φ, every solution (e(·), z(·), λ(·)) of the feedback controlled
system has maximal interval of existence R+ with (e(t), z(t))→ (0, 0) as t→∞ and,
moreover, limt→∞ λ(t) exists and is finite.
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3.2.3. Dynamically perturbed planar systems. Let δ > 0 and let the
function φ : R+ → R+ be continuous, positive definite, and nondecreasing. Let
Σ1 = (b, d, f, p, P ) ∈ Nδ,φ. Here we consider the case where Σ1 is subject to perturba-
tions generated through its interconnection with a dynamical system Σ2 (as depicted
in Figure 3.1).

The system Σ2 is assumed to correspond to a differential equation (driven by the
variable y(t) of system Σ1) on RN of the form (3.13) with input y(t), and scalar output
w(t) perturbing Σ1. As before, we identify the system Σ2 with the triple (g, h,N).
Writing z(t) = ẏ(t) + δy(t), the overall system has representation (on R× R× RN )

ẏ(t) = −δy(t) + z(t),

ż(t) = (δ + d(t))z(t)− (δ + d(t))δy(t) + f(p(t), y(t)) + h(ζ(t)) + bu(t),

ζ̇(t) = g(y(t), ζ(t)), (y(0), z(0), ζ(0)) = (y0, z0, ζ0).

(3.37)

We will define, via Assumption H below, a class Pψ of admissible systems Σ2 =
(g, h,N), such that the Nδ,φ-universal stabilizer of section 3.2.1 is readily modified to
yield a (Nδ,φ,Pψ)-universal stabilizer.

For continuous ψ : R+ → R+, we denote, by Pψ the set of system triples Σ2 =
(g, h,N) satisfying the following.

Assumption H. (i) g : R × RN → RN is locally Lipschitz; (ii) system (3.13) is
ISS; (iii) h : R×RN → R is continuous; (iv) there exist a function α0 : R+ → R+ and
a scalar α1 > 0, such that, for each (ζ0, y(·)) ∈ RN ×L∞loc(R+), the (unique) solution
ζ(·) of (3.13) satisfies∫ t

0
h2(ζ(s))ds ≤ α0(‖ζ0‖) + α1

∫ t

0
ψ(|y(s)|)|y(s)|ds.

Examples. (a) Assumption H holds for the class of linear systems considered in
the first Example of section 3.1.4.

(b) More generally, assume g : R×RN → RN is locally Lipschitz and h : RN → R
is continuous. Assume further that h is positively homogeneous of degree k ≥ 1 and
that g is positively homogeneous of degree kg, 1 ≤ kg ≤ 2k. Let ψ : |y| 7→ |y|2k−1. If
{0} is an asymptotically stable equilibrium of the unforced system ζ̇(t) = g(0, ζ(t)),
then it can be shown (by an argument invoking [22, Theorem 2]) that (g, h,N) ∈ Pψ.
For example, if ψ : |y| 7→ |y|, then systems (with N = 1 and with unknown real
parameters ai) of the form ζ̇ = a1ζ|ζ|+ a2y

2, w = a3ζ, are of class Pψ, provided that
a1 < 0.

Let δ > 0 and let φ : R+ → R+ be continuous, positive definite, and nonde-
creasing. As before, let γ : ξ 7→ ξ + φ(ξ) and Γ : ξ 7→

∫ ξ
0 γ. Let ψ : R+ → R+ be

continuous with indefinite integral Ψ : R+ → R+, ξ 7→
∫ ξ

0 ψ.
We will show that, for (Nδ,φ,Pψ)-universal stabilization, it suffices to replace both

occurrences of γ in (3.20) by γ + ψ and to replace the single occurrence of Γ with
Γ + Ψ to yield u(t) ∈ ν(η(t))(γ + ψ)(|y(t)|)σ(y(t)), η(t) = δλ(t) + (Γ + Ψ)(|y(t)|),

λ̇(t) = (γ + ψ)(|y(t)|)|y(t)|, λ(0) = λ0.
(3.38)

Let (b, d, f, p, P ) ∈ Nδ,φ and (g, h,N) ∈ Pψ. The feedback-controlled system (3.37)–
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(3.38) can be embedded in a differential inclusion on RN+3: ẋ(t) ∈ X(t, x(t)),

x(t) = (y(t), z(t), ζ(t), λ(t)) ∈ G := RN+3, x(0) = x0 = (y0, z0, ζ0, λ0),
(3.39)

where the set-valued map (t, x) ≡ (t, y, z, ζ, λ) 7→ X(t, x) ⊂ RN+3 is given by

X(t, x) = {−δy + z} ×X2(t, x)× {g(y, ζ)} × {(γ + ψ)(|y|)|y|},

X2(t, x) := {(δ + d(t))z − (δ + d(t))δy + f(p(t), y) + h(ζ) + bu|
u ∈ ν(δλ+ (Γ + Ψ)(|y|)σ(y)}.

X is upper semicontinuous on R × RN+3 and takes nonempty, convex, and compact
values in RN+3. Therefore, for each x0 ∈ RN+3, the initial-value problem (3.39) has
a solution, and every solution can be maximally extended.

LEMMA 3.5. Let x0 ∈ RN+3 be arbitrary and let x(·) = (y(·), z(·), ζ(·), λ(·)) be a
maximal solution of (3.39) defined on its maximal interval of existence [0, ω). Then
(i) ω = ∞; (ii) limt→∞ λ(t) exists and is finite; (iii) (y(t), z(t), ζ(t)) → (0, 0, 0) as
t→∞.

Proof. Let Fc and Vc, parameterized by c > 0, be defined as in the proof of
Lemma 3.4. By an argument essentially the same as that adopted in the proof of
Lemma 3.4 and choosing c sufficiently large, we arrive at a counterpart to (3.30):

V̇c(t, y(t), z(t)) ≤ −εz2(t) + |h(ζ(t))||z(t)|+ [c+ bν(η(t))]η̇(t)(3.40)

for almost all t ∈ [0, ω). Invoking the inequality |h(ζ)||z| ≤ 1
2εz

2 + 1
2ε
−1h2(ζ), then

integrating and invoking Assumption H, we have (for c sufficiently large)

(3.41)
1
2

[cy2(t) + z2(t)] ≤ Vc(t, y(t), z(t)) ≤ Vc(τ, y(τ), z(τ))

+
1
2
ε−1α0(‖ζ(τ)‖) +

1
2
ε−1α1[λ(t)− λ(τ)]

+ c[η(t)− η(τ)] + b

∫ η(t)

η(τ)
ν

for all t, τ ∈ [0, ω), with t ≥ τ . A straightforward modification of the contradiction
argument used previously in the proof of Lemma 3.4 establishes boundedness of η(·)
(and hence, of λ(·)). Boundedness of η(·) and λ(·), together with (3.41), imply bound-
edness of y(·) and z(·). That ζ(·) is bounded is a consequence of the ISS property
of Σ2 = (g, h,N). This establishes assertion (i) and assertion (ii) follows by mono-
tonicity of λ(·). It remains to prove assertion (iii). With minor modification, the
argument used in the proof of Lemma 3.4 applies to conclude that x(·) approaches
the set {(y, z, ζ, λ)| y = 0 = z}. In particular, (y(t), z(t))→ (0, 0) as t→∞, and so,
by the convergent-input, convergent-state property of the ISS system Σ2 = (g, h,N),
we may also conclude that ζ(t)→ 0 as t→∞.

Example. Linear minimum-phase systems of relative degree two. Let (A,B,C)
define a linear, single-input u, single-output y minimum-phase system on RN+2 of
relative degree two. Denoting its Markov parameters bymk := CAk−1B, thenm1 = 0,
m2 6= 0, and the system has a representation (on R2 × RN ) of the form

ÿ = A1y + (m3/m2)ẏ +A2ζ +m2u, ζ̇ = A3y +A4ζ.(3.42)
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If we assume that −m3/m2 > δ > 0 (that is, the system exhibits natural damping
quantified by known δ), then we may identify (3.42) and (3.37) by setting

f : (p, y) 7→ A1y, g : (y, ζ) 7→ A3y +A4ζ, h : ζ 7→ A2ζ, b = m2, d(·) ≡ m3/m2.

By the relative-degree-two assumption, b = m2 6= 0 and, by the minimum-phase
assumption, spec(A4) ⊂ C−. Defining φ ≡ ψ : |y| 7→ 1

2 |y|, we see that every relative-
degree-two, minimum-phase system with m3/m2 < −δ is of class (Nδ,φ,Pψ) and we
recover (modulo notation) the adaptive stabilizer proposed previously in [5]:

u(t) = ν(η(t))y(t), η(t) = δλ(t) + y2(t), λ̇(t) = 2y2(t), λ(0) = λ0.

Remarks. We conclude with some observations on the servomechanism problem
for dynamically perturbed planar systems. Akin to the Remarks in section 3.1.4,
the adaptive servomechanism of section 3.2.2 can also be modified to incorporate
dynamically perturbed systems, when the dynamic perturbations are generated by
linear systems ζ̇ = Aζ + By, w = Cζ, spec(A) ⊂ C−. For such perturbations, the
(modified) servomechanism assures convergence to zero of the tracking error and its
derivative, convergence to a finite limit of the adapting parameter, and boundedness
of the evolution t 7→ ζ(t) of the perturbing system. For brevity, we omit full details
here.
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Abstract. This paper studies constrained linear-quadratic regulator (LQR) problems in dis-
tributed boundary control systems governed by the Stokes equation with point velocity observations.
Although the objective function is not well defined, we are able to use hydrostatic potential theory
and a variational inequality in a Banach space setting to derive a first-order optimality condition and
then a characterization formula of the optimal control. Since matrix-valued singularities appear in
the optimal control, a singularity decomposition formula is also established, with which the nature
of the singularities is clearly exhibited. It is found that in general, the optimal control is not defined
at observation points. A necessary and sufficient condition that the optimal control is defined at
observation points is then proved.
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1. Introduction. In this paper, we are concerned with the problems in bound-
ary control of fluid flows. We consider the following constrained optimal boundary
control problems in the systems governed by the Stokes equation with point velocity
observations.

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ, Γ1 an open subset
of Γ and Γ0 = Γ \ Γ1.

(LQR)



min
~u∈U

J(~u) =
m∑
k=1

µk|~w(Pk)− ~Zk|2 + γ

∫
Γ1

|~u(x)|2dσx,

subject to
(1.1)



ν∆~w(x)−∇p(x) = 0 in Ω,

div ~w(x) = 0 in Ω,

~τ(~w)(x) = ~g(x) on Γ0,

~τ(~w)(x) = ~u(x) on Γ1,

where
~w(x) is the velocity vector of the fluid at x ∈ Ω;
p(x) is the pressure of the fluid at x ∈ Ω;
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~τ(~w)(x) is the surface stress of the fluid along Γ defined by

~τ(~w)(x) = (τ1(~w)(x), τ2(~w)(x), τ3(~w)(x))T ,

τi(~w)(x) =
3∑
k=1

[
∂wi(x)
∂xk

+
∂wk(x)
∂xi

]
nk(x)− p(x)ni(x);

~n(x) = (n1(x), n2(x), n3(x)) is the unit outnormal vector of Γ at x;
~g is a given (surface stress) Neumann boundary data (B.D.) on Γ0;
~u(x) ∈ U is the (surface stress) Neumann boundary control on the surface Γ1;
U is the admissible control set to be defined later for well-posedness of the
problem and for applications;
γ, µk > 0, 1 ≤ k ≤ m, are given weighting factors;
Pk ∈ Γ, 1 ≤ k ≤ m, are prescribed “observation points”;
Zk ∈ R3, 1 ≤ k ≤ m, are prescribed “target values” at Pk;
ν, a positive quantity, is the kinematic viscosity of the fluid. For simplicity,
throughout this paper we assume that ν = 1 and the density of the fluid is the
constant one.

Let

M0 = {~a+~b× ~x | ~a,~b ∈ R3},(1.2)

which is the subspace of the rigid body motions in R3. Multiplying the Stokes equation
by ~a +~b × ~x ∈ M0 and integration by parts yield the compatibility condition of the
Stokes system, i.e., ∫

Γ
~τ(~w)(x) · (~a+~b× ~x)dσx = 0

or

~τ(~w) ⊥M0.

For q ≥ 1, let A be a subspace of (Lq(Γ))3 and denote

(Lq(Γ))3
⊥A = {~f ∈ (Lq(Γ))3|~f ⊥ A}.

The Stokes equation (1.1) describes the steady state of an incompressible viscous
fluid with low velocity in R3. It is a frequently used model in fluid mechanics and
an interesting model in linear elastostatics due to its similarities. During the past
years, considerable attention has been given to the problem of active control of fluid
flows (see [1], [2], [7], [18], [19], and references therein). This interest is motivated by
a number of potential applications, such as control of separation, combustion, fluid-
structure interaction, and super maneuverable aircraft. In the study of those control
problems and Navier–Stokes equations, the Stokes equations, which describe the slow
steady flow of a viscous fluid, play an important role because of the needs in stability
analysis, iterative computation of numerical solutions, boundary control, etc. The
theoretical and numerical discussion of the Stokes equations on smooth or Lipschitz
domains can be found from [14], [16], [17], [22], [25], [26], [27].

Our objective in this paper is to find the optimal surface stress ~u(x) on Γ1,
which yields a desired velocity distribution ~w(x), such that (s.t.) at observation
points Pk, 1 ≤ k ≤ m, the observation values ~w(Pk) are as close as possible to the



OPTIMAL CONTROL OF STOKES FLUIDS WITH POINT OBSERVATIONS 983

target values Zk with a least possible control cost
∫

Γ1
|~u(x)|2dσx, which arise from the

contemporary fluid control problems in the fluid mechanics.
Notice that point observations are assumed in the problem setting, because they

are much easier to be realized in applications than distributed observations. They
can be used in modeling contemporary “smart sensors.”

Sensors can be used in boundary control systems (BCS) governed by partial dif-
ferential equations (PDE) to provide information on the state as a feedback to the
systems. According to the space-measure of the data that sensors can detect, sensors
can be divided into two types, point sensors and distributed sensors. Point sensors are
much more realistic and easier to design than distributed sensors. In contemporary
“smart materials,” piezoelectric or fiber-optic sensors (called smart sensors) can be
embedded to measure deformation, temperature, strain, pressure, etc. Each smart
sensor detects only the average of the data in between the sensor, and its size can
be less than 10−6m [29], [30], [24]. So in any sense, they should be treated as point
sensors. As a matter of fact, so far distributed sensors have not been used in any
real applications, to the best of our knowledge. However, once point observations on
the boundary are used in a BCS, singularities will appear, and very often the system
becomes ill-posed. Mathematically and numerically, it becomes very tough to handle.
On the other hand, when point observations are used in the problem setting, the
state variable has to be continuous, so the regularity of the state variable stronger
than the one in the case of distributed observations is required. The fact is that in
the literature of related optimal control theory, starting from the classic book [23] by
J. L. Lions until recent papers [3], [4] by E. Casas and others, distributed observations
are always assumed and the optimal controls are characterized by an adjoint system.
The system is then solved numerically, typically by a finite-element method, which
cannot efficiently tackle the singularity in the optimal control along the boundary.

On the other hand, since it is important in the optimal control theory to obtain a
state-feedback characterization of the optimal control, with the bound constraints in
the system, the Lagrange–Kuhn–Tucker approach is not desirable because theoreti-
cally it cannot provide us with a state-feedback characterization of the optimal control,
which is important in our regularity/singularity analysis of the optimal control, and
numerically it leads to a numerical algorithm to solve an optimization problem with a
huge number of inequality constraints. A refinement of the boundary will double the
number of the inequality constraints, so the numerical algorithm will be sensitive to
the partition number of the boundary. Since the BCS is governed by a PDE system
in R3, the partition number of the boundary can be very large and any numerical
algorithm sensitive to the partition number of the boundary may fail to carry out
numerical computation or provide reliable numerical solutions.

Recently in the study of a linear quadratic BCS governed by the Laplace equation
with point observations, the potential theory and boundary integral equations (BIE)
have been applied in [20], [10], [11], [12] to derive a characterization of the optimal
control in terms of the optimal state directly and therefore bypass the adjoint system.
This approach shows certain important advantages over others. It provides rather
explicit information on the control and the state, and it is amenable to direct numerical
computation through a boundary element method (BEM), which can efficiently tackle
the singularities in the optimal control along the boundary.

In [10], [11], [9] several regularity results are obtained. The optimal control is
characterized directly in terms of the optimal state. The exact nature of the singular-
ities in the optimal control is exhibited through a decomposition formula. Based on
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the characterization formula, numerical algorithms are also developed to approximate
the optimal control. Their insensitivity to the discretization of the boundary and fast
uniform convergences are mathematically verified in [12], [31].

The case with the Stokes system is much more complicated than the one with the
Laplace equation due to the fact that the fundamental solution of the Stokes system
is matrix-valued and has rougher singular behaviors. In this paper, we assume that
the control is active on a part of the surface and the control variable is bounded by
two vector-valued functions. A Banach space setting has been used in our approach.
We first prove a necessary and sufficient condition for a variational inequality problem
(VIP) which leads to a first-order optimality condition of our original optimization
problem. A characterization of the optimal control and its singularity decomposi-
tion formula are then established. Our approach can be easily adopted to handle
other cases, and it shows the essence of the characterization of the optimal control,
through which gradient-related numerical algorithms can be designed to approximate
the optimal control.

The organization of this paper is as follows. In the rest of section 1, we introduce
some basic definitions and known regularity results that are required in the later devel-
opment. In section 2, we first prove an existence theorem for an orthogonal projection.
Next we derive a characterization result for a variational inequality which serves as
a first-order optimality condition to our LQR problem. Then a state-feedback char-
acterization of the optimal control is established. Section 3 will be devoted to study
regularity/singularity of the optimal control. Since the optimal control contains a sin-
gular term, we first derive a singularity decomposition formula for the optimal control,
with which we find that in general the optimal control is not defined at observation
points. A necessary and sufficient condition that the optimal control is defined at
observation points is then established. Some other regularities of the optimal con-
trol will also be studied in this section. Based on our characterization formulas, in
a subsequent paper, we design a conditioned gradient projection method (CGPM) to
approximate the optimal control. Numerical analysis for its (uniform) convergence
and (uniform) convergence rate are presented there. We show that CGPM converges
uniformly subexponentially, i.e., faster than any integer power of 1

n . Therefore CGPM
is insensitive to discretization of the boundary. The insensitivity of our numerical al-
gorithm to discretization of boundary is a significant advantage over other numerical
algorithms. Since the fundamental solution of the Stokes system is matrix valued with
a very rough singular behavior, numerical analysis is also much more complicated than
the case with scalar-valued fundamental solution, e.g., the Laplacian equation.

Let us now briefly recall some hydrostatic potential theory, BEM, and some known
regularity results. Throughout this paper, for a sequence of elements in Rn, we use
a superscript to denote sequential index and a subscript to denote components, e.g.,
{xk} ⊂ Rn and xk = (xk1 , . . . , x

k
n). We may also use ~xk to emphasize that xk is

a vector. We may write ~w(x, ~u) to indicate that the velocity ~w depends also on ~u.
Unless stated otherwise, we assume p > 2, q > 1 with 1

p + 1
q = 1, | · | is the Euclidean

norm in Rn, and ‖ · ‖ is the norm in (Lh(Γ))n(h ≥ 1).
Let {E(x, ξ), ~e(x, ξ)} = {[Eij(x, ξ)]3×3 , [ei(x, ξ)]3×1} be the fundamental solution

of the Stokes systems, i.e.,

{
∆xE(x, ξ)−∇x~e(x, ξ) = −δ(x− ξ)I3,

divxE(x, ξ) = 0,
(1.3)
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where δ(x − ξ) is the unit Dirac delta function at x = ξ and I3 is the 3 × 3 identity
matrix. It is known [22] that

Eij(x, ξ) =
1

8π

(
δij
|x− ξ| +

(xi − ξi)(xj − ξj)
|x− ξ|3

)
, 1 ≤ i, j ≤ 3,

ei(x, ξ) =
1

4π
xi − ξi
|x− ξ|3 ,

where δi,j is the Kronecker symbol.
Remark 1.1. The significant difference between the case with point observations

and the case with distributed observations is as follows. For a given vector ~V ∈ R3

the function

x 7→
m∑
k=1

µkE(Pk, x)~V(1.4)

has a singularity of order O( 1
|x−Pk| ) at x = Pk; however, it may oscillate between −∞

and +∞ as x→ Pk, so it is very tough to deal with, whereas the function

x 7→
∫

Γ0

E(ξ, x)~V dσξ(1.5)

is well defined and continuous.
On the other hand, if E(Pk, x) in (1.4) and (1.5) is replaced by the fundamental

solution of the Laplace equation, in this case, E(Pk, x) becomes scalar-valued, then
(1.4) has the same order O( 1

|x−Pk| ) of singularity at x = Pk, but the limit as x→ Pk
exists (including −∞ or +∞). So the singularity can be easily handled.

It is then known that the solution (~w, p) of the Stokes equation (1.1) has a simple-
layer representation

~w(x) =
∫

Γ
E(x, ξ)~η(ξ)dσξ + ~a+~b× ~x ∀ x ∈ Ω,(1.6)

p(x) =
∫

Γ
~e(x, ξ) · ~η(ξ)dσξ + a ∀ x ∈ Ω(1.7)

for some constants ~a,~b ∈ R3 and a ∈ R. ~η is called the layer density and ~a +~b × ~x
represents a rigid body motion. By the jump property of the layer potentials, we
obtain the BIE

~τ(~w)(x) =
1
2
~η(x) + p.v.

∫
Γ
T (x, ξ)~η(ξ)dσξ ∀ x ∈ Γ,(1.8)

where p.v. stands for principle value and

T (x, ξ) = [~τx(E1)(x, ξ), ~τx(E2)(x, ξ), ~τx(E3)(x, ξ)] = [Tij(x, ξ)]3×3,

Tij(x, ξ) = − 3
4π

(xi − ξi)(xj − ξj)
|x− ξ|5 (x− ξ) · ~nx.

With a given Neumann B.D., the layer density ~η can be solved from the above BIE
(1.8). Once the layer density is known, the solution (~w(x), p(x)) can be computed
from (1.6) and (1.7). The velocity solution ~w(x) is unique only up to a rigid body
motion, and the pressure solution p(x) is unique up to a constant.
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In BEM, the boundary Γ = Γ1
⋃

Γ0 is divided into N elements with nodal points
xi. Assume that the layer density ~η(x) is piecewise smooth, e.g., piecewise constant,
piecewise linear, etc. Then the BIE (1.8) becomes a linear algebraic system. This sys-
tem can be solved for ~η(xi) and then (~w(x), p(x)) can be computed from a discretized
version of (1.6) and (1.7) for any x ∈ Ω.

For each ~f ∈ (L2(Γ))3 and x ∈ R3, we define the simple layer potential of velocity
Sv(~f) by

Sv(~f)(x) =
∫

Γ
E(x, ξ)~f(ξ)dσξ.

For each ~f ∈ (L2(Γ))3 and x ∈ Γ, we define the boundary operators K and K∗ by

K(~f)(x) = p.v.
∫

Γ
Q(x, ξ)~f(ξ)dσξ,

K∗(~f)(x) = p.v.
∫

Γ
T (x, ξ)~f(ξ)dσξ,

where

Q(x, ξ) = [~τξ(E1)(x, ξ), ~τξ(E2)(x, ξ), ~τξ(E3)(x, ξ)] = [Qij(x, ξ)]3×3,

Qij(x, ξ) =
3

4π
(xi − ξi)(xj − ξj)

|x− ξ|5 (x− ξ) · ~nξ.

Next we collect some regularity results on Sv,K, and K∗ into a lemma. Let

N = ker
(

1
2
I +K∗

)
,

which represents the set of all layer densities corresponding to the zero Neumann
B.D., with which the Stokes system has only a rigid body motion. Hence we have

M0 = Sv(N) = ker
(

1
2
I +K

)
.(1.9)

LEMMA 1.1. Let Ω ⊂ R3 be a bounded, simply connected domain with smooth
boundary Γ.

(a) Sv : (Lp(Γ))3 7→ (C0,α(R3))3 is a bounded linear operator for p > 2 and
0 < α < p−2

p .
(b) For any 1 ≤ p < +∞, K (K∗) : (Lp(Γ))3 7→ (Lp(Γ))3 is a bounded linear

operator and K (K∗) is the adjoint of K∗ (K).
(c) For p > 2 and 0 < α < p−2

p , K : (Lp(Γ))3 7→ (C0,α(Γ))3 is a bounded linear
operator.

(d) For 1 < p <∞
(1) ( 1

2I +K∗) : (Lp(Γ))3
⊥M0

7→ (Lp(Γ))3
⊥M0

is invertible,
(2) ( 1

2I +K) : (Lp(Γ))3
⊥M0

7→ (Lp(Γ))3
⊥N is invertible.

(e) For 1 < q < 2 and s < 2q
2−q , K : (Lq(Γ))3 7→ (Ls(Γ))3 is a bounded linear

operator. Therefore K ◦K : (Lq(Γ))3 7→ (C0,α(Γ))3 for every q > 1 and 0 < α < q−1
q ;

(f) ( 1
2I +K) : (C(Γ))3

⊥M0
7→ (C(Γ))3

⊥N is invertible.
Proof. (a)–(d) can be found from [5], [6], [8], [13], [14], [22], [28].
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To prove (e), since Γ ⊂ R3 is a compact set, it suffices to prove (e) for q < s < 2q
2−q .

Then we have 1
q >

1
s >

1
q−

1
2 = 1

2 + 1
q−1. There exists an ε ∈ (0, 1), s.t. 1

s = 1
2−ε+ 1

q−1.

Let r = 2−ε, α = r′

s′ , β = q′

s′ , where r′, q′, s′ are the conjugates of r, q, s, respectively.
It can be verified that 1 < r < 2 and
1
α

+
1
β

= 1,
(

1− q

s

)
s′ =

q

α
,
(

1− r

s

)
s′ =

r

β
,

1
α
· s
s′

=
s− q
q

,
1
β
· s
s′

=
s− r
r

.

Note

|Qij(x, ξ)| ≤
C

|x− ξ| , 1 ≤ i, j ≤ 3,(1.10)

and (∫
Γ

1
|x− ξ|r dσξ

)
< M <∞ ∀x ∈ Γ,

where M is a constant independent of x ∈ Γ. Let h(x) = K(~f)(x). Applying Hölder’s
inequality twice, we get

|h(x)|s ≤ Cs
(∫

Γ

1
|x− ξ| |

~f(ξ)| dσξ
)s

≤ Cs
(∫

Γ

(
1

|x− ξ|

) r
s

|~f(ξ)|
q
s

(
1

|x− ξ|

)1− rs
|~f(ξ)|1−

q
s dσξ

)s

≤ Cs
(∫

Γ

1
|x− ξ|r |

~f(ξ)|q dσξ
)(∫

Γ

(
1

|x− ξ|

) r
β

|~f(ξ)|
q
α dσξ

) s
s′

≤ Cs
(∫

Γ

1
|x− ξ|r |

~f(ξ)|q dσξ
)(∫

Γ

1
|x− ξ|r dσξ

) s−r
r
(∫

Γ
|~f(ξ)|q dσξ

) s−q
q

≤ CsMs−r
(∫

Γ

1
|x− ξ|r |

~f(ξ)|q dσξ
)
· ‖~f‖s−qq .

Thus

‖h‖Ls(Γ) =
(∫

Γ
|h(x)|s dσx

) 1
s

≤ CM
s−r
s

(∫
Γ

∫
Γ

1
|x− ξ|r |

~f(ξ)|q dσξdσx
) 1
s

· ‖~f‖
s−q
s

q

≤ CM‖~f‖q.

This proves the first part of (e). The second part follows from (c).
To prove (f), by (1.10), Qij(x, ξ) is weakly singular for 1 ≤ i, j ≤ 3. Thus K is

an integral operator with a weakly singular kernel. By Theorem 2.22 in [21], K is
a compact operator from (C(Γ))3 to (C(Γ))3. The rest follows from the Fredholm
alternative (see [21, p. 44].

For a given Neumann B.D. ~g ∈ (Lp(Γ0))3, we extend our control bound constraints
Bl,Bu ∈ (Lp(Γ1))3 to the entire boundary Γ by

Bl(x) =
{
Bl(x), x ∈ Γ1,

~g(x), x ∈ Γ0,
and Bu(x) =

{
Bu(x), x ∈ Γ1,

~g(x), x ∈ Γ0,
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with

Bl(x) ≤ − ~B < ~B ≤ Bu(x) ∀ x ∈ Γ1,

where ~B > 0 is a constant vector depending on ~g and will be specified later. Define
the feasible control set

U =
{
~u ∈ (Lp(Γ))3 | Bl(x) ≤ ~u(x) ≤ Bu(x) ∀ x ∈ Γ and ~u ⊥M0

}
,(1.11)

where ~u ⊥ M0 stands for the compatibility condition of the Neumann B.D. in the
Stokes system (1.1). It is clear that U is a closed bounded convex set in (Lp(Γ))3.

According to Lemma 1.1 (a), for each given Neumann B.D. ~u ∈ U , the Stokes
system (1.1) has a solution ~w in (C(Ω))3 unique up to a vector ~a+~b× ~x ∈M0, i.e.,

~w(x, ~u) = Sv ◦
(

1
2
I +K∗

)−1

(~u)(x) + ~a+~b× ~x, x ∈ Ω,(1.12)

= ~w0(x, ~u) + ~a+~b× ~x, x ∈ Ω,(1.13)

where

~w0(x, ~u) = Sv ◦
(

1
2
I +K∗

)−1

(~u)(x).(1.14)

That is, for each given ~u, the velocity state variable ~w is multiple valued, so the ob-
jective function J(~u) is not well defined. However, among all these velocity solutions,
there is a unique solution ~w s.t.

m∑
k=1

µk|~w(Pk)− ~Zk|2 = min
~h∈M0

m∑
k=1

µk|~w0(Pk) + ~h(Pk)− ~Zk|2.(1.15)

A direct calculation yields that ~w(x) = ~w0(x) + ~a+~b× ~x must satisfy

m∑
k=1

µk(~w0(Pk) + ~a+~b× ~Pk − ~Zk) = 0,

m∑
k=1

µk(~w0(Pk) + ~a+~b× ~Pk − ~Zk)× ~Pk = 0.
(1.16)

Since such a ~w is unique and continuous, the point observations ~w(Pk) in our LQR
problem setting make sense and the LQR problem is well posed.

From (1.14) and Lemma 1.1, we know

|~w(x, ~u)− ~au −~bu × ~x| = |~w0(x, ~u)| ≤ C‖~u‖Lp(Γ))3 ,(1.17)

where C is a constant depending only on Γ. Let us observe (1.16). If we notice that
~w0(x, ~u) is linear in ~u, then we have the following lemma.

LEMMA 1.2. Let ~a0,~b0 ∈ R3 be the unique solution to
~a0

(
m∑
k=1

µk

)
+~b0 ×

(
n∑
k=1

µk ~Pk

)
=

m∑
k=1

µk ~Zk

~a0 ×
(

m∑
k=1

µk ~Pk

)
+

m∑
k=1

µk(~b0 × ~Pk)× ~Pk =
m∑
k=1

µk ~Zk × ~Pk.
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Then for ~u1, ~u2 ∈ U and t1, t2 ∈ R,

~w(x, t1~u1 + t2~u2) = t1 ~w(x, ~u1) + t2 ~w(x, ~u2) + (1− t1 − t2)(~a0 +~b0 × ~x)(1.18)

and

|~w(x, ~u1)− ~w(x, ~u2)| ≤ C‖~u1 − ~u2‖(Lp(Γ))3 ,(1.19)

where C is a constant depending only on Γ.

2. Characterization of the optimal control. We establish an optimality con-
dition of the LQR problem through a VIP. The characterization of the optimal control
is then derived from the optimality condition.

In optimal control theory it is important to obtain a state-feedback characteriza-
tion of the optimal control; i.e., the optimal control is stated as an explicit function
of the optimal state. So the optimal control can be determined by a physical mea-
surement of the optimal state. Our efforts are devoted to deriving such a result.

For each ~f ∈ (L1(Γ))3, we define the vector-valued truncation function

[
~f
]Bu
Bl

=

[fi(x)]Bui(x)
Bli(x) =

 Bui(x) if fi(x) ≥ Bui(x)
fi(x) if Bli(x) < fi(x) < Bui(x)
Bli(x) if fi(x) ≤ Bli(x)

 .

Let 〈·, ·〉 be the pairing on ((Lq(Γ))3, (Lp(Γ))3). Since our feasible control set U
defined in (1.11) is a convex closed bounded set in (Lp(Γ))3, it is known that ~u∗ is an
optimal control of the LQR problem if

〈∇J(~u∗), ~u− ~u∗〉 ≥ 0 ∀ ~u ∈ U .(2.1)

For any α > 0, (2.1) is equivalent to

〈~u∗ − (~u∗ − α∇J(~u∗)), ~u− ~u∗〉 ≥ 0 ∀ ~u ∈ U .(2.2)

To derive an optimality condition, we need to find a characterization of a solution to
the above variational inequality.

THEOREM 2.1. For each f ∈ (Lq(Γ))3, uf is a solution to the variational inequal-
ity

(VIP) 〈uf − f, u− uf 〉 ≥ 0 ∀ u ∈ U

if and only if

uf = [f + zf ]BuBl ,(2.3)

where zf ∈M0 such that [f + zf ]BuBl ⊥M0 (refer to Theorem 2.2 for the existence of
such a zf ).

Moreover, (2.3) is well defined in the sense that if z1 and z2 are two vectors in
M0 s.t.

[f + z1]BuBl ⊥M0 and [f + z2]BuBl ⊥M0;

then

[f(x) + z1(x)]BuBl = [f(x) + z2(x)]BuBl almost everywhere (a.e.) x ∈ Γ.(2.4)
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Proof. By Theorem 2.2, there exists zf ∈ M0 s.t. [f + zf ]BuBl ⊥ M0. Let uf =
[f + zf ]BuBl . We have for each u ∈ U ,

〈uf − f, u− uf 〉
= 〈uf − (f + zf ), u− uf 〉

=
3∑
i=1

∫
Γ

{
[fi(x) + zfi (x)]BuiBli

− (fi(x) + zfi (x))
}{

ui(x)− [fi(x) + zfi (x)]BuiBli

}
dσx

≥ 0,

where the last inequality holds since each integrand, the product of two terms, is
nonnegative.

Next we assume that uf is a solution to the VIP; i.e.,

〈uf − f, u− uf 〉 ≥ 0 ∀ u ∈ U .

Taking u = [f + zf ]BuBl , which is in U , we obtain

〈uf − f, [f + zf ]BuBl − uf 〉 ≥ 0.(2.5)

By the first part, we have

〈[f + zf ]BuBl − f, u− [f + zf ]BuBl 〉 ≥ 0 ∀ u ∈ U .(2.6)

Taking u = uf in (2.6) yields

〈[f + zf ]BuBl − f, uf − [f + zf ]BuBl 〉 ≥ 0.(2.7)

Combining (2.5) with (2.7) gives us

〈uf − [f + zf ]BuBl , u
f − [f + zf ]BuBl 〉 ≤ 0.(2.8)

Thus

uf = [f + zf ]BuBl .

The proof of the second part of the theorem follows directly from taking zf = z1 and
uf = [f + z2]BuBl in (2.8).

In a Hilbert space setting, the above theorem is called a characterization of pro-
jection. When U is a convex closed subset of a Hilbert space H, for each f ∈ H, uf
is a solution to the VIP if and only if

uf = PU (f);

i.e., uf is the projection of f on U . This characterization is used to derive a first-
order optimality condition for convex inequality constrained optimal control problems.
However, this result is not valid in general Banach spaces. Instead we prove a charac-
terization of truncation, which is a special case of a projection. Note that in a Hilbert
space setting, a projection maps a point in the space into a subset of the same space.
However, our truncation is a projection that maps a point in (Lq(Γ))3 into a subset of
(Lp(Γ))3(p > 2, 1

p + 1
q = 1). It crosses spaces. This characterization gives a connection

between the truncation and the solution to VIP, in our case, an optimality condition
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in terms of the gradient. That is, by our characterization of truncation, ~u∗ ∈ U is a
solution to the VIP (2.2) if and only if

~u∗ = [~u∗ − α∇J(~u∗) + ~z∗]BuBl ,(2.9)

where ~z∗ ∈M0 is defined in Theorem 2.2 s.t.

[~u∗ − α∇J(~u∗) + ~z∗]BuBl ⊥M0.

To prove the existence of a rigid body motion zf in (2.3), we establish the following
existence theorem for an orthogonal projection, which is given in a very general case
and plays a key role in establishing the optimality condition. It can be used to
solve LQR problems governed by PDEs, e.g., the Laplacian, the Stokes, the linear
elastostatics, etc., where the PDE has multiple solutions for given Neumann-type
boundary data satisfying a certain orthogonality condition.

THEOREM 2.2. Let Γ be a bounded closed set in Rn and Γ0 ⊂ Γ be a subset s.t.
meas (Γ1) > 0, where Γ1 = Γ \ Γ0. Let ~g ∈ (Lp(Γ0))n and ~Bl, ~Bu ∈ (Lp(Γ))n (p ≥ 2)
be given s.t.

~Bl(x) < − ~B < ~B < ~Bu(x) (a.e.) ∀ x ∈ Γ1,

where ~B = (B, . . . , B) is given by (2.17) and

~Bl(x) = ~g(x) = ~Bu(x) ∀ x ∈ Γ0.

Assume that M0 is an m-dimensional subspace in (Lq(Γ))n (q ≤ 2, 1
p + 1

q = 1) and
M1 = {~z|Γ1 | ~z ∈ M0}. Then a necessary and sufficient condition that for each
~f ∈ (L1(Γ))n there exists ~zf ∈M0 s.t.[

~f(x) + ~zf (x)
]Bu
Bl
⊥M0(2.10)

is that

~g ⊥M c
1 = {~z|Γ0 | ~z ∈M0, ~z|Γ1 = 0}.(2.11)

Moreover the set of all solutions ~zf in (2.10) is locally uniformly bounded in the sense
that for each given ~f ∈ (L1(Γ))n there exist r0 > 0 and b > 0 s.t. for any ~h ∈ (L1(Γ))n

with ‖~f − ~h‖ ≤ r0 and for any ~zh ∈M0 with[
~h(x) + ~zh(x)

]Bu
Bl
⊥M0

we have

‖~zh‖ ≤ b.(2.12)

Proof. Case 1. dim (M1) = dim (M0), i.e., M c
1 = {0}. Let y = (~y1, . . . , ~ym) be an

orthonormal basis in M1 and M0. To prove the first part of the theorem, we have to
show that for each ~f ∈ (L1(Γ))n, there exists Cf = (cf1 , . . . , c

f
m) ∈ Rm s.t.〈[

~f(x) +
m∑
i=1

cfi ~y
i(x)

]Bu
Bl

, ~yj

〉
Γ

= 0 ∀ j = 1, . . . ,m.
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For each ~f ∈ (L1(Γ))n, we define a map Tf : Rm 7→ Rm, for C = (c1, . . . , cm) ∈ Rm,
by

Tf (C) =


〈[

~f(x) +
m∑
i=1

ci~y
i(x)

]Bu
Bl

, ~yj

〉
Γ


j=1,···,m

.(2.13)

Then to prove the first part, it suffices to show that for each ~f ∈ (L1(Γ))n, there
exists Cf ∈ Rm s.t.

Tf (Cf ) = 0.

It is easy to check that for any ~f,~h ∈ (L1(Γ))n and C1, C2 ∈ Rm, there exist two
constants γ1, γ2 depending only on Γ and the basis y s.t.

|Tf (C1)− Th(C2)| ≤ γ1|~f − ~h|L1 + γ2|C1 − C2|.(2.14)

So C 7→ Tf (C) is a bounded (depends on Bl and Bu) Lipschitz continuous map.
To show that Tf has a zero, we prove that there exists a constant R > 0 s.t. when
C ∈ Rm and |C| > R, we have

Tf (C) · C > 0.(2.15)

Once (2.15) is verified, we have

|C − Tf (C)|2 = |C|2 − 2Tf (C) · C + |Tf (C)|2

< |C|2 + |Tf (C)|2 ∀ C ∈ Rm, |C| > R.

By Altman’s fixed-point theorem [15], the map C 7→ C − Tf (C) has a fixed point
Cf ∈ BR (BR is the ball of radius R at the origin), i.e.,

Tf (Cf ) = 0.

So it remains to verify (2.15). Define

D =

{
C = (c1, . . . , cm) ∈ Rm |

m∑
i=1

c2i = 1

}
.

It suffices to show that there exists R > 0 s.t. for t > R,

Tf (tC) · C > 0 ∀ C ∈ D.

In the following, we prove that for each given ~f ∈ (L1(Γ))n and C ∈ D, there exist
r0 > 0 and R > 0 s.t. when t > R, for any ~h ∈ (L1(Γ))n with ‖~f −~h‖L1 ≤ r0, we have

Th(tC) · C > 0 ∀ C ∈ D.

So the second part of the theorem also follows. For each C ∈ D, we denote

~yC(x) =
m∑
i=1

ci~y
i(x).
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It is obvious that ∫
Γ1

|~yC(x)|dσx

is continuous in C and positive on the compact set D. Hence

my = min
C∈D

{∫
Γ1

| ~yC(x)|dσx
}
> 0(2.16)

and we set

B =
maxC∈D

∫
Γ0
|~g(x) · ~yC(x)|dσx
my

.(2.17)

For any given ε > 0, we assume

Bli(x) ≤ −B − ε, Bui(x) ≥ B + ε ∀ x ∈ Γ1, i = 1, . . . , n.

For each C ∈ D, t > 0,

Tf (tC) · C =
m∑
j=1

∫
Γ

[
~f(x) +

m∑
i=1

tci~y
i(x)

]Bu
Bl

· ~yj(x)dσx

 cj

=
∫

Γ
[~f(x) + t~yC(x)]BuBl · ~yC(x)dσx

=
∫

Γ1

[
~f(x) + t~yC(x)

]Bu
Bl
· (~yC(x))dσx +

∫
Γ0

~g(x) · ~yC(x)dσx

=
n∑
i=1

ICi (t) +
∫

Γ0

~g(x) · ~yC(x)dσx,

where for i = 1, . . . , n,

ICi (t) =
∫

Γ
[fi(x) + tyCi (x)]Bui(x)

Bli(x) y
C
i (x)dσx.

Let

ΓC+
i = {x ∈ Γ1 | yCi (x) > 0} and ΓC−i = {x ∈ Γ1 | yCi (x) < 0}.

We have

lim
t→+∞

ICi =
∫

ΓC+
i

Bui(x) · yCi (x)dσx +
∫

ΓC−i

Bli(x) · yCi (x)dσx

≥ (B + ε)
∫

Γ1

|yCi (x)|dσx.

Thus

lim
t→+∞

Tf (tC) · C ≥ (B + ε)
n∑
i=1

∫
Γ1

|yCi (x)|dσx +
∫

Γ0

~g(x) · ~yC(x)dσx

≥ (B + ε)
∫

Γ1

|yC(x)|dσx +
∫

Γ0

~g(x) · ~yC(x)dσx

≥ εmy,
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where my given by (2.16) is independent of C. From (2.14), we see that Tf (C) · C is
continuous in both ~f and C; therefore, there exist RC > 0, rC and δC > 0, as t > RC ,
‖~h− ~f‖L1 ≤ rC , and |C ′ − C| < δC . We have

Th(tC ′) · C ′ ≥ 1
2
εmy > 0.

Since D is compact, there exist C1, . . . , Cs ∈ D and δ1, . . . , δs s.t.

D ⊂ ∪sk=1Bδk(Ck).

Let

R0 = max{RC1 , . . . , RCs} and r0 = min{rC1 , . . . , rCs}.

When t > R0, for all ~h ∈ (L1(Γ))n with ‖~h− ~f‖L1 ≤ r0, we have

Th(tC) · C ≥ 1
2
εmy > 0 ∀ C ∈ D.

So we need only to take

~B = (B, . . . , B)

and

~Bl < − ~B < ~B < ~Bu a.e. on Γ1.

Case 2. m1 = dim (M1) < dim (M0) = m. Let y = (~y1, . . . , ~ym) be an orthonor-
mal basis in M0, where (~y1, . . . , ~ym1) is a basis in M1 with

~yi|Γ0 = 0, (i = 1, . . . ,m1) and ~yj |Γ1 = 0, (j = m1 + 1, . . . ,m).(2.18)

By the proof in Case 1, for each ~f ∈ (L1(Γ))n, there exists Cf = (cf1 , . . . , c
f
m1

) ∈ Rm1

s.t. 〈[
~f(x) +

m1∑
i=1

cfi ~y
i(x)

]Bu
Bl

, ~yj

〉
Γ1

= 0 ∀ j = 1, . . . ,m1.

Then for any cfm1+1, . . . , c
f
m ∈ R, by (2.18), we have〈[

~f(x) +
m∑
i=1

cfi ~y
i(x)

]Bu
Bl

, ~yj

〉
Γ

= 〈~g(x), ~yj〉Γ0 +

〈[
~f(x) +

m1∑
i=1

cfi ~y
i(x)

]Bu
Bl

, ~yj

〉
Γ1

= 0 ∀j = 1, . . . ,m1.

On the other hand, when j > m1, for any c1, . . . , cm ∈ R, by (2.18), we have〈[
~f(x) +

m∑
i=1

ci~y
i(x)

]Bu
Bl

, ~yj

〉
Γ

= 〈~g(x), ~yj〉Γ0 .

Therefore 〈[
~f(x) +

m∑
i=1

ci~y
i(x)

]Bu
Bl

, ~yj

〉
Γ

= 0, j > m1,
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if and only if

〈~g(x), ~yj〉Γ0 = 0, j > m1;

i.e., (2.11) is satisfied. The proof is complete.
Remark 2.1. In the above theorem,
(1) when rigid body motion is considered,

M0 = {~a+~b× ~x | ~a,~b ∈ R3},

we have dim(M0) = dim(M1) = 6, so all the conditions in the theorem are satisfied.
So for each ~f ∈ (L1(Γ))3 there is ~af +~bf × ~x ∈M0 s.t.[

~f + ~af +~bf × ~x
]Bu
Bl
⊥M0;

(2) if

Bl(x) ≡ −∞ or Bu(x) ≡ +∞ on Γ1

the conclusion still holds for each ~f ∈ (Ll(Γ))n (l ≥ 1) and M0 an m-dimensional
subspace of (Lq(Γ))n, where q ≥ 1, 1

h + 1
q = 1, and h = min{l, p}. When h = 1,

q = +∞;
(3) the vector C in (2.13) represents the rigid body motion in our case. From the

above theorem, we can see that the solution Cf such that Tf (Cf ) = 0 is not unique.
The following error estimate contains a uniqueness result, which will also be used

in proving the uniform convergence rate of an algorithm in a subsequent paper.
THEOREM 2.3. Let us maintain all the assumptions in Theorem 2.2. Let ~f,~h be

given in (L1(Γ))n, Cf , Ch be, respectively, two zeros of Tf and Th defined by (2.13).
If

meas (ΓCf ) + meas (ΓCh) > 0,

where

meas (ΓCf ) =
n∑
i=1

meas {x ∈ Γ | Bli(x) < fi(x) + y
Cf
i (x) < Bui(x)},

meas (ΓCh) =
n∑
i=1

meas {x ∈ Γ | Bli(x) < hi(x) + yChi (x) < Bui(x)},

yCf (x) =
m∑
i=1

cfi y
i(x) and yCh =

m∑
i=1

chi y
i(x),

then

|Cf − Ch| ≤ γ‖~f − ~h‖(L1(Γ))n ,(2.19)

where the constant γ is independent of Cf and Ch.
Proof. We may assume that

meas (ΓCf ) > 0.
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For Tf (C), we denote

ΓkC = {x ∈ Γ | Blk(x) < fk(x) + yCk (x) < Buk(x)},

where

yCk (x) =
m∑
i=1

ciy
i
k(x).

Write

meas (ΓC) =
n∑
k=1

meas (ΓkC).

Since Tf (C) is Lipschitz continuous in C, a direct calculation leads to the Fréchet
derivative

T ′f (C) =

[
n∑
k=1

〈yki , ykj 〉ΓkC

]
m×m

a.e. C ∈ Rm,

a Gram-matrix, which is symmetric positive semidefinite; i.e., for any nonzero vector
b = (b1, . . . , bm) ∈ Rm,

(b1, . . . , bm)T ′f (C)(b1, . . . , bm)T =
n∑
k=1

〈
m∑
i=1

biy
k
i ,

m∑
i=1

biy
k
i

〉
ΓkC

≥ 0,

where “>” holds strictly if

meas (ΓC) > 0,

because {~y1, . . . , ~ym} is linearly independent.
On the other hand, we have[
n∑
k=1

〈yki , ykj 〉ΓkC

]
m×m

+

[
n∑
k=1

〈yki , ykj 〉Γ\ΓkC

]
m×m

=

[
n∑
k=1

〈yki , ykj 〉Γ

]
m×m

= Im×m,

where the Gram-matrix [
n∑
k=1

〈yki , ykj 〉Γ\ΓkC

]
m×m

is also symmetric positive semidefinite. Therefore

0 ≤ |T ′f (C)| ≤ 1 a.e. C ∈ Rm,

where “<” holds strictly in the first inequality if meas (ΓC) > 0 and “<” holds strictly
in the second inequality if meas (Γ \ ΓC) > 0. Next, for given f, h in (L1(Γ))n and
two zeros Cf , Ch of Tf and Th, respectively, we let

Ct = tCh + (1− t)Cf , t ∈ (0, 1).
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Since Tf (C) is Lipschitz continuous in C, once meas (ΓCf ) > 0, there exists ε > 0 s.t.

meas (ΓCt) > 0 ∀ 0 < t < ε.

It follows that T ′f (Ct) is a symmetric positive definite matrix with

0 < |T ′f (Ct)| ≤ 1 a.e. 0 < t < ε.

Therefore
∫ 1

0 T
′
f (Ct)dt defines a symmetric positive definite matrix with

0 <
∣∣∣∣∫ 1

0
T ′f (Ct)dt

∣∣∣∣ ≤ 1.

For any 0 < µ < 1, we have

0 <
∣∣∣∣I − µ∫ 1

0
T ′f (Ct)dt

∣∣∣∣ = (1− λf ) < 1

for some 0 < λf < 1. Taking

Cf − µTf (Cf ) = Cf and Ch − µTh(Ch) = Ch

into account, we arrive at

|Cf − Ch| = |Cf − Ch − µ(Tf (Cf )− Th(Ch))|
= |Cf − Ch − µ(Tf (Cf )− Tf (Ch) + Tf (Ch)− Th(Ch))| (use (2.14))

≤
∣∣∣∣I − µ∫ 1

0
T ′f (Ct)dt

∣∣∣∣ |Cf − Ch|+ µγ1‖f − h‖1

= (1− λf )|Cf − Ch|+ µγ1‖f − h‖1.

Consequently we have

|Cf − Ch| ≤
γ1µ

λf
‖f − h‖(L1(Γ))n ,

and the proof is complete.
As a direct consequence of Theorem 2.3, we obtain the following uniqueness result.
COROLLARY 2.4. Let us maintain all the assumptions in Theorem 2.2. For given

~f ∈ (L1(Γ))n, if Cf is a zero of Tf with

meas (ΓCf ) > 0,

then Cf is the unique zero of Tf .
Now we present a state-feedback characterization of the optimal control.
THEOREM 2.5. Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ. The

LQR problem has a unique optimal control ~u∗ ∈ U and a unique optimal velocity state
~w∗ ∈ (C(Γ))3 s.t. 

M∑
k=1

µk(~w∗(Pk)− ~Zk) = 0,

M∑
k=1

µk(~w∗(Pk)− ~Zk)× ~Pk = 0.

(2.20)
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and

~u∗(x) =

[
− 1
γ

(
1
2
I +K

)−1
(

m∑
k=1

µkE(Pk, ·)(~w∗(Pk)− ~Zk)

)
(x) + ~a+~b× ~x

]Bu
Bl

,

∀ x ∈ Γ,(2.21)

where ~a+~b× ~x is defined in Theorem 2.2 s.t. ~u∗ ⊥M0 and M0 is given in (1.2).
Proof. Let X = (Lp(Γ))3

⊥M0
. Since our objective function J(~u) is strictly convex

and differentiable, and the feasible control set U is a closed bounded convex subset
in the reflexive Banach space X, the existence and uniqueness of the optimal control
are well established. Equation (2.20) is just a copy of (1.16). By our characterization
of truncation, Theorem 2.1 with α = 1

2γ ,

~u∗(x) =
[
~u∗(x)− 1

2γ
∇J(~u)(x) + ~a+~b× ~x

]Bu
Bl

∀ x ∈ Γ,

where ~a+~b× ~x ∈M0 is defined in Theorem 2.2 s.t.[
~u∗ − 1

2γ
∇J(~u) + ~a+~b× ~x

]Bu
Bl

⊥M0.

To prove (2.21), we need only to show

∇J(~u) = 2

{(
1
2
I +K

)−1 m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk) + γ~u

}
.(2.22)

Applying (1.9), i.e., M0 = Sv(N) and (2.20), we get
m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk) ∈ (Lq(Γ))3
⊥N ,(2.23)

and then (
1
2
I +K

)−1
{

m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk)

}
∈ (Lq(Γ))3

⊥M0
.(2.24)

Since ∇J(~u) defines a bounded linear functional on X, for any ~h ∈ X, taking (1.12)
into account, we have

〈∇J(~u),~h〉

= 2
m∑
k=1

µk(~w(Pk, ~u)− ~Zk)Sv

((
1
2
I +K∗

)−1
~h

)
(Pk) + 2γ〈~u,~h〉

= 2
m∑
k=1

µk(~w(Pk, ~u)− ~Zk)
∫

Γ
E(Pk, ξ)

[(
1
2
I +K∗

)−1
~h

]
(ξ)dσξ + 2γ〈~u,~h〉

= 2
∫

Γ

(
1
2
I +K

)−1
[
m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk)

]
(ξ) · ~h(ξ)dσξ + 2γ〈~u,~h〉

= 2

〈[(
1
2
I +K)−1

m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk

)]
+ γ~u(·),~h(·)

〉
.

So (2.22) is verified and the proof is complete.
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3. Regularities of the optimal control. It is clear that (2.21) is a feedback
characterization of the optimal control. To obtain such a characterization, α = 1

2γ in
(2.9) is crucial. Later on we will see that α = 1

2γ is also crucial in proving the uniform
convergence of our numerical algorithms in a subsequent paper. Observe that when
Bl = −∞ and Bu = +∞, it corresponds to the LQR problem without constraints on
the control variable. The optimal solution, if it exists, becomes

~u∗(x) = − 1
γ

(
1
2
I +K

)−1
(

m∑
k=1

µkE(Pk, ·)(~w∗(Pk)− ~Zk)

)
(x) + ~a+~b× ~x ∀ x ∈ Γ,

where ~a+~b×~x is defined in Theorem 2.2 s.t. ~u∗ ⊥M0 (see Remark 2.1). But according
to Lemma 1.1 (d), such a solution ~u∗ is only in (Lq(Γ))3 (q < 2), since E(Pk, ·) is only
in (Lq(Γ))3. So it is reasonable to apply bound constraints Bl and Bu on the control
variable ~u. However, we notice that the optimal control still contains a singular term(

1
2
I +K

)−1 m∑
k=1

µkE(Pk, ·)(~w(Pk, ~u)− ~Zk)(x),

which is not computable at x = Pk. In order to carry out the truncation by Bl and
Bu, we have to know the sign of this singular term. Hence we derive a singularity
decomposition formula of (2.21), in which the singular term is expressed as continu-
ous bounded terms plus a simple dominant singular term and a lower-order singular
term. With the simple dominant singular term, the nature of the singularity is clearly
exposed.

THEOREM 3.1. For the optimal control ~u∗ given in (2.21), let

~f∗(x) =
m∑
k=1

µkE(Pk, x)(~w∗(Pk)− ~Zk).

Then(
1
2
I +K

)−1
~f∗(x) = 2~f∗(x)−4K ~f∗(x)+4

(
1
2
I +K

)−1

◦K◦K ~f∗(x)+~a∗+~b∗×~x,

(3.1)

where in the singular part, the second term 4K ~f∗(x) is dominated by the first term
2~f∗(x), whose nature of singularity can be determined at each Pk and the regular term
4( 1

2I +K)−1 ◦ K ◦ K ~f∗(x) is continuous on Γ.
Proof. For given ~g ∈ (Lq(Γ))3

⊥N with q > 2− ε(Γ), we have(
1
2
I +K

)−1

~g = 2~g − 4K~g + 4
(

1
2
I +K

)−1

◦ K ◦ K~g + ~ag +~bg × ~x.(3.2)

Let

~f∗(x) =
m∑
k=1

µkE(Pk, x)(~w∗(Pk)− ~Zk).

By (2.23), ~f∗ ∈ (Lq(Γ))3
⊥N for every q < 2; thus (3.1) follows. The first part

of Lemma 1.1 (e) states that the singularity in 2~f∗ dominates the one in 4K ~f∗,
whereas the second part of Lemma 1.1 (e) and (f) imply that (1

2I +K)−1 ◦K ◦K ~f∗ is
continuous.
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The above singularity decomposition formula plays an important role in our sin-
gularity analysis and also in our numerical computation. It is used to prove the
uniform convergence and to estimate the uniform convergence rate of our numerical
algorithms in a subsequent paper.

Note that the fundamental velocity solution

E(ξ, x) =
{

1
8π

(
δij
|x− ξ| +

(xi − ξi)(xj − ξj)
|x− ξ|3

)}
, 1 ≤ i, j ≤ 3,

is not defined when ξ = Pk and x → Pk, in the sense that when x → Pk, some of
the entries may oscillate between −∞ and +∞. So if we look at the simple dominant
singular term in the singularity decomposition formula of the optimal control, we
can see that in general, the optimal control ~u∗(x) is not defined at Pk, even with the
truncation by Bl and Bu. This is a significant difference between systems with scalar-
valued fundamental solution and with matrix-valued fundamental solution. For the
formal case, e.g., the Laplacian, the optimal control is continuous at every point where
Bl and Bu are continuous. Of course, if Bl(Pk) = Bu(Pk) = ~g(Pk), i.e., Pk ∈ Γ0,
which means the control is not active at Pk, then trivially ~u∗(Pk) = ~g(Pk), a prescribed
value. This is the case when a sensor is placed at Pk, then a control device cannot
be put at the same point Pk. However, in general point observation case, the control
may still be active at Pk. The above analysis then states that the optimal control is
not defined at Pk unless some other conditions are posed. This is the nature of point
observations. Notice that a distributed parameter control is assumed in our problem
setting. Theoretically the values of the control variable at finite points will not affect
the system. However, in numerical computation we can only evaluate the optimal
control ~u∗ at a finite number of points. The observation points Pk’s usually are of the
most interest. On the other hand, the optimal velocity state ~w∗ is well defined and
continuous at Pk whether ~u∗(Pk) is defined or not. So if one does want the optimal
control ~u∗ to be defined at Pk, when Bl(Pk) = Bu(Pk), k = 1, . . . ,m, it is clear that
~u∗(Pk) is defined at each Pk. When Bl(Pk) < Bu(Pk) for some k = 1, . . . ,m, then
we have the following necessary and sufficient condition.

THEOREM 3.2. Let Bl(Pk) < Bu(Pk) for some k = 1, . . . ,m, then the optimal
control ~u∗ is well defined at the observation points Pk if and only if

|(~w(Pk, ~u∗)− ~Zk)i| ≤ 2|(~w(Pk, ~u∗)− ~Zk)j |, 1 ≤ i 6= j ≤ 3,(3.3)

where for each fixed k and i, the equality holds for at most one j 6= i unless

~w(Pk, ~u∗) = ~Zk.

When ~u∗ is well defined at Pk, we have

(~u∗(Pk))i =

{
Bli(Pk) if (~w(Pk, ~u∗)− ~Zk)i < 0,

Bui(Pk) if (~w(Pk, ~u∗)− ~Zk)i > 0.
(3.4)

Proof. If we observe the fundamental velocity solution, we can see that the proof
follows from the following argument. For x = (x1, x2, x3) and 1 ≤ i, j, k ≤ 3,

lim
x→0

ēi(x) = lim
x→0

(ci(
1
|x| +

x2
i

|x|3 ) + cj
xixj
|x|3 + ck

xixk
|x|3 )

= lim
x→0

1
|x|3

(
(cix2

i + cjxixj + cix
2
j ) + (cix2

i + ckxixk + cix
2
k)
)
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exists (including ±∞) if and only if

c2j − 4c2i ≤ 0 and c2k − 4c2i ≤ 0,(3.5)

where at most one equality can hold unless ci = cj = ck = 0. Notice that when (3.5)
holds, ci = 0 leads to cj = ck = 0. So if ci 6= 0 and two equalities hold in (3.5), then

ēi(x) =
ci
|x|3

(
(xi ± xj)2 + (xi ± xk)2) .

We can make the limit either equal to zero by taking xi = ∓xj = ∓xk → 0 or equal
to sign (ci)∞ by taking xi 6= ∓xj or xi 6= ∓xk and x→ 0. So the limit will not exist.
When limx→0 ēi(x) exists and c = (c1, c2, c3) 6= 0, we have

lim
x→0

ēi(x) = sign (ci)∞.

With the above result and the singularity decomposition formula for the optimal
control, the following continuous result can be easily verified.

THEOREM 3.3. Let Bu and Bl be continuous on Γ1. If for each k = 1, . . . ,m
either Bl(Pk) = Bu(Pk) or the condition (3.3) holds strictly with (~w(Pk, ~u0

p)− ~Zk)i 6=
0, then the optimal control ~u∗ is continuous on Γ1. So the equality in (2.4) holds for
every point on Γ.

From the state-feedback characterization (2.20), the control can be determined by
a physical measurement of the state at a finite number of observation points Pk, k =
1, . . . ,m. The question is then asked, “will a small error in the measurement of
the state cause a large deviation in the control?” Due to the appearance of the
singular term in (2.20), in general the answer is yes; i.e., the state-feedback system is
not stable. However, under certain conditions, we can prove that the state-feedback
system is uniformly stable.

THEOREM 3.4. Let ~w(Pk) be the exact velocity state at observation points and
~up be the control determined from (2.20) in terms of ~w(Pk). If for each k = 1, . . . ,m
either Bl and Bu are continuous and equal at Pk or Bu and Bl are locally bounded
at Pk, the condition (3.3) holds strictly with (~w(Pk, ~u0

p) − ~Zk)i 6= 0. Then the state-
feedback system (2.20) is uniformly stable in the sense that for any ε > 0, there is
δ > 0 such that for any measurement ~w′(Pk) of ~w(Pk),

|~u′(x)− ~u(x)| < ε ∀x ∈ Γ whenever |~w′(Pk)− ~w(Pk)| < δ,

where ~u′ is the control determined from (2.20) in terms of ~w′(Pk).
Proof. For each ε > 0. For each fixed k = 1, . . . ,m, if Bl and Bu are continuous

and equal at Pk, there is d′k > 0 s.t.

Bu(x)−Bl(x) < ε ∀x ∈ Γ1, |x− Pk| ≤ d′k.

Since the control variable is bounded by Bl and Bu,

|~u′(x)− ~u(x)| < ε ∀x ∈ Γ1, |x− Pk| ≤ d′k.

If instead the condition (3.3) holds strictly with (~w(Pk, ~u0
p)− ~Zk)i 6= 0, let δ1 > 0 be

chosen so that when |~w′(Pk) − ~w(Pk)| < δ1, condition (3.3) still holds strictly with
(~w′(Pk, ~u0

p) − ~Zk)i 6= 0. Due to the singular term in (2.20) and since Bu and Bl are
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locally bounded at Pk, there is dk > 0 such that when x ∈ Γ and |x − Pk| < dk for
some k = 1, . . . ,m, we have(

− 1
γ

(
1
2
I +K

)−1
[
m∑
k=1

µkE(Pk, ·)(~w′(Pk)− ~Zk)

]
(x) + ~a′ +~b′ × x

)
i

either > Bu(x)i
or < Bl(x)i.

After the truncation by Bu and Bl, it follows that

~u′(x)i = ~u(x)i = either Bu(x)i or Bl(x)i ∀x ∈ Γ1, |x− Pk| < dk.

So if we define

Γ+ = {x ∈ Γ| |x− Pk| < min{d′k, dk, k = 1, . . . ,m} for some k = 1, . . . ,m},

then in either case we have

|~u′(x)− ~u(x)| < ε ∀x ∈ Γ+.

Denote

~F (x) = − 1
γ

(
1
2
I +K

)−1
(

m∑
k=1

µkE(Pk, ·)(~w(Pk)− ~Zk)

)
(x),

~F ′(x) = − 1
γ

(
1
2
I +K

)−1
(

m∑
k=1

µkE(Pk, ·)(~w′(Pk)− ~Zk)

)
(x)

and

meas (ΓCF ) =
3∑
i=1

meas {x ∈ Γ | Bli(x) < (~F (x) + ~a+~b× x)i < Bui(x)},

meas (ΓCF ′ ) =
3∑
i=1

meas {x ∈ Γ | Bli(x) < (~F ′(x) + ~a′ +~b′ × x)i < Bui(x)}.

Since meas (ΓCF ) + meas (ΓCF ′ ) = 0 implies that

~u′(x)i = ~u(x)i = either Bu(x)i or Bl(x)i ∀ x ∈ Γ,

there is nothing to prove. So we assume that meas (ΓCF )+meas (ΓCF ′ ) > 0, and then
Theorem 2.3 can be applied. For x ∈ Γ− = Γ \ Γ+, a compact set, by using (2.20)
and triangle inequality, we obtain

|~u′(x)− ~u(x)| =
∣∣∣∣[~F (x) + ~a+~b× x

]Bu
Bl
−
[
~F ′(x) + ~a′ +~b′ × x

]Bu
Bl

∣∣∣∣
≤
∣∣∣∣∣− 1
γ

(
1
2
I +K

)−1
[
m∑
k=1

µkE(Pk, ·)(~w′(Pk)− ~w(Pk))

]
(x)

∣∣∣∣∣
+ |~a′ +~b′ × x− (~a+~b× x)|

≡ |I1(x)|+ |I2(x)|.
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Since the operator ( 1
2I + K)−1 is linear and bounded, and the function E(Pk, ·) is

continuous and bounded on the compact set Γ−, there is δ2 > 0 such that

|I1(x)| < 1
2
ε ∀x ∈ Γ− when |~w′(Pk)− ~w(Pk)| < δ2.

As for I2(x), Theorem 2.3 yields

|(~a′,~b′)− (~a,~b)| ≤ γ‖~F ′ − ~F‖(L1(Γ))3 ,

where the constant γ depends only on Γ. Since there is constant C0 independent of
~w′(Pk) such that

‖~F ′ − ~F‖(L1(Γ))3 ≤ C0|~w′(Pk)− ~w(Pk)|, k = 1, . . . ,m,

there is δ3 > 0 such that

|I2(x)| = |~a′+~b′× x− (~a+~b× x)| < 1
2
ε ∀x ∈ Γ− whenever |~w′(Pk)− ~w(Pk)| < δ3.

Finally, for δ = min{δ1, δ2, δ3}, we have

|~u′(x)− ~u(x)| < ε ∀x ∈ Γ whenever |~w′(Pk)− ~w(Pk)| < δ for k = 1, . . . ,m.

The proof is complete.
As a final comment, it is worth indicating that although in the problem setting, the

governing differential equation—the Stokes equation—is linear, the bound constraint
on the control variable introduces a nontrivial nonlinearity into the system. This can
be clearly seen in Theorem 2.2. Also, our approach can be adopted to deal with
certain nonlinear boundary control problems.
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Abstract. In this paper we present two new concepts related to the solution of systems of non-
smooth equations (NE) and variational inequalities (VI). The first concept is that of a normal merit
function, which summarizes the simple basic properties shared by various known merit functions. In
general, normal merit functions are locally Lipschitz, but not differentiable. The second concept is
that of a Newtonian operator, whose values generalize the concept of the Hessian for normal merit
functions. These two concepts are then used to generalize the nonsmooth Newton method for solving
the equation ∇f(x) = 0, where f is a normal merit function with f ∈ C1, to the case where f is only
locally Lipschitz and the set-valued inclusion 0 ∈ ∂f(x) needs to be solved. Combining the resulting
generalized Newton method with certain first-order methods, we obtain a globally and superlinearly
convergent algorithm for minimizing normal merit functions.

Key words. normal merit function, generalized Newton method, first-order algorithm, global
convergence, superlinear convergence
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1. Introduction. Throughout this paper, we let F : <n → <n be a locally
Lipschitz continuous mapping.

The NE problem is to find a vector x ∈ <n such that

F (x) = 0.(1.1)

Let S be a nonempty closed convex set in <n. The VI problem is to find a vector
x ∈ S such that

〈F (x), y − x〉 ≥ 0 for all y ∈ S,(1.2)

where 〈·, ·〉 denotes the inner product in <n. When S = <n, VI reduces to NE. A
comprehensive survey of VI is given in [11]. On the other hand, the VI problem
(1.2) can be reformulated in the form of the NE problem (1.1) [19]. There are other
problems, such as the nonlinear complementarity problem and the maximal monotone
operator problem, which can be reformulated as an NE problem. A survey of NEs is
given in [19]. In this paper, by “the problem,” we mean either the NE problem or the
VI problem.

We propose to solve the NE and VI problems by minimizing a merit function,
f : <n → <, using a new extension of Newton’s method. A natural merit function f
for the NE problem is the norm function

fn(x) :=
1
2
〈F (x), F (x)〉.(1.3)
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In this case, with f = fn : <n → <, the merit function satisfies the following four
properties:

(i) f(x) ≥ 0 for all x ∈ <n;
(ii) f(x∗) = 0 if and only if x∗ solves the problem (here, NE);

(iii) f is locally Lipschitz;
(iv) f is strictly differentiable with the derivative equal to zero at a solution x∗

of the problem.
In general, by Rademacher’s theorem, any locally Lipschitz continuous function

H : <n → <m is differentiable almost everywhere, and the B-differential of H at x is
given by

∂BH(x) := {V ∈ <n×m |V = lim
xk→x

∇H(xk)T , xk ∈ ΩH},

where ΩH := {x ∈ <n |H is differentiable atx} [24]. For any x ∈ <n, ∂BH(x) is a
nonempty compact set consisting of n × n matrices. On the other hand, the Clarke
Jacobian of H [2] at x is defined by

∂H(x) := conv ∂BH(x).

We will use g to denote ∇f if it exists, and G to denote ∂f . Using this notation,
property (iv) can be expressed as follows:

G(x∗) ≡ ∂f(x∗) = ∂Bf(x∗) = {g(x∗)} = {0}.

For the VI problem we can use the recently discovered D-gap function [10, 21, 29].
The D-gap function fd : <n → < is defined by

fd(x) := hα(x)− hβ(x),(1.4)

where α and β are arbitrary positive parameters such that α < β and hα is the
regularized gap function

hα(x) := max
y∈S

{
〈F (x), x− y〉 − α

2
‖x− y‖2

}
.(1.5)

(The function hβ is defined similarly with α replaced by β.) The D-gap function fd
also satisfies properties (i)–(iv) [10, 21, 29].

We call a merit function for an NE or VI problem a normal merit function if it
satisfies properties (i)–(iv) above, as well as the following fifth property:

(v) there exists an auxiliary function p : <n × <n×n → <n such that for any
x ∈ <n and any a ∈ G(x) there is V ∈ ∂F (x) such that

a = p(x, V ).(1.6)

For f = fn, we may let

p(x, V ) = V TF (x).(1.7)

In particular, when F is smooth, a = ∇fn(x), V = Fx(x), and (1.6) holds automati-
cally.

Thus we see that the norm function is a normal merit function for the NE problem.
In section 3, we will show that the D-gap function also satisfies property (v). Hence
it is a normal merit function for the VI problem.

The results in this paper remain true if we replace the definition G := ∂f by
G := ∂Bf and the V ∈ ∂F (x) by a V ∈ ∂BF (x) in (1.6).
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Note that most merit functions for the nonlinear complementarity problem can
be classified as special cases of the norm function for NE or the D-gap function for VI.
Many recently developed algorithms for the nonlinear complementarity problem are
based on the norm function of the Fischer NE function or the Pang min NE function
of the nonlinear complementarity problem [3, 5, 6, 7, 8, 9, 13, 14, 16, 19, 28], while the
implicit Lagrangian of the nonlinear complementarity problem [17] can be regarded
as a special case of the D-gap function for VI with S = <n+ [15, 16].

In this paper we will consider the problem of minimizing a normal merit function
f for either NE and VI. Thus we need to solve

min
x∈<n

f(x).(1.8)

When f is smooth, the associated stationarity problem for (1.8) is to find an x such
that

g(x) = 0.(1.9)

Note that (1.9) turns out to be a system of NE, since g, in general, is not differentiable.
A class of superlinearly convergent generalized Newton methods for solving NE has
been developed in [24], [26], and [19]. Suppose that g is locally Lipschitz continuous.
The generalized Newton method for solving (1.9) is of the form

xk+1 = xk − V −1
k g(xk),(1.10)

where Vk is an n × n symmetric matrix, which belongs to either ∂g(xk) or ∂Bg(xk).
Note that all matrices in ∂g(x) are symmetric. If x∗ is a solution of (1.9), g is
semismooth at x∗, and all the matrices in ∂g(x∗) or ∂Bg(x∗) (dependent upon the
choice of Vk in (1.10)) are nonsingular, then the generalized Newton method (1.10)
is locally superlinearly convergent at x∗. Furthermore if g is strongly semismooth at
x∗, this convergence is quadratic [24, 26, 19].

However, if f is the D-gap function fd for VI, even when F is smooth, the above
generalized Newton method has difficulties:

i) It depends on the Rademacher theorem for the construction of ∂g or ∂Bg.
Since the Rademacher theorem does not apply in infinite dimensional spaces, the
above generalized Newton method cannot be extended to infinite dimensional spaces.

ii) Even if g is locally Lipschitz continuous, as required by the Rademacher theo-
rem, and the problem is finite dimensional, as in this paper, it is difficult to calculate
a V in either ∂g(x) or ∂Bg(x) when g = ∇fd since there are no exact calculus rules
for the Clarke generalized Jacobian and the B-differential.

iii) It follows from the definitions of ∂g and ∂Bg that the computation of a V
in either ∂g(x) or ∂Bg(x) when g = ∇fd involves the computation of the second
derivative of F or the generalized Jacobian of ∇F . This is not practical even if ∇2F
exists. When F is only continuously differentiable, the generalized Jacobians of ∇F ,
∂(∇F ), and ∂B(∇F ) do not exist at all.

In [27], some approximate substitutes called computable generalized Jacobians
are introduced to overcome the above difficulties. Using these computable generalized
Jacobians, a globally and superlinearly convergent algorithm for minimizing the D-
gap function for the VI problem is presented in [27] when F is smooth and S is defined
by some twice-smooth convex functions. In that algorithm, the local method is the
generalized Newton method while the global part of that algorithm is a trust region
method. Notably, the generalized Newton method for solving (1.9) with g = ∇fd
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in [27] does not require that ∇F or g are locally Lipschitz continuous. The D-gap
function is further studied in [15].

When F is only locally Lipschitz, the stationarity problem associated with (1.8)
is to find an x such that

0 ∈ G(x).(1.11)

So far, there are no generalized Newton methods which solve a system of linear
equations as a subproblem, for solving such a set-valued inclusion problem.

In this paper, we will introduce a new operator, called a Newtonian operator.
For any x ∈ <n, the value of the Newtonian operator, T (x), is a compact set of
n × n symmetric matrices. We will call to the value of the Newtonian operator
a Newtonian. The calculation of a Newtonian does not involve any second-order
properties of F , and Newtonian operators exist even when F is only locally Lipschitz.
We will construct a local, superlinearly convergent generalized Newton method, based
on our Newtonian operator, for solving both (1.9) and (1.11). Then we will construct
a general globally convergent model of some first-order algorithms for solving (1.9)
and (1.11). Combining the generalized Newton method and the general model of
first-order methods, we will present a general globally and superlinearly convergent
algorithm for minimizing a normal merit function in this class.

We use ‖ · ‖ for the 2-norms and denote N = {0, 1, 2, . . .}.
2. Newtonian operators and a generalized Newton method. We now

formally define the Newtonian operator.
DEFINITION 2.1. Suppose that F is locally Lipschitz and f is a normal merit

function. Let G = ∂f . Suppose that T is a set-valued operator mapping from <n to
<n×n. We say that T is a Newtonian operator of f if for any x∗ solving the problem,
there is a neighborhood U(x∗) of x∗ such that

i) T is upper semicontinuous at x∗;
ii) for any x ∈ U(x∗), T (x) is a nonempty compact set of n × n symmetric

matrices;
iii) there is an auxiliary, possibly set-valued, operator q mapping from <n×<n×n

to <n×n such that for any x ∈ U(x∗) and W ∈ T (x) there is a V ∈ ∂F (x) such that
W ∈ q(x, V );

iv) for d ∈ <n small enough, any V ∈ ∂F (x∗ + d) and any W ∈ q(x∗ + d, V )
(W = q(x∗ + d, V ) if the latter is single-valued),

p(x∗ + d, V )−Wd = o(‖d‖),(2.1)

where p is the auxiliary function in the definition of the normal merit function. We
call T a strong Newtonian operator of f if instead of (2.1) we have

p(x∗ + d, V )−Wd = O(‖d‖2).(2.2)

If F is smooth, we may combine iii) and iv) in the above definition as
iii)′ for d ∈ <n small enough and any W ∈ T (x∗ + d),

g(x∗ + d)−Wd = o(‖d‖).
Recall [26, 25] that a locally Lipschitz continuous function F is said to be semi-

smooth at x ∈ <n if and only if F is directionally differentiable at x and for any
V ∈ ∂F (x+ d),

F ′(x; d) = V d+ o(‖d‖).(2.3)
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If F is semismooth at x, then for any V ∈ ∂F (x+ d),

F (x+ d) = F (x) + V d+ o(‖d‖).(2.4)

We say that F is strongly semismooth at x if F is semismooth at x and for any
V ∈ ∂F (x+ d),

F ′(x; d) = V d+O(‖d‖2).(2.5)

If F is strongly semismooth at x, then for any V ∈ ∂F (x+ d),

F (x+ d) = F (x) + V d+O(‖d‖2).(2.6)

PROPOSITION 2.2. Consider (1.1). Suppose that F is semismooth at all solutions
of (1.1). Let T be defined by T (x) = {V TV | V ∈ ∂F (x)}. Then T is a Newtonian
operator of fn, where fn is the norm function of NE. If F is strongly semismooth at
all solutions of (1.1), then T is a strong Newtonian operator of fn.

Proof. Clearly, properties i) and ii) of Definition 2.1 hold for T . Let q(x, V ) =
V TV . Then property iii) holds for T . Let V ∈ ∂F (x∗ + d) and W = q(x∗ + d, V ).
Then by (1.7),

p(x∗ + d, V )−Wd = V TF (x∗ + d)− V TV d

= V T [F (x∗ + d)− V d]

= V T [F (x∗ + d)− F (x∗)− V d] (since F (x∗) = 0)

= o(‖d‖) (by (2.4)).

This shows that property iv) of Definition 2.1 holds for T . Hence T is a Newtonian
operator of fn. Similarly, when F is strongly semismooth, we can show that T is a
strong Newtonian operator. This completes the proof.

In the next section, we will show that the D-gap function has a Newtonian op-
erator even when F is only locally Lipschitz. Note that Newtonian operators of a
normal merit function are not unique. Suppose that T is a Newtonian operator of a
normal merit function f , x0 is a fixed point in <n, and M is a fixed n× n symmetric
matrix. Define T0(x) ≡ T (x) if x 6= x0 and T0(x0) = T (x0) ∪ {M}. Then T0 is also a
Newtonian operator of f .

We now propose a generalized Newton method for solving (1.11) as follows:

xk+1 = xk −W−1
k p(xk, Vk),(2.7)

where Vk ∈ ∂F (xk) and Wk ∈ q(xk, Vk).
Note that, even when F is smooth, (2.7) is more general than (1.10).
For any x0 ∈ <n and δ > 0, let N(x0; δ) = {x ∈ <n : ‖x− x0‖ ≤ δ}. The proof of

the following lemma follows directly [26] from the first two properties of a Newtonian
operator.

LEMMA 2.3. Suppose that x∗ is a solution of the problem. If all W ∈ T (x∗)
are nonsingular, then there are c > 0 and δ > 0 such that for all x ∈ N(x∗; δ), all
W ∈ T (x) are nonsingular and

‖W−1‖ ≤ c.(2.8)

We now can state the superlinear convergence theorem for our generalized Newton
method (2.7).
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THEOREM 2.4. Suppose that T is a Newtonian operator of a normal merit function
f , x∗ is a solution of the problem, and all W ∈ T (x∗) are nonsingular. Then the
generalized Newton method (2.7) converges to x∗ superlinearly in a neighborhood of
x∗. Furthermore if T is a strong Newtonian operator of f , then this convergence is
quadratic.

Proof. For x close to x∗ enough, we have

‖xk+1 − x∗‖ = ‖xk − x∗ −W−1
k p(xk, Vk)‖ (by (2.7))

≤ ‖W−1
k ‖ · ‖p(xk, Vk)−Wk(xk − x∗)‖

≤ c‖p(xk, Vk)−Wk(xk − x∗)‖ (by (2.8))

= o(‖xk − x∗‖) (by (2.1)).

This shows superlinear convergence. Quadratic convergence can be proved similarly
under the condition that T is a strong Newtonian. This completes the proof.

Combining Proposition 2.2 and Theorem 2.4 and noting the equivalence between
nonsingularity of all matrices in ∂F (x∗) and nonsingularity of all matrices in T (x∗),
we have the following corollary.

COROLLARY 2.5. Suppose that F is locally Lipschitz on <n and semismooth at a
solution x∗ of (1.1). Suppose that all matrices in ∂F (x∗) are nonsingular. Then in a
neighborhood of x∗, the Gauss–Newton method

xk+1 = xk − (V Tk Vk)−1V Tk F (xk),

where Vk ∈ ∂F (xk), converges to x∗ superlinearly. If F is strongly semismooth at x∗,
then this convergence is quadratic.

If we use ∂B instead of ∂ throughout our discussion, then we have the following
result.

COROLLARY 2.6. Suppose that F is locally Lipschitz on <n and semismooth at a
solution x∗ of (1.1). Suppose that all matrices in ∂BF (x∗) are nonsingular. Then in
a neighborhood of x∗, the Gauss–Newton method

xk+1 = xk − (V Tk Vk)−1V Tk F (xk),

where Vk ∈ ∂BF (xk), converges to x∗ superlinearly. If F is strongly semismooth at
x∗, then this convergence is quadratic.

3. The VI problem. We now consider the D-gap function fd, defined by (1.4)
and (1.5). By [29], it satisfies properties (i)–(iv) of a normal merit function.

Assume that F is locally Lipschitz on <n. By [27], if F is differentiable at x, then

g(x) ≡ ∇fd(x)

= ∇F (x)(yβ(x)− yα(x)) + (β − α)x+ (αyα(x)− βyβ(x)),

where yα(x) = ΠS(x−α−1F (x)), yβ(x) = ΠS(x−β−1F (x)), and ΠS is the projection
operator on the set S. From this, we have

G(x) = ∂fd(x) = {p(x, V ) | V ∈ ∂F (x)},

where

p(x, V ) = (V T − αI)(x− yα(x))− (V T − βI)(x− yβ(x)).
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Hence property (v) of a normal merit function is also satisfied. This shows that fd is
a normal merit function of the VI problem.

Throughout the rest of this paper, we assume that

S = {y ∈ <n | hi(y) ≤ 0, i = 1, . . . ,m},(3.1)

where each hi is twice-continuously differentiable and convex. In [27], a computable
generalized Hessian of the D-gap function was constructed for such a set S when F
is smooth. By Lemma 4.1 of [27], such a computable generalized Hessian is in fact
a Newtonian operator of the D-gap function. We now extend this result to the case
when F is only locally Lipschitz on <n and semismooth at solutions.

Let x ∈ <n and ȳ = ΠS(x). Then ȳ is the unique solution of the following
nonlinear programming problem in y :

min
1
2
‖y − x‖2

subject to hi(y) ≤ 0, i = 1, . . . ,m.

(3.2)

LetM(x) denote the set of multipliers λ ∈ <m that satisfy KKT optimality conditions
for (3.2) at ȳ:

ȳ − x+
m∑
i=1

λi∇hi(ȳ) = 0,

λi ≥ 0, hi(ȳ) ≤ 0, λihi(ȳ) = 0, i = 1, . . . ,m.

(3.3)

For any y ∈ <n, we will denote the active set by

I(y) = {i | hi(y) = 0}.

For a nonnegative vector d ∈ <m, we let supp(d), called the support of d, be the
subset of {1, . . . ,m} consisting of the indices i for which di > 0. Let C(x) be a family
of subsets of {1, . . . ,m} defined as follows: J ∈ C(x) if and only if

supp (λ) ⊆ J ⊆ I(ȳ)(3.4)

for some λ ∈ M(x). We say that the linear independence constraint qualification
(LICQ) holds at ȳ if the family of vectors

{∇hi(ȳ) | i ∈ I(ȳ)}

are linearly independent. We say that the constant rank constraint qualification
(CRCQ) holds at ȳ if there exists a neighborhood N(ȳ) of ȳ such that for every set
J ⊆ I(ȳ), the family of gradient vectors

{∇hi(y) | i ∈ J}

has the same rank (which depends on J) for all vectors y ∈ N(ȳ) [12, 20]. Clearly,
CRCQ is weaker than LICQ.

Let B(x) be the subfamily of C(x) such that J ∈ B(x) if and only if J ∈ C(x) and
the vectors

{∇hi(ȳ) | i ∈ J}(3.5)
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are linearly independent. Here, we allow the empty index set to be a member of B(x)
and C(x).

For any x ∈ <n where CRCQ holds, we define

ΛS(x) := {P (x;J) | J ∈ B(x)},(3.6)

where P (x; ∅) = I and if J 6= ∅,

P (x;J) = C−1 − C−1D
(
DTC−1D

)−1
DTC−1,(3.7)

with

C ≡ C(x;J) ≡ I +
m∑
i=1

λi(x;J)∇2hi(ΠS(x)), D ≡ D(x;J) ≡ ∇hJ(ΠS(x)),(3.8)

and λ = λ(x;J) is the multiplier used in (3.4) for the definition of J . Notice that the
matrix C = C(x, J) does not depend on the multipliers under CRCQ, at least as it
operates on critical directions [20]. Since the vectors in (3.5) are linearly independent,
by (3.3), λ = λ(x;J) is uniquely determined by x and J .

Summarizing Lemmas 2.1–2.3 of [27], we have the following lemma.
LEMMA 3.1. If CRCQ holds at ȳ = ΠS(x), then there exists a neighborhood N(x)

of x, and for each J ∈ B(x) there exists a function y(·;J), such that
(i) for all J ∈ B(x), both y(·;J) and λ(·;J) are continuously differentiable in

N(x); and for all z ∈ N(x),
(ii) CRCQ holds at ΠS(z);
(iii) B(z) ⊆ B(x);
(iv) ΠS(z) = y(z;J) for all J ∈ B(z);
(v) P (z;J) = ∇y(z;J) is symmetric positive semidefinite and ‖P (z;J)‖ ≤ 1, for

all J ∈ B(z).
The following theorem follows from the above lemma.
THEOREM 3.2. If CRCQ holds at ȳ = ΠS(x), then for any P ∈ ΛS(x+ d),

ΠS(x+ d) = ΠS(x) + Pd+ o(‖d‖).(3.9)

Furthermore if all ∇2hi are locally Lipschitz, then

ΠS(x+ d) = ΠS(x) + Pd+O(‖d‖2).

Proof. By Lemma 3.1, for ‖d‖ small enough and P ∈ ΛS(x+ d),

ΠS(x+ d)−ΠS(x)− Pd = y(x+ d;J)− y(x;J)−∇y(x;J)d

for some J ∈ B(x). Hence, we have our first conclusion.
If all∇2hi are locally Lipschitz, then by (3.7) and (3.8), P (·;J) is locally Lipschitz.

The second conclusion follows now.
We now can state the main result in this section.
THEOREM 3.3. Consider (1.2). Suppose that F is semismooth and CRCQ holds

at all solutions of (1.2). Let T be defined by T (x) = {q(x, V ) | V ∈ ∂F (x)}, where

q(x, V )

= (V T − αI)(I − ΛS(x− α−1F (x))(I − α−1V ))

−(V T − βI)(I − ΛS(x− β−1F (x))(I − β−1V )).
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Then T is a Newtonian operator of fd, where fd is the D-gap function of the VI
problem. Furthermore if all ∇2hi are locally Lipschitz and F is strongly semismooth
at all solutions of (1.2), then T is a strong Newtonian operator of fd.

Proof. Suppose that x∗ is a solution of (1.2). Then

x∗ = ΠS(x∗ − α−1F (x∗)) = ΠS(x∗ − β−1F (x∗)).(3.10)

By Lemma 3.1, ΛS is upper semicontinuous at x∗. Since ∂F is a closed operator,
T is upper semicontinuous at x∗. This proves that property i) of the definition of a
Newtonian operator holds for T .

By Lemma 3.1 and (3.10), for x in a neighborhood of x∗, ΛS(x − α−1F (x))
and ΛS(x − β−1F (x)), are nonempty, compact sets of n × n symmetric matrices.
Then, property ii) of the definition of a Newtonian operator follows, for T , from the
expression of q(x, V ).

By the definition of q(x, V ), property iii) of the definition of a Newtonian operator
holds.

Let V ∈ ∂F (x∗ + d) and W ∈ q(x∗ + d, V ). Then there are Pα ∈ ΛS(x∗ + d −
α−1F (x∗ + d)) and Pβ ∈ ΛS(x∗ + d− β−1F (x∗ + d)) such that

W = (V T − αI)(I − Pα(I − α−1V ))− (V T − βI)(I − Pβ(I − β−1V )).

For ‖d‖ small enough, we have

p(x∗ + d, V )−Wd

= (V T − αI)[x∗ + d−ΠS(x∗ + d− α−1F (x∗ + d))− (I − Pα(I − α−1V ))d]

−(V T − βI)[x∗ + d−ΠS(x∗ + d− β−1F (x∗ + d))− (I − Pβ(I − β−1V ))d]

= (V T − αI)[ΠS(x∗ − α−1F (x∗))−ΠS(x∗ + d− α−1F (x∗ + d)) + Pα(d− α−1V d)]

−(V T − βI)[ΠS(x∗ − β−1F (x∗))−ΠS(x∗ + d− β−1F (x∗ + d)) + Pβ(d− β−1V d)]

(by (3.10))

= (V T − αI)[α−1Pα(F (x∗ + d)− F (x∗)− V d) + o(‖α−1(F (x∗ + d)− F (x∗))− d‖)]

−(V T − βI)[β−1Pβ(F (x∗ + d)− F (x∗)− V d) + o(‖β−1(F (x∗ + d)− F (x∗))− d‖)]

(by (3.9))

= (V T − αI)[Pα · o(‖d‖) + o(‖F (x∗ + d)− F (x∗)‖) + o(‖d‖)]

−(V T − βI)[Pβ · o(‖d‖) + o(‖F (x∗ + d)− F (x∗)‖) + o(‖d‖)]

(by (2.4))

= (V T − αI) · o(‖d‖)− (V T − βI) · o(‖d‖)

(by Lemma 3.1)

= o(‖d‖),
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where the last equality is due to local boundedness of ∂F . This shows that property
iv) of Definition 2.1 holds for T . Hence T is a Newtonian operator of fd. Similarly we
can prove the strong conclusion from the strong condition. This completes the proof.

Note that fd will reduce to (α−1 − β−1)fn if S = <n. Hence we may think
the generalized Newton method (2.7) applied to fd as a generalized version of the
Gauss–Newton method for solving the VI problem.

4. First-order methods. Our globalization algorithm for the local Newton
methods that we have described depends on the use of first-order, unconstrained opti-
mization methods that are locally uniformly cost decreasing. We define this property
as follows.

DEFINITION 4.1. Consider the unconstrained optimization problem

min
x∈<n

f(x),(4.1)

where f is at least locally Lipschitz continuous. We will say that an algorithm iteration
map A : <n → 2<

n

is locally uniformly cost decreasing, with respect to (4.1), if
(i) for any x ∈ <n such that 0 /∈ ∂f(x), there exists a ρx > 0 and a δx > 0 such

that

f(x′′)− f(x′) ≤ −δx(4.2)

for all x′ ∈ N(x; ρx) and all x′′ ∈ A(x′); and
(ii) for all x such that 0 ∈ ∂f(x), A(x) = {x}.
The most important property of algorithms that are locally uniformly cost de-

creasing, with respect to problem (4.1), is given below.
THEOREM 4.2. Suppose that the algorithm iteration map A : <n → 2<

n

is locally
uniformly cost decreasing with respect to problem (4.1) and that, given an x0 ∈ <n,
the sequence {xi}∞i=0 is constructed according to the rule

xi+1 ∈ A(xi), i = 0, 1, 2, . . . .(4.3)

Then every accumulation point x̂ of {xi}∞i=0 is stationary (i.e., 0 ∈ ∂f(x̂)).
Proof. Without loss of generality, we can assume that 0 /∈ ∂f(xi) for all i ∈ N.

Hence it follows from (4.2) that f(xi+1) < f(xi) for all i ∈ N, and hence, if {xi}∞i=0
has an accumulation point x̂, we must have that f(xi)→ f(x̂), as i→∞.

For the sake of contradiction, suppose that 0 /∈ ∂f(x̂). Then, since x̂ is an
accumulation point of {xi}∞i=0, it follows from (4.2) that there exists a δ̂ > 0 and a
subsequence {xik}∞i=0 of {xi}∞i=0, such that xik → x̂ as k →∞, and

f(xik+1)− f(xik) ≤ −δ̂(4.4)

for all k ∈ N. Since this implies that f(xi)→ −∞ as i→∞, we have a contradiction,
which completes our proof.

When the function f in (4.1) is continuously differentiable, we have at least two
choices of an algorithm iteration map A : <n → 2<

n

, which is locally uniformly cost
decreasing, with respect to problem (4.1). The first is the iteration map of Armijo
gradient method [1]; the other is a class of trust region methods.

THEOREM 4.3. Suppose that the function f in (4.1) is continuously differentiable.
Consider the Armijo gradient method iteration map A : <n → 2<

n

, for problem (4.1),
defined by

A(x) := {x− λ(x)∇f(x)},(4.5)
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where, for fixed α, β ∈ (0, 1),

λ(x) := max
k∈N
{βk|f(x− βk∇f(x))− f(x) + βkα‖∇f(x)‖2 ≤ 0}.(4.6)

The map A is locally uniformly cost decreasing, with respect to problem (4.1).
Proof. Suppose that x∗ ∈ <n is such that ∇f(x) 6= 0. Let ε > 0 be such that

α+ ε < 1. Then there exists a k∗ ∈ N such that

f(x∗ − βk∗∇f(x∗))− f(x∗) ≤ −βk∗(α+ ε)‖∇f(x∗)‖2.(4.7)

Rearranging the terms in (4.7), we obtain that

f(x∗ − βk∗∇f(x∗)) + βk
∗
α‖∇f(x∗)‖2 ≤ −βk∗ε‖∇f(x∗)‖2.(4.8)

It now follows from the continuity of f and of ∇f that there exists a ρ∗ > 0 such
that for all x ∈ N(x∗; ρ∗), λ(x) ≥ βk∗ and ‖∇f(x)‖2 ≥ 1/2 ‖∇f(x∗)‖2. Hence for all
x ∈ N(x∗; ρ∗),

f(A(x))− f(x) ≤ −1/2 βk
∗
α‖∇f(x∗)‖2 := −δ∗,(4.9)

which completes our proof.
Referring to [23], we find that when the function f in (4.1) is continuously differen-

tiable, the following trust region algorithm iteration map is uniformly cost decreasing,
with respect to problem (4.1).

Let H be a symmetric n×n matrix-valued function defined on <n, let φ : <n → <
be defined by

φ(h) := 〈∇f(x), h〉+ 1/2 〈h,H(x)h〉,(4.10)

let α, β ∈ (0, 1), σmax > 0 be parameters, let ∆ : <n × N→ <n be defined by

∆(x, k) := min
λ
{φ(−λ∇f(x))|λ‖∇f(x)‖ ≤ βkσmax},(4.11)

for any x ∈ <n, k ∈ N, let G(x, k) ⊂ <n be defined by

G(x, k) := {h ∈ <n|φ(h) ≤ ∆(x, k)},(4.12)

and let

(D(x),K(x)) := arg max{βk|k ∈ N, h ∈ G(x, k), f(x+ h)− f(x) ≤ αφ(h)}.(4.13)

Then we define the set-valued trust region algorithm iteration map A : <n → 2<
n

as
follows:

A(x) := {x+ h|h ∈ D(x)}.(4.14)

We infer from Theorem 1.2.29 in [23] the following result.
THEOREM 4.4. Suppose that the function f in (4.1) is continuously differentiable

and that there exists a c ∈ (0,∞) such that ||H(x)|| ≤ c for all x ∈ <n. Then the
trust region algorithm iteration map A, defined by (4.14), is locally uniformly cost
decreasing, with respect to (4.1).

When the function f in (4.1) is only locally Lipschitz continuous, we can use al-
gorithms based on augmented convergent direction finding maps that were introduced
in [22]. These were defined as follows.
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DEFINITION 4.5. Let f : <n → < be locally Lipschitz continuous. We shall say
that Ḡf : <n → 2<

n+1
is an augmented convergent direction finding (a.c.d.f.) map

for f if
(a) Ḡf is continuous (i.e., both upper and lower semicontinuous) and Ḡf(x) is

convex for all x ∈ <n.
(b) for any x ∈ <n, if ξ̄ = (ξ0, ξ) ∈ <n+1, where ξ ∈ <n, is an element of Ḡf(x),

then ξ0 ≥ 0.
(c) for any x ∈ <n, a point ξ̄ = (0, ξ) is an element of Ḡf(x) if and only if

ξ ∈ ∂f(x), where ∂f(x) denotes the Clarke generalized gradient.
In [22], we find the following result.
THEOREM 4.6. Suppose that f : <n → < is locally Lipschitz continuous and Ḡf

is an a.c.d.f. map for f . Then for any x ∈ <n,
(a) 0 ∈ ∂f(x) if and only if 0 ∈ Ḡf(x).
(b) The functions Θ : <n → < and h̄ : <n → <n+1 defined by

Θ(x) := min{ξ0 + 1/2 ‖ξ‖2|ξ̄ = (ξ0, ξ) ∈ Ḡf(x)},(4.15)

where ξ0 ∈ < and ξ ∈ <n, and

h̄(x) := argmin {ξ0 + 1/2 ||ξ||2|ξ̄ ∈ Ḡf(x)}(4.16)

are both continuous. Furthermore Θ(x) = 0 if and only if 0 ∈ ∂f(x).
(c) Writing h̄(x) = (h0(x), h(x)), with h(x) ∈ <n we have

d0f(x;h(x)) ≤ −Θ(x) ∀x ∈ <n,(4.17)

where d0f(x;h) denotes the Clarke generalized directional derivative.
The following algorithm map is a generalization of the Armijo gradient method

for differentiable functions. See [22, section 5] for a proof of the following result.
THEOREM 4.7. Suppose that the function f in (4.1) is locally Lipschitz continuous

and that Ḡf is an a.c.d.f. for f . Consider the generalized Armijo gradient method
iteration map A : <n → 2<

n

, for problem (4.1), defined by

A(x) := {x+ λ(x)h(x)},(4.18)

where h(x) is defined by (4.16) and, for fixed α, β ∈ (0, 1),

λ(x) := max
k∈N
{βk|f(x+ βkh(x))− f(x) + βkαΘ(x) ≤ 0},(4.19)

with Θ(x) defined by (4.15). Then the map A is locally uniformly cost decreasing with
respect to problem (4.1).

5. A globally and superlinearly convergent algorithm. We now consider
problem (1.8) again, where f is a normal merit function for the NE or VI problem,
with F locally Lipschitz on <n. Suppose that there is an algorithm iteration map
A : <n → 2<

n

, which is locally uniformly cost decreasing, with respect to problem
(1.8). Suppose that T is a Newtonian operator of f , with an auxiliary operator q.
Then we have the following algorithm.

ALGORITHM 5.1. Let x0 ∈ <n and ε ∈ (0, 1).
For any k ∈ N, let

x̂k = xk −W−1
k p(xk, Vk),(5.1)

where Vk ∈ ∂F (xk) and Wk ∈ q(xk, Vk). If

f(x̂k) ≤ εf(xk),(5.2)

let xk+1 = x̂k. Otherwise let xk+1 ∈ A(xk).
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If xk+1 = x̂k, we call this a Newton step. To prove the convergence theorem for
this algorithm, we need the following lemma.

LEMMA 5.2. Suppose that x∗ is a solution of the problem. If all W ∈ T (x∗) are
positive definite, then there are c1 > c2 > 0 and δ > 0 such that for all x ∈ N(x∗; δ),
all W ∈ T (x) are positive definite and

c2‖x− x∗‖2 ≤ f(x) ≤ c1‖x− x∗‖2.(5.3)

Proof. Since all W ∈ T (x∗) are positive definite, by the four properties of a
Newtonian operator, there are c1 > 5c2 > 0 and δ > 0 such that for all x ∈ N(x∗; δ),
all V ∈ ∂F (x) and all W ∈ q(x, V ),

2.5c2‖x− x∗‖2 ≤ (x− x∗)TW (x− x∗) ≤ 0.5c1‖x− x∗‖2(5.4)

and

‖p(x, V )−W (x− x∗)‖ ≤ 0.5c2‖x− x∗‖.(5.5)

Now, by the Lebourg mean-value theorem (MVT) (Theorem 2.3.7 of [2]), for any
x ∈ N(x∗; δ),

f(x) = f(x)− f(x∗) (since f(x∗) = 0)

= p(x∗ + t(x− x∗), V )T (x− x∗) (by MVT)

≤ t(x− x∗)TW (x− x∗) + 0.5c2‖x− x∗‖2 (by (5.5))

≤ 0.5tc1‖x− x∗‖2 + 0.5c2‖x− x∗‖2 (by (5.4))

≤ c1‖x− x∗‖2,
where 0 ≤ t ≤ 1, V ∈ ∂F (x∗+ t(x− x∗)) and W ∈ q(x∗+ t(x− x∗), V ). Similarly, for
any x ∈ N(x∗; δ),

f(x) = f(x)− f(x∗) (since f(x∗) = 0)

= lim
N→∞

N∑
j=1

[
f

(
x∗ +

j

N
(x− x∗)

)
− f

(
x∗ +

j − 1
N

(x− x∗)
)]

= lim
N→∞

N∑
j=1

1
N
p

(
x∗ +

j − 1 + tj
N

(x− x∗), Vj
)T

(x− x∗) (by MVT)

≥ lim
N→∞

N∑
j=1

[
j − 1 + tj

N2 (x− x∗)TWj(x− x∗)−
0.5c2(j − 1 + tj)

N2 ‖x− x∗‖2
]

(by (5.5))

≥ lim
N→∞

N∑
j=1

[
j − 1
N2 (x− x∗)TWj(x− x∗)−

0.5c2j
N2 ‖x− x

∗‖2
]

≥ lim
N→∞

N∑
j=1

[
2.5c2(j − 1)

N2 − 0.5c2j
N2

]
‖x− x∗‖2 (by (5.4))

≥ lim
N→∞

[1.25N(N − 1)− 0.25N(N + 1)]c2
N2 ‖x− x∗‖2

= c2‖x− x∗‖2,

where 0 ≤ tj ≤ 1, Vj ∈ ∂F (x∗+ j−1+tj
N (x−x∗)), and Wj ∈ q(x∗+ j−1+tj

N (x−x∗), Vj).
This proves the lemma.
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For the NE problem with T defined by T (x) = {V TV |V ∈ ∂F (x)}, all W ∈ T (x∗)
are positive definite as long as they are nonsingular. For the VI problem, the positive
definiteness of matrices in T (x∗) was established by Theorem 3.1 of [27].

We now can state the convergence theorem for Algorithm 5.1.
THEOREM 5.3. Every accumulation point x̂ of {xk}∞k=0, generated by Algorithm

5.1, is a stationary point of (1.8), i.e., 0 ∈ ∂f(x̂). Function f has the same value on
these accumulation points.

If the Newton step is used infinitely many times, then every accumulation point
of {xk}∞k=0 is a solution of the original problem. If at one of such accumulation point,
say x∗, all matrices in T (x∗) are positive definite, then the whole sequence {xk}∞k=0
converges to x∗ superlinearly with xk+1 = x̂k for all large k. Furthermore if T is a
strong Newtonian operator of f , the convergence is quadratic.

Proof. Notice that

f(xk+1) ≤ f(xk)(5.6)

for all k ∈ N.
If the Newton step is not used for all large k, then the conclusions follow from

Theorem 4.2 and the nonincreasing property (5.6).
If the Newton step is used infinitely many times, then

lim
k→∞

f(xk) = 0

by (5.2) and (5.6). Then every accumulation point of {xk}∞k=0 is a solution of the
original problem. Suppose that x∗ is such an accumulation point, hence a solution to
the original problem. Suppose that all matrices in T (x∗) are positive definite. Let xk
be close to x∗. Then by the proof of Theorem 2.4, we have

‖x̂k − x∗‖ = o(‖xk − x∗‖).

By Lemma 5.2, this implies,

f(x̂k) = o(f(xk)).

This step and the following steps have to be Newton steps and the remaining conclu-
sions follow from Theorem 2.4.

This algorithm may end with a stationary point of (1.8) which is not a solution
of the original problem. See page 152 of [4] for description of this phenomenon. An
effort has been made in [18] to overcome this difficulty in the case of smooth nonlinear
equations. However, if F is strongly monotone and f is the norm function for the NE
problem or the D-gap function for the VI problem, any stationary point of f is the
unique solution of the original problem [29, 27]. In this case, our algorithm converges
to this unique solution of the original problem globally and superlinearly.
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the manuscript of this paper and to the associate editor, two referees, and Defeng Sun
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Abstract. A controlled Markov process in a Hilbert space and an ergodic cost functional are
given for a control problem that is solved where the process is a solution of a parameter-dependent
semilinear stochastic differential equation and the control can occur only on the boundary or at dis-
crete points in the domain. The linear term of the semilinear differential equation is the infinitesimal
generator of an analytic semigroup. The noise for the stochastic differential equation can be dis-
tributed, boundary and point. Some ergodic properties of the controlled Markov process are shown
to be uniform in the control and the parameter. The existence of an optimal control is verified to
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parameter.
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1. Introduction. An ergodic control problem for a stochastic process in a Hilbert
space H is formulated and solved where the process is a solution of a parameter-
dependent semilinear stochastic differential equation in H. The problem in the general
setting is motivated by ergodic control problems for processes governed by stochastic
partial differential equations (SPDEs) with control and noise occurring in the bound-
ary conditions or at discrete points in the domain.

For example, consider the stochastic parabolic equation

∂v

∂t
(t, ξ) = Lv(t, ξ) + F (α, v(t, ξ)) + n(t, ξ)(1.1)

for (t, ξ) ∈ R+ × (0, 1) with initial and boundary conditions

v(0, ξ) = v0(ξ),(1.2)
∂v

∂ξ
(t, 0) = h1(α, v(t, ·), u(v(t, ·))) + η1(t),(1.3)

∂v

∂ξ
(t, 1) = h2(α, v(t, ·), u(v(t, ·))) + η2(t),(1.4)

where n denotes a space-dependent Gaussian noise that is white in time, η1 and η2 are
one-dimensional standard Wiener processes, and these three processes are mutually
independent. Furthermore,

Lv = a(ξ)
∂2

∂ξ2 v + b(ξ)
∂

∂ξ
v + c(ξ)v
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is a second-order uniformly elliptic operator, where a, b, c ∈ C∞([0, 1]), a > 0, c <
0, F : A×R→ R, hi : A×H ×K → R, i = 1, 2, where H = L2(0, 1), A ⊂ Rd1 , and
K ⊂ Rk are compact. The control problem is to minimize the ergodic cost functional

J(x, u, α) = lim sup
T→∞

E
1
T

∫ T

0
c(v(t), u(v(t)))dt

over the set of Markov controls U = {u : H → K | u is Borel measurable}, where
c : H ×K → R. The α ∈ A in (1.1)–(1.4) represents a parameter.

The equations (1.1), (1.3), and (1.4) are only formal because the noise terms
n, η1, and η2 are not well-defined stochastic processes (random fields). A standard
approach for the rigorous treatment of the problem is to rewrite (1.1) as a controlled
stochastic differential equation in the Hilbert space H, and to define the noise terms
using Wiener processes with infinite-dimensional state spaces and the solution to the
equation as a mild solution, using the semigroup theory (cf. [10, 27]).

In the present paper, this general framework is used. The controlled Markov
process is defined by a Hilbert space-valued stochastic differential equation ((2.1) be-
low). The linear term of the equation is the infinitesimal generator of an analytic
semigroup. The general setting allows us to cover, as special cases, stochastic bound-
ary/point control problems like the above example (see Examples 7.1 and 7.2). The
noise for the stochastic differential equation can be distributed, boundary and point.
The parameter-dependence occurs in the distributed and the boundary or the point
drift terms. The control occurs only in the boundary or point drift term. The fact
that the control is not distributed would seem to allow for more physically meaningful
models. The noise is allowed to occur in both distributed and discrete forms to ensure
more flexibility of the models. Since the H-valued Markov process depends on the
control and the parameter, it is shown that some ergodic properties of the process
are uniform in these quantities. For the solution of an ergodic control problem the
existence of an optimal control is verified. It is shown that the optimal cost depends
continuously on the system parameter.

Continuity of the optimal cost on the parameter is an important step in solving
the adaptive control problem when the parameter is unknown. This verification is
important to show the optimality of an adaptive control defined by means of a family
of strongly consistent estimators of the unknown parameter α. In the case when the
control and noise are distributed, the existence of an optimal control has been proven
in [13], while the continuity of the optimal cost is new for this case.

The continuity of the optimal cost follows readily from the continuous dependence
of the invariant measures for the controlled Markov process on the parameter α,
uniform in the controls, in the norm of total variation of measures. This result can be
of some independent interest and it may be interesting to note that even in some very
simple cases the situation for Hilbert space–valued processes is significantly different
from the finite-dimensional case. For example, consider the linear stochastic heat
equation (without control)

∂w

∂t
(t, ξ) = α

∂2w

∂ξ2 (t, ξ) + n(t, ξ), (t, ξ) ∈ R+ × (0, 1),

with initial and boundary conditions w(0, ξ) = w0(ξ), w(t, 0) = w(t, 1) = 0, where
α ∈ [1/2, 1] and n is a space-time white noise. It is well known (see, e.g., [28])
that for each value of α, the probability laws (in the state space H = L2(0, 1))
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of the solutions converge in the norm of total variation to the Gaussian invariant
measure µ(α) = N(0, Q(α)), where Q(α) = α−1Q, Q =

∫∞
0 S(2t)dt, and S(·) is the

semigroup generated by the operator of the second derivative on (0, 1), with zero
Dirichlet boundary conditions.

However, by the dichotomy result for Gaussian measures it is easy to see that the
invariant measures µ(α) are singular for different values of α ∈ [1/2, 1], so there is no
continuous dependence on α in the norm of total variation (see Remark 4.11 for some
comparison between the finite- and infinite-dimensional state spaces).

A brief outline of the paper is given now. In section 2 the control problem is
formulated and the basic assumptions are made and explained. The controlled pro-
cess is the unique, weak, mild solution of the stochastic differential equation and
induces a Markov process in H. Some estimates are made of this process, and an
approximation of the transition probability function for the Markov process solution
of the stochastic differential equation by transition functions of the solutions of the
stochastic differential equation with bounded drifts is given, where the approximation
is uniform in the control and the parameter. In section 3 the existence and unique-
ness of the mild (backward) Kolmogorov equation for the controlled Markov process
are verified. An estimate of the derivative of the mild solution of the Kolmogorov
equation is given. In section 4 the results of section 3 are used to verify a uniform
version of the strong Feller property and the strong (i.e., variation norm) continuity of
the transition measures with respect to the parameter that is uniform in the control.
The invariant measures of the controlled Markov process are shown to be continuous
with respect to the parameter in the variation norm topology that is uniform in the
control. In section 5 some tightness properties are verified. Initially it is shown that a
“tightness” on balls implies tightness. A Lyapunov-type condition is shown to imply
the tightness for the family of invariant measures depending on the parameter and
the control. Section 6 contains the main results of the paper: the existence of an
optimal control for a fixed parameter and the continuous dependence of the optimal
cost on the parameter are verified using the results proven in sections 2, 3, and 4.
In section 7 two examples are given that satisfy the assumptions that are made for
the control problem: in Example 7.1 the control problem (1.1)–(1.4) is treated, and
Example 7.2 contains a similar control problem, where the control and noise occur at
given discrete points in the domain rather than on the boundary.

A brief description and a comparison of some previous results on these topics
are given now. Similar results for the existence and the uniqueness of the weak,
mild solutions to stochastic differential equations with only distributed noise and
control are given in [10, 17, 18]. Some results for the existence and the uniqueness
of mild solutions for semilinear stochastic equations with boundary or point noise are
given in [11, 22, 27]. In [27] an existence result for the invariant measures is given.
The methods to obtain the mild solution of the Kolmogorov equation are similar
to the methods used in [6, 8, 9] for a fixed stochastic equation without parameter
dependency. The approach to verifying the existence of an optimal control uses a
standard procedure (see, e.g., [25, 32] for a finite-dimensional process and [13] for
an infinite-dimensional process). There seems to be a fairly limited amount of work
on infinite-time horizon control problems in infinite-dimensional spaces. Some work
is devoted to discounted cost functionals. For this latter problem the existence of
an optimal stationary control is shown in [4], and the stationary Hamilton–Jacobi–
Bellman equation is investigated in [7, 20]. It seems that the ergodic control problem
is only considered in [13], where a distributed control is used.
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2. Preliminaries. Consider a controlled, infinite-dimensional process (X(t), t ≥
0) that satisfies the stochastic differential equation

(2.1)
dX(t) +AX(t)dt = (f(α,X(t)) +Bh(α,X(t), u(X(t))))dt+BdV (t) +Q1/2dW (t),

X(0) = x,

where X(0), X(t) ∈ H, H is a separable, infinite-dimensional Hilbert space with inner
product 〈· , ·〉 and norm | · |, α ∈ A ⊂ Rd is a parameter and A is compact, U is a
separable Hilbert space with inner product 〈· , ·〉U and norm | · |U , K is a compact
product of intervals in Rk, −A : Dom(−A) → H is the infinitesimal generator of
an analytic semigroup (S(t), t ≥ 0) such that A−1 ∈ L(H), which is often denoted
A > 0,

f : A×H → H,

h : A×H ×K → U

are Borel measurable functions, B ∈ L(U,Dε−1
A ), the family of bounded linear oper-

ators from U to Dε−1
A , where ε ∈ (0, 1] is given and Dδ

A for δ ≥ 0 is the domain of
the fractional power Aδ with the topology induced by the graph norm |x|DδA = |Aδx|,
while for δ < 0 it is a completion of H in the norm | · |DδA . It is assumed that
Q ∈ L(H) is positive and self-adjoint and (V (t), t ≥ 0) and (W (t), t ≥ 0) are inde-
pendent, standard cylindrical Wiener processes in the spaces U and H, respectively,
that are defined on a filtered, complete probability space (Ω,F , (Ft),P). The family
of controls, U , is

U = {u : H → K | u is Borel measurable}.

The control problem is to minimize, over u ∈ U , the ergodic cost functional

J(x, u, α) = lim sup
T→∞

E
1
T

∫ T

0
c(X(s), u(X(s)))ds,(2.2)

where c : H ×K → R+ is bounded and Borel measurable.
The following assumptions, (A1)–(A7), are used selectively in this paper.
(A1) There exist a γ ∈ (0, 1/2] and a ∆ ∈ (0, 1/2] such that B ∈ L2(U,Dγ−1/2

A )
and Q1/2 ∈ L2(H,D∆−1/2

A ), where L2( · , ·) is the family of Hilbert–Schmidt operators.
(A2) For each α ∈ A the function h(α, · , ·) : H × K → U is continuous and

f(α, ·) : H → H is Lipschitz continuous on the bounded subsets of H, and there are
constants k, kf , kh, and k̃(α) such that |f(α, x)| ≤ k+kf |x|, |h(α, x, u)|U ≤ k+kh|x|,
and |h(α, x, u)|U ≤ k̃(α) for all x ∈ H, u ∈ K, and α ∈ A.

By (A1) and the analyticity of −A, the composition S(r)B is well defined for
r > 0, and furthermore, S(r)B ∈ L2(U,H), S(r)Q1/2 ∈ L2(H), and∫ t

0
|S(r)B|2L2(U,H)dr +

∫ t

0
|S(r)Q1/2|2L2(H)dr <∞

for t > 0. Therefore, the family of operators (Qt, t ≥ 0)

Qt =
∫ t

0
S(r)BB∗S∗(r)dr +

∫ t

0
S(r)QS∗(r)dr(2.3)

is well defined and Qt ∈ L2(H) for each t ≥ 0.
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(A3) The following are satisfied:

R(S̃(t)) ⊂ R(Q1/2
t ), |Q−1/2

t S(t)A1−ε|L(H) ≤
c

tβ

for t ∈ (0, T ] for some T > 0, c > 0, and β < 1, where (S̃(t), t ≥ 0) is the restriction
of (S(t), t ≥ 0) to the space D1−ε

A and R( ·) is the range.
(A4) There is a continuous, increasing function ω : R+ → R+ with ω(0) = 0 such

that

|f(α, x)− f(β, x)|+ |h(α, x, u)− h(β, x, u)|U ≤ ω(|α− β|)(1 + |x|)
for all α, β ∈ A, x ∈ H, and u ∈ K.

(A5) For each u ∈ U and α ∈ A there is an invariant measure µ(α, u) for the
process (X(t), t ≥ 0) that satisfies (2.1), and the family of measures (µ(α, u), α ∈
A, u ∈ U) is tight.

(A6) The function c : H×K → R+ given in (2.2) is bounded and Borel measurable
and c(x, ·) : K → R+ is continuous for each x ∈ H.

(A7) The set h(α, x,K)× c(x,K) ⊂ U ×R+ is convex for each α ∈ A and x ∈ H.
Some comments on the above assumptions (A1)–(A7) are given now. Assumption

(A1) is a standard condition guaranteeing that the solution of the linear version of the
equation (2.1) (i.e., with f = 0 and h = 0) is anH-valued stochastic process (otherwise
it is only a cylindrical process; see, e.g., [12]). Note that (A1) implies that the above-
defined operators Qt are trace class operators on H. They are covariance operators of
the (Gaussian) probability distribution of the solution to the linear equation. (Some
discussion on the verification of (A1) is contained, for example, in [12, 27]; (A1) is
also verified in Examples 7.1, 7.2 of the present paper.)

The assumption (A2) is used to verify that there exists a unique, weak, mild
solution to the equation (2.1) (below in this section).

The assumption (A3) is used in section 3 to prove some suitable smoothing prop-
erties of the mild backward Kolmogorov equation corresponding to the stochastic
equation (2.1), which is needed to show the ergodicity of the solutions to (2.1) and
some continuity properties of the transition probability kernels. The assumption is
also rather standard in the context of the perturbation methods; for instance, for
ε = 1 the results of section 3 have been proven in [9, 10]. A class of examples in which
(A3) can be easily verified is given also in section 3 (Proposition 3.4).

The assumption (A4) is a continuous dependence of the coefficients of the equation
(2.1) on the parameter α. It is used for the verification of the results that are related
to the continuous dependence of the optimal cost on the parameter.

The assumption (A5) is a kind of stability assumption that is usually needed in
ergodic control problems. In section 5 (A5) is verified in terms of some more explicit
conditions on the coefficients of equation (2.1) (Lyapunov-type conditions).

The assumptions (A7) and (A8) are typical conditions that are used in the ergodic
control theory ((A7) is sometimes called the Roxin-type condition) and they are used
to establish the existence of an optimal control for the given control problem.

Consider the following two stochastic differential equations:

dZ(t) +AZ(t)dt = BdV (t) +Q1/2dW (t),
Z(0) = x,

(2.4)

and
dX(t) +AX(t)dt = f(α,X(t))dt+BdV (t) +Q1/2dW (t),

X(0) = x.
(2.5)
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Under the assumptions (A1) and (A2) it is easy to verify that each of the equations
(2.4) and (2.5) has one and only one mild solution on the probability space (Ω,F , P ),
that is, the solutions to the integral equations

Z(t) = S(t)x+
∫ t

0
S(t− r)BdV (r) +

∫ t

0
S(t− r)Q1/2dW (r), t ≥ 0,(2.6)

and

X(t) = S(t)x+
∫ t

0
S(t− r)f(α,X(t))dt+

∫ t

0
S(t− r)BdV (r)

+
∫ t

0
S(t− r)Q1/2dW (r), t ≥ 0.

(2.7)

These solutions are Dδ
A-valued processes that belong to C([0, T ], Lp(Ω,H))∩C((0, T ],

Lp(Ω,Dδ
A)) for any p ≥ 1, T > 0, and δ ∈ [0,min(ε,∆, γ)) (cf. [27]). Furthermore,

the processes (X(t), t ≥ 0) and (Z(t), t ≥ 0) have Dδ
A-continuous versions (cf. [11,

30]), and in H they induce two Markov processes in the usual way.
Let Pα : R+ × H × B(H) → [0, 1] be the transition probability function for

(X(t), t ≥ 0) in (2.7), that is,

Pα(t, x, Γ ) = Px(X(t) ∈ Γ ),(2.8)

and let (T (t), t ≥ 0) be the Markov transition semigroup for (Z(t), t ≥ 0) in (2.6),
that is,

Ttϕ(x) = Exϕ(Z(t)),(2.9)

where x ∈ H stands for the initial value of X( ·), t ≥ 0, and ϕ ∈M(H), the bounded,
Borel measurable functions on H. It is clear that

Tt1Γ (x) = N(S(t)x,Qt)(Γ ),

where t ≥ 0, Γ ∈ B(H), x ∈ H, and Qt is given by (2.3) so it is self-adjoint,
nonnegative, and nuclear, and N(Stx,Qt) is the Gaussian measure on H with mean
Stx and covariance Qt.

Let ξα,uT be the random variable as follows:

ξα,uT =
∫ T

0
〈h(α,X(t), u(X(t))),dV (t)〉U −

1
2

∫ T

0
|h(α,X(t), u(X(t)))|2Udt(2.10)

for α ∈ A, u ∈ U , and T > 0, where (X(t), t ∈ [0, T ]) is the solution of (2.7). A
weak solution of (2.1) is constructed following the standard procedure of an absolutely
continuous change of probability measure (cf. [10, 15, 17, 23]). For control problems,
the method was initiated in [1, 14]. Note that E exp(ξα,uT ) = 1 by (A2). There is a
probability measure Pα,ux on F such that the restriction of Pα,ux to FT is given by

Pα,ux (dω) = exp(ξα,uT )P(dω),(2.11)

the process (V ∗(t), t ≥ 0) given by

V ∗(t) = V (t)−
∫ t

0
h(α,X(s), u(X(s)))ds
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is a cylindrical Wiener process on U , and using Pα,ux and the solution of (2.7), it
follows that

(2.12)

X(t) = S(t)x+
∫ t

0
S(t− r)f(α,X(r))dt+

∫ t

0
S(t− r)Bh(α,X(r), u(X(r)))dr

+
∫ t

0
S(t− r)BdV ∗(r) +

∫ t

0
S(t− r)Q1/2dW (r).

So there is a weak solution to (2.1) which is weakly unique and induces a Markov
process on H whose Markov transition semigroup is denoted as

Pα,ut ϕ(x) = Eα,ux ϕ(X(t))(2.13)

for t ≥ 0 and ϕ ∈M(H), where Eα,ux is the expectation using the probability measure
Pα,ux and

Pα,u(t, x, Γ ) = Pα,ut 1Γ (x)(2.14)

for t ≥ 0, Γ ∈ B(H), and x ∈ H is the corresponding transition probability function.
In the remainder of the section, three technical lemmas are given that are useful

in what follows. Initially, Proposition 2.2 of [27] is given as the following lemma.
LEMMA 2.1. If (A1) and (A2) are satisfied and δ ∈ [0,min(γ,∆, ε)), p > max((∆−

δ)−1, (γ − δ)−1, (ε − δ)−1), and x ∈ H, then for each T > 0 there is a constant
C = Ĉ(T, p, δ) such that

E|AδX(T )|p ≤ C(1 + |x|p),(2.15)

where (X(t), t ≥ 0) is the solution of (2.7). If δ = 0 then C does not depend on T
from finite intervals.

The following two lemmas reduce some of the subsequent proofs to the case where
f and h are uniformly bounded.

LEMMA 2.2. If (A1) and (A2) are satisfied, then for each T > 0 and R > 0

lim
N→∞

inf Pα,ux
(

sup
t∈[0,T ]

|X(t)| ≤ N
)

= 1,(2.16)

where the infimum is taken over α ∈ A, u ∈ U , and x ∈ H with |x| ≤ R.
Proof. Recall the equation (2.12) for (X(t), t ≥ 0). Let Ωα,ux,N ⊂ Ω be given by

Ωα,ux,N =

{
sup
t∈[0,T ]

(∣∣∣∣∫ t

0
S(t− r)BdV ∗(r)

∣∣∣∣+
∣∣∣∣∫ t

0
S(t− r)Q1/2dW (r)

∣∣∣∣) ≤ N
}
.(2.17)

By a maximal inequality (Lemma 2.2 of [30])

Eα,ux sup
t∈[0,T ]

(∣∣∣∣∫ t

0
S(t− r)BdV ∗(r)

∣∣∣∣2 +
∣∣∣∣∫ t

0
S(t− r)Q1/2dW (r)

∣∣∣∣2
)

≤
∫ T

0
|S(r)B|2L2(U,H)dr +

∫ T

0
|S(r)Q1/2|2L2(H)dr ≤M(2.18)

for some M that does not depend on α, x, and u by (A1) and the analyticity of
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(S(t), t ≥ 0). Thus

(2.19)

Pα,ux

(
sup
t∈[0,T ]

(∣∣∣∣∫ t

0
S(t− r)BdV ∗(r)

∣∣∣∣+
∣∣∣∣∫ t

0
S(t− r)Q1/2dW (r)

∣∣∣∣) ≥ N
)
≤ 2M
N2 .

By (A1), (A2), and (2.17) on the set Ωα,ux,N it follows that

|X(t)| ≤ c1|x|+ c2 + c3

∫ t

0

|X(s)|
(t− s)1−ε ds+N

for t ∈ [0, T ], where the constants c1, c2, and c3 depend only on T . The generalized
Gronwall lemma (Theorem 7.1 of [21]) implies that

|X(t)| ≤ c4|x|+ c5 +N(2.20)

for t ∈ [0, T ] on Ωα,ux,N , where c4 and c5 only depend on T . Since Pα,ux (Ωα,ux,N ) ≥
1− 2M/N2 the equality (2.16) follows.

By (A2) it follows that there is a sequence (fm, hm, m ∈ N) such that for each
m ∈ N

(fm(α, x), hm(α, x, u)) = (f(α, x), h(α, x, u))(2.21)

for α ∈ A, u ∈ K, x ∈ H with |x| ≤ m and

|fm|+ |hm|U ≤Mm,(2.22)

where Mm is a constant depending only on m, fm(α, ·) is Lipschitz continuous, and
hm(α, · , ·) is continuous for each m ∈ N and

|fm(α, x)− fm(β, x)|+ |hm(α, x, u)− hm(β, x, u)|U ≤ ω̃m(|α− β|)(2.23)

for α, β ∈ A, x ∈ H, and u ∈ K, where ω̃m has the same properties as ω in (A4)
for each m ∈ N. It is clear that if f and h are replaced by fm and hm, respectively,
in (2.1), then the same procedure gives a unique weak solution inducing a Markov
process on H.

LEMMA 2.3. Let Pα,um : R+ ×H × B(H) be the transition probability function for
the Markov process that is the solution of (2.1) with f and h replaced by fm and hm,
respectively, which are described above. If (A1) and (A2) are satisfied then

lim
m→∞

‖Pα,um (t, x, ·)− Pα,u(t, x, ·)‖ = 0(2.24)

uniformly in α ∈ A, u ∈ U , and x from bounded sets in H where ‖ · ‖ is the variation
norm.

The proof of this lemma follows easily from Lemma 2.2 and the local uniqueness
theorem for stochastic integrals. Let (Xm(t), t ≥ 0) be the solution of (2.5) with f
replaced by fm. It easily follows that

ΩN =

 sup
t∈[0,T ]

α∈A, |x|≤R

|Xm(t)| ≤ N

 =

 sup
t∈[0,T ]

α∈A, |x|≤R

|X(t)| ≤ N
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for m ≥ N > R > 0 because the trajectories of (Xm(t), t ≥ 0) and (X(t), t ≥ 0)
coincide for t ∈ [0, T ] on ΩN . Lemma 2.2 implies that Pα,ux (ΩN ) → 1 as N → ∞
uniformly in α ∈ A, u ∈ U , x ∈ H with |x| < R. Defining Pα,ux,m in the same way as
Pα,ux by replacing h by hm, it follows that the probabilities Pα,ux,m and Pα,ux restricted
to ΩN coincide for m ≥ N . Given ε > 0, choose N ≥ 0 such that Pα,ux,m(ΩN ) ≥ 1− ε
for α ∈ A, u ∈ U , |x| ≤ R, and m ≥ N . It follows that

|Pα,um (T, x, Γ )− Pα,u(T, x, Γ )| < ε

for each Γ ∈ B(H), |x| ≤ R, α ∈ A, u ∈ U , and m ≥ N .

3. The mild Kolmogorov equation. In this section a version of the mild
Kolmogorov equation is considered. The existence and the uniqueness of the solution
of this equation is verified, as is an estimate on the derivatives which is important
to establish a uniform version of the strong Feller property. Many of the results of
this section are verified similarly to the verifications that are used for a single Hilbert
space (cf. [6, 8, 9]), so some details are omitted. Recall the definitions of (Tt, t ≥ 0)
in (2.9) and (Pα,ut , t ≥ 0) in (2.13). Let Dx be the Fréchet derivative on H and let
Uc = {u ∈ U : u ∈ C(H,K)}. Let

H =

ψ | ψ : (0, T ]→ C1
b (H), Dxψ : (0, T ]→ Cb(H,D1−ε

A∗ ),

|ψ|H := sup
t∈(0,T )
x∈H

(tβ |ψ(t, x)|+ tβ |Dxψ(t, x)|D1−ε
A∗

) <∞

 ,

where β ∈ (0, 1) is given in (A3), which is assumed to be satisfied throughout this
section.

PROPOSITION 3.1. Let ϕ ∈ Cb(H) and n(t, x) = Ttϕ(x) for t ≥ 0 and x ∈ H.
Then n ∈ H and

|Dxn(t, x)|D1−ε
A∗
≤ c

tβ
sup |ϕ|(3.1)

for t ∈ (0, T ] and x ∈ H, where the constant c does not depend on ϕ.
Proof. By the absolute continuity of measures it follows that

n(t, x) =
∫
ϕ(y)N(S(t)x,Qt)(dy)

=
∫
ϕ(y) exp

[
〈Γtx,Q−(1/2)

t y〉 − 1
2
|Γtx|2

]
N(0, Qt)(dy),

(3.2)

where Γt = Q
−(1/2)
t St ∈ L(H) by (A3). Applying Dx to (3.2) it follows (cf. [10]) that

Dxn(t, x)h =
∫
〈Γth,Q−(1/2)

t y〉ϕ(S(t)x+ y)N(0, Qt)(dy)

for h ∈ H, so that (A3) yields

sup
|h|≤1

|Dxn(t, x)(A1−εh)| ≤ c1 sup
|h|≤1

∫
|〈ΓtA1−εh,Q

−(1/2)
t y〉|N(0, Qt)(dy) sup |ϕ|

≤ c2 sup |ϕ| |ΓtA1−ε|L(H) ≤
c3
tβ

sup |ϕ|
(3.3)
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for t ∈ (0, T ], where ci, i = 1, 2, 3, are constants independent of ϕ and t. The inequality
(3.1) follows because (Dε−1

A )′ = D1−ε
A∗ .

Consider the mild Kolmogorov equation of the form

(3.4)

v(t, x) = Ttϕ(x) +
∫ t

0
Tt−s(〈Dxv(s, ·), f(α, ·)〉+ 〈Dxv(s, ·), Bh(α, · , u( ·)〉)(x)ds

for t ≥ 0, where ϕ ∈ Cb(H), 〈· , ·〉 is used for the duality between the corresponding
domains of the fractional powers of A and A∗ as well as the inner product on H,
and for notational convenience, the dependence of v on α and u is suppressed. The
solution v(t, x) of (3.4) is shown to be Pα,ut ϕ(x).

PROPOSITION 3.2. If (A1)–(A3) are satisfied, u ∈ Uc, ϕ ∈ Cb(H), and |f | and
|h|U are bounded independent of α ∈ A and u ∈ Uc, then the equation (3.4) has one
and only one solution v(t, x) = Pα,ut ϕ(x) in H that satisfies

|Dxv(t, x)|D1−ε
A∗
≤ c̃

tβ
sup |ϕ|(3.5)

for t ∈ (0, T ], where the constant c̃ does not depend on ϕ, u ∈ Uc or α ∈ A.
Proof. To verify the existence and uniqueness of the solution of (3.4), the Banach

fixed point theorem is used for the Banach space (H, | · |H). Define the mapping
Φ : H → H as follows:

Φv(t, x) = Ttϕ(x) +
∫ t

0
Tt−sψ(Dxv(s, ·))(x)ds(3.6)

for t ∈ (0, T ], where

ψ(Dxv(s, ·)) = 〈f(α, ·), Dxv(s, ·)〉+ 〈Dxv(s, ·), Bh(α, · , u( ·))〉(3.7)

and the dependence of ψ on α ∈ A and u ∈ Uc is suppressed. For v1, v2 ∈ H it follows
that

(3.8)

|Φ(v1)− Φ(v2)|H = sup
t∈(0,T )
x∈H

[tβ |
∫ t

0
Tt−s(ψ(Dxv1(s, ·))− ψ(Dxv2(s, ·)))(x)ds|

+ tβ
∫ t

0
|(A∗)1−εDxTt−s(ψ(Dxv1(s, ·))− ψ(Dxv2(s, ·)))(x)|ds].

Note that

|ψ(Dxv1(s, ·))− ψ(Dxv2(s, ·))| ≤ c1|Dxv1(s, ·)−Dxv2(s, ·)|
+ |(A∗)1−ε(Dxv1(s, ·)−Dxv2(s, ·))| ≤ c2|Dxv1(s, ·)−Dxv2(s, ·)|D1−ε

A∗

for suitable constants c1 and c2. Applying this inequality to (3.8) yields

|Φ(v1)− Φ(v2)|H ≤ c2

∫ t

0
tβ sup

s,x
|Dxv1(s, x)−Dxv2(s, x)|D1−ε

A∗
ds

+ c2c

∫ t

0

tβ

(t− s)β sup
s,x
|Dxv1(s, x)−Dxv2(s, x)|D1−ε

A∗
ds

≤ c3|v1 − v2|H
(∫ t

0

tβ

sβ
ds+ tβ

∫ t

0

ds
(t− s)βsβ

)
.
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Thus Φ is a contraction for t > 0 sufficiently small. The fact that Φ(H) ⊂ H is verified
similarly. Therefore, for T > 0 sufficiently small, there is a unique solution of (3.4).
For arbitrary T > 0 the interval [0, T ] is subdivided into a finite number of small
intervals.

To verify (3.5) it follows by (3.1) that

(3.9)

sup
x
|Dxv(t, x)|D1−ε

A∗
≤ sup

x
|DxTtϕ(x)|D1−ε

A∗
+ sup

x

∫ t

0
|DxTt−sψ(Dxv(s, ·))(x)|D1−ε

A∗
ds

≤ ct−β sup |ϕ|+ c4

∫ t

0
sup
x
|Dxv(s, x)|D1−ε

A∗

ds
(t− s)β

for t ∈ (0, T ) and c4 is a constant. Applying the generalized Gronwall lemma (Theo-
rem 7.1 of [21]) to the function λ(t) = sup

x
|Dxv(t, x)|D1−ε

A∗
, it follows that

sup
x∈H
|Dxv(t, x)|D1−ε

A∗
≤ c5
tβ

sup |ϕ|(3.10)

for t ∈ (0, T ], where the constant c5 does not depend on t ∈ (0, T ], ϕ ∈ Cb(H),
α ∈ A, and u ∈ Uc, though it may depend on the bounds for |f | and |h|U . While it
remains to show that v(t, x) is Pα,ut ϕ(x), this verification is identical to the proof of
(Theorem 4 of [6]) and is omitted. Only note that (A1) implies that B ∈ L2(U,D−1

A )
and Q1/2 ∈ L2(H,D−1

A ), which is used here.
Proposition 3.2 is essential in the following result, which gives a strong Feller

property that is uniform for u ∈ Uc. It is improved in the next section.
LEMMA 3.3. Let t > 0 and y ∈ H be fixed. If (A1)–(A2) are satisfied then there

is a function ω̃ : R+ → R+ that is increasing and continuous with ω̃(0) = 0 such that

‖Pα,u(t, x, ·)− Pα,u(t, y, ·)‖ ≤ ω̃(|x− y|)(3.11)

for all α ∈ A, u ∈ Uc, and x ∈ H, where ‖ · ‖ is the variation norm.
Proof. If |f | and |h|U are bounded then by (3.5) it follows that

‖Pα,u(t, x, ·)− Pα,u(t, y, ·)‖ = sup
ϕ∈Cb, |ϕ|≤1

|Pα,ut ϕ(x)− Pα,ut ϕ(y)| ≤ c̃

tβ
|x− y|Dε−1

A

for x ∈ H, which easily implies (3.11) (c̃ may depend on the bounds for |f | and |h|U ).
If |f | and |h|U are not bounded, then use Lemma 2.3 to approximate Pα,u(t, x, ·) and
Pα,u(t, y, ·) by Pα,uk (t, x, ·) and Pα,uk (t, y, ·), respectively, uniformly with respect to
α ∈ A, u ∈ Uc, and x from bounded sets in H.

This section is concluded with a simple result which can be useful in some cases
to verify (A3).

PROPOSITION 3.4. If ε > 1/2 and Q1/2 = A−ηΓ , where η ∈ [0, ε − 1/2) and
Γ, Γ−1 ∈ L(H), then (A3) is satisfied.

Proof. Let

1Qt =
∫ t

0
S(r)BB∗S∗(r)dr

and

2Qt =
∫ t

0
S(r)QS∗(r)dr.
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It is clear that Qt =1 Qt +2Qt and 1Q and 2Q are nonnegative and self-adjoint. It
suffices to verify (A3) with Qt replaced by 2Qt. By the minimum energy principle (cf.
Remark B9 of [10]) it follows that

|2Q−(1/2)
t S(t)y| ≤

(∫ t

0
|u(s)|2ds

)1/2

,(3.12)

where u ∈ L2([0, t], H) is arbitrary such that the solution (z(s), s ∈ [0, t]) of

ż +Az = Q1/2u, z(0) = y(3.13)

satisfies z(t) = 0. The existence of such a function is a necessary condition for
2Q
−(1/2)
t S(t) ∈ L(H). For x ∈ D1−ε

A define ũ(r) = −(1/t)Q−1/2S(r)A1−εx. Clearly
ũ ∈ L2([0, t], H) and u gives z(t) = 0 if y = A1−εx. Thus

|2Q−(1/2)
t S(t)A1−εx| ≤

(∫ t

0
|ũ(r)|2dr

)1/2

≤ |x| c̃

tη+(3/2)−ε

for a constant c̃, so (A3) is satisfied with β = η + (3/2)− ε < 1,

4. The continuous dependence of some measures on a parameter. In
this section, the verifications are made for the continuous dependence of Pα,u(t, x, ·)
on the parameter α and the uniform strong Feller property, which yield (under the
tightness condition (A5)) the uniform continuity of the invariant measures with re-
spect to the parameter α ∈ A. This last result is used in section 6 to prove continuity
of the optimal cost for the control problem (2.1), (2.2).

LEMMA 4.1. If (A1) and (A2) are satisfied then for each t > 0, α ∈ A, and x ∈ H

lim
un→u

‖Pα,un(t, x, ·)− Pα,u(t, x, ·)‖ = 0,(4.1)

where un ∈ U for all n ∈ N and un → u pointwise.
Proof. By Lemma 2.3 it can be assumed that |f | and |h|U are bounded uniformly

in α ∈ A and u ∈ U . It easily follows that

‖Pα,un(t, x, ·)− Pα,u(t, x, ·)‖ = sup
ϕ∈Cb,‖ϕ|≤1

|Pα,unt ϕ(x)− Pα,ut ϕ(x)|

≤ |Eϕ(X(t)) exp(ξα,unt )− Eϕ(X(t)) exp(ξα,ut )| ≤ E| exp(ξα,unt )− exp(ξα,ut )|,
(4.2)

where (X(t), t ≥ 0) satisfies (2.5). Since E exp(2ξα,unt ) ≤ exp(t sup |h|) the sequence
(exp(ξα,unt ), n ∈ N) is uniformly integrable, so for every ε > 0 there is an R > 0 such
that

E| exp(ξα,unt )− exp(ξα,ut )| ≤ eRE|ξα,unt − ξα,ut |+ ε.

From (A2), the boundedness of |h|U , and the dominated convergence theorem, (4.2)
is verified.

The following result is a uniform version of the strong Feller property.
LEMMA 4.2. If (A1)–(A3) are satisfied, then for each t > 0, y ∈ H, there is a

continuous, increasing function ω̃ : R+ → R+ with ω̃(0) = 0 such that

‖Pα,u(t, x, ·)− Pα,u(t, y, ·)‖ ≤ ω̃(|x− y|)

for all α ∈ A, u ∈ U , and x ∈ H.
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Proof. Take the function ω̃ from Lemma 3.3 (for the fixed t > 0 and y ∈ H) and
let U ′ ∈ U be the set of controls satisfying

sup
u∈U ′

‖Pα,u(t, x, ·)− Pα,u(t, y, ·)‖ ≤ ω̃(|x− y|)

for all x ∈ H and α ∈ A. By Lemma 3.3, Uc ⊂ U ′ and by Lemma 4.1, U ′ is closed
with respect to pointwise convergence. Since the families of Baire and Borel functions
H → K coincide (cf. [24, Theorem 2.31.IX]) it follows that U ′ = U .

PROPOSITION 4.3. Denote by P(H) the space of probability measures on the Borel
subsets of H endowed with the metric of total variation of measures. If (A1)–(A4)
are satisfied, then for each T > 0 the function

η : A → P(H)

given by

η(α) := Pα,u(T, x, ·)(4.3)

is continuous uniformly in u ∈ U and x ∈ K for each compact set K ⊂ H.
Proof. By Lemma 2.3 it can be assumed that |f | and |h|U are bounded and

|f(α, x)− f(β, x)|+ |h(α, x, u)− h(β, x, u)|U ≤ ω(|α− β|)(4.4)

for x ∈ H and α, β ∈ A. Initially, the uniform continuity of (4.3) is verified for u ∈ Uc.
For vα,u(t, x) = Pα,ut ϕ(x) for x ∈ H and ϕ ∈ Cb(H) it follows by Proposition 3.2 that

vα,u(t, x) = Ttϕ(x) +
∫ t

0
Tt−s(ψα,u(Dxvα,u(s, ·)))(x)ds(4.5)

for t ∈ [0, T ], where

ψα,u(Dxvα,u(s, ·)) = 〈Dxvα,u(s, ·), f( ·)〉+ 〈Dxvα,u(s, ·), Bh(α, · , u( ·))〉(4.6)

and

|Dxvα,u(t, ·)|D1−ε
A∗
≤ ct−β sup |ϕ|(4.7)

for t ∈ (0, T ], where c > 0 does not depend on t ∈ (0, T ], α ∈ A, u ∈ Uc, and
ϕ ∈ Cb(H). By Proposition 3.1 it follows that

sup
x
|vα,u(t, x)− vα0,u(t, x)|+ sup

x
|Dxvα,u(t, x)−Dxvα0,u(t, x)|D1−ε

A∗

≤ sup
x

∫ t

0
|Tt−s(ψα,u(Dxvα,u(s, ·))− ψα0,u(Dxvα0,u(s, ·)))(x)|ds

+ sup
x

∫ t

0
|DxTt−s(ψα,u(Dxvα,u(s, ·))− ψα0,u(Dxvα0,u(s, ·)))(x)|D1−ε

A∗
ds.

(4.8)

By (4.4) and (4.7) it follows that

sup
x
|ψα,u(Dxvα,u(s, x))− ψα0,u(Dxvα0,u(s, x))|

≤ c1 sup
x
|Dxvα,u(s, x)−Dxvα0,u(s, x)|D1−ε

A∗
+ c2s

−βω(|α− α0|)(4.9)
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for some constants c1, c2 depending only on the bounds for |f |, |h|U , and |B|L(U,Dε−1
A ).

Let λα,u( ·) be the left-hand side of (4.8). By (4.8) and (4.9) it follows that

λα,u(t) ≤
∫ t

0

k1

(t− s)β λα,u(s) ds+ ω(|α− α0|)
∫ t

0

k2

(t− s)βsβ ds(4.10)

for t ∈ (0, T ] for some constants k1 and k2. By the generalized Gronwall lemma
(Theorem 7.1 of [21]) it follows that

λα,u(t) ≤ k3ω(|α− α0|)
for t ∈ (0, T ], so

‖Pα,u(T, x, ·)− Pα0,u(T, x, ·)‖ = sup
|ϕ|≤1

|Pα,uT ϕ(x)− Pα0,u
T ϕ(x)| ≤ k4ω(|α− α0|)

for some constants k3 and k4 that are independent of x ∈ H and u ∈ Uc. The last
estimate is extended to u ∈ U using Lemma 4.1 by the same argument as in the proof
of Lemma 4.2.

The following result is a version of the Itô formula that is applicable to functions
of the solution of (2.1).

PROPOSITION 4.4. If (A1) and (A2) are satisfied, g ∈ C2(H), Dxg(x) ∈ D1−ε
A∗

for x ∈ H, Dxg : H → D1−ε
A∗ is continuous, Dxxg : H → L(D−δA , Dδ

A∗) ∩ L(H,D1−ε
A∗ )

is continuous for δ = max((1/2) − ∆, (1/2) − γ), where Dxx is the second Fréchet
derivative, 〈A · , Dxg( ·)〉 : D1

A → R can be extended to a continuous function Φ : H →
R, and

|Φ(x)|+ |g(x)|+ |Dxg(x)|D1−ε
A∗

+ |Dxxg(x)|L(D−δA ,Dδ
A∗ ) ≤ k̂(1 + |x|p)(4.11)

for x ∈ H and some k̂ and p > 0, then the following equality is satisfied:

Eα,ux g(X(t))− g(x) = Eα,ux
∫ t

0
(−Φ(X(s)) + 〈f(α,X(s)), Dxg(X(s)))〉

+ 〈h(α,X(s), u(X(s))), B∗Dxg(X(s))〉U

+
1
2

tr[(A∗)1/2−γDxxg(X(s))BB∗(A∗)γ−1/2]

+
1
2

tr[(A∗)1/2−∆Dxxg(X(s))Q(A∗)∆−1/2])ds

(4.12)

for t ≥ 0, α ∈ A, u ∈ U , and x ∈ H.
Proof. Fix α ∈ A and u ∈ U . Choose a sequence of functions (hn, n ∈ N) such

that hn : H → U is globally Lipschitz continuous and hn → h pointwise as n → ∞
and h is bounded by the constant k̃(α) from (A2). It follows as in Proposition 3.4 of
[12] and Proposition 1.5 of [27] that

(4.13)

Eg(X(t)) exp(ξn,t)− g(x) = E
∫ t

0
(−Φ(X(s))

+ 〈f(α,X(s)), Dxg(X(s))〉+ 〈hn(X(s)), B∗Dxg(X(s))〉U

+
1
2

tr[(A∗)1/2−γDxxg(X(s))BB∗(A∗)γ−1/2]

+
1
2

tr[(A∗)1/2−∆Dxxg(X(s))Q(A∗)∆−1/2]) exp(ξn,s)ds
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for t ≥ 0, where

ξn,s =
∫ t

0
〈hn(α,X(r), u(X(r))),dV (r)〉U −

1
2

∫ t

0
|hn(α,X(r), u(X(r)))|2Udr.

The remainder of the proof investigates the particular terms above as n→∞. As in
the proof of Lemma 4.1, it can be shown that

lim
n→∞

∫ t

0
E| exp(ξn,s)− exp(ξα,us )|ds = 0,

so there is a subsequence such that exp(ξnk,t)→ exp(ξα,ut ) on [0, T ]×Ω, λ×P almost
everywhere, where λ is the Lebesgue measure on R. It remains to verify the uniform
integrability of the terms on the right-hand side of (4.13). It can be assumed that p
in (4.11) is sufficiently large. Thus, for example,

|〈f(α,X(s)), Dxg(X(s))〉 exp(ξn,s)|2 ≤ c1(k + kf |X(s)|)2k̂2(1 + |X(s)|p)2 exp(2ξn,s)

≤ c2 + c3|X(s)|2p+2 exp(2ξn,s).

By Lemma 2.1 it follows that

sup
n∈N
s∈[0,t]

E|X(s)|2p+2 exp(2ξn,s) <∞.

The uniform integrability of the other terms in (4.13) is verified in a similar way.

REMARK. If the operator A−1 is compact and Dxxg(x)BB∗ can be extended to
a nuclear operator on H for all x ∈ H, then

tr[(A∗)1/2−γDxxg(x)BB∗(A∗)γ−1/2] = trDxxg(x)BB∗

(Theorem iii.8.2 of [19]) and the analogous equality is satisfied for the last term on
the right-hand side of (4.12). The equality (4.12) then has the usual form, which is
called the Itô formula.

Choose and fix α1 ∈ A and let η = Pα1(1, 0, ·) (recall (2.8)). Note that by [27]
and (A3) all of the transition functions Pα(t, x, ·), α ∈ A, t > 0, and x ∈ H are
equivalent. The following lemma is Lemma 3 of [13].

LEMMA 4.5. Let ϕ : H → U and G : H → U be bounded, Borel measurable
functions and let (Gn, n ∈ N) be a sequence of bounded, Borel measurable func-
tions that converge to G in σ(L∞(H, η,H), L1(H, η,H)) (i.e., in the weak∗ topology
of L∞(H, η,H)). If (A1)–(A3) are satisfied, then

lim
n→∞

E
(∫ t

0
〈ϕ(X(s)), Gn(X(s))−G(X(s))〉Uds

)2

= 0,(4.14)

where (X(t), t ≥ 0) satisfies (2.5) and α ∈ A, x ∈ H are arbitrary.
The following result is a technical lemma which will play an important role in the

proofs of the existence of an optimal control and the uniformly continuous dependence
of the invariant measures on the parameter α.

PROPOSITION 4.6. Let (αn, n ∈ N) be a sequence in A that converges to α0 ∈
A and let (h(α0, · , un( ·)), n ∈ N) be a sequence that converges to h(α0, · , u( ·)) in
σ(L∞(H, η,H), L1(H, η,H)). If (A1)–(A3) are satisfied then

lim
n→∞

Pαn,unt ϕ(x) = Pα0,u
t ϕ(x)(4.15)

for each ϕ ∈M(H), x ∈ H, and t > 0.
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Proof. It easily follows that

(4.16)

|Pαn,unt ϕ(x)− Pα0,u
t ϕ(x)| ≤ |Pαn,unt ϕ(x)− Pα0,un

t ϕ(x)|+ |Pα0,un
t ϕ(x)− Pα0,u

t ϕ(x)|

≤ sup |ϕ|‖Pαn,un(t, x, ·)− Pαo,un(t, x, ·)‖

+ |Pα0,un
t ϕ(x)− Pα0,u

t ϕ(x)|.

By Proposition 4.3 the first term on the right-hand side of (4.16) tends to zero as
n→∞, so it suffices to show that for any subsequence (unk , k ∈ N)

lim
k→∞

Eϕ(X(t)) exp(ξ
α0,unk
t ) = Eϕ(X(t)) exp(ξα0,u

t ),(4.17)

where (X(t), t ≥ 0) is a solution of (2.1) with α = α0. The sequence (exp(ξα0,uk
t ), k ∈

N) is bounded in L1(Ω,P), so there is a subsequence denoted as the full sequence and
a Z ∈ L1(Ω,P) such that

lim
n→∞

exp(ξα0,un
t ) = Z(4.18)

in σ(L1(Ω,P), L∞(Ω,P)). Since ϕ is bounded, the equality (4.17) follows if Z =
exp(ξα0,u

t ). Let g = ḡ(〈x, e1〉, . . . , 〈x, en〉), where (ei, i ∈ N) is a complete orthonormal
basis in H such that ei ∈ D1

A∗ , ḡ ∈ C∞0 (Rn) is arbitrary, and n ∈ N. By Proposition
4.4 it follows that

g(X(r))−
∫ r

0
(〈−A∗Dxg(X(s)), X(s)〉+ 〈Dxg(X(s)), f(α0, X(s))〉

+ 〈B∗Dxg(X(s)), h(α0, X(s), un(X(s)))〉U

+
1
2

tr[(A∗)1/2−γDxxg(X(s))BB∗(A∗)γ−1/2]

+
1
2

tr[(A∗)1/2−∆Dxxg(X(s))Q(A∗)∆−1/2])ds

(4.19)

for r ∈ [0, t] is a martingale with respect to Pα0,un
x . Apply Lemma 4.1 with ϕ(y) =

B∗Dxg(y), Gn(y) = h(α0, y, un(y)), and G(y) = h(α0, y, u(y)) to obtain

lim
n→∞

E
(∫ t

0
〈B∗Dxg(X(s)), h(α0, X(s), un(X(s))− h(α0, X(s), u(X(s)))〉U

)2

ds = 0

so there is a subsequence such that for each Γ ∈ F

lim
k→∞

∫
Γ

∫ r

0
〈B∗Dxg(X(s)), h(α0, X(s), unk(X(s)))〉U exp(ξ

α0,unk
t )dP

=
∫
Γ

∫ r

0
〈B∗Dxg(X(s)), h(α0, X(s), u(X(s)))〉UZdP

(4.20)

for all r ∈ [0, t] by (4.34) of [2] and (33) of [32]. It follows that (4.19) is a continuous
martingale with respect to ZP(dω), and by the weak uniqueness of the solutions of
(2.1) it follows that Z = exp(ξα0,u

t ) (cf. [18]).
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REMARK 4.7. In the remainder of this section some continuity properties of the
invariant measures corresponding to the solution of (2.1) are verified. One of the basic
assumptions here is the tightness condition (A5). Using a Lyapunov condition, (A5) is
verified in section 5. Furthermore, if (A1)–(A3) are satisfied, then for each α ∈ A and
u ∈ U the transition probabilities (Pα,u(t, x, ·), t > 0, x ∈ H) are equivalent, which
follows from the equivalence of the transition probabilities (Pα(t, x, ·), t > 0, x ∈ H).
This latter fact is an immediate consequence of the strong Feller property (a special
case of Lemma 4.2) and irreducibility (Proposition 2.7 of [28]). From the equivalence
of (Pα,u(t, x, ·), t > 0, x ∈ H), it follows that for each α ∈ A and u ∈ U the invariant
measure µ(α, u) is ergodic and unique (Proposition 2.5 of [31]).

The following lemma follows basically from Roxin [29] (cf. also the Appendix in
[2]).

LEMMA 4.8. Let α ∈ A be fixed. If (A2), (A6), and (A7) are satisfied then

{(h(α, · , u( ·)), c( · , u( ·))) : u ∈ U} ⊂ L∞(H, η, U × R)

is compact in the σ(L∞(H, η, U × R), L1(H, η, U × R)) topology.
PROPOSITION 4.9. If (A1)–(A7) are satisfied then

lim
α→α0

sup
u∈U

ρ∗(µ(α, u), µ(α0, u)) = 0(4.21)

and

lim
n→∞

ρ∗(µ(α0, ûn), µ(α0, u0)) = 0,(4.22)

where µ is the invariant measure and ρ∗ is a metric for the weak∗ convergence of
measures, α0 ∈ A, u0 ∈ U and (ûn, n ∈ N) is a sequence in U such that

lim
n→∞

h(α0, · , ûn( ·)) = h(α0, · , u0( ·))

in the σ(L∞(H, η, U), L1(H, η, U)) topology.
Proof. Let (αn, n ∈ N) be a sequence in A that converges to α0 and let (un, n ∈

N) be a sequence in U . By Lemma 4.8 there exist subsequences (again denoted
(αn, n ∈ N) and (un, n ∈ N)) so that αn → α0 and (h(α0, · , un( ·)), n ∈ N) converges
to h(α0, · , u( ·)) for some u ∈ U in the σ(L∞(H, η, U), L1(H, η, U)) topology. To verify
(4.21) it is necessary to show that from any such sequences there are subsequences
(αnk , k ∈ N) and (unk , k ∈ N) such that

lim
k→∞

ρ∗(µ(αnk , unk), µ(α0, unk)) = 0.(4.23)

By the tightness condition (A5) there are measures ν1 and ν2 such that µ(αnk , unk)→
ν1 and µ(α0, unk) → ν2 as k → ∞ in the weak∗ topology. It is shown that ν1 is an
invariant measure for Pα0,u

t ; that is, for each ϕ ∈ Cb(H),∫
ϕdν1 =

∫
Pα0,u
t ϕdν1(4.24)

for t ≥ 0. Again, for notational simplicity, let the subsequences be denoted as (αn, n ∈
N) and (un, n ∈ N). It easily follows that
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∣∣∣∣∫ ϕdν1 −
∫
Pα0,u
t ϕdν1

∣∣∣∣ ≤ ∣∣∣∣∫ ϕdν1 −
∫
ϕdµ(αn, un)

∣∣∣∣
+
∣∣∣∣∫ ϕdµ(αn, un)−

∫
Pαn,unt ϕdµ(αn, un)

∣∣∣∣
+
∣∣∣∣∫ Pαn,unt ϕdµ(αn, un)−

∫
Pα0,u
t ϕdµ(αn, un)

∣∣∣∣
+
∣∣∣∣∫ Pα0,u

t ϕdµ(αn, un)−
∫
Pα0,u
t ϕdν1

∣∣∣∣
:= I1

n + I2
n + I3

n + I4
n.

(4.25)

It follows that I1
n + I4

n → 0 as n→∞ because µ(αn, un)→ ν1 in the weak∗ topology
and I2

n ≡ 0 because µ(αn, un) is Pαn,unt invariant. Furthermore,

I3
n ≤

∫
K

|Pαn,unt ϕ− Pα0,u
t ϕ|dµ(αn, un) + 2 max |ϕ|µ(αn, un)(H \K)(4.26)

for any compact K ⊂ H. By Proposition 4.6 and Lemma 4.2, Pαn,unt ϕ → Pα0,u
t ϕ

uniformly on compact subsets of H, so this fact and (A5) imply that

lim
n→∞

I3
n = 0.

Therefore, (4.24) is satisfied. Since µ(α0, u) is the unique invariant measure for Pα0,u
t ,

ν1 = µ(α0, u). In the same way it follows that ν2 = µ(α0, u), which verifies (4.23) and
thereby (4.21). To verify (4.22) note that given any sequence (µ(α0, ûn), n ∈ N) there
is a subsequence (µ(α0, ûnk), k ∈ N) converging to a measure ν3 in the weak∗ topology.
By analogy to (4.25) it can be shown that ν3 is Pα0,u0

t invariant so ν3 = µ(α0, u0).

In Proposition 4.9, (4.21) gives the uniformly continuous dependence of invariant
measures on the parameter α. Using Propositions 4.9 and 4.3 a strong version of
(4.21) is obtained now.

PROPOSITION 4.10. If (A1)–(A7) are satisfied then

lim
α→α0

sup
u∈U
‖µ(α, u)− µ(α0, u)‖ = 0,(4.27)

where ‖ · ‖ is the variation norm.
Proof. It easily follows that

sup
u∈U
‖µ(α, u)− µ(α0, u)‖ = sup

u∈U
sup
|ϕ|≤1
ϕ∈Cb

∣∣∣∣∫
H

ϕdµ(α, u)−
∫
H

ϕdµ(α0, u)
∣∣∣∣

= sup
u∈U

sup
|ϕ|≤1

∣∣∣∣∫
H

Pα,u1 ϕdµ(α, u)−
∫
H

Pα0,u
1 ϕdµ(α0, u)

∣∣∣∣
≤ 2 sup

α,u
µ(α, u)(H \K) +

∫
K

sup
u
‖Pα,u(1, x, ·)− Pα0,u(1, x, ·)‖µ(α, u)(dx)

+ sup
u,ϕ

∣∣∣∣∫
K

Pα,u1 ϕdµ(α, u)−
∫
K

Pα0,u
1 ϕdµ(α0, u)

∣∣∣∣

(4.28)
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for any compact set K ⊂ H. By (A5) the first term on the right-hand side of (4.28) can
be made arbitrarily small by choosing a suitable compact set K, and by Proposition
4.3 the second term converges to zero almost surely as α → α0. Furthermore, by
Lemma 4.2 the family of functions (Pα0,u

1 ϕ, |ϕ| ≤ 1, u ∈ U) is uniformly continuous
on K, so for sequences (un, n ∈ N) and (ϕn, n ∈ N), where un ∈ U and ϕn ∈ Cb for
n ∈ N, there are subsequences (unk , k ∈ N) and (ϕnk , k ∈ N) and a ψ ∈ Cb(K) such
that P

α0,unk
1 ϕnk(x)→ ψ(x), as k →∞, uniformly in x ∈ K. Now the third term on

the right-hand side of (4.28) is shown to converge to zero.∣∣∣∣∫
K

P
α0,unk
1 ϕnkdµ(α, unk)−

∫
K

P
α0,unk
1 ϕnkdµ(α0, unk)

∣∣∣∣
≤
∫
K

|Pα0,unk
1 ϕnk − ψ|dµ(α, unk) +

∣∣∣∣∫
K

ψdµ(α, unk)−
∫
K

ψdµ(α0, unk)
∣∣∣∣

+
∫
K

|ψ − Pα0,unk
1 ϕnk |dµ(α0, unk)

:= I1
n + I2

n + I3
n.

(4.29)

By the uniform convergence P
α0,unk
1 ϕnk → ψ on K it follows that I1

n + I3
n → 0 as

n → ∞, and by (4.21) it follows that I2
n → 0 as n → ∞. This proves that the last

term on the right-hand side of (4.28) tends to zero as α→ α0.
REMARK 4.11. The strong continuous dependence of the invariant measures on

a parameter in Proposition 4.10 can be of independent interest even for equations
without control. If the parameter occurs linearly in the generator of even a very
simple example of an Ornstein–Uhlenbeck process then the invariant measures may
not depend continuously on α in the variation norm. For example, consider the
stochastic differential equation

dX(t) + αAX(t)dt = dW (t), X(0) = x,(4.30)

where A and (W (t), t ≥ 0) are the same as in (2.1) and α ∈ [1/2, 2]. If∫ ∞
0
|S(t)|2L2(H)dt <∞(4.31)

then (4.30) has a unique mild solution that is a continuous H-valued process. If
(4.31) is satisfied and α ∈ [1/2, 2], then there is a unique invariant measure µ(α) for
the solution of (4.30), where µ(α) = N(0, α−1Q̃) and Q̃ =

∫∞
0 S(t)S∗(t)dt. It is easy

to verify that the family of measures (µ(α), α ∈ [1/2, 2]) is tight and µ(α) w∗−→ µ(1)
as α→ 1. However, the variation norm convergence µ(α)→ µ(1) occurs if and only if
dimH <∞ because the operator (α−1Q̃)Q̃−1−I = (α−1−1)I is not Hilbert–Schmidt
for α 6= 1 and dimH = ∞, and so µ(α) and µ(1) are singular by the well-known
dichotomy for Gaussian measures. This occurs even in the strong Feller case when
the solution of (4.30) converges in law to the invariant measure in the variation norm
for each fixed α. For a specific example of this, consider the linear SPDE

∂w

∂t
(t, ξ) = α

∂2w

∂ξ2 (t, ξ) + n(t, ξ),(4.32)

where α ∈ [1/2, 2], (t, ξ) ∈ R+ × (0, 1), w(0, ξ) = w0(ξ), w(t, 0) = v(t, 1) = 0, and
(n(t, ξ), t ≥ 0, ξ ∈ [0, 1]) is a space-time white noise which can be expressed as an
equation of the form (4.30) for H = L2(0, 1) (cf. Example 7.1).
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5. Existence and tightness of invariant measures. In this section some
more explicit sufficient conditions for the validity of (A5) are given by means of some
Lyapunov-type inequalities. Throughout this section it is assumed that

(T1) A−1 is compact.

Since the semigroup S( ·) generated by−A is assumed to be analytic and exponentially
stable, there exist some M > 0 and ω > 0 such that

(T2) |S(t)|L(D−δA ,H) ≤Me−ωtt−δ

for all t > 0 and δ ≤ 0. (The constants M and ω will play some role in the Lyapunov-
type conditions given below.)

While in the other sections of this paper the negativity of −A is assumed merely
for convenience (because A + βI can be used instead of A, and βI can be added to
f), in this section it is essential.

Define µα,uT as follows:

µα,uT ( ·) =
1
T

∫ T

0
Pα,u(t, 0, ·)dt(5.1)

for α ∈ A, u ∈ U , and T > 0. Since the solution of (2.1) is Feller, to verify (A5) it
suffices to show that the family of measures (µα,uT , α ∈ A, u ∈ U , T ≥ 1) is tight. In
the following proposition it is shown that the tightness of (µα,uT , α ∈ A, u ∈ U , T ≥ 1)
follows from a similar property, where compact sets are replaced by balls (5.2). Note
that (5.2) does not guarantee the existence of an invariant measure in general (cf.
[33]).

PROPOSITION 5.1. If (A1), (A2), and (T1) are satisfied and

lim
n→∞

µα,uT (H \Bn) = 0,(5.2)

where the convergence is uniform in α ∈ A, u ∈ U , and T ≥ 1, and Bn = {x ∈ H :
|x| ≤ n}, then the family of measures (µα,uT , α ∈ A, u ∈ U , T ≥ 1) is tight.

Proof. The weak solution of (2.1) satisfies the equation

X(t) = S(t)x+
∫ t

0
S(t− r)f(α,X(r))dr

+
∫ t

0
S(t− r)Bh(α,X(r), u(X(r)))dr + Z1(t) + Z2(t),

(5.3)

where

Z1(t) =
∫ t

0
S(t− r)BdV ∗(r)

and

Z2(t) =
∫ t

0
S(t− r)Q1/2dW (r)

for t ≥ 0. By (A1) and Lemma 2.2 of [30] it follows that

Eα,ux |Z1(t)|2δ + Eα,ux |Z2(t)|2δ ≤M1

for t ∈ [0, T ], where T > 0 is fixed and the constant M1 (as well as M2, . . . ,M5
below) does not depend on α ∈ A, u ∈ U , and x ∈ H, and | · |δ is the Dδ

A norm and
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δ ∈ (0,min(ε, γ,∆)) is fixed. It follows that

Eα,ux |X(t)|δ ≤M2|x|t−δ +
∫ t

0

M3

(t− s)1−ε+δE
α,u
x |X(s)|δds+M4(5.4)

for t ∈ (0, T ] and x ∈ H, so the generalized Gronwall lemma (Theorem 7.1 of [21])
implies that

Eα,ux |X(T )|δ ≤M5(1 + |x|)(5.5)

for α ∈ A, u ∈ U , and x ∈ H. By the Chebyshev inequality it follows that

sup
|y|≤R

Pα,uy (|X(t)|δ ≥ n) ≤ 1
n
M5(1 +R)(5.6)

for n ∈ N, R > 0, α ∈ A, and u ∈ U .
Let Kn ⊂ H be given by

Kn = ClHA−δBn(5.7)

for n ∈ N, where ClH is the closure in H. Since A−δ is a compact operator, Kn is
compact in H. It follows that

(5.8)
1
T

∫ T

1
Pα,u(t, 0, H \Kn)dt =

1
T

∫ T

1

∫
H

Pα,u(1, y,H \Kn)Pα,u(t− 1, 0,dy)dt

=
T − 1
T

∫
H

Pα,u(1, y,H \Kn)µα,uT−1(dy)

≤ µα,uT−1(H \BR) + µα,uT−1(BR) sup
|y|≤R

Pα,u(1, y,H \Kn)

≤ µα,uT−1(H \BR) +
1
n
M5(1 +R)

for each R > 0. By (5.2) the right-hand side tends to zero as n → ∞ uniformly in
α ∈ A, u ∈ U , and T ≥ 1.

In Theorem 5.3 below, the condition (5.2) is verified by a Lyapunov functional
that completes the verification of (A5). Let V be given by

V = 2
∫ ∞

0
S(r)S∗(r)dr.(5.9)

If (T2) is satisfied then V ∈ L(H) is well defined, V = V ∗, and V ≥ 0.
The following estimates are easily verified.
LEMMA 5.2. For β, λ ∈ R+ with β + λ < 1, V ∈ L(D−βA , Dλ

A) and the following
inequality is satisfied:

|V |L(D−βA ,DλA) ≤ 2M2(2ω)β+λ−1Γ (1− β − λ),(5.10)

where Γ is the gamma function, M and ω are given in (T2), and V is given by (5.9).
Furthermore, if A is self-adjoint, then V = A−1 and

|V |L(D−βA ,DλA) ≤ ω
β+λ−1(5.11)

and ω is the first eigenvalue of A.
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THEOREM 5.3. If (A1), (A2), (T1), (T2) are satisfied and either

M2ω−1kf + 21−εM2ω−ε|B|L(U,Dε−1
A )Γ (ε)kh < 1(5.12)

for A not self-adjoint or

ω−1kf + |B|L(U,Dε−1
A )ω

−εkh < 1(5.13)

for A self-adjoint, where M and ω are given in (T2) and Γ is the gamma function,
then the condition (A5) is satisfied. In particular, (5.12) and (5.13) are satisfied if |f |
and |h|U are bounded uniformly with respect to α ∈ A and u ∈ U .

Proof. By Proposition 5.1 it suffices to verify (5.2). Use Proposition 4.4 with
g(x) = 〈V x, x〉 so that Dxg(x) = V x, Dxxg(x) = V ,

|V |L(H,D1−ε
A∗ ) ≤ 2M2(2ω)−εΓ (ε),(5.14)

and 〈Ax,Dxg(x)〉 = |x|2 for x ∈ D1
A, and by Lemma 5.2 V ∈ L(Dγ−1/2

A , D
1/2−γ
A∗ ) ∩

L(D∆−1/2
A , D

1/2−∆
A∗ ). Thus the assumptions of Proposition 4.4 are satisfied, and by

(A2) and (5.14),

Eα,ux 〈V X(t), X(t)〉 − 〈V x, x〉

≤ Eα,ux
∫ t

0
(|X(s)|2(−1 +M2ω−1kf + 21−εM2ω−ε|B|L(U,Dε−1

A )Γ (ε)kh)

+ c1|X(s)|+ c2)ds

(5.15)

for t ≥ 0, where the constants c1 and c2 (as well as the constants c3 and c4 be-
low) do not depend on α ∈ A and u ∈ U . Choosing r such that M2ω−1kf +
21−εM2ω−2|B|L(U,Dε−1

A )Γ (ε) · kh < r < 1, it follows that

Eα,ux 〈V X(t), X(t)〉 − 〈V x, x〉 ≤ Eα,ux
∫ t

0
((r − 1)|X(t)|2 + c3)ds

for t ≥ 0, and since V ≥ 0 it follows that

sup
t≥1

1
t

∫ t

0
Eα,ux |X(s)|2ds ≤ sup

t≥1

〈V x, x〉
t(1− r) +

c3
1− r ≤ c4.(5.16)

By (5.16) and the Chebyshev inequality it follows that (5.2) is satisfied. If A is
self-adjoint then (5.11) can be used instead of (5.10).

6. The existence of an optimal control. Recall that the control problem is
described by the system (2.1) and the cost functional

J(α, u) = lim sup
T→∞

Eα,ux
1
T

∫ T

0
c(X(s), u(X(s)))ds,(6.1)

and the optimal cost is J∗(α) = infu∈U J(α, u). If (A1)–(A3), (A5), and (A6) are
satisfied then the following equality is satisfied:

J(α, u) =
∫
H

c(y, u(y))µ(α, u)(dy)(6.2)
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(cf. Remark 4.7), so the cost J(α, u) does not depend on the initial condition X(0) =
x ∈ H. In this section the existence of an optimal control for the control problem
(2.1) and (6.1) with a fixed parameter α ∈ A and the continuity of the optimal cost
J∗ : A → R are verified. In Lemma 6.1 and Theorem 6.2 the parameter is fixed, so it
is suppressed for notational convenience.

Recall that P (t, x, Γ ) is given in (2.8) and η = P (1, 0, ·).
LEMMA 6.1. Let (An, n ∈ N) be a sequence in B(H) such that η(An) → 0 as

n→∞. If (A1)–(A3) and (A5) are satisfied then

lim
n→∞

sup
u∈U

µ(u)(An) = 0.(6.3)

Proof. Since P (1, · , ·) : H → P(H) is continuous in the variation norm and
P (1, x, ·) and η are equivalent for each x ∈ K, where K ⊂ H is compact, it follows
that

lim
n→∞

sup
x∈K

P (1, x, An) = 0.(6.4)

Since, for a fixed α ∈ A, |h|U is bounded it follows that

sup
u∈U, x∈K

Pu(1, x, An) = sup
u∈U

sup
x∈K

Ex1An(X(1)) exp(ξu1 )

≤ sup
x∈K

(P (1, x, An))1/2 exp(sup |h|2).
(6.5)

The right-hand side of this inequality tends to zero as n→∞ by (6.4).
Finally it follows that

sup
u∈U

µ(u)(An) = sup
u∈U

∫
H

Pu(1, x, An)µ(u)(dx)

≤ sup
u∈U

µ(u)(H \K) +
∫
K

sup
u∈U

Pu(1, x, An)µ(u)(dx).

By (6.5) and the tightness of the family of measures (µ(u), u ∈ U) the right-hand side
of this inequality tends to zero as n→∞.

THEOREM 6.2. If (A1)–(A3) and (A5)–(A7) are satisfied for each α ∈ A, then
there is an optimal control for the control problem given by (2.1) and (6.1).

Proof. Let (un, n ∈ N) be a sequence in U such that there is a subsequence in
(un, n ∈ N) denoted as (un, n ∈ N) for notational convenience, such that

lim
n→∞

(h( · , un( ·)), c( · , un( ·))) = (h( · , u( ·)), c( · , u( ·)))(6.6)

in the σ(L∞(H, η, U × R), L1(H, η, U × R)) topology. To verify that u is an optimal
control it is necessary to prove that for any subsequence (unk , k ∈ N),

lim
k→∞

J(unk) = J(u).(6.7)

As in Lemma 4.5 it follows that

lim
n→∞

E
(∫ t

0
(c(X(s), un(X(s)))− c(X(s), u(X(s))))ds

)2

= 0,
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where (X(t), t ≥ 0) satisfies (2.5) with X(0) = x ∈ H arbitrary (cf. Theorem 2 of
[13]). As in the passage to the limit in the proof of Proposition 4.4 it follows that

lim
n→∞

Eunx
∫ t

0
c(X(s), un(X(s)))ds = Eux

∫ t

0
c(X(s), u(X(s)))ds(6.8)

for a subsequence again denoted by (un, n ∈ N). By Egorov’s theorem the convergence
in (6.8) is uniform in x except possibly on a set of arbitrarily small η-measure. This
fact and Lemma 6.1 imply that

(6.9)

limn→∞
∫
H

∣∣∣Eunx ∫ t
0 c(X(s), un(X(s)))ds− Eux

∫ t
0 c(X(s), u(X(s)))ds

∣∣∣µ(un)(dx) = 0.

For each fixed t > 0 it follows that

(6.10)

|J(un)− J(u)|

=
∣∣∣∣∫
H

c(y, un(y))µ(un)(dy)−
∫
H

c(y, u(y))µ(u)(dy)
∣∣∣∣

≤
∣∣∣∣1t
∫ t

0

[∫
H

Euny c(X(s), un(X(s)))µ(un)(dy)

−
∫
H

Euyc(X(s), u(X(s)))µ(u)(dy)
]

ds
∣∣∣∣

≤ 1
t

∫
H

∣∣∣∣Euny ∫ t

0
c(X(s), un(X(s)))ds− Euy

∫ t

0
c(X(s), u(X(s)))ds

∣∣∣∣µ(un)(dy)

+
1
t

∫ t

0

∣∣∣∣∫
H

Euyc(X(s), u(X(s)))µ(un)(dy)−
∫
H

Euyc(X(s), u(X(s)))µ(u)(dy)
∣∣∣∣ ds

:= I1
n + I2

n.

By (6.9) it suffices to show that I2
n → 0 as n → ∞. Since c( · , u( ·)) is bounded and

Borel measurable, the strong Feller property (Lemma 4.2) implies that

E·c(X(s), u(X(s))) : H → R

is continuous for each s > 0 where Exc(X(s), u(X(s))) = Pus c( · , u( ·))(x). So by
(4.22) and the dominated convergence theorem, I2

n → 0 as n→∞.
THEOREM 6.3. If (A1)–(A7) are satisfied then the optimal cost J∗ : A → R is

continuous.
Proof. It follows that

sup
u∈U
|J(α, u)− J(α0, u)| ≤ sup |c| sup

u∈U
‖µ(u, α)− µ(u, α0)‖.(6.11)

By Proposition 4.10 it follows that the right-hand side of this inequality tends to zero
as n→∞. Given ε > 0 there is a δ > 0 such that if |α− α0| < δ then

sup
u∈U
|J(α, u)− J(α0, u)| < ε.

Let uα ∈ U be an optimal control for the control problem (2.1) and (6.1), that is,
J∗(α) = J(α, uα) for α ∈ A. Since J(α, uα0) ≥ J(α, uα) it follows that J(α0, uα0) ≥
J(α, uα) − ε. Since J(α0, uα0) ≤ J(α0, uα) it follows that J(α0, uα0) ≤ J(α, uα) + ε
for α ∈ A and |α− α0| < δ.
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7. Some Examples.
EXAMPLE 7.1. Consider the scalar stochastic parabolic partial differential equa-

tion
∂v

∂t
(t, ξ) = Lv(t, ξ) + F (α, v(t, ξ)) + n(t, ξ)(7.1)

for (t, ξ) ∈ R+ × (0, 1) with the initial and boundary conditions

v(0, ξ) = v0(ξ),(7.2)
∂v

∂ξ
(t, 0) = h1(α, v(t, ·), u(v(t, ·))) + β̇1(t),(7.3)

∂v

∂ξ
(t, 1) = h2(α, v(t, ·), u(v(t, ·))) + β̇2(t),(7.4)

where n denotes a space-dependent Gaussian noise that is white in time, β1 and β2 are
one-dimensional standard Wiener processes, and these three processes are mutually
independent. Furthermore,

Lv = a(ξ)
∂2

∂ξ2 v + b(ξ)
∂

∂ξ
v + c(ξ),

where a, b, c ∈ C∞([0, 1]), a > 0, c < 0, F : A × R → R, hi : A × H × K → R,
i = 1, 2, where H = L2(0, 1), A ⊂ Rd1 is compact, K ⊂ Rk is a compact product of
intervals, F (α, ·) : R→ R is Lipschitz continuous, hi(α, · , ·) : H ×K → R, i = 1, 2, is
continuous and bounded for each α ∈ A with at most linear growth that is uniform
with respect to α ∈ A, and

(7.5)

|F (α, ξ)− F (β, ξ)|+
2∑
i=1

|hi(α, x, u)− hi(β, x, u)| ≤ ω(|α− β|)(1 + max(|x|, |ξ|))

for α, β ∈ A, ξ ∈ R, x ∈ H, and u ∈ K, where ω satisfies the properties in (A2). The
system of equations (7.1)–(7.4) can be rewritten in the form of (2.1) in a natural way,
where H = L2(0, 1), U = R2, A = −L with

Dom(A) =
{
ϕ : ϕ ∈ H2(0, 1),

∂

∂ξ
ϕ(0) =

∂

∂ξ
ϕ(1) = 0

}
,

f(α, x)(ξ) = F (α,X(ξ)), x ∈ H, ξ ∈ (0, 1), and h = [h1, h2]. The operatorB is defined
as B = ÂN , where N ∈ L(R2, Dε

A), ε < 3/4 is the Neumann map corresponding to
the elliptic Neumann problem

Lz(ξ) = 0, ξ ∈ (0, 1),(7.6)
∂z

∂ξ
(0) = g1,

∂z

∂ξ
(1) = g2(7.7)

for g1, g2 ∈ R, and Â ∈ L(Dε
A, D

ε−1
A ) is the isomorphic extension of the operator

A to Dε
A. (See [26] for the theory of Dirichlet and Neumann maps, [16] for the

identification of Dε
A with the corresponding Sobolev spaces, and [22] or [27] for the

mathematical justification of the form (2.1) for the equations (7.1)–(7.4).) Thus it
follows that B ∈ L(U,Dε−1

A ) for ε < 3/4 in the present case. Now it is verified that
(A1) and (A3) are satisfied, where Q1/2 = A−ηΓ with η ≥ 0 and Γ, Γ−1 ∈ L(H).
Since A−δ is Hilbert–Schmidt for δ > 1/4 (cf. Example 6.1 of [12]) it follows that
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Q1/2 ∈ L2(H,D∆−1/2
A ) for ∆ < 1/4 + η. Since the space U is finite-dimensional,

B ∈ L2(U,Dγ−1/2
A ) for γ < ε − 1/2 and γ is positive if ε > 1/2. To verify (A3) use

Proposition 3.4, which shows that (A3) is satisfied if η ∈ [0, ε− 1/2) if ε ≥ 1/2. Thus
the assumptions (A1) and (A3) are satisfied for η ∈ [0, 1/4) so that ε, γ, and ∆ can be
chosen to satisfy ε ∈ (η + 1/2, 3/4), γ < ε− 1/2, and ∆ < 1/4 + η. The assumptions
(A2) and (A4) are satisfied by the conditions imposed on F , h1, and h2. The tightness
condition (A5) can be verified using Theorem 5.3 (note that A−1 is compact in the
present case). For example, if |F |, |h1|, and |h2| are (uniformly) bounded then (A5)
is satisfied. Thus the results of the paper (in particular, Proposition 4.10, Theorems
6.2 and 6.3) can be applied for any cost functional c : H ×K → R that satisfies (A6)
and satisfies with h1 and h2 the convexity condition (A7). A simple example of a
boundary input (7.3), (7.4) that satisfies all the above conditions is

∂v

∂ξ
(t, 0) = u1(v(t, ·)) + β̇1(t),(7.8)

∂v

∂ξ
(t, 1) = u2(v(t, ·)) + β̇2(t),(7.9)

where (u1, u2) : H → [−M,M ]2 = K.
EXAMPLE 7.2. Consider the stochastic parabolic partial differential equation with

pointwise noise and control

(7.10)
∂v

∂t
(t, ξ) = Lv(t, ξ) + F (α, v(t, ξ)) +

N∑
i=1

[hi(α, v(t, ·), u(v(t, ·))) + β̇i(t)]δξi + n(t, ξ)

for (t, ξ) ∈ R+ × (0, 1) with initial and boundary conditions

v(0, ξ) = v0(ξ),(7.11)

v(t, 0) = 0,(7.12)

v(t, 1) = 0(7.13)

for (t, ξ) ∈ R+ × (0, 1), where L,F, n, βi, and hi are the same as in Example 7.1, and
δξi , i = 1, 2, . . . , N , are the Dirac distributions at the points ξi ∈ (0, 1), i = 1, 2, . . . , N .
The equation (7.10) is given a precise interpretation by using (2.1) with H and f as in
Example 7.1, V (t) = (β1(t), . . . , βN (t)), U = RN , h = (h1, . . . , hN ), and A = −L with
Dom(A) = H2(0, 1)∩H1

0 (0, 1). It is possible to use the Neumann boundary conditions
in (7.12), (7.13) as well, so that Dom(A) would be the same as in Example 7.1. Since
the domain is one-dimensional it follows by the Sobolev imbedding theorem that δξi ∈
Dε−1
A for ε < 3/4 (cf. Theorem 1.1 of [5]). It trivially follows that B ∈ L(RN , Dε−1

A )
for Bλ =

∑N
i=1 λiδξi , λ = (λ1, . . . , λN ). The verification of assumptions (A1)–(A7)

in the present example is almost identical to the verifications in Example 7.1 because
H and f are the same and U , h, and V (t) are analogous (but the dimension is N
instead of 2), A−δ is Hilbert–Schmidt for δ > 1/4, A−1 is compact, and it is again
required that ε < 3/4. If the covariance Q of the distributed Wiener process can be
expressed as Q1/2 = A−ηΓ for Γ, Γ−1 ∈ L(H), η ∈ [0, 1/4), then the assumptions
(A1) and (A3) are satisfied. Given an M > 0 and the set of controls U = {u : H →
[−M,M ]N | u is Borel mesurable} it is now possible to apply Proposition 4.10 and
Theorems 6.2 and 6.3 with any cost functional c : H × [−M,M ]N → R that satisfies
(A6) and, together with h, the convexity condition (A7).
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Abstract. Under general hypotheses on the target set S and the dynamics of the system, we
show that the minimal time function TS(·) is a proximal solution to the Hamilton–Jacobi equation.
Uniqueness results are obtained with two different kinds of boundary conditions. A new propagation
result is proven, and as an application, we give necessary and sufficient conditions for TS(·) to be
Lipschitz continuous near S. A Petrov-type modulus condition is also shown to be sufficient for
continuity of TS(·) near S.

Key words. minimal time function, proximal analysis, Hamilton–Jacobi equations, nonsmooth
analysis, continuity of value functions
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1. Introduction. The minimal time control problem consists of a given closed
set S (the “target set”) and a control system in which the goal is to steer an initial
point x to the target set along a trajectory of the system in minimal time. The
minimal time value is denoted by TS(x), which could be +∞ if no trajectory from
x can reach S. We shall model the control system in this paper as a differential
inclusion.

The function x 7→ TS(x) is called the minimal time function. The first goal of this
paper is to prove that TS(·) is the unique proximal solution to the Hamilton–Jacobi
(HJ) equation. This is Theorem 3.2 below, which holds under very mild hypotheses
on F and S.

Solving HJ equations in some nonclassical sense has developed into an active
research area with several different schools of thought participating. The viscosity
solution method was pioneered by Crandall and Lions [20] and is closely linked with
classical PDE theory. See [19] and [22] for historical references. Minimax solutions
to HJ in the context of differential games were introduced in the Russian school by
Subbotin [33], [34], and one of the important contributions of this approach is its
extensive reliance on flow invariance. Clarke and Vinter [17] considered solutions
using generalized gradients to construct verification functions, although these are not
necessarily unique. More recently, proximal solutions to (HJ) appeared in Clarke and
Ledyaev [11], where the various concepts were also unified. See the discussion in [12,
Remark 9.4].

Characterizing TS(·) as a solution to a HJ equation without controllability as-
sumptions requires one to handle discontinuities that may appear, and perhaps infinite
values as well. In problems formulated on a fixed time interval, Barron and Jensen
[5], [6] initiated the study of lower semicontinuous vicosity solutions and found an
appropriate boundary condition to maintain uniqueness results. See also Frankowska
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[24] and Clarke et al. [12]. However, the minimal time problem does not fit into the
category of problems covered by these results.

HJ theory specifically tailored to handle TS(·) has also received considerable at-
tention. Viscosity approaches have been undertaken by Bardi [2], Evans and James
[21], Staicu [32], and Bardi and Falcone [4]. Local controllability assumptions are
made to guarantee that TS(·) will be continuous in these papers. Bardi and Staicu
[3] and Soravia [30] have also used viscosity-type methods without controllability, al-
though the uniqueness result in [3] requires that S be the closure of its interior (and
in particular, preclude the target to be a single point). Soravia [30] contains two
uniqueness results, one of the type just mentioned and another that is equivalent to
our Theorem 3.2 below. Various interesting data perturbations and envelope con-
structions are made in these papers, but we do not require any of those techniques
here. Rather, the approach in this paper is based on flow invariance and mimics
the broad outline sketched in [12]. See also Frankowska [24], in which invariance is
prominent. Adaptations of the arguments in [24] to minimal time problems are made
in Carja, Mignanego, and Pieri [8], where the target set is restricted to be the origin.
One common feature in all these papers (except [30]) is that a boundary condition is
required at the boundary of the reachable set (this was introduced in [2]), whereas our
approach dispenses with any such condition. Although some of the arguments given
in section 3 below are routine modifications of those in [12, section 9], we attempt,
except in cases where the modifications are obvious, to give detailed proofs for both
clarity and completeness.

The basic assumptions on the multifunction F that appears on the right-hand
side of the differential inclusion are standard. Namely, F will be locally bounded,
have convex values, and exhibit local Lipschitz behavior. We shall not make an a
priori growth assumption on F , but an additional hypothesis is required to imply the
lower semicontinuity of TS(·). This additional hypothesis will depend on properties
of both S and F , but is always satisfied if F should exhibit linear growth in its state
variable.

In Theorem 3.2, the minimal time function is shown to be the unique solution to
a proximal form of the HJ equation satisfying an analytic boundary condition in the
form of a HJ inequality. This boundary condition is probably the most natural one
under the circumstances and allows for the easiest proof of the theorem. In section
4, we give an alternative but equivalent formulation of Theorem 3.2 by introducing
a geometric boundary condition. This second boundary condition is closer in spirit
to the one introduced by Barron and Jensen [5], [6] (and used in [24], [12]), but is
somewhat more difficult to state in the present circumstance. On the other hand,
it has a meaningful interpretation directly in terms of the data. The main result in
section 5 is Theorem 5.1, which is a characterization of the proximal subgradients of
TS . This result describes the propagation of the level sets of TS and is a different
approach to some work by Soravia [31] on front propagation. In particular, our result
does not require assumptions that force the level sets to strictly enlarge at each point.
We make one application of Theorem 5.1 in section 6 by giving necessary and sufficient
conditions for TS to be Lipschitz continuous near S, and sufficient conditions are also
provided for continuity of an arbitrary modulus. Remarks in that section address the
history of such results. Finally, some examples are given in section 7.

2. Preliminaries.

2.1. Background in nonsmooth analysis. We first review some concepts
from nonsmooth analysis that are pertinent in this paper. For a complete treatment,
see [10], [25], or [13].
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For a closed subset of S of Rn, the distance function to S is defined by

dS(x) = inf{‖x− s‖ : s ∈ S}

for all x ∈ Rn.
DEFINITION 2.1. Suppose S ⊆ Rn is closed and s ∈ S. A vector ζ ∈ Rn is a

proximal normal to S at s provided there exists r > 0 so that dS(s+ rζ) = r‖ζ‖. The
set of all proximal normal vectors to S at s is denoted by NP

S (s).
DEFINITION 2.2. Suppose θ : Rn → (−∞,∞] is lower semicontinuous and x ∈

dom θ := {x′ : θ(x′) < ∞}. A vector ξ ∈ Rn is a proximal subgradient of θ at
x provided (ξ,−1) ∈ NP

epi θ(x, θ(x)), where epi θ denotes the epigraph {(x, r) : x ∈
dom θ, r ≥ θ(x)} of θ(·), which is a closed subset of Rn+1. The set (which could be
empty) of all proximal subgradients of θ(·) at x is denoted by ∂P θ(x). If x /∈ dom θ,
then ∂P θ(x) = φ by definition.

The following analytic descriptions of the proximal objects are often useful. See
[25] or [13] for the proofs.

PROPOSITION 2.1.
(a) Suppose S is closed and s ∈ S. Then ζ ∈ NP

S (s) if and only if there exists
σ > 0 and η > 0 such that 〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2 for all s′ ∈ S ∩ {x+ ηB}.

(b) Suppose θ : Rn → (−∞,∞] is lower semicontinuous and x ∈ dom θ. Then
ξ ∈ ∂P θ(x) if and only if there exists σ > 0 and η > 0 such that

θ(y)− 〈ξ, y − x〉+ σ‖y − x‖2 ≥ θ(x)

for all y ∈ x+ ηB.
The only nonsmooth constructions in this paper are the proximal objects, but we

mention that some of our results have natural formulations in terms of other normal
cones and subgradients and can be proven by taking the appropiate limits. We shall
not go into those details here, however.

2.2. Background in differential inclusions. Throughout this subsection, F :
Rn ⇒ Rn is a given multifunction (i.e., a set-valued map). Associated with F is the
differential inclusion

ẋ(t) ∈ F
(
x(t)

)
(almost everywhere) t ∈ [0, T ],

x(0) = x.
(2.1)

A solution to (2.1) is an absolutely continuous function x(·) defined on the interval
[0, T ] with initial value x(0) = x, in which case we say that x(·) is a trajectory of
F that originates from x. The notation ẋ(t) refers to the derivative of x(·) at t and
is the right derivative if t = 0. The set of endpoints of all such trajectories of F is
denoted by R

(T )
F (x) and is called the reachable set (from x and at time T ). That is,

R
(T )
F (x) := {x(T ) : x(·) satisfies (2.1)}. The notation R

(≤T )
F (x) signifies the set of all

points reachable from x at a time less than or equal to T .
Basic hypotheses to be imposed on F in various combinations are the following.

(H1) For each x ∈ Rn, F (x) 6= φ with the graph grF := {(x, v) : v ∈ F (x)} closed
in R2n, and for each compact set K ⊂ Rn, there exists a constant M > 0
such that

sup
{
‖v‖ : x ∈ K, v ∈ F (x)

}
≤M.

(H2) For each x ∈ Rn, F (x) is convex.
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(H3) For each compact subset K ⊂ Rn, there exists a constant k > 0 such that

F (x) ⊆ F (y) + k‖x− y‖B for all x, y ∈ K.

In (H3) and below, we use B to designate the closed unit ball. The open ball will
be written as intB (the interior of B). The following two propositions contain some
elementary properties of differential inclusions.

PROPOSITION 2.2. Suppose F : Rn ⇒ Rn is a multifunction and satisfies (H1).
(a) For each compact set K ⊂ Rn and ε > 0, there exists τ > 0 such that

R
(≤τ)
F (K) :=

⋃
x∈K

R
(≤τ)
F (x) ⊂ K + εB.

(b) If {x(·)} is a trajectory of F on [0, T ) originating from x with T < ∞ and
satisfies

lim inf
t↑T

‖x(t)‖ <∞,

then the limit of x(t) exists as t ↑ T .
(c) Suppose in addition that either (H2) or (H3) holds. Then there exists T > 0

such that (2.1) admits at least one solution.
Proof. (a) See [38, Lemma 5.1]. (b) Let x(·) be a trajectory, and suppose K is

compact such that x(t) ∈ K infinitely often as t ↑ T . Let M be as in (H1) associated
to the compact set K + B, and let τ be chosen as in part (a) (where ε = 1). Now
choose t0 ∈ [T − τ, T ) so that x(t0) ∈ K, and by part (a) it follows that x(t) ∈ K +B
for all t ∈ [t0, T ). By the choice of M , we have for all t0 ≤ t < t′ ≤ T that

‖x(t′)− x(t)‖ ≤
∫ t′

t

‖ẋ(τ)‖ dτ ≤M(t′ − t).(2.2)

Since T is assumed to be finite, it follows from (2.2) that the limit of x(t) as t ↑ T
exists. (c) This is well known (see [1]).

The following proposition gives some further information regarding C1 trajectories
of a differential inclusion under (H1)–(H3).

PROPOSITION 2.3. Suppose F satisfies (H1)–(H3), and let K ⊂ Rn be compact.
(a) There exists T > 0 such that associated to every x ∈ K and v ∈ F (x) is a

C1 trajectory x(·) defined on [0, T ] with ẋ(0) = v. Moreover, the modulus of
continuity of ẋ(·) does not depend on the particular initial value x ∈ K.

(b) For each solution x(·) of (2.1) and ε > 0, there exists a C1 solution xε(·) of
(2.1) with xε(t) ∈ x(t)+εB for all t ∈ [0, T ]. (In other words, C1 trajectories
are dense with respect to the sup norm in the set of all trajectories.)

Proof. (a) For the construction of x(·), see [1, pp. 115–117]. See also [38, Lemma
5.3]. (b) See [23, Theorem 6], or [39, Theorem 3.1].

The following result is fundamental to differential inclusion theory and is referred
to as “the compactness of trajectories” theorem. This nomenclature is slightly mis-
leading because the result says more than just that a bounded set of solutions to
(2.1) is relatively compact. Rather, a stronger conclusion holds in that approximate
trajectories have subsequences that converge to a trajectory. See [9, Theorem 3.1.7]
for the proof.

PROPOSITION 2.4. Suppose F satisfies (H1) and (H2) and {yi(·)}i is a sequence
of uniformly bounded absolutely continuous functions with yi(0) = xi, where yi(·) is
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defined on an interval [0, Ti] such that Ti → T > 0 and xi → x as i → ∞. Assume
further that

ẏi(t) ∈ F
(
yi(t) + ri(t)

)
+ εiB a.e. t ∈ Ii,

where εi ↓ 0, {ri(·)} is a sequence of measurable functions converging uniformly to 0
as i→∞, and Ii is a measurable subset of [0, Ti] such that the measure of Ii converges
to T . Then there exists a trajectory x(·) of F on [0, T ] with x(0) = x and such that a
subsequence of yi(·) converges to x(·) uniformly and the subsequence of the derivatives
ẏi(·) converges to ẋ(·) weakly in L1[0, T ].

We shall require no hypothesis that limits the growth of F as ‖x‖ → ∞, but the
lack thereof necessitates the introduction of an “escape time.” Even more important
to our analysis is that the escape time will record the first instance when a trajectory
leaves a given open set. In classical ODE theory (or where trajectories are uniquely
defined in passing through any given state), escape times are generally defined de-
pending only on the initial value. However, for differential inclusions in general, the
definition we require relies upon the particular trajectory, and subsequently there may
be many trajectories originating from a state x with different escape times. Nonethe-
less, our definition is consistent with the classical one in that the escape time gives
a maximal (positive) interval of definition for the trajectory to stay in the open set.
We use the notation U c to denote Rn\U , the complement of a given set U .

DEFINITION 2.3. Suppose U ⊆ Rn is open, x ∈ U , and x(·) is a trajectory of F
with x(0) = x and defined on the half-open interval [0, T ), where 0 < T ≤ ∞. Then
T is an escape time from U (in which case we write T =: Esc(x(·);U)), provided at
least one of the following conditions hold:

(a) T =∞ and x(t) ∈ U for all t ≥ 0,
(b) x(t) ∈ U for all t ∈ [0, T ) and ‖x(t)‖ → ∞ as t ↑ T , or
(c) T <∞, x(t) ∈ U for all t ∈ [0, T ), and dUc

(
x(t)

)
→ 0 as t ↑ T .

The next proposition says that under standard existence theory assumptions, any
trajectory can be extended to a trajectory that has an escape time.

PROPOSITION 2.5. Suppose F satisfies (H1) and either (H2) or (H3), and x(·)
is a trajectory of F on [0, T ) with x(t) ∈ U for all t ∈ [0, T ). If T is not an escape
time from U , then x(·) can be extended to a trajectory x̃(·) defined on a strictly larger
interval [0, T̃ ), and in which T̃ = Esc(x̃(·);U).

Proof. Since T is not an escape time, we must have T < ∞, for otherwise (a)
would hold. We also must have supt∈[0,T ) ‖x(t)‖ < ∞, for otherwise (b) would hold.
Thus, by Proposition 2.2(b), there exists y ∈ Rn such that x(t)→ y as t ↑ T . Since (c)
does not hold, we must have y ∈ U . Using standard existence theory for differential
inclusions (which we quoted in Proposition 2.2(c)), the trajectory x(·) can be extended
from y. Such an extension will remain in U on an interval [0, T +τ) for small τ > 0 by
Proposition 2.2(a). Now we take trajectory x̃(·) and time T̃ as a maximal element (in
the sense of graph inclusion) over such extensions. It follows that T̃ = Esc(x̃(·);U),
since otherwise the preceding considerations on x(·) and T could be applied to x̃(·)
and T̃ , which would violate the maximality.

Suppose U ⊆ Rn is open and x ∈ U . The set of all trajectories of F originating
from x that remain in U over a maximal interval is denoted by Υ(F,U)(x). That
is, Υ(F,U)(x) consists of those trajectories x(·) of F defined on a half-open interval
[0, T ) with x(0) = x and for which Esc(x(·);U) is defined with T = Esc(x(·);U). By
Proposition 2.5, the set Υ(F,U)(x) is nonempty for each x ∈ U .
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2.3. The minimal time function. Now suppose S ⊂ Rn is closed and F :
Rn ⇒ Rn is a multifunction. The minimal time function TS : Rn → [0,∞] is defined
as follows. If x /∈ S, then

TS(x) := inf
{
T : there exists x(·) satisfying (2.1)

with x(0) = x and x(T ) ∈ S
}
.

(2.3)

If no trajectory of F originating from x can reach S in finite time, then the above
infimum is taken over the empty set, and hence TS(x) =∞ in this case, which is the
usual convention. If x ∈ S, then TS(x) = 0 by definition, which is consistent with the
above definition if we allow trajectories to be defined on the degenerate interval [0, 0].

It turns out that (H1)–(H3) are not sufficient by themselves to give many of
the desired properties of TS(·). Lower semicontinuity, for example, is not assured
(see Example 7.1), nor if the infimum of (2.3) is finite is it necessarily attained (see
Example 7.2). There are also several instances below where we shall want to exclude
certain kinds of trajectories from entering the discussion, and the following hypothesis
serves all of these needs. Note that this assumption is not merely on F , but depends
on both F and S.

(H4) For all x /∈ S and x(·) ∈ Υ(F,Rn)(x), if

Esc(x(·);Rn) <∞

then

Esc(x̄(·);Sc) < Esc(x(·);Rn),

where x̄(·) is a restriction of x(·).
Roughly speaking, if (H4) holds, then any trajectory of F escaping to infinity in

finite time must pass through S.
Remark 2.1. There are natural hypotheses explicitly given on the data that guar-

antee that (H4) will hold. For example, if there exist constants c1, c2 such that

sup
v∈F (x)

‖v‖ ≤ c1 + c2‖x‖ for all x ∈ Rn,

then Esc(x(·);Rn) = ∞ for all trajectories x(·), and so (H4) holds trivially in this
case. Other simple conditions pertaining only to the target set could be given; for
example, if Sc is bounded or if {ri} is a sequence of numbers converging to +∞ and
S is given by

S =
∞⋃
i=1

{x : ‖x‖ = ri},

then (H4) is satisfied.
The following two characterizations of TS(x) are immediate consequences of the

definitions.

TS(x) = inf
{
T ≥ 0 : R(T )(x) ∩ S 6= φ

}
,

and if (H4) holds and x /∈ S,

TS(x) = inf
{

Esc(x(·);Sc) : x(·) ∈ ΥF,Sc(x)
}
.



1054 PETER WOLENSKI AND YU ZHUANG

PROPOSITION 2.6. Suppose F : Rn ⇒ Rn satisfies (H1), (H2), and (H4). If
x ∈ Sc ∩ domTS, then there exists x(·) ∈ Υ(F,Sc)(x) with Esc(x(·), Sc) = TS(x) and
x(TS(x)) ∈ S (that is, the infimum in (2.3) is attained). Furthermore, TS(·) is lower
semicontinuous on Rn.

Proof. Suppose x /∈ S and TS(x) < ∞. Let {xi(·)} be a minimizing sequence of
(2.3), which means that xi(·) ∈ Υ(F,Sc)(x) and Ti := Esc(xi(·);Sc)→ TS(x) as i→∞
and xi(Ti) ∈ S for all i. Let

T := inf{t ∈ [0, TS(x)] : lim sup
i→∞

‖xi(t)‖ =∞}.

If the limsup is always finite, then we take T = TS(x) by convention. Note that
0 < T by Proposition 2.2(a), and for any t < T , the sequence {xi(·)} is uniformly
bounded on the interval [0, t]. Hence, using a diagonal process and the compactness
of trajectories theorem, we may assume that xi(·) converges uniformly to a trajectory
x(·) on each compact interval of [0, T ). Since T ≤ TS(x), we have

lim inf
t↑T

‖x(t)‖ <∞,

since otherwise Esc(x(·);Rn) = T and (H4) would be violated. Hence, by Proposi-
tion 2.2(b), the limit limt↑T x(t) =: x(T ) exists. To prove that the infimum in (2.3)
is attained, we show that x(T ) ∈ S. We first claim that T = TS(x). Indeed, let
K := {x(t) : t ∈ [0, T ]} and choose τ as in Proposition 2.2(a) associated to the
compact set K+B and ε = 1. If T < TS(x), then there exists t0 and 0 < τ0 ≤ τ with

0 < t0 < T < t0 + τ0 ≤ TS(x).

Since xi(t0) → x(t0) as i → ∞, we have xi(t0) ∈ K + B for all large i, and by
Proposition 2.2(a), it follows that xi(t0 + τ0) ∈ K + 2B for all large i. However, the
definition of T as an infimum says that lim supi→∞ ‖xi(t0 +τ0)‖ =∞, a contradiction.
Hence T = TS(x) as claimed.

To see that x(T ) ∈ S, let M be given as in (H1) associated to the compact set
K + 2B. Now let η > 0 be small and choose t1 such that

T −min{τ, η/M} < t1 < T and(2.4)
‖x(T )− x(t1)‖ < η.(2.5)

We now choose i large enough such that

‖x(t1)− xi(t1)‖ < η and(2.6)
(Ti − t1) < min{τ, η/M}.(2.7)

Note that (2.7) is possible in view of (2.4) and since Ti → TS(x) = T . Observe next
that xi(t1) ∈ K+B, and thus xi(t) ∈ K+2B for all t ∈ [t1, Ti] by Proposition 2.2(a),
and consequently

‖ẋi(t)‖ ≤M a.e. t ∈ [t1, Ti](2.8)
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by (H1). Since xi(Ti) ∈ S, we have

dS(x(T )) ≤ ‖x(T )− xi(Ti)‖
≤ ‖x(T )− x(t1)‖+ ‖x(t1)− xi(t1)‖+ ‖xi(t1)− xi(Ti)‖

≤ 2η +
∫ Ti

t1

‖ẋi(t)‖ dt

≤ 2η +M(Ti − t1)
≤ 3η,

where we used (2.5) and (2.6) to deduce the third inequality, (2.8), the fourth, and
(2.7), the last. This implies x(T ) ∈ S since η is arbitrary.

To prove lower semicontinuity, suppose xi → x, and we may assume without loss
of generality that

0 < lim
i→∞

TS(xi) =: T <∞.

For each i = 1, 2 . . . , let xi(·) ∈ Υ(F,Sc)(xi) satisfy Esc(xi(·), Sc) = TS(xi) and
xi(TS(xi)) ∈ S, which exists by part (a). We can proceed at this point in a manner
completely analogous to the proof above and produce a trajectory x(·) ∈ Υ(F,Sc)(x)
with Esc(x(·);Sc) ≤ T and x(T ) ∈ S. (The only difference between here and the
above is in the initial values xi(0) = xi of the trajectories xi(·), but the estimates re-
main valid.) Since TS(x) is defined as an infimum, we have TS(x) ≤ Esc(x(·);Sc) ≤ T ,
which proves that TS(·) is lower semicontinuous.

3. HJ theory.

3.1. Invariance. We shall apply invariance results to objects obtained through
modifying the given data, thus these concepts are introduced in terms other than S
and F . Moreover, in contrast to [12], we require our notions to be local.

DEFINITION 3.1. Suppose E ⊆ Rn is nonempty, U ⊆ Rn is open, and Γ : Rn ⇒
Rn is a multifunction.

(a) Then (Γ,E) is weakly invariant in U provided that for all x ∈ E ∩ U ,
there exists a trajectory x(·) ∈ Υ(Γ,U)(x) that satisfies x(t) ∈ E for all
t ∈ [0,Esc(x(·);U)).

(b) (Γ,E) is called strongly invariant in U provided that for every x ∈ E, every
trajectory x(·) ∈ Υ(Γ,U)(x) satisfies x(t) ∈ E for all t ∈ [0,Esc(x(·);U)).

The next proposition relates these concepts to the minimal time problem. Recall
that the closed set S ⊂ Rn and the multifunction F : Rn ⇒ Rn are given. We write
−F × {1} for the multifunction defined at (x, r) ∈ Rn × R as(

−F × {1}
)
(x, r) := {−v : v ∈ F (x)} × {1} ⊂ Rn+1.

A similar notation is in effect for the multifunction F × {−1}.
PROPOSITION 3.1. Suppose F satisfies (H1) and (H2), and let E := epiTS.
(a) If (H4) holds, then (F × {−1}, E) is weakly invariant in U := Sc × R.
(b) (−F × {1}, E) is strongly invariant in Rn+1.
Proof. (a) Let (x, r) ∈ E ∩ U , and hence x /∈ S and TS(x) ≤ r < ∞. By

Proposition 2.6, there exists x(·) ∈ Υ(F,Sc)(x) satisfying Esc(x(·);Sc) = TS(x). By
the principle of optimality, we have

TS
(
x(t)

)
= TS(x)− t ≤ r − t(3.1)
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for all t ∈ [0, TS(x)]. Define z(t) :=
(
x(t), r−t

)
for t ∈ [0, TS(x)). Then Esc(z(·);U) =

TS(x), and clearly z(·) ∈ Υ(F×{−1})(x, r). Moreover, it follows immediately from (3.1)
that z(t) ∈ E for all t ∈ [0,Esc(z(·);U)), which yields (a). (b) Let (x, r) ∈ E
and suppose z(·) ∈ Υ(−F×{1},Rn+1)(x, r). Then z(·) has the representation z(t) =(
y(t), r + t) for t ∈ [0, T ), where y(·) ∈ Υ(−F,Rn)(x) and

T := Esc
(
z(·);Rn+1) = Esc

(
y(·);Rn

)
.

Fix t ∈ [0, T ). We must show that z(t) ∈ E. For t′ ∈ [0, t], define x(t′) = y(t− t′). It
is clear that x(·) is a trajectory for F since y(·) is a trajectory for −F . Hence, by the
principle of optimality, we have

TS
(
x(t)

)
+ t ≥ TS

(
x(0)

)
.

Using this and the fact that (x, r) ∈ E, we conclude that

r + t ≥ TS(x) + t = TS(y(0)) + t = TS(x(t)) + t ≥ TS(x(0)) = TS(y(t)),

which says that z(t) =
(
y(t), r + t

)
∈ E. Hence (b) holds.

The notions of invariance lead directly to comparison results between TS and
certain lower semicontinuous functions θ, as the next result shows.

PROPOSITION 3.2. Suppose F satisfies (H1) and (H2) and θ : Rn → (−∞,∞]
is lower semicontinuous and satisfies θ(s) = 0 for all s ∈ S. Let E := epi θ and
U := Sc × R.

(a) Suppose (H4) is also satisfied. If (F ×{−1}, E) is weakly invariant in U and
θ(·) is bounded below on Rn, then θ(x) ≥ TS(x) for all x ∈ Rn.

(b) If (−F × {1}, E) is strongly invariant in Rn+1, then θ(x) ≤ TS(x) for all
x ∈ Rn.

Proof. (a) Suppose x ∈ Rn. The conclusion is trivial if x ∈ S or if θ(x) = ∞, so
assume

x ∈ Sc ∩ dom θ.

By weak invariance, there exists a z(·) ∈ Υ(F×{−1},U)(x, θ(x)) that remains in E. Note
that z(·) has the form z(t) =

(
x(t), θ(x)− t

)
, where x(·) ∈ Υ(F,Sc)(x). By the nature

of U , we have

T := Esc(z(·), U) = Esc(x(·), Sc).(3.2)

Observe next that the statement “z(·) remains in E” is equivalent to

θ(x(t)) ≤ θ(x)− t for all t ∈ [0, T ).(3.3)

Since we have assumed that θ is bounded below, it follows from (3.3) that T < ∞.
Assumption (H4) in conjunction with (3.2) implies that inft∈[0,T ) ‖x(t)‖ < ∞, and
so it follows from Proposition 2.2(b) that x(t) → y ∈ S as t ↑ T . We simply set
x(T ) := y. The lower semicontinuity of θ implies that (3.3) holds for t = T as well,
and the boundary condition on θ says that θ(x(T )) = 0. Hence we have θ(x) ≥ T .
Finally, the definition of TS as an infimum yields that T ≥ TS(x), and we conclude
that θ(x) ≥ T ≥ TS(x), which is (a). (b) Suppose x ∈ Rn. If TS(x) = ∞ or x ∈ S,
there is nothing to show, so assume x ∈ Sc ∩ domTS . Let η > 0. There exists
x(·) ∈ Υ(F,Sc)(x) with Esc(x(·);Sc) =: T < TS(x) + η and x(T ) ∈ S. Let

z(t) :=
(
x(T − t), t

)
,
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which is a trajectory of −F × {1} originating from
(
x(T ), 0

)
∈ E. By the strong

invariance assumption, the trajectory z(·) remains in E, and thus

t ≥ θ
(
x(T − t)

)
for all t ∈ [0, T ].(3.4)

Setting t = T in (3.4) says that

TS(x) + η > T ≥ θ
(
x(0)

)
= θ(x),

and letting η ↓ 0 proves (b).

3.2. HJ inequalities. Recall that the (minimized) Hamiltonian associated to a
multifunction Γ : Rn ⇒ Rn is the function hΓ : Rn × Rn → R1 given by

hΓ (x, ζ) = min
{
〈v, ζ〉 : v ∈ Γ (x)

}
.

It is clear that ζ 7→ hΓ (x, ζ) is positively homogeneous of degree 1.
The following theorem is a local version of results contained in [12], and the proofs

given here must differ only to take account of the local nature. We also attempt to
fill in a few more details in the strong invariance proof. Note that in part (a), Γ must
only be defined (that is, be nonempty) on E ∩ U , as is pointed out in [12, Remark
2.1(c)]. We also point out that the global version of part (a) was originally proved by
Veliov [36], [37], work that was overlooked in the writing of [12].

THEOREM 3.1. Suppose Γ satisfies (H1) and (H2), E ⊆ Rn is closed, and U ⊆ Rn
is open.

(a) Then (Γ,E) is weakly invariant in U if and only if hΓ (x, ζ) ≤ 0 for all
x ∈ E ∩ U and ζ ∈ NP

E (x).
(b) In addition, suppose Γ satisfies (H3). Then (Γ,E) is strongly invariant in U

if and only if hΓ (x,−ζ) ≥ 0 for all x ∈ E ∩ U and ζ ∈ NP
E (x).

Proof. (a)(⇒) The proximal normal cones NP
E (x) and NP

E∩{x+εB}(x) coincide,
and thus this direction follows as in [12, Theorem 2.2]. (⇐) Let x ∈ E ∩ U . We
first choose τ > 0 as in Proposition 2.2(a) with K = {x} and ε > 0 chosen so that
x+ εB ⊂ U . Then the construction used in the proof of Theorem 2.1 of [12] is valid
here and produces a trajectory x(·) on [0, τ ] that remains in E∩U . We now can choose
a trajectory x(·) on a half-open interval [0, T ) that has maximal graph and remains in
E ∩U . For such a maximally defined trajectory, we must have T = Esc(x(·);U), and
thus x(·) is as in Definition 3.1(a). (b)(⇒) Suppose (Γ,E) is strongly invariant in U ,
x ∈ E, v ∈ Γ (x), and ζ ∈ NP

E (x). By Proposition 2.3(a), there exists a C1 trajectory
x(·) of Γ on [0, T ] with x(0) = x and ẋ(0) = v. For small t > 0, x(t) remains in U
also. By Proposition 2.1(a), there exists σ > 0 such that

〈ζ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x ∈ E.(3.5)

The strong invariance assumption implies that x(t) ∈ E for all t, and thus inserting
these values into (3.5) gives

〈ζ, x(t)− x〉 ≤ σ‖x(t)− x‖2 for all t ∈ [0, T ].(3.6)

Upon dividing (3.6) by t and letting t ↓ 0 yields

〈ζ, v〉 ≤ 0.(3.7)

Taking the supremum of the left side in (3.7) over v ∈ F (x) and multiplying through by
−1 implies hΓ (x,−ζ) ≥ 0. (⇐) Let x ∈ E and x(·) ∈ Υ(Γ,U)(x). Fix T < Esc(x(·);U),
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and it suffices to show that x(t) ∈ E for all t ∈ [0, T ]. We claim that without loss
of generality x(·) is C1. Indeed, we have x(t) + εB ⊂ U for all t ∈ [0, T ] whenever
ε > 0 is small, and there exists a C1 trajectory xε(·) that is within x(t) + εB for all
t by Proposition 2.3(b). If it is known that xε(t) ∈ E for all t and ε, then since E is
closed, it follows that x(t) ∈ E by letting ε ↓ 0.

Hence we may assume x(·) is C1. Let ε > 0 such that

K :=
⋃

t∈[0,T ]

{x(t) + εB} ⊂ U,

and let k be the Lipschitz constant for K as in (H3). We now proceed as in the proof
of Theorem 3.1 in [12] and define Γ̃ : [0, T ]×K :⇒ Rn+1 by

Γ̃ (t, y) := {1} ×
{
v ∈ F (y) : ‖v − ẋ(t)‖ ≤ k‖y − x(t)‖

}
.

It is easily seen that Γ satisfies (H1) and (H2) on [0, T ]×K. Set

Ẽ := R× E and Ũ := R× intK,

where intK is the interior of K. We claim that (Γ̃ , Ẽ) is weak invariant in Ũ . To see
this, note that

NP
Ẽ

(t, y) = {0} ×NP
E (y),(3.8)

and observe that for each ζ ∈ NP
E (y), we have by assumption and the definition of Γ̃

that

0 ≤ hΓ (y,−ζ) ≤ −hΓ̃
(
(t, y), (0, ζ)

)
.(3.9)

Hence, by (3.8) and (3.9), we see that

hΓ̃
(
ỹ, ζ̃
)
≤ 0

for all ỹ ∈ Ẽ ∩ Ũ and ζ̃ ∈ NP
Ẽ

(ỹ). By part (a), it then follows that (Γ̃ , Ẽ) is weakly

invariant in Ũ as claimed. Hence there exists a trajectory z(·) ∈ Υ(Γ̃ ,Ũ)(0, x) that

remains in Ẽ. It is obvious that z(t) has the form (t, y(t)) for some trajectory y(·)
of Γ , and it follows from Gronwall’s inequality that y(·) = x(·) (see [12, Proof of
Theorem 2.2]).

We next interpret these results in terms of state-augmented data and epigraphs
of lower semicontinuous functions. The following proposition is the analogue of the
monotone results of Theorem 7.4 (a) and (d) in [12], recast into terms relevant to
minimal time problems.

PROPOSITION 3.3. Suppose F satisfies (H1) and (H2), θ : Rn → (−∞,∞] is
lower semicontinuous, and E = epi θ.

(a) (F × {−1}, E) is weakly invariant in Sc × R if and only if

1 + hF (x, ξ) ≤ 0 for all x /∈ S and ξ ∈ ∂P θ(x).

(b) Suppose F in addition satisfies (H3). Then (−F×{1}, E) is strongly invariant
if and only if

1 + hF (x, ξ) ≥ 0 for all x ∈ Rn and ξ ∈ ∂P θ(x).



PROXIMAL ANALYSIS AND THE MINIMAL TIME FUNCTION 1059

Proof. (a) Let (x, ξ) ∈ R2n, r ∈ R, and ρ < 0 and note that

h(F×{−1})
(
(x, r), (ξ, ρ)

)
= inf
v∈F (x)

{
〈v, ξ〉 − ρ

}
= −ρ

(
1 + hF

(
x,− ξ

ρ

))
.

(3.10)

(⇒) Suppose x /∈ S and ξ ∈ ∂P θ(x). By Theorem 3.1(a), we have

h(F×{−1})
(
(x′, r),−ζ

)
≤ 0(3.11)

for all (x′, r) ∈ E, x′ /∈ S, and ζ ∈ NP
E (x, r). Using the values (x′, r) = (x, θ(x)) ∈

epi θ = E and ζ = (ξ,−1) (which is a valid choice of ζ by Definition 2.2), we see from
(3.10) and (3.11) that

1 + hF (x, ξ) ≤ 0.

(⇐) Let (x, r) ∈ E∩Sc×R and ζ = (ξ, ρ) ∈ NP
E (x, r). By the nature of epigraphs,

we have ρ ≤ 0. Let us assume first that ρ < 0, from which it follows that r = θ(x).
Since NP

E (x, θ(x)) is a cone, we have (−ξ/ρ,−1) ∈ NP
E (x, θ(x)), and consequently,

−ξ/ρ ∈ ∂P θ(x). By (3.10), we have

h(F×{−1})
(
(x, θ(x)), (ξ, ρ)

)
= −ρ

(
1 + hF

(
x,−ξ/ρ

))
≥ 0,(3.12)

where we deduced the inequality from −ρ > 0 and our assumption that (1 +hF ) ≥ 0.
Now suppose ρ = 0. It is easily checked that (ξ, 0) ∈ NP

E (x, θ(x)) as well, and so
by Rockafellar’s horizontality theorem [27], there exist sequences {xi}, {ξi}, and {ρi}
such that xi → x, θ(xi) → θ(x), ξi → ξ, ρi < 0, and ρi ↑ 0, and −ξi/ρi ∈ ∂P θ(xi).
By (3.12) we have

−ρi
(
1 + hF

(
xi,−ξi/ρi

))
≥ 0

for all i, and letting i→∞ yields hF (x, ξ) ≥ 0, and hence

h(F×{−1})
(
(x, r), (ξ, 0)

)
= hf (x, ξ) ≥ 0.(3.13)

In view of (3.12) and (3.13), it follows from Theorem 3.1(a) that F×{−1}, E is weakly
invariant on Sc × R. (b) The analogue to (3.10) needed here is

h(−F×{1})
(
(x, r),−(ξ, ρ)

)
= −ρ

(
1 + hF (x,−ξ/ρ)

)
,(3.14)

which holds for all (x, ξ) ∈ R2n, r ∈ R, and ρ < 0. The proof of the equivalence in
(b) is virtually identical to the one of (a), where Theorem 3.1(b) is quoted instead of
(a).

3.3. The HJ equation. Again suppose S ⊆ Rn is closed. We now character-
ize TS(·) as the solution to the HJ equation on Sc that satisfies certain boundary
conditions.

THEOREM 3.2. Suppose F : Rn ⇒ Rn satisfies (H1)–(H3), and S ⊂ Rn is
closed such that (H4) holds. Then there exists a unique lower semicontinuous function
θ : Rn → (−∞,∞] bounded below on Rn and satisfying the following.

(HJ) For each x /∈ S and ξ ∈ ∂P θ(x), we have

1 + hF (x, ξ) = 0.



1060 PETER WOLENSKI AND YU ZHUANG

(ABC) Each x ∈ S satisfies θ(x) = 0 and

1 + hF (x, ξ) ≥ 0

whenever ξ ∈ ∂P θ(x).
The unique such function is θ(·) = TS(·).

Remark 3.1. (HJ) is the Hamilton–Jacobi equation as it applies to minimal
time problems, but in which proximal subgradients have replaced the usual gradient.
(ABC) is an analytic boundary condition. In the next section, we analyze (ABC)
in more detail and show that it is equivalent (in the context of the theorem) to a
geometric boundary condition (GBC).

Proof. It is obvious that TS(·) is bounded below by zero and it is lower semicon-
tinuous by Proposition 2.6. It equals zero on S by definition. Propositions 3.1(a) and
3.3(a) combine to imply that

1 + hF (x, ξ) ≤ 0 for all x /∈ S and ξ ∈ ∂PTS(x).(3.15)

Similarly, Propositions 3.1(b) and 3.3(b) combine to imply that

1 + hF (x, ξ) ≥ 0 for all x ∈ Rn and ξ ∈ ∂PTS(x).(3.16)

We conclude from (3.15) and (3.16) that both (HJ) and (ABC) hold for θ(·) := TS(·).
To prove uniqueness, suppose θ(·) is lower semicontinuous, bounded below, and

satisfies (HJ) and (ABC). By Propositions 3.3(a) and 3.2(a), we conclude that

θ(x) ≥ TS(x)(3.17)

for all x ∈ Rn. Similarly, by Propositions 3.3(b) and 3.2(b), we conclude that

θ(x) ≤ TS(x)(3.18)

for all x ∈ Rn. Obviously, θ(·) = TS(·) follows from (3.17) and (3.18).

4. A geometric boundary condition. In this section we give an alternative
to the boundary condition (ABC) of Theorem 3.2 that can be more easily interpreted
in terms of the target set and the dynamics of the system. The two conditions are
equivalent only in the context of Theorem 3.2. The new boundary condition we
consider is the following.

(GBC) For x ∈ S, we have θ(x) = 0, and if v ∈ F (x) and ζ ∈ NP
S (x) satisfy

〈v, ζ〉 < 0, then

lim inf
x′ → x

x′−x
‖x′−x‖ →

−v
‖v‖

θ(x′) = 0.

Loosely speaking, (GBC) says that if a velocity vector v at a point x ∈ S makes an
obtuse angle with some proximal normal at x, then θ(x′) must go to zero along a
sequence approaching x tangentially in the direction −v.

THEOREM 4.1. Suppose the boundary condition (ABC) in Theorem 3.2 is replaced
by (GBC). Then the conclusions of Theorem 3.2 remain valid.

Proof. (ABC)⇒(GBC). By the uniqueness assertion in Theorem 3.2, we must
show that TS(·) satisfies (GBC).
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Suppose x ∈ S, v ∈ F (x), and ζ ∈ NP
S (x) satisfy 〈ζ, v〉 < 0. By Proposi-

tion 2.2(b), there exists a C1 trajectory y(·) on [0, T ] of −F originating from x with
ẏ(0) = −v. Let x(t) := y(T − t), t ∈ [0, T ], and note that x(·) is a trajectory for F
with x(T ) = x ∈ S. By the principle of optimality, we have

TS(x(t)) ≤ T − t for all t ∈ [0, T ],

and consequently TS(x(t))→ 0 as t ↑ T . Moreover,

x(t)− x
T − t → ẋ(T ) = ẏ(0) = −v as t ↑ T,

and thus x′ = x(t) as t ↑ T is an admissible set of values in the liminf in (GBC). It
follows that TS(·) satisfies (GBC).

(GBC)⇒(ABC). Now assume θ(·) satisfies (GBC) and the conditions in Theo-
rem 3.2, except possibly (ABC). We show, in fact, that (ABC) holds for θ(·) as well.

Suppose x ∈ S and ζ ∈ ∂P θ(x). Hence there exists σ > 0 and η > 0 such that

θ(x′)− 〈ζ, x′ − x〉+ σ‖x′ − x‖2 ≥ θ(x) = 0(4.1)

for all x′ ∈ x+ ηB. We require the following simple lemma.
LEMMA 4.1. Suppose x, ζ, and θ(·) are as above. Then ζ ∈ NP

S (x).
Proof. Since (4.1) holds in particular for all x′ ∈ S ∩ {x+ ηB}, and θ(x′) = 0 for

such x′, we have

〈ζ, x′ − x〉 ≤ σ‖x′ − x‖2(4.2)

for all x′ ∈ S ∩ {x + ηB}. Thus by (4.2) and Proposition 2.1(a), we conclude that
ζ ∈ NP

S (x).
Now let v ∈ F (x) be arbitrary, and it suffices to show that

1 + 〈ζ, v〉 ≥ 0.(4.3)

If 〈ζ, v〉 ≥ 0, then (4.3) is trivial, so assume that

−δ := 〈ζ, v〉 < 0.(4.4)

We have by Lemma 4.1 that ζ ∈ NP
S (x), and by Definition 2.1, there exists r > 0

such that

U := x+ r‖ζ‖+ r‖ζ‖intB =
{
x′ : ‖x′ − x− rζ‖ < r‖ζ‖

}
satisfies clU ∩ S = {x}, where clU signifies the closure of U . Let K := clU + B,
and let M , k be as in (H1), (H3), respectively. We next invoke (GBC) and obtain a
sequence xi → x such that

θ(xi)→ 0 and
xi − x
‖xi − x‖

→ −v
‖v‖ .(4.5)

Let vi = projF (xi)(v) be the projection (that is, the closest element) of v in F (xi).
Assumption (H3) says

‖vi − v‖ ≤ k‖xi − x‖ for all i.(4.6)
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By Proposition 2.3(a), there exists T > 0 such that for each i there is a trajectory
yi(·) of −F with yi(0) = xi, ẏ(0) = −vi, and

‖ẏi(t) + vi‖ ≤ m(t) for all i,(4.7)

where m(·) is a modulus function (m(t) ↘ 0 as t ↓ 0) that is independent of i. We
want to show that yi(·) stays in U if T is small and i is large enough, which is the
content of the following lemma.

LEMMA 4.2. By shrinking T if necessary (but not dependent on i), we have that
yi(t) ∈ U for all t ∈ [0, T ] and all sufficiently large i.

Proof. Let τ be as in Proposition 2.2(a) applied to the compact set clU and ε = 1,
and shrink T if necessary so that T < τ and satisfies M2T + 2r‖ζ‖m(T ) < rδ, where
δ is as in (4.4). If i is large enough that 2k‖xi − x‖‖ζ‖ < δ, then for all t ∈ [0, T ] we
have

‖yi(t)− x− rζ‖2 =
∥∥∥∥∫ t

0
ẏi(t′) dt′

∥∥∥∥2

− 2
〈
rζ,

∫ t

0
ẏi(t′) dt′

〉
+ r2‖ζ‖2

≤M2t2 − 2
〈
rζ,

∫ t

0

(
ẏi(t′) + vi

)
dt′
〉

+ 2t
〈
rζ,
(
vi − v

)〉
+ 2t〈rζ, v〉+ r2‖ζ‖2

≤ t
[
M2t+ 2r‖ζ‖m(t) + 2rk‖xi − x‖‖ζ‖ − 2rδ

]
+ r2‖ζ‖2

< r2‖ζ‖2.

The second inequality follows from (4.7), (4.6), and (4.4). Hence yi(t) ∈ U as claimed.

Recall that θ(·) satisfies (HJ) and, in particular,

1 + hF (y, ζ) ≥ 0 for all y /∈ S, ζ ∈ ∂P θ(y).(4.8)

(The inequality (4.8) is one-half of (HJ), and is actually all that is required in this
part of the proof.) By Proposition 3.3(b), it follows that (−F ×{1}, epi θ) is strongly
invariant in U , and thus by Lemma 4.2 we conclude that

θ(yi(t)) ≤ θ(yi(0)) + t = θ(xi) + t(4.9)

for all large i and t ∈ [0, T ]. By the compactness of trajectories theorem, we may
assume without loss of generality that yi(·) → y(·) uniformly on [0, T ] for some tra-
jectory y(·) of −F originating from x. For fixed t ∈ [0, T ], we let i→∞ in (4.9) and
recall that θ(·) is lower semicontinuous and θ(xi)→ 0 (see (4.5)). It follows from (4.9)
that

θ(y(t)) ≤ t for all t ∈ [0, T ].(4.10)

For t small enough that y(t) ∈ x + ηB, we can substitute x′ = y(t) into (4.1), and
using (4.10), conclude that

t− 〈ζ, y(t)− x〉+ σ‖y(t)− x‖2 ≥ 0.(4.11)
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Observe for t ∈ (0, T ] that∥∥∥∥y(t)− x
t

+ v

∥∥∥∥ = lim
i→∞

∥∥∥∥yi(t)− xit
+ vi

∥∥∥∥
≤ 1
t

∫ t

0
‖ẏ(t′) + vi‖ dt′(4.12)

≤ m(t),

where in the last inequality we used (4.7). Therefore, dividing (4.11) by t and letting
t ↓ 0, we finally see from (4.12) that (4.3) holds, which finishes the proof.

5. Propagation. In this section we prove an apparently new result that in effect
characterizes the proximal subgradients of TS(·). The result is known in the special
case where F (x) = B for all x. In this case, time is parametrized by Euclidean
distance, and TS = dS . Thus Theorem 5.1 generalizes Theorem 3.4 of [16] to allow
for much more general F .

For r ≥ 0, define

S(r) := {x ∈ Rn : TS(x) ≤ r},

the r-level set of TS(·).
THEOREM 5.1. Suppose F : Rn ⇒ Rn satisfies (H1)–(H3), S ⊆ Rn is closed, and

(H4) holds.
(a) For all x ∈ S, we have

∂PTS(x) = NP
S (x) ∩ {ζ ∈ Rn : min

v∈F (x)
〈v, ζ〉 ≥ −1}.

(b) Whenever r > 0 and TS(x) = r, then we have

∂PTS(x) = NP
S(r)(x) ∩ {ζ ∈ Rn : min

v∈F (x)
〈v, ζ〉 = −1}.

Proof. (a) Suppose x ∈ S and ζ ∈ ∂PTS(x). Since TS(·) satisfies the conditions
of Theorem 4.1, we have by Lemma 4.1 that ζ ∈ NP

S (x). We also have that

min
v∈F (x)

〈v, ζ〉 ≥ −1(5.1)

holds, since this is precisely the boundary condition (ABC) satisfied by TS(·), as
stated in Theorem 3.2.

For the opposite inclusion, suppose now that ζ satisfies (5.1) and

〈ζ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ S,(5.2)

where σ > 0 and η > 0. Note that (5.2) is simply the statement that ζ ∈ NP
S (x)

(Proposition 2.1(a)). We will show that there exists σ′ > 0 and η′ > 0 so that

TS(x′)− 〈ζ, x′ − x〉+ σ′‖x′ − x‖2 ≥ 0(5.3)

for all x′ ∈ x+ η′B, which implies ζ ∈ ∂PTS(x) by Proposition 2.1(b).
For the purpose of obtaining a contradiction, suppose to the contrary, and that

(5.3) fails. Then for each i = 1, 2, . . . , there exists xi such that xi → x as i→∞, and

TS(xi)− 〈ζ, xi − x〉 < −i‖xi − x‖2(5.4)
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holds for all i. Observe that since (5.2) holds, we have xi /∈ S for large i. Set
ti := TS(xi) and first note that

ti ≤ ‖ζ‖‖xi − x‖(5.5)

for all i, which is a consequence of the Cauchy–Schwarz inequality and (5.4).
Now let zi(·) be a time optimal trajectory originating from xi, which exists by

Proposition 2.6. Thus zi(·) is a trajectory of F defined on [0, ti] and satisfies zi(0) = xi
and zi(ti) =: yi ∈ S. Since xi → x, we deduce from (5.5) that ti → 0 as i→∞, and
subsequently that for all large i, the entire range of the trajectory zi(·) remains in
x+ ηB by Proposition 2.2(a). We have

ti − 〈ζ, xi − x〉 = ti + 〈ζ, yi − xi〉 − 〈ζ, yi − x〉

≥ ti +
〈
ζ,

∫ ti

0
żi(t′) dt′

〉
− σ‖yi − x‖2,(5.6)

which holds for large i in lieu of (5.2). Next, let vi(·) be the pointwise projec-
tion of żi(·) onto F (x), which is a measurable function defined on [0, ti]. That is,
vi(t′) := projF (x)(żi(t′)) ∈ F (x). Let K := x+ ηB and choose M , k as in (H1), (H3),
respectively. We seek appropriate bounds for the last two terms in (5.6).

First we estimate ‖yi − x‖. We have

‖yi − x‖ ≤ ‖yi − xi‖+ ‖xi − x‖

≤
∫ ti

0
‖żi(t′)‖ dt′ + ‖xi − x‖

≤ tiM + ‖xi − x‖
≤
(
1 +M‖ζ‖

)
‖xi − x‖,(5.7)

where we used (5.5) to deduce the last inequality.
Next we estimate the integral term in (5.6). Note that any t′ ∈ [0, ti] satisfies

‖zi(t′)− x‖ ≤ ‖zi(t′)− xi‖+ ‖xi − x‖

≤
∫ ti

0
‖ż(t′)‖ dt′ + ‖xi − x‖

≤Mti + ‖xi − x‖.(5.8)

We have by (5.1) and the Lipschitz assumption on F that〈
ζ,

∫ ti

0
żi(t′) dt′

〉
=
∫ ti

0

〈
ζ, vi(t′) dt′

〉
+
〈
ζ,

∫ ti

0

(
żi(t′)− vi(t′)

)
dt′
〉

≥ −ti − k‖ζ‖
∫ ti

0
‖zi(t′)− x‖ dt′(5.9)

≥ −ti − tik‖ζ‖
[
Mti + ‖xi − x‖

]
≥ −ti − k‖ζ‖2[M‖ζ‖+ 1]‖xi − x‖2

=: −ti − c‖xi − x‖2

for all i, where (5.8) was used to deduce the next to last inequality, and (5.5), the last
inequality.
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We now insert (5.7) and (5.9) into (5.6) and deduce that

ti − 〈ζ, xi − x〉 ≥ −[c+ σ(1 +M‖ζ‖)]‖xi − x‖2.

This contradicts (5.4) whenever i is sufficiently large and finishes the proof. (b) The
proof of (b) is very similar to that of (a). The only modifications needed are (1) the
substitution of θ(x) = r rather than 0, and (2) the use of (HJ) rather than (ABC).
The details are left to the reader.

Remark 5.1. It may be noted that S(r) is nothing more than R(≤r)
−F (S), the set of

points reachable from S in times less than or equal to r by trajectories of −F . Thus
Theorem 5.1(b) gives some information regarding the existence of proximal normals
to reachable sets. We plan to further exploit this in future work, but in the present
paper, we give only one application of this result in the next section.

6. Regularity results. In this section, we give necessary and sufficient condi-
tions for TS to be Lipschitz continuous near S. A sufficient condition for TS to be
continuous with proscribed modulus of continuity is also derived. Throughout this
entire section, we assume that F satisfies (H1) and (H2), S ⊂ Rn is compact, and
(H4) holds. We often impose (H3) as well, but this will be stated explicitly.

Recall that a modulus function m(·) : [0,∞) → [0,∞) is a nondecreasing con-
tinuous function satisfying m(0) = 0. For our purposes, the distinguishing property
of a modulus function is its behavior near 0. To make this formal, we say that two
modulus functions m1(·) and m2(·) are equivalent if there exists a constant c > 0 such
that

0 < lim inf
r↓0

m1(cr)
m2(r)

≤ lim sup
r↓0

m1(cr)
m2(r)

<∞.

This defines an equivalence relation among modulus functions, and an equivalence
class is called a modulus class. Note that if m1(·) is a modulus function and m2(r) :=
c1m(c2r) for some positive constants c1, c2, then m1 and m2 belong to the same
modulus class.

Let M be a modulus class. We say that a function f is M-continuous on a set
U ⊆ Rn if there exists m(·) ∈M such that

|f(x)− f(y)| ≤ m(‖x− y‖) for all x, y ∈ U.

The first proposition shows that the local M-continuity of TS(·) near S need only be
checked with one of the points belonging to S. This result appears in Soravia [28,
Lemma 4.1] for modulus functions of the form m(r) = c rα, 0 < α ≤ 1 and c > 0.

PROPOSITION 6.1. Suppose M is a modulus class and (H3) holds. The following
are equivalent.

(a) There exists η > 0 such that TS(·) is M-continuous on S + ηB.
(b) There exists η > 0 and m(·) ∈M such that

TS(x) ≤ m
(
dS(x)

)
for all x ∈ S + ηB.

Proof. (a)⇒(b). This is trivial. (b)⇒(a) Let η > 0 and m(·) be as in (b). By
Proposition 2.2(a), there exists η′ > 0 such that

R
(≤m(η′))
F (S + η′B) ⊂ S + ηB.(6.1)
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We show that TS(·) is continuous on S + η′B with modulus of continuity m1(·) :=
m
(
ekm(η′)(·)

)
, where k is the Lipschitz constant of F on S+ ηB. Since m1 ∈M, this

is sufficient to prove (a).
Let x, y ∈ S + η′B. Since TS(x) ≤ m(η′) < ∞, we have by Proposition 2.6 that

there exists x(·) ∈ Υ(F,Sc)(x) with T := TS(x) and x(T ) ∈ S. By a well-known fact
regarding the dependence of the reachable set on initial values (cf. [1, p. 120] or [39,
Corollary 7.2]), there exists a trajectory y(·) for F originating from y that satisfies

‖x(T )− y(T )‖ ≤ ekT ‖x− y‖.(6.2)

Note that y(T ) ∈ S + ηB by (6.1). The principle of optimality gives

TS(y) ≤ T + TS(y(T )).(6.3)

Thus, from (6.3), we have

TS(y)− TS(x) ≤ TS(y(T ))

≤ m
(
dS(y(T ))

)
≤ m

(
‖x(T )− y(T )‖

)
≤ m1

(
‖x− y‖

)
.

(6.4)

We used (b) in deducing the second inequality, the monotonicity of m(·) and x(T ) ∈ S
in the third, and the monotonicity again and (6.2) in the last. Switching the roles of
x and y in (6.4) shows that TS(·) is continuous in S + η′B of modulus m1.

The following theorem gives necessary and sufficient conditions for Lipschitz con-
tinuity of TS near S.

THEOREM 6.1. Suppose (H3) holds. Then the following are equivalent.
(a) There exists η > 0 such that TS(·) is Lipschitz continuous on S + ηB.
(b)

sup
{
‖ζ‖ : ζ ∈ ∂PTS(s), s ∈ S

}
<∞.

(c) There exist η > 0 and δ > 0 such that x ∈ Sc∩{S+ηB} and ζ ∈ x−projS(x)
imply

hF (x, ζ) ≤ −δ‖ζ‖.

Proof. (a)⇒(b). Let s ∈ S and ζ ∈ ∂PTS(s). From Proposition 2.1(b), there
exists σ > 0 such that for all x near s we have

〈ζ, x− s〉 ≤ TS(x) + σ‖x− s‖2.(6.5)

Since there exists λ > 0 for which TS(x) ≤ λ‖x − s‖ by (a), (b) follows immediately
from (6.5).

(b)⇒(c). If (c) fails, then for each i = 1, 2 . . . , there exists xi /∈ S with dS(xi)→ 0
and ζi := xi − si ∈ xi − projS(xi) such that

hF (xi, ζi) ≥
−1
i
‖ζi‖(6.6)

for all i. Let k be chosen for the compact set S + B as in (H3). Then x 7→ hF (x, ζ)
is Lipschitz of rank k‖ζ‖ on S +B. Therefore, by (6.6), we have for large i

hF (si, ζi) ≥ hF (xi, ζi)− k‖xi − si‖‖ζi‖

= −
[

1
i

+ kdS(xi)
]
dS(xi),
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since dS(xi) = ‖xi− si‖ = ‖ζi‖. Let ρi :=
[
1/i+ kdS(xi)

]
. Rewriting the last display

and using the positive homogeneity of hF (s, ·) gives

hF

(
si,

ζi
ρidS(xi)

)
≥ −1.(6.7)

Since NP
S (si) is a cone, we also have

ζi
ρidS(xi)

∈ NP
S (si).(6.8)

Thus (6.7), (6.8), and Theorem 5.1(a) imply that

ζi
ρidS(xi)

∈ ∂PTS(si).

Let λ > 0 be the supremum value in (b), and by assumption (b) we have

λ ≥ ‖ζi‖
ρidS(xi)

=
1
ρi
.

But ρi → 0 as i→∞, which is a contradiction, and hence we conclude that (c) holds.
(c)⇒(a). Under the hypothesis (c), it is shown in [18, Corollary 3.1] that TS(x) ≤

c dS(x) for some c > 0 and for all x sufficiently close to S (this result also appears in
Veliov [37]). Hence (a) follows from this and Proposition 6.1.

Remark 6.1. From the above proof of (b)⇒(c), one can also obtain a relation for
the constant δ appearing in (c). Namely, if 0 < η ≤ 1 is sufficiently small, then since
ρi cannot be larger than λ, we can take δ = 1/λ + k. Note, however, that the proof
does not seem to provide an a priori estimate for η, but it implies that such a value
must exist.

Remark 6.2. There is an extensive literature behind the equivalence of (a) and
(c) in Theorem 6.1. The implication (c)⇒(a) was first proved by Petrov [26] with
S = {0} and was extended to arbitrarily closed sets S by Soravia [29]. The converse
(a)⇒(c) was shown by Bardi and Falcone [4] in the case when the boundary of S was
piecewise C2. Cannarsa and Sinestrari [7] allowed for “proximally smooth” S (see [16])
in proving this implication, but also required state differentiability in the dynamics.
More recently, Yue [40] proved the equivalence in considerable generality, although the
dynamics were given an explicit control formulation, as was the dynamics in all of the
above-mentioned papers. Veliov [37] goes further yet by allowing the multifunction F
to be nonautonomous and to depend measurably on t. The equivalence of condition
(b) in our theorem seems to be new, however.

Remark 6.3. The condition that the proximal subgradient of a lower semicontinu-
ous function f is locally bounded on an open set U is equivalent to f locally Lipschitz
on U . See [15]. Note that in Theorem 6.1 above, we only used a part of one direction
of this equivalence, and only the “easy” direction at that. We emphasize that in
Theorem 6.1(b), the boundedness of the proximals is posited only for points in S.

We now give a sufficient condition for TS(·) to satisfy condition (b) in Proposi-
tion 6.1 for some C2 modulus function m(·), by which we mean that m(·) is a modulus
function and is twice continuously differentiable on (0,∞). The estimate in fact does
not require (H3). However, if (H3) holds as well, then it follows (Corollary 6.1) from
Proposition 6.1 that TS(·) is M-continuous near S, where m(·) ∈M.
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THEOREM 6.2. Assume that m(·) is a C2 modulus function with m′(r) > 0 for
r > 0, and that

hF (x, ζ) ≤ −1
m′
(
dS(x)

)‖ζ‖(6.9)

for all x near S and ζ ∈ x− projS(x). Then TS(·) satisfies

TS(x) ≤ m
(
dS(x)

)
for all x near S.

We require the following technical lemma, which is a version of the chain rule.
LEMMA 6.1. Suppose m(·) is as in the theorem, and f : U → (0,∞) is lower

semicontinuous on the open set U . Then m ◦ f is lower semicontinuous on U , and
ζ ∈ ∂P f(x) if and only if m′(f(x))ζ ∈ ∂P (m ◦ f)(x).

Proof. Let x ∈ U and ζ ∈ ∂P f(x). There exists σ > 0 such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2(6.10)

for all y near x. Since m(·) is strictly increasing, taking m on both sides of (6.10)
preserves the inequality (both sides of (6.10) are positive if y is near enough to x),
and we have

m
(
f(y)

)
≥ m

(
f(x) + 〈ζ, y − x〉 − σ‖y − x‖2

)
.(6.11)

Also, m is C2, and so there exists a σ′ > 0 such that

m(z) ≥ m
(
f(x)

)
+m′(f(x))

(
z − f(x)

)
− σ′‖z − f(x)‖2(6.12)

for all z near f(x). Setting z = f(x) + 〈ζ, y − x〉 − σ‖y − x‖2, we obtain from (6.11)
and (6.12) that

m
(
f(y)

)
≥ m

(
f(x)

)
+
〈
m′
(
f(x)

)
ζ, y − x

〉
− σ′′‖y − x‖2,(6.13)

where σ′′ := m′
(
f(x)

)
σ + 2σ′‖ζ‖2, which holds if y is sufficiently near x. This shows

that m′
(
f(x)

)
ζ ∈ ∂P

(
m ◦ f

)
(x).

The converse follows since the inverse of m(·) has the same properties as
m(·).

We record another fact in the next proposition, which contains results taken from
[16] and [14]. This gives the relationship between the vectors ζ ∈ x − projS(x) and
proximal subgradients of the distance function.

PROPOSITION 6.2. Suppose x /∈ S and ∂P dS(x) 6= φ. Then both projS(x) and
∂P dS(x) are singletons and equal {sx}, {(x− sx)/‖x− sx‖}, respectively. Moreover,
the Petrov modulus condition (6.9) is equivalent to

hF (x, ζ) ≤ −1
m′
(
dS(x)

) for all ζ ∈ ∂P dS(x).(6.14)

Proof. See [14, Theorem 4.1] for the statements regarding the proximal subgra-
dient and the projection. That (6.9) implies (6.14) is then obvious. The reverse
implication follows by taking limits, since if ζ = x− sx ∈ x− projS(x), then ζ/‖ζ‖ is
the single element belonging to ∂P dS(sx + εζ), 0 < ε < 1 (see [16]).
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Proof of Theorem 6.2. Let U :=
{
S + η intB

}
∩ Sc, where η > 0 is sufficiently

small that (6.9) holds for x ∈ S+ηB. We shall see that (6.9) and each of the following
statements are equivalent:

hF
(
x, ζ
)
≤ −1
m′
(
dS(x)

) for all x ∈ U, for all ζ ∈ ∂P dS(x),(6.15)

1 + hF
(
x,m′

(
dS(x)

)
ζ
)
≤ 0 for all x ∈ U, for all ζ ∈ ∂P dS(x),(6.16)

1 + hF
(
x, ζ
)
≤ 0 for all x ∈ U, for all ζ ∈ ∂P

(
m ◦ dS

)
(x),(6.17) (

F × {−1}, epi (m ◦ dS)
)

is weakly invariant in U × R.(6.18)

The equivalence of (6.9) and (6.15) is contained in Proposition 6.2; that of (6.15)
and (6.16) is due only to a rearrangement of terms and the positive homogeneity of
hF (x, ·); the equivalence of (6.16) and (6.17) follows from Lemma 6.1, and that of
(6.17) and (6.18) is a consequence of Proposition 3.3(a).

By Proposition 2.2(a), there exists 0 < η′ ≤ η such that

R
(≤m(η′))
F (S + η′B) ⊆ S +

η

2
B.(6.19)

Let x ∈
{
S + η′B

}
∩ Sc. Our assumption (6.9) has been shown to be equiva-

lent to (6.18), and thus there exists a trajectory x̃(·) of F × {−1} originating from(
x,m

(
dS(x)

))
that remains in epi

(
m ◦ dS

)
. We can write x̃(t) =

(
x(t),m(dS(x))− t

)
for 0 ≤ t < Esc(x̃(·);U × R) = Esc(x(·);U) =: T , where x(·) is a trajectory for F .
Since x̃(·) remains in epi

(
m ◦ dS

)
, we have

m
(
dS(x)

)
− t ≥ m

(
dS(x(t))

)
for all t ∈ [0, T ).(6.20)

Since m ≥ 0, we must have T ≤ m
(
dS(x)

)
≤ m(η′), and so it follows from (6.19) that

limt↑T x(t) = x(T ) ∈ S (that is, x(·) escapes by hitting S first, not by going to the
boundary of S + ηB). Letting t ↑ T in (6.20) yields

TS(x) ≤ T ≤ m
(
dS(x)

)
,

which finishes the proof.
The following is an immediate corollary.
COROLLARY 6.1. Suppose (H3) holds in addition to the hypotheses of Theo-

rem 6.2. Then TS(·) is M-continuous near S.
Proof. This follows immediately from Theorem 6.2 and Proposition 6.1.
Remark 6.4. The condition (6.15) reduces to the Petrov–Lipschitz condition in

Theorem 6.1(c) ifM contains the modulus function m(r) = r, and hence Theorem 6.2
generalizes the implication (c)⇒(a) in Theorem 6.1. The proof also provides an al-
ternative to relying on results from [18], as was done in the proof of Theorem 6.1.
We also mention that from (6.20), one can deduce the “rate of weak attainability”
estimate derived by other means in [18].

Remark 6.5. If m in the previous theorem is taken as m(r) = c rα, where c > 0
and 0 < α ≤ 1, then Theorem 6.2 is a sufficient condition for α-Hölder continuity of
TS . Soravia [28] gave a sufficient condition for α = 1

2 under some special hypotheses,
and Yue [40] considered any 0 < α ≤ 1. Thus Theorem 6.2 extends a result of
Yue [40] to arbitrary (albeit C2) moduli. Although the dynamics in [40] use the
control formulation and the hypotheses there are stated using directional derivatives
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rather than proximal subgradients, Theorem 6.2 and [40, Theorem 2.1] appear to be
equivalent in the case of Hölder moduli.

Remark 6.6. As pointed out in Remark 5.1, the level set S(r), r > 0, is the
reachable set R(≤r)

−F (S). If it is known that TS(·) is continuous near S, then it follows
immediately that S is contained in the interior of the reachable set associated with
−F up to time r. Thus Corollary 6.1 gives a sufficient condition for small time local
controllability. The converse is also true: that is, small time local controllability
of the system −F implies the continuity of TS(·) near S. There is a considerable
literature devoted to local controllability (see Sussmann [35]), and there are systems
which are controllable but violate any Petrov modulus condition. Thus a converse
to Corollary 6.1 will not hold in general, although it does hold if the continuity is
Lipschitz (Theorem 6.1). This can be explained by the fact that Lipschitz continuity
is characterized by properties of its proximal subgradient, whereas continuity of a less
restrictive modulus is not. We note, however, that a Petrov modulus condition as a
sufficient condition for local controllability uses no additional structure of the control
system beyond knowledge of certain admissible velocities at points near the target.

7. Examples.
Example 7.1. This is an example where F satisfies (H1)–(H3), but yet TS(·) fails

to be lower semicontinuous. Define f : R2 → R2 by

f(x, y) = {1} × {1 + y2}.

Let F (x, y) := {f(x, y)} and S :=
{
π
2

}
×R. One can easily check that TS(0, 0) =∞,

but TS(ε, 0)→ π
2 as ε ↓ 0.

Example 7.2. Here is an example showing that the existence of optimal trajectories
cannot be assured unless additional hypotheses are added to (H1)–(H3). Again, we
use state space R2, and F is obtained by modifying the previous example.

F (x, y) = {1} × [0, 1 + y2] and S :=
{

(x, y) : x >
π

2
, y =

1
x− π

2

}
.

Then

R(T )(0, 0) =
{
{T} × [0, tanT ] if 0 ≤ T < π

2 ,
{T} × [0,∞) if π

2 ≤ T.

Then one has TS(0, 0) = π
2 , but no trajectory reaches S from (0, 0) in this time.
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Abstract. The Rayleigh beam equation is the formal limit of the Timoshenko beam equation
as the shear modulus K → +∞. Following a method in W. Littman, Ann. Scuola Norm. Sup. Pisa
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Timoshenko equations can be driven to rest by applying appropriate controls at both ends of the
beam. In this work we show that the process is uniform; more precisely, controllability of the Rayleigh
system can be achieved by lettingK → +∞ in the solution of the Timoshenko controllability problem.
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1. Introduction. Let us recall two problems in boundary controllability.
The null boundary controllability problem (NBCP). Suppose we have a well-posed

initial-boundary value problem for an evolution equation Lw = 0 in a cylindrical do-
main Q = Ω×[0,+∞), where Ω is a bounded domain in Rn. The NBCP deals with the
following question: Given initial data in Ω at t = 0, can these data be supplemented
with appropriate inhomogeneous time-dependent boundary data (boundary controls),
prescribed on the lateral boundary of Q, such that the solution of the initial-boundary
value problem will vanish for t ≥ T0?

The uniform null boundary controllability problem (UNBCP). Let Lε = L+ εM ,
where Lε and L are evolution operators with well-posed initial-boundary value prob-
lems as before. The UNBCP deals with the following questions: Is it possible to find
ε0 and T0 with T0 independent of ε ≤ ε0 such that one has null controllability for
T > T0 for all equations Lεwε = 0, ε ≤ ε0, and for Lw = 0? And what happens, as
ε→ 0 to the boundary controls which drive the system to rest?

We will be concerned with these two problems when L, Lε are elastic beam oper-
ators.

In Russell [14] several models for the elastic beam are considered, in particular
the model of Timoshenko described by the system

Iρψtt − EIψxx +K (ψ − wx) = 0,
ρwtt +K (ψ − wx)x = 0

plus appropriate initial and boundary conditions.
Here w(x, t) represents the vertical displacement of the elastic axis of the beam,

and ψ(x, t) is the rotation angle due to bending and shear.
The physical constants in the model are ρ ≡ density, EI ≡ flexural rigidity, Iρ ≡

rotary inertia, and K ≡ shear modulus.
By formal differentiation the system can be uncoupled to obtain the Timoshenko

equation

ρwtt − Iρwttxx + EIwxxxx +
ρ

K
(Iρwtttt − EIwttxx) = 0.(1.1)

∗Received by the editors June 7, 1996; accepted for publication (in revised form) April 10, 1997.
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In this equation −Iρwttxx is the contribution of rotary inertia and the term due
to shear is ρ

K (Iρwtttt − EIwttxx).
If the shear effect is neglected we are led to the Rayleigh equation

ρwtt − Iρwttxx + EIwxxxx = 0.(1.2)

It is observed that (1.1) is a perturbation of (1.2).
In our exposition we deal with the UNBCP for (1.1) and (1.2). Uniformity is

studied when K → +∞. The outline is as follows.
In section 2 we present the main result; roughly speaking it says that the null-

controlled problem for the Timoshenko equation converges to that for the Rayleigh
equation. The problem is not new, and there are several related results in the literature
covering also similar problems for plate systems. The last paragraph of the section,
entitled Earlier Results, gives references as well as a brief discussion of these results.

Our proof is carried out in sections 3 and 4. The idea is to follow a well-known
result by Littman [9, 10] to solve the NBCP.

Two perturbation problems arise from Littman’s method. Section 3 studies con-
vergence of the solution of a homogeneous Cauchy problem for the Timoshenko equa-
tion to that of Rayleigh. The Cauchy data, compactly supported, are given in the
x-axis. Section 4 deals with the problem in the x-direction, now the Cauchy problems
are nonhomogeneous and the Cauchy data, in the t-axis, are zero. It will become
apparent that the former is a singular perturbation problem, whereas the latter is a
regular perturbation problem.

A natural continuation to this work is to solve the UNBCP with controls in only
one end of the beam. Mention of this, and other problems of related interest is in
section 5.

To simplify the statements of results, we shall use the term smooth loosely, hoping
that the notion of smooth will be clear from the context.

Also, all positive constants independent of the shear modulus K will be denoted
by c. When precision is necessary, we distinguish between different constants by using
subscripts.

2. Main result. Denote by LK the Timoshenko operator

LK = ρ∂2
t − Iρ∂2

t ∂
2
x + EI∂4

x +
ρ

K

(
Iρ∂

4
t − EI∂2

t ∂
2
x

)
and by L0 the Rayleigh operator

L0 = ρ∂2
t − Iρ∂2

t ∂
2
x + EI∂4

x.

For any s ∈ R consider the function (in Rn)

Λs ≡ Λs(ξ) =
(
1 + |ξ|2

) s
2 .(2.1)

Denote as customary by Hs the Sobolev space with norm

‖u‖2s =
∫

(Λs(ξ) |û(ξ)|)2
dξ,

where û(ξ) ≡ (Fu) (ξ) is the Fourier transform of u. For bounded domains Ω define
Hs (Ω) as usual.

Let Ω = (−a, a), Q = [−a, a]× [0,+∞), and let L be one of the operators above
and let us say its order with respect to t is n, where n is either 2 or 4.
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The initial-boundary value problem (IBVP) to consider is the following:

Lw = 0, (x, t) ∈ Q,
∂jtw(x, 0) = wj(x), x ∈ Ω, j = 0, 1, . . . , n− 1

(2.2)

with boundary conditions

B−w(−a, t) = g−(t), B+w(a, t) = g+(t),

where B−, B+ are differential boundary operators. We assume that the problem is
well posed. Later we will see that uniqueness is enough.

For b ≥ 0 denote by
∑
b the strip [−a, a] × [b,+∞). Finally, extend the Cauchy

data in (2.2) as smoothly as possible to have compact support, and consider the
Cauchy problem in the upper half-plane. Following Littman [9, 10], there exists
T1 > 0 and a function w, smooth away from zero, such that w satisfies this new
Cauchy problem, and w(x, t) ≡ 0 in the strip

∑
T1

. An important observation is that
Littman’s proof is constructive and independent of the boundary conditions.

Let wK be the Littman’s solution for the Timoshenko equation and T1K be the
control time. Similarly, w0 and T10 for the Rayleigh equation.

The UNBCP is a consequence of the following theorem.
THEOREM 2.1. Let m ≥ 0. On the interval (−a, a) let

w0 ∈ Hm+3, w1 ∈ Hm+2, w2, w3 ∈ Hm.(2.3)

(i) There exists T1 independent of K such that wK(x, t) and w0(x, t) both vanish
in the strip

∑
T1

(i.e., T1 = T1K = T10).
(ii) For bounded subsets of

∑
0 ∂mx ∂

l
twK converges to ∂mx ∂

l
tw0 as K → +∞

in the L∞-norm for l = 0, 1.
Several remarks are in order:
1. To solve the NBCP for the Rayleigh and Timoshenko equations we just need

to read off appropriate boundary conditions. More precisely, the following
must hold:
Uniqueness assumption. If the IBVP has a solution, it is unique in sufficiently
large function spaces. This will be made precise in the proof.
Let c be −a or a. To fulfill this assumption some admissible boundary con-
ditions are
(i) w(c, t) = wx(c, t) = 0 (clamped end);
(ii) w(c, t) = wxx(c, t) = 0 (simply supported end);
(iii) wxx(c, t) = Iρwttx(c, t)− EIwxxx(c, t) = 0 (free end).
(see Russell [14].)

2. For clamped and simply supported ends we obtain strong convergence as
implied by (ii) in the theorem. It will become apparent later that for a free
end weaker convergence holds.

3. We shall see that for T0 as in (3.14) if we restrict to
∑
T0

we obtain uniform
convergence in compacta.

4. Observe that in (2.3) we require more regularity than necessary to solve the
IBVP. This is because of estimates (3.11) and (3.12) in section 3, which we
have been unable to improve.

5. Thanks to Littman’s method, our result is suitable for numerical implemen-
tation. A drawback is the need to impose controls in the whole boundary.

Earlier results. There are several results related to the problem of concern of
this paper and with the more complex problem of plate systems. Our problem was
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motivated by the works of Lions [7, 8] and Lagnese and Lions [6], where a complete
treatment of boundary controllability is given. See also the monograph by Lagnese [3].

Komornik [2] proves that for a Reissner–Mindlin plate, the control time is in-
dependent of K. For the Timoshenko beam equation a similar result follows. It is
not known if the solution to the control problem for the Reissner–Mindlin system
(resp., for the Timoshenko system) converges to the solution to the control problem
for the Kirchhoff system (resp., the Rayleigh system) as the shear modulus approaches
infinity. For the beam problem, our result provides a positive answer.

The perturbation problem, i.e., convergence of solutions of the Timoshenko equa-
tion to that of Rayleigh, as well as for plate systems, is dealt in a more complex setting
in the works of Lagnese and Leugering [4] and Lagnese, Leugering, and Schmidt [5] .
Namely, they describe the dynamics of networks of interconnected Reissner–Mindlin
thin plates and establish convergence to the corresponding dynamic model for net-
works of interconnected Kirchhoff plates.

The proof of Theorem 2.1 is in the next two sections.

3. Singular perturbation. Since we are interested in K large, we assume K ≥
K0 for K0 such that

K0

ρ
>>

EI

Iρ
.(3.1)

In this section the main tool is the Fourier transform; hence it is convenient to
introduce the notation

Dx ≡ −i∂x, Dt ≡ −i∂t.

The Timoshenko and Rayleigh operators are written, respectively, in the form

PK = D4
t −

[
K

Iρ
+
(
K

ρ
+
EI

Iρ

)
D2
x

]
D2
t +

KEI

ρIρ
D4
x,

P0 =
(

1 +
Iρ
ρ
D2
x

)
D2
t −

EI

ρ
D4
x.

The associated Cauchy problems are

PK [uK ] = 0,
Dj
tuK(x, 0) = wj(x), j = 0, 1, 2, 3,

and

P0[u0] = 0,
u0(x, 0) = w0(x), Dtu0(x, 0) = w1(x).

Observe that in the t-direction, the Timoshenko equation is of order 4, whereas
the Rayleigh equation is of order 2; there is a loss of two initial conditions. Hence,
the Timoshenko equation is a singular perturbation of that of Rayleigh.

THEOREM 3.1. For m ≥ 1, assume

w0 ∈ Hm+3, w1 ∈ Hm+2, w2 ∈ Hm, w3 ∈ Hm−1.

Then Dj
xD

l
tuK converges to Dj

xD
l
tu0 when K → ∞ for l = 0, 1; j ≤ m in the norm

L∞ ((−∞,∞)× [τ0, τ1]) with 0 ≤ τ0 ≤ τ1 <∞.
The main step of the proof is the theorem below. For the statement we need some

notation.
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Let UK be the Fourier transform of uK and U0 be that of u0. Decompose UK in
the form

UK = U0 +R.

Then R satisfies

PK(ξ,Dt)R(ξ, t) = F (ξ, t),
Dj
tR(ξ, 0) = Rj(ξ), j = 0, 1, 2, 3,

(3.2)

where

R0(ξ) = R1(ξ) = 0,
Rj(ξ) = W j(ξ)−Dj

tU0(ξ, 0), j = 2, 3,
(3.3)

and

F (ξ, t) = −
(
D4
tU0 −

EI

Iρ
ξ2D2

tU0

)
.

Recall the function Λs in (2.1) and observe that Λ0 = 1 and Λs+σ = ΛsΛσ.
Moreover Λs < Λσ if s < σ.

THEOREM 3.2. Let R(ξ, t) be the solution of (3.2). Then

|R(ξ, t)| ≤ c

K
(1 + t)2 (Λ2

∣∣W 0
∣∣+ Λ1

∣∣W 1
∣∣+ Λ−2

∣∣W 2
∣∣+ Λ−2

∣∣W 3
∣∣)(3.4)

and for l = 1, 2, 3∣∣Dl
tR(ξ, t)

∣∣ ≤ c (1 + t)(√
K
)2−l

(
Λl+1

∣∣W 0
∣∣+ Λl

∣∣W 1
∣∣+ Λl−2

∣∣W 2
∣∣+ Λl−3

∣∣W 3
∣∣) .(3.5)

Proof. It is readily seen that

U0(ξ, t) = W 0(ξ) cosλt+W 1(ξ)
i

λ
sinλt

with

λ ≡ λ(ξ) =

√
EI
ρ ξ

2√
1 + Iρ

ρ ξ
2
.

We have the estimates

|U0(ξ, t)| ≤
∣∣W 0(ξ)

∣∣+ t
∣∣W 1(ξ)

∣∣ ,
|Dn

t U0(ξ, t)| ≤ c
(
Λn
∣∣W 0(ξ)

∣∣+ Λn−1
∣∣W 1(ξ)

∣∣) , n = 1, 2, . . . .
(3.6)

Let

p4(ξ, z) = PK(ξ, z) =
4∑
i=0

ai(ξ)z4−i;

notice that a0 = 1.
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Define

pj(ξ, z) =
j∑
i=0

ai(ξ)zj−i

and

Gj(ξ, t) =
1

2πi

∫
C

eiztp3−j(ξ, z)
p4(ξ, z)

dz , j = 0, 1, 2, 3,(3.7)

where C is a simple curve in the z-plane which surrounds the zeros of p4(ξ, z).
By residues it follows that Gj(ξ, t) satisfies

p4(ξ,Dt)Gj = 0

and initial data

Di
tGj(ξ, 0) =

{
1, i = j,
0, i 6= j.

Hence

R(ξ, t) =
3∑
j=0

Rj(ξ)Gj(ξ, t) +
∫ t

0
G3(ξ, t− s)F (ξ, s)ds.

Since R0(ξ) = R1(ξ) = 0 we need to bound the t-derivatives of

R(ξ, t) = R2(ξ)G2(ξ, t) +R3(ξ)G3(ξ, t) +
∫ t

0
G3(ξ, t− s)F (ξ, s)ds;(3.8)

R2(ξ) and R3(ξ) as in (3.3). Let us compute the function G2(ξ, t) explicitly.
The roots of the polynomial

PK(ξ, z) = z4 −
[
K

Iρ
+
(
K

ρ
+
EI

Iρ

)
ξ2
]
z2 +

KEI

ρIρ
ξ4

are given by

z4 = −z1 = 1√
2

√
a+
√
a2 − 4b and z3 = −z2 = 1√

2

√
a−
√
a2 − 4b,

where

a =
K

Iρ
+
(
K

ρ
+
EI

Iρ

)
ξ2 and b =

KEI

ρIρ
ξ4.

We obtain by residues in (3.7) that

G2(ξ, t) =
1

(z4)2 − (z3)2 (cos z4t− cos z3t) .

By the properties of Λs we see also that

1
(z4)2 − (z3)2 ≤

c

K
Λ−2, z3 ≤ cΛ1, z4 ≤ c

√
K Λ1.

It follows that

|Dn
t G2(ξ, t)| ≤ c

(√
K
)n−2

Λn−2 , n = 0, 1, 2, . . . .(3.9)
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Since DtG3(ξ, t) = G2(ξ, t) we have

|G3(ξ, t)| ≤ c t
K

Λ−2 and |Dn
t G3(ξ, t)| ≤ c

(√
K
)n−3

Λn−3.(3.10)

On the other hand, from the estimates in (3.6) for U0(ξ, t) it follows that

|F (ξ, t)| ≤ c
(
Λ4
∣∣W 0

∣∣+ Λ3
∣∣W 3

∣∣) .
All of these estimates in the expression (3.8) prove the result.
The estimates (3.4), (3.5), and Parseval’s formula imply

|Dm
x (uK(x, t)− u0(x, t))| ≤ c

K
(1 + t)2

(∥∥w0
∥∥
m+3 +

∥∥w1
∥∥
m+2

+
∥∥w2

∥∥
m−1 +

∥∥w3
∥∥
m−1

)(3.11)

and for l = 1, 2, 3∣∣Dm
x D

l
t (uK(x, t)− u0(x, t))

∣∣ ≤ c(1+t)

(
√
K)2−l

(∥∥w0
∥∥
m+l+2 +

∥∥w1
∥∥
m+l+1

+
∥∥w2

∥∥
m+l−1 +

∥∥w3
∥∥
m+l−2

)
.

(3.12)

Thus Theorem 3.1 follows as claimed.
For later reference we deduce from (3.6) the estimates

|Dm
x u0(x, t)| ≤ c (1 + t)

(∥∥w0
∥∥
m+1 +

∥∥w1
∥∥
m+1

)
,∣∣Dm

x D
l
tu0(x, t)

∣∣ ≤ c
(∥∥w0

∥∥
m+l+1 +

∥∥w1
∥∥
m+l

)
, l = 1, 2, . . . .

(3.13)

Remarks.
1. Notice that convergence is valid even at t = 0 for Dj

xuK and Dj
xDtuK . Also

weaker convergence is obtained for second-order derivatives with respect to t
as shown by the estimate (3.12).

2. If the Cauchy data are compactly supported, then uK and u0 are smooth away
from zero. This fact is a consequence of the regularity of the fundamental
solutions of the Timoshenko and Rayleigh operators. A brief study follows.

The Timoshenko operator. The principal part of the Timoshenko operator is

PK4 =
ρIρ
K
∂4
t −

(
Iρ +

ρEI

K

)
∂2
t ∂

2
x + EI∂4

x

≡ ρIρ
K

(
∂t −

√
K

ρ
∂x

)(
∂t +

√
K

ρ
∂x

)(
∂t −

√
EI

Iρ
∂x

)(
∂t +

√
EI

Iρ
∂x

)
.

Observe that PK is strictly hyperbolic with respect to both the x- and t-axes.
Moreover, there are unique fundamental solutions G+, GR, GL of PK supported, re-
spectively, in the cones{

|x| ≤
√

K
ρ t, t ≥ 0

}
,
{
|t| ≤

√
EI
Iρ
x, x ≥ 0

}
,
{
|t| ≤

√
EI
Iρ
|x|, x ≤ 0

}
,

denoted, respectively, by Γ+ , ΓR , ΓL . In particular G+ is smooth in the cone

Γ =

{
|x| <

√
EI

Iρ
t, t > 0

}
.
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All these facts follow from the theory of hyperbolic operators extensively covered
in the literature. A classical reference is Hörmander [1].

The Rayleigh operator. In the sense of Ortner and Wagner [12, 13] the Rayleigh
operator is quasi-hyperbolic with respect to the t-axis. They prove that there is
a unique fundamental solution s0 of P0 with the properties s0 = 0 for t < 0 and
e−σts0 ∈ S ′. Here S ′ is the space of tempered distributions. Moreover s0 is also
smooth in the cone Γ. For a constructive proof see Moreles [11].

With respect to the x-axis P0 is hyperbolic with
√

Iρ
EI the maximum speed of

propagation. As before, there are unique fundamental solutions G0R, G0L supported,
respectively, in the cones ΓR and ΓL.

If the Cauchy data are supported in [−a, a] let t0 > 3a
√

Iρ
EI . Define

T0 = t0 − a
√
Iρ
EI
.(3.14)

Then uK and u0 are smooth in a neighborhood of [−a, a]× [T0,+∞) because of
the smoothness of the fundamental solutions s0, G+ of the Rayleigh and Timoshenko
operators in the cone Γ.

4. Regular perturbation. Consider the Timoshenko operator in the form

LK(∂x, ∂t) = ∂4
x −

(
Iρ
EI

+
ρ

K

)
∂2
t ∂

2
x +

ρIρ
EIK

∂4
t +

ρ

EI
∂2
t

≡
4∏
j=1

(∂x − µj∂t) +
ρ

EI
∂2
t ,

where

µ4 = −µ1 =

√
Iρ
EI
, µ3 = −µ2 =

√
ρ

K
,

and the Rayleigh operator

L0(∂x, ∂t) = ∂4
x −

Iρ
EI
∂2
t ∂

2
x +

ρ

EI
∂2
t .

In what follows we only consider x ≥ 0 since the case x ≤ 0 is similar. Choose
t1 > t0. Consider a cutoff function of the t variable so that

ϕ(t) =

{
1, t ≤ t0,
0, t ≥ t1.

Let

T1 = t1 + a

√
Iρ
EI
.

Define

fK(x, t) = LK [ϕuK ], f0(x, t) = L0[ϕu0].

Let vK be the solution of the Cauchy problem

LK [vK ] = fK ,
∂jxvK(0, t) = 0, j = 0, 1, 2, 3,
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and v0 the solution of

L0[v0] = f0,
∂jxv0(0, t) = 0, j = 0, 1, 2, 3.

Observe that fK and f0 vanish outside the strip [t0, t1]. Since LK and L0 are
hyperbolic, it follows that vK and v0 are smooth and for −a ≤ x ≤ a vanish in a
neighborhood of t = 0 and of t ≥ T1.

We call the problem of convergence of vK → v0 a regular perturbation problem
because both the Rayleigh and Timoshenko operators are of order 4 in the x-direction.

Let v = vK − v0. Then v satisfies

LK [v] = f,
∂jxv(0, t) = 0,(4.1)

where

f = fK − f0 +
ρIρ
EIK

∂4
t v0 +

ρ

K
∂2
t v0 .(4.2)

LEMMA 4.1. The function in (4.2) satisfies∣∣∂jxf(x, t)
∣∣ ≤ c√

K
(1 + t)2

[
1 +

(
max

1≤i≤4

∣∣∂itϕ(t)
∣∣)]

·
(∥∥w0

∥∥
j+5 +

∥∥w1
∥∥
j+4 +

∥∥w2
∥∥
j+2 +

∥∥w3
∥∥
j+1

)
.

Proof. Here

fK = −
(
Iρ
EI
− ρ

K

)(
∂2
t ϕ∂

2
xuK + 2∂tϕ∂t∂2

xuK
)

+
ρIρ
EIK

[(
∂4
t ϕ
)
uK + 4∂3

t ϕ∂tuK + 6∂2
t ϕ∂

2
t uK + 4∂tϕ∂3

t uK
]

+
ρ

EI

[(
∂2
t ϕ
)
uK + 2∂tϕ∂tuK

]
and

f0 = −
(
Iρ
EI

)(
∂2
t ϕ∂

2
xu0 + 2∂tϕ∂t∂2

xu0
)

+
ρ

EI

[(
∂2
t ϕ
)
u0 + 2∂tϕ∂tu0

]
.

Thus

fK − f0 = −
(
Iρ
EI

)[(
∂2
t ϕ
) (
∂2
xuK − ∂2

xu0
)

+ (2∂tϕ)
(
∂t∂

2
xuK − ∂t∂2

xu0
)]

+
( ρ

EI

) [(
∂2
t ϕ
)

(uK − u0) + (2∂tϕ) (∂tuK − ∂tu0)
]

+
( ρ
K

) (
∂2
t ϕ∂

2
xuK + 2∂tϕ∂t∂2

xuK
)

+
ρIρ
EIK

[(
∂4
t ϕ
)
uK + 4∂3

t ϕ∂tuK + 6∂2
t ϕ∂

2
t uK + 4∂tϕ∂3

t uK
]
.

Hence
|fK − f0| ≤ c

(
max1≤i≤4

∣∣∂itϕ(t)
∣∣) · [∣∣∂2

xuK − ∂2
xu0
∣∣+ 1

K

∣∣∂2
xuK

∣∣
+
∣∣∂t∂2

xuK − ∂t∂2
xu0
∣∣+ 1

K

∣∣∂t∂2
xuK

∣∣+ |uK − u0|+ 1
K |uK |

+ |∂tuK − ∂tu0|+ 1
K

(
|∂tuK |+

∣∣∂2
t uK

∣∣+
∣∣∂3
t uK

∣∣)] .
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To estimate the right-hand side use (3.11) and (3.12) for the terms of the form∣∣∂lt∂mx uK − ∂lt∂mx u0
∣∣. For the terms with factor 1/K add (3.13) and the triangle

inequality. To complete the proof notice that v0 in (4.2) is smooth and independent
of K.

The behavior of vK as K →∞ is summarized in the following result.
THEOREM 4.2. Let l,m be nonnegative integers such that l = 0, 1; m + l ≤ 3.

Then ∂mx ∂
l
tvK converges to ∂mx ∂

l
tv0 uniformly in compacta.

Proof. The result is proven by reducing (4.1) to a system. Let us introduce the
operators

Li =
∏
j 6=i

(∂x − µj∂t) , i = 1, 2, 3, 4 .

Two observations are in order. First, the operators (∂x − µi∂t)Li and LK have
the same principal part

4∏
j=1

(∂x − µj∂t) .

Second, the operators Li constitute a set of 4 linearly independent forms in the
third-order derivatives. In particular we obtain by Lagrange’s interpolation formula

∂mx ∂
3−m
t =

4∑
i=1

(µi)
m
∏
j 6=i

∂x − µj∂t
µi − µj

=
1
µ

(
(µ1)m−1

L1 − (µ2)m−1
L2 − (µ3)m−1

L3 + (µ4)m−1
L4

)
,

(4.3)

where

µ = 2
(
Iρ
EI
− ρ

K

)
.

By (3.1) µ > 0. Let us make the change of variables

vi = Liv, i = 1, 2, 3, 4,
v5 = vtt .

We are led to the following IBVP:

vjx = µivjt −
ρ

EI
v5 + f, j = 1, 2, 3, 4,

v5x =
1
µ

(v1 − v2 − v3 + v4) ,

vj(0, t) = 0, j = 1, . . . , 5,

(4.4)

and the boundary conditions

vj(x, t) = 0 in a neighborhood of t = T0, t = T1.

Let

cl =

{
c, l = 0, 1,
c
√
K, l = 2.
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We claim that

∣∣∂2−l
x ∂ltv(x, t)

∣∣ ≤ cl (∫ a

0
‖f(y, ·)‖2 dy

) 1
2

,(4.5)

and for third-order derivatives

∣∣∂3−l
x ∂ltv(x, t)

∣∣ ≤ cl (∫ a

0
‖∂yf(y, ·)‖2 dy

) 1
2

.(4.6)

Here ‖g‖2 =
∫ T1

T0
g(t)2dt.

First we bound the functions in the system (4.4). Multiply the equation correspon-
ding to vj by vj to obtain

d

dx

5∑
j=1

‖vj (x, ·)‖2 ≤ cµ
5∑
j=1

‖vj (x, ·)‖2 + 4 ‖f(y, ·)‖2 ,

where

cµ = 4
(

1 +
ρ

EI
+

1
µ

)
.

Thus by Gronwall’s lemma it follows that

‖vj(x, ·)‖2 ≤ 4 ecµ x
∫ x

0
‖f(y, ·)‖2 dy, (x, t) ∈ [0, a]× [T0, T1],

but x ≤ a and K is large; hence there is a constant c independent of K such that

‖vj(x, ·)‖2 ≤ c
∫ a

0
‖f(y, ·)‖2 dy, (x, t) ∈ [0, a]× [T0, T1].(4.7)

Now consider the second-order derivatives of v, namely ∂mx ∂
2−m
t v with m = 0, 1, 2.

Writing

∂mx ∂
2−m
t v(x, t) =

∫ t

T0

∂mx ∂
3−m
s v(x, s)ds

we have from (4.3)

∣∣∂mx ∂2−m
t v(x, t)

∣∣ ≤ 1
µ

4∑
i=1

|µi|m−1
∫ t

T0

|vi| ,

and by Hölder’s inequality and (4.7)

∣∣∂mx ∂2−m
t v(x, t)

∣∣ ≤ c(∫ a

0
‖f(y, ·)‖2 dy

) 1
2

, m = 1, 2.(4.8)

For m = 0 in notice that
√

K
ρ = max{ 1

|µi|}, thus

∣∣∂2
t v(x, t)

∣∣ ≤ c√K (∫ a

0
‖f(y, ·)‖2 dy

) 1
2

.
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From the estimate (4.8) and Lemma 4.1 we obtain for m = 1, 2 that∣∣∂mx ∂2−m
t v(x, t)

∣∣ ≤ c
√
a√
K

(1 + t)2
[
1 +

(
max

1≤i≤4

∣∣∂itϕ(t)
∣∣)]

·
(∥∥w0

∥∥
5 +

∥∥w1
∥∥

4 +
∥∥w2

∥∥
2 +

∥∥w3
∥∥

1

)(4.9)

and for m = 0 ∣∣∂2
t v(x, t)

∣∣ ≤ c
√
a (1 + t)2

[
1 +

(
max

1≤i≤4

∣∣∂itϕ(t)
∣∣)]

·
(∥∥w0

∥∥
5 +

∥∥w1
∥∥

4 +
∥∥w2

∥∥
2 +

∥∥w3
∥∥

1

)
For third-order derivatives, let w = vx satisfying LK [w] = ∂xf and repeat the

foregoing argument to conclude our claim.
From (4.9) we obtain uniform estimates for the second-order derivatives, conse-

quently for ∂xv, ∂tv, v. The theorem then follows.
Observe that from estimates (4.5) and (4.6), ∂mx ∂

2
t v is bounded in compacta. It

follows that ∂mx ∂
2
t vK converges to ∂mx ∂

2
t v0 in a weaker sense.

To conclude this section let us write for the Timoshenko solution the decomposi-
tion

wK = uKϕ− vK ,

whereas for the Rayleigh solution

w0 = u0ϕ− v0.

Then wK (respectively, w0) coincides with uK (respectively, u0) near t = 0,
satisfies the equation LKwK = 0 (respectively, L0w0 = 0), and is zero for −a ≤ x ≤ a,
t ≥ T1.

As a corollary of Theorems 3.1 and 4.2 we obtain our main result, Theorem 2.1.
Therefore, the null-controlled problem for the Timoshenko equation converges to that
for the Rayleigh equation as asserted.

5. Concluding comments. In (1.2) if we assume further that there is no rotary
inertia effect, the resulting equation is

ρwtt + EIwxxxx = 0,

the so-called Bernoulli–Euler equation.
In essence Theorem 3.1 follows from the estimates (3.9) and (3.10) for the func-

tions G2(ξ, t) and G3(ξ, t) in (3.7). Including dependence on the rotary inertia Iρ we
obtain the corresponding estimates

|Dn
t G2(ξ, t)| ≤ cIρ

K

((√
K

Iρ

)n
Λn + ξ2n

)
, n = 0, 1, 2, . . . ,

and

|G3(ξ, t)| ≤ cIρ
K
t, |Dn

t G3(ξ, t)| ≤ cIρ
K

(√K

Iρ

)n−1

Λn−1 + ξ2(n−1)

 , n = 1, 2, . . . .

We may build on this to show that for Cauchy data in suitable Sobolev spaces, the
solution of the Cauchy problem for the Timoshenko equation (1.1) converges to that
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of the Bernoulli–Euler equation (with like Cauchy data) as (1/K, Iρ)→ (0, 0) . This
solves a particular case of the singular perturbation problem proposed by Russell [14].

To close our exposition let us mention some problems of related interest, namely,
the UNBCP with controls in only one end; a generalization to several space dimen-
sions, e.g., plate equations; the Bernoulli–Euler beam and the corresponding UNBCPs.

These and other considerations are left for future investigations.
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Abstract. In this paper, we consider the longitudinal and transversal vibrations of the Euler–
Bernoulli beam with Kelvin–Voigt damping distributed locally on any subinterval of the region
occupied by the beam. We prove that the semigroup associated with the equation for the transversal
motion of the beam is exponentially stable, although the semigroup associated with the equation for
the longitudinal motion of the beam is not exponentially stable. Due to the locally distributed and
unbounded nature of the damping, we use a frequency domain method and combine a contradiction
argument with the multiplier technique to carry out a special analysis for the resolvent. We also
show that the associated semigroups are not analytic.

Key words. exponential stability, semigroup, local Kelvin–Voigt damping

AMS subject classifications. 35B37, 35B40

PII. S0363012996310703

1. Introduction. Consider a clamped elastic beam of length L. One segment of
the beam is made of a viscoelastic material with Kelvin–Voigt constitutive relation.
By the Kirchhoff hypothesis, neglecting the rotatory inertia, the longitudinal and
transversal vibration of the beam can be described by the following equations and
boundary-initial conditions: ρü− (pu′ +Dau̇

′)′ = 0 in (0, L)×R+,
u(0, t) = u(L, t) = 0,
u(x, 0) = u0(x), u̇(x, 0) = u1(x),

(1.1)

 ρẅ + (qw′′ +Dbẇ
′′)′′ = 0 in (0, L)×R+,

w(0, t) = w(L, t) = w′(0, t) = w′(L, t) = 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), x ∈ (0, L),

(1.2)

where u and w represent the longitudinal and transveral displacement of the beam,
respectively. The coefficient functions ρ, p, q,Da, Db ∈ L∞(0, L), ρ, p, q ≥ c0 > 0,
Da = a(x)χ(α,β), Db = b(x)χ(α,β), with χ(α,β) being the characteristic function of the
interval (α, β), 0 < α, β < L, and a(x), b(x) ≥ c0 > 0.

Recent advances in material science have provided new means for the suppression
of vibrations of elastic structures. One approach is to bond or embed patches made
of “smart material” to the underlying structure as passive or active damper. Due
to the presence of the patches, the material properties of the structure, such as the
density, Young’s moduli, and damping coefficients, are changed. In particular, jump
discontinuities at the location of the edges of the patch are usually introduced into
these properties. Equations (1.1) and (1.2) model these phenomena by taking the
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coefficients to have the above special forms. For more information on the modeling
aspect, we refer the readers to [BSW].

Our main concern is the following question: Is the locally distributed Kelvin–Voigt
damping (on any subinterval of (0, L)) strong enough to cause uniform exponential
decay of the energy of the beam? That is, do there exist constants Mµ, µ > 0 such
that the energies, E(t), associated with (1.1) and (1.2) satisfy the inequality

E(t) ≤Mµe
−µtE(0), t > 0?(1.3)

The exponential stability of an elastic system with damping distributed either over
the entire region or along the boundary of the region has been studied extensively
during the past two decades; however, only a relatively small amount of attention
was paid to the stability of the system with damping distributed locally inside the
domain. Discussions related to this issue were initiated by Lagnese [La] in 1983,
where the exact controllability of the wave equation with locally distributed control
was considered (see [Li] for the equivalence between the exact controllability and the
exponential stabilizability for a conservative system). It is known that, when viscous
damping is only distributed on a subinterval of the domain, (1.3) holds for the Euler–
Bernoulli beam equation (longitudinal and transveral motion) with both constant
coefficients [CFNS] and variable coefficients [K1], [K2]. For a higher dimensional
domain (1.3) depends on the geometric properties of the subregion, where viscous
damping is applied. We refer to [CFNS] for a two-dimensional Schrödinger equation
on a disk and a rectangle, to [Li] for a class of n-dimensional conservative partial
differential equations (PDEs), and to [Zu1], [Zu2] for an n-dimensional semilinear
wave equation. It should be pointed out that the operator corresponding to the
viscous damping is bounded on the underlying space while the one corresponding to
the Kelvin–Voigt damping is unbounded, and is not a lower-order perturbation of the
elastic operator. The effect of such locally distributed damping on the energy decay
is unknown. Recently, we were able to show that locally distributed Kelvin–Voigt
damping ensures the asymptotic stability of a general second-order elastic system
[CLL]. In this paper, we will show that when Kelvin–Voigt damping is distributed
only on a subinterval of the domain, (1.3) holds for the transversal motion but not
for the longitudinal motion of the Euler–Bernoulli beam equation.

Our approach is the frequency domain method (FDM). Roughly speaking, the
FDM is based on the boundedness on the imaginary axis of the resolvent of a semi-
group generator in order to establish the exponential stability of the C0-semigroup on
a Hilbert space (see [Ge], [Hu], [Pr]). This method has been applied successfully to
several models with locally distributed viscous damping (see [CFNS], [R]). However,
due to the unboundedness of the Kelvin–Voigt damping operator, the arguments used
in [CFNS] and [R] are not valid here since their arguments particularly depend on the
boundedness of the damping operator. To overcome this difficulty, we combine the
FDM with the multiplier technique and carry out a special analysis of the resolvent.

This paper is organized as follows. In section 2, we prove the exponential decay
of energy for (1.2). In section 3, we prove the nonexponential decay of energy for
(1.1). Finally, in section 4, we show that the C0-semigroup associated with (1.2) is
not analytic.

2. Transversal motion. Let H = L2
ρ(0, L) with the norm

‖v‖ =

(∫ L

0
ρ|v(x)|2dx

) 1
2



1088 KANGSHENG LIU AND ZHUANGYI LIU

and V = H2
0 (0, L) with the norm

‖v‖V =

(∫ L

0
q|v′′(x)|dx

) 1
2

.

Define H1 = V × H with the norm ‖(w, v)‖H1 = (‖w‖2V + ‖v‖2)
1
2 . Then H1 is a

Hilbert space—the finite energy state space. Define in H1

D(A1) =
{

(w, v) | w, v ∈ V, −M ≡ qw′′ +Dbv
′′ ∈ H2(0, L)

}
(2.1)

and

A1(w, v) =
(
v,

1
ρ
M ′′

)
.(2.2)

Thus, (1.2) can be rewritten as an abstract evolution equation on H1,

(ẇ(t), v̇(t)) = A1(w(t), v(t)), (w(0), v(0)) = (w0, w1).(2.3)

It is known that A1 generates a C0-semigroup of contractions on H1. (See [CLL].)
Therefore, (w(t), ẇ(t)) = eA1t(w0, w1) gives the mild solution of (1.2) for every
(w0, w1) ∈ H1. Moreover, A−1

1 is a bounded operator on H1.
We assume that ρ and q are positive constants on [0, α) and (β, L]; b(x), q ∈

C[α, β]; and ρ ∈ C1,1[α, β].
LEMMA 2.1. The imaginary axis, iR, ⊂ ρ(A1) the resolvent set of A1.
Proof. It is easy to show that there is no point spectrum on the imaginary

axis, i.e., iR ∩ σp(A1) = ∅. By Lemma 4.1 in [CLL], the conclusion of this lemma is
true.

THEOREM 2.2. Under the above assumptions on the coefficients of (1.2), the
semigroup eA1t is exponentially stable; i.e., there exist ν > 0,Mν ≥ 1 such that

‖eA1t‖ ≤Mνe
−νt ∀ t > 0.(2.4)

Proof. We need only to verify the condition for a C0-semigroup of contractions
on a Hilbert space being exponentially stable (see [Hu], [Pr], or [Ge]), i.e.,

sup
{
‖(λ−A1)−1‖ | λ ∈ iR

}
< +∞.(2.5)

Suppose (2.5) is not true. By the continuity of the resolvent and the resonance
theorem, there exist λn ∈ iR, (wn, vn) ∈ D(A1), n = 1, 2, . . . , such that

‖(wn, vn)‖H1 = 1, |λn| → ∞,(2.6)

and

(λn −A1)(wn, vn) ≡ (fn, gn)→ 0 in H1.(2.7)

This implies

λnwn − vn = fn → 0 in V,(2.8)

λnvnρ−M
′′

n = ρgn → 0 in L2(0, L),(2.9)

where Mn = −(qw
′′

n +Dbv
′′

n).
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Define

J(v) =
∫ L

x

∫ L

s

ρv(τ)dτds(2.10)

and

yn =
1
λn

[Mn + J(gn)].(2.11)

Comparing (2.9) and (2.11) we have

y
′′

n = ρvn.(2.12)

The rest of the proof depends on the following two lemmas. Let ωn =
√
|λn|.

LEMMA 2.3. The function yn defined above has the following properties:

yn → 0 in H4(α, β),(2.13)
λnyn → 0 in L2(α, β),(2.14)
ωnyn → 0 in H2(α, β).(2.15)

Proof. From (2.7),

Re〈(λn −A1)(wn, vn), (wn, vn)〉H1 =
∫ β

α

Db|v
′′

n|2dx→ 0.(2.16)

Therefore, from (2.8) we have

Mn → 0 in L2(α, β)(2.17)

and

1
λn
‖ξvn‖V = O(1)(2.18)

for every ξ ∈ C∞[0, L].
Equations (2.9), (2.17), and (2.18) imply that∫ β

α

ξρ|vn|2dx→ 0 ∀ ξ ∈ C∞[0, L], Supp ξ ⊂ (α, β).(2.19)

Applying the interpolation theorem involving compact subdomains [A, Theorem 4.23],
we find that (2.16) and (2.19) imply

vn → 0 in H2(α, β).(2.20)

Thus, (2.12) yields ∫ β

α

|y′′′′n |2dx → 0.(2.21)

On the other hand, (2.14) follows from

λnyn = J(gn)− q + λnDb

λn
v
′′

n −
q

λn
f
′′

n → 0 in L2(α, β).(2.22)
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Since |λn| → ∞, we obtain that yn → 0 in L2(α, β). This, combined with (2.21),
yields (2.13). From the interpolation inequality [A, Theorem 4.17], we also have
(2.15).

LEMMA 2.4. The functions wn ∈ H4(0, α), H4(β, L), n = 1, 2, . . . , have the fol-
lowing properties:

ω4
n

(
|wn(α)|2 + |w′n(α)|2 + |wn(β)|2 + |w′n(β)|2

)
→ 0,(2.23)

αq(0)|w′′n(α−)|2 + (L− β)q(L)|w′′n(β+)|2 → 2,(2.24)

ω−1
n w

′′′

n (α−), ω−1
n w

′′′

n (β+)→ 0.(2.25)

Proof. Since wn, vn ∈ V ⊂ H2(0, L), Sobolev’s embedding theorem implies that
they are also in C1[0, L]. By (2.8) and (2.20),

λnwn → 0 in H2(α, β).(2.26)

Thus, λnwn converges to zero in C1[α, β], which immediately leads to (2.23).
Note that Mn = −qw′′n on (0, α)∪(β, L), q ≡ q(0) on [0, α), and q ≡ q(L) on (β, L].

From the definition of the domain of A1, we know wn ∈ H4(0, α), wn ∈ H4(β, L). It
follows from (2.11) that

q(0)w
′′

n(α−) = (J(gn)− λnyn)(α), q(L)w
′′

n(β+) = (J(gn)− λnyn)(β),(2.27)

q(0)w
′′′

n (α−) = (J(gn)− λnyn)′(α), q(L)w
′′′

n (β+) = (J(gn)− λnyn)′(β).(2.28)

Dividing (2.28) by ωn we obtain (2.25) by using (2.15) in the previous lemma.
In order to prove (2.24), we substitute (2.8) into (2.9) to get

λ2
nρwn −Mn

′′ = ρ(gn + λnfn) for x ∈ (0, L).(2.29)

We multiply the above equation by wn, then integrate by parts on (0, L). This leads
to

‖λnwn‖2 − ‖wn‖2V → 0.(2.30)

Here, we have used (2.6), (2.8), (2.9), and (2.16). Since ‖wn‖2V + ‖vn‖2 = 1 and
λnwn − vn also converges to zero in L2(0, L), (2.30) implies that both ‖λnwn‖2 and
‖wn‖2V must converge to 1

2 as n→∞. This further leads to

lim
n→∞

(∫ α

0
+
∫ L

β

)
ρ|λnwn|2dx = lim

n→∞

(∫ α

0
+
∫ L

β

)
q|w′′n|2dx =

1
2

(2.31)

when (2.26) is taken into account.
On the intervals (0, α) and (β, L), (2.29) becomes

λ2
nρwn + qw

′′′′

n = ρ(gn + λnfn).(2.32)

We multiply the above equation by xw′n, integrate on (0, α), and then take the real
part. Hence,

Re
∫ α

0
λ2
nρwnxw

′
ndx+ Re

∫ α

0
qw
′′′′

n xw′ndx = Re
∫ α

0
ρ(gn + λnfn)xw′ndx.(2.33)
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It is easy to see that the term on the right-hand side of (2.33) converges to zero. After
a straightforward calculation (integration by parts), the two terms on the left-hand
side of (2.33) are

Re
∫ α

0
λ2
nρwnxw

′
ndx =

−ρ
2
ω4
nα|wn(α)|2 +

1
2

∫ α

0
ρ|λnwn|2dx,(2.34)

Re
∫ α

0
qw
′′′′

n xw′ndx = q(0)Re(αw
′′′

n (α−)− w′′n(α−))w′n(α)

+
3
2

∫ α

0
q|w′′n|2dx−

α

2
q(0)|w′′n(α−)|2.(2.35)

After substituting these terms into (2.33) and applying (2.23), (2.25), and (2.27), we
have

1
2

∫ α

0
ρ|λnwn|2dx+

3
2

∫ α

0
q|w′′n|2dx−

α

2
q(0)|w′′n(α−)|2 → 0.(2.36)

Similarly, we can multiply (2.32) by (L− x)w′n and integrate on (β, L) to get

1
2

∫ L

β

ρ|λnwn|2dx+
3
2

∫ L

β

q|w′′n|2dx−
1
2

(L− β)q(L)|w′′n(β+)|2 → 0.(2.37)

Finally, we subtract (2.37) from (2.36) and use (2.31) to obtain (2.24).
In what follows, we will show that

|w′′(α−)|2 + |w′′(β+)|2 → 0(2.38)

to get a contradiction to (2.24). Denote by

φn = ωn

(
ρ

q

) 1
4

, Fn =
ρ

q
(gn + λnfn), D =

d

dx
.

Then (2.32) can be rewritten as

(D − iφn)(D + iφn)(D2 − φ2
n)wn = Fn.(2.39)

On the interval (0, α), by solving the first-order linear equation, we have

(D + iφn)(D2 − φ2
n)wn = C1e

iφn(x−α) +
∫ x

α

eiφn(x−s)Fn(s)ds;(2.40)

(D2 − φ2
n)wn = C2e

−iφn(x−α) +
C1

φn
sinφn(x− α)

+
∫ x

α

1
φn

sinφn(x− s)Fn(s)ds,(2.41)

where

C1 = w
′′′

n (α−) + iφnw
′′

n(α−)− φ2
nw
′
n(α)− iφ3

nwn(α),(2.42)

C2 = w
′′

n(α−)− φ2
nwn(α);(2.43)
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and

(D − φn)wn =
C2

φn(1− i)

[
e−iφn(x−α) − e−φn(x−iα)

]
+
C1

2φ2
n

[sinφn(x− α)− cosφn(x− α)] +
C1

2φ2
n

e−φnx(sinφnα+ cosφnα)

+
∫ x

0

∫ τ

α

e−φn(x−τ) 1
φn

sinφn(τ − s)Fn(s)dsdτ.(2.44)

To obtain (2.44), we have used the boundary conditions wn(0) = w′n(0) = 0. Multi-
plying (2.44) by 2φn and taking x = α, we have

2φnw′n(α)− 2φ2
nwn(α) = (1 + i)C2(1− e−φnαeiφnα)− C1

φn

+
e−φnα

φn
C1(sinφnα+ cosφnα) + 2

∫ α

0

∫ τ

α

e−φn(α−τ) sinφn(τ − s)Fn(s)dsdτ.(2.45)

We substitute (2.42) and (2.43) into (2.45) and let n→∞. By the results in Lemma
2.4, (2.45) yields

lim
n→∞

w
′′

n(α−) = −2 lim
n→∞

∫ α

0

∫ τ

α

e−φn(α−τ) sinφn(τ − s)Fn(s)dsdτ.(2.46)

We argue that the above limit is zero by the following estimates:∣∣∣∣∫ α

0

∫ τ

α

e−φn(α−τ) sinφn(τ − s)gn(s)dsdτ
∣∣∣∣ ≤ ∫ α

0

∫ α

0
|gn(s)|dsdτ

≤ α 3
2

(∫ α

0
|gn(s)|2ds

) 1
2

→ 0(2.47)

and ∣∣∣∣∫ α

0

∫ τ

α

e−φn(α−τ) sinφn(τ − s)λnfn(s)dsdτ
∣∣∣∣

=
∣∣∣∣λn ∫ α

0

(∫ s

0
e−φn(α−τ) sinφn(τ − s)dτ

)
fn(s)ds

∣∣∣∣
=
∣∣∣∣λne−φnα2φn

∫ α

0
(cosφns+ sinφns− eφns)fn(s)ds

∣∣∣∣
≤
(
q

ρ

) 1
2
(
αφne

−φnα +
1
2
− 1

2
e−φnα

)
max
s∈[0,α]

|fn(s)| → 0,(2.48)

where we have used the fact that gn → 0 in L2(0, L), fn → 0 in V ↪→ C1[0, L], and
φn → +∞. Thus we have proved

w
′′

n(α−)→ 0 as n→∞.(2.49)

Let x′ = L−x, which maps the interval (β, L) onto (0, L−β). Repeating the argument
after (2.39), we can also prove

w
′′

n(β+)→ 0 as n→∞.(2.50)

Equations (2.49) and (2.50) give us the promised contradiction. Thus, the energy of
(1.2), E1(t) = 1

2‖(w(t), ẇ(t))‖H1 , satisfies the inequality (1.3).



LOCALLY DISTRIBUTED KELVIN–VOIGT DAMPING 1093

3. Longitudinal motion. In this section, we study the longitudinal motion of
the beam described in (1.1). Note that this equation also models the longitudinal
vibration of an elastic rod.

Let H = L2
ρ(0, L) with the norm

‖v‖ =

(∫ L

0
ρ|v(x)|2dx

) 1
2

and V = H1
0 (0, L) with the norm

‖v‖V =

(∫ L

0
p|v′(x)|dx

) 1
2

.

Define H2 = V ×H with the norm ‖(u, v)‖H2 = (‖u‖2V +‖v‖2)
1
2 . Then H2 is a Hilbert

space—the finite energy state space. Define in H2

D(A2) =
{

(u, v) | u, v ∈ V, S ≡ pu′ +Dav
′ ∈ H1(0, L)

}
(3.1)

and

A2(u, v) =
(
v,

1
ρ
S′
)
.(3.2)

Thus (1.1) can be rewritten as an abstract evolution equation on H2:

(u̇(t), v̇(t)) = A2(u(t), v(t)), (u(0), v(0)) = (u0, u1).(3.3)

It is known that A2 generates a C0-semigroup of contractions on H2 (see [CLL]).
Therefore, (u(t), u̇(t)) = eA2t(u0, u1) gives the mild solution of (1.1) for every (u0, u1) ∈
H2. Moreover, A−1

2 is a bounded operator on H2.
We assume that the beam is homogeneous on the segments (0, α), (α, β), (β, L),

i.e., the coefficients in (1.1) are ρ = ρ1 + (ρ2 − ρ1)χ(α,β),
p = p1 + (p2 − p1)χ(α,β),
Da = aχ(α,β), damping coefficient,

(3.4)

with ρ1, ρ2, p1, p2, a being positive constants. It is known that eA2t is strongly stable
(see [CLL]).

THEOREM 3.1. The semigroup eA2t for (1.1) with coefficients in (3.4) is not
exponentially stable.

Proof. We will show that ‖(λ−A2)−1‖ is unbounded on the imaginary axis. Let
γ2

1 =
√

p1
ρ1

and λ = λn = iωn = i2nπγ1
L−β , n = 1, 2, . . . . Define

f = f(x, n) =

{
0 in (0, β),
1
ωn

sin ωn(x−β)
γ1

in (β, L),
∈ V,

g = g(x, n) =

{
0 in (0, β),
cos ωn(x−β)

γ1
in (β, L),

∈ H.
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We solve the resolvent equation (λ−A2)(u, v) = (f, g), (u, v) ∈ D(A2) in the intervals
(0, α), (α, β), (β, L), respectively.

For x ∈ (0, α), we have  λu− v = 0,
λv − γ2

1u
′′ = 0,

u(0) = 0.
(3.5)

It is easy to see that

u(x) = c1 sin
ωn
γ1
x.(3.6)

For x ∈ (α, β), we have {
λu− v = 0,
λv − (γ2

2 + a2λ)u′′ = 0,(3.7)

where γ2
2 =

√
p2
ρ2

and a2 = a
ρ2

. The solution of (3.7) is

u(x) = c2e
µx + c3e

−µx(3.8)

with

µ =
ωn

(γ4
2 + a2

2ω
2
n)

1
4

(
cos

θ

2
+ i sin

θ

2

)
,(3.9)

cos θ =
−γ2

2

(γ4
2 + a2

2ω
2
n)

1
2
→ 0, sin θ =

a2ωn

(γ4
2 + a2

2ω
2
n)

1
2
→ 1 as n→∞.(3.10)

By the continuity conditions at x = α, i.e.,{
u(α−) = u(α+),
γ2

1u
′(α−) = (γ2

2 + ia2ωn)u′(α+),(3.11)

we solve c2, c3 to get

u(x) = c1

[
sin

ωnα

γ1
coshµ(x− α) +

γ1ωn
(γ2

2 + ia2ωn)µ
cos

ωnα

γ1
sinhµ(x− α)

]
.(3.12)

Therefore,

u(β−) = c1

[
sin

ωnα

γ1
coshµ(β − α) +

γ1ωn
(γ2

2 + ia2ωn)µ
cos

ωnα

γ1
sinhµ(β − α)

]
,(3.13)

u′(β−) = c1

[
µ sin

ωnα

γ1
sinhµ(β − α) +

γ1ωn
(γ2

2 + ia2ωn)
cos

ωnα

γ1
coshµ(β − α)

]
.(3.14)

For x ∈ (β, L), we have  λu− v = f,
λv − γ2

1u
′′ = g,

u(L) = 0.
(3.15)
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Let

w±(x) =
1
2

[v(x)± γ1u
′(x)].

Then (3.15) can be transformed into a first-order, diagonal, nonhomogeneous system:(
w+
w−

)′
=

(
λ
γ1

0
0 − λ

γ1

)(
w+
w−

)
+
(

0
1
γ1

)
g ≡ A

(
w+
w−

)
+
(

0
1
γ1

)
g.(3.16)

Using the boundary condition 0 = v(L) = w+(L) + w−(L), we obtain the solution(
w+(x)
w−(x)

)
= w+(L)e(x−L)A

(
−1
1

)
+
∫ L

x

e(x−τ)A
( 1

γ1

0

)
g(τ)dτ.(3.17)

Since

v(x) = w+(x) + w−(x)

= w+(L)
[
−ei

2nπ(x−L)
L−β + e−i

2nπ(x−L)
L−β

]
− 1
γ1

∫ L

x

ei
2nπ(x−τ)
L−β g(τ)dτ

= −2iw+(L) sin
2nπ(x− L)
L− β − 1

γ1

∫ L

x

ei
2nπ(x−τ)
L−β cos

2nπ(x− β)
L− β dτ,(3.18)

we obtain that

v(β+) = −L− β
2γ1

.(3.19)

Furthermore, from λu(β+) = f(β+) + v(β+) = v(β+),

u(β+) = i
L− β
2γ1ωn

.(3.20)

Similarly, from γ1u
′(x) = w+(x)− w−(x), we can also get

γ2
1u
′(β+) = −2γ1w+(L)− 1

2
(L− β).(3.21)

Applying the continuity conditions at x = β, i.e.,{
u(β+) = u(β−),
γ2

1u
′(β+) = (γ2

2 + ia2ωn)u′(β−),(3.22)

from (3.13), (3.14), (3.20), and (3.21), we can solve c1 and obtain

−2γ1w+(L)− 1
2

(L− β)

= i(L− β)µ
γ2

2 + ia2ωn
2γ1ωn

·
(γ2

2 + ia2ωn)µ sin ωnα
γ1

+ γ1ωn cos ωnαγ1
cothµ(β − α)

(γ2
2 + ia2ωn)µ sin ωnα

γ1
cothµ(β − α) + γ1ωn cos ωnαγ1

.(3.23)

It follows from the definition of ωn and µ that

| cothµ(β − α)| → 1, |µ| → ∞ as n→∞.(3.24)
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If ωnα
nπγ1

= 2α
L−β is a rational number, there exists a subsequence of {ωn}, still denoted

by ωn, such that sin ωnα
γ1
≡ 0. If 2α

L−β is an irrational number, there exists a sub-
sequence of {ωn}, still denoted by ωn, such that sin ωnα

γ1
≥ ε0 > 0. In both cases,

(3.23)–(3.24) imply

|w+(L)| → ∞ as n→∞.(3.25)

This further leads to∫ L

β

|v(x)|2dx =
∫ L

β

|w+(x) + w−(x)|2dx

≥ 4|w+(L)|2
∫ L

β

sin2 2nπ(x− L)
L− β dx− (L− β)2

2γ1

= 2(L− β)|w+(L)|2 − (L− β)2

2γ1
→∞ as n→∞.(3.26)

Finally, by ‖(f, g)‖2H2
= ρ1(L− β) and

‖(iωn −A2)−1(f, g)‖2H2
= ‖(u, v)‖2H2

≥
∫ L

β

|v(x)|2dx→∞ as n→∞(3.27)

we conclude that

sup
ω∈R
‖(iω −A2)−1‖ =∞.(3.28)

Thus, eA2t is not exponentially stable.
Since the energy of (1.1) is E2(t) = 1

2‖(u(t), u̇(t))‖2H2
= 1

2‖eA2t(u0, u1)‖2H2
, in-

equality (1.3) fails to hold for E2(t). We believe that the lack of exponential stability
here is due to the discontinuities in the damping coefficient Da and the high order
of damping operator. Some waves outside the interval (α, β) are strongly reflected at
α, β. We don’t know whether the conclusion in Theorem 3.1 is still true if the Da is
smooth at α and β.

4. Lack of analyticity. It is known that when the Kelvin–Voigt damping is
globally distributed over the beam (i.e., α = 0, β = L in (1.1) and (1.2)), the cor-
responding semigroup is analytic (e.g., [CLL]). In this section, we will demonstrate
that this is not true when the Kelvin–Voigt damping is only distributed locally. From
Theorem 3.1, we already know that eA2t is not analytic.

THEOREM 4.1. eA1t is not an analytic semigroup.
Proof. From the analytic semigroup theory [Pa, Theorem 2.5.2], an exponential

semigroup eA1t is analytic if and only if

sup{‖ω(iω −A1)−1‖ | ω ∈ R} < +∞.(4.1)

We will show that (4.1) is not true. Choose γ > 0 such that a = γ/π < α. Let

xn =
π

4γn
, x̃n =

π

γ
− π

4γn
, φn(x) = sin γnx,(4.2)



LOCALLY DISTRIBUTED KELVIN–VOIGT DAMPING 1097

and construct a sequence of functions

un(x) =


ξn(x), 0 ≤ x < xn,
φn(x), xn ≤ x < x̃n,
ηn(x), x̃n ≤ x < a,
0, a ≤ x ≤ L,

(4.3)

where

ξn(x) = x4
3∑
k=0

bn,k
xk

k!
, ηn(x) = (x− a)4

3∑
k=0

cn,k
(x− a)k

k!
.(4.4)

The coefficients bn,k, cn,k are uniquely determined by the smoothly connected condi-
tions

ξ(k)
n (xn) = φ(k)

n (xn), η(k)
n (x̃n) = φ(k)

n (x̃n), k = 0, 1, 2, 3.(4.5)

Since

|φ(k)
n (xn)| = |φ(k)

n (x̃n)| =
√

2
2

(γn)k,(4.6)

we can directly verify that

bn,k =
dk

dxk

(
ξn(x)
x4

) ∣∣
x=xn = O(n4+k), (n→∞),(4.7)

cn,k =
dk

dxk

(
ηn(x)

(x− a)4

) ∣∣
x=x̃n = O(n4+k), (n→∞),(4.8)

for k = 0, 1, 2, 3. This further leads to

ξ(k)
n (x) = O(nk) ∀ x ∈ [0, xn] (n→∞),(4.9)
η(k)
n (x) = O(nk) ∀ x ∈ [x̃n, a] (n→∞),(4.10)

for k = 0, 1, 2, 3, 4. It is easy to see that un ∈ H4
0 (0, L) and supp un ⊂ (0, α). Now,

let

ωn =

√
q(0)
ρ(0)

(γn)2, vn = iωnun.(4.11)

Then (un, vn) ∈ D(A1) and

(iωn −A1)(un, vn) =
(

0,−ω2
nun +

q(0)
ρ(0)

u(4)
n

)
.(4.12)

Since

−ω2
nun +

q(0)
ρ(0)

u(4)
n =


−ω2

nξn + q(0)
ρ(0)ξ

(4)
n , 0 ≤ x < xn,

0, xn ≤ x < x̃n,

−ω2
nηn + q(0)

ρ(0)η
(4)
n , x̃n ≤ x < a,

0, a ≤ x ≤ L,

(4.13)
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by (4.9) and (4.10) we have∥∥∥∥ 1
ω2
n

(iωn −A1)(un, vn)
∥∥∥∥
H2

→ 0.(4.14)

On the other hand,∥∥∥∥ 1
ωn

(un, vn)
∥∥∥∥
H2

≥
(∫ α

0
ρ|un|2dx

) 1
2

≥
(∫ x̃n

xn

ρ|φn|2dx
) 1

2

=

(∫ x̃n

xn

ρ sin2 γnxdx

) 1
2

→
(
ρπ

2γ

) 1
2

.(4.15)

Equations (4.14) and (4.15) imply that (4.1) is not true.
Remark. This proof does not depend on the boundary conditions or the type

of damping. Thus, we conclude that the semigroups associated with linear beam
equations with local damping are never analytic.
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Abstract. This paper models the action of the central bank on the dynamics of the nominal
interest rate with the aim of controlling inflation. The problem is set up as a two-dimensional bounded
variation control problem; it is shown that its variational formulation leads to a stochastic differential
game with stopping times between the conservative and the expansionist tendencies of the bank.

Key words. central bank, inflation, bounded variation stochastic control, weak variational
inequality, strong variational inequality, stochastic differential game
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1. Introduction. The central bank has many roles to play in an economy. These
vary from country to country depending on federal law and government policy. For
example, in 1975, the governor of the Bank of Canada announced policies to deal with
inflation which can be summarized as follows (cf. Binhammer [4, pp. 586–587]).

• The Bank of Canada has the responsibility and the means to keep the rate
of monetary expansion under control.
• The restoration of price stability requires an average rate of growth of the

money supply no higher than the long term average rate of growth of pro-
duction of goods and services.
• The pursuit of a policy of stable monetary expansion requires that nominal

interest rates and the foreign exchange rate be allowed to achieve their levels
independently.
• Nominal interest rates can be reduced in the long run by reducing inflation.

This is to be achieved by a short term rise in interest rates, producing a
decline in the growth rate of the money supply. Over the long term interest
rates should settle to lower levels.

As noted above, in Canada, the bank controls the demand for money by influenc-
ing interest rates through intervention in the weekly auction of 91-day T-bills and by
trading in the secondary market for T-bills. The bank rate is then set at 1/4% above
the T-bill rate set at the weekly auction. Reserves are provided to the commercial
banks to support this action; hence the monetary base is only controlled passively.
The bank followed this policy with the exception of the independence of the exchange
rate and interest rates. In fact, the short term swings in the bank rate are mostly due
to a policy of defending the Canadian dollar against the U.S. dollar. Nevertheless,
this situation is somewhat particular to Canada, and so in this work we shall ignore
the influence of the exchange rate on interest rates. The general conclusion to be
drawn from the above policy statements is that the bank wants to control inflation
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by raising nominal interest rates using the bank rate. This policy seems to have been
successful during the 1980s and 1990s.

An essential issue at this point is to model the dynamic evolution of the inter-
est and inflation rates over time. Interest rates have received widespread attention
over the past decade, usually in the context of the term structure of interest rates;
cf. Longstaff and Schwartz [20] and references therein. In general, however, the prob-
lem of studying the changes of interest rates due to monetary decisions is quite new
in the literature, although several authors have pointed out the relationship between
interest rates and inflation. For example, Richard determines the term structure of in-
terest rate in a model whose uncorrelated state variables are the real interest rate and
the inflation rate in [24]. The inflation rate appears also in a paper by Cox, Ingersoll,
and Ross [8, section 7], but there is a variable without any monetary objective. The ef-
fect of monetary policy changes on the relationship between short and long term inter-
est rates is studied by Turnovsky [25], and an equilibrium asset-pricing model in which
the real interest rate is negatively correlated with the inflation rate is constructed and
estimated by Pennacchi [23]. General observations about correlations among interest
rates, inflation, and money supply growth can be found in the work of Mishkin [22].

The recent paper of Fusai [12] analyzes how the term structure of interest rates
changes when the central bank tries to stabilize the inflation rate by acting on the
money supply. This is an interesting approach, although there may be some mathe-
matical difficulties in the derivation of the model. The problem is set as a stochastic
linear regulator, hence a classical control problem; the control is given by the money
supply and enters the dynamics of the real interest rate and of the inflation rate.

Our model has the following features. The two-dimensional state variable is given
by the nominal interest rate X1,s (deduced from the stochastic Fisher law) and the
inflation rate X2,s; these processes are jointly dependent. This is consistent with some
(but not all) models in the literature, e.g., Pennachi [23]. The central bank may mod-
ify the dynamics of X1,s by adding a stochastic process k ∈ V [0, T ] of finite variation
over the time interval [0, T ]; the change in k represents the change in the bank rate
which is assumed to affect the interest rate directly and additively. Inflation target-
ing is achieved by minimizing over V [0, T ] a certain cost functional. This produces
a two-dimensional singular stochastic control problem with the control (which, as a
function of time, could possibly be singular with respect to the Lebesgue measure)
acting only on the x1-component. We show that the variational formulation of this
problem leads to a two-player, zero-sum stochastic differential game with stopping
times whose value coincides with the x1-derivative of the value function of the orig-
inal problem. The differential game might be interpreted as a game played between
the conservative and the expansionist tendencies of the bank. At certain times the
conservative tendency asks for low inflation and hence interest rates are increased,
whereas at other opportune times the expansionist tendency lowers interest rates in
order to stimulate the economy.

Our mathematical model falls in the class of the so-called bounded variation fol-
lower problems with finite horizon, in the language of the recent singular stochastic
control literature. A d-dimensional follower problem for the control of a diffusion
process with linear-in-x drift and constant-in-x diffusion coefficient has been sketched
by Menaldi and Robin [21]; there compactness methods are used to establish the exis-
tence of an optimal control process. More general existence results were established by
Haussmann and Suo [15]. On the other hand, the one-dimensional reflected follower
problem (i.e., a bounded variation follower problem with a reflecting barrier at the
origin) for the control of Brownian motion has been extensively studied by El Karoui
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and Karatzas [9], Karatzas [16], and Karatzas and Shreve [17], among others. It has
been shown that the x-derivative of the value function of the reflected follower prob-
lem is the optimal risk of an optimal stopping problem with absorption at the origin.
Therefore, our differential game problem seems to be the natural generalization to
more than one dimension (but with one-dimensional control) of the stopping problem
arising in dimension one. The cost rate of our game depends on the x2-derivative of
the value function of the original problem, i.e., the partial derivative in the direction
not controlled, so the game cannot be solved without solving the original problem.
It is only in the one-dimensional case where there are no “other” directions, that the
derived problem can be stated independently of the original value function.

This paper is organized as follows. In section 2 we formulate the control problem
and state the main results. In particular, we find that the value function (derived
utility function), v(x, t), satisfies a variational inequality (corresponding to the Bell-
man equation of dynamic programming), but that an associated problem satisfied by
vx1(x, t) is more relevant than the original variational inequality. Moreover, a stochas-
tic differential game with stopping times is deduced from the associated problem. It
is shown that the game has value vx1 and admits a saddle point (θ̂1, θ̂2), where θ̂1 is
the optimal time to increase interest rates in order to contain the inflation and θ̂2 is
the optimal time to lower interest rates in order to stimulate the economy.

Sections 3, 4, and 5 contain the mathematical analysis of the problem. The
nonmathematical reader may skip to section 6. In section 3 we derive some properties
of the value function v(x, t). In section 4 we introduce a penalized control problem
whose value function vε(x, t) approximates v(x, t) and is regular enough to allow differ-
entiation with respect to x1 of the corresponding Hamilton–Jacobi–Bellman equation.
Then, by taking limits as ε→ 0, in section 5 we obtain a weak variational inequality
solved by vx1 . (We point out that the Mignot–Puel method employed in the monotone
control case to obtain a weak variational inequality (cf. [7, p. 875]) cannot be applied
to problems with general bounded variation controls since the penalty term of the dif-
ferentiated Hamilton–Jacobi–Bellman equation is not nonnegative, and hence it does
not correspond to a penalization operator in the sense of Mignot and Puel.) We con-
clude section 5 by appealing to general existence and uniqueness results established in
section 7, to show that v is the unique solution of a pointwise variational inequality.
In section 6 we summarize our conclusions regarding the economics problem.

Section 7 stands alone and gives results about variational inequalities. Many
of the mathematical techniques used here were inspired by the work of Bensoussan
and Lions [2], but in fact our problem falls outside the scope of their work because
of an unbounded domain, unbounded coefficients in the state equations, and lack of
differentiability of vx2 with respect to time. Using penalization we show that a strong
variational inequality has a unique solution, which is related to the unique solution of
a weak variational inequality (the one satisfied by e−λ(T−t)vx1 in section 5). Finally
we show that the solution in fact satisfies a pointwise variational inequality. The
appendix contains some technical results used in section 7.

2. Formulation of the problem and results. Pennacchi [23] postulates an
economy with a single capital-consumption good and a single technology to transform
capital into output. One of the implications of the model is that if X1,s, X2,s are
the nominal (spot) interest rate and expected rate of inflation, respectively, then they
satisfy

dXs = (a+ bXs)ds+ σdWs−t, s ∈ (t, T ].(2.1)
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This model does not take into consideration the direct influence of the central bank
on the interest rate. It also allows these rates, in particular, the nominal interest rate,
to go negative! Nevertheless, as a first step we shall adopt this model except that we
add a control term which reflects the actions of the bank. In [14] it is shown that the
model, when applied to Canadian data from 1983 through 1988, is not unreasonable;
i.e., statistical tests checking for nonnormality of the residuals corresponding to ∆W
are not significant. To be fair, we must add that for other time segments of the data
this is not the case. If the inflation rate is ignored, i.e., X2 = 0, then the model for
the interest rate has been used in derivative pricing; cf. [5].

Let a be a constant vector in R2 and e1 =
(1

0

)
, let b =

(
b11 b12
b21 b22

)
and σ be constant

2×2 matrices such that σσ∗ is positive definite. Let T > 0 be fixed; then Xs =
(
X1,s
X2,s

)
is the process starting at time t ∈ [0, T ] from x ∈ R2 and governed by the stochastic
differential equation{

dXs = (a+ bXs)ds+ σdWs−t + e1 dks−t, s ∈ (t, T ],
Xt = x+ e1 k0

(2.2)

on some filtered probability space (Ω,F ,Fs, P ) with the filtration {Fs, s ∈ [0, T ]}
satisfying the usual conditions, where {Ws, s ∈ [0, T ]} is a standard two-dimensional
Brownian motion and the control {ks, s ∈ [0, T ]} is a real-valued càdlàg (i.e., right-
continuous with left limits), Fs-adapted process, almost surely (a.s.) of finite varia-
tion. We denote by V [0, T ] the set of all such control processes; we refer to (x, t) as
“the initial condition” and to T as “the terminal time.”

Let f(x) = 1
2 [ν(x1)2 + (x2)2] for x = (x1, x2); ∈ R2 and ν ≥ 0; then the function

f is convex. Let ρ > 0 be a given discount factor; then the cost corresponding to the
control process k is

Jx,t(k) = E

{∫ T

t

f(Xs)e−ρ(s−t)ds+
∫ T

t

e−ρ(s−t)d|k|s−t + |k0|
}
,(2.3)

where |k| is the total variation process of k. The term involvingX1 reflects the desire to
keep interest rates low so as to stimulate the economy; the term involving X2 reflects
the desire to keep the inflation rate at zero (we could have chosen any constant),
and the terms involving k reflect the bank’s reluctance to make large changes in the
rate (i.e., it prefers to provide stable interest rates). The coefficient ν is determined
by the bank to reflect the weight it wishes to give to fighting inflation compared to
stimulating the economy.

The problem is to minimize J and to find the value function

(P ) v(x, t) = inf
{
Jx,t(k) : k ∈ V [0, T ]

}
.

In order to state the results we need some notation. Let p > 1, m ∈ N, and let Q
denote an open set in R2; then we set

• C2,1(Q × (0, T )) = the set of all functions u continuous on Q × (0, T ) with
continuous partial derivatives uxi , uxixj , ut, i, j = 1, 2;

• C2,1
pol(Q× (0, T )) = the set of all functions u ∈ C2,1(Q× (0, T )) which satisfy

a polynomial growth condition on Q× (0, T ); i.e., for some constants C > 0
and m ∈ N,

|u(x, t)| ≤ C(1 + |x|m) ∀(x, t) ∈ Q× (0, T );
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• Wm;p(Q) = the space of all functions g which have weak derivatives Dαg in
Lp(Q) for all |α| ≤ m;
• W 2,1;p(Q× (0, T )) = the space of all functions u which have weak derivatives
ut, uxi , uxixj , i, j = 1, 2, in Lp(Q× (0, T ));
• W 2,1;p

loc (R2×(0, T )) = the space of all functions u that, for all boundedQ ⊂ R2,
belong to W 2,1;p(Q× (0, T ));
• Lu(x, t) = 1

2 trace[σσ∗D2u(x, t)] + (a + bx) · ∇u(x, t), where D2u(x, t) and
∇u(x, t) are the Hessian matrix and the gradient of u(x, t) with respect to
the x-variables, respectively.

The value function can now be characterized by the following theorem.
THEOREM 2.1. The value function v is the unique solution in W 2,1;∞

loc (R2×(0, T ))
of 

v(x, T ) = 0 almost everywhere (a.e.) in R2,

max
{
− vt + [−L+ ρ]v − f, −vx1 − 1, vx1 − 1

}
≤ 0,

(−vt + [−L+ ρ]v − f)(−vx1 − 1)(vx1 − 1) = 0,
a.e. in R2 × (0, T ).

(2.4)

A proof of this result can be given along the lines of the proof of the next theorem,
but as it is similar, we refrain from doing so.

The problem (2.4) is difficult to solve and difficult to interpret in economic terms;
an associated problem turns out to have a useful form. Its main actor is the function
vx1 .

THEOREM 2.2. There exists a positive constant C such that

|vxi(x, t)| ≤ C(1 + |x|), |vxixj (x, t)| ≤ C, |vt(x, t)| ≤ C(1 + |x|2)(2.5)

a.s. in R2 × [0, T ], i, j = 1, 2. Assume that ρ ≥ b11 and set

û = b21vx2 + νx1.

Then the function vx1 is the unique solution in W 2,1;6
loc (R2 × (0, T )) of the pointwise

variational inequality
−1 ≤ vx1 ≤ +1 a.e. in R2 × (0, T ), vx1(x, T ) = 0 a.e. in R2,
−vx1t + [−L+ (ρ− b11)]vx1 = û if − 1 < vx1(x, t) < 1,
−vx1t + [−L+ (ρ− b11)]vx1 ≤ û if vx1(x, t) = +1,
−vx1t + [−L+ (ρ− b11)]vx1 ≥ û if vx1(x, t) = −1,

a.e. in R2 × (0, T ).

(2.6)

The proof of this result is technical and is given in the following three sections.
Note that the uniqueness here is for a fixed û, i.e., for given vx2 . In terms of the

unknowns (vx1 , vx2), this theorem gives existence of solutions, but not uniqueness.
The more general uniqueness does not hold without further side conditions; what
such conditions are poses an interesting problem. In fact, the above theorem is an
intermediate result; what we are after is the interpretation of vx1 as the value of a
differential game!

We are now going to show that vx1 is the value of a two-player, zero-sum stochastic
differential game. In essence, we have moved from the control problem (P ) to the
variational inequality satisfied by its value function v, we have differentiated to find
a variational inequality for vx1 , and then we have found the corresponding control
problem, which happens to be a differential game.
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For every (x, t) ∈ R2 × [0, T ] consider the control-free diffusion process starting
at time t from x; i.e.,

X0
s′ = x+

∫ s′

t

(a+ bX0
r )dr + σ

∫ s′

t

dWr−t ∀s′ ∈ [t, T ],

so if Y 0
s := X0

s+t = X0
s′ for s = s′ − t then

Y 0
s = x+

∫ s

0
(a+ bY 0

r )dr + σ

∫ s

0
dWr ∀s ∈ [0, T − t].(2.7)

For every r, r′ with 0 ≤ r < r′ < +∞ we set
• Sr,r′ = the collection of all stopping times relative to the underlying filtration
{Fs}s∈[0,T ] and taking values in [r, r′].

Let θ1, θ2 be stopping times in S0,T−t; if θ1 and θ2 play the role of strategies, then we
define the evaluation function of the game by setting

Gx,t(θ1, θ2) = E

{∫ θ1∧θ2

0
û(Y 0

s , t+ s)e−(ρ−b11)sds

− e−(ρ−b11)θ1I θ1≤θ2
θ1<T−t

+ e−(ρ−b11)θ2Iθ2<θ1
}
.(2.8)

Also, we define
• θ̂1 = inf{s ∈ [0, T − t] : vx1(Y 0

s , t+ s) = −1} ∧ (T − t),
• θ̂2 = inf{s ∈ [0, T − t] : vx1(Y 0

s , t+ s) = +1} ∧ (T − t);
then we prove that the differential game has a solution.

THEOREM 2.3. Assume that ρ ≥ b11. Then for every initial condition (x, t), the
evaluation function Gx,t has a saddle point at (θ̂1, θ̂2) with value vx1(x, t); i.e.,{

Gx,t(θ1, θ̂2) ≤ Gx,t(θ̂1, θ̂2) ≤ Gx,t(θ̂1, θ2) ∀θ1, θ2 ∈ S0,T−t,

vx1(x, t) = Gx,t(θ̂1, θ̂2),
(2.9)

and

vx1(x, t) = inf
θ2∈S0,T−t

sup
θ1∈S0,T−t

Gx,t(θ1, θ2)(2.10)

= sup
θ1∈S0,T−t

inf
θ2∈S0,T−t

Gx,t(θ1, θ2).

Proof. Clearly (2.10) follows directly from (2.9). Fix (x, t) in R2 × [0, T ]; for
R > 0 let τR be the first exit time of Y 0 from BR = {x ∈ R2 : |x| < R}. Since
vx1 is in W 2,1;6

loc (R2 × (0, T )) (cf. Theorem 2.2), continuous on R2 × [0, T ] by Sobolev
imbedding, we may apply to e−(ρ−b11)svx1(Y 0

s , t+ s) a generalization of Ito’s formula
(cf. [2, Chapter 2, Theorem 8.5, p. 185]); hence for any stopping time θ ∈ S0,T−t we
obtain

vx1(x, t) = E
{
e−(ρ−b11)θvx1(Y 0

θ , t+ θ)Iθ≤τR
}

+E
{
e−(ρ−b11)τRvx1(Y 0

τR , t+ τR)Iθ>τR
}

(2.11)

+E
{∫ θ∧τR

0
e−(ρ−b11)r

(
− vx1t + [−L+ (ρ− b11)]vx1

)
(Y 0
r , t+ r)dr

}
.
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Since τR → +∞ a.s. as R→ +∞ and |vx1 | ≤ 1 (cf. (2.6)), we have lim
R→+∞

E
{
e−(ρ−b11)θvx1(Y 0

θ , t+ θ)Iθ≤τR
}

= E
{
e−(ρ−b11)θvx1(Y 0

θ , t+ θ)
}
,

lim
R→+∞

E
{
e−(ρ−b11)τRvx1(Y 0

τR , t+ τR)Iθ>τR
}

= 0

by the bounded convergence theorem.
Now, for any stopping time θ2 ∈ S0,T−t, we set

θ = θ2 ∧ θ̂1,

and we see that (2.6) implies(
− vx1t + [−L+ (ρ− b11)]vx1

)
(Y 0
s , t+ s) ≤ û(Y 0

s , t+ s) ∀s ∈ [0, θ̂1]

with equality if s ≤ θ̂1 ∧ θ̂2; therefore, we have

E

{∫ θ∧τR

0
e−(ρ−b11)r

(
− vx1t + [−L+ (ρ− b11)]vx1

)
(Y 0
r , t+ r)dr

}
≤ E

{∫ θ∧τR

0
e−(ρ−b11)rû(Y 0

r , t+ r)dr
}

(2.12)

with equality if θ2 ≤ θ̂2. But |û(Y 0
r , t + r)| ≤ C(1 + |Y 0

r |) by (2.5)1, so by applying
the dominated convergence theorem we obtain

lim
R→+∞

E

{∫ θ∧τR

0
e−(ρ−b11)r

(
− vx1t + [−L+ (ρ− b11)]vx1

)
(Y 0
r , t+ r)dr

}
≤ E

{∫ θ

0
e−(ρ−b11)rû(Y 0

r , t+ r)dr
}

with equality if θ2 ≤ θ̂2. Thus, passing to the limit as R→ +∞ in (2.11) gives

vx1(x, t) ≤ E
{
e−(ρ−b11)θvx1(Y 0

θ , t+ θ)
}

(2.13)

+E

{∫ θ

0
e−(ρ−b11)rû(Y 0

r , t+ r)dr
}

with equality if θ2 ≤ θ̂2. Finally, vx1(Y 0
T−t, T ) = 0, vx1(Y 0

θ̂1
, t+ θ̂1) = −1 (this follows

from the continuity of vx1 and Y 0), and vx1 ≤ 1 imply

E
{
e−(ρ−b11)θvx1(Y 0

θ , t+ θ)
}

= E

{
− e−(ρ−b11)θ̂1I

θ2≥θ̂1
θ̂1<(T−t)

+ e−(ρ−b11)θ2vx1(Y 0
θ2 , t+ θ2)Iθ2<θ̂1

}
(2.14)

≤ E
{
− e−(ρ−b11)θ̂1I

θ2≥θ̂1
θ̂1<(T−t)

+ e−(ρ−b11)θ2Iθ2<θ̂1

}

with equality if θ2 = θ̂2. Now from (2.13) and (2.14) it follows that

vx1(x, t) = Gx,t(θ̂1, θ̂2) ≤ Gx,t(θ̂1, θ2) ∀θ2 ∈ S0,T−t.
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Similarly, by taking θ = θ1 ∧ θ̂2 for any stopping time θ1 ∈ S0,T−t, we can show that
Gx,t(θ1, θ̂2) ≤ Gx,t(θ̂1, θ̂2) = vx1(x, t) ∀θ1 ∈ S0,T−t.

The financial interpretation of Theorem 2.3 discloses the complexity of the prob-
lem of containing inflation. In fact, (2.10) can be interpreted as a fictitious game
between the conservative forces in the central bank, whose goal is to pursue monetary
stability, and those forces, either in the bank or outside (e.g., in the government) aim-
ing to stimulate the economy. (The running cost in the game does, however, depend
on vx2 , i.e., a derivative of the original value function, so to obtain the control one
would not try to solve the game.) The strategies of the conservative forces are given
by all stopping times when interest rates are increased in order to reduce the inflation,
whereas the strategies of the expansionary forces are all stopping times when interest
rates are lowered to favor economic expansion. In this game the role of the “referee”
is played by the financial market; according to some economists (cf. Vaciago [26])
the result of the game depends on the efficiency of the financial market. Only if the
financial market is “perfect,” and hence guarantees long periods of equilibrium, can
one assume the complete independence of the central bank from its government, and
the stability of prices can then be optimally achieved.

3. Preliminary results. We fix some notation which will be used in the rest of
the paper. Let p > 1 and let Q denote an open set in R2 with closure Q̄:

• Hm+µ,(m+µ)/2(Q̄ × [0, T ]) = the space of all functions u continuous on Q̄ ×
[0, T ] with continuous partial derivatives of the form Dr

tD
j
xu for 2r + j ≤ m,

whose derivatives of the form Dr
tD

j
xu, 2r+ j = m are Hölder continuous with

respect to x (exponent µ ∈ (0, 1)) and whose derivatives of the form Dr
tD

j
xu,

0 < m + µ − 2r − j < 2, are Hölder continuous with respect to t (exponent
m+µ−2r−j

2 ∈ (0, 1)) on Q̄× [0, T ] (cf. [19, p. 7], for the norm);
• Hm+µ,(m+µ)/2(Q× (0, T )) = the set of all functions u such that u ∈
Hm+µ,(m+µ)/2(Ω̄) for all Ω such that Ω̄ ⊂ Q× (0, T );
• Hm+µ,(m+µ)/2

loc (R2 × [0, T ]) is the set of all functions u such that u ∈
Hm+µ,(m+µ)/2(Q̄× [0, T ]) for all bounded Q ⊂ R2;

• Lp(0, T ;Y ) = the space of all p-integrable functions on (0, T ) with values in
the Hilbert space Y (notice that

W 2,1;2(Q× (0, T )) = {u ∈ L2(0, T ;W 2;2(Q)), ut ∈ L2(0, T ;L2(Q))});

• BN = {x ∈ R2 : |x| < N};
• ΩN = BN × (0, T );
• π(x) = (1 + |x|2)−l (any integer l > 4);
• ϕi(x) = 2lxi(1 + |x|2)−1 for x = (x1, x2) ∈ R2, i = 1, 2 (notice that πxi(x) =
−ϕi(x)π(x));
• Lpπ(R2 × [0, T ]) = {u : π1/pu ∈ Lp(R2 × [0, T ])}, i.e., Lp under the measure
π(x)dxdt;
• Lpπ(R2) = {g : π1/pg ∈ Lp(R2)};
• H = L2

π(R2) with ‖g‖2H =
∫
R2
|g(x)|2π(x)dx;

• (g, h) =
∫
R2 g(x)h(x)π(x)dx denotes the inner product in H;

• V = {g ∈ H : gx1 , gx2 ∈ H} with ‖g‖2V = ‖g‖2H + ‖gx1‖2H + ‖gx2‖2H ;
• V ′ = the dual of V (notice that H is identified with its dual and we have
V ⊂ H ⊂ V ′);

• 〈. , . 〉 denotes the pairing between V ′ and V ;
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• H◦ = {g ∈ H : |x|g ∈ H};
• V◦ = V ∩H◦;
• W (0, T ) = {w ∈ L2(0, T ;V ) : wt ∈ L2(0, T ;V ′)} with the Hilbert norm

‖w‖W (0,T ) =
(∫ T

0
‖w(t)‖2V dt+

∫ T

0
‖wt(t)‖2V ′ dt

) 1
2

(notice that if w ∈ W (0, T ) then it is continuous in [0, T ] 7→ H and d
dt‖w(t)‖2 =

2〈w(t), w′(t)〉);
• W◦(0, T ) = {w ∈W (0, T ) : w(t) ∈ H◦ a.e. t ∈ [0, T ]}.

The following simple lemma will often be used.
LEMMA 3.1. If X0

s is the uncontrolled process starting at time t from x, then there
exists a positive constant C > 0 independent of x and t such that

E{|X0
s |2} ≤ C(1 + |x|2).(3.1)

There exists a positive constant C such that for every k ∈ V [0, T ], x, y ∈ R2, and
t ∈ [0, T ], if Xx

s and Xy
s denote the processes controlled by k and starting at time t

from x and y, respectively, then

E{|Xy
s −Xx

s |} ≤ C|y − x|,(3.2)

E{|Xy
s −Xx

s |2} ≤ C|y − x|2(3.3)

for every s ∈ (t, T ].
We collect the main properties of v(x, t) in the following theorem. Note that

f(x)− f(y) ≤ C(|x|+ |y|)|x− y|(3.4)

for all x, y in R2.
THEOREM 3.2. There exists a positive constant C such that for every λ ∈ (0, 1)

and for all x, x′ in R2, |x′| ≤ 1, and t in [0, T ], h > 0, one has

0 ≤ v(x, t) ≤ C(1 + |x|2);(3.5)

|v(x, t)− v(x+ x′, t)| ≤ C(1 + |x|+ |x′|)|x′|;(3.6)

0 ≤ v(x+ λx′, t) + v(x− λx′, t)− 2v(x, t) ≤ Cλ2;(3.7)

v(x, t+ h)− v(x, t) ≤ 0, h ∈ (0, T − t];(3.8)

v(x, t− h)− v(x, t) ≤ C(1 + |x|2)h, h ∈ (0, t].(3.9)

Hence v(x, t) is convex in x, nonincreasing in t, and v ∈ W 2,1;p
loc (R2 × (0, T )) (any

p ≤ ∞) with

|vxi(x, t)| ≤ C(1 + |x|), |vxixj (x, t)| ≤ C, |vt(x, t)| ≤ C(1 + |x|2)(3.10)

a.s. in R2 × [0, T ], i, j = 1, 2. In particular, for any µ ∈ (0, 1), v ∈ H
1+µ,(1+µ)/2
loc

(R2 × [0, T ]).
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Proof. Our proof borrows from [6] and [7]. Clearly it suffices to consider only
those controls which give a cost not greater than Jx,t(0), and (3.1) implies

Jx,t(0) ≤ C(1 + |x|2)(3.11)

and hence also

v(x, t) ≤ C(1 + |x|2) ∀(x, t) ∈ R× [0, T ].(3.12)

Let x, x′, t, k be fixed and denote by Xx
s and Xx+x′

s the processes controlled by k
and starting at time t from x and x+ x′, respectively. Then (3.4) implies

v(x+ x′, t)− v(x, t)

≤ sup
k∈V [0,T ]

E

{∫ T

t

(
f(Xx+x′

s )− f(Xx
s )
)
e−ρ(s−t)ds

}
≤ C sup

k∈V [0,T ]
E

{∫ T

t

(∣∣Xx+x′
s −Xx

s

∣∣+ 2
∣∣Xx

s

∣∣)∣∣Xx+x′
s −Xx

s

∣∣e−ρ(s−t)ds

}
≤ C sup

k∈V [0,T ]

(∫ T

t

E
{∣∣Xx+x′

s −Xx
s

∣∣2}e−ρ(s−t)ds
)

+C sup
k∈V [0,T ]

(∫ T

t

E
{∣∣Xx+x′

s −Xx
s

∣∣2}e−ρ(s−t)ds
) 1

2
(
Jx,t(0)

) 1
2
.

Now we deduce (3.6) and hence (3.10)1 from Lemma 3.1 and (3.11).
We now observe that Jx,t(k) is jointly convex in (x, k) since X is affine in k and

x, and both the set V [0, T ] and the function f are convex; i.e.,

Jλx+(1−λ)y,t(λk + (1− λ)k′) ≤ λJx,t(k) + (1− λ)Jy,t(k′)

for λ ∈ [0, 1]. Therefore, the value function v(x, t) is convex in x, and hence the first
inequality in (3.7) follows. In order to prove the second one we fix x, x′, λ, t, k, and
we denote by Xx

s , Xx+λx′
s , and Xx−λx′

s the processes controlled by k and starting at
time t from x, x+ λx′, and x− λx′, respectively. Then we have

v(x+ λx′, t) + v(x− λx′, t)− 2v(x, t)

≤ sup
k∈V [0,T ]

E

{∫ T

t

(
f(Xx+λx′

s ) + f(Xx−λx′
s )− 2f(Xx

s )
)
e−ρ(s−t)ds

}
.

But (2.2) implies

Xx+λx′
s = Xx

s + λeb(s−t)x′,

hence from

(z1 + λz2)2 + (z1 − λz2)2 − 2z1
2 = 2λ2z2

2, z1, z2, λ ∈ R,

we have

v(x+ λx′, t) + v(x− λx′, t)− 2v(x, t)

≤ λ2(1 + ν)
∫ T

t

‖eb(s−t)‖2e−ρ(s−t)ds

since |x′| ≤ 1. Now (3.7) and (3.10)2 follow.
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Let t ∈ (0, T ) and h > 0 such that t + h ≤ T ; denote by Xt
s and Xt+h

s the
processes controlled by k and starting from x at time t and t+ h, respectively. Then
it is easy to check that

Xt+h
t+h+s = Xt

t+s a.s.

for all s ∈ [0, T − (t+ h)]. Therefore it follows that

v(x, t+ h)− v(x, t) ≤ sup
k∈V [0,T ]

E

{∫ T

T−h
−1

2
[ν(Xt

1,s)
2 + (Xt

2,s)
2]e−ρ(s−t)ds

}
≤ 0;

i.e., (3.8) holds.
On the other hand, if h > 0 is such that 0 ≤ t−h and if X0,t−h

s is the uncontrolled
process (i.e., k = 0) starting at time t − h from x, then for every t − h ≤ s ≤ T we
have

v(x, t− h) ≤ E
{∫ s

t−h
f(X0,t−h

r )e−ρ(r−t+h)dr + v(X0,t−h
s , s)e−ρ(s−t+h)

}
,

and hence, using (3.1),

v(x, t− h)− v(x, t)

≤ E
{∫ t

t−h
f(X0,t−h

r )e−ρ(r−t+h)dr

}
+ E

{
v(X0,t−h

t , t)e−ρh − v(x, t)
}

≤
∫ t

t−h
C(1 + |x|2)e−ρ(r−t+h)dr + E

{
v(X0,t−h

t , t)e−ρh − v(x, t)
}
.

But for t ∈ [0, T ] fixed we have already shown that v(. , t) is a continuous function of
polynomial growth whose partial derivatives vxi(. , t) and vxixj (. , t) are in Lploc(R2);
that is, v(. , t) ∈ W 2;p

loc (R2) for any p finite. Hence a generalized Ito’s formula holds
for v(. , t)e−ρ(s−t+h) (cf. [10] or [18]) and we have

E
{
v(X0,t−h

t , t)e−ρh − v(x, t)
}

=
∫ t

t−h
E
{
Lv(X0,t−h

r , t)
}
e−ρ(r−t+h)dr

≤ C
∫ t

t−h
E
{

1 + |X0,t−h
r |2

}
e−ρ(r−t+h)dr

due to the estimates (3.5), (3.10)1, and (3.10)2. Note that in the above, we consider
v only as a function of x! Finally, we use (3.1) to obtain

E
{
v(X0,t−h

t , t)e−ρh − v(x, t)
}
≤ C(1 + |x|2)h,

and we conclude that

v(x, t− h)− v(x, t) ≤ C(1 + |x|2)h,

and hence (3.10)3 also follows. Finally, the Hölder continuity of v and vxi follows from
an imbedding theorem concerning the space W 2,1;p(ΩN ) with p > 4 (cf. [19, Lemma
II-3.3, p. 80]).
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4. Penalization. In order to obtain a variational formulation of the problem (P )
we introduce a penalized problem as follows. Let β be a C∞(R), convex, nondecreasing
function such that β(r) = 0 for r ≤ 0, β(r) > 0 for r ∈ (0, 1), and β(r) = 2r − 1 for
r ≥ 1. Then for every ε > 0, the set

Uε =
{

(η, ξ) ∈ R× [0,∞) : |η|θ − 1
ε
β(θ(θ + 2)) ≤ ξ ≤ 1

ε
for all θ ≥ 0

}
(4.1)

is convex and compact. We denote by V ε[0, T ] the set of all measurable, Fs-adapted
processes (η, ξ) : [0, T ]→ Uε, and we consider the penalized problem

(P ε) vε(x, t) = inf
{
Jεx,t(η, ξ) : (η, ξ) ∈ V ε[0, T ]

}
,

where

Jεx,t(η, ξ) = E

{∫ T

t

[
f(Xs) + |ηs−t|+ ξs−t

]
e−ρ(s−t)ds

}
(4.2)

and Xs is the diffusion determined by the stochastic differential equation{
dXs = (a+ bXs + e1 ηs−t)ds+ σdWs−t, s ∈ (t, T ],
Xt = x.

(4.3)

Since X is affine in η and x, the cost Jεx,t(η, ξ) is simultaneously convex in (η, ξ)
and x; i.e.,

Jελx+(1−λ)y,t(λ(η, ξ) + (1− λ)(η′, ξ′)) = λJεx,t(η, ξ) + (1− λ)Jεy,t(η
′, ξ′)

for λ ∈ [0, 1]. Hence the value function vε(x, t) is convex in x.
Estimates analogous to those of Theorem 3.2 hold for vε uniformly in ε as stated

in the following theorem.
THEOREM 4.1. There exists a positive constant C such that for every ε > 0, for

every λ ∈ (0, 1), and for all x, x′ in R2, |x′| ≤ 1, and t in [0, T ], h > 0, one has

0 ≤ vε(x, t) ≤ C(1 + |x|2);(4.4)

|vε(x, t)− vε(x+ x′, t)| ≤ C(1 + |x|+ |x′|)|x′|;(4.5)

0 ≤ vε(x+ λx′, t) + vε(x− λx′, t)− 2vε(x, t) ≤ Cλ2;(4.6)

vε(x, t+ h)− vε(x, t) ≤ 0, h ∈ (0, T − t];(4.7)

vε(x, t− h)− vε(x, t) ≤ C(1 + |x|2)h, h ∈ (0, t].(4.8)

Hence vε(x, t) is convex in x, nonincreasing in t, and vε ∈W 2,1;∞
loc (R2 × (0, T )) with

|vεxi(x, t)| ≤ C(1 + |x|), |vεxixj (x, t)| ≤ C, |vεt (x, t)| ≤ C(1 + |x|2)(4.9)

a.s. in R2 × [0, T ]. In particular, vε, vεxi ∈ C(R2 × (0, T )), i, j = 1, 2.
Moreover, for each initial condition (x, t) ∈ R2 × [0, T ],

lim
ε→0+

vε(x, t) = v(x, t).(4.10)

Proof. The properties (4.4)–(4.9) can be proved by using arguments similar to
those employed in the proof of (3.5)–(3.10).
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The pointwise convergence (4.10) is obtained as follows. Since ξ ≥ 0, then
vε(x, t) ≥ v(x, t) for every ε > 0 and every (x, t) ∈ R2 × [0, T ]. On the other hand, as
in [7, Theorem 2.2], one can check that

v(x, t) = inf
{
Jx,t(k) : k Lipschitz continuous in [0, T ]

}
;

therefore, for every δ > 0 there exists a Lipschitz continuous control ks =
∫ s

0 ηrdr in
V [0, T ] such that

Jx,t(k) ≤ v(x, t) +
δ

2
.

Then by taking ξs = δ
2ρ(1 − e−ρ(T−t))−1 for all s ∈ [0, T ], we can find ε◦ > 0 such

that {
(ηs, ξs) ∈ Uε,
Jεx,t(η, ξ) = Jx,t(k) +

δ

2
≤ v(x, t) + δ

for all ε < ε◦. Thus vε(x, t) ≤ v(x, t) + δ for all ε < ε◦ and (4.10) is proved.
It can be shown that the Hamilton–Jacobi–Bellman equation for the (P ε)-problem

is

−vεt − Lvε + ρvε +
1
ε
β([vεx1

]2 − 1) = f(4.11)

with the boundary condition

vε(x, T ) = 0 ∀x ∈ R2.(4.12)

PROPOSITION 4.2. The value function vε of the penalized problem (P ε) is contin-
uous on R2 × [0, T ] and is the unique solution in C2,1

pol(R2 × (0, T )) of the Hamilton–
Jacobi–Bellman equation (4.11) with the boundary data (4.12).

Proof. It suffices to apply Theorem VI-6.2, Theorem VI-6.3, and Corollary VI-4.1
of [10].

Remark 4.3. Actually vεt , v
ε
xixj , i, j = 1, 2, are locally Hölder continuous as shown

in the proof of [10, Theorem VI-6.2].
PROPOSITION 4.4. The value function vε is in H4+µ,(4+µ)/2

loc (R2× [0, T ]) for some
µ ∈ (0, 1).

Proof. From Proposition 4.2 and Remark 4.3 it follows that

vε ∈ H2+µ,(2+µ)/2
loc (R2 × [0, T ]);

therefore, if we write (4.11) as

−vεt − Lvε + ρvε = f − 1
ε
β([vεx1

]2 − 1),

we see that the right-hand side of the equation above is in H1+µ,(1+µ)/2
loc (R2 × [0, T ]).

Hence we may apply Theorem III-10 of [11] (with its p = 1) to obtain that the
derivatives vεxi , v

ε
xixj , v

ε
xixjxk

, vεt , v
ε
xit are locally Hölder continuous; that is,

vε ∈ H3+µ,(3+µ)/2
loc (R2 × [0, T ]).
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So we deduce that the right-hand side above is in H2+µ,(2+µ)/2
loc (R2× [0, T ]), and by an

application of Theorem III-11 in [11] (with its p = 2 and its q = 1) we conclude that
the derivatives vεtt, v

ε
txi , v

ε
txixj , v

ε
xixjxkxl

are locally Hölder continuous. This completes
the proof.

The regularity of vε provided by Proposition 4.4 allows us to differentiate (4.11)
with respect to x1; in fact, we have{

−uεt − Luε + (ρ− b11)uε +
2
ε
β′([uε]2 − 1)uεuεx1

= b21ũ
ε + νx1,

uε(x, T ) = 0 ∀x ∈ R2,
(4.13)

where we have set

uε = vεx1
and ũε = vεx2

.(4.14)

We will now show that (P ε) provides an approximation (in some sense) of the original
problem (P ), and hence we obtain some regularity of the derivatives vxi(x, t) of the
value function.

PROPOSITION 4.5. There exists a sequence {εn}n∈N, εn ↓ 0 as n→∞, such that
if un := uεn and ũn := ũεn , n ∈ N, then{

lim
n→∞

un = vx1 weakly in L2(0, T ;V );

lim
n→∞

ũn = vx2 weakly in L2(0, T ;V ).

Proof. Thanks to the estimates (4.9), there is a constant C > 0 such that{
‖uε(. , t)‖V ≤ C,
‖ũε(. , t)‖V ≤ C

(4.15)

for ε > 0, t ∈ [0, T ]; hence {uε}ε>0, {ũε}ε>0 lie in a bounded set in L∞(0, T ;V ) which
is a subset of L2(0, T ;V ). Therefore, there exists a sequence {εn}n∈N, εn ↓ 0, as
n → ∞, such that un := uεn and ũn := ũεn converge weakly in L2(0, T ;V ). But
vεn → v pointwise by (4.10), and since weak limits are unique, the weak limits of un

and ũn must be u and ũ, respectively.
LEMMA 4.6. There exists a positive constant C such that

‖uεt‖L∞(0,T ;V ′) ≤ C,(4.16)

‖ũεt‖L∞(0,T ;V ′) ≤ C(4.17)

for all ε > 0.
Proof. From (4.9) it follows that |(Luε(. , t), g)| ≤ C‖g‖V for all g ∈ V , so

‖(Luε(. , t))‖V ′ ≤ C. Moreover, from (4.11) and (4.9), we have∥∥∥∥1
ε
β([uε(. , t)]2 − 1)

∥∥∥∥
H

(4.18)

=
∥∥f + vεt (. , t) + Lvε(. , t)− ρvε(. , t)

∥∥
H
≤ C

for t ∈ [0, T ] a.e. Also, from (4.15) and |β′(y)| ≤ 2, it follows that

‖(β′([uε]2 − 1)uεuεxi)(. , t)‖H ≤ C,
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thus (β′([uε]2 − 1)uεuεxi)(. , t) is in H and hence in V ′ with∥∥∥2
ε

(β′([uε]2 − 1)uεuεxi)(. , t)
∥∥∥
V ′

= sup
‖g‖V ≤1

∣∣∣ (1
ε

∂

∂xi
β([uε(. , t)]2 − 1), g

) ∣∣∣
= sup
‖g‖V ≤1

∣∣∣− (1
ε
β([uε(. , t)]2 − 1), gxi − ϕig

) ∣∣∣
≤C
∥∥∥1
ε
β([uε(. , t)]2 − 1)

∥∥∥
H

;

hence from (4.18)∥∥∥2
ε

(β′([uε]2 − 1)uεuεxi)(. , t)
∥∥∥
V ′
≤ C a.e. t ∈ [0, T ].(4.19)

Now (4.16) follows from (4.13).
Similarly, to prove (4.17) we differentiate (4.11) with respect to x2 and proceed

as above.
PROPOSITION 4.7. There exists a positive constant C > 0 such that{

‖vx1t‖L∞(0,T ;V ′) ≤ C,
‖vx2t‖L∞(0,T ;V ′) ≤ C.

(4.20)

Proof. Because of (4.16) there exists a sequence unt converging to vx1t weak-?
in L∞(0, T ;V ′) as n → ∞, and this proves (4.20)1. Similarly, from (4.17), (4.20)2
follows.

Remark 4.8. We point out that from (3.10), (4.9), and (4.20)1, (4.16) follows from
vx1 ∈W◦(0, T ) and un ∈W◦(0, T ) for all n ∈ N.

PROPOSITION 4.9. There exists a sequence {εn}n∈N, εn ↓ 0, as n→∞, such that
if un := uεn , n ∈ N, then

lim
n→∞

un = vx1 pointwise

and

lim
n→∞

un = vx1 in L2
π(R2 × [0, T ]).

Proof. For N <∞, (4.9) implies that un(·, t) lies in a bounded set in W 1;∞(BN ),
hence in a compact set in Hµ(BN ) for any µ ∈ (0, 1) (by the compact imbedding of
Sobolev spaces; cf. [13, Theorem 7.26]). Hence for each t, there exists a subsequence
converging uniformly, and by the earlier pointwise convergence of vn, this limit is vx1 ;
i.e., for φ differentiable with support in BN ,

lim
m

∫
BN

unm(x, t)φ(x)dx = − lim
m

∫
BN

vnm(x, t)φx1(x)dx

= −
∫
BN

v(x, t)φx1(x)dx

=
∫
BN

vx1(x, t)φ(x)dx.

Since the limit is unique then the whole sequence must converge to it. As N and t
are arbitrary, then un(x, t)→ vx1(x, t) pointwise. The second result now follows from
(4.9).
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5. Variational formulations. We would like to obtain a variational inequality
for vx1 by taking limits as ε ↓ 0 in (4.13), but the mixed derivatives vxit are not
regular enough to allow for a strong variational formulation. We begin by showing
that operator e−λ(T−t)vx1 solves (uniquely, as will be seen later) a weak variational
inequality corresponding to the coercive operator A + λ (as defined below). General
results, developed in section 7, then give a pointwise variational inequality satisfied
by vx1 .

We set
• û(x, t) = b21vx2(x, t) + νx1;
• K = {g ∈ V : |g(x)| ≤ 1 a.e.};
• WK(0, T ) = {w ∈W (0, T ) : w(t) ∈ K a.e. t ∈ [0, T ]};
• WKλ (0, T ) =

{
w̄ ∈W (0, T ) : w̄(t) = w(t)e−λ(T−t) with w ∈WK(0, T )

}
;

• α = 1
2σσ

∗.
Note that WK(0, T ) ⊂W◦(0, T ). There exists η > 0 such that

2∑
i,j=1

αijξiξj ≥ 2η
2∑
i=1

ξ2
i ∀ξ1, ξ2 ∈ R,(5.1)

since, by assumption, σσ∗ is positive definite.
We define the operator A : V × V◦ → R by setting

A(g, h) =
2∑

i,j=1

αij(gxi , hxj − ϕj h)(5.2)

−
2∑
i=1

([a+ bx]i gxi , h) + (ρ− b11)(g, h),

where the subscript “i” refers to the ith component (notice that if g(x) is smooth,
then A(g, h) = 〈−Lg + (ρ− b11)g, h〉 for every h ∈ V◦). Obviously, h ∈ V◦ is required
to make sense of the second term on the right-hand side above; however, that term
can still be defined for h = g ∈ V by an integration by parts, since

−([a+ bx]i gxi , g) = (g, [a+ bx]i gxi + {bii − [a+ bx]i ϕi}g)

=
1
2

({bii − [a+ bx]i ϕi}g, g)

and {bii − [a+ bx]i ϕi} is bounded. So A(g, g) is well defined in V and given by

A(g, g) =
2∑

i,j=1

αij(gxi , gxj − ϕj g)(5.3)

+
1
2

2∑
i=1

({bii − [a+ bx]i ϕi}g, g) + (ρ− b11)(g, g).

We begin with the following lemma.
LEMMA 5.1. The function vx1 is in WK(0, T ).
Proof. Remark 4.8 provides us with vx1 ∈W◦(0, T ); we need only show that

vx1(. , t) ∈ K a.e. t ∈ [0, T ].
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In fact, (4.18) implies

‖β([un(. , t)]2 − 1)‖H ≤ Cεn ∀n ∈ N, a.e. t ∈ [0, T ],(5.4)

with un as in the previous section; also, β is continuous and un(x, t) → vx1(x, t) for
almost every t ∈ [0, T ], hence

lim
n→∞

β([un(x, t)]2 − 1) = β([vx1(x, t)]2 − 1) a.e. t ∈ [0, T ].

Finally, (4.9) implies

0 ≤ β([un(x, t)]2 − 1) ≤ 2([un(x, t)]2 − 1) ≤ C(1 + |x|2);

therefore, we can pass to the limit in (5.4) to obtain ‖β([vx1(. , t)]2 − 1)‖2H ≤ 0, and
hence vx1(. , t) ∈ K for t ∈ [0, T ] a.e.

THEOREM 5.2. The function v̄ = vx1e
−λ(T−t) solves the weak variational inequal-

ity

−
∫ T

0
〈w̄t, w̄ − v̄〉dt +

1
2
‖w̄(T )‖2H +

∫ T

0
[A+ λ](v̄, w̄ − v̄)dt

≥
∫ T

0
e−λ(T−t)(û, w̄ − v̄)dt ∀w̄ ∈WKλ (0, T )(5.5)

with v̄ ∈WKλ (0, T ).
Proof. The proof is suggested by one in [27]. Let un be as in the previous section,

let ūn = e−λ(T−t)un, and let ûn(x, t) = b21ũ
n(x, t) + νx1. Let w̄ = e−λ(T−t)w ∈

WKλ (0, T ); since integration by parts holds in W (0, T ), then we obtain∫ T

0
(ūnt , w̄ − ūn)dt =

1
2
‖w̄(0)− ūn(0)‖2H −

1
2
‖w̄(T )‖2H

+
∫ T

0
〈w̄t, w̄ − ūn〉dt.(5.6)

Since ūn ∈W◦(0, T ) by Remark 4.8, we may multiply (4.13) by e−λ(T−t)(w̄− ūn)
and use (5.6) to obtain

−
∫ T

0
〈w̄t, w̄ − ūn〉dt −

1
2
‖w̄(0)− ūn(0)‖2H +

1
2
‖w̄(T )‖2H

+
∫ T

0
[A+ λ](ūn, w̄ − ūn)dt

+
2
εn

∫ T

0
eλ(T−t)(β′([un]2 − 1)ūnūnx1

, w̄ − ūn)dt(5.7)

=
∫ T

0
e−λ(T−t)(ûn, w̄ − ūn)dt

for all w̄ ∈ WKλ (0, T ). Now we proceed to take limits in (5.7) as n → ∞. Since
un → vx1 weakly in L2(0, T ;V ) as n→∞ by Proposition 4.5, then∫ T

0
〈w̄t, w̄ − ūn〉dt→

∫ T

0
〈w̄t, w̄ − v̄〉dt
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and ∫ T

0
[A+ λ](ūn, w̄)dt→

∫ T

0
[A+ λ](v̄, w̄)dt

as n→∞. Also, since ûn → û weakly in L2(0, T ;H) as n→∞ (again by Proposition
4.5) and un → vx1 in L2

π(R2 × [0, T ]) as n→∞ (by Proposition 4.9), then as n→∞∫ T

0
(e−λ(T−t)ûn, w̄ − ūn)dt→

∫ T

0
(e−λ(T−t)û, w̄ − v̄)dt

and ∫ T

0
[A−A◦](ūn, ūn)dt→

∫ T

0
[A−A◦](v̄, v̄)dt,

where A◦(g, g) =
∑
i,j αij(gxi , gxj ) + λ‖g‖2H . Finally, since

(
A◦(g, g)

)1/2
defines a

norm on V and ūn → v̄ weakly, we have

lim inf
n→∞

A◦(ūn, ūn) ≥ A◦(v̄, v̄),

hence

lim inf
n→∞

A(ūn, ūn) ≥ A(v̄, v̄).

To prove (5.5) it remains only to show that the penalty term in (5.7) is nonpositive;
we examine two cases.

Case 1. On {(x, t) : w̄2(x, t) ≥ (ūn(x, t))2} we have (un(x, t))2 ≤ 1 since w ∈
WK(0, T ), hence

β′([un(x, t)]2 − 1) = 0.

Case 2. On {(x, t) : w̄2(x, t) < (ūn(x, t))2} it follows that
2ūn(x, t)

(
w̄(x, t)− ūn(x, t)

)
≤ (ūn(x, t))2 + w̄2(x, t)− 2(ūn(x, t))2 < 0,

β′([un(x, t)]2 − 1) ≥ 0,
ūnx1

= e−λ(T−t)vεnx1x1
≥ 0,

since vεn is convex by Theorem 4.1. Hence we conclude that

2
εn

∫ T

0
(β′([un]2 − 1)ūnūnx1

, w̄ − ūn)dt ≤ 0,

and thus (5.5) is proved.
The general results in section 7, i.e., Theorems 7.9 and 7.11, now imply that

(5.5) has a unique solution which is related to the solution of a pointwise variational
inequality; cf. Remark 7.1. In fact, we obtain the following theorem.

THEOREM 5.3. Assume that ρ ≥ b11. Then the function vx1 is the unique solution
of the pointwise variational inequality

vx1 ∈W
2,1;6
loc (R2 × (0, T )),

−1 ≤ vx1 ≤ +1 a.e. in R2 × (0, T ), vx1(x, T ) = 0 a.e. in R2,
−vx1t + [−L+ (ρ− b11)]vx1 = û if − 1 < vx1(x, t) < +1,
−vx1t + [−L+ (ρ− b11)]vx1 ≤ û if vx1(x, t) = +1,
−vx1t + [−L+ (ρ− b11)]vx1 ≥ û if vx1(x, t) = −1,

a.e. in R2 × (0, T ).

(5.8)
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6. Conclusion. The central bank singular control problem analyzed in this pa-
per gives rise to a free boundary problem; in fact, (5.8) or (2.6) is the variational
formulation of a two-obstacle problem determining two moving boundaries, ∂−1 and
∂+1, which at each time t split the R2-plane into three regions:

• the inflation region It = {vx1(. , t) = −1}, where interest rates are so low as
to produce significant inflation;
• the inflation-output tradeoff region Tt = {−1 < vx1(. , t) < +1}, where a sort

of equilibrium is found between inflation and output growth;
• the deflation region Dt = {vx1(. , t) = +1}, where interest rates are too high

and prevent economic expansion.
In the inflation region It it is optimal for the conservative forces of the Bank to
intervene by increasing interest rates; in the inflation-output tradeoff region Tt the
conservative and the expansionist forces of the bank find an equilibrium, and hence
it is optimal for both to do nothing; finally, in the deflation region Dt it is optimal
for the expansionist forces to intervene by lowering interest rates.

We point out that Theorem 2.1, which gives a variational problem for the original
value function v, might be obtained from (4.11) by taking limits (in some sense) as
ε→ 0; that is,

v ∈W 2,1;∞
loc (R2 × (0, T )), v(x, T ) = 0 a.e. in R2,

max
{
− vt + [−L+ ρ]v − f, −vx1 − 1, vx1 − 1

}
≤ 0,

(−vt + [−L+ ρ]v − f)(−vx1 − 1)(vx1 − 1) = 0,
a.e. in R2 × (0, T ).

(6.1)

Then (6.1) or (2.4) gives us some insight into the optimal control k̂ of the original
problem (P ); k̂ must be singular with respect to the Lebesgue measure as a function
of time (as in [6]). In fact, by applying the dynamic programming equation we see
that k̂ should be inactive when the state is in the region Tt, whereas it should make
the state jump to a convenient point on the boundary ∂−1 ∪ ∂+1 when the state is
in either the inflation or the deflation regions. At the boundary, the optimal control
k̂ should be active just enough to keep the process inside Tt. Hence the resulting
optimal process is a diffusion reflected at the boundary, possibly with an initial jump
if the state starts in It or Dt.

Usually the construction of k̂ is not an easy task as it requires some regularity of
the boundaries ∂−1 and ∂+1 of the two-obstacle problem (5.8); work in this direction
is in progress.

Regarding (5.8) or (2.6) from an economics point of view, they correspond to
a differential game with stopping times where the players are the conservative and
the expansionist forces of the central bank whose primary target is the control of
inflation. In order to interpret the evaluation function (2.8) of the game we take
b21 = −1 and ν = 0 for simplicity (notice that it is reasonable to take b21 < 0 since
inflation decreases if interest rates increase). Suppose that the diffusion starts at time
t from some point x inside Tt; then the bank will act in such a way as to minimize
Jx,t(k). However, the conservative forces will not object to any drastic monetary
policies aiming to contain inflation, whereas the expansionist forces will be unwilling
to accept policies that prevent economic expansion. It is easy to see that, under the
present conditions, from (5.8) it follows that{

vx2(. , s) ≥ 0 in Is,
vx2(. , s) ≤ 0 in Ds



1118 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

for s ∈ (t, T ]. But v(. , s) is convex, hence vxi(. , s) is nondecreasing in the xi direction;
this implies that Is must be on the left and above Ds for all s ∈ [0, T ], and{

vx2(. , s) ≥ 0, vx1(. , s) = −1 in Is,
vx2(. , s) ≤ 0, vx1(. , s) = +1 in Ds.

Therefore, the first player (who represents the conservative tendency of the bank) will
try to keep the state out of the region Is, since there the value function v increases
with the inflation x2; on the other hand, the second player will not allow the state to
diffuse into the region Ds where v increases with the interest rate x1. Thus, knowing
that the second player will select the strategic time θ̂2 in order to avoid high interest
rates, the first player will aim to minimize

E

{∫ θ1∧θ̂2

0
vx2(Y 0

s , t+ s)e−(ρ−b11)sds− e−(ρ−b11)θ1I
θ1≤θ̂2
θ1<T−t

+ e−(ρ−b11)θ̂2Iθ̂2<θ1∧(T−t)

}
,

and this is exactly what Theorem 2.3 states.
There are various directions in which to continue this work. In the first instance,

what can we say about the (free) boundary of Tt? What about numerical approxima-
tions to Tt? Now we need to estimate the parameters of the model. On a more basic
level, we can ask: how realistic is the model (2.2)? Probably, the dynamics we use do
not reflect reality very well—certainly other models have been used in the literature.
For example, Cox, Ingersoll, and Ross [8] use a diffusion coefficient, volatility, which
is not constant but is proportional to the square root of the interest/inflation rate.
Also, as mentioned before, for the Canadian economy the exchange rate with the U.S.
dollar is certainly important in the decision-making process of the Bank of Canada,
and this should be reflected in the cost functional J .

7. Variational inequalities. We begin by establishing existence and unique-
ness results for the following weak and strong variational inequalities. The weak
inequality is

−
∫ T

0
〈w̄t, w̄ − v̄〉dt +

1
2
‖w̄(T )‖2H +

∫ T

0
[A+ λ](v̄, w̄ − v̄)dt

≥
∫ T

0
e−λ(T−t)(û, w̄ − v̄)dt ∀w̄ ∈WKλ (0, T ),(7.1)

and the strong one is−(v̂t(t), g − v̂(t)) +A(v̂(t), g − v̂(t))
≥ (û(t), g − v̂(t)) a.e. t ∈ [0, T ] ∀g ∈ K,

v̂(T ) = 0.
(7.2)

DEFINITION 7.1. A solution of the strong variational inequality (7.2) is a function
v̂ ∈ L2(0, T ;V ) with v̂t ∈ L2(0, T ;H) and v̂(t) ∈ K for a.e. t ∈ [0, T ], which satisfies
(7.2).

Remark 7.1. The main result is (cf. Theorems 7.9 and 7.11) that both equations
have unique solutions; moreover, the solution of (7.2) solves a pointwise variational
inequality. The assumptions on a, b, σ, ρ, ν, π, φ are as before, and we assume that
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û ∈ L2(0, t;V ) ∩ Hµ,µ/2
loc (R2 × [0, T ]) for some µ ∈ (0, 1), ût ∈ L∞(0, t;V ′), and

|û(x, t)| ≤ K(1 + |x|) for some constant K. Observe that our previously defined
û = b21vx2 +νx1 satisfies these hypotheses (cf. Theorem 3.2 and Propositions 4.5 and
4.7), hence Theorem 5.2 implies that the unique solution of (7.1) is e−λ(T−t)vx1 and
the unique solution of (7.2) and (5.8) is vx1 .

DEFINITION 7.2. The operator A is said to be weakly coercive in V if there exists
η > 0 and λ ≥ 0 such that

A(g, g) ≥ η‖g‖2V − λ‖g‖2H ∀g ∈ V.(7.3)

It is easy to see that A as defined in (5.2) is weakly coercive in V . This property
gives uniqueness.

PROPOSITION 7.2. The weak variational inequality (7.1) has at most one solution
v̄ ∈WKλ (0, T ).

Proof. We use an idea due to Bensoussan and Lions [2]. Let ū = e−λ(T−t)u and
z̄ = e−λ(T−t)z be two solutions of (7.1), set w̃ = e−λ(T−t)w where

w =
1
2

(u+ z) ∈ K,

and let wq be the solution of {
−qẇq + wq = w,
wq(T ) = 0,

where “ ˙ ” denotes the derivative with respect to time. Solving for wq we notice that
wq(t) ∈ K since K is convex and 0 ∈ K. Hence wq ∈WK(0, T ) and

lim
q↓0

wq(t) = lim
q↓0

∫ (T−t)/q

0
w(t+ qs)e−sds = w(t)

since W (0, T ) ⊂ C([0, T ];H). Thus w̄q := e−λ(T−t)wq ∈WKλ (0, T ).
We take w̄ = w̄q in (7.1) for ū and z̄ and add to obtain

−2
∫ T

0

〈
w̄q − w̃

q
+ λw̄q, w̄q − w̃

〉
dt+

∫ T

0
[A+ λ](ū, w̄q − ū)dt

+
∫ T

0
[A+ λ](z̄, w̄q − z̄)dt

≥ 2
∫ T

0
e−λ(T−t)(û, w̄q − w̃)dt,

hence ∫ T

0

{
[A+ λ](ū, w̄q − ū) + [A+ λ](z̄, w̄q − z̄)

}
dt

≥ 2
∫ T

0
e−λ(T−t)(û, w̄q − w̃)dt+ 2λ

∫ T

0
(w̄q, w̄q − w̃)dt.

As q ↓ 0, the right-hand side converges to zero and the left to∫ T

0

{
[A+ λ](ū, w̃ − ū) + [A+ λ](z̄, w̃ − z̄)

}
dt = −1

2

∫ T

0
[A+ λ](ū− z̄, ū− z̄)dt.
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Therefore, (7.3) implies

1
2

∫ T

0
η‖ū− z̄‖2V dt ≤ 0,

hence ‖ū− z̄‖2V = 0 for all t ∈ [0, T ]; i.e., ū = z̄ in W (0, T ).
LEMMA 7.3. If v̂ solves the strong variational inequality (7.2) then e−λ(T−t)v̂

solves the weak variational inequality (7.1). Hence (7.2) admits at most one solution.
Proof. The last result follows by Proposition 7.2. Let v̂ be a solution of (7.2) and

v̄ = e−λ(T−t)v̂. Then v̄ is a solution of−(v̄t(t), ḡ − v̄(t)) + [A+ λ](v̄(t), ḡ − v̄(t))
≥ (û(t)e−λ(T−t), ḡ − v̄(t)) a.e. t ∈ [0, T ] ∀ḡ = e−λ(T−t)K,

ū(T ) = 0.

If w̄ ∈WKλ (0, T ), then w̄(t) ∈ K for almost every t ∈ [0, T ] and hence

−(v̄t(t), w̄(t) − v̄(t)) + [A+ λ](v̄(t), w̄(t)− v̄(t))
≥ (û(t), w̄(t)− v̄(t)) a.e. t ∈ [0, T ].

By integrating over [0, T ] and after an integration by parts on the first term, it follows
that

−
∫ T

0
〈w̄t(t), w̄(t)− v̄(t)〉dt+

1
2
‖w̄(T )‖2H −

1
2
‖w̄(0)− v̄(0)‖2H

+
∫ T

0
[A+ λ](v̄(t), w̄(t)− v̄(t))dt

≥
∫ T

0
(û(t), w̄(t)− v̄(t))dt.

But ‖w̄(0)− v̄(0)‖2H ≥ 0 may be dropped to obtain (7.1).
To establish existence of solutions of (7.2) we start by penalizing (7.2). Let

ζ : R → R be defined by ζ(r) = (r − 1)+ − (r + 1)− for r ∈ R; then ζ is monotone
nondecreasing, Lipschitz, and piecewise linear. Also,

|r| ≥ |ζ(r)| ∀r ∈ R,

and hence rζ(r) ≥ ζ2(r) ≥ 0 for all r ∈ R, and

ζ ′(r) = I{|r|>1} ∀r ∈ R.

Then, for every ε > 0, we look for a solution wε ∈W◦(0, T ) of the penalized problem
−(wεt (t), g) +A(wε(t), g) +

1
ε

(ζ(wε(t)), g) = (û(t), g)

a.e. t ∈ [0, T ] ∀g ∈ V◦,
wε(T ) = 0.

(7.4)

PROPOSITION 7.4. For every ε > 0 there exists at most one solution wε in
W◦(0, T ) of the penalized problem (7.4).

Proof. This follows from the monotonicity of ζ and is similar to the proof in [2,
Theorem 2.3, p. 239].
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We now turn to the proof of existence of a solution of (7.4). Due to the lack
of a priori bounds of the type (4.9), we take care of the linear-in-x term in A by
regularization, and by Galerkin’s method we prove (cf. Proposition 8.3) the following
proposition.

PROPOSITION 7.5. There exists a solution wε ∈ W (0, T ) of the penalized varia-
tional problem (7.4). Moreover, the estimates

‖wε‖2L∞(0,T ;H) + ‖wε‖2L2(0,T ;V ) ≤ C,
‖wεt ‖2L∞(0,T ;H) + ‖wεt ‖2L2(0,T ;V ) ≤ C,
1√
ε
‖ζ(wε)‖L2(0,T ;H) ≤ C

(7.5)

hold uniformly in ε > 0.
In order to show that the function wε is in W◦(0, T ) (i.e., wε(. , t) ∈ V◦ for almost

all t ∈ [0, T ]), we obtain a bound for wε from the pointwise version of (7.4); i.e.,
−w̃εt (x, t) + [−L+ (ρ− b11)]w̃ε(x, t) +

1
ε
ζ(w̃ε(x, t)) = û(x, t)

a.e. (x, t) ∈ R2 × [0, T ],
w̃ε(x, T ) = 0.

(7.6)

We will show that (7.6) has a solution w̃ε ∈ H2+µ,(2+µ)/2
loc ; since any solution of (7.6)

is also a solution of (7.4), and this has a unique solution, then w̃ε = wε. However, the
pointwise formulation (7.6) will only allow an estimate uniform in ε on the function
itself, so we still need the estimates (7.5) and hence the lengthy Galerkin approach
for convergence proofs as ε→ 0.

THEOREM 7.6. For every ε > 0 the function wε is a solution of the penalized
problem (7.6) with wε ∈ H2+µ,(2+µ)/2

loc and

|wε(x, t)| ≤ K(1 + |x|) a.e. in R2 × [0, T ],(7.7)

K independent of ε > 0.
Proof. It suffices to show that (7.6) admits a solution w̃ε enjoying not only the

properties above but also w̃ε ∈ W (0, T ) (see (7.4)); then w̃ε = wε by uniqueness
(cf. Proposition 7.4). Our proof is a modification of one found in [2, Theorem 5.1,
p. 464].

We start by taking care of the unbounded coefficients in (7.6), so for every N ∈ N
and r ∈ R we define χN (r) = NI{r≥N} −NI{r≤−N} and χN (x) = (χN (x1), χN (x2))
for x = (x1, x2) ∈ R2, so |χN (x)|2 ≤ 2N2. We denote by LN the operator L with
(a + bx) replaced by (a + bχN (x)). Then, since û(x, t) ≤ C(1 + |x|), we take care of
the unbounded right-hand side of (7.6) by the change of variable z̃(x, t) = e−βt(1 +
|x|2)−1/2z(x, t) with β < 0 to be chosen later. So we have

−z̃t + [−L̃N + (ρ− b11)]z̃ = e−βt(1 + |x|2)−1/2{−zt + [−LN + (ρ− b11)]z}
with L̃N z̃ := LN z̃ − 2

∑
i,jαijxi(1 + |x|2)−1z̃xj + E(x)z̃, the bounded function E(x)

being given by

E(x) := −trace[α](1 + |x|2)−1 + x∗αx(1 + |x|2)−2 − (a+ bχN (x)) · x(1 + |x|2)−1 − β.
Let Cb(Ω) denote the space of bounded, continuous functions on Ω with sup norm.
So with 

ũ(x, t) := û(x, t)e−βt(1 + |x|2)−1/2 ∈ Cb(R2 × [0, T ]),

f̃ε := ũ(x, t) +
1
ε

[2eβt(1 + |x|2)1/2ϕ̃− ζ(eβt(1 + |x|2)1/2ϕ̃)]
eβt(1 + |x|2)1/2
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for every ϕ̃ ∈ Cb(R2 × [0, T ]), we seek a solution of
−z̃Nt (x, t) + [−L̃N + (ρ− b11)]z̃N (x, t) +

2
ε
z̃N = f̃ε

a.e. (x, t) ∈ R2 × [0, T ],
z̃(x, T ) = 0.

(7.8)

But f̃ε is in L2(0, T ;H) ∩ Lp(0, T ;Lpπ(R2)), hence there exists a unique solution z̃N

of (7.8) in L2(0, T ;V ); moreover,

z̃N ∈ Lp(0, T ;Lpπ(R2)) ∩ L∞(0, T ;V ) ∩W 2,1;p
loc (R2 × [0, T ]),

and for every bounded open set G ⊂ R2 × [0, T ] and every open subset G′ ⊂⊂ G:

‖z̃N‖W 2,1;p(G′) ≤ C(‖z̃N‖Lp(G) + ‖f̃ε‖Lp(G)),(7.9)

where the constant C is independent of N and depends only on G,G′, and the bounds
of the coefficients of [−L+ (ρ− b11)] + 2

ε on G (cf. [2, Theorem 6.6, p. 134, Theorem
6.7, p. 139, Remark 6.13, p. 141, and Theorem 6.4, p. 131]). Hence, by Sobolev
imbedding, z̃N is continuous.

On the other hand, the Feynman–Kac representation (cf. [3, Theorem 8.1, p. 281])
of the solution z̃N gives

z̃N (x, t) = E

{∫ T

t

f̃ε(yN (s), s)e−
∫ s
t

(ρ−b11+E(yN (r))+2/ε)drds

}
,

where yN (s) is the diffusion starting at time t from x and governed by the stochastic
differential equation

dyN =
[
a+ bχN (yN ) + 2

αyN

1 + |yN |2
]
ds+ σdWs−t.

But for β sufficiently negative (independent of N and ε) we can find δ > 0 such that

ρ− b11 + E(x) ≥ δ > 0 ∀x ∈ R2.

Hence

sup
x,t
|z̃N (x, t)| ≤ ‖f̃ε‖Cb(R2×[0,T ])

∫ T

t

e−(δ+2/ε)(s−t)ds <∞;

i.e., z̃N ∈ Cb(R2 × [0, T ]).
Now, if S(ϕ̃) := z̃N for ϕ̃1, ϕ̃2 ∈ Cb(R2 × [0, T ]), then we have

|S(ϕ̃1)− S(ϕ̃2)| ≤ ‖ϕ̃1 − ϕ̃2‖Cb(R2×[0,T ])

{∫ T

t

2
ε
e−(δ+2/ε)(s−t)ds

}
≤ 2
ε

1
δ + 2/ε

‖ϕ̃1 − ϕ̃2‖Cb(R2×[0,T ])

= Cε,δ ‖ϕ̃1 − ϕ̃2‖Cb(R2×[0,T ])

with Cε,δ < 1 independent of N . Hence S : Cb(R2 × [0, T ]) → Cb(R2 × [0, T ]) is a
contraction, and we denote by w̃ε,N its unique fixed point.
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Let z̃0 = 0 and z̃n := S(z̃n−1). Then

‖z̃n‖Cb(R2×[0,T ]) =
∥∥∥∥ n∑
i=1

(z̃i − z̃i−1)
∥∥∥∥
Cb(R2×[0,T ])

≤ 1
1− Cε,δ

‖z̃1‖Cb(R2×[0,T ]).

But

‖z̃1‖Cb(R2×[0,T ]) =
∥∥∥∥E{∫ T

t

ũ(yN (s), s)e−
∫ s
t

(ρ−b11+E(yN (r))+2/ε)drds

}∥∥∥∥
Cb

≤ ‖ũ‖Cb(R2×[0,t])

∫ T

t

e−(δ+2/ε)(s−t)ds,

which implies

‖z̃n‖Cb(R2×[0,T ]) ≤
1
δ
‖ũ‖Cb(R2×[0,T ]) ∀n ∈ N,

and so also

‖w̃ε,N‖Cb(R2×[0,T ]) ≤
1
δ
‖ũ‖Cb(R2×[0,T ]).(7.10)

If wε,N (x, t) := eβt(1 + |x|2)1/2 w̃ε,N (x, t), then wε,N is a continuous function
verifying the polynomial growth condition

|wε,N (x, t)| ≤ K(1 + |x|) ∀(x, t) ∈ R2 × [0, T ]

with the constant K independent of ε and N . Moreover, wε,N satisfies
−wε,Nt (x, t) + [−LN + (ρ− b11)]wε,N (x, t) = û(x, t)− 1

ε
ζ(wε,N (x, t))

a.e. (x, t) ∈ R2 × [0, T ],
wε,N (x, T ) = 0,

and ∣∣∣∣(û− 1
ε
ζ(wε,N )

)
(x, t)

∣∣∣∣ ≤ C (1 +
1
ε

)
(1 + |x|).

Therefore, (7.9) implies (cf. [10, (E.9), p. 207])

‖wε,N‖H1+µ,(1+µ)/2(G′) ≤ C1‖wε,N‖W 2,1;p(G′)

≤ C
(
‖wε,N‖Lp(G) +

∥∥∥∥û− 1
ε
ζ(wε,N )

∥∥∥∥
Lp(G)

)
≤ Kε

for p > 4, µ = 1− 4
p , C1 = C1(G′, p),Kε = Kε(G,G′), and G,G′ bounded open subsets

of R2 × [0, T ] with G′ ⊂⊂ G. Hence wε,N is locally Hölder continuous in R2 × [0, T ].
Now let Q0 ⊂⊂ Q be bounded open sets in R2 and let ψ(x) be a smooth func-

tion with compact support in Q such that ψ(x) = 1 on Q0. Then the function
wε,N (x, t)ψ(x) satisfies

−
(
wε,N (x, t)ψ(x)

)
t

+ [−LN + (ρ− b11)]
(
wε,N (x, t)ψ(x)

)
= û(x, t)ψ(x)− 1

ε
ζ(wε,N (x, t))ψ(x)

+ g
(
x, ψxi(x)wε,N (x, t), ψxi(x)wε,Nxj (x, t), ψxixj (x)wε,N (x, t)

)
a.e. (x, t) ∈ Q× [0, T ],

wε,N (x, T )ψ(x) = 0,
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with the right-hand side Hölder continuous. Hence (cf. [19, Theorem 5.1, p. 320])
wε,Nψ ∈ H2+µ,(2+µ)/2(R2 × [0, T ]), and so also

wε,N ∈ H2+µ,(2+µ)/2(Q̄0 × [0, T ]).

Then, by [19, Theorem 10.1, p. 351], for all G,G′ bounded open subsets of R2× [0, T ]
with G′ ⊂⊂ G we also have

‖wε,N‖H2+µ,(2+µ)/2(G′) ≤ K
(∥∥∥û− 1

ε
ζ(wε,N )

∥∥∥
Hµ,µ/2(G)

+ ‖wε,N‖Hµ,µ/2(G)

)
≤ Kε

for all N ∈ N (since û, wε,N are locally Hölder continuous, ζ is Lipschitz continuous)
and the Hölder norm above is independent of N . Thus, {wε,N}N∈N lies in a compact
subset of H2+µ′,(2+µ′)/2(G′) with µ′ < µ, and hence wε,N converges on G′ along
a subsequence; i.e., there exists w̃ε such that wε,N → w̃ε in H2+µ′,(2+µ′)/2(G′) as
N →∞. As G′ ↑ R2 × [0, T ] a standard diagonalization argument yields wε,N → w̃ε

locally uniformly in R2 × [0, T ] with all the xi-, xixj-, t-derivatives. It follows that
w̃ε satisfies (7.6) and the growth condition (7.7).

It remains only to show that w̃ε ∈ W (0, T ). Let {ψn}n∈N be a sequence of
nonnegative C2(R2)-functions such that ψn(x) = 1 if |x| < n and ψn(x) = 0 if
|x| > n+ 2, with |(ψn)xi | ≤ 1 and |(ψn)xixj | ≤ 1. Multiplying (7.6) by w̃ε(x, t)ψn(x)
and integrating over R2 yields (after an integration by parts)

− d

dt
‖w̃ε‖2Hn +An(w̃ε, w̃ε)

+
∫
R2

(1
ε
ζ(w̃ε)− û

)
w̃εψndx+

∫
R2

∑
i,j

αijw̃
ε
xiw̃

επψndx = 0

for every t ∈ [0, T ], where Hn and An are similar to H and A but with weight
πψn rather than π. By integrating by parts in the second integral above it is easy
to see that it is bounded by a constant independent of n and also of ε (thanks to
the uniform growth condition (7.7)); then, by the weak coercivity of An, the growth
condition (7.7), and the usual energy inequalities, we obtain for some Kε independent
of n ∫ T

0

∫
R2

(w̃εxi)
2πψndx ≤ Kε.

So, by taking limits as n→∞, the monotone convergence theorem implies∫ T

0
‖w̃ε‖2V dt ≤ Kε.

Finally we show w̃εt ∈ L2(0, T ;V ′). In fact, we multiply (7.6) by u ∈ L2(0, T ;V◦)
and we integrate over [0, T ] (notice that there is no loss of generality since V◦ is dense
in V ); then ∥∥∥∥∫ T

0
(w̃εt , u)dt

∥∥∥∥ ≤ C(1 +
1
ε

)
‖w̃ε‖L2(0,T ;V )‖u‖L2(0,T ;V )

+C‖û‖L2(0,T ;V )‖u‖L2(0,T ;V )

≤ K1(ε)‖u‖L2(0,T ;V ).
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Therefore, w̃ε ∈ W (0, T ) follows, and so also w̃ε ∈ W◦(0, T ) because of the growth
condition (7.7).

Now Propositions 7.4 and 7.5 and Theorem 7.6 imply the following theorem.
THEOREM 7.7. For every ε > 0 there exists a unique solution wε in W◦(0, T ) of

the penalized problem (7.4).
Finally, we show the existence of a solution to the strong variational problem (7.2)

by taking limits as ε ↓ 0.
LEMMA 7.8. There exists εo > 0 and a positive constant C = C(λ, û) such that

for every ε < εo

1
ε
‖ζ(wε(t))‖L6

π(R2×[0,T ]) ≤ C.

This is just Lemma 8.4 (in the Appendix) with p = 6.
THEOREM 7.9. The strong variational inequality (7.2) has a unique solution v̂,

and e−λ(T−t)v̂ is the unique solution of (7.1). Moreover, wε → v̂ in L2
π(R2 × (0, T ))

and weakly in L2(0, T ;V ).
Proof. The bounds (7.5) imply that there exists a function v̂ ∈ W (0, T ) with

v̂t ∈ L∞(0, T ;H) such that, along a subsequence,

lim
ε↓0

wε = v̂ weakly in L2(0, T ;V ).

On the other hand, wε solves (7.6), i.e.,

−wεt + [−L+ (ρ− b11)]wε = û(x, t)− 1
ε
ζ(wε),

and (8.7) implies that the right-hand side above is bounded in L6
π(R2 × [0, T ]), uni-

formly in ε < ε0. Hence if Q is a bounded open set in R2 we have∥∥∥∥û− 1
ε
ζ(wε)

∥∥∥∥
L6(Q×[0,T ])

≤ C;

then, if G,G′ are bounded open sets in R2× [0, T ] with G′ ⊂⊂ G, it follows from [19,
(10.12), p. 355] that

‖wε‖W 2,1;6(G′) ≤ C
(∥∥∥û− 1

ε
ζ(wε)

∥∥∥
L6(G)

+ ‖wε‖L6(G)

)
≤ C

with C = C(G), because of the uniform growth condition (7.7). So also (cf. [10,
(E.9), p. 207])

‖wε‖H1+µ,(1+µ)/2(G′) ≤ C1‖wε‖W 2,1;6(G′) ≤ C2

for µ = 1
3 , C1 = C1(G′), C2 = C2(G); in particular,

‖wε‖Hµ,µ/2(G′) ≤ C2,

hence wε lies in a compact subset of Hµ′,µ′/2(G′) with µ′ < µ. This implies that
(along a subsequence) wε converges to u uniformly in G′; thus, wε converges to u
locally uniformly in R2 × [0, T ] and hence

lim
ε↓0

wε = v̂ in L2
π(R2 × (0, T )).
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It remains to show that v̂ solves (7.2). Let w ∈ WK(0, T ); then w(t) − wε(t) ∈
V◦ a.e. t ∈ [0, T ] because of Theorem 7.7. Since the simple functions are dense in
L2(0, T ;V ), then we may set g = w(t) − wε(t) in (7.4) and integrate over (t, t′] to
obtain

−
∫ t′

t

(wt(s), w(s)− wε(s))ds

+
1
2

(
‖w(t′)− wε(t′)‖2H − ‖w(t)− wε(t)‖2H

)
(7.11)

+
∫ t′

t

[
A(wε(s), w(s))−A(wε(s), wε(s))

]
ds

≥
∫ t′

t

(û(s), w(s)− wε(s))ds

after taking into account that

(ζ(wε(t)), w(t)− wε(t)) = −(ζ(w(t))− ζ(wε(t)), w(t)− wε(t)) ≤ 0

because ζ is monotone nondecreasing and ζ(w(t)) = 0 a.e. t ∈ [0, T ]. Now, using
arguments similar to those employed for the weak variational formulation (cf. Theorem
5.2), we may pass to the limit in (7.11) to obtain

−
∫ t′

t

(v̂t(s), w(s)− v̂(s))ds +
∫ t′

t

[
A(v̂(s), w(s))−A(v̂(s), v̂(s))

]
ds

≥
∫ t′

t

(û(s), w(s)− v̂(s))ds.

Since t and t′ are arbitrary, we deduce that

−(v̂t(t), g − v̂(t)) +A(v̂(t), g)−A(v̂(t), v̂(t)) ≥ (û(t), g − v̂(t))(7.12)

for all g ∈ K and almost every t ∈ [0, T ].
Also, (7.5)3 implies (again along a subsequence)

lim
ε↓0
‖ζ(wε)‖L2(0,T ;H) = 0,

and, since ζ is Lipschitz, then

lim
ε↓0
‖ζ(wε)− ζ(v̂)‖L2(0,T ;H) = 0;

i.e., ζ(v̂(x, t)) = 0 a.e., so v̂ ∈ WK(0, T ). It follows that A(v̂, v̂) can be defined by
(5.2), hence A(v̂(t), g)−A(v̂(t), v̂(t)) = A(v̂(t), v̂(t)−g) a.e., and hence v̂ is a solution
of the strong variational inequality (7.2).

Uniqueness and the remainder of the results follow from Lemma 7.3.
The fact that the function v̂ is the unique solution of the strong variational in-

equality (7.2) says nothing about the derivatives of order two, (v̂)xixj ; however, the
approximating functions wε and their estimates (7.5) will allow us to obtain more
regularity of v̂ and hence a variational inequality in the a.e. sense.

LEMMA 7.10. Assume ρ ≥ b11. Then

v̂ ∈W 2,1;6
loc (R2 × (0, T )).(7.13)
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Proof. From (8.7) it follows that for some constant C and for all ε < ε0

‖ − wεt + [−L+ (ρ− b11)]wε‖L6
π(R2×[0,T ])

=
∥∥∥∥−1

ε
ζ(wε) + û(t)

∥∥∥∥
L6
π(R2×[0,T ])

≤ C,

and after taking limits as ε ↓ 0 (because of (7.5))

‖ − v̂t + [−L+ (ρ− b11)]v̂‖L6
π(R2×[0,T ]) ≤ C.

Thus −v̂t + [−L+ (ρ− b11)]v̂ := ũ ∈ L6
π(R2 × [0, T ]).

Observe that if ψ is a function in C∞(R2) with compact support in BN (for some
N ∈ N), then wεψ also satisfies (cf. (7.4))

−(Zt(t), g) +A(Z(t), g)
= (ψ[û(t)− 1

εζ(wε)], g)− (wεLψ + 2(∇wε)∗α∇ψ, g)
a.e. t ∈ [0, T ] ∀g ∈ V◦,

Z(T ) = 0,

(7.14)

and taking the limit in (7.14) shows that z := ψv̂ satisfies
−(Zt(t), g) +A(Z(t), g)

= (ψũ(t), g)− (v̂Lψ + 2(∇v̂)∗α∇ψ, g)
a.e. t ∈ [0, T ] ∀g ∈ V◦,

Z(T ) = 0,

(7.15)

and this equation has a unique solution in W (0, T ). Moreover, the unique solution in
W 2,1;6(BN × (0, T )) of−Zt + [−L+ (ρ− b11)]Z = ψũ− v̂Lψ − 2(∇v̂)∗α∇ψ,

Z(T ) = 0,
Z|∂BN×(0,T ) = 0,

satisfies (7.15), and hence is z. We conclude that v̂ ∈W 2,1;6
loc (R2 × (0, T )).

THEOREM 7.11. Assume that ρ ≥ b11. Then the function v̂ is the unique solution
of the pointwise variational inequality

v̂ ∈W 2,1;6
loc (R2 × (0, T )),

−1 ≤ v̂ ≤ +1 a.e. in R2 × (0, T ), v̂(x, T ) = 0 a.e. in R2,
−v̂t + [−L+ (ρ− b11)]v̂ = û if − 1 < v̂(x, t) < +1,
−v̂t + [−L+ (ρ− b11)]v̂ ≤ û if v̂(x, t) = +1,
−v̂t + [−L+ (ρ− b11)]v̂ ≥ û if v̂(x, t) = −1,

a.e. in R2 × (0, T ).

(7.16)

Proof. We know that v̂ is the unique solution of (7.2) by Theorem 7.9; due to the
regularity of v̂ we may write (7.2) as v̂(T ) = 0,

(−v̂t(t) + [−L+ (ρ− b11)]v̂(t)− û(t), g − v̂(t)) ≥ 0
a.e. t ∈ [0, T ] ∀g ∈ K,

and by taking g = v̂(t)+ψ with ψ ∈ C∞(R2) with compact support, we obtain (7.16).
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8. Appendix. The assumptions are as in section 7. We aim first to prove Propo-
sition 7.5. Due to the lack of a priori bounds of the type (4.9), we take care of the
linear-in-x term in A by regularization, so we set

• A1(g, h) = (x∗b∗∇g, x∗b∗∇h) for g, h ∈ V ;
• V = {g ∈ V : A1(g, g) < +∞} with the Hilbert norm

‖g‖2V = ‖g‖2V +A1(g, g)

(notice that V ⊂ H ⊂ V ′ with continuous dense injection);
• W(0, T ) = {w ∈ L2(0, T ;V) : wt ∈ L2(0, T ;V ′)}.

Clearly, for γ > 0 the continuous bilinear form A+ γA1 : V × V → R verifies

A(g, g) + γA1(g, g) ≥ η‖g‖2V − λ‖g‖2H + γ‖x∗b∗∇g‖2H

since A is weakly coercive in V .
Since V is dense in V , in the limit as γ ↓ 0 we will obtain wε from the solution of

the following γ-approximating problem.
THEOREM 8.1. For every γ > 0 there exists a unique solution wε,γ in W(0, T ) of

−(wt(t), g) +A(w(t), g) + γA1(w(t), g) +
1
ε

(ζ(w(t)), g)

= (û(t), g) a.e. t ∈ [0, T ] ∀g ∈ V,
w(T ) = 0.

(8.1)

Proof. We use Galerkin’s method. Let {ψi}i∈N be a complete orthonormal basis
of the separable space H such that {ψi}i∈N ⊂ V and set

wm(x, t) =
m∑
i=1

Gmi (t)ψi(x), m ∈ N,

where the scalar functions Gmi (t) are such that
−(wmt (t), ψj) +A(wm(t), ψj) + γA1(wm(t), ψj)

+
1
ε

(ζ(wm(t)), ψj) = (û(t), ψj), j = 1, . . . ,m,

wm(T ) = 0.

(8.2)

Now ζ2(r) ≤ rζ(r) and standard energy estimates show that there exists a constant
C > 0 such that for all m ∈ N

‖wm‖2L∞(0,T ;H) + ‖wm‖2L2(0,T ;V ) +
1
ε
‖ζ(wm)‖2L2(0,T ;H)(8.3)

+ γ

∫ T

0
A1(wm(t), wm(t))dt ≤ C;

see [2, p. 125] or [1, p. 80] for the idea.
We recall that ût ∈ L∞(0, T ;V ′) and ψj ∈ V ⊂ V , so G̈mi exists and we have

wmtt (x, t) =
∑m
i=1 G̈

m
i (t)ψi(x); thus, from (8.2) it follows that

−(wmtt (t), ψj) +A(wmt (t), ψj) + γA1(wmt (t), ψj) +
1
ε

(ζ ′(wm(t))wmt (t), ψj)

= 〈ût(t), ψj〉, j = 1, . . . ,m,
−(wmt (T ), ψj) = (û(T ), ψj), j = 1, . . . ,m.
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Again, standard estimates show that there exists a constant C > 0 such that for all
m ∈ N

‖wmt ‖2L∞(0,T ;H) + ‖wmt ‖2L2(0,T ;V ) +
1
ε

∫ T

0

∥∥∥ d
dt
ζ(wm(t))

∥∥∥2

H
dt(8.4)

+ γ

∫ T

0
A1(wmt (t), wmt (t))dt ≤ C.

It follows from (8.3) and (8.4) that we can extract a subsequence such that

wm → wε,γ weakly in L2(0, T ;V ) and weak-? in L∞(0, T ;H);
wmt → wε,γt weakly in L2(0, T ;V ) and weak-? in L∞(0, T ;H);√
γx∗b∗∇wm → √γx∗b∗∇wε,γ weakly in L2(0, T ;H);√
γx∗b∗∇wmt →

√
γx∗b∗∇wε,γt weakly in L2(0, T ;H);

1√
ε
ζ(wm)→ 1√

ε
χ weakly in L2(0, T ;H),

for some wε,γ in W(0, T ) and χ in L2(0, T ;H).
To identify the function χ we digress to the following lemma.
LEMMA 8.2. Let {vm} be a sequence converging weakly in L2(0, T ;V ) to v such

that { ‖vm‖2L2(0,T ;V ) ≤ C,
‖vmt ‖2L∞(0,T ;H) ≤ C.

(8.5)

Then there exists a subsequence {vmk} converging a.e. to v on R2 × (0, T ).
Proof. Fix N ∈ N and recall that ΩN = BN × (0, T ) satisfies a uniform inte-

rior cone condition. On ΩN we can drop the weight function π since ‖g‖L2
π(BN ) ≤

‖g‖L2(BN ) ≤ (1 + N2)l ‖g‖L2
π(BN ), so from (8.5) it follows that ‖vm‖W 1,1;2(ΩN ) ≤ C;

that is, the sequence {vm}m∈N lies in a bounded set in W 1,1;2(ΩN ) (cf. [13, p. 158 and
Problem 7.14]), hence in a compact set in L2(ΩN ). Thus a subsequence converges
strongly, and the limit must be v, so the whole sequence converges to v in L2(ΩN ).
Then a subsequence converges to v a.e. on ΩN , and hence, since N is arbitrary, on
R2 × (0, T ).

We return now to the proof of the theorem. It follows from the lemma that, at
least for a subsequence, again denoted {wm}, wm → wε,γ a.e. The bound |r−ζ(r)| ≤ 1
for all r ∈ R allows us to apply the bounded convergence theorem and get

lim
m→∞

(wm − ζ(wm)) = wε,γ − ζ(wε,γ) in L2
π(R2 × (0, T ))

since ζ is continuous. But it also converges weakly to wε,γ−χ; therefore, χ = ζ(wε,γ).
Now we go back to (8.2), multiply it by any µ(t) ∈ L2(0, T ), and integrate over

[0, T ] and

∫ T

0
−(wε,γt (t), ψj)µ(t)dt+

∫ T

0
[A+ γA1](wε,γ(t), ψj)µ(t)dt

+
∫ T

0

1
ε

(ζ(wε,γ(t)), ψj)µ(t)dt =
∫ T

0
(û(t), ψj)µ(t)dt
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for every µ(t) ∈ L2(0, T ) and j = 1, 2, . . . . It follows that wε,γ is a solution of (8.1).
Moreover, (8.3) and (8.4) imply that for some C <∞ and all ε, γ > 0,

‖wε,γ‖2L∞(0,T ;H) + ‖wε,γ‖2L2(0,T ;V ) ≤ C,
‖wε,γt ‖2L∞(0,T ;H) + ‖wε,γt ‖2L2(0,T ;V ) ≤ C,
√
γ‖x∗b∗∇wε,γ‖L2(0,T ;H) +

1√
ε
‖ζ(wε,γ)‖L2(0,T ;H) ≤ C.

(8.6)

Uniqueness follows as in Proposition 7.4.
We now take limits as γ ↓ 0 and we have the following proposition.
PROPOSITION 8.3. There exists a solution wε ∈ W (0, T ) of the penalized varia-

tional problem (7.4) and wε,γ(x, t)→ wε(x, t) a.e. Moreover, wε satisfies (8.6).
Proof. From (8.6) it follows that∫ T

0
|A1(wε,γ(t), w(t))|dt ≤ C

√
γ
‖x∗b∗∇w‖L2(0,T ;H)

for every w ∈ V; then, after multiplying (8.1) by µ(t) ∈ L2(0, T ) and integrating over
[0, T ], we may take limits as γ ↓ 0 (along a subsequence if necessary) to get∫ T

0
−(wεt (t), g)µ(t)dt+

∫ T

0
A(wε(t), g)µ(t)dt

+
∫ T

0

1
ε

(ζ(wε(t)), g)µ(t)dt =
∫ T

0
(û(t), g)µ(t)dt

for some wε ∈W (0, T ) whose existence is guaranteed by the estimates (8.6). In fact,
just as above, 1

εζ(wε,γ) converges weakly in L2(0, T ;H) to some function which is
then identified as 1

εζ(wε), and wε,γ(x, t)→ wε(x, t) a.e. thanks to Lemma 8.2. Since
µ(t) is arbitrary in L2(0, T ), we obtain (7.4) for every g ∈ V, and hence for all g ∈ V◦
since V is dense in V◦.

The estimates (7.5) follow from (8.6).
We must also prove Lemma 7.8; it is a special case of the following result.
LEMMA 8.4. Assume that 2 ≤ p < 2l− 2, p even. Then there exists εo > 0 and a

positive constant C = C(λ, û) such that for every ε < εo

1
ε
‖ζ(wε(t))‖Lpπ(R2×[0,T ]) ≤ C.(8.7)

Proof. Recall that |ζ(r)| ≤ |r| for all r ∈ R, hence

|ζ(wε(x, t))| ≤ |wε(x, t)| ≤ K(1 + |x|)

by (7.7). The relationship between l and p insures that x, hence ζ(wε(t)), is in Lpπ(R2),
and allows us to multiply (7.6) by (ζ(wε(t)))p−1π (recall that wεxixj is well defined
because of Theorem 7.6). Also notice that rζ(r) = (ζ(r))2 + |ζ(r)|. Then, after an
integration over R2 we obtain

−1
p

d

dt
‖ζ(wε(t))‖p

Lpπ(R2)

+(p− 1)
2∑

i,j=1

αij([ζ(wε(t))]p/2−1ζ(wε(t))xi , [ζ(wε(t))]p/2−1ζ(wε(t))xj )
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−
2∑

i,j=1

αij([ζ(wε(t))]p/2−1(ζ(wε(t)))xi , [ζ(wε(t))]p/2ϕj)

−
2∑
i=1

([a+ bx]i[ζ(wε(t))]p/2−1(ζ(wε(t)))xi , [ζ(wε(t))]p/2)

+(ρ− b11)([ζ(wε(t))]2 + |ζ(wε(t))|, [ζ(wε(t))]p−2)

+
1
ε
‖ζ(wε(t))‖p

Lpπ(R2)

= (û(t), [ζ(wε(t))]p−1).

Integration by parts can be used to remove all terms involving partial derivatives
except the second term in the above equation, but its integrand is nonnegative, so the
term is well defined. Hence

−1
p

d

dt
‖ζ(wε(t))‖p

Lpπ(R2)

+
2
p
A([ζ(wε(t))]p/2, [ζ(wε(t))]p/2)

+
(

1− 2
p

)2
p

∫
R2
∇
(

[ζ(wε(t))]p/2
)∗
α∇
(

[ζ(wε(t))]p/2
)
πdx

+
(

1− 2
p

)
(ρ− b11)‖ζ(wε(t))‖p

Lpπ(R2)

+(ρ− b11)‖ζ(wε(t))‖p−1
Lp−1
π (R2)

+
1
ε
‖ζ(wε(t))‖p

Lpπ(R2)

= (û(t), [ζ(wε(t))]p−1).

The weak coercivity of A, integration over (t, T ], and Young’s inequality give

1
ε
δ

∫ T

t

‖ζ(wε(s))‖p
Lpπ(R2)ds ≤

∫ T

t

‖û(s)‖Lpπ(R2)‖ζ(wε(s))‖p−1
Lpπ(R2)ds

≤ 1
p
γp
∫ T

t

‖û(s)‖p
Lpπ(R2)ds

+
1
2ε
δ

∫ T

t

‖ζ(wε(s))‖p
Lpπ(R2)ds,

where δ = 1− 2
pελ and γ = [ 2ε

p−2ελ (p− 1)](p−1)/p. (λ comes from the weak coercivity
of A.) So

(1
ε

)p ∫ T

t

‖ζ(wε(s))‖p
Lpπ(R2)ds ≤

1
p

(p− 1
p

)p−1(2
δ

)p ∫ T

t

‖û(s)‖p
Lpπ(R2)ds;

i.e., for some ε0 > 0 and all ε < ε0 we have

1
ε
‖ζ(wε(t))‖Lpπ(R2×[0,T ]) ≤ C(λ, p, û),

and hence (8.7) follows.



1132 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

REFERENCES

[1] A. BENSOUSSAN, Stochastic Control by Functional Analysis Methods, North-Holland, Amster-
dam, 1982.

[2] A. BENSOUSSAN AND J. L. LIONS, Applications of Variational Inequalities in Stochastic Con-
trol, North-Holland, Amsterdam, 1982.

[3] A. BENSOUSSAN AND J. L. LIONS, Contrôle Impulsionnel et Inéquations Quasi Variationnelles,
Dunod, Paris, 1982.

[4] H. N. BINHAMMER, Money, Banking and the Canadian Financial System, 4th ed., Methuen,
Toronto, Canada, 1982.

[5] K. CHAN, A. KAROLYI, F. LONGSTAFF, AND A. SANDERS, An empirical comparison of alter-
native models of the short-term interest rates, J. Finance, 47 (1992), pp. 1209–1227.

[6] M. B. CHIAROLLA AND U. G. HAUSSMANN, The optimal control of the cheap monotone fol-
lower, Stochastics Stochastics Rep., 49 (1994), pp. 99–128.

[7] P. L. CHOW, J. L. MENALDI, AND M. ROBIN, Additive control of stochastic linear systems with
finite horizon, SIAM J. Control Optim., 23 (1985), pp. 858–899.

[8] J. C. COX, J. E. INGERSOLL, AND S. A. ROSS, A theory of the term structure of interest rates,
Econometrica, 53 (1985), pp. 385–407.

[9] N. EL KAROUI AND I. KARATZAS, Probabilistic aspects of finite-fuel, reflected follower prob-
lems, Acta Appl. Math., 11 (1988), pp. 223–258.

[10] W. H. FLEMING AND R. W. RISHEL, Deterministic and Stochastic Optimal Control, Springer-
Verlag, New York, 1975.

[11] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs, NJ, 1964.

[12] G. FUSAI, Monetary Policy and Term Structure of Interest Rates, preprint 1995.
[13] D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, New York, 1983.
[14] B. HAN, U. G. HAUSSMANN, Interest Rates and Inflation: Parameter Identification and Control

in a Model using Canadian Data, preprint 1998.
[15] U. G. HAUSSMANN AND W. SUO, Singular optimal stochastic controls I, II, SIAM J. Control

Optim., 33 (1995), pp. 916–936, 937–959.
[16] I. KARATZAS, A class of singular stochastic control problems, Adv. in Appl. Probals., 15 (1983),

pp. 225–254.
[17] I. KARATZAS AND S. S. SHREVE, Connections between optimal stopping and singular stochastic

control II. Reflected follower problems, SIAM J. Control Optim., 23 (1985), pp. 433–451.
[18] N. V. KRYLOV, Controlled Diffusion Processes, Springer-Verlag, New York, 1980.
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Abstract. In this paper the concept of causal input/output representation of two-dimensional
(2D) systems in the behavioral approach is introduced. These representations provide an interesting
connection between classical 2D systems theory and 2D systems theory in the behavioral approach.
Some characterizations of such representations are presented. Finally, a technique that allows us to
obtain causal input/output representations is proposed.

Key words. 2D systems, behavioral approach, input/output representation, proper rational
matrices, causality
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1. Introduction. The theory of dynamical systems in the behavioral approach
has attracted much attention in the last few years. The main characteristic of this
approach is that the system variables are not a priori divided into inputs and out-
puts, and moreover, no causality structure is imposed on the dynamics. This division
in inputs and outputs is something that can be obtained a posteriori, analyzing the
system equations. This feature is useful above all when there is an unclear distinction
between causes and effects, and this happens frequently in the study of multidimen-
sional systems, for instance, systems operating on space-time signals. Moreover, it
has been shown recently that in modeling and identification procedures it is in some
cases more reasonable to avoid distinctions between inputs and outputs.

On the other hand, if we want to apply the classical control and filtering strategies
in this setup, the extraction of the input/output structure becomes an essential step.
In the one-dimensional (1D) case this problem has been completely solved by Willems
in [10]. In that paper Willems introduces a notion of input/output representation that
takes into account a causality relation between inputs and outputs with respect to
a time direction. Such representations are obtained exploiting the properties of row
proper polynomial matrices. In the two-dimensional (2D) case this has been done
only partially in [6, 12, 5, 13], since the input/output representations proposed there
do not obey any causality assumption.

In this paper we will propose input/output representations satisfying weakly
causal relations between inputs and outputs [1]. In the 1D case [10] these input/output
representations are called nonanticipating. In the 2D case we prefer to call them
causal input/output representations, which seems to be a more suitable terminology
for multidimensional systems. We will analyze the properties of such representations
and introduce the concept of impulse response that, as we will show, is strictly con-
nected with the controllable part of the system. Moreover, we will propose a method
for verifying if an input/output representation is causal, and finally we will present
an algorithm that allows us to obtain causal input/output representations.
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During the review process, the possibility of extending the results presented in
this paper to the n-dimensional (nD) case has been pointed out by one of the referees.

2. 2D systems theory in the input/output and in the behavioral ap-
proach. This section will be devoted to the introduction of some preliminaries on
2D systems theory both in the behavioral approach and in the classical input/output
approach. As far as the behavioral approach is concerned, we refer to [6, 8, 12], while
for the classical input/output approach, we refer to [2].

In the behavioral approach, a dynamical system is described by a triple

Σ = (T,W,B),

where T is the time set, W is the signal alphabet and B is a subset of the set of all
signals WT that is called the behavior of the system. In this paper we are interested in
the so-called discrete 2D linear shift-invariant complete systems. Discrete 2D systems
are dynamical systems whose time set is Z

2 and signal alphabet is R
q (R can be

replaced by any field). A discrete 2D system is linear shift-invariant and complete

if, moreover, the behavior B is a linear subspace of the vector space (Rq)Z
2

which is
invariant with respect to the backward shifts σ1, σ2 in the two directions of Z

2 and
satisfies the following requirement:

w ∈ B ⇔ w|I ∈ B|I for all finite I ⊂ Z
2.

Notice that, as shown in [6, 8], the behavior of a linear shift-invariant system is
complete if and only if it is a closed set with respect to the pointwise convergence
topology in (Rq)Z

2

.
It can be shown that a discrete 2D system is linear shift-invariant complete if and

only if its behavior can be specified by a difference equation. More precisely, given any
polynomial matrix R ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×q (the symbol R[z1, z2, z
−1
1 , z−1

2 ] denotes
the ring of Laurent polynomials that are polynomials where the indeterminates may
have negative exponent), then R can be written as follows:

∑
(i,j)∈S

Rijz
i
1z

j
2,

where Rij ∈ R
l×q and S is a finite subset of Z

2. Then we can associate with R an

operator from (Rq)Z
2

to (Rl)Z
2

, denoted as R(σ1, σ2), operating as follows:

(R(σ1, σ2)w)(h, k) :=
∑

(i,j)∈S
Rijw(h+ i, k + j), (h, k) ∈ Z

2.

These operators will be called difference operators. A 2D system Σ = (Z2,Rq,B) is a
linear shift-invariant and complete system if and only if there exists a positive integer
l and a polynomial matrix R ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×q such that

B = ker R(σ1, σ2).

Since the behaviors of these systems are characterized by a difference equation, they
are also called autoregressive (AR) 2D systems.

For our purpose it is important to note that different difference operators may
produce the same behavior. More precisely, given two polynomial matrices R1, R2, we
have ker R1(σ1, σ2) ⊆ ker R2(σ1, σ2) if and only if there exists a polynomial matrix
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X such that R2 = XR1 and so ker R1(σ1, σ2) = ker R2(σ1, σ2) if and only if there
exist polynomial matrices X1, X2 such that R2 = X1R1 and R1 = X2R2.

An important class of 2D AR systems is given by the controllable 2D AR systems.
A 2D system Σ = (Z2,Rq,B) is said to be controllable if there exists g ≥ 0 such that,
given any pair of trajectories w1, w2 ∈ B and given any pair of subsets T1, T2 ⊆ Z

2

such that the Euclidean distance between T1 and T2 is greater than g, there exists
w ∈ B such that w|T1

= w1|T1
and w|T2

= w2|T2
. Controllability has been extensively

studied in [6, 9]. If Σ = (Z2,Rq,B) is a 2D AR system, then it has been shown
in [3] that there exists the greatest controllable AR subsystem of Σ, which is called
the controllable subsystem of Σ and is denoted by Σc = (Z2,Rq,Bc). Moreover,
if B = ker R(σ1, σ2), where R ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×q, then there exists a factor

left prime matrix R′ ∈ R[z1, z2, z
−1
1 , z−1

2 ]l
′×q (that is, a full row rank polynomial

matrix whose square left factors must be unimodular) and a full column rank matrix
F ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×l
′
such that [4]

R = FR′.(1)

It can be proved that [3]

Bc = ker R′(σ1, σ2).

Notice that when we refer to the rank of a polynomial matrix we mean its rank as a
matrix with entries in the field of fractions of the domain R[z1, z2, z

−1
1 , z−1

2 ].
Let’s finally define the concept of free components of a 2D AR system Σ =

(Z2,Rq,B). We say that components i1, . . . , im of the system Σ are free if for all

v1, . . . , vm ∈ R
Z
2

, there exists w = (w1, . . . , wq)
T ∈ B such that wi1 = v1, . . . , wim =

vm.
We pass now to the introduction of 2D systems theory in the classical input/output

approach. Consider the spaces

U := {u ∈ (Rm)Z
2

: supp (σt11 σ
t2
2 u) ⊆ N

2 for some (t1, t2) ∈ Z
2},

Y := {y ∈ (Rp)Z
2

: supp (σt11 σ
t2
2 y) ⊆ N

2 for some (t1, t2) ∈ Z
2},

where N is the set of nonnegative integers and where supp (·) means the support of
2D sequences. The trajectories in U are called inputs, while the trajectories in Y are
called outputs. A 2D system in the input/output approach is essentially given by an
operator

Ψ : U −→ Y.
This operator is assumed to satisfy the following properties.

1. Ψ is a linear operator.
2. Ψ is shift-invariant; i.e., for all u ∈ U and for all (t1, t2) ∈ Z

2 we have

Ψ(σt11 σ
t2
2 u) = σt11 σ

t2
2 Ψ(u).

3. Ψ is quarter-plane causal; i.e., if u1, u2 ∈ U are such that u1(h1, h2) =
u2(h1, h2) for all h1 ≤ t1, h2 ≤ t2 and if y1 = Ψ(u1), y2 = Ψ(u2), then y1(t1, t2) =
y2(t1, t2).

Using the linearity and the shift-invariance it can be shown that the causality
property has the following equivalent expression. If u ∈ U is such that supp (u) ⊆ N

2,
then supp (Ψ(u)) ⊆ N

2.
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The causality requirement can be weakened by substituting a general cone C ⊆ Z
2

instead of N
2 in the definitions of U and Y and in the causality requirement. 2D

systems that are causal with respect to cones are called weakly causal. These systems
are extensively treated in [1]. This generalization is essential for our objectives.

Consider the inputs δ(i) defined for each i = 1, . . . ,m as

δ(i)(t) :=

{
ei if t = (0, 0),
0 if t 6= (0, 0),

(2)

where e1, . . . , em denotes the canonical base in R
m, and let y(i) := Ψ(δ(i)) . Then

the impulse response associated with the 2D system is the matrix-valued 2D sequence
defined as Y := [y(1) y(2) · · · y(m)] ∈ (Rp×m)Z

2

, which is supported in N
2. As shown

in [2], the operator Ψ is completely determined by the impulse response. Actually,

suppose that u is any input and let y ∈ (Rp)Z
2

be defined as follows:

y(t1, t2) :=
∑

(k1,k2)∈Z2

Y (t1 − k1, t2 − k2)u(k1, k2);(3)

then it can be shown that y = Ψ(u). Note that the sum in the previous formula is
finite, and moreover, since Y and u have support in N

2, y also has support in N
2.

The operation described in (3) is called convolution.
The theory of 2D systems in the classical input/output approach considers at this

point another restriction on the operator Ψ or equivalently on its impulse response
Y . Actually, the formal power series

Ȳ :=
∑

(t1,t2)∈Z2

Y (t1, t2)z
−t1
1 z−t22(4)

associated with the impulse response Y is assumed to be rational, which means that
there exists a nonsingular square polynomial matrix P ∈ R[z1, z2]

p×p such that PȲ =
Q is a polynomial matrix in R[z1, z2]

p×m. The power series Ȳ is called a transfer
matrix of the 2D system and the representation

Ȳ = P−1Q

is called matrix fraction description (MFD) of the transfer matrix Ȳ . Notice that the
matrices P and Q could be taken left coprime, and in this case the MFD is called
left coprime [4]. As shown in [2], rationality ensures that the 2D system is realizable
through a state space model.

3. Passing from input/output systems to behavioral systems. Suppose
now that we have a 2D input/output system; i.e., we have an input/output operator

Ψ : U −→ Y.

Then the set of trajectories

{(
Ψ(u)
u

)
∈ (Rp+m)Z

2

: u ∈ U
}

(5)

is clearly a linear and shift-invariant behavior, but it is not complete or equivalently
closed with respect to the pointwise convergence topology. If we denote by B(Ψ) the
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closure of such a set, then Σ(Ψ) = (Z2,Rp+q,B(Ψ)) is a linear shift-invariant and
complete 2D system in the behavioral approach. This is the linear shift-invariant and
complete 2D system with the smallest possible behavior containing all the trajecto-
ries generated by the input/output map. This is therefore the most natural way to
associate with a 2D input/output system a 2D behavioral system. Not every linear
shift-invariant and complete 2D system can be obtained in this way. The following
proposition shows that the 2D systems that come from 2D input/output systems are
always controllable.

Proposition 1. Let Ψ : U −→ Y be an input/output operator associated with a
linear shift-invariant and quarter-plane causal 2D system. Then Σ(Ψ) is controllable.

The proof of this proposition is a direct consequence of the following two lemmas.
Lemma 1. Let P ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×p be a full column rank matrix. Then
y ∈ ker P (σ1, σ2) and y ∈ Y if and only if y = 0.

Proof. One direction is trivial. Suppose conversely that y ∈ ker P (σ1, σ2) ∩ Y.
Since P is full column rank, there exists a polynomial matrix X such that XP = fI,
where I is the identity matrix and f is a nonzero polynomial. Then each component
of y is in the kernel of f(σ1, σ2). Since the support of such components is in N

2, a
simple computation (see also [3]) shows that y = 0.

Lemma 2. Let Σ = (Z2,Rq,B) be an AR system and Σc = (Z2,Rq,Bc) be its
controllable subsystem. If w ∈ B and if w has support in N

2, then w ∈ Bc
Proof. Suppose that B = ker R(σ1, σ2) and that R = FR′, where R′ is factor left

prime and F is full column rank. Then Bc = ker R′(σ1, σ2). Suppose that w ∈ B and
that w has support in N

2. Then v := R′(σ1, σ2)w ∈ ker F (σ1, σ2). Since F is full
column rank and since the support of v is contained in some translation of N

2, then
by Lemma 1 v = 0 and so w ∈ ker R′(σ1, σ2) = Bc.

Remark. Lemma 2 cannot be extended directly to the nD case, since it is based
on the factorization (1), which is always possible in the 2D case (see [4]) but is not
always possible in the general nD case, when n > 2 (see [11]). This is the reason why
the extension to the nD case, pointed out by one of the referees, is not straightforward
with the techniques used in this paper.

The previous proposition holds also for nonrational 2D input/output systems. If
the system is rational we are able to obtain an AR representation of the 2D behavioral
system associated with the input/output system directly from a left coprime matrix
fraction description of the transfer matrix of the system.

Proposition 2. Let Ψ : U −→ Y be an input/output operator associated with
a linear shift-invariant and quarter-plane causal rational 2D system. Let Ȳ = P−1Q
be a left coprime MFD of the transfer matrix. Then Σ(Ψ) admits the following AR
representation:

B(Ψ) = ker [P (σ1, σ2) −Q(σ1, σ2)].

Proof. We have to show that

B(Ψ) = ker [P (σ1, σ2) −Q(σ1, σ2)].

We start showing ⊆. First notice that PȲ = Q if and only if

Qk1,k2
=
∑
h1,h2

Ph1,h2
Y (−k1 + h1,−k2 + h2).(6)
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Suppose that u ∈ U and that y = Ψ(u). Then we have

(P (σ1, σ2)y)(t1, t2) =
∑
h1,h2

Ph1,h2

∑
k1,k2

Y (t1 + h1 − k1, t2 + h2 − k2)u(k1, k2)

=
∑
k1,k2


∑

h1,h2

Ph1,h2
Y (t1 + h1 − k1, t2 + h2 − k2)


u(k1, k2)

=
∑
k1,k2

Qk1−t1,k2−t2u(k1, k2) = (Q(σ1, σ2)u)(t1, t2).

We can argue that

{(
Ψ(u)
u

)
∈ (Rp+m)Z

2

: u ∈ U
}
⊆ ker [P (σ1, σ2) −Q(σ1, σ2)],

and since the behavior ker [P (σ1, σ2) −Q(σ1, σ2)] is closed, we are done.
Suppose on the other hand that Bf is the set of finite supported trajectories in

ker [P (σ1, σ2) −Q(σ1, σ2)]. By controllability [9, Theorem 1], we have that

Bf = ker [P (σ1, σ2) −Q(σ1, σ2)],

where · means closure. To prove the assertion we have to show that

Bf ⊆
{(

Ψ(u)
u

)
∈ (Rp+m)Z

2

: u ∈ U
}
.

Suppose that uf , yf are finite supported trajectories such that

P (σ1, σ2)yf = Q(σ1, σ2)uf .

By the first part of the proof we can argue that

P (σ1, σ2)Ψ(uf ) = Q(σ1, σ2)uf ,

and so applying Lemma 1 we argue that yf = Ψ(uf ).

4. Causal input/output representations. In the last section we have pro-
posed a way to pass from a 2D input/output system to a 2D behavioral system. The
following three sections are concerned with the inverse problem of passing from a
2D behavioral system to a 2D input/output system. This problem will be solved
by resorting to the concept of causal input/output representation. The concept of
input/output representation (without causality) has been introduced and studied in
the 2D case in [6, 12, 13]. The construction of this representation is rather simple,
since it is connected with the extraction of the free components of a system.

The notion of causal input/output system has been given in [10] only in the 1D
case. In the 2D case this notion is a little more involved since it allows much more
freedom in the choice of the causality cone. This is specified simply by a pair of
elements d1, d2 ∈ Z

2 that generates Z
2 as a group and is defined as

C := {αd1 + βd2 ∈ Z
2 : α, β ∈ N}.

This definition of cone corresponds to the definition of “causality cone” introduced in
[1].
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Definition 1. Let P ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×p, Q ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×m. The
difference equation

P (σ1, σ2)y = Q(σ1, σ2)u,(7)

where y ∈ (Rp)Z
2

and u ∈ (Rm)Z
2

, is an input/output representation of the 2D AR
system Σ = (Z2,Rq,B) if

1. The difference equation (7) determines B up to a permutation of its com-
ponents: it means that p + m = q and that there exists a permutation matrix S ∈
{0, 1}q×q such that

S

[
y
u

]
∈ B ⇔ P (σ1, σ2)y = Q(σ1, σ2)u.

2. u is free: for all u ∈ (Rm)Z
2

there exists y ∈ (Rp)Z
2

such that P (σ1, σ2)y =
Q(σ1, σ2)u.

3. No other components in y are free: the 2D AR system (Z2,Rp, ker P (σ1, σ2))
has no free components.
The difference equation (7) is said to be a causal input/output representation with
respect to the cone C if, moreover,

4. the action of u on y is causal with respect to the cone C: if u is any signal
in (Rm)Z

2

with support in C, then there exists a signal y ∈ (Rp)Z
2

with support in C
such that

P (σ1, σ2)y = Q(σ1, σ2)u.

Notice that it is always possible to perform a change of coordinates and a cor-
responding change of variables in R[z1, z2, z

−1
1 , z−1

2 ] in such a way that the cone C
coincides with N

2.
Define (Rm)(C) and (Rp)(C) to be the set of signals in (Rm)Z

2

or in (Rp)Z
2

with
support in C. By this notation we can say that an input/output representation

P (σ1, σ2)y = Q(σ1, σ2)u(8)

is causal if for any u ∈ (Rm)(C) there exists y ∈ (Rp)(C) such that (8) holds. As a
direct consequence of Lemma 1 we have that such a y is also unique. Therefore, it
can be defined by an operator

Ψ : (Rm)(C) → (Rp)(C)

associating with u ∈ (Rm)(C) the unique element y = Ψ(u) ∈ (Rm)(C) such that
(8) holds. This operator is called input/output operator associated with the causal
input/output representation. It can be extended directly to the set of trajectories
whose support is contained in a suitable shift of C, providing in this way a 2D in-
put/output system. Therefore, there exists a direct and natural way to obtain a 2D
input/output system from a causal input/output representation.

Notice that the existence of the impulse response is a necessary and sufficient
condition for the difference equation (7) to be a causal input/output representation.
More precisely the difference equation (7) is a causal input/output representation if
and only if for each i = 1, . . . ,m there exists y(i) ∈ (Rp)(C) such that P (σ1, σ2)y

(i) =
Q(σ1, σ2)δ

(i), where δ(i) are the trajectories defined in (2).
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The first useful fact concerning these representations is provided by the following
proposition that shows that, in finding causal input/output representations, only the
controllable subsystem is really relevant. Moreover, this proposition shows that the
2D input/output system that we obtain from a causal input/output representation is
always rational and that a left coprime MFD of its transfer matrix can be obtained
directly from the AR representation of the controllable subsystem. This part of the
following proposition can be considered the counterpart of Proposition 2.

Proposition 3. Suppose that Σ = (Z2,Rq,B) is a 2D AR system and that Σc =
(Z2,Rq,Bc) is its controllable subsystem. Let, moreover, P,Q, Pc, Qc be polynomial
matrices of suitable dimensions such that [P − Q] = F [Pc − Qc], where F is full
column rank and [Pc Qc] is factor left prime. Then the difference equation

P (σ1, σ2)y = Q(σ1, σ2)u

is a causal input/output representation of Σ with respect to the cone C if and only if

Pc(σ1, σ2)y = Qc(σ1, σ2)u

is a causal input/output representation of Σc with respect to the cone C. Moreover,
the input/output operators associated with the previous causal input/output represen-
tations coincide, and the associated transfer matrix is

Ȳ = P−1
c Qc.

Proof. The fact that if Pc(σ1, σ2)y = Qc(σ1, σ2)u is a causal input/output rep-
resentation of Σc, then P (σ1, σ2)y = Q(σ1, σ2)u is a causal input/output represen-
tation of Σ is trivial. Suppose conversely that P (σ1, σ2)y = Q(σ1, σ2)u is a causal
input/output representation of Σ and let u be any signal in (Rm)(C). Then there
exists y ∈ (Rp)(C) such that P (σ1, σ2)y = Q(σ1, σ2)u. Then

S

[
y
u

]
∈ B,

where S is the permutation matrix introduced in Definition 1 and, moreover, the
support of such a trajectory is included in C. Then by Lemma 2 we have that

S

[
y
u

]
∈ Bc,

and consequently Pc(σ1, σ2)y = Qc(σ1, σ2)u. This also shows that the previous causal
input/output representations have the same impulse response and so the same transfer
matrix. Finally, by (6), Pc(σ1, σ2)y

(i) = Qc(σ1, σ2)δ
(i), for all i = 1, . . . ,m, implies

that PcȲ = Qc.
Remark. Since, as shown in the previous proposition, the formal power series

associated with the impulse response Y is rational, then it is possible to construct a
state space representation of the input/output operator Ψ. Notice that such a state
space representation provides a way to obtain an input/state/output representation
of the 2D AR system Σ = (Z2,Rq,B) associated with the causal input/output repre-
sentation, similar to what Willems has done in the 1D case. Here the state variable
is Markov with respect to a suitable modification of the south-west Markov property
introduced in [6, 7].
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Two different 2D AR systems may be described by the same input/output oper-
ator Ψ and so by the same impulse response. A direct consequence of Propositions
2 and 3 is that the input/output operator Ψ is completely determined by the con-
trollable part of the 2D AR system and vice versa the controllable part uniquely
determines Ψ.

5. Characterization of causal input/output representations. In this sec-
tion we will present a method that allows us to check whether a difference equation
like

P (σ1, σ2)y = Q(σ1, σ2)u(9)

provides a causal input/output representation with respect to a given cone C. First we
need to introduce the concept of proper rational matrix with respect to a cone. A ra-
tional matrix H ∈ R(z1, z2, z

−1
1 , z−1

2 )p×m is said to be proper with respect to a cone C

if there exists P =
∑

Pijz
i
1z

j
2 ∈ R[z1, z2, z

−1
1 , z−1

2 ]p×p and Q ∈ R[z1, z2, z
−1
1 , z−1

2 ]p×m,
both supported in −C such that

H = P−1Q

and such that P00 is invertible. In order to prove the next proposition we need the
following lemma.

Lemma 3. Let Ȳ ∈ R[[z1, z2]]
p×m be a formal power series and let P =

∑
Pijz

i
1z

j
2 ∈

R[z1, z2]
p×p and Q ∈ R[z1, z2]

p×m be factor left coprime polynomial matrices such that
P is nonsingular and

PȲ = Q.

Then P00 is invertible.
Proof. First consider the scalar case p = m = 1. Let P,Q ∈ R[z1, z2] be coprime

polynomials such that PȲ = Q. There exists M,N ∈ R[z1, z2] such that F :=
PM +QN ∈ R[z1]. Then P (M +NȲ ) = F . Let

Ŷ := M +NȲ =

∞∑
i=l

Ŷi(z2)z
i
1, Ŷl(z2) 6= 0

and

P =

k∑
i=h

Pi(z2)z
i
1, Ph(z2) 6= 0.

Then PhŶl ∈ R \ {0} and so Ph has nonzero constant term. With the same reasoning,
exchanging z1 with z2, we argue that the constant term of P must be nonzero.

Consider now the general case. It is clear that since Ȳ is rational, then for
each i = 1, . . . , p and j = 1, . . . ,m there exist coprime dij , nij ∈ R[z1, z2] such that
dij Ȳij = nij . Therefore we have that dij(0, 0) 6= 0. Let

D :=


 p∏

i=1

m∏
j=1

dij


 I,

where I is the p× p identity matrix. Then N := DȲ ∈ R[z1, z2]
p×m and the constant

term in D is invertible. If P ∈ R[z1, z2]
p×p and Q ∈ R[z1, z2]

p×m are factor left
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coprime polynomial matrices such that P is nonsingular and PȲ = Q, then we have
P−1Q = D−1N . Then by Lemma 5.3 in [4] there exists a polynomial matrix X ∈
R[z1, z2]

p×p such that D = XP and this implies that the constant term of P is also
invertible.

Theorem 1. Let P ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×p, Q ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×m. The
difference equation

P (σ1, σ2)y = Q(σ1, σ2)u(10)

is an input/output representation if and only if rankP = rank[P Q] = p. The
difference equation (10) is a causal input/output representation with respect to the
cone C if and only if, in addition, the rational matrix H such that Q = PH is proper
with respect to C.

Proof. The proof of the first part of the theorem can be found in [12]. Consider
the second part. Without loss of generality we can suppose that C = N

2. If the
rational matrix H such that Q = PH is proper with respect to C, then there exist
polynomial matrices P̄ =

∑
P̄ijz

−i
1 z−j2 , Q̄ =

∑
Q̄ijz

−i
1 z−j2 with support in −N

2 such
that P̄ , Q̄ are factor left coprime, P̄00 = I, and P̄−1Q̄ = H. Therefore, Q = PP̄−1Q̄,
and so by Lemma 5.3 in [4] there exists a polynomial matrix X ∈ R[z1, z2, z

−1
1 , z−1

2 ]l×p

such that [P Q] = X[P̄ Q̄]. Suppose now that u ∈ (Rm)(C) and let y ∈ (Rp)(C) be
defined for all (h, k) ∈ N

2 recursively as follows:

y(h, k) := −
∑

(i,j) 6=(0,0)

P̄ijy(h− i, k − j) +
∑

Q̄iju(h− i, k − j).(11)

Since the equation (11) holds for all (h, k) ∈ Z
2, we have that P̄ (σ1, σ2)y = Q̄(σ1, σ2)u,

and consequently P (σ1, σ2)y = Q(σ1, σ2)u.
Suppose conversely that P (σ1, σ2)y = Q(σ1, σ2)u is a causal input/output repre-

sentation and let Y ∈ (Rp×m)(C) be its impulse response. Define

Ȳ :=
∑
i,j∈N

Y (t1, t2)z
−t1
1 z−t22

as the formal power series in R[[z−1
1 , z−1

2 ]]p×m associated with Y . Then we have that

PȲ = Q.

Let P̄ ∈ R[z−1
1 , z−1

2 ]p×p and Q̄ ∈ R[z−1
1 , z−1

2 ]p×m be coprime polynomial matrices
such that

P̄ Ȳ = Q̄.

By Lemma 3 the constant term of P̄ is invertible. Notice now that P (σ1, σ2)y =
Q(σ1, σ2)u and P̄ (σ1, σ2)y = Q̄(σ1, σ2)u have the same impulse response. If B is the
behavior associated with P (σ1, σ2)y = Q(σ1, σ2)u and B̄ is the behavior associated
with P̄ (σ1, σ2)y = Q̄(σ1, σ2)u, then, since B̄ is controllable, B̄ = Bc ⊆ B. As men-
tioned in the preliminaries on the behavioral approach, this implies that there exists
a polynomial matrix X such that P = P̄X and Q = Q̄X and so Q = PP̄−1Q̄.

Given a cone C and an input/output representation

P (σ1, σ2)y = Q(σ1, σ2)u,(12)

the previous theorem suggests an algorithmic method that allows us to verify if (12)
is causal with respect to the cone C. It consists of two steps.
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1. Perform a change of coordinates in Z
2 and the corresponding change of vari-

ables in P,Q in such a way as to transform C in N
2. Let P ′, Q′ be the matrices P,Q

after this change of variables.
2. Find P̄ ∈ R[z−1

1 , z−1
2 ]p×p and Q̄ ∈ R[z−1

1 , z−1
2 ]p×m that are left coprime as

matrices with entries in ∈ R[z−1
1 , z−1

2 ] and such that

P ′P̄−1Q̄ = Q′.

Then (12) is causal with respect to C if and only if the constant term of P̄ is invertible.
Notice that the pair of matrices P̄ , Q̄ through formula (11) provides a compu-

tational way to represent the input/output operator associated with the causal in-
put/output representation (12).

6. Existence and construction of causal input/output representations.
In the 1D case it can be shown that, given an AR system Σ and a given cone (that in
this case can be either N or −N), it is always possible to find a causal input/output
representation of Σ with respect to the cone. In this section we will show that also in
the 2D case this is possible with some restrictions. The fact that this representation
cannot be found in general for any given cone is shown in the following example.

Example 1. Let Σ = (Z2,R2,B) be a 2D AR system with B = ker R(σ1, σ2) and
R = [z1 − z2 | − 1]. Therefore a trajectory (w1, w2)

T is in B if and only if it satisfies
the difference equation

w1(i+ 1, j)− w1(i, j + 1)− w2(i, j) = 0.(13)

Consider the cone C = N
2. We want to show that there exists no causal input/output

representations of Σ with respect to the cone C. This can be verified by applying
Theorem 1. Actually, consider the input/output representation

P (σ1, σ2)w1 = Q(σ1, σ2)w2,(14)

where P = z1 − z2 and Q = 1, then Q = PP̄−1Q̄, where P̄ = z−1
1 z−1

2 and Q̄ =
z−1
2 − z−1

1 are coprime in R[z−1
1 , z−1

2 ]. Observe finally that the constant term of P̄ is
zero. Similarly, it can be shown that (14) is not causal with respect to N

2 even if we
suppose that w1 is the input and w2 the output.

The same fact can be shown directly. Suppose we consider the input/output
representation (14), where w1 is considered as the input and w2 as the output. Suppose
that w1 is 1 in (0, 0) and 0 elsewhere and evaluate the difference equation for i =
−1, j = 0. Then we obtain that w2(−1, 0) = 1, and so this representation cannot be
causal with respect to the cone C.

If conversely we suppose that w1 is the output and w2 is the input and if we
suppose that w2 is 1 in (0, 0) and 0 elsewhere, then evaluating the difference equation
(13) for (i, j) = (0, 0), we obtain that w1(1, 0) − w1(0, 1) = 1. Moreover, evaluating
the difference equation (13) for (i, j) = (−1, 1) and (i, j) = (1,−1), we see that
w1(2,−1) = w1(1, 0) and that w1(−1, 2) = w1(0, 1) and so w1(2,−1)−w1(−1, 2) = 1.
It follows that w1(2,−1), w1(−1, 2) cannot both be equal to zero, and this implies
that this input/output representation also cannot be causal with respect to the cone
C.

The following theorem shows what can be done.
Theorem 2. Let Σ = (Z2,Rq,B) be a 2D AR system with B = ker R(σ1, σ2).

Moreover, let C be any cone in Z
2. Then there exists a cone C ′ containing C such

that there exists a causal input/output representation of Σ with respect to C ′.
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In order to prove the previous theorem we need some notations and a technical
result. Consider the total ordering <T in Z

2 defined in the following way:

(n1, n2) <T (m1,m2) ⇔ n1 < m1 or
n1 = m1 and n2 < m2.

Let f ∈ R[z1, z2, z
−1
1 , z−1

2 ]. Then f can be expressed as follows:

f =
∑

fijz
i
1z

j
2, fij ∈ R.

The finite set of (i, j) ∈ Z
2 such that fij 6= 0 is said to be in the support of f , while

the greatest element in the support of f with respect to the total ordering <T is called
the degree of f and is denoted by deg f .

Lemma 4. Let R ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×qbe a rank p polynomial matrix. Then
there exists a full row rank polynomial matrix U ∈ R[z1, z2, z

−1
1 , z−1

2 ]p×l and a permu-
tation matrix S ∈ {0, 1}q×q such that

URS =



r11 r12 · · · r1p · · · r1q
0 r22 · · · r2p · · · r2q
...

...
. . .

... · · · ...
0 0 · · · rpp · · · rpq


(15)

with rii 6= 0 and deg rii ≥ deg rij for all j ≥ i.
Proof. First we suppose that R is full row rank. We will show the assertion of

the lemma by induction on p. If p = 1, then the assertion is clearly true. Suppose
now that the assertion is true for p = k−1 and let R ∈ R[z1, z2, z

−1
1 , z−1

2 ]k×q be a full
row rank polynomial matrix. By the postmultiplication by a suitable permutation
matrix S̄ ∈ {0, 1}q×q we are able to obtain that the polynomial in position (1, 1) in
RS̄ has the greatest degree among all the polynomials in the first row of RS̄. Let
V̄ ∈ R[z1, z2, z

−1
1 , z−1

2 ]k−1×k be a full row rank polynomial matrix such that the first
column of V̄ RS̄ is zero and let

Ū :=

[
1 0 · · · 0

V̄

]
∈ R[z1, z2, z

−1
1 , z−1

2 ]k×k.

Consequently

ŪRS̄ =

[
r′11 r′1
0 R′

]
,

where r′1 ∈ R[z1, z2, z
−1
1 , z−1

2 ]1×q−1 and R′ ∈ R[z1, z2, z
−1
1 , z−1

2 ]k−1×q−1. We want to
show now that R′ is full row rank. Suppose that v ∈ R[z1, z2, z

−1
1 , z−1

2 ]k−1 is such
that vTR′ = 0. Then

vT V̄ RS̄ = vT [ 0 R′ ] = 0,

and so, since S̄, R, and V̄ are full row rank, we have v = 0. The fact that R′ is full
row rank implies that Ū is full row rank. By induction, there exists a nonsingular
polynomial matrix U ′ ∈ R[z1, z2, z

−1
1 , z−1

2 ]k−1×k−1 and a permutation matrix S′ ∈
{0, 1}q−1×q−1 such that

U ′R′S′ =



r′11 r′12 · · · r′1 k−1 · · · r′1 q−1

0 r′22 · · · r′2 k−1 · · · r′2 q−1

...
...

. . .
... · · · ...

0 0 · · · r′k−1 k−1 · · · r′k−1 q−1
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with r′ii 6= 0 and deg r′ii ≥ deg r′ij for all j ≥ i. Finally, defining

U :=

[
1 0
0 U ′

]
Ū , S := S̄

[
1 0
0 S′

]
,

a simple computation shows that URS satisfies the thesis.
We now consider the general case. It is not restrictive to assume that the first

p rows of R constitute a full row rank polynomial matrix R′. Then there exist a
nonsingular polynomial matrix U ′ ∈ R[z1, z2, z

−1
1 , z−1

2 ]p×p and a permutation ma-
trix S ∈ {0, 1}q×q such that U ′R′S is in the form (15). Put U := [U ′ 0 ] ∈
R[z1, z2, z

−1
1 , z−1

2 ]p×l. Then URS is in the form (15).
Proof of the theorem. As usual, it is not restrictive to suppose that C coincides

with N
2. Suppose that R has rank p. By Lemma 4 there exists a full row rank

polynomial matrix U ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×p and a permutation matrix S ∈ {0, 1}q×q
such that (15) holds with rii 6= 0 and deg rii ≥ deg rij for all j ≥ i. It is not restrictive
to assume that deg r11 = deg r22 = · · · = deg rpp = (0, 0) (this can be obtained by
premultiplying URS by a diagonal matrix having suitable monomials on the diagonal).
Then there exists a cone C ′ containing N

2 such that the supports of each polynomial
in URS is included in −C ′. Partition

RS = [P −Q ]

with P ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×p and Q ∈ R[z1, z2, z
−1
1 , z−1

2 ]l×m, where m = q − p. We
want to show that

P (σ1, σ1)y = Q(σ1, σ1)u(16)

is a causal input/output representation with respect to the cone C ′. The difference
equation (16) is an input/output representation. Indeed, rank [P −Q] = rank R = p,
while on one hand rank P ≤ p, and on the other hand rank P ≥ rank UP = p, since
UP is a square p× p upper triangular matrix. Now perform a change of coordinates
in Z

2 and the corresponding change of variables in such a way that C ′ is transformed
into N

2. In this way URS ∈ R[z−1
1 , z−1

2 ]p×q. Partition

URS = [P ′ −Q′ ]
with P ′ ∈ R[z−1

1 , z−1
2 ]p×p and Q′ ∈ R[z−1

1 , z−1
2 ]p×m. By construction the constant

term of P ′ is an invertible matrix. Let H be the rational matrix such that Q = PH.
Then Q′ = P ′H and so H = P ′−1Q′ is proper with respect to N

2. By Theorem 1 this
implies that the input/output representation (16) is causal with respect to C ′.

Example 2. Let Σ = (Z2,R2,B) be a 2D AR system with B = ker R(σ1, σ2) and

R =

[
z1 − z2

2 0 2z1z2 − 1
1 z1 − z2 1

]
.

We want to find a causal input/output representation of Σ with respect to a cone C
containing N

2. We apply the algorithm shown in Lemma 4. Since the polynomial with
greatest degree in the first row is the third one, postmultiply R by the permutation
matrix

S =


 0 0 1

0 1 0
1 0 0
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which performs the exchange of the first and third columns of R. Notice that if
V̄ := [−1 2z1z2 − 1 ], then[

1 0
V̄

]
RS =

[
2z1z2 − 1 0 z1 − z2

2

0 2z2
1z2 − 2z1z

2
2 − z1 + z2 −z2

1 + z2 + 2z1z2 − 1

]
.

Therefore, premultiplying by diag{z−1
1 z−1

2 , z−2
1 z−1

2 }, we obtain a polynomial matrix
U ∈ R[z1, z2, z

−1
1 , z−1

2 ]2×2 such that

URS =

[
2− z−1

1 z−1
2 0 z−1

2 − z−1
1 z2

0 2− 2z−1
1 z2 − z−1

1 z−1
2 + z−2

1 −z−1
2 + z−2

1 + 2z−1
1 − z−2

1 z−1
2

]
.

Let C := {α(1,−1) + β(0, 1) ∈ Z
2 : α, β ∈ N}. Then C ⊇ N

2, and moreover, all the
entries of URS have support in −C. Therefore, if we let

P :=

[
2z1z2 − 1 0

1 z1 − z2

]
, Q :=

[
z1 − z2

2

1

]
,

then P (σ1, σ1)y = Q(σ1, σ1)u is a causal input/output representation of Σ with re-
spect to the cone C.

Remark. The construction of causal input/output representations suggested by
Theorem 2 is in some way partial. We would achieve a more satisfactory and complete
solution to the problem of constructing causal input/output representations if, given
an input/output representation

P (σ1, σ1)y = Q(σ1, σ1)u,(17)

we were able to parametrize the set of all the cones C such that (17) is causal with
respect to C. At the moment, the solution to this problem is unknown to us and its
investigation is the object of our future research.
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Abstract. This paper is concerned with long-run average risk-sensitive control of production
planning in a manufacturing system with machines that are subject to breakdown and repair. By us-
ing a logarithmic transformation, it is shown that the associated Hamilton–Jacobi–Bellman equation
has a viscosity solution. The risk-sensitive control problem has a dynamic stochastic game interpre-
tation. Finally, a limiting problem is obtained when the rates of machine breakdown and repair go
to infinity.

Key words. risk-sensitive control, production planning, logarithmic transformation, irreducible
Markov chain

AMS subject classifications. 93E20, 93B35, 90B30

PII. S036301299631034X

1. Introduction. In this paper we consider a manufacturing system which con-
sists of machines that are subject to breakdown and repair. The objective of the
problem is to choose a production planning to minimize a risk-sensitive cost criterion
over the infinite horizon. In risk-sensitive control theory, typically an exponential-
of-integral cost criterion is considered. Such cost functions heavily penalize state
trajectories and controls which give large values to the exponent. The risk-sensitive
approach has been applied to the so-called disturbance attenuation problem; see,
for example, Whittle [17], Fleming and McEneaney [7], Basar and Bernhard [1] and
Barron and Jensen [2], Glover and Doyle [12], and references therein. In Fleming
and McEneaney [7], risk-sensitive control problems of controlled diffusions are con-
sidered. By using the associated dynamic programming equations, they show that as
the system noise goes to zero, the value function of the risk-sensitive control problem
converges to the value function of a differential game problem.

In this paper, we consider the risk-sensitive control of manufacturing systems
with stochastic production capacity. The machine capacity process will be assumed
to be an irreducible finite state (jump) Markov chain, with generator Q/ε, where
ε > 0 is a parameter related to the frequency of machine breakdown and repair
relative to an underlying production time scale. For simplicity, we consider a one-
part-type manufacturing system with constant demand. The control is the production
rate, which is subject to a random machine capacity constraint, as in Sethi and
Zhang [15]. For fixed ε > 0 the goal is to find a control policy which minimizes the
long-term growth rate of an expected exponential-of-integral criterion, as in formula
(2.2). The minimum growth rate λε and an associated cost potential function wε

satisfy dynamic programming equations (3.1), which form a system of first-order
nonlinear partial differential equations. The function wε is a viscosity sense solution.
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Theorem 3.3 states that a solution exists. It is proved using the so-called vanishing
discount approach often used for analysis of average cost minimization problems. This
is done by using a logarithmic transformation introduced by Bensoussan and Nagai
[3] to obtain an equivalent problem that is easier to deal with. In section 4, we discuss
the asymptotic property of the problem as the rate of fluctuation of the production
capacity process goes to infinity (ε → 0). We show that the risk-sensitive control
problem can be approximated by a limiting problem in which the stochastic capacity
process can be averaged out and replaced by its average. This procedure is analogous
to passing in the disturbance attenuation problem from the risk-sensitive model with
small noise intensity to the deterministic robust control limit.

In our model, we assume a positive deterioration rate a for items in storage (for-
mula (2.1)). This corresponds to a stability condition typically imposed for distur-
bance attenuation problems on an infinite time horizon (see Fleming and McEneaney
[7]), and this assumption is essential in the proof of technical estimates in Lemma 3.2.
Nevertheless, it would be interesting to weaken the assumption that a > 0.

2. Problem formulation. Let us consider a one-part-type and parallel-machine
manufacturing system with stochastic production capacity and constant demand for
its production over time. For t ≥ 0, let x(t), u(t), and z denote the surplus level (the
state variable), the production rate (the control variable), and the constant demand
rate, respectively. We assume x(t) ∈ R = (−∞,∞), u(t) ∈ R

+ = [0,∞), t ≥ 0, and z
a positive constant. They satisfy the following differential equation:

ẋ(t) = −ax(t) + u(t)− z, x(0) = x,(2.1)

where a > 0 is a constant, representing the deterioration rate (or spoilage rate) of the
finished product.

Let (Ω,F , P ) denote a probability space. Let αε(t) ∈M = {0, 1, 2, . . . ,m}, t ≥ 0,
denote a Markov process generated by Q/ε, where ε > 0 is a small parameter and
Q = (qij), i, j ∈ M, is an (m + 1) × (m + 1) matrix such that qij ≥ 0 for i 6= j and
qii = −∑i 6=j qij . We let αε(t) represent the maximum production capacity of the
system at time t. The representation for M usually stands for the case of m identical
machines, each with a unit capacity and having two states: up and down.

The production constraints are given by the inequalities:

0 ≤ u(t) ≤ αε(t), t ≥ 0.

Definition 2.1. A production control process u(·) = {u(t), t ≥ 0} is admissible
if (i) u(t) is σ{αε(s), 0 ≤ s ≤ t) progressively measurable and (ii) 0 ≤ u(t) ≤ αε(t) for
all t ≥ 0. Let Aε denote the class of admissible controls.

Let L(x, u) denote a cost function of the surplus and the production. The objec-
tive of the problem is to choose u(·) ∈ Aε to minimize

Jε(u(·)) = lim sup
T→∞

ε

T
logE exp

(
1

ε

∫ T

0

L(x(t), u(t))dt

)
,(2.2)

where x(·) is the surplus process corresponding to the production process u(·). Let
λε = infu(·)∈Aε Jε(u(·)).

A motivation for choosing such an exponential cost criterion is that such criteria
are sensitive to large values of the exponent which occur with small probability, for
example, rare sequences of unusually many machine failures resulting in shortages
(x(t) < 0).
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Remark 2.2. In Zhang [18] a discounted cost criterion

Jε(u(·)) =
√
ε logE exp

(
1√
ε

∫ ∞

0

e−ρtL(x(t), u(t))dt

)
is considered. The scale parameter in the cost is

√
ε instead of ε as in (2.2). This is

because the convergence involving a discounted cost is mainly affected by the conver-
gence rate of αε(·) to its equilibrium distribution, which is of order

√
ε.

Remark 2.3. The positive spoilage rate a appears in certain crucial estimates (see
Lemma 3.2 (ii)). It also implies a uniform bound for x(t). Note that the control u(·)
is bounded between 0 and m. This implies that a solution x(·) to (2.1) must satisfy

|x(t)| ≤ |x|e−at + (m+ z)

∫ t

0

e−a(t−s)ds ≤ |x|e−at +
m+ z

a
.(2.3)

For a multidimensional problem, in order to obtain such a bound for x(t), one
may replace a > 0 by a matrix A with eigenvalues having positive real parts.

We assume that the cost function L(x, u) and the production capacity process
αε(·) satisfy the following.

(A1) L(x, u) ≥ 0 is continuous, bounded, and uniformly Lipschitz in x.

Remark 2.4. In a manufacturing system the running cost function L(x, u) is
usually chosen to be of the form L(x, u) = h(x) + c(u) with piecewise linear h(x)
and c(u). Note that piecewise linear functions are not bounded as required in (A1).
However, this is not important, in view of the uniform bounds on u(t) and on x(t) for
initial state x = x(0) in any bounded set.

(A2) Q is irreducible in the following sense: the equations

νQ = 0 and

m∑
i=0

νi = 1

have a unique solution ν = (ν0, ν1, . . . , νm) with νk > 0, k = 0, 1, . . . ,m. The vector
ν is called the equilibrium distribution of the Markov chain αε(·).

Remark 2.5. One may also consider the model in which the demand rate z = z(t)
is a finite state Markov chain. In this case, one needs to consider various rates of
fluctuation of z(t) in comparison with that of αε(t). We refer the reader to Sethi
and Zhang [15, Chap. 11] for related discussions in connection with production and
marketing.

In the next section, we discuss the dynamics of the system and the associated
Hamilton–Jacobi–Bellman (HJB) equations.

3. HJB equations. Formally, we can write the associated HJB equation as
follows:

λε

ε
= inf

0≤u≤α

{
(−ax+ u− z)

wε
x(x, α)

ε

+ exp

(
−wε(x, α)

ε

)
Q

ε
exp

(
wε(x, ·)

ε

)
(α) +

L(x, u)

ε

}
,

where wε(x, α) is the potential function, wε
x(x, α) denotes the partial derivative of

wε(x, α) with respect to x, and Qf(·)(i) :=
∑

j 6=i qij(f(j)− f(i)) for a function f on
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M. By multiplying ε on both sides of this equation, we have

λε = inf
0≤u≤α

{
(−ax+ u− z)wε

x(x, α)

+ exp

(
−wε(x, α)

ε

)
Q exp

(
wε(x, ·)

ε

)
(α) + L(x, u)

}
.

(3.1)

As in almost all long-run average cost problems, an immediate question is if the
equation (3.1) has a solution in some sense. In this paper, we will show that (3.1)
indeed has a solution in the viscosity sense. We use a vanishing discount approach.
Let ρ > 0 denote a discount factor and let wε

ρ(x, α) denote the corresponding value
function. Then, the associated HJB equation has the form

ρwε
ρ(x, α) = inf

0≤u≤α

{
(−ax+ u− z)(wε

ρ)x(x, α)

+exp

(
−wε

ρ(x, α)

ε

)
Q

ε
exp

(
wε
ρ(x, ·)
ε

)
(α) + L(x, u)

}
.

(3.2)

Let

ψερ(x, α) = exp

(
wε
ρ(x, α)

ε

)
.

Then, (3.2) becomes

ρψερ(x, α) logψερ(x, α) = inf
0≤u≤α

{
(−ax+ u− z)(ψερ)x(x, α)

+
L(x, u)ψερ(x, α)

ε
+
Q

ε
ψερ(x, ·)(α)

}
.

(3.3)

We would like to get rid of the term ψερ(x, α) logψερ(x, α). One way of doing so
is to use the transform device introduced by Bensoussan and Nagai [3] based on the
following expression:

−r log r = inf
y
{yr + e−(y+1)} for any r > 0,(3.4)

where the minimum is obtained at y + 1 = − log r. Letting r = ψερ(x, α), we have

ψερ(x, α) logψερ(x, α) = − inf
y
{yψερ(x, α) + e−(y+1)}.

In view of this and (3.3), the discounted HJB equation (3.2) has the form

0 = inf
0≤u≤α,y

{
(−ax+ u− z)(ψερ)x(x, α)

+
L(x, u)ψερ(x, α)

ε
+
Q

ε
ψερ(x, ·)(α) + ρyψερ(x, α) + ρe−(y+1)

}
.

By adding ρψερ(x, α) to both sides of this equation and changing (y + 1) to y, we
obtain

ρψερ(x, α) = inf
0≤u≤α,y

{
(−ax+ u− z)(ψερ)x(x, α)

+
L(x, u)ψερ(x, α)

ε
+
Q

ε
ψερ(x, ·)(α) + ρyψερ(x, α) + ρe−y

}
.

(3.5)
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Remark 3.1. Note that the HJB equation (3.5) consists of a set of equations
coupled by a discrete variable α. A viscosity solution of such HJB equations has been
considered by Soner [16] and Fleming, Sethi, and Soner [8]; see also Fleming and
Soner [10] for a more general setting and Sethi and Zhang [15] for several equivalent
definitions.

We consider the following control problem so that the value function is a viscosity
solution to this equation:

Minimize
Jερ(x, α, u(·), y(·))

= E

∫ ∞

0

e−ρt exp

[∫ t

0

(
L(x(s), u(s))

ε
+ ρy(s)

)
ds

]
(ρe−y(t))dt

subject to
ẋ(t) = −ax(t) + u(t)− z, x(0) = x and
both u(·) and y(·) are αε(·) adapted such that
0 ≤ u(t) ≤ αε(t) and −M0 ≤ y(t) ≤ 0, t ≥ 0
for any constant M0 ≥ supx,u |L(x, u)|/(ρε).

(3.6)

With a little abuse of notation, let ψερ(x, α) denote the value function of this
control problem. We next show that such ψερ(x, α) is a viscosity solution to (3.5) with
some a priori estimates.

Lemma 3.2. (i) For all x and α,

1 ≤ ψερ(x, α) ≤ exp

(
C1

ρε

)
,

where C1 = ||L(x, α)|| := supx,u |L(x, u)|.
(ii) For all x, x̃, and α,

exp

(
−C2|x− x̃|

ε

)
≤ ψερ(x, α)

ψερ(x̃, α)
≤ exp

(
C2|x− x̃|

ε

)
,

where C2 = ||Lx(x, u)||/a.
(iii) For each r > 0 there is a constant C3 > 0 independent of ρ ≤ 1 and ε such

that, for all α, α̃, and |x| ≤ r,

e−C3 ≤ ψερ(x, α)

ψερ(x, α̃)
≤ eC3 .

(iv) ψερ(x, α) is a viscosity solution to (3.5).
Proof. We begin with (i). We first show ψερ(x, α) ≥ 1. In view of the nonnegativity

of L(x, u), it suffices to show for all deterministic Borel measurable −M0 ≤ y(t) ≤ 0,
t ≥ 0, ∫ ∞

0

ρ exp

(∫ t

0

ρ(y(s)− 1)ds− y(t)

)
dt ≥ 1.(3.7)

Let

γ = inf
y(·)

∫ ∞

0

ρ exp

(∫ t

0

ρ(y(s)− 1)ds− y(t)

)
dt.
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First, it is easy to see that γ ≥ 0. By taking y(t) = 0, t ≥ 0, we obtain∫ ∞

0

ρ exp

(∫ t

0

ρ(y(s)− 1)ds− y(t)

)
dt =

∫ ∞

0

ρ exp (−ρt) dt = 1.

Thus, by definition, γ ≤ 1.
In view of the control problem defined in (3.6), we may consider γ as the value

function of a problem with no state and control costs, i.e., with L(x, u) replaced by 0.
Then, following the standard dynamic programming approach as in Sethi and Zhang
[15], we can show that the constant γ is the unique solution to the following HJB
equation:

ργ = inf
−M0≤y≤0

{ρyγ + ρe−y}.

The only solution to this equation is γ = 1. Thus, the inequality (3.7) follows.
Let y(t) = −M for all t ≥ 0 and let C1 = ||L(x, u)||. Then, for all admissible u(·),

ψερ(x, α) ≤ E

∫ ∞

0

ρ exp

[∫ t

0

(
C1

ε
− ρ(M + 1)

)
ds+M

]
dt

=
ερeM

|C1 − ρε(M + 1)| .

Let M = C1/(ρε). Then, ερeM/|C1 − ρε(M + 1)| = eM = eC1/(ρε). This proves (i).
We now prove (ii). Let (u(·), y(·)) denote a pair of admissible controls and let x(t)

and x̃(t) denote the corresponding trajectories with initial values x and x̃, respectively.
Then,

x(t)− x̃(t) = (x− x̃)e−at for all t ≥ 0.

In view of this and the Lipschitz property of L(x, u), we have

L(x(t), u(t)) ≤ L(x̃(t), u(t)) + C0|x− x̃|e−at,
where C0 = ||Lx(x, u)||. For notational simplification, let

η(t, y(·)) = ρ exp

(∫ t

0

ρ(y(s)− 1)ds− y(t)

)
.

Then, we have

E

∫ ∞

0

[
exp

(∫ t

0

L(x(s), u(s))

ε
ds

)]
η(t, y(·))dt

≤ E

∫ ∞

0

[
exp

(∫ t

0

L(x̃(s), u(s))

ε
ds

)
exp

(∫ t

0

C0|x− x̃|e−as
ε

ds

)]
η(t, y(·))dt

= exp

(∫ ∞

0

C0|x− x̃|e−as
ε

ds

)
E

∫ ∞

0

[
exp

(∫ t

0

L(x̃(s), u(s))

ε
ds

)]
η(t, y(·))dt

= exp

(
C0|x− x̃|

aε

)
E

∫ ∞

0

[
exp

(∫ t

0

L(x̃(s), u(s))

ε
ds

)]
η(t, y(·))dt.

Hence,

ψερ(x, α) ≤
[
exp

(
C0|x− x̃|

aε
ds

)]
ψερ(x̃, α).
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Similarly, we can show the other inequality in (ii).
We now show (iii). Let αε(0) = α and τ denote the first time αε(·) jumps to α̃.

Let

G(s) =
L(x(s), u(s))

ε
+ ρ(y(s)− 1) and h(t) = ρe−y(t).

Then, the dynamic programming principle with the random stopping time τ (see the
Appendix for a sketch of the proof) gives

ψερ(x, α) = inf
u(·),y(·)

E

{∫ τ

0

(
exp

∫ t

0

G(s)ds

)
h(t)dt

+

(
exp

∫ τ

0

G(s)ds

)
ψερ(x(τ), α̃)

}
.

Using L ≥ 0 and h > 0, we have

ψερ(x, α) ≥ E

{(
exp

∫ τ

0

ρ(y(s)− 1)ds

)
ψερ(x(τ), α̃)

}
.

For x in any bounded interval, by (ii) and |x(τ)− x| ≤ Kτ(1 + |x|) ≤ Kτ(1 + r),

ψερ(x(τ), α̃)

ψερ(x, α̃)
≥ exp

(
−C2Kτ(1 + |x|)

ε

)
≥ exp

(
−C2Kτ(1 + r)

ε

)
.

We can assume y(t) ≥ −||L||/ρε, which implies

exp

∫ t

0

ρ(y(s)− 1)ds ≥ exp

(
−
[ ||L||

ε
+ ρ

]
τ

)
.

Take B > ||L||+ερ+C2K(1+r). Change of time scale t = εt′ sends Q/ε→ Q, which
implies

Ee−Bτ/ε ≥ e−C3 for some C3 > 0.

Therefore,

ψερ(x, α) ≥ ψερ(x, α̃)e−C3 .

Exchange α and α̃ to get the opposite inequality.
Finally it can be shown as in Sethi and Zhang [15] that ψερ(x, α) is a viscosity

solution to (3.5) under the constraint −M0 ≤ y ≤ 0; i.e.,

ρψερ(x, α) = inf
0≤u≤α,−M0≤y≤0

{
(−ax+ u− z)(ψερ)x(x, α)

+
L(x, u)ψερ(x, α)

ε
+
Q

ε
ψερ(x, ·)(α) + ρyψερ(x, α) + ρe−y

}
.

(3.8)

Since ψερ(x, α) ≥ 1 and the minimum in (3.8) is obtained at y = − logψερ(x, α) ≤ 0,
ψερ(x, α) is also a viscosity solution to (3.5). The proof of the lemma is complete.

Theorem 3.3. The HJB equation (3.1) has a viscosity solution (λε, wε(x, α)).
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Proof. In this proof, ε is fixed. In view of the logarithmic transformation

ψερ(x, α) = exp

(
wε
ρ(x, α)

ε

)
,

we have wε
ρ(x, α) = ε logψερ(x, α). It follows from Lemma 3.2 that

(i) 0 ≤ ρwε
ρ(x, i) ≤ C1, uniformly in ρ;

(ii) |wε
ρ(x, α)− wε

ρ(x̃, α)| ≤ C2|x̃− x|, uniformly in ρ;
(iii) for each r > 0, |x| ≤ r, α, α̃ ∈M, |wε

ρ(x, α)−|wε
ρ(x, α̃)| ≤ ε logC3, uniformly

in ρ.
Then, in view of these and the Arzela–Ascoli theorem, it is easy to see that, for

each (x, α), there exist a sequence ρn → 0 such that ρnw
ε
ρn(0, 0) → λε and

wε
ρn(x, α)− wε

ρn(0, 0) = (wε
ρn(x, α)− wε

ρn(0, α))

+(wε
ρn(0, α)− wε

ρn(0, 0)) → wε(x, α)

on any compact subset of R×M. Therefore,

ρnw
ε
ρn(x, α) = ρn(wε

ρn(x, α)− wε
ρn(0, α))

+ρn(wε
ρn(0, α)− ρnw

ε
ρn(0, 0)) + ρnw

ε
ρn(0, 0) → λε.

Finally, it can be shown, as in Fleming and Soner [10], that the limit (λε, wε(x, α)) is
a viscosity solution to the HJB equation (3.1).

Corollary 3.4. The pair (λε, wε(x, α)) obtained in Theorem 3.3 satisfies the
following conditions.

For some constant C independent of ε > 0,
(i) 0 ≤ λε ≤ C1 and
(ii) |wε(x, α)− wε(x̃, α)| ≤ C2|x− x̃|.
Proof. It is easy to check from the proof of Theorem 3.3 that (i) holds and

|wε
ρn(x, α)− wε

ρn(x̃, α)| ≤ C2|x− x̃|,

|wε(x, α)− wε(x̃, α)| = lim
ρn→0

|wε
ρn(x, α)− wε

ρn(x̃, α)| ≤ C2|x− x̃|.

Theorem 3.5. Let (λε, wε(x, α)) be a viscosity solution to the HJB equation in
(3.1). Assume wε(x, α) to be Lipschitz continuous in x. Then

λε = inf
u(·)∈Aε

Jε(u(·)),

where Jε(u(·)) is defined in (2.2).
Proof. We divide the proof into two steps.
Step 1. λε ≤ infu(·)∈Aε Jε(u(·)).
Let ψε(x, α) = exp(wε(x, α)/ε). Then, the HJB equation (3.1) becomes

λεψε(x, α)

ε
= inf

0≤u≤α

{
(−ax+ u− z)ψεx(x, α) +

L(x, u)

ε
ψε(x, α) +

Q

ε
ψε(x, ·)(α)

}
.

It is equivalent to

0 = inf
0≤u≤α

{
(−ax+ u− z)ψεx(x, α) +

L(x, u)− λε

ε
ψε(x, α) +

Q

ε
ψε(x, ·)(α)

}
.
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It is easy to see that ψε(x, α) is a viscosity solution to the following time-dependent
equation for φ(T, x, α):

∂φ

∂T
= inf

0≤u≤α

{
(−ax+ u− z)φx +

L− λε

ε
φ+

Q

ε
φ

}
,

φ(0, x, α) = ψε(x, α).
(3.9)

As can be shown as in Sethi and Zhang [15, Appendix G], this HJB equation has a
unique viscosity solution. Moreover, if we define

φε(T, x, α) = inf
u(·)∈Aε

E

(
ψε(x(T ), αε(T )) exp

∫ T

0

L(x(t), u(t))− λε

ε
dt

)
,

then, using the dynamic programming principle (see Appendix), it can be shown that
φε(T, x, α) is also a viscosity solution to (3.9). Thus, φε(T, x, α) = ψε(x, α) for all
T ≥ 0. Namely,

ψε(x, α) = inf
u(·)∈Aε

E

(
ψε(x(T ), αε(T )) exp

∫ T

0

L(x(t), u(t))− λε

ε
dt

)
.(3.10)

It follows that for all u(·) ∈ Aε,

ψε(x, α) ≤ E

(
ψε(x(T ), αε(T )) exp

∫ T

0

L(x(t), u(t))− λε

ε
dt

)

= E

(
ψε(x(T ), αε(T )) exp

∫ T

0

L(x(t), u(t))

ε
dt

)
exp

(
−λεT

ε

)
.

Taking the logarithm of both sides, we have

logψε(x, α) ≤ logE

(
ψε(x(T ), αε(T )) exp

∫ T

0

L(x(t), u(t))

ε
dt

)
− λεT

ε
.(3.11)

Recall the Lipschitz property of wε(x, α) in x. It follows for all x and x̃ that

ψε(x̃, α)

ψε(x, α)
= exp

(
wε(x̃, α)− wε(x, α)

ε

)
≤ exp

(
C2|x̃− x|

ε

)
.

Replacing x̃ by x(T ) and α by αε(T ), respectively, we obtain

ψε(X(T ), αε(T )) ≤ ψε(x, αε(T )) exp

(
C2|x(T )− x|

ε

)
.

Note also that |x(T )− x| ≤ K(1 + |x|) for some constant K (see (2.3)) and

ψε(x, αε(T )) ≤M(x) := max
j∈M

ψε(x, j).

We have

ψε(X(T ), αε(T )) ≤M(x) exp

(
C2K(1 + |x|)

ε

)
.(3.12)
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Combining this inequality with (3.11), we obtain

logψε(x, α) ≤ logM(x) +
C2K(1 + |x|)

ε
+ logE exp

∫ T

0

L(x(t), u(t))

ε
dt− λεT

ε
.

Dividing both sides by T and letting T →∞ yields

λε ≤ Jε(u(·)) for all u(·) ∈ Aε.

Thus, λε ≤ infu(·)∈Aε Jε(u(·)) for all u(·) ∈ Aε.
Step 2. λε ≥ infu(·)∈Aε Jε(u(·)).
Let

V ε(T, x, α) = inf
u(·)∈Aε

logE exp

(∫ T

0

L(x(t), u(t))

ε
dt

)
.

We first show that

λε

ε
= lim

T→∞
1

T
V ε(T, x, α),(3.13)

uniformly for x in any compact set.
In fact, as in (3.12), we can show that there exist positive constants K1 and K2

such that for all x = x(0) and T > 0,

exp

(
−K1(1 + |x|)

ε

)
≤ ψε(x(T ), αε(T )) ≤ exp

(
K2(1 + |x|)

ε

)
.

In view of this and (3.10), we have

exp

(
−K1(1 + |x|)

ε

)
inf

u(·)∈Aε
E exp

(∫ T

0

L(x(t), u(t))

ε
dt

)
≤ ψε(x, α) exp

(
λεT

ε

)
≤ exp

(
K2(1 + |x|)

ε

)
inf

u(·)∈Aε
E exp

(∫ T

0

L(x(t), u(t))

ε
dt

)
.

Taking the logarithm on both sides and noting that infu(·)∈Aε log(· · ·) = log infu(·)∈Aε(· · ·),
we obtain

−K1(1 + |x|)
ε

+ V ε(T, x, α) ≤ logψε(x, α) +
λεT

ε
≤ K2(1 + |x|)

ε
+ V ε(T, x, α).

Dividing both sides by T and sending T →∞, we arrive at (3.13).
In view of (2.3), for any fixed r > 0, there exists r1 > 0 such that |x(t)| ≤ r1 for

all t ≥ 0, α ∈M, and |x| ≤ r. Therefore, for each δ > 0 there exists T0 such that∣∣∣∣λεε − 1

T0
V ε(T0, x, α)

∣∣∣∣ ≤ δ

for all α ∈M and |x| ≤ r1. Hence,

V ε(T0, x, α) ≤ λεT0

ε
+ T0δ(3.14)
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for all α ∈M and |x| ≤ r1.
On [0, T0), choose an admissible u(1)(t) such that

E exp

(∫ T0

0

L(x(t), u(1)(t))

ε
dt

)
≤ exp (V ε(T0, x, α) + δT0) ≤ exp

(
λεT0

ε
+ 2δT0

)
.

Let GT0 = σ{(x(t), αε(t)) : t ≤ T0}. On [T0, 2T0), if we choose u(2)(t) to be
σ{αε(s) : T0 ≤ s ≤ t} measurable, then

E

{
exp

(∫ 2T0

T0

L(x(t), u(2)(t))

ε
dt

)∣∣∣∣GT0

}

is a function of (T0, x(T0), α
ε(T0)). More precisely, if we let

Φ(T0, x, α, u(·)) = E

{
exp

(∫ 2T0

T0

L(x(t), u(t))

ε
dt

)∣∣∣∣x(T0) = x, αε(T0) = α

}
,

then

Φ(T0, x(T0), α
ε(T0), u

(2)(·)) = E

{
exp

(∫ 2T0

T0

L(x(t), u(2)(t))

ε
dt

)∣∣∣∣GT0

}
.

Moreover, by changing the variable t→ (t− T0), we have

V ε(T0, x, α) = inf
u(·)∈Aε

log Φ(T0, x, α, u(·)).

Similarly, as in the proof of Lemma 3.2 (ii), we can show for some constant C,

|V ε(T, x̃, α)− V ε(T, x, α)| ≤ CT |x̃− x|
ε

for all T , x̃, x, and α ∈M.
Let B1, B2,. . . , Bl be a partition of {x : |x| ≤ r1}. For any given δ > 0, if the

diameter of the Bj ’s is small enough, then for all x̃ and x in Bj , and u(·) ∈ Aε,

|V ε(T0, x̃, α)− V ε(T0, x, α)| ≤ δT0 and
Φ(T0, x̃, α, u(·))
Φ(T0, x, α, u(·)) ≤ eδT0 .

For j = 1, 2, . . . , l, pick out xj ∈ Bj . For each (j, α), choose u
(2)
j,α(t) on [T0, 2T0)

such that

Φ(T0, xj , α) ≤ exp(V ε(T0, xj , α) + δT0) ≤ exp

(
λεT0

ε
+ 2δT0

)
.

On [0, 2T0), define

u(t) =


u(1)(t) if 0 ≤ t < T0,∑
j,α

I{(x(T0),αε(T0))∈Bj×{α}}u
(2)
j,α(t) if T0 ≤ t < 2T0,(3.15)
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where IF is the indicator function of a set F . It follows that

E

{
exp

(∫ 2T0

T0

L(x(t), u(t))

ε
dt

)∣∣∣∣GT0

}
=
∑
j,α

I{x(T0)∈Bj}I{αε(T0)=α}Φ(T0, x(T0), α, u
(2)
j,α(t))

≤
∑
j,α

I{x(T0)∈Bj}I{αε(T0)=α}Φ(T0, xj , α, u
(2)
j,α(t))eδT0

≤
∑
j,α

I{x(T0)∈Bj}I{αε(T0)=α} exp

(
λεT0

ε
+ 3δT0

)
.

Note that

E exp

(∫ 2T0

0

L(x(t), u(t))

ε
dt

)

= E

{
exp

(∫ T0

0

L(x(t), u(t))

ε
dt

)
E

[
exp

(∫ 2T0

T0

L(x(t), u(t))

ε
dt

)∣∣∣∣GT0

]}
.

It follows that

E exp

(∫ 2T0

0

L(x(t), u(t))

ε
dt

)
≤ exp

(
λε(2T0)

ε
+ 5δT0

)
.

Continuing this procedure on [(N − 1)T0, NT0) for N = 3, . . ., we can construct
an admissible control u(t) as in (3.15) such that

E exp

(∫ NT0

0

L(x(t), u(t))

ε
dt

)
≤ exp

(
λεNT0

ε
+ δ(3N − 1)T0

)
.

Hence,

1

NT0
logE exp

(∫ NT0

0

L(x(t), u(t))

ε
dt

)
≤ λε

ε
+
δ(3N − 1)T0

NT0
→ λε

ε
+ 3δ.

Since δ is arbitrary, λε ≥ infu(·)∈Aε Jε(u(·)) follows.
This theorem implies that λε in (λε, wε(x, α)) as a viscosity solution is unique.
We next give a verification theorem. In order to incorporate nondifferentiability

of the value function, we consider the superdifferential of the function. Let D+f(x)
denote the superdifferential of a function f(x), i.e.,

D+f(x) =

{
r ∈ R : lim sup

h→0

f(x+ h)− f(x)− hr

|h| ≤ 0

}
.

Theorem 3.6. Let (λε, wε(x, α)) be a viscosity solution to the HJB equation in
(3.1). Assume that wε(x, α) is Lipschitz continuous in x. Let ψε(x, α) = exp(wε(x, α)/ε).
Suppose that there are u∗(·), x∗(·), and r∗(t) such that

ẋ∗(t) = −ax∗(t) + u∗(t)− z, x∗(0) = x,
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r∗(t) ∈ D+ψεx(x
∗(t), αε(t)) satisfying

λε

ε
ψε(x∗(t), αε(t)) = (−ax∗(t) + u∗(t)− z)r∗(t)

+
L(x∗(t), u∗(t))

ε
ψε(x∗(t), αε(t)) +

Q

ε
ψε(x∗(t), ·)(αε(t))

(3.16)

almost everywhere (a.e.) in t and with probability 1 (w.p.1). Then, λε = Jε(u∗(·)).
Proof. First, note that the HJB equation in (3.1) is equivalent to

λε

ε
ψε(x, α) = inf

0≤u≤α

{
(−ax+ u− z)ψεx(x, α)

+
L(x, α)

ε
ψε(x, α) +

Q

ε
ψε(x, ·)(α)

}
.

(3.17)

The Lipschitz property of ψε(x, α) implies that ψε(x(t), α) is Lipschitz in t. For
each t ≥ 0 such that (d/dt)ψε(x(t), α) exists and∫ t+h

t

(−ax(s) + u(s)− z)ds = h(−ax(t) + u(t)− z) + o(h),

we have

dψε(x(t), α)

dt
= lim

h→0+

1

h
(ψε(x(t+ h), α)− ψε(x(t), α))

= lim
h→0+

1

h

(
ψε

(
x(t) +

∫ t+h

t

(−ax(s) + u(s)− z)ds, α

)
− ψε(x(t), α)

)
= lim

h→0+

1

h
(ψε(x(t) + h(−ax(t) + u(t)− z) + o(h), α)− ψε(x(t), α))

= lim
h→0+

1

h
(ψε(x(t) + h(−ax(t) + u(t)− z), α)− ψε(x(t), α))

≤ (−ax(t) + u(t)− z)r

(3.18)

for r ∈ D+ψε(x(t), α); see Zhou [19, Lemma 2.1]. In view of (3.18) and the proof of
the Feynman–Kac formula (see Fleming and Soner [10]), we can show, for any T ≥ 0,

E

[
ψε(x(T ), αε(T )) exp

∫ T

0

(
L(x(t), u(t))− λε

ε

)
dt

]
− ψε(x, α)

= E

∫ T

0

d

dt

(
ψε(x(t), αε(t)) exp

∫ t

0

(
L(x(s), u(s))− λε

ε

)
ds

)
dt

≤ E

∫ T

0

exp

∫ t

0

(
L(x∗(s), u∗(s))− λε

ε

)
ds

·
[(

L(x∗(t), u∗(t))− λε

ε

)
ψε(x∗(t), αε(t))

+(−ax∗(t) + u∗(t)− z)r∗(t) +
Q

ε
ψε(x∗(t), ·)(αε(t))

]
dt = 0.

(3.19)

Note that for any given initial value x, the corresponding trajectory x(t) is bounded.
Thus, for each x and ε > 0, there exist positive constants M1 and M2 such that

0 < M1 ≤ ψε(x(T ), αε(T )) ≤M2 for all T ≥ 0.
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Hence, it follows from (3.17) and (3.19) that

M1E

[
exp

∫ T

0

(
L(x∗(t), u∗(t))

ε

)
dt

]
exp

(
−λε

ε

)
≤ ψε(x, α).

Taking the logarithm on both sides and dividing by T leads to

logM1

T
+

1

T
logE exp

∫ T

0

(
L(x∗(t), u∗(t))

ε

)
dt− λε

ε
≤ ψε(x, α)

T
.

Sending T →∞ yields

λε ≥ lim sup
T→∞

ε

T
logE exp

∫ T

0

(
L(x(t), u(t))

ε

)
dt.

Hence, in view of Theorem 3.5, λε = Jε(u∗(·)).
4. Limiting problem. In this section, we analyze the asymptotic properties of

the HJB equation (3.3.1) as ε→ 0. First of all, note that this HJB equation is similar
to that for an ordinary long-run average cost problem except for the term involving
the exponential functions. In order to get rid of such a term, we make use of the
logarithmic transformation in Fleming and Soner [10, p. 275].

Let V = {v = (v(0), . . . , v(m)) ∈ R
m+1 : v(i) > 0, i = 0, 1, . . . ,m}. Define

Qv = (qvij) such that qvij = qij
v(j)

v(i)
for i 6= j and qvii = −

∑
j 6=i

qvij .

Then, in view of the logarithmic transformation, we have, for each i ∈M,

exp

(
−wε(x, α)

ε

)
Q exp

(
wε(x, ·)

ε

)
(i)

= sup
v∈V

{
Qv

ε
wε(x, ·)(i) +

Qv(·)(i)
v(i)

−Qv(log v(·))(i)
}
.

The supermum is obtained at v(i) = exp(−wε(x, i)/ε).
The logarithmic transformation suggests that the HJB equation is equivalent to

an Isaacs equation of a two-player zero-sum dynamic stochastic game. The Isaacs
equation is given as follows:

λε = inf
0≤u≤α

sup
v∈V

{
(−ax+ u− z)wε

x(x, α) + L̃(x, u, v, α) +
Qv

ε
wε(x, ·)(α)

}
,(4.1)

where

L̃(x, u, v, i) = L(x, u) +
Qv(·)(i)
v(i)

−Qv(log v(·))(i)(4.2)

for i ∈M.
Remark 4.1. Note that if v = (1, . . . , 1), then L̃(x, u, v, i) = L(x, u) and Qv =

Q.
Remark 4.2. In the results to follow, we will not give a precise description of

the stochastic dynamic game with Isaacs equation (4.1) since this interpretation will
not be used in proving our results about the deterministic limit ε→ 0. In the game,



RISK-SENSITIVE PRODUCTION PLANNING 1161

u(t) and v(t) represent minimizing and maximizing controls, based on information
available at time t. Note that the maximizing control v produces a change in transition
rates, from qij to qvij . This imprecise idea can be made precise using Elliott–Kalton-
type strategies (Fleming and Souganidis [11]). Since the order in (4.1) is inf(sup(· · ·))
rather than sup(inf(· · ·)), λε turns out to be the upper game value for the game payoff

lim sup
T→∞

1

T
E

∫ T

0

L̃(x(t), u(t), v(t), αε(t))dt.

We consider the limit of the problem as ε → 0. In order to define a limiting
problem, we first define control sets for the limiting problem. Let

Γu = {U = (u0, . . . , um); 0 ≤ ui ≤ i, i = 0, . . . ,m}
and

Γv = {V = (v0, . . . , vm); vi = (vi(0), . . . , vi(m)) ∈ V, i = 0, . . . ,m}.

For each V ∈ Γv, let Q
V

:= (qVij) such that

qv
i

ij = qVij =
qijv

i(j)

vi(i)
for i 6= j and qVii = −

∑
j 6=i

qVij ,

and let νV = (νV0 , . . . , ν
V
m) denote the equilibrium distribution of Q

V
. The next

lemma says Q
V

is irreducible. Therefore, there exists a unique positive νV for each
V ∈ Γv. Moreover, νV depends continuously on V .

Lemma 4.3. For each V ∈ Γv, Q
V

is irreducible.
Proof. We divide the proof into three steps.

Step 1. rank(Q
V

) = m.
First, it is easy to see that the irreducibility of Q implies qVkk < 0 for k =

0, 1, . . . ,m. We multiply the first row of Q
V

by −qVk0/qV00 and add to the kth row,

k = 1, . . . ,m, to make the first component of that row 0. Let QV,1 = (qV,1ij ) denote

the resulting matrix. Then, QV,1 must satisfy

qV,10j = qV0j , j = 0, 1, . . . ,m,

qV,1k0 = 0, k = 1, . . . ,m,

qV,1kk ≤ 0, k = 1, . . . ,m, and

m∑
j=0

qV,1kj = 0 for k = 0, 1, . . . ,m.

We now show that qV,1kk < 0 for k = 1, . . . ,m. For k = 1, if qV,111 6< 0, then it must
be equal to 0, which implies

(qV12, . . . , q
V
1m)−

(
qV10
qV00

)
(qV02, . . . , q

V
0m) = 0.(4.3)

Recall that qV11 6= 0. One must have qV10 > 0 since otherwise qV10 = 0 implies qV11 =

qV,111 = 0, which contradicts the fact that qVkk < 0 for k = 0, 1, . . . ,m. Thus, −qV10/qV00 >
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0. This together with the nonnegativity of qVij , i 6= j, imply that both of the vectors
in (4.3) must be equal to 0, i.e.,

(qV12, . . . , q
V
1m) = 0 and (qV02, . . . , q

V
0m) = 0.

These equations contradict the irreducibility of Q since a state in {2, 3, . . . ,m} is not

accessible from a state in {0, 1}. Therefore, one must have qV,111 < 0. Similarly, we

can show qV,1kk < 0 for k = 2, . . . ,m.
We repeat this procedure in a similar way by multiplying the second row of QV,1

by −qV,1k1 /q
V,1
11 , k = 2, . . . ,m, and add to the kth row. Let QV,2) = (qV,2ij ) denote the

resulting matrix. Then one has

qV,2ij = qV,1ij , i = 0, 1, j = 0, 1, . . . ,m,

qV,2ij = 0, i = 2, . . . ,m, j = 0, 1

qV,2kk ≤ 0, k = 2, . . . ,m, and

m∑
j=0

qV,2kj = 0 for k ∈M.

Similarly, we can show qV,2kk < 0 for k = 2, . . . ,m.
We continue this procedure and transform Q → QV,1 → · · · → QV,m−1 with

QV,m−1 = (qV,m−1
ij ) such that

qV,m−1
ij = 0, i > j

qV,m−1
kk < 0, k = 0, 1, . . . ,m− 1,

m∑
j=0

qV,m−1
kj = 0 for k ∈M and

qV,m−1
mm = 0.

Notice that the prescribed transformations do not change the rank of the original
matrix. Thus,

rank(Q
V

) = rank(QV,1) = · · · = rank(QV,m−1) = m.

Step 2. Q
V

is weakly irreducible.
Consider an (m+ 1) row vector b = (b0, . . . , bm) such that

bQ
V

= 0 and b0 + · · ·+ bm = 1.

It follows as in Sethi and Zhang [15, Lemma C.1] that (b′
... · · · ...b′) = limt→∞ exp(Q

V
t),

where A′ denotes the transpose of a matrix A. Since exp(Q
V
t) represents the tran-

sition probabilities, the limit b must be nonnegative. Thus, b := (νV0 , . . . , ν
V
m) is

an equilibrium distribution of Q
V

. Note that ker(Q
V

)′ = span{(νV0 , . . . , νVm)} since

rank(Q
V

)′ = rank(Q
V

) = m. Then, c = (νV0 , . . . , ν
V
m) is the unique nonnegative

solution to bQ
V

= 0 and b0 + · · ·+ bm = 1. Hence Q
V

is weakly irreducible.

Step 3. Q
V

is irreducible; i.e., (νV0 , . . . , ν
V
m) > 0.
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If not, then, without loss of generality, we may assume νV0 > 0, . . . , νVk0
> 0 and

νVk0+1 = 0, . . . , νVm = 0 for some k0 = 0, 1, . . . ,m. Note that (νV0 , . . . , ν
V
m)Q

V
= 0

implies that qVij = 0 and thus qij = 0 for i = 0, . . . , k0 and j = k0 + 1, . . . ,m. This
in turn implies that Q is not irreducible since the process αε(·) cannot jump from
a state in {0, 1, . . . , k0} to a state in {k0 + 1, . . . ,m}. The contradiction yields the

irreducibility of Q
V

.
Theorem 4.4. Let εn → 0 be a sequence such that λεn → λ0 and wεn(x, α) →

w0(x, α). Then,
(i) w0(x, α) is independent of α, i.e., w0(x, α) = w0(x);
(ii) w0(x) is Lipschitz; and
(iii) (λ0, w0(x)) is a viscosity solution to the following Isaacs equation:

λ0 = inf
U∈Γu

sup
V ∈Γv

{(
−ax+

m∑
i=0

νVi u
i − z

)
w0
x(x) +

m∑
i=0

νVi L(x, ui)

+

( m∑
i=0

νVi
Qvi(·)(i)
vi(i)

−
m∑
i=0

νVi Q
V

(log vi(·))(i)
)}

.

(4.4)

Proof. Note that Lemma 3.2 (iii) implies that

|wε
ρ(x, α)− wε

ρ(x, α̃)| ≤ ε logC3

for x in any finite interval. Thus, the limit of wε
ρ(x, α) must be independent of α, i.e.,

w0(x, 0) = · · · = w0(x,m) =: w0(x).

The Lipschitz property of w0(x) follows from the Lipschitz property of wε(x, α).
Finally, note that

νVQ
V

= (νV0 , . . . , ν
V
m)Q

V
= 0.

It follows that

m∑
i=0

νVi Q
viwε(x, ·)(i) = 0.(4.5)

The remaining proof of (iii) is standard and can be carried out as in Fleming, Sethi,
and Soner [8].

Remark 4.5. We would like to point out that the last term in (4.4) is nonnegative.
This can be seen as follows: note that for each v ∈ V and i ∈M, we have

Qv(·)(i)
v(i)

−Qv(log v(·))(i)

=
∑
j 6=i

qij

(
v(j)

v(i)
− 1

)
−
∑
j 6=i

qij
v(j)

v(i)
log

v(j)

v(i)

=
∑
j 6=i

qij

(
v(j)

v(i)
− 1− v(j)

v(i)
log

v(j)

v(i)

)
≤ 0,

because the function (x− 1− x log x) is nonnegative on (0,∞). It follows that

m∑
i=0

νVi
Qvi(·)(i)
vi(i)

−
m∑
i=0

νVi Q
vi(log vi(·))(i) ≤ 0.
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Let

L̂(x, U, V ) =
m∑
i=0

νVi L(x, ui) +
m∑
i=0

νVi
Qvi(·)(i)
vi(i)

−
m∑
i=0

νVi Q
V

(log vi(·))(i).

Note that L̂(x, U, V ) ≤ ||L||, where || · || is the sup norm. Moreover, since L ≥ 0,

L̂(x, U, 1) ≥ 0 where V = 1 means vi(j) = 1 for all i, j. Then, the equation in
(4.4) is an Isaacs equation associated with a two-player, zero-sum dynamic game with
objective

J0(U(·), V (·)) = lim sup
T→∞

1

T

∫ T

0

L̂(x(t), U(t), V (t))dt

subject to

ẋ(t) = −ax(t) +

m∑
i=0

ν
V (t)
i ui(t)− z, x(0) = x,

where U(·) and V (·) are Borel measurable functions and U(t) ∈ Γu and V (t) ∈ Γv for
t ≥ 0.

Remark 4.6. Let I(µ) be the Donsker–Varadhan function, defined for any prob-
ability vector µ = (µ0, . . . , µm) > 0, i.e., µi > 0 and

∑m
i=0 µi = 1. Then (see the

Appendix)

−I(µ) = sup
V,νV =µ

{ m∑
i=0

νVi
Qvi(·)(i)
vi(i)

−
m∑
i=0

νVi Q
V

(log vi(·))(i)
}
.(4.6)

Thus (4.4) is equivalent to

λ0 = inf
U∈Γu

sup
µ

{(
−ax+ 〈µ, u〉 − z

)
w0
x(x) + 〈µ,L(x, u)〉 − I(µ)

}
.

Similarly, the dynamics of x(t) can be written

ẋ(t) = −ax(t) + 〈µ(t), u(t)〉 − z.

Let

H(x, p) = inf
U∈Γu

sup
V ∈Γv

{(
−ax+

m∑
i=0

νVi u
i − z

)
p+

m∑
i=0

νVi L(x, ui)

+

(
m∑
i=0

νVi
Qvi(·)(i)
vi(i)

−
m∑
i=0

νVi Q
V

(log vi(·))(i)
) }

.

Then,

|H(x̃, p)−H(x, p)| ≤ (a|p|+ ||Lx||)|x̃− x|,
|H(x, p̃)−H(x, p)| ≤ (a|x|+m+ z)|p̃− p|.
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These conditions imply the uniqueness of viscosity solution to the following finite time
problem: 

∂Ψ

∂T
= H(x,Ψx)− λ0, T > 0,

Ψ(0, x) = w0(x).

Uniqueness is in the class of continuous viscosity solution Ψ(x, T ) such that Ψ(·, T )
satisfies a uniform Lipschitz condition on every finite time interval 0 ≤ T ≤ T1; see
Crandall and Lions [4] and Ishii [13]. A more general uniqueness theorem in which
Ψ(·, T ) satisfies a uniform local Lipschitz condition is given in McEneaney [14].

The method of Evans and Souganidis [6] shows that

upper value

{∫ T

0

(
L̂(x(t), U(t), V (t))− λ0

)
dt+ w0(x(T ))

}
is such a viscosity solution and w0(x) is also a viscosity solution. So w0(x) = Ψ(T, x).
Namely,

w0(x) = upper value

{∫ T

0

(
L̂(x(t), U(t), V (t))− λ0

)
dt+ w0(x(T ))

}
.

In Evans and Souganidis [6] the control spaces for both players are assumed
compact, and Γv is not compact. This requires minor changes in the arguments in
[6] using the special form of the game dynamics and payoff function L̂ − λ0; see the
Appendix for more details. Using the above equality, one can show as in Fleming and
McEneaney [7] that

λ0 = inf
U(·)

sup
V (·)

J0(U(·), V (·)),

which implies the uniqueness of λ0.
Finally, we would like to comment on how to use the solution to the limiting

problem to obtain a control for the original problem. Typically an explicit solution is
not available to either of the problems. A numerical scheme has to be used to obtain
an approximate solution. The advantage of the limiting problem is its dimensionality,
which is much smaller than that of the original problem if the number of states in M
is large.

Let (U∗(x), V ∗(x)) denote a solution to the upper value problem. Suggested by
the ideas of hierarchical control (see Sethi and Zhang [15]), it is expected that the
control

u(x, α) =

m∑
j=0

I{α=j}ui∗(x)

is nearly optimal for the original problem.

5. Concluding remarks. This paper deals with the risk-sensitive control with
a long-run average cost arising in a failure-prone manufacturing system. Typically
the problem with a long-run average cost requires the stability of the system. In this
paper, a model with product deterioration is considered. Such a deterioration con-
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dition is used to guarantee the desired stability without undue technical difficulties.
It would be interesting to study the stability without such a deterioration condition.
One possible direction for attacking the problem is to use a “diminishing deteriora-
tion” approach by sending the deterioration rate a→ 0. In order to obtain the desired
convergence of the potential function wε(x, α) as a → 0, it is necessary to have the
uniform equicontinuity property that typically is guaranteed by the Lipschitz condi-
tion uniform with respect to a > 0. A major difficulty, however, is the absence of such
a uniform Lipschitz property. This can be seen from (ii) in Lemma 3.2 in which the
Lipschitz constant depends on a.

In this paper, a single machine, single product model is considered. It would also
be interesting to generalize the results to more general manufacturing systems such
as flowshops and jobshops; see Sethi and Zhang [15].

6. Appendix. In section 3 we used the following dynamic programming princi-
ple. For brevity, let us write U(t) = (u(t), y(t)). Let G(s) and h(t) be as in the proof
of Lemma 3.2 (iii). Then for every stopping time τ

(DP) ψερ(x, α) = inf
U(·)

E

{∫ τ

0

(
exp

∫ t

0

G(s)ds

)
h(t)dt

+

(
exp

∫ τ

0

G(s)ds

)
ψερ(x(τ), α(τ))

}
.

In the proof of Lemma 3.2 (iii), τ is the first t such that αε(t) = α̃. To prove that ψερ
is a viscosity solution of (3.8), property (DP) is needed for any nonrandom τ . While
results of this kind are considered well known, the authors did not find a convenient
reference which applies to the class of stochastic control problems considered in this
paper. For completeness we sketch a proof of (DP). In the proof of Theorem 3.5, a
dynamic programming principle is used, for which an entirely similar proof can be
given. Indeed, the argument is slightly simpler since only nonrandom stopping times
need to be considered.

Sketch of proof of (DP). It suffices to consider the “canonical” sample space
(Ω, {Ft}, P ) with Ω = D([0,∞);M) the space of possible α(·) paths, Ft = σ{α(s) :
0 ≤ s ≤ t} and P = P ε

α the probability distribution of a Markov chain αε(·) with gen-
erator Q/ε and initial state α(0) = α. We wish to establish (DP) for any Ft -stopping
time τ . By using the Lipschitz property in Lemma 3.2 (ii) which does not depend on
(DP), it suffices to consider τ with finitely many values 0 < t1 < t2 < · · · < tn because
one may approximate τ by a step function

∑
tkI{tk≤τ<tk+1}. Let Γk = {τ = tk} and

on Γk we identify U(t) for t ≥ tk with Uk(t− tk, α1k(·), α2k(·)), where

α1k(t) = α(t), 0 ≤ t ≤ tk,
α2k(t) = α(tk + t), t ≥ 0.

If U(·) is admissible (progressively measurable and satisfying the control constraints
on u(t) and y(t)), then for each fixed α1k(·), Uk(·) is also admissible. Moreover, if F∞
is the least σ-algebra containing all Ft, then for any bounded F∞- measurable Φ,

E(IΓkΦ) =

∫
Γk

∫
Φ(α1k, α2k)P

ε
α1k(tk)(dα2k)P

ε
α(dα1k).
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A routine calculation then gives

E

∫ ∞

τ

(
exp

∫ t

0

G(s)ds

)
h(t)dt

=
n∑

k=1

E

[
IΓk

(
exp

∫ tk

0

G(s)ds

)
Jερ(x(tk), α(tk), Uk(·))

]
≥

n∑
k=1

E

[
IΓk

(
exp

∫ tk

0

G(s)ds

)
ψερ(x(tk), α(tk))

]
= E

(
exp

∫ τ

0

G(s)ds

)
ψερ(x(τ), α(τ)).

Since ψερ(x, α) is the inf of Jερ(x, α, U(·)) taken over all admissible U(·), this implies
that

ψερ(x, α) ≥ right side of (DP).

It remains to outline a proof that

ψερ(x, α) ≤ right side of (DP).

Given an initial x(0) = x, formula (2.3) implies that |x(t)| ≤ r1 for some r1. As in the
proof of Theorem 3.5, given δ > 0, partition {|x| ≤ r1} into intervals B1, B2, . . . , Bl

of length < δ and choose xj ∈ Bj for j = 1, . . . , l. Given η > 0, choose admissible
Uij(·) such that

Jερ(xj , i, Uij(·)) < ψερ(xj , i) + η.

Given admissible U(·), we define Ũ(·) by

Ũ(t) = U(t) for 0 ≤ t < τ,

and for τ = tk, α(tk) = i, x(tk) ∈ Bj ,

Ũ(t) = Uij(t− tk), t ≥ tk.

Then Ũ(·) is admissible, and a routine calculation using Lemma 3.2 (ii) gives

ψερ(x, α) ≤ Jερ(x, α, Ũ(·)) ≤ right side of (DP) + F (δ, η),

where F (δ, η) → 0 as δ, η → 0.
Remark on upper values and viscosity solutions. In section 4 we used a slight

modification of a result of Evans and Souganidis [6]. Let us sketch the changes in [6]
needed to account for the fact that the maximizing players’ control space Γv is not
compact. The game dynamics are

ẋ(t) = f̂(x(t), U(t), V (t)),

where

f̂(x, U, V ) = −ax+

m∑
i=0

νVi u
i − z.
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Let

Ψ̃(x, T ) = upper value

{∫ T

0

L̂(x(t), U(t), V (t))dt+ w0(x(T ))

}
,

where the upper value is in the Elliott–Kalton sense. Equivalently,

Ψ(x, T ) = Ψ̃(x, T )− λ0T

is the upper value considered in section 5.
The assertion is that Ψ̃ is a viscosity solution to

∂Ψ̃

∂T
= H(x, Ψ̃x)

and that Ψ̃ is continuous with Ψ̃(·, T ) satisfying a uniform Lipschitz condition on
any finite interval 0 ≤ T ≤ T1. The first step is to prove the dynamic programming
principle (see [6, Theorem 3.1]): for 0 < τ < T ,

(DP) Ψ̃(x, T ) = upper value

{∫ τ

0

L̂(x(t), U(t), V (t))dt+ Ψ̃(x(τ), τ)

}
.

That argument is unchanged. Next, the facts that f̂x = −a and L̂x = Lx is bounded
imply a uniform Lipschitz condition for Ψ̃(·, T ) on any finite time interval. As noted

in section 5, L̂ ≤ ||L|| and

sup
V

L̂(x, U, V ) ≥ L̂(x, U, 1) ≥ 0.

Moreover, by the form of f̂ and compactness of the minimizer’s control set Γu, for
every R, there exists KR such that |x| ≤ R implies

|x(τ)− x| ≤ KRτ.

By subtracting Ψ̃(x, τ) from both sides of (DP) we then obtain a uniform local Lips-

chitz condition for Ψ̃(x, ·).
Finally, to show that Ψ̃ is a viscosity solution we proceed as in [6, section 4].

Minor changes in the proof of [6, Lemma 4.3] are needed, since Γv is not compact.
For this we use the inequality for compact maximizer’s control space. (The proof of
[6, Lemma 4.3(a)] does use compactness of the minimizer’s control space, which holds
in our case.)

Proof of (4.6). Recall that the Donsker–Varadhan function is defined as I(µ) =
supβ∈V [−〈µ, β−1Qβ〉]; see Fleming, Sheu, and Soner [9]. For each V ∈ Γv, let

KV (i) = Q
V

(log vi(·))(i)− 1

vi(i)
Qvi(·)(i).

Then (4.6) can be written as I(µ) = infνV =µ〈µ,KV 〉. We first show that

I(µ) ≥ inf
νV =µ

〈µ,KV 〉.(6.1)
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It is elementary to show that there exists β∗ ∈ V such that I(µ) = 〈µ, (β∗)−1Qβ∗〉.
Then, in view of Lemma 3.2 in [9], we have

µ = νV
∗
, where vi∗(j) = β∗(i)/β∗(j).

It follows that 〈µ,KV ∗〉 = −〈µ, (β∗)−1Qβ∗〉, because 〈µ,QV ∗
(φ)〉 = 〈νV ∗

, Q
V ∗
φ〉 = 0.

This implies (6.1).
To show the opposite inequality, note that the logarithmic transformation

e−φ(i)Q(eφ(·))(i) = sup
V ∈Γv

[Q
V
φ(·)(i)−KV (i)]

for all φ. Let φ = β∗. Then for each V such that νV = µ, we have

1

β∗
Qβ∗ ≥ Q

V
φ−KV .

Hence, for νV = µ, we obtain〈
µ,

1

β∗
Qβ∗

〉
≥ 〈µ,QV

φ〉 − 〈µ,KV 〉 = −〈µ,KV 〉.

This implies that I(µ) ≤ infνV =µ〈µ,KV 〉. The proof is complete.

Acknowledgments. We would like to thank S.-J. Sheu for pointing out Re-
mark 4.6 and providing its proof. We also thank the referees for comments and
suggestions that led to improvement of the paper.
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STUDY OF AN OPTIMAL CONTROL PROBLEM FOR DIFFUSIVE
NONLINEAR ELLIPTIC EQUATIONS OF LOGISTIC TYPE∗
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Abstract. An optimal control problem for a nonlinear elliptic equation of logistic type is
considered. Under certain assumptions, the existence of at least an optimal control is shown and
an optimality system is derived. Then this system is used for proving the uniqueness of and a
constructive approximation to the optimal control.

Key words. optimal control, logistic elliptic equations, existence, uniqueness, approximation

AMS subject classifications. 49J20, 49K20, 49M05, 92D25
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1. Introduction. The aim of this paper is to study an optimal control prob-
lem for a nonlinear elliptic equation of the Volterra–Lotka type. More precisely, we
consider the equation

−∆u(x) = u(x)[a(x)− f(x)− b(x)u(x)], x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded and regular domain in R
n.

The previous equation arises from population dynamics, the study of the evolu-
tion of some biological species, and it models the steady-state solutions of the cor-
responding nonlinear evolution problem (see [12]). Here function u is the species
concentration, a represents its intrinsic growth rate, b is the crowding effect, and f
plays the role of control. The Laplacian operator ∆ shows the diffusive character of
the species u in the domain Ω, and the boundary condition in (1.1) may be interpreted
as the condition that the species may not stay on ∂Ω.

Under certain assumptions (see Hypothesis H below), equation (1.1) will have,
for each given function f, a unique maximal nonnegative solution denoted by uf , and
we will be interested in maximizing the payoff functional

J(f) =

∫
Ω

(λuff − f2),(1.2)

which represents the difference between economic revenue and cost. The real constant
λ, which will be taken to be strictly positive, describes the quotient between the price
of the species and the cost of the control, whose role is to influence the growth rate of
the species just to get better quality with the purpose of obtaining a greater benefit
from the harvest. In the second section, some preliminary results are summarized,
including the existence of an optimal control, i.e., a function f such that the prof-
itability of the harvest is maximized. In the following, some necessary conditions for
a control to be an optimal control are obtained; in particular, the optimality system

∗Received by the editors October 18, 1995; accepted for publication (in revised form) June 16,
1997; published electronically May 15, 1998. This research was partially supported by Dirección
General de Enseñanza Superior, Ministry of Education and Science (Spain) grant PB95-1190 and by
EEC contract (Human Capital and Mobility program) ERBCHRXCT 940494.
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is deduced. With the help of some estimations for the solutions of such a system,
we prove, in section 4, the uniqueness of the optimal control in two cases: when the
parameter λ of the functional (1.2) is small and when the function b in (1.1) is a con-
stant sufficiently large. The same ideas may be useful for studying the case where b is
not necessarily constant; in this situation, it is possible to impose a restriction on the
quotient between the supremum and the infimum (which, again, must be sufficiently
large) of the function b to assure uniqueness (see [5]). In the last section, we give,
for λ sufficiently small, a constructive scheme which provides a sequence of functions
converging to some special solutions of the optimality system; this will be useful for
approximating the optimal control. Of course, similar procedures are valid in other
cases such as those considered in the fourth section. Related problems have been
considered in [8, 9, 13]. In fact, our work was motivated by [9], where the authors
study a problem like (1.1) but with Neumann boundary conditions and the controls
are restricted to members of the set

Cδ = {g ∈ L∞(Ω) : 0 ≤ g(x) ≤ δ a.e. in Ω},
where 0 < δ < infx∈Ω a(x). The main novelty of our results is that we study the case
of Dirichlet boundary conditions, which seems to be different in many aspects from
the Neumann case (see [3], [7]). Also, our control space L∞+ (Ω), the set of functions
of L∞(Ω) that are nonnegative a.e. in Ω, is different from that of [9] (see the final
Remark 1), and we prove not only existence but also uniqueness of the optimal control,
which is very important for its possible approximation as is seen in this paper.

2. Preliminary results. In this section we present some previous results and
notation which will be useful below. The details may be seen in [1], [3], [6], [7], [10],
and [11]. If e ∈ L∞(Ω), we denote e = ess infx∈Ω e(x) , e = ess supx∈Ω e(x).

Let us consider equation (1.1). From now on, we assume the following hypothesis.
Hypothesis H. a, b ∈ L∞(Ω), b > 0, f ∈ L∞+ (Ω) = {g ∈ L∞(Ω) : g(x) ≥ 0 a.e. in

Ω}.
For a function q ∈ L∞(Ω), we define σ1(q) to be the principal eigenvalue of the

eigenvalue problem

−∆u(x) + q(x)u(x) = σu(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

This principal eigenvalue can be expressed variationally as

σ1(q) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 +

∫
Ω

q|u|2∫
Ω

|u|2
,(2.3)

where H1
0 (Ω) is the usual Sobolev space. It is known that the algebraic multiplicity

of σ1(q) is equal to one, and it is possible to choose an associated eigenfunction φ1(q)
(where the previous infimum is attained, becoming a minimum) such that φ1(q) ∈
C1,α(Ω) ∀α ∈ (0, 1), φ1(q) > 0 in Ω, ‖φ1(q)‖L∞ = 1.

As a direct consequence of the previous variational characterization, we obtain
the following properties:

(i) σ1(q) is strictly increasing with respect to the weight function q; i.e., if q1 ≤
q2, we have σ1(q1) ≤ σ1(q2) and this last inequality is strict if, moreover,
q1(x) < q2(x) on a subset of positive measure.
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(ii) ∀M ∈ R, σ1(q +M) = σ1(q) +M .
(iii) σ1(q) is continuous with respect to q ∈ L∞(Ω).
By using techniques of sub- and supersolutions, one may prove [1] that (1.1) has

a (weak) nontrivial and nonnegative solution uf iff σ1(−a+ f) < 0. In this case, the
solution uf is the unique nontrivial and nonnegative solution of (1.1), and it verifies
the estimates

−σ1(−a+ f)

b
φ1(−a+ f)(x) ≤ uf (x) ≤ a− f

b
∀x ∈ Ω.(2.4)

It is known [11] that every solution obtained by this method is a priori stable when
considered as an equilibrium solution of an associated time dependent evolution equa-
tion. Also, the sub- and supersolutions provide an estimate of the extent of stability.
Moreover, any bounded subsolution w of (1.1) must satisfy w ≤ uf . If σ1(−a+f) < 0,
then uf (x) > 0 ∀x ∈ Ω, and, therefore, taking into account the previous property (i),
we have

σ1(−a+ f + 2buf ) > σ1(−a+ f + buf ) = 0.(2.5)

Note that Lyapunov’s indirect argument analyzes stability by considering u = uf +
βv expµt in the time dependent problem, leading to the self-adjoint eigenvalue problem

µv −∆v + [−a+ f + 2buf ]v = 0.

So, (2.5) provides the condition for linearized stability. Now we may extend the
definition of uf . For this, for each f ∈ L∞+ (Ω) (and in the same way, for each f ∈
L∞(Ω)), we will denote by uf the maximal nonnegative solution of equation (1.1).
Then uf ≡ 0 iff σ1(−a + f) ≥ 0 and uf is strictly positive in Ω iff σ1(−a + f) < 0.
The following monotonicity property of uf is easily proved, with respect to f , and
is fundamental in many assumptions contained in this paper: if f, g ∈ L∞(Ω), and
f ≤ g, then, uf ≥ ug.

Let λ be a real positive constant and define the functional
J : L∞+ (Ω) → R, given by the expression

J(g) =

∫
Ω

(λugg − g2).

The existence of an optimal control in L∞+ (Ω), i.e., f ∈ L∞+ (Ω), satisfying

J(f) = sup
g∈L∞

+
(Ω)

J(g)

has been done by the authors in [3]. More precisely, we have the following result.
Theorem 2.1. Consider problem (1.1) under Hypothesis H. Then the optimal

control problem has a solution in the space L∞+ (Ω).
The basic idea for the proof of this theorem is that the possible optimal controls

must be bounded; in fact, if f ∈ L∞+ (Ω) and g = min {f, aλ
b
}, then J(g) ≥ J(f). To

see this, we consider two cases:
(a) uf ≡ 0. Then J(f) = − ∫

Ω
f2 ≤ − ∫

Ω
g2 ≤ J(g).

(b) uf > 0 in Ω. Then by the monotonicity property of uf , with respect to f , we
have ug ≥ uf > 0 in Ω. By careful discussion, one may prove

λugg − g2 ≥ λuff − f2 a.e. in Ω,

which implies J(g) ≥ J(f).
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In particular, if f ∈ L∞+ (Ω) is an optimal control and a > 0, then we may assume
that

f ≤ aλ

b
a.e. in Ω.(2.6)

Now from (2.4) and (2.6) it is easy to prove that if {fn} is any maximizing sequence
in L∞+ (Ω) for J, then there exists f ∈ L∞+ (Ω) such that, for a convenient subsequence,

fn ⇀ f weakly in L2(Ω),
ufn → uf strongly in H1

0 (Ω).

Consequently, J(f) = supg∈L∞
+

(Ω) J(g).

Theorem 2.1 assures the existence of optimal control. Moreover, we may give
conditions to guarantee the positivity of the benefit, i.e., to conclude that the quantity
supg∈L∞

+
(Ω) J(g) is strictly positive. To do so, note that if this is true, then there exists

g ∈ L∞+ (Ω) such that J(g) > 0. So, ug > 0 and σ1(−a) ≤ σ1(−a+g) < 0. Reciprocally,
if σ1(−a) < 0 is assumed, then observe that for any f ∈ L∞+ (Ω) we may write

λuff − f2 =
λ2u2

f

4
+

(
f − λuf

2

)2

.

Also, the condition σ1(−a) < 0 implies the existence of a positive f such that f =
λuf
2 .

Consequently, J(f) > 0 (see [3] for the details, where some additional estimates for
the profit are also given). Therefore,

sup
g∈L∞

+
(Ω)

J(g) > 0 ⇔ σ1(−a) < 0,

which justifies the hypothesis σ1(−a) < 0 that we will assume in many of the next
results. Now we present some results about elliptic operators of the Schrödinger type
−∆u+ q(x)u, u ∈ H1(Ω).

Lemma 2.2. Assume

q ∈ L∞(Ω), σ1(q) > 0.

Then the following results hold.
(i) For each f ∈ L2(Ω) the linear problem

−∆u+ q(x)u = f in Ω,
u = 0 on ∂Ω,

(2.7)

has a unique solution u ∈ H1
0 (Ω). Moreover, if f ∈ L∞(Ω), u ∈ C1,α(Ω) ∀ α ∈

(0, 1).
(ii) Let u1, u2 ∈ H1(Ω) satisfy u2 ≤ u1 on ∂Ω and −∆u2 + qu2 ≤ −∆u1 + qu1 in

the weak sense; i.e., ∀ φ ∈ H1
0 (Ω), φ ≥ 0,

∫
Ω

∇u2∇φ+

∫
Ω

qu2φ ≤
∫

Ω

∇u1∇φ+

∫
Ω

qu1φ.

Then u2 ≤ u1 in Ω.
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(iii) Consider p ∈ L∞(Ω), p ≥ q in Ω and f ∈ L2(Ω), f ≥ 0 in Ω. Denote by
ω(p), ω(q) the respective solutions of problems

−∆u+ p(x)u = f in Ω,
u = 0 on ∂Ω,

and (2.7). Then

ω(p) ≤ ω(q) in Ω.

Proof. The first part may be proved by applying the Lax–Milgram theorem to
the bilinear form L : H1

0 (Ω)×H1
0 (Ω) → R defined by

L(u, v) =

∫
Ω

∇u∇v +

∫
Ω

quv

and the functional ϕ : H1
0 (Ω) → R defined by

ϕ(v) =

∫
Ω

fv.

In fact, from the variational characterization of σ1(q) (see (2.3)) it follows that

∫
Ω

|∇u|2 +

∫
Ω

qu2 ≥ c

∫
Ω

|∇u|2 ∀ u ∈ H1
0 (Ω),

where

c =
σ1(q)

σ1(q) + ‖q‖∞ .(2.8)

Parts (ii) and (iii) are a direct consequence of the maximum principle (see [10] for
more details).

Remark 1. It is important to observe that if the function q in (2.7) belongs to a
subset A of L∞(Ω) such that there exist two positive constants M and µ satisfying

‖q‖∞ ≤M, σ1(q) ≥ µ ∀ q ∈ A,

then the constant c in (2.8) may be chosen independent of q ∈ A. In fact, we can take

c =
µ

µ+M
.

To do so, it is sufficient to see that

µ

µ+M
≤ σ1(q)

σ1(q) + ‖q‖∞ ∀ q ∈ A.

3. The optimality system. In this section we obtain some necessary conditions
for an element f ∈ L∞+ (Ω) to be an optimal control. This will be carried out by
deducing the optimality system satisfied for some pair (uf , Pf ) associated with f .
Among other things, it will allow us to prove, in the next section, the uniqueness of
the optimal control when the data of the problem fulfill some restrictions. We begin
by proving a property about the directional differentiability of uf with respect to f.
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Lemma 3.1. Let f ∈ L∞(Ω) such that

σ1(−a+ f) < 0.(3.9)

Then

uf+βg − uf
β

→ ξ

in H1
0 (Ω) as β → 0 for any g ∈ L∞(Ω). Further, ξ is the unique solution of the linear

problem

−∆ξ + [−a+ f + 2buf ]ξ = −guf in Ω,
ξ = 0 on ∂Ω.

(3.10)

In particular, this is true for each f ∈ L∞+ (Ω) such that J(f) > 0.
Proof. If β 6= 0 and

ξβ =
uf+βg − uf

β
,

then it satisfies

−∆ξβ + [−a+ f + b(uf+βg + uf )]ξβ = −guf+βg in Ω,
ξβ = 0 on ∂Ω.

(3.11)

Since σ1(q) is increasing with respect to q ∈ L∞(Ω) and uf is decreasing with respect
to f , for each ε ∈ R

+ we have

σ1(−a+ f + b(uf+βg + uf )) ≥ σ1(−a+ f + b(uf+ε‖g‖∞ + uf )) ≡ µ,

provided that |β| ≤ ε, where ‖ · ‖∞ is the usual norm in L∞(Ω). Also, it is possible to
take ε such that µ > 0. To see this, note that if ε is sufficiently small the continuity
of σ1(q) with respect to q ∈ L∞(Ω) and (3.9) imply

σ1(−a+ f + ε‖g‖∞) < 0.

Consequently, buf+ε‖g‖∞ is strictly positive in Ω and therefore the strict monotonicity
of σ1(q) with respect to q ∈ L∞(Ω) and the monotonicity of f → uf imply

σ1(−a+ f + b(uf+ε‖g‖∞ + uf )) > σ1(−a+ f + buf ) = 0.

Taking into account the remark after Lemma 2.2 and (3.11), there is a constant c,
independent of β ∈ (−ε, ε), such that

c‖ξβ‖2H1
0 (Ω)

≤
∫

Ω

{|∇ξβ |2 + [−a+ f + b(uf+βg + uf )]ξ
2
β}

=

∫
Ω

−guf+βgξβ ≤ K‖ξβ‖H1
0 (Ω)

for some positive constant K (see (2.4)). Thus there exists some constant d, indepen-
dent of β ∈ (−ε, ε), such that

‖ξβ‖H1
0 (Ω) ≤ d.(3.12)
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This implies uf+βg → uf in H1
0 (Ω) as β → 0. Taking into account that buf > 0

implies σ1(−a+ f + 2buf ) > σ1(−a+ f + buf ) = 0 we obtain, from the uniqueness of
solutions to (3.10), that ξβ ⇀ ξ in H1

0 (Ω). Now rewriting (3.11) in the form

−∆ξβ + [−a+ f + 2buf ]ξβ = −guf − β[g + bξβ ]ξβ in Ω,
ξβ = 0 on ∂Ω

one actually has strong convergence ξβ → ξ in H1
0 (Ω).

The previous result allows us to obtain a new step toward the derivation of the
optimality system.

Lemma 3.2. Assume

σ1(−a) < 0.(3.13)

If f ∈ L∞+ (Ω) is any optimal control, then

f =
λ

2
uf (1− Pf )

+ a.e. in Ω,(3.14)

where Pf is the unique solution of the linear problem

−∆Pf + (−a+ f + 2buf )Pf = f in Ω,
Pf = 0 on ∂Ω.

(3.15)

Proof. Let f ∈ L∞+ (Ω) be an optimal control and g ∈ L∞(Ω), so that f + βg ∈
L∞+ (Ω) as β → 0+. Then

J(f + βg)− J(f) ≤ 0.

Dividing by β, we obtain

∫
Ω

[
λ
uf+βg − uf

β
(f + βg) + λufg − 2gf − βg2

]
≤ 0.

Letting β → 0+ and using Lemma 3.1, we have

∫
Ω

(λξf + λufg − 2gf) ≤ 0,(3.16)

where ξ is defined by (3.10). Now multiplying equation (3.10) by Pf , multiplying
equation (3.15) by ξ, and integrating and subtracting both expressions, we obtain

∫
Ω

fξ +

∫
Ω

gufPf = 0.(3.17)

Combining (3.16) and (3.17), we deduce in particular

∫
Ω

g[λuf (1− Pf )− 2f ] ≤ 0 ∀ g ∈ L∞+ (Ω).

Therefore,

f ≥ λ

2
uf (1− Pf ) a.e. in Ω.(3.18)
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On the other hand, observe that if we take g = −f, then f+βg ∈ L∞+ (Ω) ∀ β ∈ (0, 1).
Consequently, in the same way as before, we obtain

∫
Ω∩{f>0}

f [λuf (1− Pf )− 2f ] =

∫
Ω

f [λuf (1− Pf )− 2f ] ≥ 0.

So, from (3.18) we must have

f =
λ

2
uf (1− Pf ) a.e. in Ω ∩ {f > 0}.(3.19)

From (3.18) and (3.19) we conclude (3.14).
Our next purpose would be to prove that if f ∈ L∞+ (Ω) is an optimal control,

then Pf ≤ 1 a.e. in Ω. To do so, the basic tool may be the assertions (ii) and (iii) of
Lemma 2.2; in fact, Pf ≥ 0 by (ii). Moreover, if one wants to find an upper bound for
Pf , the logical way must be to establish an upper bound for f and a lower bound for
the function −a+ f + 2buf . The existence of an upper bound for any optimal control
is shown in (2.6). The lower bound for the mentioned function is a direct consequence
of the continuity of the mapping uf with respect to f, as we see in the next result.

Lemma 3.3. Assume (3.13) and choose ε ∈ R
+ such that

ε <
σ1(−a+ 2bu0)

2b
.(3.20)

Then there exists a positive constant Λ0 depending on a, b, and Ω such that if

λ ≤ Λ0,(3.21)

the function Pf defined in (3.15) for any optimal control f satisfies the inequality

0 ≤ Pf ≤ λ Q a.e. in Ω,(3.22)

where Q is the unique solution of the problem

−∆Q+ (−a+ 2b(u0 − ε))Q =
a

b
in Ω,

Q = 0 on ∂Ω.
(3.23)

Proof. First, note that from (3.13) u0 is strictly positive in Ω and, therefore,
σ1(−a+ bu0) = 0. So σ1(−a+2bu0) > 0. Now take ε satisfying (3.20). Then since the
mapping L∞+ (Ω) → C1(Ω), f → uf , is continuous [2], there is a positive constant Λ0

such that

g ∈ L∞+ (Ω), g ≤ Λ0
a

b
⇒ ug ≥ u0 − ε a.e. in Ω.(3.24)

Also, from (3.20) and Lemma 2.2(i), problem (3.23) has a unique solution Q, and the
function λQ satisfies the equation

−∆(λQ) + (−a+ 2b(u0 − ε))λQ = λ
a

b
.(3.25)

Last, if λ satisfies (3.21) and f is an optimal control, from (2.6), (3.24), and statements
(ii) and (iii) of Lemma 2.2, we conclude (3.22).
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Corollary 3.4. Let us suppose (3.13) and

λ ≤ min

{
Λ0,

1

‖Q‖∞

}
≡ Λ1.(3.26)

Then the function Pf defined in (3.15) for any optimal control f satisfies the inequality

0 ≤ Pf ≤ 1 a.e. in Ω.

Now we can state the main result of this section.
Theorem 3.5. Assume (3.13) and (3.26). Then any optimal control f ∈ L∞+ (Ω)

may be expressed in the form

f =
λ

2
uf (1− Pf ),(3.27)

where the pair (uf , Pf ) ≡ (u, p) satisfies

0 ≤ p ≤ 1, u > 0 a.e. in Ω(3.28)

and the optimality system

−∆u = u

(
a−

[
b+

λ

2
(1− p)

]
u

)
in Ω,

−∆p+ p(−a+ 2bu) =
λ

2
u(1− p)2 in Ω,

u = p = 0 on ∂Ω.

(3.29)

Proof. The proof is trivial using the previous results.
The expression (3.27) for the optimal controls may be used for deducing some of

their qualitative and quantitative properties. For instance, under the hypotheses of
Theorem 3.5, all the optimal controls in L∞+ (Ω) have a suitable regularity: they must

belong to the space C1,α(Ω) for any α ∈ (0, 1). Also, if λ < Λ1, then any optimal
control f is such that f > 0 a.e. in Ω. Moreover, the uniqueness and approximation of
the optimal control will be a consequence of (3.27); they will be deduced in the next
sections.

4. Uniqueness of the optimal control. In this section we prove the unique-
ness of the optimal control when the parameter λ of the functional (1.2) is small. To
do so, we take into account that in Theorem 3.5 any optimal control is expressed in
the form (3.27) with the pair (u, p) satisfying (3.28) and the optimality system (3.29).
As a consequence, the uniqueness of the optimal control will be obtained by proving
that for λ sufficiently small the optimality system (3.29) has a unique solution (u, p)
verifying (3.28). First it is necessary to give some estimations for the solutions of
system (3.29).

Lemma 4.1. Assume (3.13) and (3.26) (ε is chosen as in (3.20)). Let (v, q) be
any solution of system (3.29) satisfying (3.28). Then

u0(x)− ε ≤ w(x) ≤ v(x) ≤ a

b
, 0 ≤ q(x) ≤ λQ(x) a.e. in Ω,(4.30)

where w is the maximal nonnegative solution of

−∆w = w

[
a− λ

2
w − bw

]
in Ω,

w = 0 on ∂Ω,
(4.31)

and Q is the unique solution of (3.23).
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Proof. As σ1(−a) < 0, the function w is in fact strictly positive a.e. in Ω. So
w = uλ

2w
, and since λ

2w ≤ Λ0
a
b (see (2.4)), from (3.24) we obtain w(x) ≥ u0(x) − ε

a.e. in Ω. On the other hand, it may be directly verified that w is a subsolution of the
first equation of the optimality system (3.29); therefore, the maximality property of
v (remember that v = uλ

2 (1−p)v) proves w(x) ≤ v(x) a.e. in Ω. The last inequality for

v, i.e., v(x) ≤ a
b , is trivial, taking into account systems (3.29) and (2.4). In relation

to the function q, note that it satisfies the problem

−∆q + q(−a+ 2bv) =
λ

2
v(1− q)2 in Ω,

q = 0 on ∂Ω.

Moreover, −a + 2bv ≥ −a + 2b(u0 − ε) and λ
2 v(1 − q)2 ≤ λab . Consequently, the

inequality q ≤ λQ is deduced from (3.25) and statements (ii) and (iii) of Lemma
2.2.

Theorem 4.2. Let us suppose (3.13), and take ε as in (3.20). Define δ0 ≡
σ1(−a+ 2b(u0 − ε)), which from (3.20) is strictly positive. Then if

λ ≤ Λ2 ≡ min




Λ1,
4δ0

4b‖Q‖∞ + 1 +
a2

b2



,(4.32)

there can be only one solution (u, p) of (3.29) satisfying (3.28).
Proof. Let (u, p) and (v, q) be two solutions of (3.29) verifying (3.28). Then

0 = −∆(u− v)− a(u− v) + b(u− v)(u+ v)

+
λ

2
(1− p)(u+ v)(u− v)− λ

2
v2(p− q)

(4.33)

and

0 = −∆(p− q)− a(p− q) + 2bu(p− q)

+2bq(u− v)− λ

2
(u− v) + λu(p− q)

+λq(u− v)− λ

2
u(p− q)(p+ q)− λ

2
q2(u− v).

(4.34)

Multiplying (4.33) by (u − v), multiplying (4.34) by (p − q), integrating on Ω, and
adding the two expressions, we obtain

0 =

∫
Ω

[
|∇(u− v)|2 − a(u− v)2 + b(u+ v)(u− v)2

+
λ

2
(1− p)(u+ v)(u− v)2 − λ

2
v2(u− v)(p− q)

]

+

∫
Ω

[
|∇(p− q)|2 − a(p− q)2 + 2bu(p− q)2

+(u− v)(p− q)

(
2bq − λ

2
+ λq − λ

2
q2
)

+
1

2
λu(2− (p+ q))(p− q)2

]
.
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Now observe that the terms

λ

2
(1− p)(u+ v)(u− v)2

and

1

2
λu(2− (p+ q))(p− q)2

in the previous equality are both nonnegative. Also, from Lemma 4.1, functions u
and v are greater than or equal to the function u0 − ε. Moreover, the variational
characterization of δ0 (see 2.3) implies

∫
Ω

|∇r|2 +

∫
Ω

(−a+ 2b(u0 − ε))r2 ≥ δ0

∫
Ω

r2 ∀ r ∈ H1
0 (Ω).(4.35)

Therefore,

0 ≥
∫

Ω

[
δ0(u− v)2 + δ0(p− q)2

+ (u− v)(p− q)

(
2bq − λ

2
+ λq − λ

2
(q2 + v2)

)](4.36)

with strict inequality if p(x) 6= q(x) in any subset of Ω with positive measure.
Also, by using the estimations (4.30) and hypothesis (4.32), we have

∣∣∣∣2bq − λ

2
+ λq − λ

2
(q2 + v2)

∣∣∣∣

=

∣∣∣∣2bq − λ

2
(1− q)2 − λ

2
v2

∣∣∣∣

≤ λ

[
2b‖Q‖∞ +

1

2

(
1 +

a2

b2

)]
≤ 2δ0.

So, the integral that appears in (4.36) is also greater than or equal to zero. This
implies p(x) = q(x) a.e. in Ω and consequently u(x) = v(x) a.e. in Ω.

The main consequence of the previous result is the uniqueness of the optimal con-
trol for the considered control problem. Before discussing this result, it is convenient
to say something more about notation. Our control problem lies in maximizing the
functional (1.2) where, for a given function f, uf means the maximal nonnegative
solution to problem (1.1) (this requires Hypothesis H, which was established at the
beginning of section 2 and assumed throughout the paper). So, this control problem
is completely defined by the domain Ω, the functions a and b, and the parameter λ.
Therefore, it is clear to denote it by PΩ,a,b,λ. The next corollary shows that when
Ω, a, and b are conveniently fixed, the problem PΩ,a,b,λ has a unique solution for λ
sufficiently small.

Corollary 4.3. Let us consider the problem PΩ,a,b,λ. Assume that the domain
Ω and the functions a and b are fixed satisfying Hypothesis H and (3.13). Then if

λ ≤ Λ2,

where Λ2 is defined in (4.32), the problem PΩ,a,b,λ has a unique optimal control.
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Remark 2. It is important to notice that the positive constant Λ2 defined in
(4.32) depends only on the domain Ω and the functions a and b; so it would be more
correct to denote it as Λ2(Ω, a, b) instead of Λ2. This observation allows us to prove
the uniqueness of the optimal control in situations different from that considered in
the previous corollary. For instance, this may be done if we fix Ω, the function a,
and the parameter λ and consider b as a constant function to be chosen in a proper
manner such as is indicated in the next corollary.

Corollary 4.4. Let us consider the problem PΩ,a,b,λ with b as a positive con-
stant function. Assume that the constant λ, the domain Ω, and the function a are fixed
satisfying Hypothesis H and (3.13). Choose Λ2(Ω, a, 1) as in Corollary 4.3. Then if

b ≥ λ

Λ2(Ω, a, 1)
,

the problem PΩ,a,b,λ has a unique optimal control.

Proof. It is sufficient to observe that

buΩ,a,b,f = uΩ,a,1,f ,(4.37)

where uΩ,a,b,f means the maximal nonnegative solution of (1.1). As a consequence,
we have that for each f ∈ L∞+ (Ω),

JΩ,a,b,λ(f) ≡
∫

Ω

(λuΩ,a,b,ff − f2) = JΩ,a,1,λb
(f).

Therefore, Corollary 4.3 may be applied to obtain the desired conclusion.

Remark 3. If b is a positive constant function, the previous identity shows that
when the quantity λ

b is sufficiently small, the optimal control is unique. This may be
carried out if b is fixed and λ is sufficiently small or if λ is fixed and b is sufficiently
large. In addition to the treated cases, it is possible to study the other case where
Ω, the function a, and the parameter λ are fixed and b is not necessarily a constant
function. It does not seem possible to study this last case, proving a relation similar
to (4.37). However, an analogous treatment to that considered in the previous results
can be done, obtaining a result about the uniqueness of the optimal control, which

involves, first, a restriction on the quantity b
b (basically, this quantity must belong to

the interval [1, 2)), and, second, b must be sufficiently large (see [5]).

Remark 4. We have proved that when λ is small enough or b is a large enough
constant, the optimality system (3.29) admits a unique solution satisfying (3.28). We
may ask about the essential implication of these two conditions on the functional J.
In fact, if the domain Ω and the functions a and b are fixed, satisfying Hypothesis H
and (3.13), there exists a different argument to prove that when λ is sufficiently small
the optimal control is unique. This argument uses the regularity of the functional J
on suitable subsets of L∞(Ω) (which contain the optimal controls), and in addition
the monotonicity of its Fréchet derivative (see final Remark 2).

5. Approximation of the optimal control. The main purpose of this section
is to give, for λ sufficiently small, a constructive scheme which provides a sequence of
functions converging to the unique solution of the optimality system (3.29) satisfying
(3.28). Due to the relation (3.27), this may be useful for approximating the optimal
control f. For clarity of the exposition, it is convenient to adopt a more general
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framework than (3.29). Consider the elliptic system

−∆u(x) = B(x, u(x), p(x)), x ∈ Ω,
−∆p(x) = C(x, u(x), p(x)) +D(x, u(x), p(x)), x ∈ Ω,
u(x) = p(x) = 0, x ∈ ∂Ω,

(5.38)

where Ω is a bounded and regular domain in R
n, and the nonlinearities

B,C,D : Ω× R
2 → R satisfy (regularity condition):

Hypothesis H1. B,C and D are continuous with respect to (u, p) ∈ R
2 for fixed

x ∈ Ω. Moreover, ∀u, p ∈ L∞(Ω), the functions B(·, u(·), p(·)), C(·, u(·), p(·)), and
D(·, u(·), p(·)) belong to L∞(Ω).

Definition 5.1. Let u, u, p, p ∈ H1(Ω) ∩ L∞(Ω). Such functions are said to be
a system of upper-lower-solutions for system (5.38) if they verify: (a)




u(x) ≤ u(x), p(x) ≤ p(x) a.e. in Ω,

u ≤ 0 ≤ u, p ≤ 0 ≤ p in ∂Ω.

(A function v ∈ H1(Ω) is said to be less than or equal to w ∈ H1(Ω) on ∂Ω when
(v − w)+ = max{0, v − w} ∈ H1

0 (Ω).) (b) ∀φ ∈ H1
0 (Ω), φ ≥ 0,

∫
Ω

∇u · ∇φ ≥
∫

Ω

B(x, u, p)φ,

∫
Ω

∇u · ∇φ ≤
∫

Ω

B(x, u, p)φ,

∫
Ω

∇p · ∇φ ≥
∫

Ω

C(x, u, p)φ+

∫
Ω

D(x, u, p)φ,

∫
Ω

∇p · ∇φ ≤
∫

Ω

C(x, u, p)φ+

∫
Ω

D(x, u, p)φ.

Also, we will assume (monotonicity condition) the following hypothesis.

Hypothesis H2. ∃M > 0 such that the function B(x, u, p)+Mu is increasing in u
and the functions C(x, u, p) + M

2 p, D(x, u, p) + M
2 p are increasing in p for (x, u, p) ∈

Ω×[inf ess u, sup ess u]×[inf ess p, sup ess p]. Moreover, functions B,C, and D satisfy
the following monotonicity properties with respect to the other variables: B(x, u, p) is
increasing in p, the function C(x, u, p) is decreasing in u, and the function D(x, u, p)
is increasing in u for (x, u, p) ∈ Ω× [inf ess u, sup ess u]× [inf ess p, sup ess p].

Observe that if C ≡ 0, we have a system of cooperative type, whereas if D ≡ 0,
we have a system of predator–prey type. For our purpose, the most interesting case is
when C and D are both nonidentically zero as happens with system (3.29). For this
kind of system, we show the next result whose proof may be carried out following the
ideas contained in [4] and [7, Chapter V].

Theorem 5.2. Consider system (5.38) under the Hypotheses H1 and H2. Let us
suppose that ∃u, u, p, p ∈ H1(Ω)∩L∞(Ω), a system of upper–lower solutions for (5.38).
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Define by induction the sequences {un}, {un}, {pn}, {pn}, as

u1 = u, u1 = u, p1 = p, p1 = p,

−∆un +Mun = B(x, un−1, pn−1) +Mun−1 in Ω,
un = 0 on ∂Ω,

−∆un +Mun = B(x, un−1, pn−1) +Mun−1 in Ω,
un = 0 on ∂Ω,

−∆pn +Mpn = C(x, un−1, pn−1) +
M

2
pn−1 +D(x, un−1, pn−1) +

M

2
pn−1 in Ω,

pn = 0 on ∂Ω,

−∆pn +Mpn = C(x, un−1, p
n−1) +

M

2
pn−1 +D(x, un−1, pn−1) +

M

2
pn−1 in Ω,

pn = 0 on ∂Ω.

Then the sequence of functions defined above satisfy the order relation

u1 ≤ u2 ≤ · · · ≤ un ≤ un ≤ un−1 ≤ · · · ≤ u1,
p1 ≤ p2 ≤ · · · ≤ pn ≤ pn ≤ pn−1 ≤ · · · ≤ p1

for all x ∈ Ω and

un ↗ u∗, un ↘ u∗, pn ↗ p∗, pn ↘ p∗

(pointwise), where u∗, u∗, p∗, p∗ belong to C1,α(Ω) for any α ∈ (0, 1) and satisfy the
system

−∆u∗ = B(x, u∗, p∗) in Ω,
−∆u∗ = B(x, u∗, p∗) in Ω,

−∆p∗ = C(x, u∗, p∗) +D(x, u∗, p∗) in Ω,
−∆p∗ = C(x, u∗, p∗) +D(x, u∗, p∗) in Ω,

u∗ = u∗ = p∗ = p∗ = 0 on ∂Ω.

(5.39)

Moreover, any solution (u, p) of (5.38) with the property

u ≤ u ≤ u, p ≤ p ≤ p,(5.40)

must satisfy, for each n ∈ N,

un ≤ u ≤ un, pn ≤ p ≤ pn,

and consequently

u∗ ≤ u ≤ u∗, p∗ ≤ p ≤ p∗.

Remark 5. Observe that (u∗, u∗, p∗, p∗) is also a solution of (5.39). So, if we are
able to prove that there is only one solution (u, v, p, q) of (5.39) satisfying

u ≤ u ≤ u, u ≤ v ≤ u,
p ≤ p ≤ p, p ≤ q ≤ p,

(5.41)
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then we must have u∗ = u∗, p∗ = p∗, and therefore any solution of (5.38) with the
property (5.40) must be (u∗, p∗). This is what happens in our optimal control problem
as we are going to see next.

First, we assume all the assumptions of Theorem 4.2. Second, with the objective
of applying Theorem 5.2 to system (3.29), we choose

B(x, u, p) = u

(
a−

[
b+

λ

2
(1− p)

]
u

)
,

C(x, u, p) = p(a− 2bu),

D(x, u, p) =
λ

2
u(1− p)2.

Then Hypothesis H clearly implies Hypothesis H1. Also, a valid system of upper–lower
solutions as in Definition 5.1 is

u = w, u =
a

b
, p = 0, p = λQ,

where w and Q are defined in (4.31) and (3.23), respectively.
On the other hand, Hypothesis H2 holds also for a convenient M, because the

functions B,C, and D are of class C1 with respect to (u, p). Consequently, Theorem
5.2 may be applied to system (3.29), obtaining

−∆u∗ = u∗

(
a−

[
b+

λ

2

]
u∗ +

λ

2
p∗u∗

)
in Ω,

−∆u∗ = u∗
(
a−

[
b+

λ

2

]
u∗ +

λ

2
p∗u∗

)
in Ω,

−∆p∗ = (a− 2bu∗)p∗ +
λ

2
u∗(1− p∗)2 in Ω,

−∆p∗ = (a− 2bu∗)p∗ +
λ

2
u∗(1− p∗)2 in Ω,

u∗ = u∗ = p∗ = p∗ = 0 on ∂Ω.

(5.42)

It happens that for λ sufficiently small, the previous system has a unique solution
(u, v, p, q) satisfying (5.41), so that the conclusions that were exposed in Remark 5
may be applied. In fact, we have the following theorem.

Theorem 5.3. As in Theorem 4.2, let us suppose (3.13) and take ε as in (3.20).
Define δ0 ≡ σ1(−a+ 2b(u0 − ε)). Then if

λ ≤ Λ3 ≡ min

{
Λ2,

δ0

2b‖Q‖∞
,

2δ0b
2

b2 + a2

}
,

there can be only one solution (u, v, p, q) of (5.42) satisfying (5.41).
Proof. We use ideas similar to those of Theorem 4.2. To do so, let (u, v, p, q),

(U, V, P,Q) be two solutions of (5.42) verifying (5.41). Then

−∆(u− U)− a(u− U) +

(
b+

λ

2

)
(u2 − U2)− λ

2
(pu2 − PU2) = 0

or, equivalently,

−∆(u− U)− a(u− U) +

(
b+

λ

2

)
(u+ U)(u− U)

−λ
2
u2(p− P )− λ

2
P (u2 − U2) = 0.
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Multiplying the previous expression by u− U and integrating on Ω, we have

0 =

∫
Ω

[
|∇(u− U)|2 − a(u− U)2 + b(u+ U)(u− U)2

+
λ

2
(u+ U)(u− U)2 − λ

2
P (u+ U)(u− U)2

−λ
2
u2(p− P )(u− U)

]
.

Analogously, we prove

0 =

∫
Ω

[
|∇(v − V )|2 − a(v − V )2 + b(v + V )(v − V )2

+
λ

2
(v + V )(v − V )2 − λ

2
Q(v + V )(v − V )2

−λ
2
v2(q −Q)(v − V )

]
.

In the same way, we have

−∆(p− P )− a(p− P ) + 2b(vp− V P )

−λ
2
(u− U) + λ(up− UP )− λ

2
(up2 − UP 2) = 0

(5.43)

or, equivalently,

−∆(p− P )− a(p− P ) + 2bv(p− P )

+2bP (v − V )− λ

2
(u− U) + λu(p− P )

+λP (u− U)− λ

2
u(p+ P )(p− P )− λ

2
P 2(u− U) = 0.

Multiplying by (p− P ) and integrating on Ω, we have the result

0 =

∫
Ω

[
|∇(p− P )|2 − a(p− P )2 + 2bv(p− P )2

+2bP (v − V )(p− P )− λ

2
(u− U)(p− P )

+ λu(p− P )2 + λP (u− U)(p− P )

−λ
2
u(p+ P )(p− P )2 − λ

2
P 2(u− U)(p− P )

]
.

Analogously,

0 =

∫
Ω

[
|∇(q −Q)|2 − a(q −Q)2 + 2bu(q −Q)2

+2bQ(u− U)(q −Q)− λ

2
(v − V )(q −Q)

+λv(q −Q)2 + λQ(v − V )(q −Q)

−λ
2
v(q +Q)(q −Q)2 − λ

2
Q2(v − V )(q −Q)

]
.
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Now using relation (4.35) we deduce

0 ≥
∫

Ω

{
δ0[(u− U)2 + (v − V )2 + (p− P )2 + (q −Q)2]

−λ
2
[u2 + (1− P )2](p− P )(u− U)

−λ
2
[v2 + (1−Q)2](q −Q)(v − V )

+ 2bP (v − V )(p− P ) + 2bQ(u− U)(q −Q)

}
.

(5.44)

Moreover, from the hypotheses of Theorem 5.2, we obtain

∣∣∣∣λ2 [u2 + (1− P )2]

∣∣∣∣ ≤ δ0,

∣∣∣∣λ2 [v2 + (1−Q)2]

∣∣∣∣ ≤ δ0,

|2bP | ≤ δ0, |2bQ| ≤ δ0,

so that the integral which appears in (5.44) is also nonnegative; it is strictly positive
if p(x) 6= P (x) or q(x) 6= Q(x) on any subset of Ω with positive measure. Therefore,
p(x) = P (x) and q(x) = Q(x) a.e. in Ω and, consequently, u = U and v = V.

The same ideas may be developed for the case considered in Corollary 4.4.

6. Final remarks. (1) It is possible to use different control spaces from that of
L∞+ (Ω). For instance, such as is done in [9] for the case of Neumann boundary con-
ditions, we may consider equation (1.1) and the benefit-cost functional (1.2) defined
on the space of admissible controls Cρ = {g ∈ L∞(Ω) : 0 ≤ g ≤ ρ a.e. in Ω}, ρ > 0.

Trivially, Theorem 2.1 remains true, taking Cρ instead of L∞+ (Ω). Also, it may be
proved that

sup
g∈Cρ

J(g) > 0 ⇔ σ1(−a) < 0.

To do so, observe that if the profit is positive, as in section 2, σ1(−a) < 0. Reciprocally,
if σ1(−a) < 0, then u0 is strictly positive in Ω. Using the fact that the mapping
Cρ → C1(Ω), f → uf , is continuous [2], there exists some positive number ε, ε < ρ,
such that uε > 0 in Ω and

J(ε) = ε

∫
Ω

(λuε − ε|Ω|) > 0.

Last, from (2.6) we may prove the same results as in Theorems 4.2 and 5.3 concerning
the uniqueness and approximation of the optimal control, respectively, if, in addition,
we assume 0 < λab < ρ.

(2) In this remark we sketch some ideas which show the regularity of the functional
J and the monotonicity of its Fréchet derivative. This may be a different proof of the
fact that when the parameter λ is sufficiently small the optimal control is unique.

Let us begin with the following proposition.
Proposition 6.1. Let E ⊂ L∞(Ω) be the open subset defined as

E = {f ∈ L∞(Ω)/σ1(−a+ f) < 0}.(6.45)
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Then J : E → R, f → J(f), is Fréchet continuously differentiable and

J ′(f)(g) =

∫
Ω

(λξf,gf + λufg − 2fg) ∀ f ∈ E ∀ g ∈ L∞(Ω),(6.46)

where ξf,g is the function given in (3.10).
Proof. If f ∈ E and g ∈ L∞(Ω), then, as in Lemma 3.2,

J(f + βg)− J(f)

β
→
∫

Ω

(λξf,gf + λufg − 2fg) as β → 0.

If Pf is the function defined in (3.15), then

∫
Ω

fξf,g +

∫
Ω

gufPf = 0,

so that

J(f + βg)− J(f)

β
→
∫

Ω

(−λgufPf + λufg − 2fg) as β → 0.

Because of the regularity of the functions uf and Pf , the mapping L∞(Ω) → R,
g → ∫

Ω
(−λgufPf + λufg − 2fg), is linear and continuous. This proves that J is

Gateaux differentiable at any f ∈ E and that

J ′G(f)(g) =

∫
Ω

(−λufPfg + λufg − 2fg) ∀ g ∈ L∞(Ω).(6.47)

Moreover, if fn → f ∈ E, then

supg∈BL∞(Ω)(0;1)
|J ′G(fn)(g)− J ′G(f)(g)|

≤ supg∈BL∞(Ω)(0;1)

∣∣∣∣
∫

Ω

[−λ(ufnPfn − ufPf ) + λ(ufn − uf )− 2(fn − f)] g

∣∣∣∣ ,
where BL∞(Ω)(0; 1) is the closed ball in L∞(Ω) of center 0 and radius 1. Since fn → f

in L∞(Ω), we have that ufn → uf in C1(Ω) [2] and, therefore, Pfn → Pf , in C1(Ω).
Consequently,

sup
g∈BL∞(Ω)(0;1)

|J ′G(fn)(g)− J ′G(f)(g)| → 0,

and J is Fréchet continuously differentiable in E. The next step to get the monotonic-
ity of J ′ requires the parameter λ to be sufficiently small. If this is the case, then,
under the hypotheses of the previous proposition,

[
0, λ

a

b

]
L∞(Ω)

⊂ E,

and

(J ′(f)− J ′(g))(f − g)

=

∫
Ω

[(λuf (1− Pf )− 2f)(f − g)− (λug(1− Pg)− 2g)(f − g)]

∀ f, g ∈
[
0, λ

a

b

]
L∞(Ω)

.

(6.48)
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By using similar arguments to those of Lemma 3.1, it is possible to prove that if λ

is sufficiently small, the mappings u, P :
[
0, λab

]
→ L∞(Ω) are Lipschitz continuous

(to see this, it is sufficient to consider, instead of ξβ , the function ξh =
uf+h−uf
‖h‖∞ ,

with f ∈
[
0, λab

]
and h belonging to a convenient bounded subset of L∞(Ω), and

then repeat the reasoning given there). Therefore, the mapping
[
0, λab

]
L∞(Ω)

→
L∞(Ω), f → uf (1− Pf ) is Lipschitz continuous with Lipschitz constant L. Then

(J ′(f)− J ′(g))(f − g) ≤
∫

Ω

[
λL(f − g)2 − 2(f − g)2

]
,(6.49)

which proves that if λ is sufficiently small, the optimal control is unique (see (2.6)).
(3) Finally, it is interesting to point out that, a priori, the payoff functional J(f)

could seem to be well defined for every f ∈ L2(Ω). As far as we know, it is not possible
to define properly the principal eigenvalue σ1(q) for every q ∈ L2(Ω). Accordingly,
we cannot define either the solution uf or the functional J(f) if f ∈ L2(Ω) is not
bounded. This is the reason we chose a control space contained in L∞(Ω).

Acknowledgments. The authors wish to thank the referees for several impor-
tant remarks and suggestions on the original manuscript.
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Abstract. An elastic and compressible material occupies a bounded domain Ω ⊂ Rn, n ≥ 2, for
any time t ∈ [0, T ], T > 0 being given. This material is subject to a body force F : [0, T ]×Ω→ Rn

of the form F(t, x) := ϕ(t)f(x), where f : Ω→ Rn is supposed to be unknown. The evolution of the
displacement vector field is described by a Cauchy–Dirichlet problem for the linear elastodynamics
system. We study the inverse problem of identifying f by measuring the traction g exerted on a
portion Γ of the boundary ∂Ω over the time interval [0, T ]. Using exact controllability methods, we
show uniqueness and continuous dependence results. Also, we prove a representation formula for f
in terms of g.

Key words. inverse problems, exact controllability, linear elastodynamics

AMS subject classifications. 35R30, 35B37, 73C02

PII. S0363012996300288

1. Introduction. Consider an elastic and compressible material which occupies,
for any time t ∈ [0, T ], T > 0, a bounded domain Ω in R3, for instance. Set QT :=
(0, T )×Ω and suppose that the material is subject to a body force field F : QT → R3

of the form

F(t, x) := ϕ(t)f(x), (t, x) ∈ QT ,(1.1)

where ϕ : (0, T ) → R and f := (f1, f2, f3) : Ω → R3.
Denote by u := (u1, u2, u3) : QT → R3 the displacement with respect to the

unstressed state. Then, in the linear setting, the evolution of u is described by the
motion equation (see, e.g., [MH, Chap. 6, section 6.2])

%utt = ∇ · σ(u) + F in QT ,(1.2)

where % : Ω → (0,+∞) denotes the medium density, ∇· stands for the spatial di-
vergence operator, and σ(u) := [σij(u)] , i, j = 1, 2, 3, represents the stress tensor
defined by the constitutive law

σ(u) = C : ε(u).(1.3)

Here C := [Cijlk] is the elasticity tensor, ε(u) := [εlk(u)] is the linear strain, where
εlk(u) = 1

2 (ulxk + ukxl), and the colon indicates the standard product between tensors
of order 2m and tensors of order m for any m ∈ N.

Let us associate with (1.2) a set of Cauchy and Dirichlet data, i.e.,

u(0) = u0, ut(0) = u1 in Ω,(1.4)

u= h on (0, T )× ∂Ω,(1.5)
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where u0,u1 : Ω → R3 and h : (0, T ) × ∂Ω → R3 are prescribed functions. Con-
sequently, u is uniquely determined by equation (1.2) and conditions (1.4)–(1.5),
provided that the data are smooth enough (see, e.g., [MH, Chap. 6, section 6.2]).
Nevertheless, here we assume that the spatial body force f is a priori unknown. We
are thus led to consider the inverse problem of determining f (see also [BK]). Our
main aim consists in showing that f can be uniquely identified by a boundary traction
exerted on a portion Γ of the boundary ∂Ω over the time interval [0, T ], provided that
both T > 0 and the two-dimensional Lebesgue measure of Γ, say meas Γ, are large
enough. To be more precise, we suppose

σ(u) : ν = g on (0, T )× Γ,(1.6)

where ν := (ν1, ν2, ν3) : ∂Ω → R3 stands for the outward normal vector field to
∂Ω, g := (g1, g2, g3) : (0, T ) × Γ → R3 is the measured traction, and Γ ⊂ ∂Ω is
prescribed. Then, our inverse problem can be formulated thus.

Problem (P1). Find f from g, provided that u fulfills (1.2) and (1.4)–(1.6).
Concerning (P1), we are able to prove that, for T and meas Γ large enough,
(i) the mapping G : f 7→ g has a Lipschitz continuous inverse;
(ii) f can be reconstructed by means of the eigenfunctions associated with the

linear operator −%−1∇ · σ(·) which satisfy homogeneous Dirichlet boundary
conditions;

(iii) the range of the adjoint operator G∗ can be partially characterized.
All these results are obtained by extending the technique devised in [Y] to deal

with the wave equation. This approach bears upon exact controllability methods
presented in [L]. The plan goes as follows. In section 2, some basic preliminary
results are introduced. Section 3 is devoted to stating our theorems rigorously. They
are then proved in sections 4, 5, and 6. Finally, a proof of a basic technical lemma is
given in section 7.

2. Some preliminary results. Here and below, Ω ⊂ Rn, n ≥ 2, is an open,
bounded, and connected subset with a boundary ∂Ω of class C2 (see Remark 2.1
below, however). Just for the sake of simplicity, we deal with an isotropic material.
Therefore, relationship (1.3) becomes

σ(u) = λTr ε(u)δ + 2µε(u),(2.1)

where Tr ε denotes the trace of the linear strain tensor, while δ indicates the Kronecker
tensor.

Concerning %, λ, and µ, we assume

%, λ, µ ∈ C1(Ω),(2.2)

%≥ %0, µ ≥ µ0, λ+ µ ≥ α0 in Ω,(2.3)

where %0, µ0, and α0 are positive constants.
Also, we take (cf. (1.5))

h ≡ 0(2.4)

and set H := (L2(Ω))n, V := (H1
0 (Ω))n, V ′ := (H−1(Ω))n. From now on, 〈·, ·〉 stands

for the duality pairing between V ′ and V, while (·, ·)X , X being a real Hilbert space,
indicates the natural inner product in X. If, in particular, X = Rn, then we set
(·, ·) := (·, ·)Rn . In addition, the symbol D(Θ), Θ ⊆ Rn being an open set, denotes
the space of C∞ functions having compact support in Θ and taking values in Rn.
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We first state a couple of results about the well-posedness of the Cauchy–Dirichlet
problem for the elastodynamic system. Their proofs can be derived arguing, e.g., as
in [L, Chap. I, sections 3 and 4] (see also [LLT, section 4]).

Let

F∈ L1(0, T ;H),(2.5)

u0 ∈ V,(2.6)

u1 ∈ H,(2.7)

and consider the following problem.
Problem (P2). Find u such that

u∈ C1([0, T ];H) ∩ C0([0, T ];V ),(2.8)

uν := (∇u, ν) ∈ L2(0, T ;L2(∂Ω;Rn)),(2.9)

%utt = ∇ · σ(u) + F in V ′, a.e. in (0, T ),(2.10)

u(0) = u0, ut(0) = u1 a.e. in Ω.(2.11)

We have the following theorem.
Theorem 2.1. Let the assumptions (2.1)–(2.7) hold. Then Problem (P2) admits

a unique solution. Moreover, there exists a positive constant Λ0 such that

‖ u‖C1([0,T ];H) + ‖u‖C0([0,T ];V ) + ‖uν‖L2(0,T ;L2(∂Ω;Rn))(2.12)

≤ Λ0

{‖F‖L1(0,T ;H) + ‖u0‖V + ‖u1‖H
}
.

Here Λ0 only depends on Ω, T, %, λ, and µ.
Strengthening the assumptions (2.5)–(2.7), i.e., assuming

F∈W 1,1(0, T ;H),(2.13)

u0 ∈ V, ∇ · σ(u0) ∈ H,(2.14)

u1 ∈ V,(2.15)

one gets from Theorem 2.1 the following regularity result (cf. also [Y, Appendix]).
Theorem 2.2. Let the assumptions (2.1)–(2.4) and (2.13)–(2.15) hold. Then the

unique solution to Problem (P2) satisfies

u∈ C2([0, T ];H) ∩ C1([0, T ];V ),(2.16)

uν ∈ H1(0, T ;L2(∂Ω;Rn)),(2.17)

and therefore equation (2.10) is fulfilled almost everywhere in QT . Also, one can find
a positive constant Λ1 such that

‖u‖C2([0,T ];H) + ‖u‖C1([0,T ];V ) + ‖uν‖H1(0,T ;L2(∂Ω;Rn))(2.18)

≤ Λ1

{‖F‖W 1,1(0,T ;H) + ‖u0‖V + ‖∇ · σ(u0)‖H + ‖u1‖V
}
.

Here Λ1 only depends on Ω, T, %, λ, and µ.
We now state some results from exact controllability via the Hilbert uniqueness

method (HUM) (cf., e.g., [L]). The first one is a technical lemma whose proof can be
found in section 7. This lemma generalizes the inverse inequality proved in [L, Chap.
IV, section 1].

Let x0 ∈ Rn and set (cf. also [L, Chap. I, section 5])

m(x) := x− x0 ∀x ∈ Rn,(2.19)
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Γ +(x0) := {x ∈ ∂Ω : (m(x), ν(x)) > 0} ,(2.20)

R(x0) := ‖m‖(L∞(Ω))n ,(2.21)

Ω−
% (x0) := {x ∈ Ω : (∇%(x),m(x)) < 0} ,(2.22)

Ω+
λ (x0) := {x ∈ Ω : (∇λ(x),m(x)) > 0} .(2.23)

For the sake of simplicity, we assume that µ is constant, i.e.,

µ ≡ µ0 in Ω.(2.24)

However, the result we are going to state can also be proved when µ fulfills (2.2)–
(2.3) and is not necessarily constant, provided that condition (2.26) below is suitably
modified (cf. [I]; see also [TB]).

Besides, indicate by dΣ the (n − 1)-dimensional Lebesgue measure, while | · |
denotes either the euclidean norm in Rn or the norm defined by

|A| :=
 n∑
i,j=1

|aij |2
1/2

,

where A := [aij ] is any n× n real matrix.
One can prove the following lemma.
Lemma 2.3. Let the assumptions (2.1)–(2.4) and (2.6)–(2.7) hold. Moreover,

assume

F≡ 0,(2.25)

R0 := R(x0)

(∥∥∥∥∇λλ
∥∥∥∥

(L∞(Ω+
λ

(x0)))n
+

∥∥∥∥∇%%
∥∥∥∥

(L∞(Ω−% (x0)))n

)
< 1,(2.26)

T> 2γ−1(%0µ0)
−1/2R(x0)‖%‖L∞(Ω),(2.27)

where

γ := 1−R0.(2.28)

Then

R (x0)

∫
(0,T )×Γ+(x0)

[
µ|∇u|2 + (λ+ µ)|∇ · u|2] dtdΣ(2.29)

≥ 2
(
γT − 2(%0µ0)

−1/2R(x0)‖%‖L∞(Ω)

)
E0,

where u is the unique solution to (P2) and

E0 :=
1

2

∫
Ω

[
µ|∇u0|2 + (λ+ µ)|∇ · u0|2 + %|u1|2

]
dx.(2.30)

Taking advantage of Theorem 2.1, we obtain an adapted version of [L, Chap. I,
section 4, Théo. 4.2], as follows.

Theorem 2.4. Let the assumptions (2.1)–(2.3) hold. Then, for any {z0, z1, ṽ} ∈
H × V ′ × L2(0, T ;L2(∂Ω;Rn)), there exists a unique z such that

z ∈ C1([0, T ];V ′) ∩ C0([0, T ];H),(2.31) ∫
QT

(%z, r)dtdx = −(z0,qt(0))H + 〈z1,q(0)〉(2.32)

−
∫

(0,T )×∂Ω

(ṽ, σ(q) : ν)dΣdt ∀ r ∈ C0([0, T ]; (H2(Ω))n ∩ V ),
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where q ∈ C0([0, T ]; (H2(Ω))n ∩ V ) is the unique solution to

%qtt = ∇ · σ(q) + r a.e. in QT(2.33)

q(T ) = qt(T ) = 0 a.e. in Ω(2.34)

q= 0 a.e. on (0, T )× ∂Ω.(2.35)

Moreover, there is a positive constant Λ2 such that

‖ z‖C0([0,T ];H) + ‖zt‖C0([0,T ];V ′)(2.36)

≤ Λ2

{‖F‖W 1,1(0,T ;H) + ‖z0‖H + ‖z1‖V ′ + ‖v‖L2(0,T ;L2(∂Ω;Rn))

}
.

Here Λ2 only depends on Ω, T, %, λ, and µ.
The proof is as in [L, Chap. I, section 4, pp. 47–50].
Finally, on account of Lemma 2.3 and Theorem 2.4, we can deduce an extension

of [L, Chap. IV, section 1, Théo. 1.1] as follows.
Theorem 2.5. Let the assumptions (2.1)–(2.3), (2.24)–(2.27) hold. Then, there

exists a mapping Π̃ : H×V ′ → L2(0, T ;L2(Γ+(x0);R
n)) such that the unique solution

z satisfying (2.31)–(2.32) with

v :=

{
Π̃(u0,u1) on (0, T )× Γ+(x0),
0 on (0, T )× ∂Ω\Γ+(x0)

fulfills

z(T ) ≡ zt(T ) ≡ 0.(2.37)

Moreover, there holds

‖Π̃(z0, z1)‖L2(0,T ;L2(Γ+(x0);Rn)) ≤ Λ3 {‖z0‖H + ‖z1‖V ′}(2.38)

for some positive constant Λ3 which only depends on Ω, x0, T, %, λ, and µ.
Proof. The existence of a control v ∈ L2(0, T ;L2(Γ+(x0);Rn)) such that (2.37)

holds can be obtained via the HUM method as in [L, Chap. IV, section 1, pp. 227–
228], by using our Lemma 2.3, which generalizes the inverse inequality proved in [L,
Chap. IV, section 1, pp. 225–227]. Estimate (2.38) derives from the construction of v
(see [L, Chap. I, section 2 and Chap. II, section 2]).

Remark 2.1. All the previous results still hold when Ω is open, bounded, and
convex (see [L, section 6, Chap. I]).

Remark 2.2. It is worth observing that, in some cases, condition (2.26) is not so
restrictive on λ and %. Consider, for instance, a layered medium with respect to x3,
which occupies a cube in R3 (cf. Remark 2.1). Then λ and % only depend on the
depth variable x3. If, e.g., λ is nondecreasing and % is nonincreasing, then x0 can be
chosen in such a way that Ω+

λ (x0) = Ω−% (x0) ≡ ∅. Therefore, we have γ = 1 (cf. (2.26)
and (2.28)).

3. Main results. Taking advantage of the linear setting, we make a further
harmless simplification letting (cf. (1.4))

u0 = u1 ≡ 0.(3.1)

Moreover, we suppose

ϕ ∈ C1([0, T ]).(3.2)



IDENTIFYING A SPATIAL BODY FORCE 1195

Then, from Theorems 2.1 and 2.2, one deduces the following proposition.
Proposition 3.1. Let the assumptions (2.1)–(2.4), (3.1)–(3.2) hold. Then, for

any f ∈ H there exists a unique u which fulfills (2.16)–(2.17) and solves

%utt = ∇ · σ(u) + ϕf a.e. in QT ,(3.3)

u(0) = ut(0) = 0 a.e. in Ω.(3.4)

In addition, one has

‖ u‖C2([0,T ];H) + ‖u‖C1([0,T ];V ) + ‖uν‖H1(0,T ;L2(∂Ω;Rn))(3.5)

≤ Λ1‖ϕ‖W 1,1(0,T )‖f‖H .
Consider Γ ⊆ ∂Ω such that measΓ > 0. Thanks to Proposition 3.1, we can

introduce a mapping G : H → H1(0, T ;L2(Γ;Rn)) by setting

G(f) := σ(u(f)) : ν on (0, T )× Γ,(3.6)

where u(f) is the unique solution to (3.3)–(3.4) given by Proposition 3.1. Note that,
owing to (2.4),

uixj = uiννj , 1 ≤ i, j ≤ n.(3.7)

Hence G is Lipschitz continuous because of (3.5).
Our first result concerns the invertibility of G.
Theorem 3.2. Let the assumptions (2.1)–(2.4), (2.24), (2.26)–(2.27), (3.1)–(3.2)

hold. Assume, moreover,

ϕ(0) 6= 0,(3.8)

Γ+(x0) ⊆ Γ.(3.9)

Then, for any g ∈ H1(0, T ;L2(Γ;Rn)), there exists at most a unique f ∈ H such that
G(f) = g. Also,

‖f‖H ≤ Λ4‖g‖H1(0,T ;L2(Γ;Rn)),(3.10)

where Λ4 is a positive constant depending only on Ω, x0, T, %, λ, µ, ϕ.
In other words, Theorem 2.1 gives some sufficient conditions which ensure the

existence of G−1 and its (Lipschitz) continuity. This result extends [Y, Thm. 1].
We are going to state now a generalization of [Y, Thm. 2], i.e., a reconstruction

formula for the unknown function f in terms of g and the eigenfunctions of the linear
operator (cf. (2.1)–(2.3))

E(u) := −%−1∇ · σ(u), u ∈ D(E) := {w ∈ V : E(w) ∈ H} .(3.11)

Note that, owing to (2.2)–(2.4) and by the regularity of ∂Ω, we haveD(E) ≡ (H2(Ω))n∩
V.

To state our second result we need some preliminary considerations. Taking
advantage of Theorem 2.4, one can construct a mapping Π : H → L2(0, T ;L2(Γ;Rn))
by setting (see [Y])

v = Π(z0) := Π̃(z0,0) on (0, T )× Γ(3.12)

for any z0 ∈ H.
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Also, we introduce the linear bounded operator (see [Y]) Φ : L2(0, T ;L2(Γ;Rn)) →
H1(0, T ;L2(Γ;Rn)) defined as

ξ := Φ(η),(3.13)

where ξ is the unique solution in H1(0, T ;L2(Γ;Rn)) to the linear system of Volterra
integrodifferential equations

(3.14)

ϕ(0)ξt(t, ·) +

∫ T

t

[ϕ′(s− t)ξt(s, ·) + ϕ(s− t)ξ(s, ·)] ds = η(t, ·) a.e. in (0, T )× Γ

such that ξ(0, ·) = 0 almost everywhere on Γ.
Before stating the reconstruction formula, it is worth noting that the linear op-

erator E : D(E) → H (see (3.11)) is V -coercive and self-adjoint with respect to the
measure %(x)dx; then its eigenvalues are all positive with finite multiplicity and they
form a nondecreasing sequence {λk}, k ∈ N, where any λk appears l times, l being
its multiplicity. Besides, we recall that the corresponding eigenfunctions {wk} can be
chosen in order to constitute an orthonormal basis of H% := (L2(Ω; %(x)dx))n, that is,

(wk,wh)H%
:=

∫
Ω

(wk(x),wh(x))%(x)dx = δkh.

We have the following theorem (cf. [Y, Thm. 2]).
Theorem 3.3. Let the assumptions (2.1)–(2.4), (2.24), (2.26)–(2.27), (3.1)–(3.2),

and (3.8)–(3.9) hold. Moreover, let

g ∈ H1(0, T ;L2(Γ;Rn))(3.15)

and set

ξk := −Φ(Π(wk)) ∀ k ∈ N.(3.16)

If there exists f ∈ H such that G(f) = g, then

(f ,wk)H%
= (g, ξk)H1(0,T ;L2(Γ;Rn)) ∀ k ∈ N.(3.17)

Therefore,

f =
∞∑
h=1

(g, ξk)H1(0,T ;L2(Γ;Rn))wk.(3.18)

The final result concerns the characterization of the range R(G∗) of the adjoint
operator G∗, when G is regarded as a linear operator from H to L2(0, T ;L2(Γ;Rn)).
Indeed, we prove the following theorem (cf. [Y, Thm. 3]).

Theorem 3.4. Let the assumptions (2.1)–(2.4), (2.24), (2.26)–(2.27), (3.1)–(3.2),
and (3.8)–(3.9) hold. Then

V ⊂ R(G∗) :=
{G∗(g), g ∈ L2(0, T ;L2(Γ;Rn))

} ⊂ (H1/2(Ω))n.(3.19)

Remark 3.1. Theorem 3.3 improves [Y, Thm. 3] and it turns out to be useful to
construct a Tikhonov regularization procedure for determining reasonable approxima-
tions of f which converge to f in H (see [Y, section 3]).
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4. Proof of Theorem 3.2. Suppose there is an f ∈ H corresponding to g ∈
H1(0, T ;L2(∂Ω;Rn)) (cf. (3.6)).

In Problem (P2) take

F≡ 0,(4.1)

u0 ≡ 0,(4.2)

u1 ≡ f .(4.3)

Then, by Theorem 2.1, we infer that (P2) admits a unique solution w. Moreover, by
Lemma 2.3 and (3.7), we have

‖f‖H ≤ Λ5‖wν‖L2(0,T ;L2(Γ;Rn))(4.4)

for some positive constant Λ5 depending on Ω, x0, T, %, λ, µ.
Now set

ũ := ϕ ∗w in QT ,(4.5)

where ∗ stands for the usual time convolution product over the interval (0, t). Thanks
to (3.2), one has

ũ ∈ C2([0, T ];H) ∩ C1([0, T ];V ).(4.6)

Besides, one can easily check that ũ satisfies (2.16)–(2.17) and solves (3.3)–(3.4).
Therefore, Proposition 3.1 implies ũ ≡ u.

Observe that (cf. (3.2) and (4.5))

ut = ϕ(0)w + ϕ′ ∗w in QT .(4.7)

Then, owing to (3.8), standard arguments (see [Y, section 4]) allow us to deduce from
(4.7)

‖wν‖L2(0,T ;L2(Γ;Rn)) ≤ Λ6‖(ut)ν‖L2(0,T ;L2(Γ;Rn)),(4.8)

where Λ6 is a positive constant which only depends on ϕ(0) and ‖ϕ′‖C0([0,T ]).
Combining (4.4) and (4.8), one gets

‖f‖H ≤ Λ7‖(ut)ν‖L2(0,T ;L2(Γ;Rn)),(4.9)

where Λ7 := Λ5Λ6.
On the other hand, recalling (2.1) and [L, Chap. IV, section 2, eq. (2.2)], from

(3.6) and (3.7) we deduce the bound

‖uν‖H1(0,T ;L2(Γ;Rn)) ≤ Λ8‖g‖H1(0,T ;L2(Γ;Rn))(4.10)

for some positive constant Λ8 depending only on λ and µ.
Finally, a combination of (4.9) and (4.10) yields estimate (3.10) which, in partic-

ular, implies the uniqueness of f in H.

5. Proof of Theorem 3.3. The argument is based on an identity for the eigen-
functions wk of the linear operator E (cf. (3.11)). To be more precise, we have the
following lemma (see [Y, section 5]).

Lemma 5.1. Let the assumptions (2.1)–(2.4), (2.24), (2.26)–(2.27), and (3.9)
hold. Then (

λ
−1/2
k sin(

√
λkt)(σ(wk) : ν),−Π(wh)

)
L2(0,T ;L2(Γ;Rn))

= δkh(5.1)

for any k, h ∈ N.
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Let us postpone the proof of Lemma 5.1.
Consider the linear operator K : L2(0, T ;L2(Γ;Rn)) → H1(0, T ;L2(Γ;Rn)) de-

fined by (cf. also (3.2) and (4.5))

K(ξ) := ϕ ∗ ξ.(5.2)

One can easily check that the adjoint operator K∗ : R(K) ⊆ H1(0, T ;L2(Γ;Rn)) →
L2(0, T ;L2(Γ;Rn)) is given by (cf. (3.14))

K∗(ξ)(t, ·) = ϕ(0)ξt(t, ·) +

∫ T

t

[ϕ′(s− t)ξt(s, ·) + ϕ(s− t)ξ(s, ·)]ds(5.3)

almost everywhere in (0, T )× Γ.
Hence, recalling the linear operator Φ (see (3.13)–(3.14)), one has

K∗(Φ(η)) = η(5.4)

for any η ∈ L2(0, T ;L2(Γ;Rn)).
On account of (1.6), (3.15)–(3.16), (4.5), and (5.4), we obtain

(g, ξh)H1(0,T ;L2(Γ;Rn)) = (σ(u) : ν, ξh)H1(0,T ;L2(Γ;Rn))(5.5)

= (K(σ(w) : ν),Φ(−Π(wh)))H1(0,T ;L2(Γ;Rn))

= (σ(w) : ν,K∗(Φ(−Π(wh))))L2(0,T ;L2(Γ;Rn))

= (σ(w) : ν,−Π(wh))L2(0,T ;L2(Γ;Rn))

for any h ∈ N.
Observe that (cf. (4.1)–(4.3))

w =
∞∑
k=1

(f ,wk)H%λ
−1/2
k sin(

√
λkt)wk.(5.6)

Then, recalling (2.1) and taking advantage of (3.7), from (5.6) we get

σ(w) : ν =
∞∑
k=1

(f ,wk)H%λ
−1/2
k sin(

√
λkt) (σ(wk) : ν) ,(5.7)

where the series converges in L2(0, T ;L2(Γ;Rn)).
Thanks to (5.1) and (5.7), we derive

( σ(w) : ν,−Π(wh))L2(0,T ;L2(Γ;Rn))(5.8)

=
∞∑
k=1

(f ,wk)H%
(λ
−1/2
k sin(

√
λkt)(σ(wk) : ν),−Π(wh))L2(0,T ;L2(Γ;Rn))

= (f ,wh)H%
∀h ∈ N.

Finally, (5.5) and (5.8) yield (3.17) and, consequently, (3.18).
Proof of Lemma 5.1. Let us observe that, thanks to Theorem 2.4, for any given

ṽ ∈ L2(0, T ;L2(Γ;Rn)), we can find a unique function z̃ satisfying (2.31), (2.37), and
(cf. (2.32)–(2.36))∫

QT

(%z̃, r)dxdt = −
∫

(0,T )×Γ

(ṽ, σ(q̃) : ν)dΣdt ∀ r ∈ C0([0, T ];D(E)),(5.9)
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where q̃ ∈ C0([0, T ];D(E)) is the unique solution to

%q̃tt = ∇ · σ(q̃) + r a.e. in QT ,(5.10)

q̃(0) = q̃t(0) = 0 a.e. in Ω,(5.11)

q̃ = 0 a.e. on (0, T )× ∂Ω.(5.12)

Note that the roles of 0 and T are exchanged with respect to Theorem 2.4.
Then, provided that z̃ is smooth enough and recalling that (cf. (3.11)) ∇·σ(wk) =

−λk%wk, we obtain the chain of equalities∫ T

0

λ
−1/2
k sin(

√
λkt)(wk,∇ · σ(z̃))Hdt(5.13)

=

∫ T

0

λ
−1/2
k sin(

√
λkt)(wk, z̃tt)H%

dt

=

(
wk,

∫ T

0

λ
−1/2
k sin(

√
λkt)z̃ttdt

)
H%

=

(
wk,−

∫ T

0

cos(
√
λkt)z̃tdt

)
H%

=

(
wk, z̃(0)− λk

∫ T

0

λ
−1/2
k sin(

√
λkt)z̃dt

)
H%

= (wk, z̃(0))H%
+

∫ T

0

λ
−1/2
k sin(

√
λkt)(∇ · σ(wk), z̃)Hdt.

From (5.13), we deduce the identity∫ T

0

λ
−1/2
k sin(

√
λkt) [(wk,∇ · σ(z̃))H − (z̃,∇ · σ(wk))H ] dt = (wk, z̃(0))H%

.(5.14)

Recalling Theorem 2.5 and (3.12), we can choose z0 = wh, z1 = 0, ṽ = Π(wh).
Then, denoting by z̃ the solution to (2.32) associated with {z0, z1, ṽ}, we infer that z̃
solves (5.9) as well. Hence identity (5.14) and Green’s formula entail (5.1).

The present argument can be made rigorous by means of a standard approxima-
tion procedure based on well-known density results (cf. [Y, section 5]).

6. Proof of Theorem 3.4. Let us consider the linear operator F : H →
L2(0, T ;L2(Γ;Rn)) defined by

F(f) := σ(w) : ν,(6.1)

where w is the unique solution to Problem (P2) in the assumptions (4.1)–(4.3). Note
that F is bounded owing to Theorem 2.1 and (3.7).

Recalling (3.6), (4.5), and (5.2), one realizes that

G(f) = K(F(f))(6.2)

regarding K as a linear operator from L2(0, T ;L2(Γ;Rn)) into itself. Hence, from
(6.2) it follows that

G∗ = F∗K∗(6.3)
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so that

R(G∗) ≡ {F∗(ξ), ξ ∈ R(K∗)} .(6.4)

On the other hand, as K : L2(0, T ;L2(Γ;Rn)) → L2(0, T ;L2(Γ;Rn)), we have

K∗(η)(t, ·) =

∫ T

t

ϕ(s− t)η(s, ·)ds a.e. on (0, T )× Γ.(6.5)

Therefore (cf. also (3.2)),

R(K∗) ≡ {
ξ ∈ H1(0, T ;L2(Γ;Rn)) : ξ(T, ·) = 0

}
.(6.6)

Consequently, combining (6.4) and (6.6), we get

R(G∗) ≡ {F∗(ξ), ξ ∈ H1(0, T ;L2(Γ;Rn)) : ξ(T, ·) = 0
}
.(6.7)

Let v ∈ L2(0, T ;L2(Γ;Rn)) and consider the function z̃ = z̃(v) solving (5.9).
Observe that, by formal computations (cf. (5.10)),∫ T

0

(∇ · σ(z̃),w)Hdt =

∫ T

0

(z̃tt,w)H%
dt(6.8)

= −
∫ T

0

(z̃t,wt)H%
dt

=

∫ T

0

(z̃,wtt)H%
dt+ (z̃(0), f)H%

=

∫ T

0

(z̃,∇ · σ(w))Hdt+ (z̃(0), f)H% .

Of course, as in the previous proof of Lemma 5.1, a suitable approximation argument
is needed to make the above computations rigorous.

The chain of equalities (6.8) implies∫ T

0

[(∇ · σ(z̃),w)H − (z̃,∇ · σ(w))H ] dt = (z̃(0), f)H% ,(6.9)

and via Green’s formula, one derives (cf. also (6.1))

−(v,F(f))L2(0,T ;L2(Γ;Rn)) = (z̃(0), f)H%(6.10)

for any v ∈ L2(0, T ;L2(Γ;Rn)).
Identity (6.10) entails

F∗(v) = −%z̃(0).(6.11)

Hence, a combination of (6.7) and (6.11) yields

R(G∗) ≡ {
%z̃(v)(0), v ∈ H1(0, T ;L2(Γ;Rn)) : v(T, ·) = 0 on Γ

}
.(6.12)

The proof is now given by Lemma 6.1.
Lemma 6.1. Let the assumptions (2.1)–(2.4), (2.24), (2.26)–(2.27), and (3.9)

hold. Then

V ⊂ {
%z̃(v)(0), v ∈ H1(0, T ;L2(Γ;Rn)) : v(T, ·) = 0 on Γ

} ⊂ (H1/2(Ω))n.(6.13)
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Proof of Lemma 6.1. Let

0H1(0, T ;L2(Γ;Rn)) =
{
w ∈ H1(0, T ;L2(Γ;Rn)) : w(T, ·) = 0 on Γ

}
be a Hilbert space with the norm

‖w‖0H1 :=

(∫ T

0

∫
Γ

|wt|2dΣdt
)1/2

.(6.14)

It is straightforward to observe that ‖w‖0H1 is equivalent to

‖w‖H1(0,T ;L2(Γ;Rn)) :=

(∫ T

0

∫
Γ

|w|2 + |wt|2dΣdt
)1/2

for any w ∈ 0H1(0, T ;L2(Γ;Rn)). Denoting by X1 the dual of 0H1(0, T ;L2(Γ;Rn)),
we also have

0H1(0, T ;L2(Γ;Rn)) ↪→ L2(Γ× (0, T );Rn) ↪→ X1

with dense injections, the dual of L2((0, T )× Γ;Rn) being identified with itself.
Indicating now by X1

〈·, ·〉0H1 the duality pairing between 0H1(0, T ;L2(Γ;Rn))
and X1, we note that

X1
〈v,w〉0H1 = (v,w)L2((0,T )×Γ;Rn)(6.15)

for any v ∈ L2((0, T )× Γ;Rn) and any w ∈0 H1(0, T ;L2(Γ;Rn)).
On account of Theorem 2.4, take

z0 ∈ H, z1 ∈ V ′, ṽ ≡ 0.(6.16)

Then, Theorem 2.4 ensures the existence of a unique z satisfying (2.31)–(2.32).
Assume, for the moment,

z0 ∈ D(Ω), z1 ∈ J (Ω),(6.17)

where

J (Ω) := {z = E(w) for some w ∈ D(Ω)} ⊂ C1
c (Ω)

and C1
c (Ω) indicates the space of C1 functions taking values in Rn and having compact

support in Ω.
Consider Problem (P2) and take (cf. also (2.2) and (3.11))

F ≡ 0, u0 := −E−1(z1) ∈ C1
c (Ω), u1 := z0 ∈ D(Ω).(6.18)

Consequently, Theorem 2.1 applies and Problem (P2) admits a unique solution u
fulfilling (2.8)–(2.12). Moreover, taking advantage of (2.12) and Lemma 2.3, one can
find a pair of positive constants Λ9, Λ10 such that (cf. also (1.6), (3.7), and (4.10))

Λ9 ‖σ(u) : ν‖L2((0,T )×Γ;Rn) ≤
(‖u0‖2

V + ‖u1‖2
H

)1/2
(6.19)

≤ Λ10 ‖σ(u) : ν‖L2((0,T )×Γ;Rn) .

Here Λ9 and Λ10 depend only on Ω, x0, T, %, λ, and µ.
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A straightforward argument shows that

σ(z) : ν = (σ(u) : ν)t(6.20)

in the sense of distributions.
Let us prove that σ(z) : ν ∈ X1. Indeed, by virtue of (6.18), we have (cf. also

(6.15) and (6.20))

X1〈σ(z) : ν,w〉0H1
(6.21)

= (σ(z) : ν,w)L2((0,T )×Γ;Rn) = ((σ(u) : ν)t,w)L2((0,T )×Γ;Rn)

=

[∫
Γ

((σ(u) : ν)(t),w(t))dΣ

]T
0

− (σ(u) : ν,wt)L2((0,T )×Γ;Rn)

= − (σ(u) : ν,wt)L2((0,T )×Γ;Rn)

for any w ∈ 0H1(0, T ;L2(Γ;Rn)).
Therefore, we deduce

‖σ(z) : ν‖X1
(6.22)

= sup
{|X1〈σ(u) : ν,wt〉0H1 | ; w ∈ 0H1(0, T ;L2(Γ;Rn)), ‖w‖0H1 = 1

}
.

Observe now that (cf. (6.14)){
wt; w ∈0 H1(0, T ;L2(Γ)), ‖w‖0H1 = 1

}
=
{
w̃ ∈ L2((0, T )× Γ;Rn) : ‖w̃‖L2((0,T )×Γ;Rn) = 1

}
.

Then, from (6.22) we infer

‖σ(z) : ν‖X1
= ‖σ(u) : ν‖L2((0,T )×Γ;Rn) .(6.23)

Hence, taking (6.18) and (6.23) into account, from (6.19) we get

Λ11 ‖σ(z) : ν‖X1
≤ (‖z0‖2

H + ‖z1‖2
V ′
)1/2 ≤ Λ12 ‖σ(z) : ν‖X1

,(6.24)

where Λ11 and Λ12 are positive constants which depend on Ω, x0, T, %, λ, and µ. Here
we have used the fact that %E is an isomorphism between V and V ′ (see (3.11)) along
with the inequality

Λ13‖φ‖V ≤ ‖ρφ‖V ≤ Λ14‖φ‖V ∀φ ∈ V,(6.25)

which holds for some positive constants Λ13, Λ14 only depending on Ω and %. In fact,
the second inequality in (6.25) is straightforward by (2.2). As far as the first inequality
is concerned, it suffices to check that

‖φjxi‖L2(Ω) ≤ Λ15‖ρφ‖V , 1 ≤ i, j ≤ n, ∀φ ∈ V,(6.26)

where Λ15 is a positive constant only depending on Ω and %.
By (2.2) and (2.3), we have

‖ (ρφj)xi‖2
L2(Ω) =

∫
Ω

(ρxiφ
j + ρφjxi)

2dx

=

∫
Ω

ρ2(φjxi)
2 +

∫
Ω

ρ2
xi(φ

j)2dx+ 2

∫
Ω

ρρxiφ
jφjxidx

≥ ρ2
0‖φjxi‖2

L2(Ω) − Λ16‖φj‖2
L2(Ω) − Λ16

∫
Ω

2|φj ||φjxi |dx,
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where Λ16 is a positive constant depending on ρ. Observe now that∫
Ω

2|φj ||φjxi |dx ≤
ρ2
0

2Λ16

∫
Ω

|φjxi |2dx+
2Λ16

ρ2
0

∫
Ω

|φj |2dx.

Consequently, we get

‖ρφ‖2
V ≥ ‖(ρφj)xi‖2

L2(Ω) ≥
ρ2
0

2
‖φjxi‖2

L2(Ω) − Λ17‖φj‖2
L2(Ω)(6.27)

for some positive constant Λ17 which only depends on Ω and %.. Then, using the
Poincaré inequality and (2.3), from (6.27) we infer (6.26). Hence (6.25) holds.

Consider now z0, z1 satisfying (6.16). Recalling (6.17), since D(Ω) and J (Ω) are
dense in H and in V ′, respectively, one can find two sequences {zm0 } ⊂ D(Ω) and
{zm1 } ⊂ J (Ω) such that

‖zm0 − z0‖H → 0, ‖zm1 − z1‖V ′ → 0

as m↗ +∞. Then, proceeding as in [LLT, Rem. 2.2 and Thm. 2.3], one obtains

‖σ(z(zm0 , z
m
1 )) : ν − σ(z(z0, z1)) : ν‖H−1(0,T ;L2(Γ;Rn)) → 0

as m↗ +∞.
Hence, (6.24) holds for any z0 ∈ H and any z1 ∈ V ′. This shows that the mapping

(z0, z1) 7→ σ(z) : ν

is an isomorphism between H × V ′ and X1. Then, arguing as in [L, Théo. 6.3, Chap.
I, section 6], we deduce

V ⊂ R(G∗).
It remains to prove that

R(G∗) ⊂ (H1/2(Ω))n.(6.28)

Let v ∈ 0H1(0, T ;L2(Γ;Rn)) and consider the unique solution w̃ ∈ C0([0, T ];H)∩
C1([0, T ];V ′) to∫

QT

(%w̃, r)dtdx = −
∫

(0,T )×Γ

(vt, σ(q̃) : ν)dΣdt ∀ r ∈ C0([0, T ];D(E)),(6.29)

where q̃ ∈ C0([0, T ];D(E)) is the unique solution to (5.10)–(5.12) (see Theorem 2.4).
Then, for any t ∈ [0, T ], set

Z(t) :=

∫ t

T

w̃(s)ds a.e. in Ω.(6.30)

On account of (6.29), one easily checks that Z fulfills (5.9). Hence Z ≡ z̃(v).
Then (cf. (6.30))

z̃(v)tt ∈ C0([0, T ];V ′)

and, consequently,

∇ · σ(z̃(v)) ∈ C0([0, T ];V ′).
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On the other hand, we have

z̃(v) =

{
v on [0, T ]× Γ,
0 on [0, T ]× ∂Ω \ Γ,

and letting t = 0, one infers

∇ · σ(z̃(v))(0) ∈ V ′,

z̃(v)(0) =

{
v(0) a.e. on Γ,
0 a.e. on ∂Ω \ Γ.

As v(0) ∈ (L2(Γ))n, we conclude (cf., e.g., [KN, Part 1, Chap. 1, section 3.2, Thm.
3.2] and references therein) z̃(v)(0) ∈ (H1/2(Ω))n, i.e., (6.28).

7. Proof of Lemma 2.3. Let us recall first the energy identity (cf. (2.29))

E(t) :=
1

2

∫
Ω

[
µ|∇u(t)|2 + (λ+ µ)|∇ · u(t)|2 + %|ut(t)|2

]
dx = E0(7.1)

for any t ∈ [0, T ]. This identity is obtained by multiplying equation (2.10) by ut
and then integrating over Qt, taking (2.4), (2.24)–(2.25) into account and using the
divergence theorem. We recall that |∇u(t)|2 :=

∑n
i,j=1 |uixj (t)|2, where ∇u(t) :=

[uixj (t)]. Following [L, Chap. IV, pp. 225–227], we formally multiply both sides of
equation (2.10) by ∇u : m and integrate over QT . Recalling (2.11), (2.24), (3.7) and
integrating by parts in time, we obtain[∫

Ω

(%ut(t),∇u(t) : m)dx

]T
0

−
∫
QT

(%ut,∇ut : m)dtdx(7.2)

=

∫
QT

(∇ · σ(u),∇u : m)dtdx.

Observe now that

(%ut,∇ut : m) =
1

2
∇ · (%m|ut|2)− 1

2
[(∇%,m) + n%]|ut|2.(7.3)

Also, recalling (2.1) and (2.24), we have

∇ · σ(u) = µ∆u +∇[(λ+ µ)∇ · u],

from which we deduce

(∇ · σ(u),∇u : m) = ∇ · [A : (∇u : m)]− (B,∇(∇u : m)),(7.4)

where

A := µ(∇u)T + (λ+ µ)(∇ · u)δ, B := µ∇u + (λ+ µ)(∇ · u)δ,(7.5)

the superscript T denoting the transposition. In addition, note that

(B,∇(∇ · u : m)) =
1

2
[(λ+ µ)|∇ · u|2 + µ|∇u|2](7.6)

+
1

2
∇ · {[(λ+ µ)|∇ · u|2 + µ|∇u|2]m}

− 1

2
(∇λ,m)|∇ · u|2 +

1− n

2
[(λ+ µ)|∇ · u|2 + µ|∇u|2].
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Taking (7.1), (7.5)–(7.6) into account and using the divergence theorem, a com-
bination of (7.2) and (7.3)–(7.4) yields[∫

Ω

(
%ut(t),∇u(t) : m +

n− 1

2
u(t)

)
dx

]T
0

+ TE0(7.7)

+
1

2

∫
QT

(∇%,m)|ut|2dtdx− 1

2

∫
QT

(∇λ,m)|∇ · u|2dtdx

=
1

2

∫ T

0

∫
∂Ω

[
µ|∇u|2 + (λ+ µ)|∇ · u|2(m, ν)

]
dΣdt.

Here we have also used the formula

(A : (∇u : m), ν) = [µ|∇u|2 + (λ+ µ)|∇ · u|2](m, ν).

Arguing as in [L, Chap. I, section 5, pp. 58–59] and taking advantage of (2.3) and
(7.1), we obtain∣∣∣∣∣

[∫
Ω

(
%ut(t),∇u(t) : m +

n− 1

2
u(t)

)
dx

]T
0

∣∣∣∣∣(7.8)

≤ 2‖%‖L∞(Ω) sup
t∈(0,T )

∣∣∣∣(ut(t),∇u(t) : m +
n− 1

2
u(t)

)
H

∣∣∣∣
≤ ‖%‖L∞(Ω)‖ut‖L∞(0,T ;H)

∥∥∥∥∇u : m +
n− 1

2
u

∥∥∥∥
L∞(0,T ;H)

≤ 2R(x0)‖%‖L∞(Ω)‖ut‖L∞(0,T ;H)

(
sup

t∈(0,T )

∫
Ω

|∇u(t)|2dx
)1/2

≤ 2R(x0)‖%‖L∞(Ω)(%0µ0)
−1/2E0.

Here we have also taken into account that, using the divergence theorem, one has∥∥∥∥∇u(t) : m +
n− 1

2
u(t)

∥∥∥∥2

H

− ‖∇u(t) : m‖2
H

= (n− 1)(∇u(t) : m,u(t)) +
(n− 1)2

4
‖u(t)‖2

H

=
(n− 1)

2

∑
i,j

∫
Ω

(ui(t))2xjm
jdx+

(n− 1)2

4
‖u(t)‖2

H =
n(1− n)

2
‖u(t)‖2

H ≤ 0.

Besides, by virtue of (7.1) (cf. also (2.21)–(2.23)), we have

1

2

∫
QT

(∇%,m)|ut|2dtdx ≥ −R(x0)TE0

∥∥∥∥∇%%
∥∥∥∥

(L∞(Ω−% (x0)))n
,(7.9)

1

2

∫
QT

(∇λ,m)|∇ · u|2dtdx ≤ R(x0)TE0

∥∥∥∥∇λλ
∥∥∥∥

(L∞(Ω+
λ

(x0)))n
.(7.10)

Finally, on account of (2.20), (2.26), and (2.27), the equality (7.7) and the inequalities
(7.8)–(7.10) allow us to deduce (2.28).
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AN EXAMPLE OF A UNIVERSALLY OBSERVABLE FLOW ON THE
TORUS∗
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Abstract. In this paper we examine the question of existence of a two-dimensional universally
observable system, i.e., dynamics which are observable by every continuous nonconstant real-valued
function on the state space. We are motivated by the work of D. McMahon, who proved that a class
of three-dimensional manifolds with horocycle flow have this property. We examine this example
and are able to give sufficient conditions for a flow to be universally observable. We then use these
conditions to show the existence of a continuous universally observable flow on the torus. The proofs
involve techniques and concepts from topological dynamics and dynamical systems on the torus.

Key words. universal observability, torus, dynamical system

AMS subject classifications. 93B07, 58F25, 34C35

PII. S0363012996308417

1. Introduction. Determining the behavior of a dynamical system from some
scalar observation of the system has been studied quite extensively in the literature
(see [19], [4]). In particular, criteria for observability of nonlinear systems are given,
that is, criteria about which systems will be observable by given observation functions
and what types of observation functions observe a given system. We will consider the
general setting of a Hausdorff space M with a continuous flow φ. We ask if a given
real-valued function h of the space M distinguishes orbits. If the answer is “yes,”
then the system is observable under h.

The question arises as to whether there exist systems which are universally observ-
able, i.e., dynamics which are observable by every continuous nonconstant real-valued
function on the space. It seems unlikely that one could find such a system, but
McMahon [18] proved that a class of three-dimensional manifolds (SL(2,R) modulo
a certain type of subgroup) with horocycle flow has this property.

The search for other examples, particularly for low-dimensional universally ob-
servable systems, has led to some interesting results but has produced no further
examples. Most of the work thus far has focused on smooth dynamical systems,
i.e., flows arising from smooth vector fields. Byrnes, Dayawansa, and Martin [3] de-
termined necessary conditions for universally observable systems which lead to the
conclusion that if there is a smooth low-dimensional universally observable system
then it has to be a minimal flow on the torus.

In [9], it was shown that any universally observable low-dimensional system would
be topologically equivalent to constant irrational flow on the torus. Using a property
which is equivalent to universal observability developed by Wallace [25], it can be
shown that constant irrational flow is not universally observable.

In this paper, we address the general question of existence of a universally ob-
servable flow on the torus (not necessarily smooth). We first examine the properties
of McMahon’s example which were sufficient for universal observability (see [25], [9]).
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We give a proof that any flow with these properties, referred to as property V, is
universally observable. We then examine these properties, and using results from the
field of topological dynamics, we further isolate some sufficient conditions for universal
observability. Using these conditions, we are able to construct a continuous flow on
the torus which provides the first example of a two-dimensional universally observable
system.

2. Universal observability. In this section, we establish notation and give
some basic definitions. We then discuss the properties of McMahon’s example which
are sufficient for universal observability.

Let φ(x, t) be a continuous flow on a Hausdorff space M . That is,

φ : M ×R →M

is a continuous function and

φ(x, t1 + t2) = φ(φ(x, t1), t2).

Definition 2.1. Let h : M → R be a continuous nonconstant function. We say
that h observes (M,φ) if h(φ(x0, t)) = h(φ(y0, t)) for all t ≥ 0 implies that x0 = y0.
In this case, we say that (M,φ, h) is observable.

McMahon [18] proved that a class of three-dimensional manifolds (SL(2,R) mod-
ulo a discrete, cocompact, nonarithmetic subgroup) with horocycle flow is observable
by every nonconstant continuous function from the manifold to the real numbers.
We refer to this phenomenon as universal observability. More precisely, we have the
following definition.

Definition 2.2. (M,φ) is universally observable if (M,φ, h) is observable for
every continuous nonconstant function h : M → R.

McMahon’s example had a very stong property which was sufficient for universal
observability. Before we discuss this property, we develop some notation and state
some definitions.

Given any fixed time t∗, let ft∗(x) = φ(x, t∗). We consider the discrete flow
generated by ft∗ , i.e., the iterates {fnt∗ : n ∈ Z}. We use the notation (M,ft∗) to refer
to this discrete flow.

Definition 2.3. The orbit of a point x ∈ M under the flow (M,φ) is the set
O(x) = {φ(x, t) : t ∈ R}. The orbit of a point x ∈ M under the flow (M,ft∗) is the
set Oft∗ (x) = {fnt∗(x) : n ∈ Z}.

Definition 2.4. The set K is invariant under the flow φ if {φ(K, t) : t ∈ R} ⊂
K.

Definition 2.5. The flow (M,φ) is minimal if M has no proper closed invariant
sets under φ. Equivalently, every point of M has a dense orbit.

Definition 2.6. If φ is a flow on M , then the product flow φ× φ on M ×M is
given by φ× φ((x, y), t) = (φ(x, t), φ(y, t)).

Now we describe the example of a universally observable system found by McMa-
hon. Let G = SL(2,R) and let Γ be a discrete subgroup of G with compact quotient
space M = Γ\G. Horocycle flow Φ on M is defined by

Φ(Γg, t) = Γg

(
1 0
t 1

)
.

In a paper by del Junco and Keane [7], it is remarked that any horocycle flow
where Γ is a discrete cocompact maximal nonarithmetic subgroup has the property
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that the past and future limit sets of (x, y) are M ×M whenever x and y are on
different orbits in (M,Φ). This follows from Theorem 4.5 in [6], which states that
this flow has twofold minimal self-joinings, a strong property from ergodic theory;
note that this is different from the definition of Markley [21]. Also, this flow has
the property that the discrete flow induced by some time t0 is minimal, so that the
positive orbit of each point under the discrete flow is dense. These properties are
sufficient for universal observability. Specifically, we now isolate the properties of
McMahon’s example which imply universal observability. We note that any flow with
these properties will be universally observable.

Definition 2.7. A flow (M,φ) has property V if (i) the future limit set of (x, y)
is M ×M whenever x and y are on different orbits in (M,φ), and (ii) given any fixed
time t∗, the positive orbit of each point in (M,ft∗) is dense in M .

Theorem 2.8. If (M,φ) has property V, then (M,φ) is universally observable.
Remark. The following proof is a direct generalization of McMahon’s proof (see

[18]).
Proof. Consider any nonconstant continuous observation function h : M → R.

First, consider any two points x, y ∈M on different orbits. Choose any two open sets
U, V ⊂ M such that the intersection of h(U) and h(V ) is empty. Since the future
limit set of (x, y) is M ×M , there exists some time t0 such that φ(x, t0) ∈ U and
φ(y, t0) ∈ V. Therefore, any two points on different orbits can be distinguished by
any nonconstant continuous observation function h; specifically, there exists a time t0
where h(φ(x, t0)) 6= h(φ(y, t0)).

Next consider the case when x and y are on the same orbit, i.e., there is a time t∗
such that y = φ(x, t∗). We assume that these points cannot be distinguished by the
flow, i.e., h(φ(x, t)) = h(φ(y, t)) for all t ≥ 0. Now consider the discrete flow induced
by time t∗ above. We denote this discrete flow by (M,ft∗). Now we have h(x) = h(y)
and h(y) = h(φ(x, t∗)). So we see that h(x) = h(ft∗(x)). Now following the orbit of x
under φ for time t∗ again, we have that h(ft∗(x)) = h(f2

t∗(x)), and continuing in this
fashion we see that

h(x) = h(ft∗(x)) = h(f2
t∗(x)) = h(f3

t∗(x)) = · · · .
So h must be constant since the positive orbit of the discrete flow (M,ft∗) is dense.
This contradicts our assumption that h is a nonconstant continuous function. Thus,
(M,φ) is universally observable.

McMahon’s example exhibits very strong ergodic and topological properties. This
leads to the question of what ergodic or topological properties are necessary for uni-
versal observability. Is there an equivalent notion in topological dynamics? The
notion of primeness for flows from topological dynamics is closely related to universal
observability. For more on these questions, see [10, 12, 17].

3. A sufficient condition for universal observability. In this section, we will
further isolate sufficient conditions for a general system to be universally observable.
Here, we consider the more general case of a continuous flow φ on a compact Hausdorff
space. We first state some relevant definitions from topological dynamics.

Definition 3.1. The flow (M,φ) is topologically ergodic if every proper closed
invariant set (under φ) is nowhere dense.

Definition 3.2. The flow (M,φ) is topologically weakly mixing if the product
flow, (M ×M,φ× φ), is topologically ergodic.

Equivalently, the flow (M,φ) is topologically weakly mixing if every point of
M ×M , with the possible exception of a set of first category, has an orbit which is
dense (see [23, p. 152]).
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Similarly, we can define these notions for the discrete flow as well.
Lemma 3.3. Given any topologically weakly mixing flow (M,φ) which is minimal,

the discrete flow generated by a fixed time t∗, (M,ft∗) is also minimal. That is, the
iterates of ft∗(x) for any x ∈M form a dense subset of M .

Remark. This lemma is often used in topological dynamics [5], [20]. For a proof,
we refer the reader to the Appendix section 6.

Next we use this lemma to describe sufficient conditions for a flow to be universally
observable.

Definition 3.4. A flow (M,φ) has property W if it is minimal and satisfies part
(i) of property V (Definition 2.7).

Theorem 3.5. If a flow (M,φ) has property W, then it is universally observable.
Proof. If a flow satisfies part (i) of property V, then it is obviously topologi-

cally weakly mixing. Now by Lemma 3.3, the flow satisfies part (ii) of property V.
Therefore, by Theorem 2.8, the flow is universally observable.

4. Previous results. In this section, we review some results regarding univer-
sal observability. These give motivation for our main result, the construction of a
universally observable flow on the torus.

First, we recall some results of Byrnes, Dayawansa, and Martin [3]. These give
necessary conditions for universal observability.

Suppose X is a locally compact Hausdorff space and

φ : R×M →M

is a continuous flow on M .
Theorem 4.1. If φ is universally observable, then φ is minimal; i.e., all positive

orbits are dense in M .
For the next theorem we make the additional assumptions that M is a smooth

manifold and f is a smooth vector field on M , so f should be complete.
Theorem 4.2. If f is a vector field on M which is universally observable, then

M is compact with Euler characteristic zero.
Now we focus on the question of existence of any low-dimensional systems which

are universally observable. It is not hard to see that there cannot be a one-dimensional
universally observable system. We consider the two-dimensional case below.

We consider smooth flows on two-dimensional manifolds without boundary. By
the results of Byrnes, Dayawansa, and Martin above, we need only consider nonsingu-
lar vector fields with all positive orbits dense and manifolds which are compact with
Euler characteristic zero. Now the classification of compact surfaces yields only two
surfaces with vanishing Euler characteristic, the torus for orientable surfaces and the
Klein bottle for nonorientable surfaces.

A result due to Kneser (see [13]) says that every smooth direction field on the
Klein bottle has a periodic orbit. Therefore, there is no universally observable system
on the Klein bottle. For more details on this, see [9].

Next we consider smooth flows on the torus. We note that any vector field on
the torus can be represented by a set of differential equations in the plane which are
periodic in the spatial variables. More specifically, let X be a vector field on the torus,
T2 = S1×S1. Then X can be represented as a system of differential equations of the
following form:
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dη

dt
= f(η, θ),

dθ

dt
= g(η, θ),

where (η, θ) ∈ T2, and f, g are periodic in η, θ of period one.
A special important case of this type is the linear system

dη

dt
= α,(∗)

dθ

dt
= 1.

This is just the constant vector field with orbits being the lines of slope 1
α . When α

is irrational, we refer to this as constant irrational flow.
We need to discuss equivalence of flows (vector fields).
Definition 4.3. A Cr vector field X on M is called Ck-equivalent to a Cr vector

field X′ on M ′ if there is a diffeomorphism of class Ck of M onto M ′ which takes
orbits of X to orbits of X′ preserving orientation but not necessarily parametrization
by time.

The following proposition about vector fields on the torus stems from the work of
Denjoy [8] on diffeomorphisms of the circle. This is a sort of classification for certain
nonsingular vector fields on the torus.

Proposition 4.4. Any flow on the torus with no equilibrium points or closed
orbits necessarily arises from a vector field C0 equivalent (topologically equivalent) to
the above linear system (∗) with α irrational.

This follows from Denjoy’s theorem and relevant facts about nonsingular vector
fields on the torus with an irrational rotation number. For a more detailed discussion,
see [14] or [2].

Using these facts, we get the following theorem.
Theorem 4.5. A universally observable system on the torus is topologically

equivalent to system (∗) with α irrational.
For a detailed proof, see [9].
As described by Wallace [25], it is well known that constant irrational flow, i.e.,

the flow arising from a constant vector field on the torus with orbits being winding
lines of irrational slope, is not universally observable. To understand why this is so,
we first discuss a topological criterion developed by Wallace [25] and DeStefano [9]
which is equivalent to universal observability.

Definition 4.6. (M,φ) has property U if there do not exist x0, y0∈M and a
one-parameter family of nontrivial open subsets Uα ⊂ M , such that for all α∈[0, 1],
cl(Uα1

) ⊂ Uα2
if and only if α1 < α2, cl(Uα) 6= M , and for all t∈R and α∈[0, 1],

φ(x0, t)∈Uα if and only if φ(y0, t)∈Uα.
Remark. Note that the definition of property U above is slightly more restrictive

than that given in [25] (see [9]).
Theorem 4.7. (M,φ) is universally observable if and only if (M,φ) has property

U.
For the proof, the reader is referred to [25] and [9].
Now we can see that this system does not have property U. This is done by

constructing the sets Uα as pictured in Figure 4.1 and picking x0, y0 on the boundary
of U1.
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U0
6
?

U1

6

?

Uα

6

?

Fig. 4.1. Construction of the Uα’s on the torus.

These results show that any universally observable flow on the torus is topo-
logically equivalent to constant irrational flow, a flow which itself is not universally
observable. So if there is a universally observable flow on the torus, its orbit structure
is the same topologically as a flow which is not universally observable.

5. An example of a continuous universally observable flow on the torus.
Now we are ready to discuss the existence of a universally observable flow on the torus.

Theorem 5.1. There exists a continuous flow on the torus with property W.

By Theorem 3.5, we immediately obtain the following corollary.

Corollary 5.2. There exists a continuous universally observable flow on the
torus.

The flow we construct is topologically equivalent to the flow on the torus T2 given
by the vector field

dη

dt
= α,(∗)

dθ

dt
= 1,

where α is an irrational number fixed below. Hence the flow is minimal. To obtain a
flow φ(x, t) : T2 ×R → T2 with the other part of property W, that certain orbits of
the product of the flow with itself, φ× φ, are dense in T2 ×T2, we adjust the speed
of orbits in the torus.

Interestingly, our example is only a continuous flow and not all irrationals α are
admissible for the underlying flow on the torus. These limitations are required by our
construction. We do not know if smoother torus flows exist with property W or if
smoother universally observable flows on the torus exist. However, it is not unlikely
that this is another example of the sort of “small-divisor” problem which commonly
appears in the study of torus flows and circle maps (see Hermann [16]).
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As noted above, the topology of our flow φ is that of a minimal “straight-line”
flow. The speeds of the orbits are chosen so that any two points on different φ-orbits
move with time so that they become arbitrarily far apart in (the lift of) the θ direction.
By Lemma 5.4 below, this will suffice to give the density of orbits in T2×T2. Finally,
we give the definition of the flow φ and show that it has the required properties.

We begin with some notation. The dynamics of flows on the torus given by the
vector field (∗) are intimately connected to the continued fraction expansion of α
which determines the slope of the vector field (see Hermann [16]). We use only the
following basic facts concerning continued fractions. The reader is referred to Niven
[22] or Hardy and Wright [15] for details and proofs.

Recall that each α ∈ (0, 1) can be represented as a continued fraction

α =
1

a1 + 1
a2+

1
a3+...

,

where each ai ∈ Z+ ∪{0}. In the case of an infinite fraction this notation means that

α = lim
n→∞

pn
qn
,

where pn/qn is the truncation of the continued fraction for α at the nth level, i.e.,

pn
qn

=
1

a1 + 1
a2+

1

a3+...+ 1
an

.

This rational pn/qn is called the nth convergent of α. The continued fraction expan-
sion is infinite if and only if α is irrational, and the expansion is unique. For rational
α, there is a slight ambiguity in the expansion in the last term; see the references
cited above.

A general property of the continued fraction expansion of an irrational α with
nth-convergent pn/qn is ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qnqn+1
,

where qn+1 is the denominator of the (n+ 1)st convergent. The size of these denomi-
nators is controlled by the ai in the continued fraction. In fact, qn+1 = an+1qn+ qn−1

and pn+1 = an+1pn + pn−1 for all n. This property is useful because it picks out the
rational numbers with smallest denominator closest to the irrational. For more on
this subject, see [15].

5.1. Density of curves in T2 and T2 × T2. Since property W relates the
topology of orbits in T2 and T2 ×T2, we need notation for measuring “how dense”
a finite length curve is in these spaces. We let the usual metrics on T2 and T2 ×T2

be denoted by d and d2, respectively.
Definition 5.3. A set A ⊂ T2×T2 is δ-dense for δ > 0 if, for every z ∈ T2×T2,

there exists w ∈ A such that d2(z, w) ≤ δ.
Finally, we need notation for the universal covers of T2 and T2×T2 and associated

lifts. For a ∈ R, we let 〈a〉 denote the fractional part of a, i.e., 〈a〉 ∈ [0, 1) and
a− 〈a〉 ∈ Z.
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g(0)
r

g(t)

ĝ(0)
r

ĝ(t)

Fig. 5.1. The lift of a curve on the torus.

Let π : R2 → T2 denote the projection

π(x, y) = (〈x〉 , 〈y〉).
This is the usual covering map from R2 to T2. Let X and Y denote the projections
of R2 onto x and y coordinates, respectively. For z ∈ T2, let ẑ ∈ R2 be the lift of z
satisfying π(ẑ) = z, X(ẑ),Y(ẑ) ∈ [0, 1).

If g : R → T2 is a curve on the torus, then we let ĝ : R → R2 denote the
continuous lift of g which satisfies g = π ◦ ĝ and ĝ(0) ∈ [0, 1)× [0, 1) (see Figure 5.1).

For a flow φ on T2, we denote a lift by φ̂ where for each z ∈ T2, φ̂(z, t) is the lift
specified above of the curve t→ φ(z, t).

Next we prove a lemma which gives a key step in our construction. We know that
a curve in T2 whose lift is a straight line with irrational slope wraps densely around
T2. We can build a curve in T2 ×T2 by taking the product of two copies of such a
line. The resulting curve will not be dense in T2 ×T2 because its image is restricted
to the diagonal {(z, z) : z ∈ T2} ⊂ T2 × T2. However, if we take two lines with
slightly different speeds, i.e., slightly out of phase, but with equal irrational slopes,
the curve formed in T2 × T2 visits much more of the space. The following lemma
embodies this observation. Its statement is somewhat technical since it is in the form
we require below. See the remark below for an explanation of the qualitative meaning
and implications of the following technical conditions.

Fix

α =
1

a1 + 1
a2+

1
a3+...

,

an irrational with p1

q1
, p2

q2
, . . . its convergents. Fix m < n positive integers. Suppose

σ1, σ2 : R → T2 are curves with lifts σ̂1, σ̂2 : R → R2 satisfying the following.
(1) Both σ̂1 and σ̂2 are lines with slope 1/α.
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(2) For t fixed, j a positive integer, let sj(t) be such that

Y(σ̂1(t+ sj(t)))−Y(σ̂1(t)) = jqn.

We call sj(t) the jth qn return time; in particular, s1(t) is the qn return time of σ1(t).
Then we assume that there exists N < an+1

8 such that for all t ≤ sN+2(0),

qn < Y(σ̂2(t+ s1(t)))−Y(σ̂2(t)) <
1

qm
+ qn.

(3) For N as in (2), we also require that

Y(σ̂2(sN (0)))−Y(σ̂2(0)) > Nqn + 2qm.

Remark. Condition 2 states that the speed along σ2 is slightly faster than that
along σ1. Condition 3 states that this slight difference eventually adds up to a large
difference in positions along the two lines. In particular, it imposes a condition on
the irrational α which requires that the an’s in the continued fraction expansion grow
fast enough.

Finally we state the lemma.
Lemma 5.4. Suppose σ1, σ2 are as above and 2qm < qn. Then the curve given

by

(σ1, σ2) : [0, sN (0)] → T2 ×T2 : t→ (σ1(t), σ2(t))

is 4/qm dense in T2 ×T2.
Proof. Fix a t ∈ [0, s1(0)] and consider the set

{σ1(t+ sj(t)), σ2(t+ sj(t)) : 0 ≤ j ≤ N}.

By the condition on N , the points σ1(t + sj(t)) are no more than 1/qn from σ1(t).
Moreover, d(σ2(t+ sj(t)), σ2(t+ sj+1(t))) < 2/qm for all j. Now for any z ∈ T2 there
exists j such that d(z, σ2(t + sj(t))) <

2
qm

+ 1
qn

< 5
2qm

. Hence, for each point in the

set {(σ1(t), z) : z ∈ T2} there is a point of the form (σ1(t+sj(t)), σ2(t+sj(t))) within
3/qm of it. Since every point of T2 is within 2/qn of σ1(t) for some t ∈ [0, s1(0)], the
set {(σ1(t), σ2(t)) : t ∈ [0, sN+2(0)]} is at least 4/qm dense in T2 ×T2.

5.2. The construction. Next we fix notation and make some choices of the
parameters involved in our example. Where it is both possible and convenient, we
make explicit choices rather than seeking optimal values.

Fix an irrational

α =
1

a1 + 1
a2+

1
a3+...

,

where ai → ∞ very quickly as i → ∞ (exactly how quickly will be set below). Let
pn/qn denote the nth convergent of α.

Let ρ : [0, 1] → R be a function given by

ρ(η) =

∞∑
n=1

βqn [sin(2πqnη) + 1] =
∞∑
n=1

βqn

[
e2πiqnη − e−2πiqnη

2i
+ 1

]
.
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So ρ(η) is given by a Fourier series on [0, 1] with nonzero terms having period 1/qn
for some n. Let the amplitudes βqn be given by

βqn =
4n

2πqn
.

Our first assumption on the growth rate of the an’s (hence the qn’s) is that qn >> 4n

so that ρ(η) converges uniformly to a C0 function. We note that ρ(η) is not C1

because the qnth coefficient of the formal Fourier series for ρ′(η) grows like 4n (see
Tolstov [24, p. 129]). Since only the tail of ρ(η) is important we may assume that
|ρ(η)| < 1 for all η by removing the leading terms if necessary.

We next specify the flow φ(x, t) : T2 ×R → T2. As noted above, we require that
φ be topologically equivalent to the flow given by

dη

dt
= α,(∗)

dθ

dt
= 1,

where α is the irrational chosen above, so each orbit of φ lifts to a straight line with
slope 1/α. Also, we require that for each η ∈ [0, 1), if

Y(φ̂((η, 0), t)) = 1,

then t = 1 + ρ(η); that is, the time necessary for the φ-orbit of (η, 0) to loop once in
the θ direction is 1 + ρ(η). With the bound on |ρ(η)| above, this implies that we may
assume the speed of each point under the flow is less than 4.

Next, we fix some notation concerning how close one point on T2 is to a segment
of a φ-orbit of another point. Let

εn =
3

4qn+1
.

For z1 ∈ T2 with ẑ1 a lift of z1, let

Σn(z1) = π
{
ẑ1 + (αt, t) + (δ, 0) : t ∈

[
−qn

2
,
qn
2

]
, δ < εn

}
.

That is, Σn(z1) is the set of points on T2 within εn in the η direction of a point in
the set {π(ẑ1 + (αt, t)) : − qn

2 ≤ t ≤ qn
2 }. This is a narrow strip around the segment

of the φ-orbit of z1 which wraps around the torus qn times in the θ direction.
In order to show that the flow φ has property W we proceed as follows.
Step 1. Show that if z2 /∈ Σn(z1), i.e., z2 is not near the initial segment of the

φ-orbit of z1, then the average speeds along part of the φ-orbits of z1 and z2 are
slightly different for a long period of time.

Step 2. Show that the difference in speeds of the φ-orbits of z1 and z2 implies a
certain density for the initial segment of the orbit of (z1, z2) under φ× φ; i.e., apply
Lemma 5.4.

Step 3. Verify that if z2 ∈
⋂
n≥m Σn(z1) for some m, then z2 is on the φ-orbit of

z1.
Step 4. Using Steps 1, 2, and 3, verify that if z2 is not on the φ-orbit of z1, then

{φ× φ((z1, z2), t) : t ≥ 0} is dense in T2 ×T2.
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In the process of doing Steps 1, 2, and 4, we fix the rate at which the an’s (hence
qn’s) in the definition of α must tend to infinity.

Step 3 is the easiest, so we begin with it.
Lemma 5.5. If z2 ∈

⋂
n≥m Σn(z1) for some m, then z2 is on the φ-orbit of z1.

Proof. First we note that for each n,

Σn(z1)
⋃

Σn+1(z1) = π
{
ẑ1 + (αt, t) + (δ, 0) : t ∈

[
−qn

2
,
qn
2

]
, δ < εn+1

}
.

That is, the intersection of the shorter (in the θ direction), wider (in the η direction)
strip Σn(z1) with the longer, narrower strip Σn+1(z1) is a short, narrow strip. This
follows from the fact that points in the set {π(ẑ1 + (αt, t)) : t ∈ [− qn+1

2 , qn+1

2 ]} with
the same θ coordinate are approximately 1/qn+1 apart in the η direction.

By induction we see that

m2⋂
n≥m1

Σn(z1) = π
{
ẑ1 + (αt, t) + (δ, 0) : t ∈

[
−qm1

2
,
qm1

2

]
, δ < εm2

}

and hence

∞⋂
n≥m1

Σn(z1) ⊂ π {ẑ1 + (αt, t) : t ∈ R} ;

that is, z2 is in the φ-orbit of z1.
To show Step 1, we first fix z1, z2, and n so that z2 /∈ Σn(z1). Let ẑ1 and ẑ2 be

lifts of z1, z2, respectively, and fix times sj and rj such that for j = 1, 2, . . . ,

Y(φ̂(ẑ1, sj))−Y(ẑ1) = jqN ,

Y(φ̂(ẑ2, rj))−Y(ẑ2) = jqN .

In order to study the difference in speeds of z1 and z2 along their orbits as embodied
in the difference in “qn return times” sj and rj , we begin by showing that the effect
of terms in ρ(η) of period 1/qm, where m 6= n, m 6= n+ 1, can be safely ignored. We
deal first with terms of period qm for m < n.

Lemma 5.6. Let | · | denote the modulus of a complex number or absolute value
where appropriate. With the notation as above,∣∣∣∣∣

qn−1∑
k=0

e2πiqmαk

∣∣∣∣∣ =

∣∣∣∣1− e2πiqmαqn

1− e2πiqmα

∣∣∣∣ < 4qmqm+1

qn+1
.

Proof. From the theory of continued fractions, we know that∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

and ∣∣∣∣α− pm
qm

∣∣∣∣ > 1

2qmqm+1
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provided am+1 ≥ 2. Hence

|qmqnα− pnqm| < qm
qn+1

and

|qmα− pm| > 1

2qm+1

and so

|e2πiqmαqn − 1| < qm
qn+1

,

|e2πiqmα − 1| > 1

2

1

2qm+1
.

Lemma 5.7. With notation as above and n ≥ 2,∣∣∣∣∣ ddη
(
qn−1∑
k=0

n−1∑
m=1

βqm
(e2πi(η+αk)qm − e−2πi(η+αk)qm)

2i
+ 1

)∣∣∣∣∣ ≤ 4π

(
n−1∑
m=1

4mqmqm+1

)
/qn+1.

Proof. Note that∣∣∣∣∣ ddη
(
qn−1∑
k=0

n−1∑
m=1

βqm
(e2πi(η+αk)qm − e−2πi(η+αk)qm)

2i
+ 1

)∣∣∣∣∣

≤
∣∣∣∣∣
n−1∑
m=1

qn−1∑
k=0

πqmβqm(e2πiqm(η+αk) + e−2πiqm(η+αk))

∣∣∣∣∣ ≤ 4π

(
n−1∑
m=1

4mqmqm+1

)
/qn+1

by the previous lemma.
Hence, provided qn+1 is sufficiently large, we may assume that the slope of the

part of ρ(η) coming from period 1/qm terms with m < n is as small as we like, i.e.,
that we can neglect the differences in qn return times of z1 and z2 caused by these
terms.

Similarly, we can bound terms of ρ(η) with period 1/qm for m > n+1 as follows.
Lemma 5.8.∣∣∣∣∣

∞∑
m=n+2

βqm

(
e2πiqmα − e−2πiqmα

2i
+ 1

)∣∣∣∣∣ ≤ 2
∞∑

m=n+2

4m

2πqm
.

Proof. This follows immediately from the definition of βqm = 4m

2πqm
. Hence all the

terms in the tail of the Fourier series of ρ(η) tend to zero very quickly (provided the
an’s tend to infinity quickly).

We can collect these results as follows. Let

ρn(η) = βqn

(
e2πiqnη − e−2πiqnη

2i
+ 1

)
.
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ρn(η) ρn(η)

η1 η2 η1 η2

original η1, η2 new η1, η2

Fig. 5.2. Evolution of η1, η2.

For z1, z2 ∈ T2 with z2 /∈ Σn(z1), let η1, η2 be such that (η1, 0) + (αθ, θ) = ẑ1 for
some θ ∈ [0, 1), and similarly for η2. The qn return times of z1 and (η1, 0) are at most
order 1/qn+1 apart because their orbit segments bringing about the return differ only
by segments of length order 1 and are at most 1/qn+1 apart. A similar statement
holds for z2 and (η2, 0). This difference can be ignored because the difference between
r1 and s1 is at least qn times as large since this difference is given by qn times the
difference in ρ values. (Similar estimates allow the difference in qn return times of
φ(z1, t) and φ(z1, t + k) for k << qn to be neglected.) Then the qn return times s1
and r1 of z1 and z2 satisfy

s1 = K + qn(ρn(η1) + ρn+1(η1) + 1) + ζ,

r1 = K + qn(ρn(η2) + ρn+1(η2) + 1) + ξ,

where K is a constant independent of η, and ζ, ξ tend to zero as the growth rate of
the an’s increases.

Remark. In fact, the same statement holds true for qn return times if the ρn+1

terms are omitted from the above since |ρn+1(η)| ≤ 2 4n+1

2πqn+1
for all η. However, since

z1 and z2 can be only order 1/qn+1 apart, the difference in speed resulting from the
ρn+1(η) term can be significant; see below.

So we see that z1 and z2 have different qn return times depending on ρ(η1) and
ρ(η2). To apply Lemma 5.4 (Step 2 above) we must gain control of these return times.
This can be accomplished by replacing z1 and z2 by φ(z1, t) and φ(z2, t), respectively,
for a suitably chosen t. The points φ(z1, sj) and φ(z2, rj) are approximately j/qn+1

displaced from z1 and z2, respectively, in the η direction. Because qn+1 may be taken
as large as we like, we may choose t ∈ [0, qn+1], so that if we replace z1 and z2 by
φ(z1, t) and φ(z2, t), respectively, for the new η1 and η2,

0 < ρn(η2)− ρn(η1) <
1

qnqn−2
;

see Figure 5.2.
First we note that because z2 /∈ Σn(z1) we know that the distance in the η

direction from z2 to a point in {π(ẑ1 + (αt, t)) : t ∈ [− qn
2 ,

qn
2 ]} is at least εn = 3/4qn+1.

Also, we know from continued fraction theory that∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1
.
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Hence, for t ∈ [− qn
2 ,

qn
2 ] the points π(ẑ1 + (αt, t)) are displaced in the η direction from

π(ẑ1 + (pnqn t, t)) by less than 1
2qn+1

mod 1
qn

; that is,

min

{ | 〈qnη1 − qnη2〉 |
qn

,
1− | 〈qnη1 − qnη2〉 |

qn

}
≥ 1

4qn+1
.

To apply Lemma 5.4 (Step 2 above) we must use this difference to compute
estimates on the difference in qn return times of z1 and z2.

We will deal with two cases depending on the distance between η1 and η2 mod
1/qn. First suppose η1 and η2 are relatively far apart, that is,

min

{ | 〈qnη1 − qnη2〉 |
qn

,
(1− | 〈qnη1 − qnη2〉 |)

qn

}
>

2

4nq2
n

.

Then we can choose t ∈ [0, qn+1] and replace z1 and z2 by φ(z1, t) and φ(z2, t) so that
for the new η1 and η2,

1

q2
n

< ρn(η2)− ρn(η1) <
1

qnqn−2
.

Now, taking an+1, hence qn+1, larger if necessary, we note that z1 and z2 are suffi-
ciently close to being qn periodic that the above inequality holds for N > 2qn−2q

2
n

qn return times of z1 and z2. Hence, Lemma 5.4 applies in this case with m = n− 2.
Next, suppose

1

4qn+1
< min

{ | 〈qnη1 − qnη2〉 |
qn

,
(1− | 〈qnη1 − qnη2〉 |)

qn

}
≤ 2

4nq2
n

,

that is, η1 and η2 are very close mod 1/qn. In this case we must deal with the ρn+1

term since the distance between the η’s can be as small as 1/4qn+1.
The first step is to choose t ∈ [0, qn+2] so that if we replace z1, z2 with φ(z1, t),

φ(z2, t), respectively, then for the new η1, η2 we have

4n

4qn+1
< (ρn(η2) + ρn+1(η2))− (ρn(η1) + ρn+1(η1)) <

2

q2
n

.

Hence, the qn return times are bounded below by 4nqn/4qn+1 and above by 2/qn. We
must allow t’s as large as qn+2 to accomplish this so that φ(z1, t) and φ(z2, t) can be
properly placed relative to the period 1/qn+1 oscillations of ρn+1(η). See Figure 5.3.

Recall that sj and rj are the jth qn return times of z1 and z2, respectively. We
fix N so that qn return times of z1 and z2 are within 75% of the similar values for
φ(z1, sj), φ(z2, rj) for j ≤ N . How large we can take N depends on the difference
between η1 and η2 mod 1/qn. If we let δ denote this difference, i.e.,

δ =
min{| 〈qnη1 − qnη2〉 |, 1− | 〈qnη1 − qnη2〉 |}

qn
,

then we may take N to be the greatest integer less than an+1

8 − 2δqn+1 (recall, an+1

is the number of 1/qn+1 periods per 1/qn period, i.e., qn+1 = an+1qn + qn−1). Since
δ < 2/4nq2

n (by assumption), we have that

2δqn+1 <
4qn+1

4nq2
n

<
8an+1qn

4nq2
n

=
8an+1

4nqn
<

an+1

16
.
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η1 η2 η1 η2

new η’s original η’s

HHY
ρn(η)

���)
ρn(η) + ρn+1(η)

�������9
PPPPPPPq

at least an+1/8

periods of ρn+1(η)

Fig. 5.3. Proper placement of η1 and η2 attained by choosing the appropriate t for φ(z1, t) and
φ(z2, t).

(We have used 8/4nqn < 1/16; since qn →∞ rapidly, this is a very rough estimate.)
Hence, in all cases, we may assume N ≥ an+1/16. So the difference in qn return times
for φ(z1, sj) and φ(z2, rj) is bounded between 4n−1qn/4qn+1 and 2/q2

n. Hence,

sN − rN > N
4n−1qn
4qn+1

> 4n−3.

So we have (using the bound on |ρ(η)|) that

Y(φ̂(ẑ2, sN ))−Y(φ̂(ẑ1, sN )) > 4n−4,

and we may apply Lemma 5.4 using any qm such that 2qm < 4n−4.
Collecting this together, we see that if z2 /∈ Σn(z1), then for some t ∈ [0, qn+2]

the points φ(z1, t), φ(z2, t) satisfy the hypotheses of Lemma 5.4 for any qm < 4n−5,
and hence

φ((z1, z2), [0, 2qn+2]) ⊂ T2 ×T2

is at least 4/qm > 4−n+6 dense in T2 × T2. Letting n → ∞ we see that if z2 is not
in the φ-orbit of z1, then

φ((z1, z2), [0,∞))

is dense in T2 ×T2 and the construction is complete.
Remarks. (1) This construction actually gives a class of continuous flows with

property W, since the flow is topologically equivalent to constant irrational flow and
is specified by the crossing times and not the particular speed at any given point.

(2) Note that not all irrationals α are admissible. The necessary rate of growth
of the ai’s in the continued fraction expansion is specified throughout the proof.
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6. Appendix. The proof of Lemma 3.3 which we give below is based on a sketch
given to the authors by Markley [20].

Before we give the proof, we will need some definitions, lemmas, and a proposition.
For more details, we refer the reader to Auslander [1] or Ellis [11].

Definition 6.1. Let (M,φ) and (N,ψ) be two real continuous flows. A homo-
morphism from M to N is a continuous map h : M → N such that h(φ(x, t)) =
ψ(h(x), t). If there is a homomorphism h from M onto N , we say that N is a factor
of M .

Lemma 6.2. A factor of a minimal flow is minimal.

Lemma 6.3. If a minimal flow has a periodic factor, it is not topologically weakly
mixing.

Definition 6.4. A point x ∈ M is an almost periodic point if for every neigh-
borhood U of x, there is a relatively dense subset A ⊂ R such that φ(x,A) ⊂ U .

Lemma 6.5. Let M be a compact Hausdorff space and φ be a flow on M . Then
M is a disjoint union of minimal subsets if and only if every point of M is almost
periodic. In this case we say that M is pointwise almost periodic.

Remark. See Corollary 1.10 of [1].

Lemma 6.6. Suppose (M,φ) is a flow. Consider the discrete flow generated
by some time t∗; that is, consider the dynamical system given by iteration of ft∗ .
Then the original flow is pointwise almost periodic if and only if the discrete flow is
pointwise almost periodic.

Remark. See Corollary 1.13 of [1].

Lemma 6.7. Given a flow on a locally compact Hausdorff space M (discrete or
continuous), then x ∈M is an almost periodic point if and only if the orbit closure of
x is a compact minimal set.

Remark. See Theorem 1.7 of [1].

Proposition 6.8. The orbit closures for the action of a fixed time from a minimal
flow are minimal sets.

Proof. If the flow φ(x, t) is minimal, then M is a minimal set. Lemma 6.5 implies
that (M,φ) is pointwise almost periodic. Now using Lemma 6.6, we have that the
discrete flow generated by ft∗ is pointwise almost periodic. But by Lemma 6.7, the
orbit closure Oft∗ (x) is a minimal set.

Proof of Lemma 3.3. Let (M,φ) be a minimal flow and consider the discrete flow
generated by the fixed time t∗. That is, consider the flow which consists of the iterates
of ft∗(x) = φ(x, t∗). The orbit closure under the discrete flow at each point x ∈ M ,
Oft∗ (x), is a minimal set.

Now we define an equivalence relation on M as follows: two points are equivalent
if they are in the same orbit closure for the action of a fixed time. More precisely, let

R = {(x, y) ∈M ×M : there exists z ∈M such that x, y ∈ Oft∗ (z)}.

R is an invariant closed equivalence relation. We will denote the equivalence class of a
point x by [x]. If we mod out by this equivalence relation, we obtain the quotient flow φ̂

on X̃ = X/R given by φ̂([x], t) = [φ(x, t)]. Now φ̂([x], t∗) = [φ(x, t∗)] = [ft∗(x)] = [x],

so φ̂ is periodic of period t∗. So by Lemma 6.2, the quotient flow consists of a single
periodic orbit. Therefore, Lemma 6.3 implies that the single periodic orbit must be
a fixed point. Hence there is only one equivalence class, and the orbit closure for the
action of a fixed time is all of M . This shows that the discrete flow generated by the
fixed time t∗ is minimal.
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7. Conclusion. We have shown the existence of a continuous universally observ-
able flow on the torus. Our construction actually gives a class of flows with property
W which is sufficient for universal observability. These flows have orbit structure
equivalent to constant irrational flow (with an appropriate irrational slope) and are
obtained by defining the crossing times in such a way that any pair of points under
the product flow get as dense as necessary. The construction sets conditions on how
fast the denominators of the convergents in the continued fraction expansion of the
irrational determining the slope of the orbits grow in order to achieve the necessary
density. The choice of Fourier coefficients in the crossing time function is limited by
the dynamics of the flow, and so this construction cannot be made smoother. It is
still unknown if there are smoother universally observable flows on the torus.

Because of the connection between universal observability and topological dy-
namics, the example constructed here exhibits many topological properties of interest.
This is explored by DeStefano and Markley in [10].

Acknowledgements. The authors would like to thank Dorothy Wallace and
Clyde Martin for introducing them to this interesting and challenging problem.

REFERENCES

[1] J. Auslander, Minimal Flows and Their Extensions, North-Holland, New York, 1988.
[2] D. Anosov and V. Arnold, Dynamical Systems I, Springer-Verlag, Berlin, 1988.
[3] C. Byrnes, W. Dayawansa, and C. Martin, On the topology and geometry of universally

observable systems, in Proceedings of the 26th IEEE Conference on Decision and Control,
Los Angeles, 1987, pp. 963–965.

[4] C. Byrnes and C. Martin, Global observability and detectability: An overview, in Modeling
and Adaptive Control, C. Byrnes and A. Kurzhanski, eds., Lecture Notes in Control and
Inform. Sci. 105, Springer-Verlag, Berlin, 1988, pp. 71–89.

[5] A. Del Junco, personal communication, 1990.
[6] A. Del Junco, On minimal self-joinings in topological dynamics, Ergodic Theory Dynam.

Systems, 7 (1987), pp. 211–227.
[7] A. Del Junco and M. Keane, On generic points in the Cartesian square of Chacon’s trans-

formation, Ergodic Theory Dynam. Systems, 5 (1985), pp. 59–69.
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Abstract. This paper presents a formulation of differential flatness—a concept originally intro-
duced by Fliess, Levine, Martin, and Rouchon—in terms of absolute equivalence between exterior
differential systems. Systems that are differentially flat have several useful properties that can be
exploited to generate effective control strategies for nonlinear systems. The original definition of
flatness was given in the context of differential algebra and required that all mappings be meromor-
phic functions. The formulation of flatness presented here does not require any algebraic structure
and allows one to use tools from exterior differential systems to help characterize differentially flat
systems. In particular, it is shown that, under regularity assumptions and in the case of single input
control systems (i.e., codimension 2 Pfaffian systems), a system is differentially flat if and only if it is
feedback linearizable via static state feedback. In higher codimensions our approach does not allow
one to prove that feedback linearizability about an equilibrium point and flatness are equivalent: one
must be careful with the role of time as well as the use of prolongations that may not be realizable
as dynamic feedback in a control setting. Applications of differential flatness to nonlinear control
systems and open questions are also discussed.

Key words. exterior differential systems, flatness, prolongations, trajectory generation
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1. Introduction. The problem of equivalence of nonlinear systems (in particu-
lar to linear systems, that is, feedback linearization) is traditionally approached in the
context of differential geometry [16, 17, 22]. A complete characterization of static feed-
back linearizability in the multi-input case is available, and for single input systems
it has been shown that static and dynamic feedback linearizability are equivalent [5].
Some special results have been obtained for dynamic feedback linearizability of multi-
input systems, but the general problem remains unsolved. Typically, the conditions
for feedback linearizability are expressed in terms of the involutivity of distributions
on a manifold.

More recently it has been shown that the conditions on distributions have a
natural interpretation in terms of exterior differential systems [14, 26]. In exterior
differential systems, a control system is viewed as a Pfaffian module. Some of the
advantages of this approach are the wealth of tools available and the fact that im-
plicit equations and nonaffine systems can be treated in a unified framework. For an
extensive treatment of exterior differential systems we refer to [1].

Fliess and coworkers [7, 12, 8, 9, 18] studied the feedback linearization problem in
the context of differential algebra and introduced the concept of differential flatness.
In differential algebra, a system is viewed as a differential field generated by a set of
variables (states and inputs). The system is said to be differentially flat if one can
find a set of variables, called the flat outputs, such that the system is (nondifferential)
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algebraic over the differential field generated by the set of flat outputs. Roughly
speaking, a system is flat if we can find a set of outputs (equal in number to the
number of inputs) such that all states and inputs can be determined from these
outputs without integration. More precisely, if the system has states x ∈ R

n and
inputs u ∈ R

p, then the system is flat if we can find outputs y ∈ R
p of the form

y = y(x, u, u̇, . . . , u(l))(1.1)

such that

x = x(y, ẏ, . . . , y(q)),

u = u(y, ẏ, . . . , y(q)).
(1.2)

Differentially flat systems are useful in situations where explicit trajectory gener-
ation is required. Since the behavior of flat systems is determined by the flat outputs,
we can plan trajectories in output space and then map these to appropriate inputs.
A common example is the kinematic car with trailers, where the xy position of the
last trailer provides flat outputs [20]. This implies that all feasible trajectories of the
system can be determined by specifying only the trajectory of the last trailer. Unlike
other approaches in the literature (such as converting the kinematics into a normal
form), this approach is intrinsic.

A limitation of the differential algebraic setting is that it does not provide tools
for regularity analysis. The results are given in terms of meromorphic functions in
the variables and their derivatives, without characterizing the solutions. In particular,
solutions to the differential polynomials may not exist. For example, the system

ẋ1 = u,

ẋ2 = x2
1,

(1.3)

is flat in the differential algebraic sense with flat output y = x2. However, it is clear
that the derivative of x2 always has to be positive, and therefore we cannot follow an
arbitrary trajectory in y space.

In the beginning of this century, the French geometer E. Cartan developed a set of
powerful tools for the study of equivalence of systems of differential equations [3, 4, 26].
Equivalence need not be restricted to systems of equal dimensions. In particular a
system can be prolonged to a bigger system on a bigger manifold, and equivalence
between these prolongations can be studied. This is the concept of absolute equivalence
of systems. Prolonging a system corresponds to dynamic feedback, and it is clear that
we can benefit from the tools developed by Cartan to study the feedback linearization
problem. The connections between Cartan prolongations and feedback linearizability
for single input systems were studied in [24].

In this paper we reinterpret flatness in this differential geometric setting. We
make extensive use of the tools offered by exterior differential systems and the ideas of
Cartan. This approach allows us to study some of the regularity issues and also to give
an explicit treatment of time dependence. Moreover, we can easily make connections
to the extensive body of theory that exists in differential geometry. We show how to
recover the differential algebraic definition and give an exterior differential systems
proof for a result proven by Martin [18, 19] in differential algebra: a flat system can
be put into Brunovsky normal form by dynamic feedback in an open and dense set
(this set need not contain an equilibrium point).

We also give a complete characterization of flatness for systems with a single in-
put. In this case, flatness in the neighborhood of an equilibrium point is equivalent
to linearizability by static state feedback around that point. This result is stronger
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than linearizability by endogenous feedback as indicated by Martin et al. [9, 18],
since the latter only holds in an open and dense set. We also treat the case of time
varying versus time invariant flat outputs and show that in the case of a single input
time invariant system, the flat output can always be chosen time independent. In
exterior differential systems, the special role of the time coordinate is expressed as an
independence condition, i.e., a one-form that is not allowed to vanish on any of the
solution curves. A fundamental problem with exterior differential systems is that most
results only hold on open dense sets [15]. It requires extra effort to obtain results in the
neighborhood of a point; see for example [21]. In this paper, too, we can only get local
results by introducing regularity assumptions, typically in the form of rank conditions.

Recently, Fliess and coworkers have proposed a geometric framework using Lie–
Bäcklund morphisms on infinite-dimensional jet spaces for studying flatness [10, 11].
In the latter paper Fliess and coworkers also introduce a more general notion of flatness
called “orbital (or topological) flatness” where the transformations do not necessarily
preserve the independent variable. Pomet has also proposed a related approach to
differential flatness in [23]. Both approaches closely capture some features of the
differential algebra while providing a geometric framework that enables local analysis.
These approaches differ from ours in that they do not make extensive use of tools from
exterior differential systems.

The organization of the paper is as follows. In section 2 we introduce the defi-
nitions pertaining to absolute equivalence and their interpretation in control theory.
In section 3 we introduce our definition of differential flatness and show how to re-
cover the differential algebraic results. In section 4 we study the connections between
flatness and feedback linearizability. In section 5 we present our main theorems char-
acterizing flatness for single input systems, and in section 6 we summarize our results
and point out some open questions.

2. Prolongations and control theory. This section introduces the concept of
prolongations and states some basic theorems. It relates these concepts to control
theory. Proofs of most of these results can be found in [26]. We assume that all
manifolds and mappings are smooth (C∞) unless explicitly stated otherwise.

Definition 2.1 (Pfaffian system). A Pfaffian system I on a manifold M is a
submodule of the module of differential one-forms Ω1(M) over the commutative ring of
smooth functions C∞(M). A set of one-forms ω1, . . . , ωn generates a Pfaffian system
I = {ω1, . . . , ωn} = {Σfkωk|fk ∈ C∞(M)}.

In this paper, we restrict attention to finitely generated Pfaffian systems on finite-
dimensional manifolds. It is important to distinguish between a Pfaffian system and
its set of generators or the algebraic ideal I in Λ(M) generated by I. Since we are only
dealing with Pfaffian systems the term system will henceforth mean a Pfaffian system.

For a Pfaffian system I we can define its derived system I(1) as I(1) = {ω ∈ I|dω ≡
0 mod I}, where I is the algebraic ideal generated by I. The derived system is itself
a Pfaffian system, so we can define the sequence I, I(1), I(2), . . . , which is called the
derived flag of I.

Assumption 1 (regularity of Pfaffian systems). Unless stated explicitly other-
wise, we will assume throughout this paper that the system is regular; i.e.,

1. the system and all its derived systems have constant rank;
2. for each k, the exterior differential system generated by I(k) has a degree-2

part with constant rank.
If the system is regular the derived flag is decreasing, so there will be an N such

that I(N) = I(N+1). This I(N) is called the bottom derived system.
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When one studies the system of one-forms corresponding to a system of differential
equations, the independent variable time becomes just another coordinate on the
manifold along with the dependent variables. Hence the notion of an independent
variable is lost. If x denotes the dependent variables, a solution to such a system
c : s→ (t(s), x(s)) is a curve on the manifold. But we are only interested in solution
curves that correspond to graphs of functions x(t). Hence we need to reject solutions
for which dt

ds vanishes at some point. This is done by introducing dt as an independence
condition, i.e., a one-form that is not allowed to vanish on any of the solution curves.
An independence condition is well defined only up to a nonvanishing multiple and
modulo I. We will write a system with independence condition τ as (I, τ). The form
τ is usually exact, but it does not have to be. In this paper we shall always take τ
exact, in agreement with its physical interpretation as time.

Definition 2.2 (control system). A Pfaffian system with independence condition
(I, dt) is called a control system if {I, dt} is integrable.

In local coordinates, control systems can be written in the form

I = {dx1 − f1(x, u, t)dt, . . . , dxn − fn(x, u, t)dt}(2.1)

with states {x1, . . . , xn} and inputs {u1, . . . , up}. Note that a control system is always
assumed to have independence condition dt. If the functions f are independent of time
then we speak of a time invariant control system.

Definition 2.3 (Cartan prolongation). Let (I, dt) be a Pfaffian system on a
manifold M . Let B be a manifold such that π : B →M is a fiber bundle. A Pfaffian
system (J, π∗dt) on B is a Cartan prolongation of the system (I, dt) if the following
conditions hold:

1. π∗(I) ⊂ J ;
2. for every integral curve of I, c : (−ε, ε) →M , there is a unique lifted integral

curve of J , c̃ : (−ε, ε) → B with π ◦ c̃ = c.
Assumption 2 (regularity of Cartan prolongations). In this paper we only con-

sider Cartan prolongations that preserve codimension.
Note that all prolongations are required to preserve the independence condition

of the original system. The above definition implies that there is a smooth one-to-one
correspondence between the integral curves of a system and its Cartan prolongation.
Cartan prolongations are useful to study equivalence between systems of differential
equations that are defined on manifolds of different dimensions. This occurs in dy-
namic feedback extensions of control systems. We increase the dimension of the state
by adding dynamic feedback, but the extended system is still in some sense equivalent
to the original system.

This allows us to define the concept of absolute equivalence introduced by Elie
Cartan as follows.

Definition 2.4 (absolute equivalence). Two systems I1 and I2 are absolutely
equivalent if they have Cartan prolongations J1 and J2, respectively, that are equiva-
lent in the usual sense; i.e., there exists a diffeomorphism φ such that φ∗(J2) = J1.
This is illustrated in the following diagram.

??

� -J1 J2

I2I1

φ

π1 π2
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An interesting subclass of Cartan prolongations is formed by prolongations by
differentiation: if (I, dt) is a system with independence condition on M , if du is an
exact one-form on M that is independent of {I, dt}, and if y is a fiber coordinate of
B, then {I, du − ydt} is called a prolongation by differentiation of I. Note that we
have not written π∗(du−ydt) where π : B →M is the surjective submersion. We will
make this abuse in the rest of the paper for notational convenience. Prolongations by
differentiation correspond to adding integrators to a system. In the context of control
systems, the coordinate u is the input that is differentiated.

If we add integrators to all controls, we obtain a total prolongation: let (I, dt) be
a system with independence condition, where dim I = n. Let dimM = n + p + 1.
Let u1, . . . , up be coordinates such that du1, . . . , dup are independent of {I, dt}, and
let y1, . . . , yp be fiber coordinates of B; then {I, du1−y1dt, . . . , dup−ypdt} is called a
total prolongation of I. Total prolongations can be defined independent of coordinates
and are therefore intrinsic geometric objects. It can be shown that in codimension
2 (i.e., a system with n generators on an n + 2-dimensional manifold), all Cartan
prolongations are locally equivalent to total prolongations [26].

We define a dynamic feedback to be a feedback of the form

ż = a(x, z, v, t),

u = b(x, z, v, t).

If t does not appear in (a, b) we call (a, b) a time invariant dynamic feedback. The
dynamic feedback is called regular if for each fixed x and t the map b(x, ., ., t) :
(z, v) 7→ u is a submersion. An important question is what type of dynamic feedback
corresponds to what type of prolongation. Clearly, prolongations by differentiation
correspond to dynamic extension (adding integrators to the inputs).

Cartan prolongations provide an intrinsic, geometric way to study dynamic feed-
back. We shall show that Cartan prolongations that extend a control system to an-
other control system can be expressed as dynamic feedback in local coordinates. The
following example shows that not every dynamic feedback corresponds to a Cartan
prolongation.

Example 1 (dynamic feedback versus Cartan prolongation). Consider the con-
trol system

ẋ1 = u

with feedback

ż1 = z2,

ż2 = −z1,
u = g(z)v.

This dynamic feedback introduces harmonic components that can be used to asymp-
totically stabilize nonholonomic systems (see [6] for a description of how this might
be done). It is not a Cartan prolongation since (z, v) cannot be uniquely determined
from (x, u).

The feedback in Example 1 is somewhat unusual, in that most theorems concern-
ing dynamic feedback are restricted to adding some type of integrator to the inputs
of the system. The particular property that this feedback is missing is defined in the
following definition.

Definition 2.5 (endogenous feedback). Let ẋ = f(x, u, t) be a control system.
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A dynamic feedback

ż = a(x, z, v, t),

u = b(x, z, v, t),
(2.2)

is said to be endogenous if z and v satisfying (2.2) can be expressed as functions of
x, u, t, and a finite number of their derivatives

z = α(x, u, . . . , u(l), t),

v = β(x, u, . . . , u(l), t).
(2.3)

An endogenous feedback is called regular if for each fixed x and t the map b(x, ., ., t) :
(z, v) 7→ u is a submersion.

Note that this differs slightly from the definition given in [18, 19] due to the
explicit time dependence used here. The feedback in Example 1 is not endogenous.
The relationship between Cartan prolongations and endogenous dynamic feedback
is given by the following two theorems. The first says that a regular endogenous
feedback corresponds to a Cartan prolongation.

Theorem 2.6 (endogenous feedback are Cartan prolongations). Let I be a con-
trol system on an open set T × X × U which in coordinates (t, x, u) is given by
ẋ = f(x, u, t). Let J denote the control system on the open set T × X × Z × V
which is obtained from the above system by adding a regular endogenous dynamic
feedback. Then J is a Cartan prolongation of I.

Proof. Define the mapping F : T ×X × Z × V → T ×X × U by F (t, x, z, v) =
(t, x, b(x, z, v, t)). Since b is regular, F is a submersion. Furthermore b is surjective
since the feedback is endogenous. Therefore F is surjective too. Since F is a sur-
jective submersion, T ×X × Z × V is fibered over T ×X × U . Hence we have that
solutions (t, x(t), z(t), v(t)) of J project down to solutions (t, x(t), b(x(t), z(t), v(t), t))
of I. Therefore the first requirement of being a Cartan prolongation is satisfied. The
second requirement of unique lifting is trivially satisfied by the fact that z and v are
obtained uniquely by equation (2.3).

Conversely, a Cartan prolongation can be realized by endogenous dynamic feed-
back in an open and dense set if the resulting prolongation is a control system as
described in Theorem 2.7.

Theorem 2.7 (Cartan prolongations are locally endogenous feedback). Let I be
a control system on a manifold M with p inputs {u1, . . . , up}. Every Cartan prolon-
gation J = {I, ω1, . . . , ωr} on B with independence condition dt such that J is again
a control system is realizable by endogenous regular feedback on an open and dense
set of B.

Proof. Let r denote the fiber dimension of B over M , and let {w1, . . . , wr} denote
the fiber coordinates. Since I is a control system, {I, dt} is integrable, and we can
find n first integrals x1, . . . , xn. Preservation of the codimension and integrability of
{J, dt} means that we can find r extra functions a1, . . . , ar such that J = {I, dz1 −
a1dt, . . . , dzr−ardt}. Here the zi are first integrals of {J, dt} that are not first integrals
of {I, dt}. Pick p coordinates v(u,w) such that {t, x, z, v} form a set of coordinates
of B. The v coordinates are the new control inputs. Clearly ai = ai(x, z, v, t) since
we have no other coordinates. Also since {t, x, z, v} form coordinates for B, and u
is defined on B, there has to be a function b such that u = b(x, z, v, t). Since both
(t, x, u, w) and (t, x, z, v) form coordinates on B, there has to be a diffeomorphism φ
between the two. From the form of the matrix ∂φ

∂(t,x,z,v) it can be seen that ∂b
∂(z,v) is

full rank, and hence b is regular. This recovers the form of equation (2.2). Since J
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is a Cartan prolongation, every (x, u, t) is lifted to a unique (x, z, v, t). From Lemma
3.5, to be presented in the next section, it then follows that we can express (z, v) as
functions of x and u and its derivatives in an open and dense set. We thus obtain the
form of equation (2.3).

3. Differentially flat systems. In this section we present a definition of flat-
ness in terms of prolongations. Our goal is to establish a definition of flatness in terms
of differential geometry while capturing the essential features of flatness in differential
algebra [8, 9]. We build our definition on the minimal requirements needed to recover
these features, namely, the one-to-one correspondence between solution curves of the
original system and an unconstrained system, while maintaining regularity of the var-
ious mappings. Our definition makes use of the concept of an absolute morphism [26].

Definition 3.1 (absolute morphism). An absolute morphism from a system
(I1, dt) on M1 to a system (I2, dt) on M2 consists of a Cartan prolongation (J1, dt) on
π : B1 →M1 together with surjective submersion φ : B1 →M2 such that φ∗(I2) ⊂ J1.
This is illustrated below.

?

@
@

@@R

J1

I2I1

π
φ

Definition 3.2 (invertibly absolutely morphic systems). Two systems (I1, dt)
and (I2, dt) are said to be absolutely morphic if there exist absolute morphisms from
(I1, dt) to (I2, dt) and from (I2, dt) to (I1, dt). This is illustrated below.
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Two systems (I1, dt) and (I2, dt) are said to be invertibly absolutely morphic if they
are absolutely morphic and the following inversion property holds: let c1(t) be an
integral curve of I1 with c̃1 the (unique) integral curve of J1 such that c1 = π ◦ c̃1, and
let γ(t) = φ2 ◦ c̃1(t) be the projection of c̃1. Then we require that c1(t) = φ1 ◦ γ̃(t),
where γ̃(t) is the lift of γ from I2 to J2. The same property must hold for solution
curves of I2.

If two systems are invertibly absolutely morphic, then the integral curves of one
system map to the integral curves of the other, and this process is invertible in the
sense described above. If two systems are absolutely equivalent then they are also ab-
solutely morphic, since they can both be prolonged to systems of the same dimension
which are diffeomorphic to each other. However, for two systems to be absolutely
morphic we do not require that any of the systems have the same dimension.

A differentially flat system is one in which the “flat outputs” completely specify
the integral curves of the system. More precisely, we have Definition 3.3.

Definition 3.3 (differential flatness). A system (I, dt) is differentially flat if it
is invertibly absolutely morphic to the trivial system It = ({0}, dt).

Notice that we require that the independence condition be preserved by the abso-
lute morphisms, and hence our notion of time is the same for both systems. Since an
independence condition is only well defined up to nonvanishing multiples and modulo
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the system, we do allow time scalings between the systems. We also allow time to
enter into the absolute morphisms that map one system onto the other.

If the system (I, dt) is defined on a manifold M , then we can restrict the system
to a neighborhood around a point in M , which is again itself a manifold. We will call
a system flat in that neighborhood if the restricted system is flat.

The following discussion leans heavily on a theorem due to Shadwick and Sluis
[25] and Sluis [26], which we recall here for completeness.

Theorem 3.4. Let I be a system on a manifold M and let J be a Cartan pro-
longation of I on π : B →M . On an open and dense subset of B, there exists a pro-
longation by differentiation of J that is also a prolongation by differentiation of I.

Proof. For the proof see [26, Theorem 24].
In order to establish the relationship between our definition and the differential

algebraic notion of flatness, we need the following straightforward corollary to Theo-
rem 3.4. This lemma expresses the dependence of the fiber coordinates of a Cartan
prolongation on the coordinates of the base space.

Lemma 3.5. Let (I, dt) be a system on a manifold M with local coordinates
(t, x) ∈ R

1×R
n, and let (J, dt) be a Cartan prolongation on the manifold B with fiber

coordinates y ∈ R
r. Assume the regularity Assumptions 1 and 2 hold. Then on an

open dense set, each yi can be uniquely determined from t, x, and a finite number of
derivatives of x.

Proof. By Theorem 3.4 there is a prolongation by differentiation, on an open
and dense set, say, I2, of J , with fiber coordinates zi, that is also a prolongation by
differentiation of the original system I, say, with fiber coordinates wi. This means
that the (x, y, z, t) are diffeomorphic to (x,w, t): y = y(x,w, t). The w are derivatives
of x, and therefore the claim is proven.

This lemma allows us to explicitly characterize differentially flat systems in a local
coordinate chart. Let a system in local coordinates (t, x) be differentially flat, and let
the corresponding trivial system have local coordinates (t, y). Then on an open and
dense set there are surjective submersions h and g with the following property: given
any curve y(t), then

x(t) = g(t, y(t), . . . , y(q)(t))

is a solution of the original system and furthermore the curve y(t) can be obtained
from x(t) by

y(t) = h(t, x(t), . . . , x(l)(t)).

This follows from using definitions of absolute morphisms, the invertibility property,
and Lemma 3.5, stating that fiber coordinates are functions of base coordinates and
their derivatives and the independent coordinate.

This local characterization of differential flatness corresponds to the differential
algebraic definition except that h and g need not be algebraic or meromorphic. Also,
we do not require the system equations to be algebraic or meromorphic. The explicit
time dependence corresponds to the differential algebraic setting where the differential
ground field is a field of functions and is not merely a field of constants. The functions
g and h now being surjective submersions enable us to link the concept of flatness to
geometric nonlinear control theory where we usually impose regularity. We emphasize
that we only required a one-to-one correspondence of solution curves a priori for our
definition of flatness, and not that this dependence was in the form of derivatives.
The particular form of this dependence followed from our analysis.

Finally, the following theorem allows us to characterize the notion of flatness in
terms of absolute equivalence.
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Fig. 3.1. Rolling penny.

Theorem 3.6. Two systems are invertibly absolutely morphic if and only if they
are absolutely equivalent.

Proof. Sufficiency is trivial. We shall prove necessity. For convenience we shall
not mention independence conditions, but they are assumed to be present and do not
affect the proof. Let I1 on M1 and I2 on M2 be invertibly absolutely morphic. Let
J1 on B1 be the prolongation of I1 with π1 : B1 →M1 and similarly J2 on B2 be the
prolongation of I2 with π2 : B2 →M2. Let the absolute morphisms be φ1 : B2 →M1

and φ2 : B1 →M2.
We now argue that J2 is a Cartan prolongation of I1 (and hence I1 and I2 are

absolutely equivalent). By assumption φ1 is a surjective submersion, and every solu-
tion c̃2 of J2 projects down to a solution c1 of I1 on M1. The only extra requirement
for J2 on φ1 : B2 →M1 to be a (Cartan) prolongation is that every solution c1 of I1
has a unique lift c̃2 (on B2) which is a solution of J2.

To show existence of a lift, observe that for any given c1 that is a solution of I1,
we can obtain its unique lift c̃1 on B1 (which solves J1) and get its projection c2 on
M2 (which solves I2) and then consider its unique lift c̃2 on B2. Now it follows from
the invertibility property that φ1 ◦ c̃2 = c1. In other words, c̃2 projects down to c1.

To see the uniqueness of this lift, suppose c̃2 and c̃3, which are solutions of J2 on
B2, both project down to c1 on M1. Consider their projections c2 and c3 (respectively)
on M2. When we lift c2 or c3 to B2 and project down to M1 we get c1, which
when lifted to B1 gives, say, c̃1. By the requirement that the absolute morphisms be
invertible, c̃1 should project down to (via φ2) c2 as well as c3. Then uniqueness of
projection implies that c2 and c3 are the same, which implies c̃2 and c̃3 are the same.

Hence J2 is a Cartan prolongation of I1 as well. Hence I1 and I2 are absolutely
equivalent.

Using this theorem we can completely characterize differential flatness in terms
of absolute equivalence as follows.

Corollary 3.7. A system (I, dt) is differentially flat if and only if it is absolutely
equivalent to the trivial system It = ({0}, dt).

Note that we require the feedback equivalence to preserve time, since both systems
have the same independence condition. In the classical feedback equivalence we only
consider diffeomorphisms of the form (t, x, u) 7→ (t, φ(x), ψ(x, u)). For flatness we
allow diffeomorphisms of the form (t, x, u) 7→ (t, φ(t, x, u), ψ(t, x, u)). We could allow
time scalings of the form t 7→ s(t), but this does not change the independence condition
and does therefore not gain any generality. In Cartan’s notion of equivalence all
diffeomorphisms are completely general. This is akin to the notion of orbital flatness
presented in [10], where one allows time scalings dependent on all states and inputs.

Example 2. Consider the motion of a rolling penny, as shown in Figure 3.1.
Let (x1, x2) represent the xy position of the penny on the plane, let x3 represent the
heading angle of the penny relative to a fixed line on the plane, and let x4 represent
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the rotational velocity of the angle of Lincoln’s head, i.e., the rolling velocity. We
restrict x3 ∈ [0, π) since we cannot distinguish between a positive rolling velocity x4

at a heading angle x3 and a negative rolling velocity at a heading angle x3 + π.
The dynamics of the penny can be written as a Pfaffian system described by

ω1 = sinx3 dx1 − cosx3 dx2,

ω2 = cosx3 dx1 + sinx3 dx2 − x4dt,

ω3 = dx3 − x5dt,

ω4 = dx4 − u1dt,

ω5 = dx5 − u2dt,

(3.1)

where x5 = ẋ3 is the velocity of the heading angle. The controls u1 and u2 correspond
to the torques around the rolling and heading axes. We take dt as the independence
condition.

This system is differentially flat away from x4 = 0 using the outputs x1 and x2

plus knowledge of time. If dx1 and dx2 are not both zero, we can solve for x3 using
ω1. Given these three variables plus time, we can solve for all other variables in the
system by differentiation with respect to time. This argument also shows that the
system is differentially flat, since we only need to know (x1, x2) and their derivatives
up to order three in order to solve for all of the states of the system.

Often we will be interested in a more restricted form of flatness that eliminates
the explicit appearance of time that appears in the general definition.

Definition 3.8. An absolute morphism from a time invariant control system
(I1, dt) to a time invariant control system (I2, dt) is a time-independent absolute
morphism if locally the maps π : B1 → M1 and φ : B1 → M2 in Definition 3.1 have
the form (t, x, u) 7→ (t, η(x, u), ψ(x, u)); i.e., the mappings between states and inputs
do not depend on time. A system (I, dt) is time-independent differentially flat if it is
differentially flat using time-independent absolute morphisms.

Note that Example 2 is time-independent differentially flat. We may be tempted
to think that if the control system I is time invariant and we know that the trivial sys-
tem is time invariant, we can assume that the absolute morphism x = φ(t, y, y(1), . . . ,
y(q)) has to be time independent as well. That this is not true is illustrated by the
following example.

Example 3. Consider the system ẏ = ay and the coordinate transformation

y = x2et+x. Then ẋ = (a−1)x
2+x . Both systems are time invariant, but the coordinate

transformation depends on time.

4. Linear systems and linearizability. Conforming to the established litera-
ture [2], we define a linear time-invariant system as a system of the form

ẋ = Ax+Bu,

y = Cx+Du.
(4.1)

Here (A,B,C,D) are matrices of appropriate dimensions. If the system is controllable,
we can put it in Brunovsky normal form by a linear coordinate transformation on the
states and a static feedback. A system is in Brunovsky normal form if we can write
the dynamics as

z
(li)
i = ui(4.2)

for some new outputs zi.
Definition 4.1 (feedback linearizability). The time invariant nonlinear system

ẋ = f(x, u)(4.3)
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is feedback linearizable if there is a regular endogenous dynamic feedback

ż = α(x, z, v),

u = β(x, z, v),
(4.4)

and new coordinates ξ = φ(x, z) and η = ψ(x, z, v) such that in the new coordinates
the system has the form

ξ̇ = Aξ +Bη(4.5)

and the mapping φ maps onto a neighborhood of the origin. If dim z = 0 then we say
the system is static feedback linearizable.

Remark 1. It may seem overly restrictive to require the feedback (4.4) to be
regular endogenous. It is however common practice to impose regularity on the feed-
back (see Definition 6.1 in [22]), and it avoids anomalies like setting inputs equal to
a constant.

The form in equation (4.5) is the standard form in linear systems theory. It is
useful if one wants to design controllers for nonlinear systems around equilibrium
points.

It might be that the system can be put in the form (4.5) but that the coordinate
transformation is not valid in a neighborhood of the origin of the target system. In
that case we can shift the origin of the linear system to put it in the form

ξ̇ = Aξ +Bη + E.(4.6)

This form is called linear in [20], but most results in linear systems theory cannot
be applied since the origin is not an equilibrium point. However, it is still useful in
the context of trajectory generation. For example, a nonholonomic system in chained
form [21] can be transformed to this state space affine form.

It is clear that systems that are feedback linearizable (by regular endogenous
feedback) are flat, since we can put them into Brunovsky normal form. The follow-
ing theorem shows that the converse is also true in an open and dense subset. An
analogous result was proven by Martin in a differential algebraic setting [18, 19] and
has also been derived using the formalism of Lie–Bäcklund transformations [10, 11].

Theorem 4.2. Every differentially flat system can be put in Brunovsky normal
form in an open and dense set through regular endogenous feedback.

Proof. Let J, Jt be the Cartan prolongations of I, It, respectively. Then by
Theorem 3.4, on an open and dense set there is a prolongation by differentiation of Jt
that is also a prolongation by differentiation of It, say, Jt1. Let J1 be the corresponding
Cartan prolongation of J . Then J1 is equivalent to Jt1, which is in Brunovsky normal
form. In particular, since J1 is a Cartan prolongation, it can be realized by regular
endogenous feedback.

This proof relies on Theorem 3.4, which restricts its validity to an open and dense
set. We conjecture that the result holds everywhere, but the above proof technique
does not allow us to conclude that. The obstruction lies in certain prolongations that
we cannot prove to be regular.

5. Flatness for single input systems. For single input control systems, the
corresponding differential system has codimension 2. There are a number of results
available in codimension 2 that allow us to give a complete characterization of differ-
entially flat single input control systems. In codimension 2 every Cartan prolongation
is a total prolongation around every point of the fibered manifold [26], given our
regularity assumptions 1, 2. This allows us to prove the following theorem.
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Theorem 5.1. Let I be a time invariant control system

I = {dx1 − f1(x, u)dt, . . . , dxn − fn(x, u)dt},
where u is a scalar control; i.e., the system has codimension 2. If I is time-independent
differentially flat around an equilibrium point, then I is feedback linearizable by static
time invariant feedback at that equilibrium point.

Proof. Let I be defined on M with coordinates (x, u, t), let the trivial system It
be defined on Bt with coordinates (y0, t), let the prolongation of It be Jt, and let Jt
be defined on Mt. This is illustrated below.
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First we show that Jt can be taken as a Goursat normal form around the equilib-
rium point. In codimension 2, every Cartan prolongation is a repeated total prolon-
gation in a neighborhood of every point of the fibered manifold [26, Theorem 5]. Let
It0 = It, It1, It2, . . . denote the total prolongations starting at It, defined on fibered
manifolds Bt0 = Bt, Bt1, . . . . If y1 denotes the fiber coordinate of Bt1 over Bt0, then
It1 has the form λdt + µdy0, where either λ or µ depends nontrivially on y1. Since
the last derived system of I does not drop rank at the equilibrium, neither does It1
and we have that not both λ and µ vanish at the equilibrium. Now, µ 6= 0 at the
equilibrium point. This can be seen as follows: y0 ≡ c is a solution curve to It, and
would not have a lift to It1 if µ = 0, since dt is required to remain the independence
condition of all Cartan prolongations. From continuity we then have µ 6= 0 around the
equilibrium point. So we can define y1 := −λ/µ, and It1 can be written as dy0−y1dt.
We can continue this process for every Cartan prolongation, both of It and of I. This
brings Jt in Goursat normal form in a neighborhood of the equilibrium point.

Now we will argue that we don’t need to prolong I to establish equivalence.
Since J is a Cartan prolongation, and therefore a total prolongation, its first derived
system will be equivalent to the first derived system of Jt. Continuing this we establish
equivalence between I and Itn, where Itn = {dy0 − y1dt, . . . , dyn−1 − yndt}. So we
have y = (y0, . . . , yn) = y(x, u, t).

Next we will show that y0, . . . , yn are independent of time and that y0, . . . , yn−1

are independent of u. By assumption y0 is independent of time. Since the correspond-
ing derived systems on each side are equivalent, dy0 − y1dt is equivalent to the last
one-form in the derived flag of I. Since the differential du does not appear in this
one-form, y0 is independent of u. Analogously, yi, i = 1, . . . , n− 1 are all independent
of u. Since the yi, i = 1, . . . , n are repeated derivatives of y0, and since I is time
invariant, these coordinates are also independent of time.

We still have to show that the mapping x 7→ y is a valid coordinate transformation.
Suppose dy0, . . . , dyn−1 are linearly dependent at the equilibrium. Then, Jt drops rank
at the equilibrium, and since we have equivalence, so would I. But from the form of
I we can see this is not the case.

Therefore yi = yi(x), i = 0, . . . , n − 1, yn = yn(x, u) and the system Jt is just
a chain of integrators with input yn. The original system I is equivalent to this
linear system by a coordinate transformation on the states and a state dependent and
time invariant feedback. This coordinate transformation is well defined around the
equilibrium point. It is therefore feedback linearizable by a static feedback that is
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time invariant. Note that ∂yn/∂u 6= 0 because yn is the only one of the y variables
that depends on u.

The conclusion that the feedback can be taken static goes back to [5, 23].
Example 4. Notice that in our definition the system

ẋ2 = u,

ẋ1 = x3
2,

y = x1,

(5.1)

is not flat around the origin, because we get u = ÿ
3 ẏ2/3 so that curves with ẏ = 0 and

ÿ 6= 0 have no lift. It is also not feedback linearizable at the origin.
We will now show that in the case of a time invariant system we don’t need the

assumption of time invariant flatness to conclude static feedback linearizability. We
will require the following preliminary result, which appeared in a proof in [24].

Lemma 5.2. Given a one-form α = Ai(x, u)dxi − A0(x, u)dt (using implicit
summation) on a manifold M with coordinates (x, u, t), and suppose we can write
α = dX(x, u, t) − U(x, u, t)dt. Then we can also write α as α = dY (x) − V (x, u)dt;
i.e., we can take the function X independent of time and the input, and we can take
U independent of time. If we know in addition that α = Ai(x)dxi−A0(x)dt, then we
can scale α as α = dY (x)− V (x)dt; i.e., we can take V independent of u as well.

Proof. For the proof see [24].
The following theorem seems to be implied in [24], but the proof there refers to

a general discussion of Cartan’s method of equivalence as applied to control systems
in [13]. We work out the proof for this special case.

Theorem 5.3. A controllable single input time invariant control system is differ-
entially flat if and only if it is feedback linearizable by static, time invariant feedback.

Proof. The proof of sufficiency follows trivially from controllability, so we shall
only prove necessity. Let the control system be I = {dx1 − f1(x, u)dt, . . . , dxn −
fn(x, u)dt}, where u is a scalar control; i.e., the system has codimension 2. Let
{αi, i = 1, . . . , n} and {αi

t, i = 1, . . . , n} be one-forms adapted to the derived flag of

I, It, respectively. Thus I(i) = {α1, . . . , αn−i} and I
(i)
t = {α1

t , . . . , α
n−i
t }. Since I does

not contain the differential du, the forms α1, . . . , αn−1 can be taken to be independent
of u. Since I is time invariant, the forms α1, . . . , αn can be chosen to be independent
of time. We can thus invoke the second part of Lemma 5.2 for the forms α1, . . . , αn−1.

Assume n ≥ 2. As in Theorem 5.1 we have equivalence between α1 and α1
t =

dy0(x, t)−y1(x, t)dt (if n = 1 we have yn = yn(x, u, t), which we will reach eventually).
Since I is time invariant we can choose α1 time independent: α1 = Ai(x)dxi−A0(x)dt.
From Lemma 5.2 we know that we can write α1 as dY0−Y1dt where Y0, Y1 are functions
of x only.

Again according to Lemma 5.2, we can write α2 = dV (x)−W (x)dt. Now from

0 = dα1 ∧ α1 ∧ α2

= −dY1 ∧ dt ∧ dY0 ∧ dV

we know V = V (Y1, Y0). And from

0 6= dα2 ∧ α1 ∧ α2

= −dW ∧ dt ∧ dY0 ∧ dV

we know that γ1 := ∂V/∂Y1 6= 0. Then writing γ0 := ∂V/∂Y0 (and ' denotes
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equivalence in the sense that both systems generate the same ideal),

{α1, α2} ' {dY0 − Y1dt, γ1dY1 + γ0dY0 −Wdt}
' {dY0 − Y1dt, γ1dY1 + γ0Y1dt−Wdt}
' {dY0 − Y1dt, dY1 − (−γ0Y1 +W )/γ1dt}
:= {dY0 − Y1dt, dY1 − Y2dt},(5.2)

where Y2, defined to be Y2 = (−γ0Y1 +W )/γ1, is independent of (t, u) since (γ1, γ0,
Y1,W ) are. One can continue this procedure, at each step defining a new coordinate
Yi. In the last step the variable W = W (x, u) (this will also be the first step if
n = 1), and therefore Yn depends on u nontrivially. Hence we obtain equivalence
between I and {dY0 − Y1dt, . . . , dYn−1 − Yndt} with Yi = Yi(x), i = 0, . . . , n− 1, and
Yn = Yn(x, u), i.e., feedback linearizability by static time invariant feedback.

Corollary 5.4. If a time invariant single input system is differentially flat we
can always take the flat output as a function of the states only: y = y(x).

None of these results extend easily to higher codimensions. The reason for this is
that only in codimension 2 can we find regularity assumptions on the original system
such that every Cartan prolongation is a total prolongation. This is related to the
well-known fact that for SISO systems static linearizability is equivalent to dynamic
linearizability. For MIMO systems we cannot express these regularity conditions on
the original system: we have to check regularity on the prolonged systems.

6. Concluding remarks. We have presented a definition of flatness in terms
of the language of exterior differential systems and prolongations. Our definition
remains close to the original definition due to Fliess [8, 9], but it involves the notion
of a preferred coordinate corresponding to the independent variable (usually time).

Using this framework we were able to recover all results in the differential algebra
formulation. In particular we showed that flat systems can be put in linear form
in an open and dense set. This set need not contain an equilibrium point, and this
linearizability therefore does not allow one to use most methods from linear systems
theory. In other words, although flatness implies a linear form, it does not necessarily
imply a linear structure. For a SISO flat system we resolved the regularity issue and
established feedback linearizability around an equilibrium point. We also resolved the
time dependence of flat outputs in the SISO case.

The most important open question is a characterization of flatness in codimension
higher than 2.

Acknowledgments. The authors would like to thank Willem Sluis for many
fruitful and inspiring discussions and for introducing us to Cartan’s work and its ap-
plications to control theory. We also thank Shankar Sastry for valuable comments
on this paper, and Philippe Martin for several useful discussions which led to a more
complete understanding of the relationship between endogenous feedback and differen-
tial flatness. The reviewers provided many valuable comments which helped improve
several specific results and the overall presentation.

REFERENCES

[1] R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differen-
tial Systems, Springer-Verlag, New York, 1991.

[2] F. Callier and C. Desoer, Linear System Theory, Springer-Verlag, New York, 1991.
[3] E. Cartan, Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur
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[8] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, On differentially flat nonlinear systems,
in IFAC Symposium on Nonlinear Control Systems Design (NOLCOS), IFAC, Laxenburg,
Austria, 1992, pp. 408–412.
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Abstract. We study conditions under which a global error bound in terms of a natural residual
exists for a convex inequality system. Specifically, we obtain an error bound result, which unifies
many existing results assuming a Slater condition. We also derive two characterizations for a convex
inequality system to possess a global error bound; one is in terms of metric regularity, and the other
is in terms of an associated convex inequality system. As a consequence, we show that in R

n a global
error bound holds for such a system under the assumption of the zero vector in the relative interior
of the domain of an associated conjugate function along with metric regularity at every point of the
feasible set defined by the system. Finally, we discuss some applications of these results to convex
programs.

Key words. error bounds, metric regularity, relative interior, Hausdorff distance, weak sharp
minima
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1. Introduction. This paper deals with the convex inequality system

f(x) ≤ 0, x ∈ C ⊂ X,(1)

where X is a Banach space, C is a nonempty closed convex set, and f is a continuous
convex function on X. Let S be the set of solutions to (1). We assume throughout
that S is nonempty. In this paper, we are interested in knowing conditions under
which the following global error bound holds for S: there is a positive constant τ such
that

d(x, S) ≤ τ [f(x)]+ for all x ∈ C,(2)

where d(x, S) = infy∈S ||x− y||, [f(x)]+ = max{f(x), 0}, and || · || denotes the norm on
X. When X = R

n, || · || denotes the usual Euclidean norm on R
n.

Error bounds in the form of (2), which are expressed in terms of a constant
multiple of a natural residual, have found many important applications in sensitivity
analysis of convex programs and complementarity problems, and in the convergence
analysis of some descent methods. See [21, 24, 25, 26, 28, 5] for more details.

The Slater condition, which postulates the existence of an x0 ∈ C such that
f(x0) < 0, plays an important role in establishing the global error bound (2). In a
normed linear space setting, Robinson [29] proved that (2) holds when S is bounded
and (1) satisfies the Slater condition. In a finite-dimensional space setting, Man-
gasarian [23] established (2) when f is a pointwise maximum of finitely many convex
differentiable functions, and (1) satisfies the Slater condition and an asymptotic con-
straint qualification. Auslender and Crouzeix [1] extended Mangasarian’s result by
relaxing the differentiability assumptions. Luo and Luo [19] established (2) for convex
quadratic systems under the Slater condition. In a Banach space setting, Deng [6]
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established (2) under a Slater condition on the associated recession functions. Klatte
[13, 14] established (2) under certain Hausdorff continuity assumptions. Li [17] derived
an interesting characterization of metric regularity of a convex differentiable inequal-
ity system in terms of the Abadie constraint qualification and showed that the Abadie
constraint qualification holding at every point of S is a necessary and sufficient condi-
tion for (2) to hold when f is a pointwise maximum of finitely many convex quadratic
functions. A very recent paper of Lewis and Pang [15] gives an excellent survey on this
active research area. By establishing an interesting necessary and sufficient condition
involving directional derivatives first, Lewis and Pang [15] derived many interesting
results. For other related error bound results, see [3, 8, 9, 12, 16, 20, 22, 27, 32] and
references therein.

The purpose of this note is twofold. First, we establish an error bound result
involving level set conditions of associated functions. This result unifies and extends
many existing results assuming a Slater condition. Second, we derive two character-
izations for the existence of the global error bound (2). This part of the research is
partly motivated by the recent work of Li [17]. In a Banach space setting, we show
that the global error bound (2) holds if and only if (1) is metrically regular at S;
see section 2.2 for the definition of metric regularity at a set. When X = R

n and
the affine hull of the domain of the conjugate function f∗ is a proper subset of R

n,
we obtain another characterization by relating (1) to an associated system. We show
that the existence of the global error bound (2) for (1) is equivalent to that for the
associated system. As a consequence, we show that (2) holds when the zero vector
is in the relative interior of the domain of the conjugate function f∗ and (1) is met-
rically regular at every point of S (see section 2.2 for more details). In section 3, by
applying the aforementioned results, we obtain some sufficient conditions for weak
sharp minima of convex programs. Our results are complementary to the work done
by Lewis and Pang [15] and Li [17].

We now describe the notation and some of the basic concepts used in this paper.
For a nonempty convex set U in R

n, we denote by int (U), ri (U), aff (U), and
cl (U), the interior of U , the relative interior of U , the affine hull of U , and the closure
of U , respectively. For a nonempty closed convex set U in X, we denote by U∞ the
recession cone of U . For any two nonempty closed sets U1 and U2 in X, we define the
Hausdorff distance between them as

haus (U1, U2) = max

{
sup
x∈U1

d(x, U2), sup
x∈U2

d(x, U1)

}
.

A closed proper convex function g on X is an everywhere defined function with
values in (−∞,+∞], not identically +∞, such that epi g is a closed convex set in
X × R, where epi g denotes the epigraph of g. Its effective domain is the nonempty
convex set

dom g = {x ∈ X | g(x) < +∞}.

For a closed proper convex function g, we denote by ∂g(x), g∗, and g∞ the
subdifferential of g at x (∈ dom g), the conjugate function of g, and the recession
function of g, respectively.

2. Main results. We study the existence of the global error bound (2). Sec-
tion 2.1 deals with the case where the Slater condition is satisfied. Section 2.2 deals
with the case without such an assumption.
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2.1. A level set condition result. We begin with an error bound result as-
suming certain level set conditions on f for the system (1).

Proposition 1. Suppose that X is a Banach space, C is a nonempty closed
convex set in X, f is continuous and convex on X, and S = {x ∈ C | f(x) ≤ 0}.
Suppose that there are positive scalars δ and ∆ such that

(a) S̃ = {x ∈ C | f(x) ≤ −δ} is nonempty, and
(b) haus (S̃, S) ≤ ∆.

Then

d(x, S) ≤ δ−1∆[f(x)]+ for all x ∈ C.

Before proving Proposition 1, we would like to point out that conditions (a) and
(b) hold whenever S is nonempty and bounded, and the system f(x) ≤ 0 satisfies
the Slater condition. Moreover, when S is bounded, ∆ can be chosen as the diameter
of S. Thus Proposition 1 extends Robinson’s result [29] in this setting. The proof
technique is a refinement of that used in [29].

Proof. We only have to show that (2) holds for any x ∈ C, but x 6∈ S. Given
x 6∈ S and x ∈ C, since the projection of x onto S may not exist, we have to use a
limit argument. For any n > 0, there is some y(n) ∈ S̃ such that

||x− y(n)|| ≤ d(x, S̃) + 1/n.

By a similar argument, the distance between x and S̃ can be bounded by d(x, S) +
∆ + 1/n; that is,

d(x, S̃) ≤ d(x, S) + ∆ + 1/n.

Consequently,

||x− y(n)|| ≤ d(x, S) + ∆ + 2/n.(3)

With this given y(n), let

x− z(n) = f(x)(f(x) + δ)−1(x− y(n)).(4)

Then z(n) ∈ S by the convexity of f and C. Since

||x− y(n)|| = ||x− z(n)||+ ||z(n)− y(n)||, and d(x, S) ≤ ||z(n)− x||,(5)

it follows that

||z(n)− y(n)|| = ||x− y(n)|| − ||z(n)− x||
≤ d(x, S) + ∆ + 2/n− d(x, S) (by (3) and (5))

≤ ∆ + 2/n.(6)

By (4), δ(x− z(n)) = f(x)[(x− y(n))− (x− z(n))]. Therefore,

d(x, S) ≤ ||x− z(n)||
≤ δ−1f(x)||y(n)− z(n)||
≤ δ−1(∆ + 2/n)[f(x)]+ (by (6)).

By letting n→ +∞, we obtain the desired inequality.
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Remarks. In an early version of this paper, the above result was proved under
the assumption that the Banach space X is reflexive. A suggestion of J. Burke led to
the present formulation and its proof.

Many known global error bounds assuming the Slater condition can be derived
from Proposition 1. By invoking Proposition 1, we can prove the following corollaries.
Corollary 1 can be used to show that the global error bound (2) holds for S when
C = X = R

n, f is well-posed, and (1) satisfies the Slater condition. Recall [1, 15]
that f is well posed if every stationary sequence of f is a minimizing sequence; that
is,

[limk→∞ uk = 0, uk ∈ ∂f(xk),∀k]⇒ [ limk→∞ f(xk) = infx∈X f(x)].

Corollary 1. For the system (1), suppose that X is a Banach space, C is a
nonempty closed convex set in X, S is nonempty, and the global error bound (2) holds.
Then, for any λ > 0,

d(x, Sλ) ≤ τ [f(x)− λ]+ for all x ∈ C,

where Sλ = {x ∈ C | f(x) ≤ λ} and τ is the multiplicative constant in (2).
Corollary 2 (see [6]). Suppose that X is a Banach space, C is a nonempty

closed convex set in X, and there is a unit vector u ∈ C∞ such that f∞(u) ≤ −τ−1.
Then

d (x, S) ≤ τ [f(x)]+ for all x ∈ C.

Proof. We only need to show that conditions (a) and (b) in Proposition 1 hold
with haus (S̃, S) ≤ τ , where S̃ = {x ∈ C | f(x) ≤ −1}. For any x ∈ S, since

f(x + τu) ≤ f(x + τu)− f(x) ≤ τf∞(u) ≤ −1,

haus (S̃, S) ≤ τ follows from the fact that x + τu ∈ S̃.
As a referee noted, a direct proof of Corollary 2 can be given by using the in-

equality f(x + λu) ≤ f(x)− τ−1λ (∀x, λ ≥ 0) and putting λ = τf(x) for x ∈ C\S.
Corollary 3. Suppose that C = X = R

n. Let F be a vector-valued map-
ping from R

n to R
m with each component of F a finite convex function. Let S =

{x | F (x) ≤ 0}. Suppose that there is a vector b ∈ −int (Rm
+ ) and a positive scalar ∆̃

such that
(a) S̃ = {x | F (x) ≤ b} is nonempty, and
(b) haus (S̃, S) ≤ ∆̃.

Then

d(z, S) ≤ δ̃−1∆̃||[F (z)]+||∞ for all z ∈ R
n,

where δ̃ = min1≤i≤m{−bi} and bi is the ith component of b, and || · ||∞ denotes the
∞-norm on R

m.
Proof. Let f(x) = max1≤i≤m{fi(x)}, where fi are components of F for 1 ≤ i ≤ m.

Clearly {x | f(x) ≤ 0} = S. Since −δ̃ = −min1≤i≤m{−bi} = max1≤i≤m{bi}, it

follows that, for any x ∈ X, f(x) ≤ −δ̃ whenever fi(x) ≤ bi for all 1 ≤ i ≤ m. That
is, S̄ = {x | f(x) ≤ −δ̃} ⊃ S̃. Consequently, haus (S̄, S) ≤ haus (S̃, S) ≤ ∆̃. Thus the
system f(x) ≤ 0 satisfies conditions (a) and (b) in Proposition 1. Therefore

d(z, S) ≤ δ̃−1∆̃[f(z)]+ = δ̃−1∆̃||[F (z)]+||∞ for all z ∈ R
n.



1244 SIEN DENG

The following example illustrates an application of Proposition 1.
Example 1. Let X = R

2, and let P =
{

(x1, x2) ∈ R
2 | x2 ≥ x2

1

}
. Consider

f(x) = (d(x, P ))
2 − 1, where d(x, P ) is the Euclidean distance from a point x ∈ R

2

to the set P . Let S = {x | f(x) ≤ 0}. Since (d(x, P ))
2

is the inf-convolution of
|| · ||2 and δP (·), it is easy to see that f∗(x∗) = 1/4||x∗||2 + σP (x∗) + 1 (Theorem 12.3
of [30]), where σP is the support function of P . Consequently, dom f∗ = dom σP .
Clearly, S is unbounded, and Robinson’s result [29] is not applicable. It is evident
that {x | f(x) ≤ −1} = P . An easy computation shows that

haus(P, S) = 1.

By Proposition 1, we have

d(z, S) ≤ [f(z)]+ for all z ∈ R
2.

2.2. Metric regularity and global error bounds. For simplicity, throughout
the rest of the paper we assume that C = X.

The study of error bounds of (1) is closely related to that of metric regularity
of (1). By extending the concept of metric regularity at a point to that of metric
regularity at a set, we first obtain a useful characterization of the existence of a global
error bound, and then study its implications. Note that the Slater condition is not
assumed in this section.

Definition 1. Suppose that the solution set S of (1) is nonempty. We say that
the system (1) is metrically regular at a nonempty set Ŝ ⊂ S if there exist positive
constants δ and τ(δ) such that

d(x, S) ≤ τ(δ)[f(x)]+ when d(x, Ŝ) ≤ δ.

When Ŝ = {z}, we say that the system (1) is metrically regular at z. We say that
the system (1) is metrically regular at every point of S if the system (1) is metrically
regular at z for all z ∈ S.

It is clear that if the system (1) has the global error bound (2), then the system (1)
is metrically regular at S. It is the convexity of f that implies the reverse implication.
We state this observation as the following theorem.

Theorem 1. Suppose that X is a Banach space and f is continuous and convex
on X. For the system (1), suppose that S is nonempty. Consider the following
statements.

(a) The global error bound (2) holds.
(b) The system (1) is metrically regular at any nonempty set Ŝ ⊂ S.
(c) The system (1) is metrically regular at S.
(d) The system (1) is metrically regular at every point of S.
(e) The system (1) satisfies the Slater condition.
Then the following implications hold:

(a) ⇔ (b) ⇔ (c) ⇒ (d) ⇐ (e).

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are trivial.
[(e) ⇒ (d)]. This is a consequence of the inequality (3) in [29, p. 272].
[(c) ⇒ (a)]. Since (1) is metrically regular at S, it follows that there are some

positive scalars δ and τ(δ) such that

d(x, S) ≤ τ(δ)[f(x)]+ when d(x, S) ≤ δ.
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For any x 6∈ S, let d(x, S) = r. Suppose that r > δ; otherwise, the result holds trivially.
For any ε > 0, let x̄ ∈ S such that ||x̄ − x|| ≤ d(x, S) + ε, and let y = λx + (1 − λ)x̄
with λ = δ/(r + ε). Then ||y − x̄|| = λ||x− x̄|| ≤ δ. Since d(y, S) + ||y − x|| ≥ d(x, S),

||y − x̄|| = ||x̄− x|| − ||y − x||
≤ d(x, S) + ε− (d(x, S)− d(y, S))

≤ d(y, S) + ε.

Therefore,

d(x, S) ≤ ||x− x̄|| = (λ)−1||y − x̄|| = (λ)−1 (d(y, S) + ε)

≤ (λ)−1 (τ(δ)[f(y)]+ + ε) (since d(y, S) ≤ δ)

≤ (λ)−1 (τ(δ)λf(x) + ε) (by the convexity of f)

≤ τ(δ)[f(x)]+ + ε(λ)−1.

We obtain the desired inequality by letting ε ↓ 0.

Remarks. A characterization of the existence of the global error bound (2) in
terms of directional derivatives can be found in [15]. In [4], directional derivatives are
used to characterize weak sharp minima for convex programs. It is not difficult to
see that metric regularity at a set can also be characterized in terms of directional
derivatives. For X = R

n and f being a pointwise maximum of finitely many convex
differentiable functions, Li [17] is able to characterize metric regularity at a point of
S in terms of the Abadie constraint qualification.

In the rest of this paper, we suppose that X = R
n. Since any nonempty bounded

closed set in R
n is compact, an immediate consequence of Theorem 1 is the following

corollary.

Corollary 4. Suppose that f is a finite convex function on R
n, S is nonempty,

and the system (1) is metrically regular at every point of S. If S is bounded, then the
global error bound (2) holds.

Proof. By metric regularity at every point of S and the compactness of S, there
exist positive scalars τi, δi, and B(xi, δi) for i = 1, ...,m with xi ∈ S such that d(x, S) ≤
τi[f(x)]+ when x ∈ B(xi, δi) and S ⊂ ∪mi=1int (B(xi, δi)), where B(xi, δi) denotes the
closed Euclidean ball centered at xi with radius δi. Again, by the compactness of S,
there is a δ > 0 such that

{x | d(x, S) ≤ δ} ⊂ ∪mi=1int (B(xi, δi)).

Let τ = max1≤i≤m{τi}. It follows that

d(x, S) ≤ τ [f(x)]+ when d(x, S) ≤ δ.

The desired result follows by invoking Theorem 1.

Without the boundedness assumption on S, metrical regularity at every point of
S does not guarantee that (2) holds. Examples 1 and 2 in [15] show that the global
error bound (2) does not hold even under the Slater condition, which implies metric
regularity at every point of S by Theorem 1.

The next issue on our agenda is to obtain conditions along with metric regu-
larity at every point of S under which (2) holds. In [6], we have shown that if
0 6∈ cl [dom f∗] (which is equivalent to the system f∞(u) < 0 being solvable since



1246 SIEN DENG

f∞(u) = supv∈cl [dom f∗]〈v, u〉) [31], then the system (1) has the global error bound

(2). Thus we only need to consider the case when

0 ∈ cl [dom (f∗)].

We will show that the existence of the global error bound (2) for S is completely
determined by an associated convex inequality system. First, some notation: let
E = aff(dom f∗), which is a subspace since cl [dom (f∗)] ⊂ E (p. 44 of [30]) and
0 ∈ cl [dom (f∗)]. Let E⊥ be the orthogonal complement of E, and ΠE : R

n → E be
the orthogonal projector. Then R

n = E
⊕

E⊥. Define

f∗E(x∗) = f∗(ΠE(x∗)) ∀x∗ ∈ R
n.

Since E is a subspace, by (b) of Lemma 2.1 in [2],

f(x) = fE(ΠE(x)) ∀x ∈ R
n.(7)

In view of (7), fE is convex and continuous on E. Now we consider the following
auxiliary inequality system:

fE(x) ≤ 0, and x ∈ E.(8)

Let SE ⊂ E be the set of solutions to (8). We list below some basic properties
associated with fE as the following proposition.

Proposition 2. With the previous notation, we have
(a) S = SE + E⊥;
(b) dom fE

∗ = dom f∗ + E⊥ and int [dom fE
∗] = ri [dom f∗] + E⊥.

Proof. Part (a) follows from the fact that SE = ΠE(S) and the relation (7), and
Part (b) is proved in [2, Lemma 2.1].

It follows from (a) in Proposition 2 that SE is nonempty if and only if S is
nonempty. By invoking Proposition 2, we have the following lemma.

Lemma 1. For the system (1), suppose that S is nonempty, and that E and fE
are defined as above. Then

d(z, S) = d(ΠE(z), SE) for all z ∈ R
n.

Proof. Since S = SE + E⊥, for all x ∈ SE and y ∈ E⊥,

||z − (x + y)||2 = ||(ΠE(z)− x) + [(z −ΠE(z))− y]||2
= ||ΠE(z)− x||2 + ||(z −ΠE(z))− y||2.

It follows that d(z, S) = d(ΠE(z), SE) for all z ∈ R
n.

Now we are in a position to state another main result of this paper.
Theorem 2. For the system (1), suppose that f is a finite convex function on

R
n, S is nonempty, and 0 ∈ cl [dom (f∗)]. Let E = aff [dom (f∗)]. Then the following

holds:

[ d(x, S) ≤ τ [f(x)]+ ∀x ∈ R
n ]⇔ [ d(x, SE) ≤ τ [fE(x)]+ ∀x ∈ E ].

Proof. (⇒) For any x ∈ E, by Lemma 1 and the relation (7), we have

d(x, SE) = d(x, S) ≤ τ [f(x)]+ = τ [fE(x)]+.
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(⇐) For any x ∈ R
n, by Lemma 1 and the relation (7), we have

d(x, S) = d(ΠE(x), SE) ≤ τ [fE(ΠE(x))]+ = τ [f(x)]+.

This completes the proof of Theorem 2.

As a consequence of Theorem 2, we obtain a useful sufficient condition for (2) to
hold.

Corollary 5. For the system (1), suppose that f is a finite convex function on
R
n, and S is nonempty. Suppose that the system (1) is metrically regular at every

point of S, and 0 ∈ ri [dom f∗]. Then the global error bound (2) holds.

Proof. Since the system (1) is metrically regular at every point of S, and SE ⊂ S,
the system (8) is metrically regular at every point of SE (its proof is similar to that for
the necessity part in Theorem 2). By (b) of Proposition 2, 0 ∈ int [dom f∗E ]. Hence
SE is bounded. The result follows by invoking Corollary 4 and Theorem 2.

Remarks. The class of functions f with 0 ∈ ri [dom f∗] has been extensively
studied by Auslender, Cominetti, and Crouzeix in [2].

3. Applications. In this section, we give an application of Corollary 5 in sec-
tion 2 to convex programs.

Consider

(P) minimize h(x)

subject to g(x) ≤ 0,

where h and g are finite convex functions on R
n.

Let S̃ be the set of optimal solutions to (P), and suppose that S̃ is nonempty.
Let hmin be the optimal value of (P). Following [4], we say that S̃ is a set of weak
sharp minima if there exists some positive scalar γ such that

h(x) ≥ hmin + γd(x, S̃) ∀x with g(x) ≤ 0.

Let f(x) = max{h(x) − hmin, g(x)}. By invoking Corollary 5, we obtain a suffi-
cient condition for (P) possessing weak sharp minima.

Proposition 3. Consider (P). With the previous notation, if the system f(x) ≤
0 is metrically regular at every point of S̃ and 0 ∈ ri [dom f∗], then S̃ is a set of
weak sharp minima. In particular, the relative interiority condition holds when S̃ is
bounded.

Proof. By Corollary 5, there is a positive scalar τ such that d(x, S̃) ≤ τ [f(x)]+
for all x ∈ R

n. In particular, d(x, S̃) ≤ τ(h(x) − hmin) for all x with g(x) ≤ 0. This
is what we needed to prove.

Remarks. According to Theorem 2.4.7 (p. 68) in [10], dom f∗ = co [dom h∗ ∪
dom g∗]. By Theorem 6.9 in [30],

ri [dom f∗] = ∪{λ ri [dom h∗] + (1− λ) ri [dom g∗] | 0 < λ < 1}.

In [7], inspired by Corollary 2 in [15], Deng and Hu proved the following error
bound result.

Proposition 4. Consider the system f̃(x) ≤ 0, x ∈ C, where C is a nonempty
closed convex set in R

n and f̃ is a finite convex function on R
n. Suppose that S̄ is

the set of solutions to the system f̃(x) ≤ 0, x ∈ C, and S̄ is nonempty. Suppose that
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f̃ is Lipschitz continuous on R
n with a Lipschitz constant l, and there is a positive

scalar γ such that

d(x, S̄) ≤ γ[f̃(x)]+ for all x ∈ C.(9)

Then

d(x, S̄) ≤ (γl + 1)d(x,C) + γ[f̃(x)]+ for all x ∈ R
n.(10)

In view of Propositions 3 and 4, we obtain a new characterization of weak sharp
minima when g is a finite convex polyhedral function in (P).

Corollary 6. Consider (P). With the same notation as in Proposition 3,
suppose that g(x) = max1≤i≤m{aTi x + bi}, where ai ∈ R

n and bi ∈ R, that h is
Lipschitz continuous on R

n, and that 0 ∈ ri [dom f∗]. Then the following statements
are equivalent.

(a) S̃ is the set of weak sharp minima for (P);
(b) the system f(x) ≤ 0 is metrically regular at every point of S̃.
Proof. [(a) ⇒ (b)]. This is a consequence of Proposition 4 and Hoffman’s theorem

[11].
[(b) ⇒ (a)]. This follows from Proposition 3.

Notes added in revision. The results in section 2.2 were added in a revision of
this paper (July 1996). After the paper was resubmitted, the author received a paper
of Li and Singer [18], where a result similar to that of the equivalence of (a) and (c)
in Theorem 1 was proved for convex multifunctions.

Acknowledgments. The author thanks Professor R. F. Wheeler for some help-
ful comments on an earlier version of this paper, Professor James Burke and the
associate editor for some useful suggestions, and two referees for their insightful com-
ments.
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Abstract. In this paper, the maximum principle for some n-dimensional coercive Dirichlet
problem of the second order is proved and sufficient conditions for the existence of an optimal
solution are given. The results obtained generalize, in the sense of the dimension of the state space,
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1. Introduction. In this paper we consider a nonlinear system of ordinary dif-
ferential equations of the second order with functional parameters (controls) and
Dirichlet-type boundary conditions. This system is of the form

d

dx
(Dz′F (x, z(x), z′(x), u(x))) = DzF (x, z(x), z′(x), u(x)), x ∈ I = [0, π] a.e.,(1)

z(0) = z(π) = 0,(2)

where z = (z1, . . . , zn), u = (u1, . . . , ur), F : I × R
n × R

n × R
r → R, DzF =

(Dz1F, . . . ,DznF ), Dz′F = (Dz′1F, . . . ,Dz′nF ), n ≥ 1, r ≥ 1.
For more than a hundred years, systems of this type have played an essential role

in mathematical models of physical and technical phenomena. This is connected with
the principle of minimal action which holds true universally in nature (cf. [10]). So,
it seems to be purposeful to investigate optimal processes for system (1)–(2).

The existence of a solution to system (1)–(2) was considered in many papers and
monographs (see [2] and [9] and its references).

In our paper we consider system (1)–(2) with a constraint on controls

u(x) ∈M,(3)

and with the performance index

F0(z, u) =

∫
I

F0(x, z(x), z′(x), u(x)) dx→ min,(4)

where M ⊂ R
r, F0 : I × R

n × R
n × R

r → R.
The control problem (1)–(4) is investigated in the spaces

H1
0 (I,Rn) = {z : I → R

n; z is absolutely continuous on I,

z(0) = z(π) = 0, z′ ∈ L2(I,Rn)}
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(idczak@imul.uni.lodz.pl). This work was supported by grants 2P03A05910 and 8T11A01109 of the
State Committee for Scientific Research, Poland.

1250



OPTIMAL CONTROL OF A COERCIVE DIRICHLET PROBLEM 1251

of trajectories and

UM = {u ∈ L2(I,Rr); u(x) ∈M for x ∈ I a.e.}
of controls.

The scalar problem (n = 1) of type (1)–(4) was studied by German and Lithuanian
mathematicians in many papers (see [4] and its references). In [4] the authors consid-
ered this problem with additional inequality and equality constraints, but without u
on the left-hand side of (1). They derived the maximum principle by using McShane
variations and assuming the existence of a solution to system (1)–(2).

In general, our original control problem cannot be reformulated into a control
problem for a normal system of two first-order differential equations. We use the
direct method of the calculus of variations to study the original problem.

In this paper we prove the existence of a solution in H1
0 (I,Rn) to system (1)–(2)

for any control u ∈ L2(I,Rn). Next, we derive the maximum principle for problem
(1)–(4) in the case of Dz′F affine in z′ by using the extremum principle for a smooth-
convex problem (cf. [6, section 1.1.3], [14, section 1.1.4]). Finally, we obtain a theorem
on the existence of an optimal solution for some special form of system (1) by using
the results concerning the continuous dependence of solutions to system (1)–(2) on
controls, obtained in [15].

2. Existence of a solution to system (1)–(2). To assert the existence of
a solution to system (1)–(2) in the space H1

0 (I,Rn), we shall apply the variational
method for solving differential equations (cf. [2], [9]).

We shall say that a function z ∈ H1
0 (I,Rn) satisfies system (1) (with a fixed

control u) if

∫
I

Dz′F (x, z(x), z′(x), u(x))h′(x) dx+

∫
I

DzF (x, z(x), z′(x), u(x))h(x) dx = 0

for any h ∈ H1
0 (I,Rn).

From the Du Bois–Reymond lemma (cf. [9]) it follows that if z is a solution of
(1) in the above sense, then the function Dz′F (x, z(x), z′(x), u(x)) is equal almost
everywhere (a.e.) on I to an absolutely continuous function

∫ x

0

DzF (x, z(x), z′(x), u(x)) dx+ c,

where c ∈ R
n is some constant.

Consequently, if we identify these functions, we may write

d

dx
(Dz′F (x, z(x), z′(x), u(x))) = DzF (x, z(x), z′(x), u(x))

a.e. on I.
It is easy to see that the space H1

0 (I,Rn) with the inner product

(z, w) =

∫
I

z′(x)w′(x) dx

is a Hilbert space; the corresponding norm is given by

‖z‖ =
(∫

I

|z′(x)|2dx
) 1

2

.
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Below, we shall use the following estimates:

∫
I

|z(x)|2 dx ≤
∫
I

|z′(x)|2dx,

max{|z(x)|; x ∈ I} ≤ √
π‖z‖

for z ∈ H1
0 (I,Rn). The first of the above inequalities is called the Poincaré inequality

(cf. [9]). The second one is obvious.

Below, we shall use the following lemma.

Lemma 1 (see [9]). If

zn ⇀
n→∞ z0

weakly in H1
0 (I,Rn), then

zn ⇒
n→∞

z0

uniformly on I.

Lemma 2. If

zn ⇀
n→∞ z0

weakly in H1
0 (I,Rn), then

z′n ⇀
n→∞ z′0

weakly in L2(I,Rn).

Proof. The assertion follows from the fact that the operator

H1
0 (I,Rn) 3 z 7→ z′ ∈ L2(I,Rn)

is linear and continuous. So, it preserves weak convergence.

Below, R
+
0 means [0,∞) and R

+ means (0,∞).

In an analogous way to [11] one can prove Theorem 1.

Theorem 1. Suppose F satisfies the following conditions.

(5) For x ∈ I a.e., u ∈ R
r, the function F (x, ·, ·, u) is continuously differentiable

in the Fréchet sense on R
n × R

n.
(6) For z, z′ ∈ R

n, the function F (·, z, z′, ·) is of Carathéodory type; i.e. for
x ∈ I a.e., F (x, z, z′, ·) is continuous on R

r and, for u ∈ R
r, F (·, z, z′, u) is

measurable on I.
(7) For z, z′ ∈ R

n, the functions DzF (·, z, z′, ·) and Dz′F (·, z, z′, ·) are of Cara-
théodory type.

(8) There exist functions a(·) ∈ C(R+
0 ,R

+
0 ), b(·) ∈ L1(I,R+

0 ), c(·), d(·) ∈ L2(I,R+
0 )

such that, for x ∈ I a.e., z, z′ ∈ R
n, u ∈ R

r, one has
(a) |F (x, z, z′, u)| ≤ a(|z|)(b(x) + |z′|2 + d(x)|z′|+ |u|2) ,
(b) |DzF (x, z, z′, u)| ≤ a(|z|)(b(x) + |z′|2 + |z′|+ |u|2),
(c) |Dz′F (x, z, z′, u)| ≤ a(|z|)(c(x) + |z′|+ |u|).
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Then, for any control u(·) ∈ L2(I,Rn), the functional

fu : H1
0 (I,Rn) 3 z 7→

∫
I

F (x, z(x), z′(x), u(x)) dx ∈ R

is continuously Fréchet differentiable and

f ′u(z) : H1
0 (I,Rn) 3 h 7→

∫
I

(DzF (x, z(x), z′(x), u(x))h(x)

+ Dz′F (x, z(x), z′(x), u(x))h′(x)) dx ∈ R

for z ∈ H1
0 (I,Rn).

We also have Theorem 2.
Theorem 2. Let us assume that a function F satisfies (6), (8a), and
(9) for x ∈ I a.e., u ∈ R

r, the function F (x, ·, ·, u) is continuous on R
n × R

n,
(10) for x ∈ I a.e., z ∈ R

n, u ∈ R
r, the function F (x, z, ·, u) is convex on R

n,
(11) there exists ε > 0 such that, for any λ > 0,

|F (x, z1, z
′, u)− F (x, z2, z

′, u)| ≤ aλ(x) + βλ|z′|2−ε + γλ|u|2

for x ∈ I a.e., |z1| < λ, |z2| < λ, z′ ∈ R
n, u ∈ R

r, with some (depending on
λ) function aλ(·) ∈ L1(I,R+

0 ) and constants βλ > 0, γλ > 0.
Then, for any control u(·) ∈ L2(I,Rr), the functional fu is weakly lower semi

continuous (l.s.c) on H1
0 (I,Rn).

Proof. Let zn ⇀ z0 weakly in H1
0 (I,Rn). From Lemmas 1, 2 it follows that

zn ⇀ z0 weakly in C(I,Rn) and z′n ⇀ z′0 weakly in L2(I,Rn). Applying [13, Thm.
12], we obtain the assertion.

Remark 1. It is easily seen that the condition
(12) there exists ε > 0, and the functions a(·) ∈ C(R+

0 ,R
+
0 ), b(·) ∈ L1(I,R+

0 ), such
that for x ∈ I a.e., z, z′ ∈ R

n, u ∈ R
n one has

|F (x, z, z′, u)| ≤ a(|z|)(b(x) + min{|z′|2, |z′|2−ε}+ |u|2)

implies (8a) and (11).
Remark 2. The term γλ|u|2 in condition (11) may be replaced by γλ(x)|u| with

γλ(·) ∈ L2(I,R+
0 ).

Theorem 3. Let us assume that F satisfies (9), (6), (8a) and suppose that
(13) there exist constants α1, γ2, γ3 ∈ R

+ and functions α2(·), γ1(·) ∈ L2(I,R+
0 ),

β1(·), β2(·), δ0(·) ∈ L1(I,R+
0 ), such that

α1 − π

∫
I

β1(x)dx−√π
(∫

I

|γ1(x)|2dx
) 1

2

> 0

and

F (x, z, z′, u) ≥ α1|z′|2 − α2(x)|z′| − β1(x)|z|2 − β2(x)|z|
− γ1(x)|z||z′| − γ2|u|2 − γ3|z||u|2 − δ0(x)

for x ∈ I a.e., z, z′ ∈ R
n, u ∈ R

r.
Then, for any control u ∈ L2(I,Rr), the functional fu is coercive; i.e.,

fu(z) → +∞ as ‖z‖ → +∞.
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Proof. We have

fu(z) =

∫
I

F (x, z(x), z′(x), u(x))dx ≥ α1‖z‖2 −
(∫

I

|α2(x)|2dx
) 1

2 ‖z‖

− max{|z(x)|2;x ∈ I}
∫
I

β1(x)dx−max{|z(x)|;x ∈ I}
∫
I

β2(x)dx

− max{|z(x)|;x ∈ I}
(∫

I

|γ1(x)|2dx
) 1

2 ‖z‖ − γ2

∫
I

|u(x)|2dx

− γ3 max{|z(x)|; x ∈ I}
∫
I

|u(x)|2dx−
∫
I

δ0(x)dx

≥
(
α1 − π

∫
I

β1(x)dx−√π
(∫

I

|γ1(x)|2dx
) 1

2
)
‖z‖2

−
((∫

I

|α2(x)|2dx
) 1

2

+
√
π

∫
I

β2(x)dx+ γ3

∫
I

|u(x)|2dx
)
‖z‖

−
(∫

I

δ0(x)dx+ γ2

∫
I

|u(x)|2dx
)
.

The proof is completed.
Now, we can prove Theorem 4.
Theorem 4. If F satisfies conditions (5), (6), (7), (8a), (8b), (8c), (10), (11),

and (13), then for any control u(·) ∈ L2(I,Rr), system (1) possesses a solution in
H1

0 (I,Rn).
Proof. The assumptions imply that the conditions of Theorems 2, 3 are satisfied.

So, for any control u(·) ∈ L2(I,Rr), there exists a zu ∈ H1
0 (I,Rn) such that

fu(zu) = min{fu(z) : z ∈ H1
0 (I,Rn)}.

Consequently, Theorem 1 yields the equality

f ′u(zu) = 0;

i.e.,

∫
I

DzF (x, zu(x), zu
′(x), u(x))h(x)dx+

∫
I

D2F (x, zu(x), zu
′(x), u(x))h′(x)dx = 0

for any h ∈ H1
0 (I,Rn). Thus, as was mentioned,

d

dx

(
Dz′F (x, zu(x), z′u(x), u(x))

)
= DzF (x, zu(x), z′u(x), u(x))

a.e. on I. Of course, zu satisfies (2) as a function from H1
0 (I,Rn) and the proof is

completed.
Remark 3. From Remark 1 it follows that the assumptions of Theorem 4 may be

replaced by (5), (6), (7), (8b), (8c), (10), (12), (13).
Remark 4. From convex analysis it follows that zu will be a unique solution of

(1) in H1
0 (I,Rn) if fu is strictly convex, i.e., if

fu(αz1 + βz2) < αfu(z1) + βfu(z2)

for z1, z2 ∈ H1
0 (I,Rn), z1 6= z2, α, β > 0, α+ β = 1.
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Remark 5. It is easily seen (cf. also [15]) that the boundary condition (2) in the
assertion of Theorem 4 may be replaced by

z(0) = a, z(π) = b

with arbitrary fixed a, b ∈ R
n. (It suffices to observe that if F satisfies the assumptions

of Theorem 4, then G : I × R
n × R

n × R
r → R given by

G(x, z, z′, u) = F

(
x, z +

1

π
(b− a)x+ a, z′ +

1

π
(b− a), u

)

also satisfies these assumptions.)

3. Necessary conditions for optimality. In this section we shall assume that
F satisfies the assumptions of Theorem 4 and F0 satisfies the assumptions of The-
orem 1 (with F replaced by F0). Consequently, the functional F0 is continuously
differentiable with respect to z ∈ H1

0 (I,Rn) for any fixed control u(·) ∈ UM , and

(∂zF0(z, u), h) =

∫
I

(
DzF0(x, z(x), z′(x), u(x))h(x)

+ Dz′F0(x, z(x), z′(x), u(x))h′(x)
)
dx

for z(·), h(·) ∈ H1
0 (I,Rn).

Let us define the following operator:

F : H1
0 (I,Rn)× UM −→

[
H1

0 (I,Rn)
]∗
,

(F(z, u), h) =

∫
I

(
DzF (x, z(x), z′(x), u(x))h(x)

+ Dz′F (x, z(x), z′(x), u(x))h′(x)
)
dx.

The optimization problem (1)–(4) may be formulated as

(S)



F0(z, u) −→ min,
F(z, u) = 0,
u ∈ UM ,

where F0 : H1
0 (I,Rn)× UM −→ R, F : H1

0 (I,Rn)× UM −→ [H1
0 (I,Rn)]∗.

Before we formulate the maximum principle, we shall prove some lemmas.
Lemma 3. Let us assume that

(14) for x ∈ I a.e., u ∈ R
r, the functions DzF (x, ·, ·, u), Dz′F (x, ·, ·, u) are con-

tinuously differentiable in the Fréchet sense on R
n × R

n;
(15) for z, z′ ∈ R

n, the functions DzzF (·, z, z′, ·), Dzz′F (·, z, z′, ·) = Dz′zF (·, z, z′, ·),
Dz′z′F (·, z, z′, ·) are of Carathéodory type;

(16) there exist functions ā(·) ∈ C(R+
0 ,R

+
0 ), b̄(·) ∈ L2(I,R+

0 ), c̄(·) ∈ L∞(I,R+
0 )

such that, for x ∈ I a.e., z, z′ ∈ R
n, u ∈ R

r, one has
(a) |DzzF (x, z, z′, u)| ≤ ā(|z|)(b̄(x) + |z′|+ |u|),
(b) |Dzz′F (x, z, z′, u)| ≤ ā(|z|)c̄(x),
(c) |Dz′z′F (x, 0, 0, u)| ≤ c̄(x);
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(17) for any µ > 0, there exists c̄µ(·) ∈ L∞(I,R+
0 ) such that, for x ∈ I a.e.,

z, w ∈ R
n, |z| < µ, |w| < µ, z′, w′ ∈ R

n, u ∈ R
r,

|Dz′z′F (x, z, z′, u)−Dz′z′F (x,w,w′, u)| ≤ c̄µ(x)|z − w|.
Then, the operator F is continuously Gâteaux differentiable (thus continuously

Fréchet differentiable) with respect to z ∈ H1
0 (I,Rn).

Remark 6. From (16(c)) and (17) it follows that

|Dz′z′F (x, z, z′, u)| ≤ |Dz′z′F (x, z, z′, u)−Dz′z′F (x, 0, 0, u)|
+ |Dz′z′F (x, 0, 0, u)| ≤ c̄µ(x)|z|+ c̄(x) ≤ c̄µ(x)µ+ c̄(x)

for x ∈ I a.e., z ∈ R
n, |z| < µ, z′ ∈ R

n, u ∈ R
r.

Moreover, from (17) it follows (z = w) that the function Dz′F (x, z, ·, u) is affine.
Proof of Lemma 3. Let us consider the following operator:

∂zF(z, u) : H1
0 (I,Rn) −→ [H1

0 (I,Rn)]∗,(18)

(
(∂zF(z, u), w), h

)
=

∫
I

(
DzzF (x, z(x), z′(x), u(x))w(x)

)
h(x)dx

+

∫
I

(
Dzz′F (x, z(x), z′(x), u(x))w′(x)

)
h(x)dx

+

∫
I

(
Dz′zF (x, z(x), z′(x), u(x))w(x)

)
h′(x)dx

+

∫
I

(
Dz′z′F (x, z(x), z′(x), u(x))w′(x)

)
h′(x)dx,

where z ∈ H1
0 (I,Rn), u ∈ UM are fixed and w, h ∈ H1

0 (I,Rn).
Its linearity is obvious. Moreover,

‖((∂zF(z, u), w), ·)‖[H1
0 (I,Rn)]∗

≤ √
π

∫
I

|DzzF (x, z(x), z′(x), u(x))w(x)|dx

+
√
π

∫
I

|Dzz′F (x, z(x), z′(x), u(x))w′(x)|dx

+
(∫

I

|Dz′zF (x, z(x), z′(x), u(x))w(x)|2dx
) 1

2

+
(∫

I

|Dz′z′F (x, z(x), z′(x), u(x))w′(x)|2dx
) 1

2

(19)

≤ π ·
∫
I

|DzzF (x, z(x), z′(x), u(x))|dx · ‖w‖

+
√
π
(∫

I

|Dzz′F (x, z(x), z′(x), u(x))|2dx
) 1

2 · ‖w‖

+
√
π
(∫

I

|Dz′zF (x, z(x), z′(x), u(x))|2dx
) 1

2 ‖w‖
+ ess sup

x∈I
|Dz′z′F (x, z(x), z′(x), u(x))| · ‖w‖.

This implies the continuity of (18), i.e., ∂zF(z, u) ∈ L(H1
0 (I,Rn), [H1

0 (I,Rn)]∗).
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Now, we shall show that, for any w ∈ H1
0 (I,Rn),

lim
λ→0

∥∥∥F(z + λw, u)−F(z, u)

λ
− (∂zF(z, u), w)

∥∥∥
[H1

0 (I,Rn)]∗
= 0,(20)

i.e., that ∂zF(z, u) is a Gâteaux differential of F with respect to z ∈ H1
0 (I,Rn) at the

point (z, u).
Indeed, for any h ∈ H1

0 (I,Rn) and λ ∈ R\{0}, |λ| ≤ 1, we have

∣∣∣ (F(z + λw, u), h)− (F(z, u), h)

λ
− ((∂zF(z, u), w), h)

∣∣∣
≤
∫
I

∣∣∣DzF (x, z(x) + λw(x), z
′
(x) + λw

′
(x), u(x))−DzF (x, z(x), z

′
(x), u(x))

λ

−
(
DzzF (x, z(x), z

′
(x), u(x))w(x) +Dzz′F (x, z(x), z

′
(x), u(x))w

′
(x)

)∣∣∣dx · √π‖h‖
+
(∫

I

∣∣∣Dz′F
(
x, z(x) + λw(x), z

′
(x) + λw

′
(x), u(x)

)−Dz′F (x, z(x), z
′
(x), u(x))

λ

− (
Dz′zF (x, z(x), z

′
(x), u(x))w(x) +Dz′z′F (x, z(x), z

′
(x), u(x))w

′
(x)

)∣∣∣2dx)
1
2 · ‖h‖.

So,

∣∣∣
∣∣∣F(z + λw, u)−F(z, u)

λ
− (∂zF(z, u), w)

∣∣∣
∣∣∣
[H1

0 (I,Rn)]∗

≤ √
π

∫
I

∣∣∣DzF (x, z(x) + λw(x), z′(x) + λw′(x), u(x))−DzF (x, z(x), z′(x), u(x))

λ

−
(
DzzF (x, z(x), z′(x), u(x))w(x) +Dzz′F (x, z(x), z′(x), u(x))w′(x)

)∣∣∣dx
+
(∫

I

∣∣∣Dz′F (x, z(x) + λw(x), z′(x) + λw′(x), u(x))−Dz′F (x, z(x), z′(x), u(x))

λ

− (
Dz′zF (x, z(x), z′(x), u(x))w(x) +Dz′z′F (x, z(x), z′(x), u(x))w′(x)

)∣∣∣2dx)
1
2

.

From the differentiability of DzF , Dz′F with respect to (z, z′) ∈ R
n×R

n it follows
that the above integrands tend (with fixed z, w ∈ H1

0 (I,Rn), u ∈ UM ) pointwise to 0
as λ→ 0.

Moreover, from the mean value theorem we have

∣∣∣DzF (x, z(x) + λw(x), z′(x) + λw′(x), u(x))−DzF (x, z(x), z′(x), u(x))

λ

− (DzzF (x, z(x), z′(x), u(x))w(x) +Dzz′F (x, z(x), z′(x), u(x))w′(x))
∣∣∣

≤ max{ā(|z(x) + tλw(x)|); (x, t, λ) ∈ [0, π]× [0, 1]× [−1, 1]}
· (b̄(x) + |z′(x)|+ |w′(x)|+ |u(x)|)(|w(x)|+ |w′(x)|)
+ max{ā(|z(x) + tλw(x)|); (x, t, λ) ∈ [0, π]× [0, 1]× [−1, 1]}
· c̄(x)(|w(x)|+ |w′(x)|) + ā(|z(x)|)(b̄(x) + |z′(x)|+ |u(x)|)(|w(x)|+ |w′(x)|)
+ ā(|z(x)|)c̄(x)(|w(x)|+ |w′(x)|)
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and, analogously,
∣∣∣Dz′F (x, z(x) + λw(x), z′(x) + λw′(x), u(x))−Dz′F (x, z(x), z′(x), u(x))

λ

− (
Dz′zF (x, z(x), z′(x), u(x))w(x) +Dz′z′F (x, z(x), z′(x), u(x))

)∣∣∣2

≤
(

max{ā(|z(x) + tλw(x)|); (x, t, λ) ∈ [0, π]× [0, 1]× [−1, 1]}c̄(x)(|w(x)|+ |w′(x)|)
+ (c̄µ+ν(x)(µ+ ν) + c̄(x))(|w(x)|+ |w′(x)|) + ā(|z(x)|)c̄(x)(|w(x)|+ |w′(x)|)
+ (c̄µ(x)µ+ c̄(x))(|w(x)|+ |w′(x)|)

)2

,

where µ = max{|z(x)| : x ∈ I}, ν = max{|w(x)| : x ∈ I}.
Since the right-hand sides of the above estimates are integrable functions, using

the Lebesgue theorem, we therefore obtain (20).
Now, we shall show that (with a fixed u ∈ UM ) the mapping

∂zF(·, u) : H1
0 (I,Rn) 3 z 7→ ∂zF(z, u) ∈ L(H1

0 (I,Rn), [H1
0 (I,Rn)]∗

)
is continuous.

Indeed, in an analogous way as in (19), we assert that

(21)∣∣∣∣∂zF(zn, u)− ∂zF(z0, u)
∣∣∣∣
L(H1

0 (I,Rn),[H1
0 (I,Rn)]∗)

≤ π ·
∫
I

∣∣DzzF (x, zn(x), z′n(x), u(x))−DzzF (x, z0(x), z′0(x), u(x))
∣∣dx

+ 2
√
π
(∫

I

∣∣Dzz′F (x, zn(x), z′n(x), u(x))−Dzz′F (x, z0(x), z′0(x), u(x))
∣∣2dx) 1

2

+ ess sup
x∈I

∣∣Dz′z′F (x, zn(x), z′n(x), u(x))−Dz′z′F (x, z0(x), z′0(x), u(x))
∣∣

for any zn, z0 ∈ H1
0 (I,Rn).

Now, let us assume that zn −−−−→
n→∞

z0 in H1
0 (I,Rn). So,

zn ⇒
n→∞

z0

uniformly on I and z′n −−−−→
n→∞

z′0 in L2(I,Rn).

To prove that the first of the above integrals tends to 0, let us observe that its
integrand converges in measure to the zero-function. This follows from the fact that
the sequence (zn(·), z′n(·))n∈N tends in measure to (z0(·), z′0(·)) and from the properties
of the Nemytskii operator (cf. [8]). Moreover, the sequence of integrands has equi-
absolutely continuous integrals (cf. [12]):∣∣DzzF (x, zn(x), z′n(x), u(x))−DzzF (x, z0(x), z′0(x), u(x))

∣∣
≤ ā(|zn(x)|)(b̄(x) + |z′n(x)|+ |u(x)|)

+ ā(|z0(x)|)(b̄(x) + |z′0(x)|+ |u(x)|)
≤ const (2b̄(x) + 2|u(x)|+ |z′0(x)|+ |z′n(x)|).

(22)

Since z′n → z′0 in L2(I,Rn) and, consequently, in L1(I,Rn), the sequence (|z′n(x)|)n∈N

has equi-absolutely continuous integrals. So, the sequence(∣∣DzzF (x, zn(x), z′n(x), u(x))−DzzF (x, z0(x), z′0(x), u(x))
∣∣)
n∈N
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has equi-absolutely continuous integrals. Applying the Vitali theorem on the conver-
gence of an integral [12], we assert that the first term in (21) tends to 0 as n→ +∞.

In an analogous way, replacing (22) by

∣∣Dzz′F (x, zn(x), z′n(x), u(x))−Dzz′F (x, z0(x), z′0(x), u(x))
∣∣2

≤ 4
(∣∣Dzz′F (x, zn(x), z′n(x), u(x))

∣∣2 +
∣∣Dzz′F (x, z0(x), z′0(x), u(x))

∣∣2)

≤ 4
(
(ā(|zn(x)|))2(c̄(x))2 + (ā(|z0(x)|))2(c̄(x))2

)
≤ const,

we assert that the second term in (21) tends to 0 as n→ +∞.
The convergence of the third term follows from the fact that

zn ⇒
n→∞

z0

uniformly on I and from (17) because

∣∣Dz′z′F (x, zn(x), z′n(x), u(x))−Dz′z′F (x, z0(x), z0(x), u(x))
∣∣ ≤ c̄µ(x)|zn(x)− z0(x)|

where |zn(x)| < µ, n = 1, 2, . . . , |z0(x)| < µ for all x ∈ I.
The proof of the lemma is completed.
Now, let us denote

A(x) = Dz′zF (x, z∗(x), z′∗(x), u∗(x)) = Dzz′F (x, z∗(x), z′∗(x), u∗(x)),

B(x) = Dz′z′F (x, z∗(x), z′∗(x), u∗(x)),(23)

C(x) = DzzF (x, z∗(x), z′∗(x), u∗(x)),

where z∗ ∈ H1
0 (I,Rn), u∗ ∈ UM are fixed.

From (16), (17) it follows that A(·), B(·) ∈ L∞(I,Rn×n), C(·) ∈ L2(I,Rn×n).
Lemma 4. Let z∗ ∈ H1

0 (I,Rn), u∗ ∈ UM be such that
(24) the matrix B(x) is positive for x ∈ I a.e. (i.e., there exists a set S ⊂ I of

full measure such that, for x ∈ S, B(x)z′z′ > 0 for z′ ∈ R
n − {0} ), and

inf{B(x)z′z′; |z′| = 1, x ∈ S} − π

∫
I

|C(x)|dx− 2π(ess sup
I
|A(·)|) > 0.(25)

Then, for any Λ ∈ [H1
0 (I,Rn)]∗, there exists a w ∈ H1

0 (I,Rn) such that

(∂zF(z∗, u∗), w) = Λ;

i.e.,
∫
I

(C(x)w(x) +A(x)w′(x))h(x)dx

+

∫
I

(A(x)w(x) +B(x)w′(x))h′(x)dx = (Λ, h)

for any h ∈ H1
0 (I,Rn).

Proof. Since H1
0 (I,Rn) is a Hilbert space, there exists an a ∈ H1

0 (I,Rn) such
that

(Λ, h) =

∫
I

a′(x)h′(x)dx
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for all h ∈ H1
0 (I,Rn). So, we have to show the existence of w ∈ H1

0 (I,Rn) such that∫
I

(A(x)w(x) +B(x)w′(x)− a′(x))h′(x)dx

+

∫
I

(C(x)w(x) +A(x)w′(x))h(x)dx = 0

for all h ∈ H1
0 (I,Rn); i.e.,

d

dx
(A(x)w(x) +B(x)w′(x)− a′(x)) = C(x)w(x) +A(x)w′(x)

a.e. on I.
Let us denote

G(x,w,w′) = A(x)ww′ − a′(x)w′ +
1

2
B(x)w′w′ +

1

2
C(x)ww

for x ∈ I a.e., w, w′ ∈ R
n.

Of course,

DwG(x,w,w′) = A(x)w′ + C(x)w,

Dw′G(x,w,w′) = A(x)w − a′(x) +B(x)w′

for x ∈ I a.e., w, w′ ∈ R
n.

It is easy to check that G satisfies (5), (6), (7), (10). Now, we show that it satisfies
(8a), (8b), (8c), (11), and (13).

Indeed, we have

|G(x,w,w′)| ≤ |A(x)‖w‖w′|+ |a′(x)||w′|+ 1

2
|B(x)||w′|2 +

1

2
|C(x)||w|2

≤ max{1, |w|, |w|2}
(

(ess sup
I
|A(·)|)|w′|+ |a′(x)||w′|+ 1

2
(ess sup

I
|B(·)|)|w′|2+

1

2
|C(x)|

)

= max{1, |w|, |w|2}
(

1

2
|C(x)|+ ((ess sup

I
|A(·)|)+|a′(x)|)|w′|+ 1

2
(ess sup

I
|B(·)|)|w′|2

)
,

|DwG(x,w,w′)| ≤ |A(x)||w′|+ |C(x)||w| ≤ (ess sup
I
|A(·)|)|w′|+ |C(x)||w|

≤ max{|w|, 1}(|c(x)|+ (ess sup
I
|A(·)|)|w′|),

|Dw′G(x,w,w′)| ≤ |A(x)||w|+ |a′(x)|+ |B(x)||w′|
≤ max{|w|, 1}(|A(x)|+ |a′(x)|+ |B(x)||w′|)
≤ max{|w|, 1}(|A(x)|+ |a′(x)|+ (ess sup

I
|B(·)|)|w′|)

for x ∈ I a.e., w, w′ ∈ R
n. So, (8a), (8b), (8c) are satisfied. Moreover, for any λ > 0,∣∣∣G(x,w1, w
′)−G(x,w2, w

′)
∣∣∣

=
∣∣∣A(x)w1w

′ +
1

2
C(x)w1w1 −A(x)w2w

′ − 1

2
C(x)w2w2

∣∣∣
≤
∣∣∣A(x)(w1 − w2)w

′
∣∣∣+ 1

2
|C(x)w1w1 − C(x)w2w2|

≤ (ess sup
I
|A(·)|)2λ|w′|2−1 + |c(x)|λ2
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for x ∈ I a.e., |w1| < λ, |w2| < λ, w′ ∈ R
n. So, (11) is satisfied with ε = 1.

To prove that (13) holds, let us denote α = inf{B(x)z′z′, |z′| = 1, x ∈ S} and
observe that (24) implies (cf. [5, I.4])

B(x)w′w′ ≥ α|w′|2

for all x ∈ S and w′ ∈ R
n. Consequently,

G(x,w,w′) = A(x)ww′ − a′(x)w′ +
1

2
B(x)w′w′ +

1

2
C(x)ww

≥ 1

2
α|w′|2 − (ess sup

I
|A(·)|)|w||w′| − |a′(x)||w′| − 1

2
|C(x)||w|2

and, by (25),

1

2
α− π

∫
I

1

2
|C(x)|dx−√π

(∫
I

(ess sup
I
|A(·)|)2dx

) 1
2

=
1

2
α− 1

2
π

∫
I

|C(x)|dx− π
(
ess sup

I
|A(·)|

)
> 0.

Hence (13) holds.

Thus, Theorem 4 implies the assertion of the lemma.

We also have Lemma 5.

Lemma 5. If

(26) M ⊂ R
r is compact and for x ∈ I a.e., z, z′ ∈ R

n, the set {(DzF (x, z, z′, u),
Dz′F (x, z, z′, u), F 0(x, z, z′, u)) ∈ R

n+n+1, u ∈M} is convex,

then, for any z ∈ H1
0 (I,Rn), the operator F and the functional F0 satisfy the following

convexity condition: for any u1, u2 ∈ UM , z ∈ H1
0 (I,Rn), and α ∈ [0, 1] there exists

ū ∈ UM such that

(27) F(z, u) = αF(z, u1) + (1− α)F(z, u2),
(28) F0(z, u) = αF0(z, u1) + (1− α)F0(z, u2).

Proof. Let us fix z ∈ H1
0 (I,Rn), u1, u2 ∈ UM , α ∈ [0, 1]. For x ∈ I a.e. there

exists a point u0(x) ∈M such that

αDzF (x, z(x), z′(x), u1(x)) + (1− α)DzF (x, z(x), z′(x), u2(x))
= DzF (x, z(x), z′(x), u0(x)),

αDz′F (x, z(x), z′(x), u1(x)) + (1− α)Dz′F (x, z(x), z′(x), u2(x))
= Dz′F (x, z(x), z′(x), u0(x)),

αF 0(x, z(x), z′(x), u1(x)) + (1− α)F 0(x, z(x), z′(x), u2(x))
= F 0(x, z(x), z′(x), u0(x)).

From the above it follows that the functions DzF (x, z(x), z′(x), u0(x)), Dz′F (x, z(x),
z′(x), u0(x)), F 0(x, z(x), z′(x), u0(x)) are measurable. Of course,

(DzF (x, z(x), z′(x), u0(x)), Dz′F (x, z(x), z′(x), u0(x)), F 0(x, z(x), z′(x), u0(x)))

∈ {(DzF (x, z(x), z′(x), u), Dz′F (x, z(x), z′(x), u), F 0(x, z(x), z′(x), u)); u ∈M}.
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Applying the implicit function theorem for a set-valued function associated with a
Carathéodory function (cf. [7, Chap. II, Thm. 3.12]), we obtain an existence of a
measurable function ū : I →M such that

DzF (x, z(x), z′(x), u0(x)) = DzF (x, z(x), z′(x), ū(x)),

Dz′F (x, z(x), z′(x), u0(x)) = Dz′F (x, z(x), z′(x), ū(x)),

F 0(x, z(x), z′(x), u0(x)) = F 0(x, z(x), z′(x), ū(x))

for x ∈ I a.e. The above equalities imply the assertion of the lemma.
The last lemma is a generalization of [3, ex. 10.5] to the case of a nonlinear

functional.
Lemma 6. Let u∗ ∈ UM and ϕ : I × R

r → R be of Carathéodory type; i.e.,
ϕ(·, u) is measurable on I for any u ∈ R

r and ϕ(x, ·) is continuous on R
r for any

x ∈ I.
If

−∞ <

∫
I

ϕ(x, u∗(x))dx ≤
∫
I

ϕ(x, u(x))dx < +∞

for any u ∈ UM , then

ϕ(x, u∗(x)) ≤ ϕ(x, u)

for x ∈ I a.e. and u ∈M .
Proof. Suppose that the assertion of the lemma is false. Then, the set

R = {x ∈ I;∃u∈M ϕ(x, u) < ϕ(x, u∗(x))}
= {x ∈ I;∃u∈M0

ϕ(x, u) < ϕ(x, u∗(x))}
=

⋃
u∈M0

⋃
m∈N

{
x ∈ I; ϕ(x, u)− ϕ(x, u∗(x)) < − 1

m

}
,

whereM0 is a countable, everywhere-dense subset ofM , is measurable (in the Lebesgue
sense) and |R| > 0. From this we conclude that there exist ū ∈M0, m̄ ∈ N such that
the set

Rū,m̄ =
{
x ∈ I; ϕ(x, ū) < ϕ(x, u∗(x)) <

−1

m̄

}

has a positive measure, i.e. |Rū,m̄| > 0.
Now, let us define the following element of UM :

û : I 3 x 7→
{
ū, x ∈ Rū,m̄,
u∗(x), x /∈ Rū,m̄.

We have∫
I

ϕ(x, û(x))dx =

∫
Rū,m̄

ϕ(x, ū)dx+

∫
I\Rū,m̄

ϕ(x, u∗(x))dx

+

∫
Rū,m̄

ϕ(x, u∗(x))dx−
∫
Rū,m̄

ϕ(x, u∗(x))dx

=

∫
I

ϕ(x, u∗(x))dx+

∫
Rū,m̄

(ϕ(x, ū)− ϕ(x, u∗(x)))dx

≤
∫
I

ϕ(x, u∗(x))dx+ |Rū,m̄| ·
(−1

m̄

)
<

∫
I

ϕ(x, u∗(x))dx.
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This contradicts our assumption.
We shall say that a pair (z∗, u∗) ∈ H1

0 (I,Rn)× UM is a local optimal solution of
problem (S) if it satisfies the equality F(z∗, u∗) = 0 and there exists a neighborhood
V of z∗ in H1

0 (I,Rn) such that

F0(z∗, u∗) ≤ F(z, u)

for any pair (z, u) ∈ V × UM satisfying the equality F(z, u) = 0.
In the case when V = H1

0 (I,Rn), we shall say that (z∗, u∗) is a global optimal
solution.

Now, we have Theorem 5.
Theorem 5 (maximum principle). Let us assume that the following conditions

are satisfied:
—(5), (6), (7), (8a), (8b), (8c), (10), (11), and (13) (guaranteeing the existence

of a solution in H1
0 (I,Rn) of the equation F(z, u) = 0 for any u ∈ UM );

—(14), (15), (16), and (17) (guaranteeing the continuous Fréchet differentiabil-
ity of F with respect to z ∈ H1

0 (I,Rn));
—the function F0 satisfies the assumptions of Theorem 1 with F replaced by
F0 (guaranteeing the continuous Fréchet differentiability of F0 with respect
to z ∈ H1

0 (I,Rn) );
—(26) (guaranteeing the fulfillment of the convexity conditions (27), (28) by F

and F0).
If a pair (z∗, u∗) ∈ H1

0 (I,Rn) × UM is such that (24) and (25) hold with A(·), B(·),
C(·) given by (23), then the local optimality of the pair (z∗, u∗) implies the existence
of a function λ ∈ H1

0 (I,Rn) such that

d

dx
(Dz′F0(x, z∗(x), z′∗(x), u∗(x)) +A(x)λ(x) +B(x)λ′(x))

= DzF0(x, z∗(x), z′∗(x), u∗(x)) + C(x)λ(x) +A(x)λ′(x)

for x ∈ I a.e. and

F0(x, z
∗(x), z′∗(x), u∗(x)) +DzF (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dz′F (x, z∗(x), z′∗(x), u∗(x))λ′(x)

= min
u∈M

{F0(x, z∗(x), z′∗(x), u) +DzF (x, z∗(x), z′∗(x), u)λ(x)

+ Dz′F (x, z∗(x), z′∗(x), u)λ′(x)}
for x ∈ I a.e.

Proof. From Lemmas 3, 4, 5 it follows that the assumptions of the extremum
principle for a smooth-convex problem are satisfied.

So, there exist a constant λ0 ≥ 0 and Λ ∈ [H1
0 (I,Rn)]∗∗ (not all zero) such that

λ0∂zF0(z∗, u∗) + (∂zF(z∗, u∗))∗Λ = 0

and

λ0F0(z∗, u∗) + Λ(F(z∗, u∗)) = min
u∈UM

{λ0F(z∗, u) + Λ(F(z∗, u))}.

Since the operator

∂zF(z∗, u∗) : H1
0 (I,Rn) → [H1

0 (I,Rn)]∗
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is onto and, consequently, the regularity assumptions of the extremum principle are
satisfied, therefore λ0 > 0 and it may be assumed without loss of generality that
λ0 = 1.

The first of the above equalities may be written down as

(∂zF0(z∗, u∗), h) + Λ((∂zF(z∗, u∗), h), ·) = 0

for any h ∈ H1
0 (I,Rn). Using the fact that

[H1
0 (I,Rn)]∗∗ ∼= H1

0 (I,Rn),

we assert that there exists a λ ∈ H1
0 (I,Rn) such that

(∂zF0(z∗, u∗), h) + ((∂zF(z∗, u∗), h), λ) = 0

for any h ∈ H1
0 (I,Rn); i.e.,∫

I

(Dz′F0(x, z∗(x), z′∗(x), u∗(x))

+ Dzz′F (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dz′z′F (x, z∗(x), z′∗(x), u∗(x))λ′(x))h′(x)dx

+

∫
I

(DzF0(x, z∗(x), z′∗(x), u∗(x))

+ DzzF (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dzz′F (x, z∗(x), z′∗(x), u∗(x))λ′(x))h(x)dx = 0

for any h ∈ H1
0 (I,Rn); i.e.,

d

dx
(Dz′F0(x, z

∗(x), z′∗(x), u∗(x)) +Dzz′F (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dz′z′F (x, z∗(x), z′∗(x), u∗(x))λ
′
(x)) = DzF0(x, z

∗(x), z′∗(x), u∗(x))

+ DzzF (x, z∗(x), z′∗(x), u∗(x))λ(x) +Dzz′F (x, z∗(x), z′∗(x), u∗(x))λ
′
(x)

for x ∈ I a.e.
Analogously, we get∫
I

(F0(x, z
∗(x), z′∗(x), u∗(x)) +DzF (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dz′F (x, z∗(x), z′∗(x), u∗(x))λ
′
(x))dx = min

u∈UM

{∫
I

(F0(x, z
∗(x), z′∗(x), u(x))

+ DzF (x, z∗(x), z′∗(x), u(x))λ(x) +Dz′F (x, z∗(x), z′∗(x), u(x))λ
′
(x))dx

}
.

Consequently, from Lemma 6 we obtain

F0(x, z∗(x), z′∗(x), u∗(x)) +DzF (x, z∗(x), z′∗(x), u∗(x))λ(x)

+ Dz′F (x, z∗(x), z′∗(x), u∗(x))λ′(x) = min
u∈M

{F0(x, z∗(x), z′∗(x), u)

+ DzF (x, z∗(x), z′∗(x), u)λ(x) +Dz′F (x, z∗(x), z′∗(x), u)λ
′
(x)}

for x ∈ I a.e.
The proof is completed.
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4. The existence of an optimal solution. In this section we shall consider
control problem (1)–(4) in the case when M ⊂ R

r is compact-convex and

F (x, z, z′, u) = F1(x, z, z
′) + F2(x, z)u(29)

for x ∈ I a.e., z, z′ ∈ R
n, u ∈ R

r.
We assume that F satisfies the assumptions of Theorem 4 guaranteeing the

existence of a solution to system (1)–(2). Additionally, we assume that F2 is of
Carathéodory type and such that, for any λ > 0, there exists a function gλ(·) ∈
L2(I,R+

0 ) such that

|F2(x, z)| ≤ gλ(x)(30)

for x ∈ I a.e., |z| < λ.
Moreover, we shall assume that F is convex with respect to (z, z′) ∈ R

n×R
n (cf.

(10)), i.e., that

F (x, αz + βw, αz′ + βw′, u) ≤ αF (x, z, z′, u) + βF (x,w,w′, u)(31)

for x ∈ I a.e., z, w, z′, w′ ∈ R
n, u ∈ R

r, α, β ≥ 0, α+ β = 1.
The above assumption guarantees that (with a fixed control u(·)) the set of all

minimizers of fu and the set of all solutions to (1)–(2) are identical.
Remark 7. One can omit assumption (31) and minimize functional (4) on the set

{(z, u) ∈ H1
0 (I,Rn)× UM ; z is a minimizer of fu}.

Let us denote by Vu the set of all solutions to (1)–(2) corresponding to a control
u(·).

In the same way as in [15] one can show that there exists a constant ρ > 0 such
that

‖z‖H1
0 (I,Rn) ≤ ρ

for all z ∈ Vu and u ∈ UM .
Consequently, as in [15] one can prove the following lemma.
Lemma 7. If F , being of form (29), satisfies the assumptions of Theorem 4, (31),

and F2 satisfies (30), uk ⇀ u0 weakly in L2(I,Rr), uk ∈ UM , k = 0, 1, . . . , z0 is a
weak limit in H1

0 (I,Rn) of a subsequence of (zk)k∈N, zk ∈ Vuk , then z0 ∈ Vu0 .
On the function F0 : I × R

n × R
n × R

r → R we assume in this section that
(32) F0(·, z, z′, u) is measurable on I for all z, z′ ∈ R

n, u ∈ R
r, and F0(x, (·, ·, ·))

is continuous on R
n × R

n × R
r for x ∈ I a.e.

(33) F0(x, z, (·, ·)) is convex on R
n ×M for x ∈ I a.e., z ∈ R

n,
(34) for any λ > 0, there exists a function Ψλ ∈ L1(I,R+

0 ) such that

F0(x, z, z
′, u) ≥ −Ψλ(x)

for x ∈ I a.e., |z| < λ, z′ ∈ R
n, u ∈M .

The above assumptions imply that

−∞ < F0(z, u) ≤ +∞(35)

for any z ∈ H1
0 (I,Rn), u ∈ UM .

Moreover, from [1, Thm. 10.8.i] it follows that if uk ⇀ u0 weakly in L2(I,Rr),
uk ∈ UM , k = 0, 1, . . . , zk ⇀ z0 weakly in H1

0 (I,Rn), then

lim inf
k→∞

F0(zk, uk) ≥ F0(z0, u0).(36)
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Now, we can prove the following theorem.
Theorem 6. If the assumptions of Theorem 4 and conditions (29)–(34) are sat-

isfied and M is compact-convex, then there exists a global optimal solution of problem
(1)–(4) in H1

0 (I,Rn)× UM .
Proof. Let us denote

A =
⋃

u∈UM
(Vu × {u})

and

m = inf{F0(z, u) : (z, u) ∈ A}.

If m = +∞, then the existence of an optimal solution is obvious.
So, assume that −∞ ≤ m < +∞.
Let (zk, uk)k∈N be a minimizing sequence. Of course, without loss of generality

we may assume that uk ⇀ u0 ∈ UM weakly in L2(I,Rr) and zk ⇀ z0 ∈ H1
0 (I,Rn)

weakly in H1
0 (I,Rn) (the latter follows from the boundedness of the set

⋃
u∈UM Vu).

From Lemma 7 it follows that (z0, u0) ∈ A. Moreover, by (36),

m ≤ F0(z0, u0) ≤ lim inf
k→∞

F0(zk, uk) = lim
k→∞

F0(zk, uk) = m.

This means that

m = F0(z0, u0);

i.e., in view of (35) m > −∞ and (z0, u0) is a global optimal solution of (1)–(4).
The proof is completed.

Acknowledgment. The author expresses his gratitude to unknown referees for
their very valuable remarks and improvements.
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Abstract. We study the basic notions related to the stabilization of an infinite-dimensional well-
posed liner system in the sense of Salamon and Weiss. We first introduce an appropriate stabilizability
and detectability notion and show that if a system is jointly stabilizable and detectable then its
transfer function has a doubly coprime factorization in H∞. The converse is also true: every function
with a doubly coprime factorization in H∞ is the transfer function of a jointly stabilizable and
detectable well-posed linear system. We show further that a stabilizable and detectable system is
stable if and only if its input/output map is stable. Finally, we construct a dynamic, possibly non-
well-posed, stabilizing compensator. The notion of stability that we use is the natural one for the
quadratic cost minimization problem, and it does not imply exponential stability.

Key words. stabilizability, detectability, input/output stability

AMS subject classifications. 93A05, 93B05, 93B07

PII. S0363012995285417

1. Introduction. Although the theory of well-posed linear systems in the sense
of Salamon and Weiss has been around for some time, applications of this theory
to “real” control problems are scarce. This is in sharp contrast to the widespread
use of the theory of Pritchard–Salamon systems; see, e.g., [2], [12], [15], [16], and
[26] for discussions of different aspects of this theory. A fair number of recent pure
frequency domain results for H∞ transfer functions do exist (some of these are listed
in the References), but they have not been connected to the theory of well-posed linear
systems. The few connections known to us in the spring of 1995 when the first version
of this paper was written were the discussion of the Lyapunov equation in [10], the
discussion on feedback and estimation of well-posed systems in [13], the discussion
of balanced realizations in [14], the discussion of the connection between internal
and external stability in [17], and the discussions of the quadratic cost minimization
problem in [19] and [24] (not to mention the basic papers [20], [30], and [31] and
the nice review [1]); the list above is certainly not complete. In particular, at that
time we were not able to find any reasonably complete results on the stabilizability
and detectability of general well-posed linear systems, and the connection of these
notions to the notion of a (doubly) coprime factorization of the transfer function of
the system.1 We needed these results in order to solve the quadratic cost minimization
problem for unstable systems, and we were forced to develop the needed stabilization
theory ourselves.2

Subsequently the situation changed significantly with the appearance of the pre-
prints [4], [5], [6], [11], [32], and [33]. Out of these [4], [5], and [6] are fairly closely
related to our work. Several of the results that we prove here are also found in [5], in
a slightly less general setting. The results given in [4] and [6] overlap those that we

∗Received by the editors May 3, 1995; accepted for publication (in revised form) July 10, 1997;
published electronically May 15, 1998.

http://www.siam.org/journals/sicon/36-4/28541.html
†Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland (Olof.Staffans@

abo.fi).
1Throughout [13] Morris takes the observation operator to be bounded.
2Our solution to the unstable quadratic cost minimization problem is based on the present work,

and it is presented in [25].
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present in section 5.3 These preprints have also had a certain influence on a revision
carried out in late 1996: we were able to use the ideas presented in [5] to simplify
our original proofs of Theorems 4.4 and 5.3, and Remark 5.5 was inspired by [5] and
[6]. In addition we added Lemma 3.17 and Corollary 3.18 as an answer to a question
asked by George Weiss in the summer of 1996, and we redrew all the diagrams.

The notion of stability that we use was forced upon us by our solution to the
quadratic cost minimization problem for stable well posed linear systems. In par-
ticular, it does not imply exponential stability. The most important notion is what
we call “joint stabilizability and detectability.” The word “joint” refers to the fact
that in our setting the notions of stabilizability and detectability are not decoupled
from each other as they are in the Pritchard–Salamon theory; roughly speaking, the
“feedback operator and the output injection operator must be compatible.” This is
a problem that is not present in a Pritchard–Salamon system, due to the fact that
for such systems the admissibility of a particular control operator together with the
admissibility of a particular observation operator implies the well posedness of the
corresponding input/output map, something that is not true for general well posed
linear systems. Maybe the main individual result of this paper is the statement that if
a system is jointly stabilizable and detectable, then its transfer function has a doubly
coprime factorization in H∞.4 The converse is also true: every function that has
a doubly coprime factorization in H∞ is the transfer function of a jointly strongly
stabilizable and detectable well-posed linear system.

Having explained the relation between joint stabilizability and detectability on
one hand and doubly coprime factorizations on the other hand, we continue with a
short discussion of how to use an observer as a stabilizing dynamic compensator. This
theory parallels the classical theory, apart from the fact that the well posedness of
the observer is not automatically guaranteed.

For the convenience of the reader, we start with a short presentation of well-posed
linear systems.

We use the following notation.

L(U ;Y ), L(U): The set of bounded linear operators from U into Y or from U into
itself, respectively.

I: The identity operator.

A∗: The (Hilbert space) adjoint of the operator A.

R, R+, R−: R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0].

L2(J ;U): The set of U -valued L2-functions on the interval J .

L2
ω(J ;U): L2

ω(J ;U) =
{
u ∈ L2

loc(J ;U)
∣∣ (t 7→ e−ωtu(t)) ∈ L2(J ;U)

}
.

H∞
ω (U ;Y ): The set of bounded analytic L(U ;Y )-valued functions over the half-plane

<z > ω, with the sup-norm.

TIω(U ;Y ), T Iω(U): The set of bounded linear time-invariant operators from
L2
ω(R;U) into L2

ω(R;Y ) or from L2
ω(R;U) into itself.

TICω(U ;Y ), T ICω(U): The set of causal operators in TIω(U ;Y ) or TIω(U).

〈·, ·〉H : The inner product in the Hilbert space H.

3Curtain, Weiss, and Weiss call the compensator in Theorem 5.3 a “controller with internal loop.”
4As we mentioned above, the main purpose of this paper is not to prove any particular result

but to develop a general theory that can be used in the study of the quadratic cost minimization
problem, to which we return in [25].
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τ(t): The time shift group τ(t)u(s) = u(t + s) (this is a left shift when t > 0
and a right shift when t < 0).

πJ : (πJu)(s) = u(s) if s ∈ J and (πJu)(s) = 0 if s /∈ J . Here J is a subset
of R.

π+, π−: π+ = πR+ and π− = πR− .
We extend an L2

ω-function u defined on a subinterval J of R to the whole real
line by requiring u to be zero outside of J , and we denote the extended function by
πJu. Thus we use the same symbol πJ both for the embedding operator L2

ω(J) →
L2
ω(R) and for the corresponding projection operator L2

ω(R) → L2
ω(J). With this

interpretation, πJL
2
ω(R;U) = L2

ω(J ;U) ⊂ L2
ω(R;U) for each interval J ⊂ R.

2. A review of well-posed linear systems and time-invariant operators.
In order to fix the notation and describe the basic setting we first give a brief pre-
sentation of the theory of the Salamon–Weiss class of well-posed linear systems. This
theory has been developed in [18], [19], [20], [3], [7], and [27], [28], [30], [31] (and many
other papers), and we refer the reader to these sources for additional reading.5 A re-
cent contribution is found in [24], and the setting that we use here is a slight extension
of the one in [24]. The difference is that the discussion in [24] is restricted to the case
of (externally) stable systems; here we also need to consider unstable systems. The
major parts of this setting are found in [20], too.

In order to formulate the axioms satisfied by a well-posed linear system we intro-
duce exponentially weighted L2-spaces. For each Hilbert space U and each ω ∈ R we
let L2

ω(R;U) be the weighted L2-space

L2
ω(R;U) =

{
u ∈ L2

loc(R;U)
∣∣ (t 7→ e−ωtu(t)

) ∈ L2(R;U)
}
.

This is a Hilbert space with the natural norm ‖e−ω·u(·)‖L2(R;U). We also need the
“past time” projection π−, the “future time” projection π+, and the “time shift”
group τ(t) that operate on functions u ∈ L2

ω(R;U) in the following way:

(π−u)(s) =

{
u(s), s ∈ R−,
0, s ∈ R+,

(π+u)(s) =

{
u(s), s ∈ R+,

0, s ∈ R−,

(τ(t)u)(s) = u(t+ s), t, s ∈ R.

Definition 2.1. Let U , H, and Y be Hilbert spaces, and let ω ∈ R. A (causal)
ω-stable well-posed linear system on (U,H, Y ) is a quadruple Ψ = [A B

C D ], where A, B,
C, and D are bounded linear operators of the following type:

(i) A(t) : H → H is a strongly continuous semigroup of bounded linear operators
on H satisfying supt∈R+ ‖e−ωtA(t)‖ <∞;

(ii) B : L2
ω(R;U) → H satisfies A(t)Bu = Bτ(t)π−u for all u ∈ L2

ω(R;U) and
t ∈ R+;

(iii) C : H → L2
ω(R;Y ) satisfies CA(t)x = π+τ(t)Cx for all x ∈ H and t ∈ R+;

(iv) D : L2
ω(R;U) → L2

ω(R;Y ) satisfies τ(t)Du = Dτ(t)u, π−Dπ+u = 0, and
π+Dπ−u = CBu for all u ∈ L2

ω(R;U) and t ∈ R.

5In the early literature these systems were called “well-posed semigroup control systems” by
Salamon and “abstract linear systems” by Weiss.
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If, in addition, e−ωtA(t)x → 0 as t → ∞ for all x ∈ H, then Ψ is strongly ω-stable.
The system Ψ is [strongly] 6 stable iff it is [strongly] ω-stable with ω = 0, and it is
exponentially stable iff it is ω-stable for some ω < 0.

The different components of Ψ are named as follows: U is the input space, H
is the state space, Y is the output space, A is the semigroup, B is the controllability
map, C is the observability map, and D is the input/output map of Ψ.

This is the same definition as [24, Definition 2.1], except that throughout we took
ω = 0 and did not put any restrictions on the growth rate of the semigroup A.

The axioms listed above describe standard properties of the corresponding maps
induced by systems with bounded control and observation operators. Whenever
when we refer to an ω-stable “classical” system, we mean a system of the follow-
ing type: we let A be the generator of a semigroup A on a Hilbert space H satisfying
supt∈R+ ‖eεte−ωtA(t)‖ < ∞ for some ε > 0, let U and Y be Hilbert spaces, let
B ∈ L(U ;H), C ∈ L(H;Y ), and D ∈ L(U ;Y ), and consider the system

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ T,

x(T ) = xT ,

(2.1)

where T is a given initial time and xT is a given initial value. We call u the control,
x the state, y the output (or observation), A the generator, B the control operator,
C the observation operator, and D the feed-through operator of this classical system.
The state x is required to be a strong solution of (2.1); i.e., the state x and output y
are given by

x(t) = A(t)xT +

∫ t

T

A(t− s)Bu(s) ds, t ≥ T,(2.2)

y(t) = CA(t)xT +

∫ t

T

CA(t− s)Bu(s) ds+Du(t), t ≥ T.(2.3)

In this case we define B, C, and D by

Bu =

∫ 0

−∞
A(−s)Bu(s) ds,(2.4)

Cx =
(
t 7→ CA(t)x, t ∈ R+

)
,(2.5)

Du =

(
t 7→

∫ t

−∞
CA(t− s)Bu(s) ds+Du(t), t ∈ R

)
.(2.6)

Thus B is the mapping from the control u ∈ L2
ω(R−;U) to the final state x(0) ∈ H

(take T = −∞, xT = 0, and t = 0), C is the mapping from the initial state x0 ∈ H
to the output y ∈ L2

ω(R+;Y ) (take T = 0 and u = 0), and D is the mapping from
the control u ∈ L2

ω(R;U) to the output y ∈ L2
ω(R;Y ) (take T = −∞ and xT = 0).

We leave the easy proof of the fact that these operators indeed are bounded linear
operators between the given spaces to the reader.

Each well-posed linear system Ψ has a controlled state and an output. Depending
on whether the initial time is finite or infinite these are defined in two slightly different
ways as follows.

6Square brackets represent optional parts of a sentence. Statements in square brackets are sup-
posed to be true (a) if you omit all square brackets (single or double), (b) if you keep the single
brackets, (c) if you keep the double brackets.



1272 OLOF J. STAFFANS

Definition 2.2. Let Ψ = [A B
C D ] be an ω-stable well-posed linear system on

(U,H, Y ), and let u ∈ L2
ω(R;U). In the time-invariant setting (corresponding to the

initial time −∞) the controlled state x(t) at time t ∈ R and the output y of Ψ with
control u are given by [

x(t)
y

]
=

[Bτ(t)u
Du

]
,

and in the initial value setting with initial time s, initial value x(s), and control u,
the controlled state x(t) at time t ≥ s and the output y of Ψ are given by[

x(t)
y

]
=

[A(t− s) Bτ(t)
τ(−s)C D

] [
x(s)

π[s,∞)u

]
=

[A(t− s)x(s) + Bτ(t)π[s,∞)u
τ(−s)Cx(s) +Dπ[s,∞)u

]
,

where π[s,∞) = τ(−s)π+τ(s) is given by

(π[s,∞)u)(t) =

{
u(t), t ≥ s,

0, t < s.

In particular, in the initial value setting with initial time zero, initial value x0, and
control u, the controlled state x(t) at time t ∈ R+ and the output y of Ψ are given by[

x(t)
y

]
=

[A(t) Bτ(t)
C D

] [
x0

π+u

]
=

[A(t)x0 + Bτ(t)π+u
Cx0 +Dπ+u

]
.

Let us remark that the most commonly studied problem is the initial value prob-
lem with initial time zero, and in most papers this is the only one that is treated.

Remark 2.3. Because of Definition 2.2, we shall frequently use the alternative
notation [A Bτ

C D ] for the well-posed linear system [A B
C D ].

In the case of the classical ω-stable system (2.1) with bounded control operator
B, bounded observation operator C, and control u ∈ L2

ω(R;U), in the time-invariant
setting the state x and output y of Ψ are given by

x(t) =

∫ t

−∞
A(t− s)Bu(s) ds, t ∈ R,(2.7)

y(t) =

∫ t

−∞
CA(t− s)Bu(s) ds+Du(t), t ∈ R,(2.8)

and in the initial value setting with initial time T , initial value xT , and control u, the
state and output are given by (2.2) and (2.3).

An important fact is that the number ω in Definition 2.1 is not uniquely deter-
mined as described in Lemma 2.4.

Lemma 2.4. Let Ψ = [A B
C D ] be an ω-stable well-posed linear system on (U,H, Y ).

Then Ψ is also an α-stable well-posed linear system on (U,H, Y ) for every α > ω.
If instead α < ω, then Ψ has a unique extension to an α-stable well-posed linear
system on (U,H, Y ) iff supt∈R+ ‖e−αtA(t)‖ < ∞ and the operators B, C, and D
can be extended to bounded linear operators in L(L2

α(R;U);H), L(H;L2
α(R;Y )), and

L(L2
α(R;U);L2

α(R;Y )), respectively.
Proof. The first claim follows from Lemma 2.9 below and the fact that if α > ω,

then L2
α(R−;U) ⊂ L2

ω(R−;U) and L2
ω(R+;Y ) ⊂ L2

α(R+;Y ). To prove the second
claim it suffices to observe that L2

ω ∩ L2
α is dense in L2

α.
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Definition 2.5. We call Ψ a well-posed linear system on (U,H, Y ) iff it is an
ω-stable well-posed linear system on (U,H, Y ) for some ω ∈ R. The infimum of all
the numbers ω for which Ψ is ω-stable is the exponential growth rate of Ψ. Thus, Ψ
is exponentially stable iff its exponential growth rate is negative.

As Salamon [20] and Weiss [27], [28], [30] have shown, the growth rate of a system
Ψ is equal to the growth rate of its semigroup as explained in Lemma 2.6.

Lemma 2.6. The exponential growth rate of a well-posed linear system Ψ is
equal to the exponential growth rate ω = limt→∞ t−1 log(‖A(t)‖) of its semigroup. In
particular, Ψ is exponentially stable iff its semigroup is exponentially stable.

See [20, Lemma 2.1] or [27, Proposition 2.5], [28, Proposition 2.3], and [30, Propo-
sition 4.1] for proofs.

One of the required properties of the input/output operator D of Ψ is that it is
time invariant.

Definition 2.7. Let U and Y be two Hilbert spaces. A bounded linear operator
D : L2

ω(R;U) → L2
ω(R;Y ) is time invariant iff it commutes with time shifts; i.e.,

τ(t)Du = Dτ(t)u for all u ∈ L2
ω(R;U) and all t ∈ R. We denote this class of

operators by TIω(U ;Y ). The Hankel operator induced by D is the operator π+Dπ−,
and the anti-Hankel operator induced by D is the operator π−Dπ+. The Toeplitz
operator induced by D is the operator π+Dπ+, and the anti-Toeplitz operator induced
by D is the operator π−Dπ−.

The word “causal” that we have included in the definition of a well-posed linear
system relates to the fact that all the components of Ψ in Definition 2.1 are causal as
follows.

Definition 2.8. An operator B : L2
ω(R;U) → H is causal [anticausal] if Bπ+ = 0

[Bπ− = 0]. An operator C : H → L2
ω(R;Y ) is causal [anticausal] if π−C = 0 [π+C =

0]. A time-invariant operator D : L2
ω(R;U) → L2

ω(R;Y ) is causal [anticausal] if
π−Dπ+ = 0 [π+Dπ− = 0], and it is static if it is both causal and anticausal. We
denote the class of bounded linear time invariant causal operators by TICω(U ;Y ).

Thus, the condition imposed on D in Definition 2.1 requires that D ∈ TICω(U ;Y )
(i.e., D is time invariant and causal) and that the Hankel operator induced by D is
equal to CB. Intuitively, a causal controllability map B maps past inputs into the
present state, a causal observability map C maps the present state into future outputs,
and the past output of a causal input/output map D does not depend on future inputs.

As is well known, there is a one-to-one correspondence between TICω(U ;Y ) and
the set of L(U ;Y )-valued H∞-functions over the half-plane <z > ω. We denote this
set of functions by H∞

ω (U ;Y ). The norm in this space is the usual H∞-norm.
Lemma 2.9. The two spaces TICω(U ;Y ) and H∞

ω (U ;Y ) are isometrically iso-
morphic. More precisely, to each operator D ∈ TICω(U ;Y ) there corresponds a unique

function D̂ ∈ H∞
ω (U ;Y ) such that for each u ∈ L2

ω(R+;U), the Laplace transform

of Du is given by D̂(z)û(z), <z > ω, where û is the Laplace transform of u. The

function D̂ is called the transfer function (or symbol) of D.

Thus, intuitively, D̂ is the Laplace transform of D. This result is classic; see, for
example, [8] or [29].

By a result due to Salamon [20, Section 4], a time-invariant operator D can be
interpreted as the input/output operator of a well-posed linear system Ψ iff it belongs
to TICω(U ;Y ) for some ω ∈ R. Such a system is called a realization of D. Two
particular realizations are described below.

Definition 2.10. Let ω ∈ R and D ∈ TICω(U ;Y ), and let τ be the left-shift
group. Then the ω-stable well-posed linear system
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τπ− π−

π+Dπ− D
]

on (U,L2
ω(R−;U), Y ) is called the exactly controllable realization of D, and the strongly

ω-stable well-posed linear system[
π+τπ+ π+Dπ−

I D
]

on (U,L2
ω(R+;Y ), Y ) is called the continuously observable realization of D.

Indeed, it is obvious that the two systems defined above satisfy the requirements of
Definition 2.1. See [20, section 4] for an explanation of the names of these realizations.

Occasionally we shall need to discuss the stability of the different parts of Ψ sep-
arately, and for this purpose we further introduce the following natural terminology.

Definition 2.11. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ).

Then
(i) A is ω-stable iff supt∈R+ ‖e−ωtA(t)‖ <∞ and strongly ω-stable iff e−ωtA(t)x→

0 as t→∞ for all x ∈ H,
(ii) B is ω-stable iff B ∈ L(L2

ω(R;U);H),
(iii) C is ω-stable iff C ∈ L(H;L2

ω(R;Y ),
(iv) D is ω-stable iff D ∈ TICω(U ;Y ).

As before, stability of a component of Ψ means ω-stability with ω = 0, and exponential
stability means ω-stability for some ω < 0.

Remark 2.12. Almost all results presented below remain valid if we throughout
drop the assumption that A is ω-stable in condition (i) of Definition 2.1. Thus for
our purposes it suffices if the system is input ω-stable (condition (ii)), output ω-stable
(condition (iii)), and input/output ω-stable (condition (iv) of Definition 2.11). In [24]
this situation was referred to as external ω-stability.

One gets the adjoint of a system Ψ by replacing each operator by its adjoint
and exchanging the controllability and observability maps with each other. In the
computation of the adjoints of B, C, and D we use the ordinary (unweighted) L2-
inner product. This means that the resulting operators are bounded linear operators
on L2

−ω instead of bounded linear operators on L2
ω. Moreover, causality is replaced

by anticausality. The resulting system is an (−ω)-stable anticausal system of the
following type.

Definition 2.13. Let Y , H, and U be Hilbert spaces. An anticausal ω-stable
well-posed linear L2-system on (Y,H,U) is a quadruple Ψ∗ =

[A∗ C∗
B∗ D∗

]
, where A∗, C∗,

B∗, and D∗ are bounded linear operators of the following type:
(i) A∗(t) : H → H is a strongly continuous semigroup of bounded linear operators

on H satisfying supt∈R+ ‖eωtA∗(t)‖ <∞;
(ii) C∗ : L2

ω(R;Y ) → H satisfies A∗(−s)C∗y∗ = C∗τ(s)π+y
∗ for all y∗ ∈ L2

ω(R;Y )
and s ∈ R−;

(iii) B∗ : H → L2
ω(R;U) satisfies B∗A∗(−s)x∗ = π−τ(s)B∗x∗ for all x∗ ∈ H and

s ∈ R−;
(iv) D∗ : L2(R;Y ) → L2

ω(R;U) satisfies τ(s)D∗y∗ = D∗τ(s)y∗, π+D∗π−y∗ = 0,
and π−D∗π+y

∗ = B∗C∗y∗ for all y∗ ∈ L2
ω(R;Y ) and s ∈ R.

If, in addition, eωtA∗(t)x∗ → 0 as t→∞ for all x∗ ∈ H, then Ψ∗ is strongly ω-stable.
The system Ψ∗ is [strongly] stable iff it is [strongly] ω-stable with ω = 0, and it is
exponentially stable iff it is ω-stable for some ω > 0.

The different components of Ψ∗ are named as follows: Y is the input space, H is
the state space, U is the output space, A∗ is the semigroup, C∗ is the controllability
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map, B∗ is the observability map, and D∗ is the input/output map of Ψ∗.
The controlled state and output of Ψ∗ are defined as follows.
Definition 2.14. Let Ψ∗ =

[A∗ C∗
B∗ D∗

]
be an ω-stable anticausal well-posed linear

system on (Y,H,U) and let y∗ ∈ L2
ω(R;Y ). In the time-invariant setting the con-

trolled state x∗(s) at time s ∈ R and the output u∗ of Ψ∗ with control y∗ are given
by [

x∗(s)
u∗

]
=

[C∗τ(s)y∗
D∗y∗

]
,

and in the initial value setting with initial time t, initial value x∗(t), and control y∗,
the controlled state x∗(s) at time s ≤ t and the output u∗ of Ψ∗ are given by[
x∗(s)
u∗

]
=

[A∗(t− s) C∗τ(s)
τ(−t)B∗ D∗

] [
x∗(t)

π(−∞,t]y
∗

]
=

[A∗(t− s)x∗(t) + C∗τ(s)π(−∞,t]y
∗

τ(−t)B∗x∗(t) +D∗π(−∞,t]y
∗

]
,

where π(−∞,t] = τ(−t)π−τ(t) is given by

(π(−∞,t]y
∗)(s) =

{
y∗(s), s ≤ t,

0, s > t.

In particular, in the initial value setting with initial time zero, initial value x∗0, and
control y∗, the controlled state x∗(s) at time s ∈ R− and the output u∗ of Ψ∗ are
given by[

x∗(s)
u∗

]
=

[A∗(−s) C∗τ(s)
B∗ D∗

] [
x∗0

π−y∗

]
=

[A∗(−s)x∗0 + C∗τ(s)π−y∗
B∗x∗0 +D∗π−y∗

]
.

The formulas in Definitions 2.2 and 2.14 are chosen in such a way that Ψ and Ψ∗

interact in the following way.
Lemma 2.15. Let Ψ be a well-posed linear system on (U,H, Y ) and Ψ∗ its adjoint

(with respect to the ordinary unweighted inner product in L2). Let −∞ < s < t <∞,
let x and y be the state and output of Ψ with initial time s and control u, and let x∗

and u∗ be the state and output of Ψ∗ with initial time t and control y∗. Then

〈x∗(t), x(t)〉H +

∫ t

s

〈y∗(v), y(v)〉Y dv = 〈x∗(s), x(s)〉H +

∫ t

s

〈u∗(v), u(v)〉U dv.

We leave the easy proof of this lemma to the reader.
We use diagrams of the type drawn in Figure 2.1 to represent the relation between

the state x, the output y, the initial value x0, and the control u of Ψ in the initial
value setting with initial time zero. In our diagrams we use the following conventions.

(i) Initial states and controls enter at the top or bottom, and they are acted on
by all the operators located in the column to which they are attached. In
particular, note that x0 is attached to the first column and u to the second.

(ii) Final states and outputs leave to the left or right, and they are the sums of
all the elements in the row to which they are attached. In particular, note
that x is attached to the top row and y to the bottom row.

A similar diagram is used to describe the adjoint system Ψ∗.
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A Bτ
C D

?
x0

� x

� y

6 π+u

Fig. 2.1. Input/state/output diagram of Ψ.

A Bτ
C D

L

?
x0

� x

� y

� π+v

r

- -z
c

+ +

6u

Fig. 3.1. Static output feedback.

3. Feedback, stabilizability, and detectability. The notions of stabilizabil-
ity and detectability deal with the possibility of stabilizing a well-posed linear system
by the use of either a state feedback or an output injection. Therefore, before we can
study these notions, we must first look at different kinds of feedback connections.

We start with the most basic feedback connection, namely, the notion of a (static)
output feedback, drawn in Figure 3.1. Here L is a bounded linear operator from the
output space into the input space. Thus if we consider this feedback configuration in
the initial value setting with initial time zero, initial value x0, and control v, we find
that the effective input u, the state x(t) at time t ≥ 0, the output y, and the feedback
signal z satisfy the equations

u = z + π+v,

x(t) = A(t)x0 + Bτ(t)u,(3.1)

y = Cx0 +Du,
z = Ly,

which formally can be solved as

u = (I − LD)
−1

(LCx0 + π+v) ,

x(t) =
(A(t) + Bτ(t)L (I −DL)

−1 C)x0 + B (I − LD)
−1

τ(t)π+v,(3.2)

y = (I −DL)
−1

(Cx0 +Dπ+v) ,

z = (I − LD)
−1

L (Cx0 +Dπ+v) .

We say that the feedback operator L is admissible whenever these equations are valid.
Definition 3.1. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). Then
L ∈ L(Y ;U) is called an admissible output feedback operator for Ψ iff the operator
I − LD has an inverse in TICα(U) for some α ∈ R or, equivalently, iff the operator
I −DL has an inverse in TICα(Y ) for some α ∈ R.

As Weiss [31, section 6] proved, x and y in (3.2) can be interpreted as the state
and output of another well-posed linear system as follows.
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Proposition 3.2. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ), and

let L ∈ L(Y ;U) be an admissible output feedback operator for Ψ. Then the system

ΨL =

[AL BLτ
CL DL

]
=

[A+ BτL (I −DL)
−1 C B (I − LD)

−1
τ

(I −DL)
−1 C D (I − LD)

−1

]
=

[A Bτ
C D

]
+

[Bτ
D
]
L (I −DL)

−1 [C D]
=

[A Bτ
C D

]
+

[Bτ
D
]
L
[CL DL

]
=

[A Bτ
C D

]
+

[BLτ
DL

]
L
[C D]

is another well-posed linear system on (U,H, Y ). We call this system the closed loop
system with feedback operator L. In the initial value setting with initial time zero,
initial value x0, and control v, the controlled state x(t) at time t and the output y of
ΨL are given by (3.2).

See [31, section 6] for a proof. (The major part of this proposition is also contained
in [19, Theorem 4.2].)

We remark that if in the classical system (2.1) we replace u by u = Ly+v, then we
get a new well defined system of the same type iff I−DL is invertible or, equivalently,
iff I −LD is invertible. In the new system the operators [A B

C D ] have been replaced by[
AL BL

CL DL

]
=

[
A+BL (I −DL)

−1
C B (I − LD)

−1

(I −DL)
−1

C D (I − LD)
−1

]
=

[
A B
C D

]
+

[
B
D

]
L (I −DL)

−1 [C D
]

=

[
A B
C D

]
+

[
B
D

]
L
[
CL DL

]
=

[
A B
C D

]
+

[
BL

DL

]
L
[
C D

]
.

(3.3)

Observe the striking similarity between this formula and the one given in Proposition
3.2.7

Repeated feedback behaves in the expected way.
Proposition 3.3. Let L ∈ L(U ;Y ) be an admissible output feedback operator for

Ψ. Then K ∈ L(U ;Y ) is an admissible output feedback operator for the closed loop
system ΨL iff L + K is an admissible output feedback operator for Ψ, and ΨL+K =
(ΨL)K . In particular, −L is always an admissible feedback operator for ΨL, and
(ΨL)−L = Ψ.

See [31, Remark 6.4] for the straightforward proof.
Definition 3.4. The operator L ∈ L(Y ;U) is a (strongly) ω-stabilizing [stabi-

lizing] [[exponentially stabilizing]] output feedback operator for the well-posed linear
system Ψ on (U,H, Y ) iff L is an admissible output feedback operator for Ψ and the
resulting closed loop system ΨL is (strongly) ω-stable [stable] [[exponentially stable]].

We observe the following basic facts.
Lemma 3.5. Let Ψ = [A B

C D ] be ω-stable, and let L ∈ L(Y ;U).

7Usually the feed-through operator D is taken to be zero, in which case this formula simplifies
significantly and the invertibility condition on I −DL drops out.
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(i) L is an admissible output feedback operator for Ψ iff there is some α ≥ ω for
which the diagram in Figure 3.1 (i.e., the set of equations (3.1)) with x0 = 0
defines a continuous linear mapping from the external input v ∈ L2

α(R+;U)
to the internal input u ∈ L2

α(R+;U) or, equivalently, iff the operator I −LD
has an inverse in TICα(U) or, equivalently, iff the operator I − DL has an
inverse in TICα(Y ). The resulting closed loop ΨL system is α-stable.

(ii) L is ω-stabilizing iff any one of the three equivalent conditions in part (i)
is true with ω = α (hence all of them are true with ω = α). In this case
the closed loop system ΨL is strongly ω-stable iff the open loop system Ψ is
strongly ω-stable.

Remark 3.6. Thus if a system is ω-stable but not strongly so, then it is impossible
to make it strongly ω-stable by using our notion of admissible output feedback.

Proof of Lemma 3.5. (i) Most of this follows immediately from Definition 3.1. To
see that the resulting system is α-stable we observe that if I − LD has an inverse in
TICα(U) (or, equivalently, the operator I − DL has an inverse in TICα(Y )), then
the formulas for ΨL given in Proposition 3.2 imply that ΨL is α-stable. (Here we use
the fact that ω-stability implies α-stability for every α ≥ ω; see Lemma 2.4.)

(ii) Clearly, if the conditions in part (i) are true with α = ω, then L is ω-stabilizing.
Conversely, if L is ω-stabilizing, then DL = D(I − LD)−1 ∈ TICω(U ;Y ), and this
implies that (I − LD)−1 = I + LD(I − LD)−1 = I + LDL ∈ TICω(U).

To prove the second claim in part (ii) it suffices to show that

e−ωtBτ(t)L(I −DL)−1Cx→ 0 as t→∞

for every x ∈ H, since AL − A = BτL (I −DL)
−1 C. Fix x ∈ H and split the

expression above into

e−ωtBτ(t)L(I −DL)−1Cx = e−ωtBτ(t− T )(π+ + π−)τ(T )L(I −DL)−1Cx
= Be−ωtτ(t)π[T,∞)L(I −DL)−1Cx

+ e−ωtA(t− T )Bτ(T )L(I −DL)−1Cx.

Here the first term tends to zero as T →∞, uniformly in t ≥ T , and the second term
tends to zero as t→∞ and T is fixed.

Remark 3.7. The same proof shows that (with the same terminology as in Re-
mark 2.12) if Ψ is input ω-stable and output ω-stable and L ∈ L(Y ;U) is an admissible
output feedback operator, then L is input ω-stabilizing, output ω-stabilizing, and in-
put/output ω-stabilizing iff D(I − LD)−1 ∈ TICω(U). Moreover, in this case L is
[strongly] ω-stabilizing iff the semigroup of Ψ is [strongly] ω-stable.

The notion of a state feedback can be reduced formally to the notion of an output
feedback. Intuitively, a state feedback means that an additional output is created, and
this output is then fed back into the input, as shown in Figure 3.2. In this figure the
original system is represented by [A B

C D ]. We find two additional components, namely,
a new observability map K (from the initial state to the new output) and a new
input/output map F (from the original input to the new output). The pair

[K F]
is admissible if the resulting system is well posed, i.e., if

[
0 I

]
is an admissible output

feedback operator for the extended system defined in Definition 3.8.
Definition 3.8. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). The
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A Bτ[C
K
] [D

F
]?

x0

�x

�y

�z r

?c
+

+-π+u[ -ur

6

Fig. 3.2. State feedback connection.

A [Hτ Bτ]
C [G D]
6x0

�x

�y

�w
r

?

y

6
c

+
+

� π+w
]

6
π+u

Fig. 3.3. Output injection connection.

pair
[K F] is an admissible state feedback pair for Ψ iff the extended system

ΨSF =

 A B[C
K
] [D

F
]

is a well-posed linear system on (U,H, Y × U) and
[
0 I

]
is an admissible output

feedback operator for ΨSF; i.e., I − F has an inverse in TICω(U) for some ω ∈ R.8

It is (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] if the resulting
closed loop system is (strongly) ω-stable [stable] [[exponentially stable]].

Remark 3.9. We shall frequently regard the signal u in Figure 3.2 (i.e., the input
to the open loop system) as an additional output of the closed loop system (although
it is not part of the official definition). This output has the same observability map
(I −F)−1K as the output z.9 Its input/output map, given by (I −F)−1, differs from
the input/output map from u[ to z by an identity operator (see Lemma 3.13). Similar
remarks apply to the signals w in Figure 3.3, u[ and w] in Figure 3.4, u and w] in
Figure 3.5, u[ and w in Figure 3.6, etc.

The notion of an output injection is analogous. In this case a new input is created
into which we feed the original output y plus a new perturbation w], as shown in
Figure 3.3. The original system is still represented by [A B

C D ]. In this figure we find a
new controllability map H (from the new input to the state) and a new input/output
map G (from the new input to the original output). The pair

[H
G
]

is admissible if the
resulting system is well posed.

Definition 3.10. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ).

8The input of this system is the signal u[ in Figure 3.2, and its outputs are y and z. See also
Remark 3.9.

9See Lemma 3.13.
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A [Hτ Bτ][C
K
] [G D

E F
]

6x0

-x

-y

-zr

?c+
−

-π+u -u[r

6

y

6
c

+−
�w]

� π+wr

?

Fig. 3.4. The extended system.

The pair
[H
G
]

is an admissible output injection pair for Ψ iff the extended system

ΨOI =

[A [H B]
C [G D]

]
is a well-posed linear system on (Y ×U,H, Y ) and [ I0 ] is an admissible output feedback
operator for ΨOI; i.e., I − G has an inverse in TICω(Y ) for some ω ∈ R.10 It is
(strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] if the resulting closed
loop system is (strongly) ω-stable [stable] [[exponentially stable]].

In the sequel we shall need to study a case where at the same time we want to
add both a state feedback pair

[K F] and an output injection pair
[H
G
]

to a given
system [A B

C D ]. If we try to write a figure similar to Figures 3.2 and 3.3, we immediately
observe that we need one more input/output map E (from the output injection input
to the state feedback output); see Figure 3.4. This operator need not always exist,11

and this forces us to introduce still another definition.
Definition 3.11. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ).
The pairs

[K F] and
[H
G
]

are called jointly admissible state feedback and output

injection pairs for Ψ iff
[K F] is an admissible state feedback pair for Ψ,

[H
G
]

is
an admissible output injection pair for Ψ, and in addition, there exists a operator E,
called the interaction operator, such that and the combined extended system

Ψext =

 A [H B][C
K
] [G D

E F
]

is a well-posed linear system on (Y × U,H, Y × U).
Lemma 3.12. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). Then
the following conditions are equivalent:

(i) the pairs
[K F] and

[H
G
]

are jointly admissible state feedback and output
injection pairs with interaction operator E;

(ii) the system Ψext in Definition 3.11 is a well-posed linear system on (Y ×
U,H, Y ×U), and both [ 0 0

0 I ] and [ I 0
0 0 ] are admissible output feedback operators

for Ψext.

10The inputs of this system are the signals u and w] in Figure 3.3, and its output is y. See also
Remark 3.9.

11More precisely, it need not be a bounded operator. The operator E, if it exists, is determined
uniquely modulo a static operator; this follows from [24, Corollary 7].
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]
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Fig. 3.5. Right coprime factor.

A [Hτ Bτ][C
K
] [G D

E F
]

6x0

-x

-y

-zr

?c+
−

-π+u -u[r

6

y

6
c

+
+

-π+w
]

-wr

?

Fig. 3.6. Left coprime factor.

(iii) the system Ψext in Definition 3.11 is a well-posed linear system on (Y ×
U,H, Y × U), and I − F and I − G have inverses in TICω(U), respectively,
TICω(Y ) for some ω ∈ R.

To prove this lemma it suffices to make a straightforward calculation based on
Proposition 3.2. As a part of this calculation we get the following expressions for the
two closed loop systems in part (ii), drawn in Figures 3.5 and 3.6, respectively.12

Lemma 3.13. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ), and let[K F] and

[H
G
]

be jointly admissible state feedback and output injection pairs for Ψ
with interaction operator E. Then the closed loop system Ψ[ that we get by using [ 0 0

0 I ]
as a output feedback operator for Ψext (see Figure 3.5) is given by13

Ψ[ =

 A[

[H[τ B[τ
][C[

K[

] [G[ D[

E[ F[

] 
=

A+ Bτ (I −F)
−1K [Hτ + B (I −F)

−1 Eτ B (I −F)
−1

τ
][C +D (I −F)

−1K
(I −F)

−1K
] [G +D (I −F)

−1 E D (I −F)
−1

(I −F)
−1 E (I −F)

−1 − I

] 
=

 A [Hτ Bτ][C
K
] [G D

E F
] +

BτD
F

 (I −F)
−1 [K E F] ,

12See section 4 for an explanation of the captions of these figures.
13The inputs of this system are the signals u[ and w in Figure 3.5, and its outputs are y and z.

See also Remark 3.9.
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E[ F[

]
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-zz

?c
−

+
-π+u -u[r

6

r

?

y

6
c

+−
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Fig. 3.7. Cancelation of state feedback.

and the closed loop system Ψ] that we get by using [ I 0
0 0 ] as a output feedback operator

for Ψext (see Figure 3.6) is given by14

Ψ] =

 A]
[H]τ B]τ][C]

K]

] [G] D]

E] F ]

] 
=

A+Hτ (I − G)
−1 C [H (I − G)

−1
τ Bτ +H (I − G)

−1Dτ][
(I − G)

−1 C
K + E (I − G)

−1 C
] [

(I − G)
−1 − I (I − G)

−1D
E (I − G)

−1 F + E (I − G)
−1D

] 
=

 A [Hτ Bτ][C
K
] [G D

E F
] +

HτG
E

 (I − G)
−1 [C G D] .

Remark 3.14. According to Proposition 3.3, it is possible to recover the extended
system Ψext from either of the systems Ψ[ or Ψ] by using negative feedback. For
example, the feedback connection drawn in Figure 3.7 is equivalent to Ψext.

So far we have only looked at the joint admissibility of state feedback and output
injection pairs. If the resulting closed loop systems drawn in Figures 3.5 and 3.6 are
ω-stable, then we call these pairs jointly ω-stabilizing as follows.

Definition 3.15. The pairs
[K F] and

[H
G
]

are called jointly (strongly) ω-
stabilizing [stabilizing] [[exponentially stabilizing]] state feedback and output injection
pairs for Ψ if they are jointly admissible state feedback and output injection pairs
with some interaction operator E, and both the closed loop systems Ψ[ and Ψ] in
Lemma 3.13 are (strongly) ω-stable [stable] [[exponentially stable]].

Observe that if the two pairs in Definition 3.15 are ω-stabilizing (but not “jointly”
ω-stabilizing), then we know that the operators in the left and right columns of Ψ[

and in the top and middle rows of Ψ] are ω-stable (see the formulas in Lemma 3.13),
but we do not know anything about the operators in the middle column of Ψ[ and in
the bottom row of Ψ].

Definition 3.16. Let Ψ be a well-posed linear system.
(i) Ψ is (strongly) ω-stabilizable [stabilizable] [[exponentially stabilizable]] iff there

exists a (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] state
feedback pair for Ψ.

14The inputs of this system are the signals u and w] in Figure 3.6, and its outputs are y and z.
See also Remark 3.9.
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(ii) Ψ is (strongly) ω-detectable [detectable] [[exponentially detectable]] iff there
exists a (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] output
injection pair for Ψ.

(iii) Ψ is jointly (strongly) ω-stabilizable [stabilizable] [[exponentially stabilizable]]
and detectable iff there exist some jointly (strongly) ω-stabilizing [stabilizing]
[[exponentially stabilizing]] state feedback and output injection pairs for Ψ.

We do not know if it is possible for a system to be both stabilizable and detectable
without being jointly stabilizable and detectable.

There is a simple connection between ω-stability, ω-detectability, and input/output
ω-stability as shown in Lemma 3.17.

Lemma 3.17. Let Ψ = [A B
C D ] be input/output ω-stable [exponentially stable] (i.e.,

let D be ω-stable [exponentially stable]).
(i) If Ψ is ω-stabilizable [exponentially stabilizable], then the observability map C

is ω-stable [exponentially stable].
(ii) If Ψ is ω-detectable [exponentially detectable], then the controllability map B

is ω-stable [exponentially stable].
(iii) If Ψ is both (strongly) ω-stabilizable [exponentially stabilizable] and ω-detect-

able [exponentially detectable] (not necessarily jointly), then Ψ is (strongly)
ω-stable [exponentially stable].

Proof. Introduce the same notation as in Lemma 3.13.
(i) By Lemma 3.13, the observability map C is given by C = C[ −DK[. Thus C is

ω-stable [exponentially stable] whenever C[, D, and K[ are so.
(ii) By the same lemma, the controllability map B is given by B = B] − H]D.

Thus B is ω-stable [exponentially stable] whenever B], H], and D are so.
(iii) Again, by Lemma 3.13, A = A[ − BτK[. Thus A is (strongly) ω-stable

[exponentially stable] whenever A[, B, and K[ are so.15

By adding the trivial converse to part (iii) of Lemma 3.17 we get the following
corollary.

Corollary 3.18. A (strongly) ω-stabilizable and ω-detectable [exponentially sta-
bilizable and detectable] well-posed linear system is (strongly) ω-stable [exponentially
stable] iff it is input/output ω-stable [exponentially stable].

This result generalizes most other results in this direction such as [17, Corollary
1.8].

Finally, let us present two lemmas concerning exponential stability. Both of these
follow directly from Lemma 2.6.

Lemma 3.19. Let Ψ be a well-posed linear system.
(i) The state feedback pair

[K F] is exponentially stabilizing iff it is admissible
and the closed loop semigroup A[ in Lemma 3.13 is exponentially stable.

(ii) The output injection pair
[H
G
]

is exponentially stabilizing iff it is admissible
and the closed loop semigroup A] in Lemma 3.13 is exponentially stable.

(iii) The state feedback pair
[K F] and the output injection pair

[H
G
]

are jointly
exponentially stabilizing iff they are jointly admissible and both the closed loop
semigroups A[ and A] in Lemma 3.13 are exponentially stable.

Lemma 3.20. If
[K F] is an exponentially stabilizing state feedback pairs for

the system Ψ = [A B
C D ], then the same feedback pair is exponentially stabilizing for

every well-posed extension of Ψ of the type A B[ C
C1

] [D
D1

] .
15See also Remark 3.6.
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4. Coprime factorizations. As is well known, classical (lumped) transfer func-
tions always have doubly coprime factorizations, and these factorizations can be com-
puted by a state space method through the use of a stabilizable and detectable real-
ization. Arbitrary H∞ transfer functions do not always have coprime factorizations
even in the single-input single-output case [12, p. 108], but transfer functions that can
be stabilized by a dynamic output feedback do, at least in the case where the input
and output spaces are finite dimensional [9, 21]. Below we extend these results and
show that the transfer function of every jointly stabilizable and detectable well-posed
linear system has a doubly coprime factorization that can be computed by the stan-
dard state space method. Conversely, every transfer function with a doubly coprime
factorization has a strongly stabilizable and detectable realization.

According to Lemma 2.9, there is a one-to-one correspondence between the set
of transfer functions in H∞

ω (U ;Y ) and the set of causal time-invariant operators in
TICω(U ;Y ). Rather than switching over to the frequency domain we continue to
work in the time domain and leave the transformation of our results to the frequency
domain to the reader.

Definition 4.1. Let U , Y , and Z be Hilbert spaces, and let ω ∈ R.
(i) The operators N ∈ TICω(U ;Y ) and M ∈ TICω(U ;Z) are right ω-coprime

iff there exist operators Ỹ ∈ TICω(Y ;U) and X̃ ∈ TICω(Z;U) that together
with N and M satisfy the Bezout identity

ỸN + X̃M = I

in TICω(U). In the case where ω = 0 we call N and M right coprime, and
in the case where ω < 0 we call N and M exponentially right coprime.

(ii) The operators Ñ ∈ TICω(U ;Y ) and M̃ ∈ TICω(Z;Y ) are left ω-coprime
iff there exist operators Y ∈ TICω(Y ;U) and X ∈ TICω(Y ;Z) that together
with Ñ and M̃ satisfy the Bezout identity

ÑY + M̃X = I

in TICω(Y ). In the case where ω = 0 we call Ñ and M̃ left coprime, and in
the case where ω < 0 we call Ñ and M̃ exponentially left coprime.

Thus N and M are right ω-coprime iff [ NM ] has a left inverse in TICω(Y ×Z;U).
Ñ and M̃ are left ω-coprime iff

[Ñ M̃]
has a right inverse in TICω(Y ;U × Z).

Definition 4.2. Let U and Y be Hilbert spaces, let ω, α ∈ R with ω ≤ α, and
let D ∈ TICα(U ;Y ).

(i) The pair (N ,M) is a right ω-coprime factorization of D if N ∈ TICω(U ;Y )
and M∈ TICω(U) are right ω-coprime, M has an inverse in TICα(U), and
D = NM−1.

(ii) The pair (M̃, Ñ ) is a left ω-coprime [coprime] [[exponentially coprime]] fac-
torization of D if M̃ ∈ TICω(Y ) and Ñ ∈ TICω(U ;Y ) are left ω-coprime
[coprime] [[exponentially coprime]], M̃ has an inverse in TICα(Y ), and D =
M̃−1Ñ .

(iii) A doubly ω-coprime factorization of D consists of eight operators in TICω
(of the appropriate dimensions) satisfying[M̃ Ñ

−Ỹ X̃
] [X −N
Y M

]
=

[X −N
Y M

] [M̃ Ñ
−Ỹ X̃

]
= I(4.1)

in TICω(U × Y ;U × Y ), and, in addition, we require that (N ,M) is a right
ω-coprime and (M̃, Ñ ) a left ω-coprime factorization of D. In the case where
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ω = 0 we call this a doubly coprime factorization, and in case where ω < 0
we call it a doubly exponentially coprime factorization.

Our definition of coprimeness is slightly nonstandard. It is possible to study co-
prime factorizations in the quotient field of TICω without our additional assumption
that D belongs to TICα(U ;Y ) and that M and M̃ are invertible in TICα(U), re-
spectively, TICα(Y ) for some α > ω; see, e.g., [9], [12], or [21]. Usually, one only
assumes the transfer functions of M and M̃ to be invertible in at least one point in
the half-plane <z > ω. Observe that if M is invertible in any reasonable sense, then
D ∈ TICα(U ;Y ) iff M−1 ∈ TICα(U) because D = NM−1 and M−1 = X̃ + ỸD.
Likewise, if M̃ is invertible in any reasonable sense, then D ∈ TICα(U ;Y ) iff M̃−1 ∈
TICα(Y ) because D = M̃−1N and M̃−1 = X + DY. According to [20] or [31], if
D does not belong to TICα(U ;Y ) for any α > ω, then D cannot be realized as the
input/output map of a well-posed linear system on a triple of Hilbert spaces.

A coprime factorization is unique, modulo a unit as shown in Lemma 4.3.
Lemma 4.3. Let U and Y be Hilbert spaces, let ω, α ∈ R with ω ≤ α, and let

D ∈ TICα(U ;Y ).
(i) Let (N ,M) be a right ω-coprime factorization of D. Then the set of all

possible right ω-coprime factorizations of D can be parameterized in the form
(NU ,MU), where U is an invertible operator in TICω(U).

(ii) Let (M̃, Ñ ) be a left ω-coprime factorization of D. Then the set of all pos-
sible left ω-coprime factorizations of D can be parameterized in the form
(ŨM̃, ŨÑ ), where Ũ is an invertible operator in TICω(Y ).

(iii) If D has both a right ω-coprime factorization (N ,M) and a left ω-coprime fac-
torization (M̃, Ñ ), then these two factorizations can be extended to a doubly
ω-coprime factorization (i.e., a factorization that contains the given operators
N , M, M̃, and Ñ ).

Proof. (i) If (N ,M) is a right ω-coprime factorization of D and U ∈ TICω(U) is
invertible in TICω(U), then it is obvious that (NU ,MU) is another right ω-coprime
factorization. Conversely, suppose that we have two right ω-coprime factorizations
(N ,M) and (N1,M1) satisfying the Bezout identities

ỸN + X̃M = Ỹ1N1 + X̃ 1M1 = I.

Then M−1 = X̃ + ỸD and M−1
1 = X̃ 1 + Ỹ1D in TICα(U), so

M−1M1 = X̃M1 + ỸN1, M−1
1 M = X̃ 1M+ Ỹ1N

in TICα(U). Define U = M−1M1. We know that U is invertible in TICα(U).
However, since L2

ω(R;U) ∩ L2
α(R;U) is dense in L2

α(R;U), the two equations above
imply that U can be extended to an invertible operator in TICω(U). Moreover,
M1 = MU and N1 = DM1 = DMU = NU . Thus (N1,M1) = (NU ,MU), as
claimed.

(ii) The proof of (ii) is completely analogous to the proof of (i).
(iii) Choose some operators Ỹ, X̃ , X , and Y in TICω that together with the given

operators satisfy the Bezout identities ỸN + X̃M = I and ÑY + M̃X = I. Then a
direct computation shows that[M̃ Ñ

−Ỹ X̃
] [X −N (ỸX − X̃Y) −N
Y +M(ỸX − X̃Y) M

]
= I.
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By using the invertibility of M and M̃ in TICα, we get

XM̃+DYM̃ = I, XÑ +DYÑ = D,
MX̃ +MỸD = I, NX̃ +NỸD = D,

and by using these identities we find that[X −N (ỸX − X̃Y) −N
Y +M(ỸX − X̃Y) M

] [M̃ Ñ
−Ỹ X̃

]
= I

in TICα (as opposed to TICω). However, since all the operators above belong to
TICω, and since L2

α ∩L2
ω is dense in L2

ω, we find that the same identity must be true
in TICω, too. Thus, we have a doubly ω-coprime factorization.

As the following theorem shows, if a well-posed linear system is jointly stabilizable
and detectable, then its input/output map has a doubly coprime factorization. A
converse to this statement is true as well.

Theorem 4.4.
(i) Let Ψ = [A B

C D ] be a jointly ω-stabilizable [stabilizable] [[exponentially stabi-
lizable]] and detectable well-posed linear system (in the sense of Definition
3.16). Then, with the notations of Lemma 3.13 and Definition 4.2,[M̃ Ñ

−Ỹ X̃
] [X −N
Y M

]
=

[
I + G] D]

−E] I −F ]

] [
I − G[ −D[

E[ I + F[

]
is a doubly ω-coprime [coprime] [[exponentially coprime]] factorization of D.

(ii) Conversely, every D that belongs to TICα(U ;Y ) for some α ∈ R and has
a doubly ω-coprime [coprime] [[exponentially coprime]] factorization can be
realized as the input/output map of a jointly strongly ω-stabilizable [stabi-
lizable] [[exponentially stabilizable]] and detectable well-posed linear system
Ψ = [A B

C D ].
Proof. Ψ = [A B

C D ] be jointly ω-stabilizable and detectable. Then both the systems
drawn in Figures 3.5 and 3.6 are ω-stable. In particular, both the input/output map
from [ wu[ ] to

[
w]

u

]
in Figure 3.5, and the input/output map from

[
w]

u

]
to [ wu[ ] in

Figure 3.6 are ω-stable. The former one is given by
[
I−G[ −D[
E[ I+F[

]
(cf. Remark 3.9),

and the latter one is given by
[
I+G] D]

−E] I−F]

]
. Moreover, by comparing the two figures

with each other we immediately realize that they are equivalent in the sense that the
relationships between the different signals with the same names are identical in the
two diagrams. This means that the input/output map given above are inverses of
each other; i.e., [

I − G[ −D[

E[ I + F[

]
=

[
I + G] D]

−E] I −F ]

]−1

.

Moreover, as is easily seen, (D[, (I + F[)) is a right ω-coprime factorization of D,
and ((I + G]),D]) is a left ω-coprime factorization of D. This proves part (i) of the
theorem.

Conversely, suppose that there exists a doubly coprime factorization of D. Our
construction below starts with a realization of the closed loop system Ψ[; another
equally good choice would be to start with a realization of Ψ]. Motivated by the
formula that we found above, we pick the input/output map of Ψ[ to be given by[G[ D[

E[ F[

]
=

[
I −X N
Y M− I

]
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and choose an arbitrary strongly ω-stable realization of this input/output map, for
example, the continuously observable realization presented in Definition 2.10. Since
M is supposed to have an inverse in TICα for some α > ω, the operator

[
0 0
0 −I

]
is an admissible feedback operator for Ψ[. Denote the resulting α-stable closed loop
system by Ψext and the system that we get by dropping the state feedback row and the
output injection column from Ψext by Ψ. As a straightforward computation shows,
the input/output map of Ψext is[G D

E F
]

=

[
I −X −NM−1Y NM−1

M−1Y I −M−1

]
(4.2)

=

[
I − M̃−1 M̃−1Ñ
ỸM̃−1 I − X̃ − ỸM̃−1Ñ

]
.

Observe, in particular, that the input/output map of Ψ is the desired D = NM−1 =
M̃−1Ñ . It follows from Proposition 3.3 that the system Ψ that we get in this way is
strongly ω-stabilizable (and that the closed loop state feedback system is Ψ[). More-
over, by Proposition 3.3 and Lemma 3.5, Ψ is strongly ω-detectable if the operator[
I 0
0 −I

]
is an ω-stabilizing output feedback operator for Ψ[ or, equivalently, if[

I 0
0 I

]
−
[
I 0
0 −I

] [
I −X N
Y M− I

]
=

[X −N
Y M

]
has an inverse in TICω(U×Y,U×Y ). But this is true because of the doubly coprime-
ness assumption. Thus Ψ is jointly strongly ω-stabilizable and detectable.

The notion of a coprime factorization makes it possible to refine Lemma 3.20 as
follows.

Lemma 4.5. Assume that both
[K1 F1

]
and

[K2 F2
]

are ω-stabilizing state
feedback pairs for the system Ψ = [A B

C D ]. Then the following conditions are equivalent:
(i)

[K2 F2
]

is an ω-stabilizing state feedback pair for the extended system A B[ C
K1

] [ D
F1

] ;

(ii) the pair [
(K2 − (I −F2)(I −F1)−1K1) (I − (I −F2)(I −F1)−1)

]
is an ω-stabilizing state feedback pair for the closed loop system

Ψ[ =

 A[ B[[ C[
K1
[

] [D[

F1
[

]
=

 A+ Bτ (I −F1
)−1K1 B (I −F1

)−1[
C +D (

I −F1
)−1K1(

I −F1
)−1K1

] [
D (

I −F1
)−1(

I −F1
)−1 − I

]
that one gets from Ψ by using the state feedback pair

[K1 F1
]
;

(iii) F1(I −F2)−1 and K1 + F1(I −F2)−1K2 are ω-stable.
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A sufficient condition for (i)–(iii) to hold is that D(I−F1)−1 and (I−F1)−1 are right
ω-coprime. This condition is necessary for (i)–(iii) to hold whenever D(I−F2)−1 and
(I −F2)−1 are right ω-coprime.

Proof. Let us study the further extended system
A B
C
K1

K2

K2 −K1




D
F1

F2

F2 −F1


 ,

where the last line is the difference between the two previous lines. If we use here
the output feedback operator

[
0 I 0 0

]
, then we get an extended version of the

closed loop system Ψ[ in the statement of the lemma (that we still denote by Ψ[),
namely,

Ψ[ =


A[ B[
C[
K1
[

K2
[

K2
[ −K1

[




D[

F1
[

F2
[

F2
[ −F1

[




=


A+ Bτ (I −F1

)−1K1 B (I −F1
)−1

C +D (
I −F1

)−1K1(
I −F1

)−1K1

K2 + F2
(
I −F1

)−1K1

K2 − (
I −F2

) (
I −F1

)−1K1




D (
I −F1

)−1(
I −F1

)−1 − I

F2
(
I −F1

)−1(
I −F2

) (
I −F1

)−1 − I



 .

If we instead use the output feedback operator
[
0 0 I 0

]
, then we get the system

Ψ\ =


A\ B\
C\
K1
\

K2
\

K2
\ −K1

\




D\

F1
\

F2
\

F2
\ −F1

\




=


A+ Bτ (I −F2

)−1K2 B (I −F2
)−1

C +D (
I −F2

)−1K2

K1 + F1
(
I −F2

)−1K2(
I −F2

)−1K2

−K1 +
(
I −F1

) (
I −F2

)−1K2




D (
I −F2

)−1

F1
(
I −F2

)−1(
I −F2

)−1 − I(
I −F1

) (
I −F2

)−1 − I



 .

By Proposition 3.3, we get the same system by using
[
0 −I I 0

]
as a feedback

operator for Ψ[ or, equivalently, by using the feedback operator
[
0 0 0 I

]
. This

proves the equivalence of (i) and (ii). We know that the operators on the first, second,
and fourth row of Ψ\ are stable (since

[K2 F2
]

is stabilizing for Ψ), so the full system
Ψ\ is stable iff the two conditions listed in (iii) hold (recall that the last line is the
difference between the two previous lines).

Suppose that D(I − F1)−1 and (I − F1)−1 are right coprime. We claim that
(i)–(iii) then hold. To prove this we choose operators Ỹ and X̃ in TIC that together
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with D[ and I + F1
[ satisfy the Bezout identity

ỸD[ + X̃ (
I + F1

[

)
= ỸD (

I −F1
)−1

+ X̃ (
I −F1

)−1
= I.

Then

ỸD\ + X̃ (
I + F2

\

)
= ỸD (

I −F2
)−1

+ X̃ (
I −F2

)−1

= (ỸD + X̃ )
(
I −F2

)−1

=
(
I −F1

) (
I −F2

)−1
,

and this shows that
(
I −F1

) (
I −F2

)−1
is stable; hence, F1

(
I −F2

)−1
is stable. A

similar computation

Ỹ (C\ − C[) + X̃ (K2
\ −K2

[

)
= (ỸD + X̃ )

((
I −F2

)−1K2 − (
I −F1

)−1K1
)

= −K1 +
(
I −F1

) (
I −F2

)−1K2

shows that −K1 +
(
I −F1

) (
I −F2

)−1K2 is stable; hence, K1 + F1
(
I −F2

)−1K2

is stable.
Finally, let us assume that (iii) holds, and that D(I −F2)−1 and (I −F2)−1 are

right coprime. By interchanging the two feedback pairs with each other and using the
statement that we have just proved, we find that (I − F2)(I − F1)−1 is invertible in
TIC(U). This, combined with the coprimeness of D(I − F2)−1 and (I − F2)−1 and
Lemma 4.3, implies that D(I −F1)−1 and (I −F1)−1 must be right coprime.

5. Dynamic stabilization. As is well known, if the input/output map D has a
right ω-coprime factorization (N ,M), and if Ỹ and X̃ together with N and M satisfy
the Bezout identity

ỸN + X̃M = I,

then Q = X̃−1Ỹ is an ω-stabilizing compensator for D, provided it is possible to make
sense out of X̃−1. A similar statement is true in the case where D has a left ω-coprime
factorization. If D has a doubly ω-coprime factorization, then, with the notations of
Definition 4.2, the stabilizing compensator Q is given by Q = X̃−1Ỹ = YX−1, still
provided X̃−1 and X−1 make sense. If X̃ and X do not have inverses in TICα for
any α > 0, then Q does not belong to TICα(Y ;U) for any α > 0, and Q cannot
be realized as the input/output map of a well-posed linear system (see the discussion
following Definition 4.2). Thus it is natural to impose this extra condition on a doubly
coprime factorization as follows.

Definition 5.1. Let α > ω, and let D ∈ TICα(U ;Y ) and Q ∈ TICα(Y ;U). A
joint doubly ω-coprime factorization of D and Q consists of eight operators in TICω
(with the appropriate dimensions) satisfying (4.1), and, in addition, we require that
(N ,M) is a right and (M̃, Ñ ) is a left ω-coprime factorization of D, and that (Y,X )
is a right and (X̃ , Ỹ) is a left ω-coprime factorization of Q. (In particular, all the
denominators M, M̃, X , and X̃ are invertible in TICα.)

Lemma 5.2. Let Ψ = [A B
C D ] be a jointly ω-stabilizable and detectable well-posed

linear system, and let Ψext, Ψ[, and Ψ] denote the systems in Definition 3.11 and
Lemma 3.13. Then the following conditions are equivalent:

(i) the operator [ I 0
0 I ] is an admissible output feedback operator for Ψext;
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ỹ

6
c

+
+

� w̃]

Fig. 5.1. Dynamic stabilization.

(ii) I − G[ has an inverse in TICα(Y ) for some α ≥ ω;
(iii) I −F ] has an inverse in TICα(U) for some α ≥ ω.

In these cases the system Ψ]
[ drawn in the left half of Figure 5.1 with inputs w̃] and

ũ[ and outputs ỹ, z̃, w̃, and ũ (i.e., the system that we get by using [ I 0
0 I ] as an output

feedback operator for Ψext) is a well-posed linear system, and the coprime factorization
presented in Theorem 4.4 is a joint doubly ω-coprime factorization of D and Q, where
Q = E[(I − G[)−1 = (I −F ])−1E].

This follows from Proposition 3.3.
In the situation described above the input/output map of the closed loop system

Ψ]
[ is equal to the stabilizing compensator Q, and we can use the observer connection

drawn in Figure 5.1 to stabilize the system as shown in Theorem 5.3.
Theorem 5.3. Let Ψ = [A B

C D ] be a jointly ω-stabilizable and detectable well-
posed linear system, and let Ψext denote the system in Definition 3.11. Then the
connection drawn in Figure 5.1 defines an ω-stable well-posed linear system. Moreover,
the input/output maps for the two additional outputs w̃ and u[ are given by[

w̃
u[

]
=

[
π+w
π+ũ[

]
+

[−I − G] −D]

−E] I −F ]

] [
π+ŵ
π+û

]
.

Proof. By Remark 3.14, we can regard Ψext as a state feedback perturbed version
of the closed loop system Ψ[; see Figure 3.7. By substituting this system for Ψext in
Figure 5.1 we get the equivalent Figure 5.2, which can be interpreted as a feedback
connection for an ω-stable system consisting of two copies of Ψ[. By part (i) of Lemma
3.5, it suffices to show that the two internal inputs u[ and w̃ depend continuously in
L2
ω on the four inputs. By using the equations describing the summation junctions in

Figure 5.2 we can eliminate the variables u, ũ, w], and w̃] to get[
I − G[ −D[

E[ I + F[

] [
π+w − w̃
u[ − π+ũ[

]
=

[
π+ŵ
π+û

]
.

By Theorem 4.4, the operator on the left-hand side has an inverse in TICω. Inverting
this operator we get the formula given in Theorem 5.3.

Remark 5.4. Observe that Theorem 5.3 is true even if the equivalent conditions
listed in Lemma 5.2 are false. However, if this is the case, then although the system
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Fig. 5.2. Alternative version of compensator connection.

in Figure 5.1 is an ω-stable well-posed linear system, the compensator (the left half of
Figures 5.1 and 5.2) is not well-posed by itself, and the well posedness is lost if the
feedback loop from the compensator to the original system is opened.

Remark 5.5. By using Theorem 5.3 one can easily develop a Youla parame-
terization of the set of all stabilizing compensators for Ψext. The key observation is
that the input/output map from

[ π+w
π+ũ[

]
to
[
w̃
u[

]
is the identity map. To get the Youla

parameterization we simply connect the Youla parameter Q from w̃ to ũ[ in the equiv-
alent Figures 5.1 and 5.2. This does not affect the stability of the system since w̃ does
not depend on ũ[. The resulting input/output map from w to u[ will be equal to Q.
The proofs of these claims are essentially the same as the ones given in [6].

Remark 5.6. All the main results of this paper remain valid if throughout we
replace the algebra of time-invariant bounded linear operators from L2(R;U) into
L2(R;Y ) by various subalgebras, for example the algebra of convolution operators
induced by measures with finite total variation. This is the algebra around which [22]
and [23] were built.
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Abstract. We consider different kinds of “pathological traps” for stochastic algorithms, thus
extending a previous study on regular traps. An illustration is given by the complete proof of the
convergence of a principal component analysis (PCA) algorithm when the eigenvalues are multiple.

Key words. stochastic approximation, ordinary differential equations, traps, neural networks

AMS subject classifications. 62L20, 60F99, 58F21, 92B20

PII. S036301299630759X

1. Introduction. We consider the R
d-valued stochastic algorithm, defined on a

probability space (Ω,A,P):

Zn+1 = Zn + γnh(Zn) + ηn+1,(1)

where
• h is a continuous function from an open set G ⊆ R

d to R
d,

• (γn) is a decreasing-to-zero deterministic real sequence satisfying∑
n≥0

γn = ∞,(2)

• (ηn) is a “small” stochastic disturbance.
The ordinary differential equation (ODE) method (see [3], [8], [14] and others)

associates the possible limit sets of (1) with the properties of the associated ODE

dz

dt
= h(z).(3)

When the algorithm is bounded, these sets are compact connected invariant and
“chain-recurrent” in the Benäım sense (see [2]) for the ODE.

It is natural to think that, thanks to the random disturbance, the algorithm (1)
avoids some of those limit sets which we shall call “traps.”

The most simple limit sets of (1) (and (3)) are the “regular zeros of h”: z∗ is a
“regular trap of h” if z∗ is an isolated zero with a neighborhood where h is C1 with
a Lipschitz differential Dh, having at z∗ at least one eigenvalue with a positive real
part. Such “regular traps” have been studied in [6], [16], and [25].

The aim of this paper is to study some other compact connected chain-recurrent
sets L such as

• periodic cycles for the ODE,
• singular equilibria and other “repulsive regions,”
• connected sets of equilibria.
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Our question is: “does {ω ; d(Zn(ω), L) → 0} have probability zero?”
Throughout this paper, we shall always make the following assumptions.
Assumptions A1. On the “small disturbance”

ηn+1 = cn(εn+1 + rn+1),(4)

where (cn) is a nonnegative deterministic sequence such that

•γn = O(cn), Σc2n <∞, and cn 6= 0 infinitely often,(5)

• (εn) and (rn) are R
d-valued random vector sequences, defined on (Ω,A,P)

adapted with respect to an increasing sequence of σ-fields (Fn)n≥0 and satisfying
almost surely (a.s.) on {ω ; d(Zn(ω), L) → 0}

E(εn+1|Fn) = 0 and Σ‖rn‖2 <∞.(6)

Now we state our main results. The proofs will be given in the following sections.
Then we will illustrate some results by the proof of the convergence of a PCA (principal
component analysis) algorithm.

Symbols. We denote by
• λmin(A), the smallest eigenvalue of the symmetric matrix A,
• λ(A) (resp., λ(A)), the smallest (resp., largest) real part of eigenvalues of the

matrix A,
• Γ(L) = {ω ; d(Zn(ω), L) → 0},
• Lr = {x ∈ R

d ; d(x, L) < r},
• Lr = {x ∈ R

d ; d(x, L) ≤ r},
• C, a generic positive constant whose value may change,
• i.i.d., independent and identically distributed.
The “ODE” will always be the ODE (3); a “solution” of the ODE, t→ z(t), will

be considered for t ≥ 0, z(0) being the initial condition.

1.1. Cyclic traps. Here we extend the framework of a result of Benäım [1].
Set L ⊆ G, a closed and periodic orbit, solution to the ODE (3). We assume that

h is C2 on a neighborhood of L and that L is a periodic and hyperbolic cycle having
at least one characteristic exponent with a positive real part; we shall call such an L
a cyclic trap.

Then we claim the following theorem.
Theorem 1.1. Let L be a cyclic trap of the stochastic algorithm (1) under the

Assumptions A1. Assume that h is C2 on a neighborhood of L and that for some
a > 2, a.s. on Γ(L),

lim sup
n

E(‖εn+1‖a|Fn) <∞ and lim inf
n

E(λmin(εn+1(εn+1)
T )|Fn) > 0.(7)

Then P (Γ(L)) = 0; the cyclic trap L is avoided by (1).
The proof of Theorem 1.1 is given in section 2.1.

1.2. Repulsion and singular equilibria. In this section we introduce the no-
tion of repulsive set.

Definition 1. A compact connected set L which is invariant and chain-recurrent
for the ODE will be called repulsive if there exists an r > 0 such that any solution to
the ODE, (z(t))t≥0, starting from x ∈ Lr \ L leaves Lr within a finite time.

Some results will be given in section 2.2.3 for such general repulsive sets. The
easiest case is the case of singular repulsive equilibria. z∗ is a singular equilibrium of
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h (or of the associated ODE) if it is an isolated zero of h (L = {z∗}) such that h is
C1 on a neighborhood of z∗, with a Lipschitz differential Dh verifying Dh(z∗) = 0.

For those results we consider the algorithm (1) with

γn = cn =
g

n
, g > 0.

Theorem 1.2 (d-dimensional repulsive singular equilibrium). Set (1) under the
Assumptions A1. We consider an isolated zero z∗ of h, repulsive for the ODE, h
being C1 on a neighborhood of z∗ with a differential Dh verifying Dh(z∗) = 0. Let us
assume that a.s. on Γ(z∗) and for a > 4,

lim sup
n

E(‖εn+1‖a|Fn) <∞ and lim inf
n

E(‖εn+1‖2|Fn) > 0.(8)

Then Γ(z∗) has probability zero.
We prove Theorem 1.2 in section 2.2.1. In one dimension, we obtain the following

proposition about singular, but not necessarily repulsive, equilibria.
Proposition 1.3 (one-dimensional general singular equilibrium). Set (1) under

the Assumptions A1 with d = 1. We consider an isolated zero z∗ of h such that on a
neighborhood of z∗,

h(z) ' α(z − z∗)p with α 6= 0, p integer and p > 1.

We assume that a.s. on Γ(z∗), (8) is verified with a > 2p
p−1 .

Then, if α > 0 and if p is odd, z∗ is a.s. avoided by (1).
Otherwise, a.s. on Γ(z∗), when n→∞,

|Zn − z∗| ' [|α|(p− 1)g log n]−
1

p−1 ,

and (Zn − z∗) has, for n large enough, a constant sign which is necessarily the same
as (−α) when p is even.

This proposition is proved in section 2.2.2.
For p = 2 and α > 0, the almost sure convergence rate,

log n‖Zn − z∗‖ → 1

αg
,

has been obtained by Kersting [13] in a more restrictive framework and later by Wei
[27] with a square integrable noise.

1.3. Connected sets of equilibria. Let L be a nonempty, compact, and con-
nected part included in {h = 0}. It is a possible limit set of (1).

Clearly, when L has a nonempty interior, the algorithm might get “bogged” in
L, thus converging to a random point of L. Hence we only consider L with empty
interior.

The following framework looks somewhat restrictive but it will be helpful for
the proof of Theorem 3.1 on the principal component analysis. We set the following
definition.

Definition 2. A compact connected set of equilibria L is called homogeneous if:
• on a neighborhood of L, h is C1 and Dh is Lipschitz;
• for all x ∈ L, R

d is the direct sum of the repulsive subspace Kr, associated to the
eigenvalues of Dh(x) with a positive real part, and of the nonrepulsive subspace Ka
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associated to the eigenvalues of Dh(x) with a nonpositive real part. And in a suitable
basis B (the first vectors of B belong to Kr and the others belong to Ka):

∀x ∈ L, Dh(x) =

(
J+ 0
0 J−(x)

)
,

where J−(x) may depend of x but not on J+; J+ is repulsive (λ(J+) > 0) and
λ(J−(x)) ≤ 0.

• Ka contains L.
Denote by ε

(r)
n+1 the projection of εn+1 on Kr in the direction of Ka. We claim

the following result.
Theorem 1.4. Assume that
• L is a compact connected set of equilibria, homogeneous and nonattractive (Kr 6=

{0}),
• Assumptions A1 are satisfied,
• a.s. on Γ(L),

lim sup
n

E(‖εn+1‖2|Fn) <∞ and lim inf
n

E(‖ε(r)n+1‖|Fn) > 0;(9)

then P (Γ(L)) = 0.
The proof is given in section 2.3.

2. Proofs of results.

2.1. Proof of Theorem 1.1 about the cyclic traps. A smooth “distance” to
the stable manifold of the cycle. Let L be a cyclic trap (see the definition in section
1.1) and denote by W s(L) the stable manifold of L and by W r(L) the repulsive (called
unstable in [1]) manifold of L.

By an adaptation of the Pemantle method [25] owing to Benäım [1], under the
assumptions of Theorem 1.1, there exist a neighborhood V (L) of L and an R+-valued
function η, defined on V (L), vanishing on W s(L) ⊃ L and satisfying the following
properties.

• On V (L) \W s(L), η is C2 and

∀x ∈ V (L) \W s(L) ‖∇η(x)‖ ≥ c1 > 0,(10)

where ∇η is the gradient of η. And for v ∈ R
d,

Dη(x)v = 〈∇η(x), v〉.

• On V (L)
⋂
W s(L), there exists a “right derivative” that we also denote Dη(x)

and which associates to any vector v of R
d:

Dη(x)v = lim
t→0

t>0

η(x+ tv)− η(x)

t
.

This “derivative” is continuous, convex, and positively homogeneous.
For all x ∈ V (L)

⋂
W s(L) there exist a linear subspace E2(x) of the repul-

sive directions and a linear subspace E1(x) of the stable directions satisfying R
d =

E1(x)
⊕

E2(x) and

Dη(x)v ≥ uTx vE2(x),(11)
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where vE2(x) is the component of v on E2(x) and ux a vector of E2(x) such that
‖ux‖ = c1 > 0 (c1 is the same constant as in (10)). Moreover, x → ux is continuous
and x → E2(x) is a C1 map from V (L)

⋂
W s(L) into the Grassmann manifold of

linear subspaces of the appropriate dimension (see [1]).
• There exist a k > 0 and a neighborhood of 0, U0, satisfying for all v of U0 and

for all x of V (L):

η(x+ v) ≥ η(x) +Dη(x)v − k‖v‖2.(12)

• There exists a λ > 0 such that for all x of V (L) and for all v of R
d,

Dη(x)(h(x) + v) = Dη(x)h(x) +Dη(x)v,(13)

Dη(x)h(x) ≥ λη(x).(14)

Proof of Theorem 1.1. On Γ(L), for n large enough, Zn ∈ V (L) and γnh(Zn) +
cn(εn+1 + rn+1) ∈ U0. Denote

ΓN (L) = Γ(L)
⋂
{∀n ≥ N , Zn ∈ V (L) and γnh(Zn) + cn(εn+1 + rn+1) ∈ U0}.

On ΓN (L), for n ≥ N ,

Zn+1 = Zn + γnh(Zn) + cn(εn+1 + rn+1),

and by (12)

η(Zn+1) ≥ η(Zn) +Dη(Zn)(γnh(Zn) + cn(εn+1 + rn+1))

− k‖γnh(Zn) + cn(εn+1 + rn+1)‖2.

By (13), (14), and (11),

η(Zn+1) ≥ η(Zn)(1 + λγn) + cnDη(Zn) I{η(Zn)>0}εn+1

+ cnDη(Zn) I{η(Zn)>0}rn+1

+ cnu
T
Zn(εn+1 + rn+1)E2(Zn) I{η(Zn)=0}

− k‖γnh(Zn) + cn(εn+1 + rn+1)‖2.

We also obtain

η(Zn+1) ≥ η(Zn)(1 + λγn) + cnDη(Zn)εn+1 I{η(Zn)>0}
+ cnu

T
Zn(εn+1)E2(Zn) I{η(Zn)=0}

+ cn(Dη(Zn) I{η(Zn)>0}rn+1 + uTZn(rn+1)E2(Zn) I{η(Zn)=0})

− k‖γnh(Zn) + cn(εn+1 + rn+1)‖2.

Then,

η(Zn+1) ≥ η(Zn)(1 + λγn) + cn(en+1 + ρn+1),(15)

where

en+1 = Dη(Zn)εn+1 I{η(Zn)>0} + uTZn(εn+1)E2(Zn) I{η(Zn)=0}
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and

ρn+1 = Dη(Zn) I{η(Zn)>0}rn+1 + uTZn(rn+1)E2(Zn) I{η(Zn)=0}

−cnk
∥∥∥∥γncn h(Zn) + εn+1 + rn+1

∥∥∥∥
2

.

On V (L), h(z) and Dη(z) are bounded. (en) and (ρn) are two random real
sequences that are (Fn)-measurable. By (6) and (7) a.s., on ΓN (L), (en) is a noise
satisfying

E(en+1|Fn) = 0 and lim sup
n

E(|en+1|a | Fn) <∞,

and

lim inf
n

E(e2n+1 | Fn) > 0.

By (5), (6), and (7), a.s. on ΓN (L), Σρ2
n <∞.

Theorem 4.1 given in Appendix 1 (section 4.1) applies to η(Zn) = ζn and
P (ΓN (L)) = 0. Hence Γ(L) =

⋃
ΓN (L) and Γ(L) has probability zero.

2.2. Proofs of results about singular traps and repulsive regions. The
basic tool in this section is an accompanying result of Benäım and Hirsch [1], [10]
stated in Appendix 2 (section 4.2). Roughly speaking, this result states that under
some conditions, (Zn) and a given solution of the ODE (z(t))t≥0 have the same
asymptotic behavior.

2.2.1. Proof of Theorem 1.2 (d-dimensional repulsive singular equilib-
ria). Let Vz∗ be a neighborhood of z∗ where Dh is Lipschitz and such that any solu-
tion of the ODE starting from Vz∗ \z∗ leaves Vz∗ within a finite time. As Dh(z∗) = 0,
for all z ∈ Vz∗ , ‖h(z)‖ ≤ C‖z − z∗‖2.

Under the assumptions of Theorem 1.2, by Appendix 2, there exist on Γ(L) a
random vector Y ∈ Vz∗ and a positive random variable T such that the solution of
the ODE t→ z(t) starting from Y satisfies

lim sup
n

1

log n
log(‖Zn − z(sn−1 − T )‖) ≤ −

(
1

2
− 1

a

)
,

where sn−1 =
∑n−1

j=0 γj ' g log n.
Thus we cannot simultaneously have

lim
n→∞ ‖Zn − z∗‖ = 0 , lim

n→∞ ‖Zn − z(sn−1 − T )‖ = 0, and lim sup
t→∞

‖z(t)− z∗‖ 6= 0.

So if limn→∞ ‖Zn − z∗‖ = 0, then Y = z∗ and P ({Y 6= z∗}⋂Γ(z∗)) = 0.
On {Y = z∗}⋂Γ(z∗), z(0) = z∗ and since a > 4,

lim sup
1

log n
log ‖Zn − z∗‖ ≤ −

(
1

2
− 1

a

)
< −1

4
(16)

and

0 = Zn − z∗ +
∞∑
j=n

cj

(
γj
cj
h(Zj) + εj+1 + rj+1

)
.
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Set Γp = {Y = z∗}⋂Γ(z∗)
⋂{ω ; Zn(ω) ∈ Vz∗ for n ≥ p}.

A.s. on Γp,

‖h(Zn)‖2 = O(‖Zn − z∗‖4);
by (16),

∑∞
j=n ‖h(Zn)‖2 <∞ and

∞∑
j=n

∥∥∥∥γjcj h(Zj) + rj+1

∥∥∥∥
2

<∞.

By Theorem A of [6] about the distribution of a regressive series, under properties
(8) of the noise, P (Γp) = 0, and seeing that {Y = z∗}⋂Γ(z∗) =

⋃
Γp, P ({Y =

z∗}⋂Γ(z∗)) = 0. So P (Γ(z∗)) = 0.

2.2.2. Proof of Proposition 1.3 (one-dimensional general singular equi-
libria). For any c ∈]0, 1[, there exists a neighborhood W of z∗ such that on W , h is
C1 and

(1− c)|α(z − z∗)p| ≤ |h(z)| ≤ (1 + c)|α(z − z∗)p|,
for z 6= z∗ and p even αh(z) > 0,

for z 6= z∗ and p odd, α(z − z∗)h(z) > 0.

Set t → z(t), a solution of the ODE, defined for t ≥ 0, with an orbit in W and
the initial condition z(0) = y 6= z∗:

∫ z(t)

y

dz

h(z)
= t.

Therefore, z(t) 6= z∗, (z(t)− z∗) keeps the sign of (y − z∗), and h(z(t)) keeps the
sign of α(y − z∗)p.

Thus, for (y− z∗)α > 0 and p even or for α > 0 and p odd, z(t) doesn’t converge
to z∗.

In the other cases the convergence is slow because

(|α|(1− c)(p− 1)t+ y1−p)
1

1−p ≤ |z(t)− z∗| ≤ (|α|(1 + c)(p− 1)t+ y1−p)
1

1−p .

By a similar argument as in section 2.2.1, we obtain on Γ(z∗) two random variables
Y ∈W and T ≥ 0 such that

lim sup
n

1

log n
log(‖Zn − z(sn−1 − T )‖) ≤ −

(
1

2
− 1

a

)
< − 1

2p
,

with z(0) = Y . On Γ(z∗)
⋂{Y = z∗}, lim sup 1

log n log(‖Zn − z∗‖) < − 1
2p ,

0 = Zn − z∗ +
∞∑
j=n

cj

(
γj
cj
h(Zj) + εj+1 + rj+1

)
.

For Γq = {Y = z∗}⋂Γ(z∗)
⋂{ω ; Zn(ω) ∈W for n ≥ q}, a.s. on Γq,

h(Zn)2 = O((Zn − z∗)2p),∑∞
j=q h(Zj)

2 <∞, and P ({Y = z∗}⋂Γ(z∗)) = 0 .
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• If p is odd and if α > 0, there is no solution of the ODE starting from a state
distinct from z∗ in W and converging to z∗. So P ({Y 6= z∗}⋂Γ(z∗)) = 0. Then z∗

is avoided.
• In the other cases the convergence is possible, but for p even and for n large

enough, α(Zn − z∗) < 0 on Γ(z∗). In addition, a.s. on Γ(z∗), for all δ < 1
2p ,

|Zn − z∗| ≥ [(1− c)|α|(p− 1)sn−1 + |Y − z∗|1−p]− 1
p−1 +O(n−δ),

|Zn − z∗| ≤ [(1 + c)|α|(p− 1)sn−1 + |Y − z∗|1−p]− 1
p−1 +O(n−δ).

Since c is arbitrary in ]0, 1[ and sn−1 ' g log n, we have a.s. on Γ(z∗),

|Zn − z∗| ' [|α|(p− 1)g log n]−
1

p−1 .

This almost sure convergence rate to z∗ is very slow.

2.2.3. Some more general repulsive regions. In this section we give some
properties of repulsive regions. First, we obtain a sufficient condition to claim that a
region L is repulsive.

Proposition 2.1. Let L be a compact set connected and invariant for the ODE.
If h is C1 on a neighborhood of L and if for all z ∈ L,

λmin(Dh(z) + (Dh(z))T ) > 0,(17)

then L is repulsive in the sense of Definition 1.
Proof. Let Lr be a neighborhood of L where h is C1, and by the continuity of the

spectrum of Dh(z), there exists a constant λ > 0 such that

inf
z∈L

[λmin(Dh(z) + (Dh(z))T )] > 2λ,

and for r small enough,

λmin(Dh(z) + (Dh(z))T ) ≥ λ on Lr.(18)

Set (ϕt(x))t≥0 as the solution to the ODE starting from x ∈ Lr \ L and

τ = inf{t ; ϕt(x) /∈ Lr}.
Denote by Dϕ the differential of ϕ with respect to x. For t < τ and for all v ∈ R

d,

d

dt
‖Dϕt(x)v‖2 = 2vT (Dϕt(x))TDh(ϕt(x))Dϕt(x)v

≥ ‖Dϕt(x)v‖2λmin(Dh(Dϕt(x)) +Dh(Dϕt(x))T ).

And by (18),

d

dt
‖Dϕt(x)‖2 ≥ λ‖Dϕt(x)‖2,

‖Dϕt(x)‖ ≥ exp

(
λt

2

)
.(19)

Set z ∈ L such that d(x, L) = ‖z − x‖. By the smoothness of ϕ,

ϕt(x)− ϕt(z) = Dϕt(x)(x− z) + o(x− z).
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Then for 0 < t < τ and for r > 0 small enough, by (19),

‖ϕt(x)− ϕt(z)‖ ≥ a‖x− z‖,
where a > 1. And for all integers k > 0,

‖ϕkt(x)− ϕkt(z)‖ ≥ akd(x, L),

as long as ϕt(x) ∈ Lr. This implies that ϕt(x), t > 0, eventually leaves Lr; τ is
bounded and L is repulsive.

Now we still use the accompanying result of Appendix 2, so we assume that
γn = cn = g

n with g > 0, and we denote by L1 the closure of alpha and omega limit
sets of points of L (as L is a compact connected chain recurrent set L1 ⊆ L).

Then we obtain the following proposition.
Proposition 2.2. Consider the stochastic algorithm (1) under Assumptions A1

and the following assumptions:
• h is C1 on a neighborhood of L, and for all z ∈ L1,

λmin(Dh(z) + (Dh(z))T ) ≥ 0;

• a.s. on Γ(L), (8) is verified.
Then, if L is a repulsive region, there exist a random variable T and a solution to

the ODE, t→ z(t) (t ≥ 0) with values in the invariant set L such that, a.s. on Γ(L),

lim sup
n

1

log n
log(‖Zn − z(sn−1 − T )‖) ≤ −

(
1

2
− 1

a

)
.

Proof. By Appendix 2, for r > 0 small enough, there exist a random variable
Y ∈ Lr and a positive random variable T such that

lim sup
n

1

log n
log(‖Zn − z(sn−1 − T )‖) ≤ −

(
1

2
− 1

a

)

with z(0) = Y . But, as in section 2.2.1, L being repulsive, P (Y /∈ L) = 0.
So, if all solutions of the ODE included in L have limit sets in L1 ⊆ L, the study

of Γ(L) reduces to the study of Γ(L1). For example, if L contains a finite number
of equilibria, and if the solutions to the ODE included in L converge to one of these
equilibria (it is the case of “equilibria cycles”; see [2], [5], and [8]), we reduce the study
of Γ(L) to the study of Γ(z∗) for z∗ equilibria of the ODE contained in L. When z∗

is regular this case was studied in [6]; the case when we are not in the framework of
singular traps is treated in Theorem 1.2.

Example. Let (Zn) be defined in polar components (ρn, θn) by{
ρn+1 = ρn + 1

n [(cos2 θn − 1
2 )g(ρn) + ξn+1],

θn+1 = θn + 1
n (sin2 θn + ξn+1),

and let L = {ρ = 1}. We assume that g is C1 on a neighborhood of 1, g(1) = 0,
g′(1) > 0; (ξn) is a sequence of i.i.d. random variables with a uniform distribution on
[− 1

2 ,
1
2 ]. For the ODE, z1 = (1, 0) and z2 = (1, π) are two equilibria, and the circle L

is a repulsive region. The proposition applies and a.s.

(d(Zn, L) → 0) =⇒ (Zn → z1 or Zn → z2).

We have reduced the study of Γ(L) to the case of repulsive regular traps z1 and z2.
Thus Γ(L) has probability zero.
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2.3. Proof of Theorem 1.4.

2.3.1. Linearization of the ODE. Let P be the change of basis matrix from
the canonical basis to B. On B, we denote the decomposition of a vector v as

v =

(
v+

v−

)
and

(
g+(v)
g−(v)

)
= g(v) = Ph(v) = P

(
h+(v)
h−(v)

)
.

For y in a neighborhood of L, there exists x ∈ L such that ‖y− x‖ = d(y, L) and

g+(y+, y−) = J+y
+ + q+(y+, y−),

where the function q+ vanishes on x and its differential with respect to y+, D+q+
also vanishes on x.

On a suitable neighborhood of x, ‖D+q+(y)‖ ≤ C d(y, L). Besides, g−(x) = 0,
D+g−(x) = 0, and ‖D+g−(y)‖ ≤ Cd(y, L).

So the solution of the ODE starting from y satisfies{
z+(t) = exp(tJ+)y+ +Q+(t, y),
z−(t) = exp(tJ−(x))(y− − x) + x+Q−(t, y),

where Q±(t, x) = 0, D+Q±(t, x) = 0, and ‖D+Q±(t, y)‖ ≤ C d(y, L). Set{
f+(y) = expJ+y

+ +Q+(1, y),
f−(y) = exp(J−(x))(y− − x) + x+Q−(1, y).

Then, f−(x) = x, D+f−(x) = 0, and ‖D+f−(y)‖ ≤ C d(y, L).
Now we describe the linearization method (see Hartman [9, Corollary 5.2, p. 240]).

We build recursively a sequence of functions (Gn) from Ka to Kr, by the relations


G0(x+ v−) = 0,
Gn(x+ v−) = Gn−1(x+ v−)

+(expJ+)−1[Gn−1(x+ (f−(Gn−1(x+ v−), x+ v−)− x))
−f+(Gn−1(x+ v−), x+ v−)].

For all x ∈ L, there exists an r(x) > 0 such that for v− ∈ Ks and ‖v−‖ ≤ r(x),
Gn(x + v−) → G(x + v−); if z(0) is close enough to x and if z(0)+ = G(z(0)−), the
relation z(t)+ = G(z(t)−) remains true for t ≤ t0, t0 small enough. On a neighborhood
of x,

[y+ = G(y−)] =⇒ [h+(y) = DG(y−)h−(y)].

Then, we infer that
• G is C1 in a ball B with a center x and a radius r(x), G(x) = 0, DG(x) = 0,

and DG is Lipschitz on B;
• if ‖y − x‖ ≤ r(x), we set v = y − x and

ϕ(y) = h+(y)−DG(y−)h−(y).

Then ϕ(G(y−), y−) = 0 and ϕ(y) = (J+ + ∆(y))(y+ −G(y−)), with

‖∆(y)‖ ≤ sup
0≤t≤1

‖D+q+(ty+ + (1− t)G(y−), y−)

−DG(y−)D+q−(ty+ + (1− t)G(y−), y−)‖
≤ Cd(y, L),

because D+q± is Lipschitz.
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We can cover L by a finite number of open balls, centered on x1, . . . , xq, belonging
to L, and with radius r(x1), . . . , r(xq). Set r > 0 such that

r < min{r(x1), . . . , r(xq)}.
Consider Lr = {y ∈ R

d ; d(y−, L) + ‖y+‖ < r}. If y ∈ Lr, there exists j, 1 ≤ j ≤ q,
such that y− is in the ball with the center xj and the radius r(xj).

Gn(y−) = Gn(xj + (y− − xj)) → G(y−),

and, setting on Lr,

ϕ(y) = h+(y)−DG(y−)h−(y),(20)

then ϕ(G(y−), y−) = 0 and

ϕ(y) = (J+ + ∆(y))(y+ −G(y−)),(21)

where ∆(y) = O(d(y, L)).(22)

Consequently, if t → z(t) is a solution of the ODE (3) which converges to L,
setting u(t) = z+(t)−G(z−(t)), we obtain the repulsive ODE

du(t)

dt
= (J+ + δ(t))u(t),

where ‖δ(t)‖ = O(d(z(t), L)) → 0.

2.3.2. Transformation of the algorithm. Set

Yn+1 = PZn+1 = Yn + γng(Yn) + cn(P (εn+1 + rn+1)).

As in [6, p. 401], by using a result of Lai and Wei [15], it is enough to prove Theorem
1.4 with the more restrictive condition that there exist three constants, K < ∞,
A > 0, and B <∞ such that

Σ‖rn+1‖2 ≤ K, E(‖εn+1‖2|Fn) ≤ B, and E(‖ε(r)n+1‖|Fn) ≥ A > 0.

Set

Γp = {ω ; PZn(ω) ∈ Lr for n ≥ p}
⋂

Γ(L)

and Un = Y +
n −G(Y −n ). On Γp, for n ≥ p, by (20), (21), and (22), we obtain

Un+1 = Un + γn(J+ + ∆n)Un + cn(en+1 + ρn+1),

with limn ∆n = 0, en+1 = (Pεn+1)
+ − DG(Y −n )(Pεn+1)

−, and (ρn) a sequence
adapted with respect to F and verifying Σ‖ρn‖2 <∞ a.s. on Γ(L).

E(‖DG(Y −n )(Pεn+1)
−‖2|Fn) ≤ ‖DG(Y −n )‖2E(‖(Pεn+1)

−‖2|Fn).

On Γ(L), by the properties of G, DG(Y −n ) vanishes to 0, and by the assumptions
on the noise, a.s. on Γ(L),

lim sup
n

E(‖en+1‖2|Fn) <∞

and

lim inf
n

E(‖en+1‖ |Fn) = lim inf
n

E(‖(Pεn+1)
+‖|Fn) > 0.

So Proposition 4 in [6] applies to (Un) and P (Γ(L)) = 0.
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3. An application of Theorem 1.4.

3.1. About a principal component analysis algorithm. A scatter plot of
N data points of R

d (x1, . . . , xN ) with empirical mean zero ( 1
N

∑N
k=1 xk = 0) and

with empirical covariance matrix C = 1
N

∑N
k=1 xk(xk)

T is analyzed.
We search for the j-dimensional principal subspace (1 ≤ j ≤ d), where the pro-

jection of this scatter plot is the best.
If λ1 ≥ λ2 ≥ · · · ≥ λd > 0 are the eigenvalues of C, such a subspace has an

orthonormal basis {V1, . . . , Vj}, where Vi is an eigenvector associated with λi (1 ≤
i ≤ j).

For j unitary and orthogonal R
d-vectors a1, . . . , aj , we denote by [a1 . . . aj ] the j×

d matrix whose column vectors are these vectors; M is the set of such orthonormalized
matrices.

A PCA algorithm is intended for converging to [V1 . . . Vj ] ∈ M, where Vi is an
eigenvector associated with λi (1 ≤ i ≤ j).

In the framework of the study of linear neural network, Oja [12], [20] naturally
built a recursive PCA algorithm by suggesting the following method.

Assume that (Xn) is an i.i.d. sequence of points picked in the scatter plot with a
uniform distribution. Then, if Zn = [Z1

n . . . Z
j
n] is the approximation of [V1 . . . Vj ] at

the nth step, it is natural, according to the neuronal intuition, to set

Z̃n+1 = Zn + γnXn+1(Xn+1)
TZn,(23)

Zn+1 = Sn+1Z̃n+1,(24)

where Sn+1 is a matrix which depends on Z̃n+1 and performs the Gram–Schmidt
orthonormalization on the columns of Z̃n+1.

(γn) is a decreasing nonnegative deterministic sequence such as∑
n≥0

γn = ∞ and
∑
n≥0

γ2
n <∞.

We claim the following result.
Theorem 3.1. If C is nonsingular, for any j, 1 ≤ j ≤ d, [Z1

n . . . Z
j
n] converges

a.s. to a stochastic orthonormalized matrix [W 1 . . .W j ], where W k ∈ Sk for 1 ≤ k ≤ j,
Sk being the unit sphere of the eigensubspace associated to the eigenvalue λk.

3.2. Previous results.
• The same algorithm was proposed by Benzécri [4], and later by Lebart [17].

They use algebraic arguments. The case where j = 1 is entirely treated, but the
generalization is just given roughly (see [4]). With similar arguments Monnez [19]
considers some analogous algorithms. He obtains the almost sure convergence of (Z1

n)
to the subspace associated to λ1 and, only in the case of the distinct eigenvalues, the
almost sure convergence of (Zn) to [±V 1, . . . ,±V d].

• Independently, in the framework of the study of the neural behavior, Oja,
Karhunen, Sanger, Hornick, Kuan, Becker, Williams, Ogawa, Wangviwattana, and
others [11], [12], [20], [21], [22], [23], [24], [26], [28] consider similar algorithms.

For the sequence (Z1
n), we can find a partial proof in [12] when the eigenvalues

have a unit multiplicity, and Delyon [7] treats the case of the multiple eigenvalues but
without proving that the traps are avoided.

In the general case, and for the distinct and positive eigenvalues, Oja studies the
ODE associated to (23), (24) and determines its asymptotically stable zeros. Then,
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thanks to many simulations, he claims that the algorithm (23), (24) converges to these
zeros, but without a theoretical proof.

We have chosen the Oja algorithm which better agrees with our framework and
seems quite natural. It is a very suitable illustration of our previous study. Our
method applies to other similar algorithms aforementioned.

3.3. Proof of Theorem 3.1. By (23) we obtain an algorithm which satisfies

Zn = [Z1
n . . . Z

j
n] ∈M, and for 1 ≤ k ≤ j,

Zk
n+1 = Zk

n + γn

[
(Cn+1 − ((Zk

n)TCn+1Z
k
n))Zk

n

−2
k−1∑
i=1

((Zk
n)TCn+1Z

i
n)Zi

n

]
+O(γ2

n),(25)

with Cn+1 = Xn+1X
T
n+1. We denote by Fn the σ-fields generated by X1, . . . , Xn. Let

B = {V 1, . . . , V d} be an orthonormalized basis of eigenvectors of C, such that V k is
a eigenvector associated to λk, and let Sk be the unit sphere of the eigensubspace Fk
associated to λk. The algorithm (25) satisfies

Zn+1 = Zn + γn(h(Zn) + εn+1 + rn+1),(26)

where

h(Z) = [h1(Z) . . . hj(Z)] with

h1(Z) = CZ1 − ((Z1)TCZ1)Z1,(27)

and for 1 ≤ k ≤ j,

hk(Z) = CZk − ((Zk)TCZk)Zk − 2
k−1∑
i=1

((Zi)TCZk)Zi,(28)

εn+1 = [ε1n+1 . . . ε
j
n+1] with

ε1n+1 = (Cn+1 − C)Z1
n − ((Z1

n)T (Cn+1 − C)Z1
n)Z1

n,(29)

and for 1 ≤ k ≤ j,

εkn+1 = (Cn+1 − C)Zk
n − ((Zk

n)T (Cn+1 − C)Zk
n)Zk

n

−2
k−1∑
i=1

((Zi
n)T (Cn+1 − C)Zk

n)Zi
n,(30)

‖rn+1‖ = O(γn).(31)

(εn) and (rn) are two bounded random sequences that are (Fn)-measurable and satisfy
(6).

Step 1. Possible limit sets.
Lemma 3.2. The possible limit sets L of solutions of the algorithm (26) are subsets

of M such that, i being a map from {1, . . . , j} to {1, . . . , d}, z = [z1 . . . zj ] ∈ L is
characterized by: for 1 ≤ k ≤ j, zk ∈ Gi(k), where Gi(k) is a compact connected set
contained in Si(k), the unit sphere of the eigensubspace Fi(k) associated to λi(k).

Therefore, for z ∈ L, zTCz = diag[λi(1) . . . λi(j)].
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Proof of Lemma 1. Following [2], we know that L is a compact connected subset
of M, invariant and “chain-recurrent” for the ODE.

First, remark that h1(x) = 0(h1 is given in (27)) if and only if x is a unit eigen-
vector of C. So the connected components of {h1 = 0} are contained in a unit sphere
Si (1 ≤ i ≤ d). If λi has unit multiplicity, Si = {V i,−V i} and the corresponding
connected components of {h1 = 0} are {V i} or {−V i}.

For x ∈ R
d, set V (x) = exp(‖x‖2)

xT (I+C)x
(it is the Lyapounov function used by Delyon

in [7]).

∇V (x) =
exp(‖x‖2)

(xT (I + C)x)2
[(xT (I + C)x)2x− 2(I + C)x],

∇V (x) = −2
V (x)

xT (I + C)x
[h1(x)− (‖x‖2 − 1)x].

(a) For j = 1, if z0 ∈ L, z(t) ∈ L for all t and

dV (z1(t))

dt
= −2

V (z1(t))

z1(t)T (I + C)z1(t)

〈
h1(z

1(t)),
dz1(t)

dt

〉

= −2
V (z1(t))

z1(t)T (I + C)z1(t)
‖h1(z

1(t))‖2.

V (z1(t)) is nonnegative and decreasing. Then, V (z1(t)) converges to V∞ when t→∞
and h1(z

1(t)) → 0. (z1(t)) has a limit set which is a connected component of {h1 = 0}
contained in Si(1), one of the unit spheres described above.

But since L is chain-recurrent, for all t, z1(t) ∈ Si(1) and L ⊆ Si(1).
(b) For j > 1, let z(t) = [z1(t), . . . , zj(t)] be a solution of the ODE with values

in L. Assume that there exist (k − 1) integers i(1), . . . , i(k − 1) with z`(t) ∈ Si(`),
1 ≤ ` ≤ k− 1. Then, since z(t) ∈M, ‖zk(t)‖ = 1, zk(t) is orthogonal to zi(t) if i 6= k
and

dzk(t)

dt
= hk(z(t)) = h1(z

k(t)),

dV (zk(t))

dt
= −2

V (zk(t))

zk(t)T (I + C)zk(t)

〈
h1(z

k(t)),
dzk(t)

dt

〉

= −2
V (zk(t))

zk(t)T (I + C)zk(t)
‖h1(z

k(t))‖2.

As in (a), we infer that for a given integer i(k), zk(t) ∈ Si(k) for all t.
We have proved by recurrence the characterization of L.
Remark. By Lemma 3.2, the traps of the algorithm (26) correspond to (i(1), . . . ,

i(j)) 6= (1, . . . , j). We shall prove that these traps are regular if any eigenvalue has
unit multiplicity while they are homogeneous flat traps in the sense of Theorem 1.4
for multiple eigenvalues.

Step 2. Proof of (i(1) . . . , i(j)) = (1, . . . , j).
Now we prove the following result.
Proposition 3.3. For C nonsingular with possibly multiple eigenvalues, the Oja

algorithm (26) satisfies

Zk
n → Sk for 1 ≤ k ≤ j,

where Sk is the unit sphere of the eigensubspace Fk associated to λk.
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Proof. Let L be defined as in Lemma 3.2. We proceed by recurrence to prove
that (i(1) . . . , i(j)) = (1, . . . , j).

(1) First we consider j = 1 and

Z1
n+1 = Z1

n + γn(h1(Z
1
n) + ε1n+1 + r1n+1).(32)

Assume that i(1) = p > 1 and Sp 6= S1.
Let B be the orthonormalized basis described at the beginning of this section.

For Z1 ∈ R
d, set Z1 =

∑d
i=1 z

1iV i and h1(Z
1) =

∑d
i=1 h

i
1(Z

1)V i; hi1(Z
1) = λiz

1i −
(
∑d

j=1 λj(z
1j)2)z1i.

Determination of Dh1.

∂hi1
∂z1i

= λi −
d∑

n=i

λn(z1n)2 − 2λi(z
1i)2,(33)

∂hi1
∂z1k

= −2λkz
1kz1i if k 6= i.(34)

If Sp, with a π-dimension, is generated by V j(1), . . . , V j(π), for p ≥ 1:

if z1 ∈ Sp , z1 =
π∑

k=1

〈z1, V j(k)〉V j(k).

And for 1 ≤ k ≤ π and 1 ≤ k′ ≤ π,


∂h
j(k)
1

∂z1j(k) (z
1) = −2λp〈z1, V j(k)〉2,

∂h
j(k)
1

∂z1j(k′) (z
1) = −2λp〈z1, V j(k)〉〈z1, V j(k′)〉.

By denoting

J(z1) =



〈z1, V j(1)〉

. . .

. . .
〈z1, V j(π)〉


 [〈z1, V j(1)〉 . . . 〈z1, V j(π)〉],

J(z1) is a matrix π × π that is symmetric, semidefinite positive, and for z1 ∈ Sp,

Dh1(z
1) =


 J+ 0 0

0 −2λpJ(z1) 0
0 0 J−


 ,

with

J+ =




λ1 − λp 0 . .
0 λ2 − λp 0 .
. . . . . .
. . . . . λj(1)−1 − λp




and

J− =




λj(π)+1 − λp 0 . .
0 λj(π)+2 − λp 0 .
. . . . . .
. . . . . λd − λp


 .
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We are in the situation of Theorem 1.4 with L ⊆ Sp, a nonattractive and homo-
geneous set of equilibria. Indeed, for all z1 ∈ Sp, Kr is generated by {V 1, . . . , V p−1},
Ka = (Kr)

⊥, J+ is the matrix as aforesaid, and

J−(z1) =

( −2λpJ(z1) 0
0 J−

)
.

To apply Theorem 1.4, it is enough to prove that the noise excitation is sufficient
in the repulsive direction, i.e., with the same notations as in section 1.3, that

lim inf
n

E(‖(εn+1)
(r)‖|Fn) > 0.

For 1 ≤ k ≤ p− 1, a.s. on Γ(L),

E([〈ε1n+1, V
k〉 − 〈(Cn+1 − C)Z1

n, V
k〉]2|Fn) ≤ K〈Z1

n, V
k〉2,

and a.s., limn〈Z1
n, V

k〉 = 0. Hence

lim
n
E(〈ε1n+1, V

k〉2|Fn) = lim
n
E([(V k)TXn+1X

T
n+1Z

1
n − V kCZ1

n]2|Fn)

lim
n
E(〈ε1n+1, V

k〉2|Fn) = E[〈V k, X1〉2〈X1, V
p〉2] > 0(35)

and

E(‖(ε1n+1)
(r)‖2|Fn) =

p−1∑
k=1

lim
n
E(〈ε1n+1, V

k〉2|Fn) > 0.

And since (εn) has a conditional moment with an order larger than 2, the excitation
conditions are checked. P (Γ(L)) = 0 and the proposition is proved for j = 1.

(2) Assume that for 1 ≤ k ≤ j − 1, i(k) = k, and that i(j) = p > j and Sp 6= Sj .
We have to prove that P (Γ(L)) = 0.

Consider M provided with B1 = {M11 . . .M jd}, where

M11 = [V 10 . . . 0] , . . . , M1d = [V d0 . . . 0], M21 = [0V 10 . . . 0], . . . ,M jd = [0 . . . V d].

Setting Z = [Z1 . . . Zj ] ∈ M, we denote Z =
∑j

k=1

∑d
m=1 z

kmMkm and Zk =∑d
m=1 z

kmV m. If hmk designates the m-component of hk in B, we have

hmk (Z) = λm −
(

d∑
n=1

λn(zkn)2

)
zkm − 2

k−1∑
i=1

(
d∑

n=1

λnz
knzin

)
zim.

Hence

∂hmk
∂zkm

(Z) = λm −
d∑

n=1

λn(zkn)2 − 2λm(zkm)2 − 2
k−1∑
i=1

λm(zim)2,(36)

∂hmk
∂zkn

(Z) = −2λnz
knzkm − 2

k−1∑
i=1

λnz
inzim if n 6= m,(37)

∂hmk
∂zim

(Z) = −2λmz
kmzim − 2

d∑
n=1

λnz
knzin for 1 ≤ i ≤ k − 1,(38)

∂hmk
∂zin

(Z) = −2λnz
knzim if n 6= m and 1 ≤ i ≤ k − 1,(39)

∂hmk
∂zin

(Z) = 0 if i > k.(40)
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For z = [z1 . . . zj−1zj ], with zk ∈ Sk for 1 ≤ k < j and zj ∈ Sp,

Dh(z) =




∆1 . . . .
· · · ∆2 . . .
· · · . . . .
· · · . . . .
· · · . . . ∆j


 .

Denote by 0 < αρ < · · · < α1 the distinct eigenvalues of C. By using the previous
calculations, for 1 ≤ k ≤ j, if λk = αr and if ν(r) is the multiplicity order of αr,

∆k =




−λ1 − λk . . . . . .
. . . . . . .
. . −αr−1 − λk . . . .
. . . −2λkJ(zk) . . .
. . . . αr+1 − λk . .
. . . . . . .
. . . . . . λd − λk



,

where J(zk) is a symmetric, semidefinite positive matrix ν(r)× ν(r) as J(z1).
So, for 1 ≤ k ≤ j−1, all the matrices ∆k have nonpositive eigenvalues. For k = j,

only the first block of ∆j has some positive eigenvalues and it doesn’t depend on z.
{[z1 . . . zj ] ∈ M; z1 ∈ S1, . . . , z

j−1 ∈ Sj−1, z
j ∈ Sp} is a compact connected set

of equilibria, homogeneous and nonattractive. Kr is generated by {M jj ,M j(j+1), . . . ,
M j(p−1)} and has a (p− j)-dimension, and Ka = (Kr)

⊥. About the noise excitation,

(εn+1)
(r) =

∑p−1
k=j+1 M

jk(εn+1)
TM jk, and by a similar calculation to (35), we obtain

E(‖(εn+1)
(r)‖2|Fn) =

p−1∑
k=j

E(〈V k, X1〉2〈X1, V
p〉2) > 0.

So, by Theorem 1.4, P (Γ(L)) = 0.
Step 3. Proof of the a.s. convergence to a solution of the PCA. Knowing that

d(Zk
n, Sk) → 0, we have to show that, when λk is multiple, Zk

n converges to a random
vector of Sk.

(a) For a Q matrix d× d and Qx 6= 0, if we set ϕ(x) = Qx
‖Qx‖ , then

Dϕ(x) =
Q

‖Qx‖ −
(Qx)T (Qx)Q

‖Qx‖3 .(41)

(b) For z = [z1 . . . zd] such that, for 1 ≤ j ≤ d, d(zj ,Sj) ≤ r and for r small
enough, if Pj is the orthogonal projection on Fj , [P1(z

1) . . . Pd(z
d)] is nonsingular.

We can perform a Gram–Schmidt orthonormalization on [P1(z
1) . . . Pd(z

d)]:

z = [z1 . . . zd] → [ϕ1(z
1) . . . ϕd(z

1, . . . , zd)] = ϕ(z).

We shall prove that Dϕ(z)h(z) = 0.

P1h1(z
1) = P1Cz

1 − (z1)TCz1P1z
1

= (λ1 − (z1)TCz1)P1z
1,

and by (41), with Q = P1,
∂
∂z1ϕ1(z

1)h1(z
1) = 0.
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Assume that for 1 ≤ k < j, (z1, . . . , zk) → ϕk(z
1, . . . , zk) satisfies, for all i ≤ k,

∂

∂zi
ϕk(z

1, . . . , zk)hi(z
1, . . . , zi) = 0.

Let I be the set of i such as λi = λj and i < j. Denote P = Pj and ϕi = ϕ(z1, . . . , zi);
then

ϕj(z
1, . . . , zj) =

Pzj −∑i∈I〈ϕi, P zj〉ϕi
‖Pzj −∑i∈I〈ϕi, P zj〉ϕi‖

.

Setting Qx = Px−∑i∈I〈Px, ϕi〉ϕi and using (41), we have

ϕj(z
1, . . . , zj) =

Qzj

‖Qzj‖ ,

∂

∂zj
ϕj(z

1, . . . , zj) =
Q

‖Qzj‖ −
Qzj(Qzj)TP

‖Qzj‖2 .

Now Qx = Px−∑i∈I〈Px, ϕi〉ϕi, and for k ∈ I,


 Pzk =

∑
i∈I
〈Pzk, ϕi〉ϕi,

Qzk = 0,

and for j, Qzj = Pzj −∑i∈I〈Pzj , ϕi〉ϕi ∈ Fj . Hence

Qhj(z
1, . . . , zj) = Q


Czj − (zj)TCzjzj −

∑
i<j

(zi)TC(zj)zi




= (λj − (zj)TCzj)zj

and

∂

∂zj
ϕj(z

1, . . . , zj)hj(z
1, . . . , zj) = 0.

For i < j, ∂
∂ziϕj(z

1, . . . , zj) =
∑

k∈I, k≥iAk(
∂
∂ziϕk(z

1, . . . , zk)), where Ak is a

matrix dependent on z1, . . . , zj , but it is unnecessary to make it explicit because the
recurrence assumption sets

∂

∂zi
ϕj(z

1, . . . , zj)hi(z
1, . . . , zi) = 0.

We also proved that Dϕ(z)h(z) = 0.
(c) For all j,

ϕj(Z
1
n+1, . . . , Z

j
n+1)− ϕj(Z

1
n, . . . , Z

j
n) = γn

j∑
k=1

∂

∂zk
ϕj(Z

1
n, . . . , Z

j
n)εkn+1 + ρn+1;

the regressive series, with the general term γn
∑j

k=1
∂
∂zk

ϕj(Z
1
n, . . . , Z

j
n)εkn+1, con-

verges, as does Σρn+1. It implies the a.s. convergence of ϕ(Zn) to (W 1, . . . ,W j),
and thus by Proposition 3.3, of (Zn) to (W 1, . . . ,W j).
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4. Appendices.

4.1. Appendix 1. Stochastic iterative inequality.
Theorem 4.1 (of repulsion). Set (ζn), a positive sequence, defined on a prob-

ability space (Ω,A,P) provided with an increasing sequence of σ-fields (Fn)n≥0 and
satisfying a.s. on an F∞-measurable set Ω0 ⊆ Ω,

ζn+1 ≥ (1 + λγn)ζn + cn(εn+1 + rn+1),(42)

with λ > 0. We assume that
• (εn) and (rn) are real random sequences, defined on (Ω,A,P), (Fn)-measurable

and satisfying (6) a.s on Ω0, and

lim sup
n

E(ε2n+1|Fn) <∞ and lim inf
n

E(|εn+1||Fn) > 0;(43)

• (γn) and (cn) are real nonnegative deterministic sequences satisfying (2) and
(5).

Then the event Ω0

⋂{ω ; ζn(ω) → 0} has probability zero.
Proof. Step 1. It is sufficient to prove Theorem 4.1, assuming that a.s. on Ω,

E(εn+1|Fn) = 0 and lim sup
n

E(ε2n+1| Fn) < C <∞,(44)

lim inf
n

E(|εn+1||Fn) > C > 0 and Σr2n < C <∞.(45)

See [15] and [6, p. 401] for the way to achieve this simplification.
Step 2. Set G = Ω0

⋂{ω ; ζn(ω) → 0}. On G,

ζn+1 = (1 + λγn)ζn + cn(εn+1 + rn+1) + cnUn+1

with (Un) a random positive real sequence that is (Fn)-measurable.
Set

GN = P (G|FN );

G is F∞-measurable and (GN ) converges to IG a.s. and in Lp for all p ≥ 1. Thus

E((GN − IG)2) → 0.(46)

Setting βn =
∏n

j=0(1 + γjλ), we have

ζn = βn


ζ0 +

n∑
j=0

cj
βj

(εj+1 + rj+1 + Uj+1)


 .

Step 3. Prove that

E

(
IG

∞∑
n=N

cn
βn
‖Un‖

)
= o


( ∞∑

n=N

c2n
β2
n

) 1
2


 .(47)

We have

ζN+n = βN+n


 ζN
βN

+
n+N∑
j=N

cj
βj

(εj+1 + rj+1 + Uj+1)


 ,
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and on G, ζn+N → 0 and βN+n →∞. Hence on G,

− ζN
βN

=
∞∑
j=N

cj
βj

(εj+1 + rj+1 + Uj+1)

and

∞∑
j=N

cj
βj
Uj+1 = − ζN

βN
−

∞∑
j=N

cj
βj

(εj+1 + rj+1).

Thus

E

[
IG

( ∞∑
n=N

cn
βn

Un+1

)]
≤ −E

[
IG

∞∑
n=N

cn
βn

(εn+1 + rn+1)

]

≤ E

[
(GN − IG)

∞∑
n=N

cn
βn

(εn+1 + rn+1)

]
− E

[
GN

∞∑
n=N

cn
βn

(εn+1 + rn+1)

]

≤ [E((GN − IG)2)]
1
2

[
E

( ∞∑
n=N

cn
βn

(εn+1 + rn+1)
2

)] 1
2

+ E

( ∞∑
n=N

cn
βn
|rn+1|

)

≤ C[E((GN − IG)2)]
1
2

( ∞∑
n=N

c2n
β2
n

) 1
2

+

(
E

( ∞∑
n=N

r2n+1

)) 1
2
( ∞∑
n=N

c2n
β2
n

) 1
2

= o


( ∞∑

n=N

c2n
β2
n

) 1
2


 .

So, by (44) and (46), (47) is proved.
We now use a theorem, proved in [6] (Theorem A in the appendix), that extends

the framework of a result of Levy [18], Lai and Wei [15], and others about the sum of
a convergent regressive series.

Here Theorem A of [6] applies with H = G, cn = cn
βn

, and Rn = Un. So P (G) =
0.

4.2. Appendix 2. An accompanying result. We use a version of a theorem of
Benäım and Hirsch [2], [10] which specifies the conditions under which any trajectory
solution to (1) is a.s. asymptotic to a forward trajectory solution to ODE (3). From
the study of Benäım and Hirsch, we can claim the following result.

Theorem 4.2. Set (1) under Assumption A1 and the following assumptions:
• h is C1 on a neighborhood of L and

inf
x∈L1

1

2
λmin(Dh(x) + (Dh(x))T ) = −µ,(48)

where L1 ⊂ L is the closure of alpha and omega limit sets of points in L;
• a.s. on Γ(L), for a > 2,

lim sup
n

E(‖εn+1‖a|Fn) <∞;(49)

• γn = cn = g
n (g > 0) and 1

2g − 1
ag > max(0, µ).
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Then, for any neighborhood W of L, there exist a random variable T and a random
vector Y ∈W , defined on Γ(L), such that, a.s. on Γ(L),

lim sup
n

1

sn−1
log(‖Zn − z(sn−1 − T )‖) ≤ −

(
1

2g
− 1

ag

)
,(50)

where sn =
∑n

j=0 γj and the function t→ z(t) is the solution to the ODE (3), defined
on R+, such that z(0) = Y , and whose orbit is in W .
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[2] M. Benäım, A dynamical system approach to stochastic approximation, SIAM J. Control Op-
tim., 34 (1996), pp. 437–472.

[3] A. Benveniste, M. Métivier, and P. Priouret, Algorithmes adaptatifs et approximations
stochastiques, Masson, Paris, 1987.

[4] M. Benzécri, Approximation stochastique dans une algèbre normée non commutative, Bull.
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Abstract. We present an algorithm based on the adjoint method to locate points that provide an
approximate solution to the parameter estimation problem for the acoustic model. The parameter
belongs to infinite-dimensional sets. We prove the existence of the directional derivative of the
solution with respect to the parameter in some dense set of directions of the set of parameters. This
derivative is the solution of a differential boundary value problem. The adjoint problem is presented.
A result on the convergence of the iterations is proved.

Key words. inverse problems, direct algorithms, wave equations

AMS subject classifications. 86A22, 8608
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1. Introduction. Algorithms to estimate coefficients in the acoustic problem
have been discussed in detail in many works, but mostly in the case in which the
coefficients are piecewise continuous; see, for example, [3, 4, 8, 9]. Here we consider
more general sets of parameters: parameters in an infinite-dimensional space, of which
the piecewise continuous case appears as a particular case.

Parameter estimation problems of the type considered here are typical of seismic
exploration; they also appear in many different fields such as remote sensing, imaging,
and nondestructive testing. The direct problem models the propagation of waves in
acoustic media, and in the case of seismic exploration the parameter represents the
bulk modulus of the media.

We will approach the estimation problem in the usual least squares sense, that
is, as an optimization one. It consists of the minimization of a quadratic functional
involving the observed data and a functional of the traces of the model.

Minimization problems where the model is a partial differential equation can be
approached by discretizing the differential problem first and then applying optimiza-
tion algorithms to the discretized version, or applying optimization algorithms to the
continuous problem and discretizing as a final step. The first approach was the most
commonly employed; among the many works using it we can mention as examples
[2, 3, 4, 16, 17]. The second type of algorithm was used in applications in geophysics,
mostly without rigorous proofs (see [19, 21, 20]), and more recently in several works,
for example, [6, 15, 13, 8, 9].

We present an algorithm of the second type based on the adjoint method for a
hyperbolic problem with absorbing boundary conditions. The method is used without
a priori information on the parametrization of the function to be identified. Here
we present the mathematical details of the differential equations involved, and the
operators and conditions for the convergence of the method. The highlights of the
method are the sensitivity equations (2.11)–(2.13) and the adjoint integral (3.10) that
allow us to calculate the different steps by solving equations similar to the one for the
direct model but with a different source function. Those features make the algorithm

∗Received by the editors February 28, 1996; accepted for publication (in revised form) June 16,
1997; published electronically May 22, 1998.
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a fast one as needed for the application that we have in mind, which even in the
layered case has a large number of parameters.

A similar algorithm that employs the sensitivity equations was used previously
by us in the case of piecewise constant coefficients (this amounts to parameters in a
finite-dimensional space) with very good numerical results (see [7, 8, 9]).

Basic questions when dealing with parameter estimation are those of existence
and uniqueness of solutions of the inverse problem. Conditions for the existence of
solutions to the estimation problem are known only for particular sets of parameters,
mainly in the case where the parameter belongs to a space of finite dimension, as,
for example, sets of piecewise constant functions. In general, inverse problems are ill
posed since the solutions are very sensitive to changes in input data. An excellent
discussion of the aforementioned problems can be found in the book by Banks and
Kunisch [5]. Also, the identifiability problem, for systems different from those treated
here, is clearly presented in the most recent articles by Giudici [10, 11]. For the
particular problem presented in this work we refer the reader to the early publication
of Bamberger, Chavent, and Lailly [1].

Here we do not address those problems; instead we present an algorithm which
under conditions on the intervening operators converges to a critical point of the cost
functional.

There is a vast body of research in the field of algorithms to identify parameters
in problems governed by partial differential equations. A good update in the case of
elliptic problems is the paper by Kunisch [14] and the bibliography therein.

The algorithm presented here does not include a regularization term. Our proofs
on the differentiability with respect to the parameter suggest the use of an Lm-
regularization term (with m > 2) instead of the usual L2-norm term.

We use the customary notation as follows. Let Ω = (0, 1)n, n = 1, 2, or 3,Γ = ∂Ω.
For all nonnegative integers s, let (Hs(Ω), ‖ · ‖s) denote the usual Sobolev space. In
particular, H0(Ω) = L2(Ω) and ‖‖0 is the usual L2-norm, with inner product

(v, w) =

∫
Ω

v w dx.

For notational convenience, let

[v, w] =

∫
Γ

v w dσ

denote the inner product on Γ, with the associated norm denoted by | · |0 = ([·, ·])1/2,
dσ being the surface measure on Γ.

The following lemma about a trace inequality, for the particular domain with
which we are dealing, will be needed. Its proof is given in the Appendix.

Lemma 1.1. Let f ∈ H1(Ω) and m an integer such that m ≥ 2. Then

‖f‖mLm(Γ) ≤ C(‖f‖mLm(Ω) + ‖f‖(m−1)

L2(m−1)(Ω)
‖f ′‖L2(Ω)).

Above, and in what follows, C stands for generic constants which may be different
at different places.

The paper is organized as follows. In section 2 we present the direct model and
state a theorem on the regularity of its solution. We set forth the inverse problem using
the output least squares criterion. Also, we prove the existence of a continuous first



PARAMETER ESTIMATION USING THE ADJOINT METHOD 1317

Gâteaux derivative of the solution of the direct model with respect to the parameter.
We present the sensitivity equations for the derivatives. In section 3 we find an
expression for the adjoint of the observation operator derivative. Finally, in section 4,
we present an algorithm that under suitable hypotheses allows us to locate critical
points of the cost functional.

2. The problem, the direct model, and the Gâteaux derivatives. The
problem is to estimate the parameter K(x) in the usual model for wave propagation
in acoustic media:

1

K
ptt(K,x, t)−∇ ·

(
1

ρ
∇p(K,x, t)

)
=

1

K
S(x, t), x ∈ Ω, t ∈ [0, T ],(2.1)

with initial condition

p(K,x, t = 0) = pt(K,x, t = 0) = 0, x ∈ Ω,(2.2)

and boundary condition

− 1

ρ(x)

∂p(K,x, t)

∂ν
=

1

α(K,x)
pt(K,x, t), x ∈ Γ, t ∈ [0, T ],(2.3)

where α(K,x) =
√
K(x)ρ(x). In seismic exploration, p(K,x, t) represents the pres-

sure, K(x) the bulk modulus, and ρ(x) the density of the medium. The function
S(x, t) in the right-hand side of (2.1) is the external source function, and equation
(2.3) is an absorbing boundary condition so that waves arriving at Γ normally are
absorbed completely; see [12, 18, 22].

We assume that ρ(x) and K(x) are measurable functions satisfying the following
constraints that must be imposed from physical considerations:

(i) ρ∗ ≤ ρ(x) ≤ ρ∗,
(ii) K∗ ≤ K(x) ≤ K∗.(2.4)

Also, for the boundary condition (2.3) to make sense, we have to restrict K in a neigh-
borhood of the boundary. For 0 < ai < bi < 1, i = 1, . . . , n, let Sn =

∏n
i=1(ai, bi),

S̃n = Ω \Sn, and consider the space A spanned by a fixed set of continuous functions
g1, . . . , g` defined on S̃n. A weaker condition could be imposed but we want P to be
contained in a complete space. A similar condition must be imposed on ρ. The set of
admissible parameters, denoted by P, is given by

P = {K is measurable in Ω, K|S̃n ∈ A, K∗ ≤ K(x) ≤ K∗, a.e. in Ω}.
The weak form of the direct problem (2.1)–(2.3) is: find p(K,x, t) ∈ H1(Ω) such that(

1

K
ptt, v

)
+

(
1

ρ
∇p,∇v

)
+

[
1

α
pt, v

]
=

(
1

K
S, v

)
, v ∈ H1(Ω), t ∈ [0, T ].

(2.5)

Let V = W 1,∞(0, T, L2(Ω)) ∩ L∞(0, T,H1(Ω)). The following result on the solutions
of (2.1)–(2.3) is proved in [9], so its proof is omitted here.

Theorem 2.1. Assume that ρ and K are measurable functions satisfying (2.4),
and that for an integer q ≥ 1,

∂q−1S

∂tq−1
∈ L2(0, T, L2(Ω)).
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Then the solution p(K,x, t) of (2.5) is such that

∂q−1p(K, ·, ·)
∂tq−1

∈ V(2.6)

and satisfies the estimates∥∥∥∥∂qp(K, ·, ·)∂tq

∥∥∥∥
L∞(0,T,L2(Ω))

+

∥∥∥∥∂q−1p(K, ·, ·)
∂tq−1

∥∥∥∥
L∞(0,T,H1(Ω))

≤ C

∥∥∥∥∂q−1S

∂tq−1

∥∥∥∥
L2(0,T,L2(Ω))

,

where the positive constant C depends only on the total time T and the upper and
lower bounds for ρ(x) and K(x).

We endow the set of admissible parameters with the Lm(Ω) ∩ Lm(Γ)-topology
with m = 6. The reason for the choice of the topology becomes clear in the proof of
the differentiability in Theorem 2.4. We could have chosen the H1(Ω)-topology; but
even in the case n = 1 that choice overrides the space of piecewise constant functions.
The choice of P as a subset of H1(Ω) would have simplified many proofs. Also, the
L∞-topology is possible, but most regularization theorems require the parameter to
belong to a reflexive space.

In [7] and [9] we have considered as the set of admissible parameters

QN =

{
K : K(x) =

N∑
i=1

kiχΩi(x), K∗ ≤ ki ≤ K∗
}

;

there we estimated the parameters ki while N and Ωi were assumed to be fixed; in
those cases we used the L2(Ω)-topology in the set of parameters. That was possible
because the functions on the basis of the set of parameters were finite in number, then
uniformly bounded.

Thus we endow the set P with the topology given by the norm

|||K|||m = ‖K‖Lm(Ω) + ‖K‖Lm(Γ).

We assume that the observations are recorded at points xri inside Ω, 1 ≤ i ≤ Nr,
and denote by pobs ∈ L2(0, T ;RNr ) the vector of observations pi(t) = pobs(xri , t),
1 ≤ i ≤ Nr, t ∈ [0, T ]. We define the model for the observations as follows. For a
given measurable set E ⊂ Rn, |E| denotes the usual Lebesgue measure of E. Let Bi

be the ball with center xri and radius a, where a is small enough so that Bi ∩Bj = ∅
for i 6= j and Bi ⊂ Ω, 1 ≤ i, j ≤ Nr. The observation map Φ : P 7→ L2(0, T ;RNr ) is
defined as the following nonlinear map:

Φ(K)(t) = (Φi(K)(t))1≤i≤Nr(2.7)

with

Φi(K)(t) =
1

|Bi|
∫
Bi

p(K,x, t) dx.(2.8)

In the one-dimensional case, if the source function S satisfies ∂S/∂t ∈ L2(0, T ;L2(Ω)),
we can use point evaluation p(K,xri , t), i = 1, . . . , Nr, as the model for the obser-
vations because (Theorem 2.1) p(K, ·, t) ∈ H1(Ω); therefore, for n = 1, the function
p(K, ·, t) is absolutely continuous.
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The estimation problem will be solved using the output least squares criterion.
The problem is to minimize the functional

J(K) =
1

2

∥∥Φ(K)− pobs
∥∥2

L2(0,T ;RNr )
(2.9)

over the set P.
A version of the next theorem, about the continuity of the solution of the direct

model with respect to the parameter, was proved in [9] for the set P endowed with
the L2(Ω)-topology. The difference is that here we show under additional hypotheses
that the function p is Lipschitz continuous in the parameter K. A brief proof is given
in the Appendix.

Theorem 2.2. Let K1(x),K2(x) ∈ P, and p(K1, x, t), and p(K2, x, t) be the
corresponding solutions of the direct problem (2.1)–(2.3) for K = K1 and K = K2,
respectively. Set

d(K1,K2, x, t) = p(K1, x, t)− p(K2, x, t),

and assume that for an integer q ≥ 1 ,

∂q+1S

∂tq+1
,
∂q+2S

∂tq+2
∈ L2(0, T, L2(Ω)).

Assume also that
(i) supp(K1 −K2) ∩ suppS(., t) = ∅

or
(ii) S ∈ L2(0, T ;L3(Ω)).
Then d(K1,K2, ·, ·) ∈ V. Moreover, d satisfies the estimate∥∥∥∥∂q+1d(K1,K2)

∂tq+1

∥∥∥∥
L∞(0,T,L2(Ω))

+

∥∥∥∥∂qd(K1,K2)

∂tq

∥∥∥∥
L∞(0,T,H1(Ω))

≤ C |||K1 −K2|||m ,

(2.10)

where C = C(Ω, T, ρ∗, ρ∗,K∗,K∗)C(S) with

C(S) =

∥∥∥∥∂q+1S

∂tq+1

∥∥∥∥
L2(0,T,L2(Ω))

+

∥∥∥∥∂q+2S

∂tq+2

∥∥∥∥
L2(0,T,L2(Ω))

in case (i), and

C(S) = ‖S‖L2(0,T,L3(Ω)) +

∥∥∥∥∂q+1S

∂tq+1

∥∥∥∥
L2(0,T,L2(Ω))

+

∥∥∥∥∂q+2S

∂tq+2

∥∥∥∥
L2(0,T,L2(Ω))

in case (ii).
Corollary 2.3. The mapping

K −→ p(K, ·, ·),
P −→ V

from the set P of parameters equipped with the ||| · |||m-topology into V is continuous.
The following theorem will allow us to establish, in some cases, the existence of

solutions of the output least squares problem.
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Theorem 2.4. Let Q ⊂ P be a compact set on Lm(Ω)∩Lm(Γ); then the problem

minimize J(K) over Q
has a solution.

Now we will prove that the function p has a Gâteaux derivative with respect to the
parameter K for every K ∈ P and that this derivative is the solution of a differential
problem.

Let E0 be a small neighborhood of the surface; for example, for η ∈ (0, 1), η
small, we can choose the set E0 to be [0, η] for n = 1, [0, η] × [0, 1] for n = 2, and
[0, η]× [0, 1]× [0, 1] for n = 3.

We choose as the space of perturbations for the parameter K one of the following
subspaces of Lm(Ω) ∩ Lm(Γ):

W0 = {δK ∈ Lm(Ω) ∩ Lm(Γ), δK|S̃n ∈ A and δK(x) = 0 for x ∈ E0 },
or

W = {δK ∈ Lm(Ω) ∩ Lm(Γ), δK|S̃n ∈ A}.
Since we can assume that we know the parameter K close to the surface, the condition
δK = 0 in E0 is not an important restriction from the point of view of the application.
We denote by Λ the quantity

Λ =

2∑
i=0

∥∥∥∥∂iS∂ti
∥∥∥∥
L2(0,T ;L2(Ω))

.

The following theorem about the Gâteaux derivative of p with respect to K as-
sumes different hypotheses depending on whether the perturbations belong to the set
W0.

Theorem 2.5. Assume that the source function S(x, t) is such that the quantity
Λ is finite and that the parameter K(x) in (1.1)–(1.3) belongs to the set P. Assume
also that either (i) suppS ⊂ E0 and δK ∈ W0 or (ii) S ∈ L2(0, T ;L3(Ω)) and δK ∈ W.
Then the weak form of the problem

1

K
(D′(K)δK)tt(x, t)−∇ ·

(
1

ρ
∇D′(K)δK

)
(x, t)

=
δK(x)

K2(x)

(
ptt(K,x, t)− S(x, t)

)
, x ∈ Ω, t ∈ [0, T ],

(2.11)

with initial conditions

D′(K)δK(x, t = 0) = (D′(K)δK)t(x, t = 0) = 0, x ∈ Ω,(2.12)

and boundary conditions

− 1

ρ(x)

∂D′(K)δK(x, t)

∂ν
=

(D′(K)δK)t (x, t)

α(K,x)
− δK(x)pt(K,x, t)

2
√
ρ(x)K3/2(x)

, x ∈ Γ, t ∈ [0, T ],

(2.13)

has a solution which satisfies the estimate

‖(D′(K)δK)t‖2L∞(0,T,L2(Ω))+‖D′(K)δK‖2L∞(0,T,H1(Ω)) ≤ C(‖δK‖2Lm(Ω)+‖δK‖2Lm(Γ)),

(2.14)
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where C = C (K∗,K∗, ρ∗, ρ∗, T,Ω,Λ)C(S), with C(S) as in Theorem 2.2.

Moreover, if δK ∈ L∞(Ω), the function D′(K)δK is the Gâteaux derivative of p
(the solution of (2.5)) with respect to K in the direction of δK; also, the limit

lim
λ→0

p(K + λδK, ·, ·)− p(K, ·, ·)
λ

exists in V and is equal to D′(K)δK.

Proof. The proof of (2.14) is a simplified version of the proof of the differentiability
of p; thus we omit the former and we prove that for D′(K)δK solution of (2.11)–(2.13),
the function

φ(K + λδK,K, x, t) = D′(K)δK(x, t)− p(K + λδK, x, t)− p(K,x, t)

λ
(2.15)

tends to zero in V as λ tends to zero.

We prove the theorem in case (i); case (ii) has extra terms that are treated as in
the proof of Theorem 2.2.

First we prove the theorem for δK ∈ L∞(Ω). Let λo = 1
2K∗/‖δK‖∞ and |λ| ≤ λ0.

Now we use (2.5) for K + λδK and K, and the weak form of (2.11)–(2.13), in
order to write the weak form for the differential problem for the function φ in (2.15).

Find φ ∈ H1(Ω) such that(
1

K
φtt, v

)
+

(
1

ρ
∇φ,∇v

)
+

[
1

α
φt, v

]
=

(
λδK2ptt(K + λδK)

K2(K + λδK)
, v

)
−
(
δKdtt(K + λδK,K)

K2
, v

)
+

[
δK√
ρK

(
1

K + λK δK +
√
K2 + λ δK

− 1

2K

)
pt(K + λδK), v

]
−
[
δKdt(K + λδK,K)

2
√
ρK3/2

, v

]
, v ∈ H1(Ω), t ∈ [0, T ].

(2.16)

In the above formula, d is the difference function of Theorem 2.2.

In (2.16), choose v = φt to obtain

1

2

d

dt

(∥∥∥∥ φt
K1/2

∣∣∣∣2
0

+

∥∥∥∥ ∇φρ1/2

∣∣∣∣2
0

)
+

[
1

α(K)
φt, φt

]
=

(
λδK2ptt(K + λδK)2

K2(K + λδK)2
, φt

)
−
(
δKdtt(K + λδK,K)

K2
, φt

)
+

[
δK√
ρK

(
1

K + λK δK +
√
K2 + λδK

− 1

2K

)
pt(K + λδK), φt

]
−
[
δKdt(K + λδK,K)

2
√
ρK3/2

, φt

]
, v ∈ H1(Ω), t ∈ [0, T ].

(2.17)

Adding the inequality

1

2

d

dt

(∥∥∥∥ φ

ρ1/2

∥∥∥∥2

0

)
≤
∥∥∥∥ φ

ρ1/2

∥∥∥∥2

0

+ C

∥∥∥∥ φt
K1/2

∥∥∥∥2

0
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to (2.17), integrating the resulting inequality from 0 to t, and using the initial condi-
tions, we have∥∥∥∥ φt

K1/2

∥∥∥∥2

0

(t) +

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(t) + 2

∫ t

0

[
1

α(K)
φt, φt

]
(τ) dτ

≤
∣∣∣∣∫ t

0

(
λδK2ptt(K + λδK)

K2(K + λδK)2
, φt

)
(τ) dτ

∣∣∣∣+ ∣∣∣∣∫ t

0

(
δK dtt(K + λδK,K)

K2
, φt

)
(τ) dτ

∣∣∣∣
+ C

∫ t

0

(∥∥∥∥ φ

ρ1/2

∥∥∥∥2

0

+

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

)
(τ) dτ

+

∣∣∣∣∫ t

0

[
δK√
ρK

(
1

K + λδK +
√
K2 + λ δK

− 1

2K

)
pt(K + λδK), φt

]
(τ)dτ

∣∣∣∣
+

∣∣∣∣∫ t

0

[
δKdt(K + λδK,K)

2
√
ρK3/2

, φt

]
(τ)dτ

∣∣∣∣
= T1 + T2 + I +B1 +B2.

(2.18)

We will bound each term T1, T2, B1, B2 on the right-hand side separately:

|T1| =
∣∣∣∣∫ t

0

(
λδK2ptt(K + λδK)

K2(K + λδK)2
, φt

)
(τ) dτ

∣∣∣∣
≤ C

∫ t

0

λ2

K6∗

∥∥ptt(K + λδK)δK2
∥∥2

0
(τ) dτ +

∫ t

0

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

(τ) dτ

≤ Cλ2

∫ t

0

∥∥δK4
∣∣
Lα′ (Ω)

∥∥p2
tt(K + λδK)

∣∣
Lα(Ω)

(τ) dτ +

∫ t

0

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

(τ) dτ

= Cλ2

∫ t

0

‖δK‖4L4α′ (Ω) ‖ptt(K + λδK)‖2L2α(Ω) (τ) dτ +

∫ t

0

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

(τ) dτ.

Sobolev’s imbedding theorem implies that L2α(Ω) ⊂ H1(Ω) for 2α ≥ 2 if n = 1 or 2
and 2 ≤ 2α ≤ 6 if n = 3. Then using that and Theorem 2.1, we have

|T1| ≤ Cλ2 ‖Stt‖2L2(0,T ;L2(Ω)) ‖δK‖4Lm(Ω) +

∫ t

0

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

(τ) dτ.(2.19)

Similarly, we have

|T2| =
∣∣∣∣∫ t

0

(
δK dtt(K + λδK,K)

K2
, φt

)
(τ) dτ

∥∥∥∥
≤ C

∫ t

0

‖δK‖2Lm(Ω) ‖dtt(K + λδK,K)‖21 (τ) dτ +

∫ t

0

∥∥∥∥ φt
K1/2

∥∥∥∥2

0

(τ) dτ.

(2.20)

For the boundary terms we have

B1 =

∫ t

0

 λ δK2 (λδK − 3K)pt(K + λδK)
√
ρK2K

((
K +

√
K2 + λK δK

)2 − (λδK)
)2 , φt

 (τ)dτ.

Integrating by parts in t and using that K ∈ L∞(Ω) we have

|B1| ≤ Cλ

([
δK2 pt(K + λδK), φ

]
(t) +

∫ t

0

[
δK2ptt(K + λδK), φ

]
(τ)dτ

)
.
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By a similar argument to the one used for T1, T2 using Lemma 1.1, Sobolev’s embed-
ding theorem, and Theorem 2.1 we have

|B1| ≤ C λ ‖δK‖4Lm(Γ)

(
‖pt(K + λδK)‖21 (t) +

∫ t

0

‖ptt(K + λδK)‖21 (τ)dτ

)
+

1

4

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(t) +

∫ t

0

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(τ)dτ

≤ Cλ

(
‖St‖L2(0,T ;L2(Ω)) + ‖Stt‖L2(0,T ;L2(Ω))

)
+

1

4

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(t)

+

∫ t

0

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(τ)dτ.

(2.21)

Finally,

|B2| ≤ C‖δK‖4Lm(Γ)

(
‖dt(K + λδK,K)‖21 (t) +

∫ t

0

‖dtt(K + λK,K)‖21 (τ)dτ

)
+

1

4

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(t) +

∫ t

0

∥∥∥∥ φ

ρ1/2

∥∥∥∥2

1

(τ)dτ.

(2.22)

Replacing (2.19)–(2.22) in (2.18) and using Gronwall’s theorem, we obtain

‖φt‖2L∞(0,T ;L2(Ω)) + ‖φ‖2L∞(0,T ;H1(Ω)) ≤ Cλ
2∑

i=0

∥∥∥∥∂iS∂ti
∥∥∥∥2

L2(0,T,L2(Ω))

+ ‖dt(K + λK,K)‖2L2(0,T,H1(Ω)) + ‖dtt(K + λδK,K)‖2L2(0,T ;H1(Ω)) ,

(2.23)

where C = C(K∗,K∗, ρ∗, ρ∗, T,Ω). Now using Theorem 2.2 in (2.23), we have that
for a given ε > 0 there is λ0 such that if λ < λ0

‖φt‖L∞(0,T ;L2(Ω)) + ‖φ‖L∞(0,T ;H1(Ω)) ≤ εΛ.(2.24)

Thus the theorem is proved for δK ∈ L∞(Ω). Now using Hahn–Banach’s theorem
and (2.14), the theorem holds for δK ∈ W0.

As a consequence of Theorem 2.4, we have the following corollary.
Corollary 2.6. Assume that the source function S(x, t) satisfies the hypotheses

of Theorem 2.4. Then the functional J has a Gâteaux derivative with respect to the
parameter K and it is given by

J ′(K)δK =

∫ T

0

(
Φ′(K)δK, (Φ(K)− pobs)(t)

)
dt,(2.25)

where Φ′(K)δK(t) is the operator whose entries (Φ′(K)δK)i(t), 1 ≤ i ≤ N , are given
by

(Φ′(K)δK)i(t) =
1

|Bi|
∫
Bi

D′(K)δK(x, t) dx,(2.26)

and D′(K)δK ∈ V is the solution of (2.11)–(2.13).
Proof. Using (2.14) of Theorem 2.4 and Theorem 2.1, we have that

|J ′(K)δK|2 ≤ C ‖|δK|‖2m
∫ T

0

|Φ(K)− pobs|(t)dt

≤ C(‖S‖2L2(0,T ;L2(Ω)) +
∥∥pobs∥∥

L2(0,T ;RNr)) ‖|δK|‖2m .
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The following theorem about the continuity of D′(K)δK with respect to K is
necessary to prove the convergence of the algorithm.

Theorem 2.7. Let K1, K2 ∈ P and δK ∈ W0 (W) and assume that the quantity
Λ is finite; then

‖(D′(K1)−D′(K2)) δK‖L∞(0,T ;L2(Ω)) + ‖((D′(K1)−D′(K2)) δK)t‖L∞(0,T ;H1(Ω))

≤ CΛ |||K1 −K2|||m .

Proof. The technique of the proof is the same as the one of Theorem 2.4, thus we
omit it here.

3. The adjoint operator. To describe the algorithm we need the adjoint for-
mulation of (2.25).

Theorem 3.1. Assume that the source function S(x, t) satisfies the hypotheses
of Theorem 2.4 and that the function f is such that

f ∈ L2(0, T, L2(Ω));

then ∫ T

0

∫
Ω

D′(K)δK(x, t)f(x, t) dx dt

=

∫
Ω

δK(x)

∫ T

0

ptt(K,x, t)

K2(x)
u(K,x, t) dt dx

+

∫
Γ

δK(x)

∫ T

0

pt(K,x, t)

2
√
ρK3/2(x)

u(K,x, t) dt dx,

(3.1)

where the function u ∈ V is defined as u(K,x, t) = w(K,x, T−t) and w is the solution
of: find w(x, t) ∈ H1(Ω) such that(

1

K
wtt, v

)
+

(
1

ρ
∇w,∇v

)
+

[
1

α
wt, v

]
=
(
f̌ , v

)
, v ∈ H1(Ω), t ∈ [0, T ],(3.2)

where f̌(·, t) = f(·, T − t) and

w(K,x, t = 0) = wt(K,x, t = 0) = 0.(3.3)

Proof. Notice that under the hypotheses of the theorem, wtt ∈ V. Using v =
D′(K)δK(·, t) in (3.2) and integrating in t from 0 to T ,∫ T

0

((
1

K
wtt, D

′(K)δK

)
(t) +

(
1

ρ
∇w,∇D′(K)δK

)
(t) +

[
1

α
wt, D

′(K)δK

]
(t)

)
dt

=

∫ T

0

(f,D′(K)δK) (t) dt.

(3.4)
Integrating the first and third integrals by parts in t and using that w(K,x, T − t) =
u(K,x, t), we have that∫ T

0

((
1

K
(D′(K)δK)tt , u

)
(t) +

(
1

ρ
∇D′(K)δK,∇u

)
(t)

+

[
1

α
(D′(K)δK)t , u

]
(t)

)
dt =

∫ T

0

(f,D′(K)δK) (t) dt.

(3.5)



PARAMETER ESTIMATION USING THE ADJOINT METHOD 1325

Now integrating the weak form for D′(K)δK (for v = u) from 0 to T we have∫ T

0

(
1

K
(D′(K)δK)tt , u

)
(t) dt

+

∫ T

0

((
1

ρ
∇D′(K)δK,∇u

)
(t) +

[
1

α
(D′(K)δK)t , u

]
(t)

)
dt

=

∫ T

0

(
δK ptt(K)

K2
, u

)
(t) dt+

∫ T

0

[
δK pt(K)

2
√
ρK3/2

, u

]
(t) dt.

(3.6)

Finally, (3.1) follows from (3.5) and (3.6).
Corollary 3.2. Assume that the hypotheses on S of the theorem hold; then

J ′(K)δK =

∫
Ω

δK(x)

∫ T

0

ptt(K,x, t)u(K,x, t)

K2(x)
dt dx

+

∫
Γ

δK(x)

∫ T

0

pt(K,x, t)u(K,x, t)

2
√
ρ(x)K3/2(x)

dt dx,

(3.7)

where u is the solution of (3.2)–(3.3) with

f(x, t) =

Nr∑
i=1

χBi(x)

|Bi| (Φ(K)− pobs)i(t), x ∈ Ω, t ∈ [0, T ].(3.8)

Proof. First note that under the conditions on the source function S using The-
orem 2.1, f ∈ L2(0, T, L2(Ω)); then the result follows immediately from (3.1) and

J ′(K)δK =

∫ T

0

Φ′(K)δK(t)(Φ(K)− pobs)(t) dt

=

∫ T

0

Nr∑
i=1

(
1

|Bi|
∫

Ω

D′(K)δK(x, t)χBi(x) dx

)
(Φ(K)− pobs)i(t) dt.

(3.9)

Remark. If for n = 1 we take point evaluations of p as the model for the
measurements, p(K,xri , t), the function f in the right-hand side of (3.2), should

be
∑Nr

i=1 δ(x − xri)(pi − pobs
i )(x, t). In this particular case (which is not under the

hypotheses of Theorem 3.1) the proof of the existence of solutions of (3.2)–(3.3) is
done using energy estimates as in Theorem 2.1.

Consider the observation map Φ defined by (2.7)–(2.8); for K ∈ P the operator
Φ′(K) ∈ B(W, L2(0, T ; RNr)) is given by

Φ′(K)δK =

(
1

|Bi|
∫
Bi

D′(K) δK(x, t)dx

)
(1≤i≤Nr)

, δK ∈ Wo (W).

Thus the adjoint operator of Φ′(K) is a continuous operator from L2(0, T ; RNr) into
Wo (W). Then we have the following theorem.

Theorem 3.3. Let h ∈ L2(0, T,RNr ); then the adjoint operator of Φ′(K) is given
by (

[Φ′(K)]
∗
h, δK

)
=

(∫ T

0

ptt(K)u(K)

K2
(·, t) dt, δK

)
+

[∫ T

0

pt(K)u(K)

2
√
ρK3/2

(·, t) dt, δK
]
,

(3.10)
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where u is the solution of (3.2)–(3.3) with

f(x, t) =

Nr∑
i=1

χBi(x)

|Bi| hi(t), x ∈ Ω, t ∈ [0, T ],(3.11)

and the domain of [Φ′(K)]∗ is L2(0, T ;RNr ).

4. The inverse problem and the algorithm. We turn now to the iterative
algorithm. Let M(K) ∈ B(W,W) be defined as

M(K)h(x) = [Φ′(K)]
∗
Φ′(K)h(x), h ∈ W.(4.1)

For every K ∈ W for which the operator M(K) is invertible let

f : P → W
be defined as

f(K) = [M(K)]
−1

[Φ′(K)]
∗
(Φ(K)− pobs).(4.2)

Note that in (4.1), Φ′(K)h ∈ L2(0, T ; RNr ); also in (4.2), Φ(K)−pobs ∈ L2(0, T ; RNr ).
The algorithm is defined by the iteration

Kn+1 =


Kn + f(Kn), K∗ ≤ Kn + f(Kn) ≤ K∗,
K∗, K∗ < Kn + f(Kn),

K∗, Kn + f(Kn) < K∗.
(4.3)

Remarks. In practice a regularization term N(K) with N : Q → R
+ which is a

weakly lower semicontinuous map satisfiying lim|x|→∞N(x) = ∞ is added to the cost
functional J(K). By choosing N(K) adequately, the condition on the invertibility of
the operator M is obtained.

The fact that we have to use in P the topology given by ‖| · |‖m with m > 2

suggests the use of a regularization term of the form
∥∥|K −Kref |∥∥m

m
instead of the

usual ‖K −Kref‖20.
There are many different hypotheses under which algorithm (4.3) will converge.

We prove the following classical result as an illustration of our particular problem.
Theorem 4.1. Assume that the hypotheses of Theorem 2.5 hold and that there

is a Kc ∈ P such that J ′(Kc) = 0. Also assume that M(Kc) is invertible. Then Kc

is a point of attraction of iteration (4.6).
Proof. Since Φ′(Kc), Φ(Kc), and [M(Kc)]−1 are bounded operators we have the

inequality

‖[M(Kc)]−1‖ ‖[Φ′(Kc)]∗(Φ(Kc)− pobs)‖ ≤ C‖J ′(Kc)‖ = 0,

which implies that Kc is a fixed point for iteration (4.3).
The function G(K),

G(K) = K − [M(K)]−1[Φ′(K)]∗(Φ(K)− pobs),

is well defined in a neighborhood of Kc as follows: if M(K) satisfies

‖M(K)−M(Kc)‖ ‖M(Kc)‖ < 1,(4.4)
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then M(K) is one to one; moreover, M(K) is one to one in a neighborhood of Kc.
Now let β = ‖[M(Kc)]−1‖ and let ε satisfy 0 < ε < (2β)−1. Choose δ > 0 so that

the ball of center Kc and radius δ is contained in P and

‖M(Kc)−M(K)‖ ≤ ε for K ∈ S.

Now for K ∈ S

‖[M(K)]−1‖ ≤ β + εβ‖[M(K)]−1‖.

Thus

‖[M(K)]−1‖ ≤ β/(1− εβ) ≤ 2β.

Since Φ is Gâteaux differentiable and Φ′ is continuous as a function of K, Φ is Fréchet
differentiable as follows:

‖Φ(K + δK)− Φ(K)− Φ′(K) δK‖ ≤ sup
λ
‖Φ′(K + λ δK)− Φ′(K)‖ ‖δK‖ ≤ ε‖δK‖.

Now we prove that the Fréchet derivative of [Φ′(K)]∗(Φ(K) − pobs) at K = Kc is
M(Kc).

‖[Φ′(K)]∗(Φ(K)− pobs)− [Φ′(Kc)]∗(Φ(Kc)− pobs)−M(Kc)(K −Kc)‖
≤ ‖[Φ′(K)]∗

(
(Φ(K)− pobs)− (Φ(Kc)− pobs)− Φ′(Kc)(K −Kc)

)‖
+ ‖[Φ′(K)]∗Φ′(Kc)(K −Kc)−M(Kc)(K −Kc)‖ = T1 + T2.

Using that Φ is Fréchet differentiable and the continuity of Φ with respect to K we
have

T1 ≤ ‖[Φ′(K)]∗‖ε‖K −Kc‖.

Using the definition of M and the continuity of [Φ(K)]∗ with respect to K,

T2 ≤ ε‖[Φ′(Kc)]∗‖ ‖K −Kc‖.

Next we prove that the Fréchet derivative of G at K = Kc is 0:

‖G(K)−G(Kc)‖ = ‖K − [M(K)]−1[Φ′(K)]∗(Φ(K)− pobs)−Kc‖
≤ ‖[M(K)]−1(Φ′(K)]∗(Φ(K)− pobs)− [Φ′(Kc)]∗(Φ(Kc)− pobs)

−M(Kc)(K −Kc)
)‖+ ‖[M(K)]−1M(Kc)(K −Kc) +K −Kc‖

≤ 2β(‖[Φ′(K)]∗‖+ ‖[Φ′(Kc)]∗‖) ε ‖K −Kc‖
+ ‖[M(K)]−1‖M(Kc)−M(K)‖‖K −Kc‖ ≤ 2βC ε ‖K −Kc‖.

Finally,

‖G(K)−G(Kc)‖ = ‖G(K)−Kc‖ ≤ ε‖K −Kc‖.

Appendix.
Proof of Lemma 1.1. Let f ∈ C1(Ω). We distinguish two cases: n = 1 and

n = 2, 3.
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Case n = 1:

|f(0)|m =

∣∣∣∣f(x)m −
∫ x

0

d

ds
(fm(s)) ds

∣∣∣∣
=

∣∣∣∣f(x)m −m

∫ x

0

fm−1(s) f ′(s) ds
∣∣∣∣

≤ C(|f(x)|m + ‖f‖m−1
L2(m−1)(Ω) ‖f ′‖L2(Ω)).

(A1)

A similar inequality holds for |f(1)|m. Adding both and integrating from 0 to 1 we
have

‖f‖mLm(Γ) ≤ C
(
‖f‖mLm(Ω) + ‖f‖m−1

L2(m−1)(Ω) ‖f ′‖L2(Ω)

)
.(A2)

Case n = 2, 3: Let x̃n = x1 if n = 2 and x̃n = (x1, x2) if n = 3:

|f(x̃n, 0)|m =

∣∣∣∣f(x̃n, x)m −m

∫ x

0

fm−1(x̃n, s) f
′(x̃n, s) ds

∣∣∣∣ .(A3)

Integrating in x̃n on Ω̃n = proj(Ω) over xn = 0 we have∫
Ω̃n

|f(x̃n, 0)|m dx̃n ≤ C

∫
Ω̃n

(
|f(x̃n, x)|m +

∫ x

0

∣∣fm−1(x̃n, s) f
′(x̃n, s)

∣∣ ds) dx̃n

≤ C

(∫
Ω̃n

|f(x̃n, x)|m dx̃n + ‖f‖m−1
2(m−1) (Ω) ‖f ′‖L2(Ω)

)
.

Integrating in x we have∫
Ω̃n

|f(x̃n, 0)|m dx̃n ≤ C(‖f‖mLm(Ω) + ‖f‖(m−1)
L2(m−1)(Ω) ‖f ′‖L2(Ω)).

We have similar inequalities for each face of the cube. Adding them, inequality (A2)
is obtained for n = 2, 3.

Proof of Theorem 2.2. We prove the theorem for q = 0. Let d = d(K1,K2, x, t);
d is the solution of the weak form: find d ∈ H1(Ω) such that(

1

K1
dtt, v

)
+

(
1

ρ
∇d,∇v

)
+

[(
1

α(K1)
− 1

α(K2)

)
dt(K2), v

]
=

(
1

K1
− 1

K2
S, v

)
+

(
1

K2
− 1

K1
ptt(K2), v

)
−
[(√

K1 −
√
K2

)
pt(K1)

ρ
√
K1 K2

, v

]
,

v ∈ H1(Ω), t ∈ [0, T ].

Choosing v = dt and using the usual arguments we obtain the inequality∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

+

∥∥∥∥ d

ρ1/2

∥∥∥∥2

1

≤
∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

+

∥∥∥∥ d

ρ1/2

∥∥∥∥2

0

 (τ) dτ

+

∫ t

0

((
K2 −K1

K1 K2
ptt(K2), dt

)
(τ) +

(
K2 −K1

K1 K2
S, dt

)
(τ)

)
dτ

+

∫ t

0

[√
K2 −

√
K1√

ρK1 K2
pt(K2), dt

]
(τ)dτ

= I + T1 + T2 +B.

(A4)
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We bound each term separately:

|T1| ≤ C

∫ t

0

∫
Ω

(K1 −K2)
2(x) |ptt(K2, x, τ)|2 dτ +

∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

(τ)dτ

≤ C ‖K1 −K2‖2m
∫ T

0

‖ptt‖2L2m/m−2 (τ) dτ +

∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

(τ) dτ

≤ C ‖K1 −K2‖2Lm(Ω) ‖Stt‖L2(0,T ;L2(Ω)) +

∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

(τ) dτ.

(A5)

Similarly,

|T2| ≤ C

∫ t

0

∫
Ω

|K1 −K2|2(x)|S|2(x, τ)dx dτ +

∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

(τ) dτ

≤ C ‖K1 −K2‖2m ‖S‖2L2(0,T ;L2m/m−2) +

∫ t

0

∥∥∥∥∥ dt

K
1/2
1

∥∥∥∥∥
2

0

(τ) dτ.

(A6)

Finally, for the boundary term, we have

|B| ≤ C ‖K1 −K2‖2Lm(Γ)

(
‖pt‖2L∞(0,T ;H1(Ω)) + ‖ptt‖2L∞(0,T ;H1(Ω))

)
+

1

4

∥∥∥∥ d

ρ1/2

∥∥∥∥2

1

(t) +

∫ T

0

∥∥∥∥ d

ρ1/2

∥∥∥∥2

1

(τ)dτ

≤ C ‖K1 −K2‖2Lm(Γ)

(
‖St‖2L2(0,T ;L2(Ω)) + ‖Stt‖L2(0,T ;L2(Ω))

)
+

∫ T

0

∥∥∥∥ d

ρ1/2

∥∥∥∥2

1

(τ)dτ +
1

4

∥∥∥∥ d

ρ1/2

∥∥∥∥2

1

(t) ‖Stt‖L2(0,T ;L2(Ω)) .

(A7)

Replacing (A2)–(A4) in (A1) and using Gronwall’s inequality we obtain the conclusion
of the theorem.
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Abstract. We deal with zero-sum limiting average stochastic games. We show that the existence
of arbitrary optimal strategies implies the existence of stationary ε-optimal strategies, for all ε > 0,
and the existence of Markov optimal strategies. We present such a construction for which we do
not even need to know these optimal strategies. Furthermore, an example demonstrates that the
existence of stationary optimal strategies is not implied by the existence of optimal strategies, so the
result is sharp.

More generally, one can evaluate a strategy π for the maximizing player, player 1, by the reward
φs(π) that π guarantees to him when starting in state s. A strategy π is called nonimproving if
φs(π) ≥ φs(π[h]) for all s and for all finite histories h with final state s, where π[h] is the strategy π
conditional on the history h. Using the evaluation φ, we may define the relation “ε-better” between
strategies. A strategy π1 is called ε-better than π2 if φs(π1) ≥ φs(π2) − ε for all s. We show that
for any nonimproving strategy π, for all ε > 0, there exists an ε-better stationary strategy and a
(0-)better Markov strategy as well. Since all optimal strategies are nonimproving, this result can be
regarded as a generalization of the above result for optimal strategies.

Finally, we briefly discuss some other extensions. Among others, we indicate possible simplifica-
tions of strategies that are only optimal for particular initial states by “almost stationary” ε-optimal
strategies, for all ε > 0, and by “almost Markov” optimal strategies. We also discuss the validity of
the above results for other reward functions. Several examples clarify these issues.

Key words. stochastic games, limiting average rewards, optimality, Markov strategies, station-
ary strategies

AMS subject classifications. 90D15, 90D20, 90D05

PII. S0363012996311940

1. Introduction. A zero-sum stochastic game Γ can be described by a state
space S := {1, . . . , z} and a corresponding collection {M1, . . . ,Mz} of matrices, where
matrixMs has sizem1

s×m2
s and, for is ∈ Is := {1, . . . ,m1

s} and js ∈ Js := {1, . . . ,m2
s},

entry (is, js) of Ms consists of a payoff r(s, is, js) ∈ R and a probability vector
p(s, is, js) = (p(1|s, is, js), . . . , p(z|s, is, js)). The elements of S are called states and
for each state s ∈ S the elements of Is and Js are called the actions of player 1 and
player 2 in state s. The game is to be played at stages in N in the following way.
The play starts at stage 1 in an initial state, say, in state s1 ∈ S, where, simulta-
neously and independently, both players are to choose an action: player 1 chooses
an i1s1 ∈ Is1 , while player 2 chooses a j1s1 ∈ Js1 . These choices induce an immediate
payoff r(s1, i1s1 , j

1
s1) from player 2 to player 1. Next, the play moves to a new state

according to the probability vector p(s1, i1s1 , j
1
s1), say, to state s2. At stage 2 new

actions i2s2 ∈ Is2 and j2s2 ∈ Js2 are to be chosen by the players in state s2. Then
player 1 receives payoff r(s2, i2s2 , j

2
s2) from player 2 and the play moves to some state

s3 according to the probability vector p(s2, i2s2 , j
2
s2), and so on.

The sequence (s1, i1s1 , j
1
s1 ; . . . ; s

n−1, in−1
sn−1 , j

n−1
sn−1 ; s

n) is called the history up to
stage n. The players are assumed to have complete information and perfect recall.

A mixed action for a player in state s is a probability distribution on the set of
his actions in state s. Mixed actions in state s will be denoted by xs for player 1 and

∗Received by the editors November 11, 1996; accepted for publication (in revised form) June 5,
1997; published electronically May 27, 1998.
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by ys for player 2, and the sets of mixed actions in state s by Xs and Ys, respectively.
A strategy is a decision rule that prescribes a mixed action for any finite history of
the play. Such general strategies, so-called behavior strategies, will be denoted by π
for player 1 and by σ for player 2, and π(h) and σ(h) will denote the mixed actions
for history h. We use the notations Π and Σ, respectively, for the behavior strategy
spaces of players 1 and 2. If for all finite histories, the mixed actions prescribed by
a strategy only depend on the current stage and state, then the strategy is called
Markov, while if they only depend on the state then the strategy is called stationary.
Thus the stationary strategy spaces are X := ×s∈S Xs for player 1 and Y := ×s∈S Ys
for player 2, while the Markov strategy spaces are F := ×n∈N X for player 1 and
G := ×n∈N Y for player 2. We will use the respective notations x and y for stationary
strategies and f and g for Markov strategies for players 1 and 2. A stationary strategy
is called pure if, for each state, it specifies one “pure” action to be used. Hence the
spaces of pure stationary strategies are I := ×s∈S Is for player 1 and J := ×s∈S Js
for player 2. Pure stationary strategies will be denoted by i and j, respectively.

Let H denote the set of finite histories, H(α, ω) the set of finite histories with
initial state α and final state ω, H(α, ·) the set of finite histories with initial state
α, and H(·, ω) the set of finite histories with final state ω. For any strategy π and
for any given history h ∈ H(·, ω), we can define the strategy π[h] which prescribes a
mixed action π[h](h̄) to each history h̄ ∈ H(ω, ·) as if h had happened before h̄, i.e.,
π[h](h̄) = π(hh̄), where hh̄ is the history consisting of h concatenated with h̄.

Payoffs and transition probabilities can be naturally extended to mixed actions
as well. For xs ∈ Xs and ys ∈ Ys let

r(s, xs, ys) :=
∑

is∈Is, js∈Js
xs(is) ys(js) · r(s, is, js),

p(t|s, xs, ys) :=
∑

is∈Is, js∈Js
xs(is) ys(js) · p(t|s, is, js).

For x ∈ X, y ∈ Y we will also use the vector notation

r(x, y) := (r(s, xs, ys))s∈S .

A pair of strategies (π, σ) with an initial state s ∈ S determines a stochastic
process on the payoffs. The sequences of payoffs are evaluated by the limiting average
reward and by the β-discounted reward, β ∈ (0, 1), given by

γ(s, π, σ) := lim inf
N→∞

Esπσ

(
1

N

N∑
n=1

rn

)
= lim inf

N→∞
Esπσ (RN ) ,

γβ(s, π, σ) := Esπσ

(
(1− β)

∞∑
n=1

βn−1 rn

)
,

where rn is the random variable for the payoff at stage n ∈ N, and RN for the average
payoff up to stage N . We also use the vector notations

γ(π, σ) := (γ(s, π, σ))s∈S , γβ(π, σ) :=
(
γβ(s, π, σ)

)
s∈S .
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A pair of stationary strategies (x, y) determines a Markov chain with transition
matrix Pxy on S, where entry (s, t) of Pxy is p(t|s, xs, ys). With respect to this Markov
chain, we can speak of transient and recurrent states (a state is called recurrent if,
when starting there, it will be visited infinitely often with probability 1; otherwise
the state is called transient). We can group the recurrent states into minimal closed
sets, and into so-called ergodic sets (an ergodic set is a collection E of recurrent states
with the property that, when starting in one of the states in E, all states in E will be
visited and the play will remain in E with probability 1). Let

Qxy := lim
N→∞

1

N

N∑
n=1

(Pxy)
n;

the limit is known to exist (cf. Doob [1953, Theorem 2.1, p. 175]). Entry (s, t) of
the stochastic matrix Qxy, denoted by q(t|s, x, y), is the expected average number of
stages the process is in state t when starting in s. The matrix Qxy has the well-known
properties (cf. Doob [1953]) that

Qxy = Qxy Pxy = Pxy Qxy, Q2
xy = Qxy.(1.1)

By its definition, for the limiting average reward we have

γ(x, y) = Qxy r(x, y),(1.2)

hence by (1.1) we also obtain

γ(x, y) = Qxy r(x, y) = Q2
xy r(x, y) = Qxy γ(x, y).(1.3)

Against a fixed stationary strategy y there always exists a pure stationary best
reply i of player 1 (cf. Hordijk, Vrieze, and Wanrooij [1983]); i.e.,

γ(i, y) ≥ γ(π, y) ∀π.
Obviously a similar statement holds for the best replies of player 2.

For the limiting average reward, Mertens and Neyman [1981] showed that

sup
π

inf
σ
γ(s, π, σ) = inf

σ
sup
π

γ(s, π, σ) =: vs ∀s ∈ S.(1.4)

Here v := (vs)s∈S is called the limiting average value and v is known to satisfy the
following equations:

vs = Val (As) ∀s ∈ S,(1.5)

where

As :=

[∑
t∈S

p(t|s, is, js) vt
]
is∈Is,js∈Js

(1.6)

and Val stands for the matrix game value. The sets of optimal mixed actions in As,
for any s ∈ S, are nonempty polytopes. A strategy π of player 1 is called optimal for
initial state s ∈ S if

γ(s, π, σ) ≥ vs ∀σ ∈ Σ,
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and ε-optimal for initial state s ∈ S, ε > 0 if

γ(s, π, σ) ≥ vs − ε ∀σ ∈ Σ.

If a strategy of player 1 is optimal or ε-optimal for all initial states in S, then the
strategy is called optimal or ε-optimal, respectively. Optimality for strategies of
player 2 is analogously defined. Although for all ε > 0, by (1.4), there exist ε-optimal
strategies for both players, the famous example of Gillette [1957], the Big Match,
examined by Blackwell and Ferguson [1968], demonstrates that in general the players
need not have optimal strategies, and for achieving ε-optimality, behavior strategies
are indispensable.

For the β-discounted reward, β ∈ (0, 1), using a fixed-point argument, Shapley
[1953] showed that

sup
π

inf
σ
γβ(s, π, σ) = inf

σ
sup
π

γβ(s, π, σ) =: vβs ∀s ∈ S.

Here vβ := (vβs )s∈S is called the β-discounted value. Optimality can be similarly
defined as for the limiting average reward. Stationary β-discounted optimal strategies
always exist, and x is β-discounted optimal if and only if

vβs ≤ (1− β) r(s, xs, ys) + β
∑
t∈S

p(t|s, xs, ys) vβt ∀ys ∈ Ys, ∀s ∈ S.

We will also make use of the N -stage game ΓN , N ∈ N, which is played up to
stage N and where the reward is defined by the expected average payoff up to stage
N . The N -stage game ΓN , N ∈ N, is known to have a value vN , and both players
have N -stage Markov optimal strategies. Bewley and Kohlberg [1976] showed, using
Puiseux series, that both limβ↑1 vβ and limN→∞ vN exist and

lim
β↑1

vβ = lim
N→∞

vN ,

while Mertens and Neyman [1981] proved that the limiting average value is equal to
the limit of the β-discounted values, i.e.,

v = lim
β↑1

vβ .

Although both the β-discounted value and the limiting average value exist, they
cannot usually be easily calculated. In general, only iterative algorithms are available.
We refer to Raghavan and Filar [1991] for a survey on algorithms.

We will often deal with specific restricted games derived from Γ. Assume that
S′ ⊂ S is a nonempty set of states and X ′

s ⊂ Xs, Y
′
s ⊂ Ys are nonempty polytopes for

all s ∈ S′. If all pairs of mixed actions in X ′
s×Y ′s , for all s ∈ S′, only induce transitions

to states in S′, then we may define a restricted game Γ′, derived from Γ, where the
state space is S′ and the players are restricted to use strategies that only prescribe
mixed actions in X ′

s and Y ′s if the play is in state s ∈ S′. Let Π′ ⊂ Π and Σ′ ⊂ Σ
denote the sets of these strategies. Clearly, the stationary strategy spaces in Γ′ are
X ′ := ×s∈S′X ′

s and Y ′ := ×s∈S′Y ′s . For the restricted game Γ′, with respect to the
β-discounted reward, β ∈ (0, 1), similar results can be shown by using a fixed-point
argument as for the original game Γ. Thus

sup
π∈Π′

inf
σ∈Σ′

γβ(s, π, σ) = inf
σ∈Σ′

sup
π∈Π′

γβ(s, π, σ) =: v′βs ∀s ∈ S′.
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Here v′β := (v′βs )s∈S′ is called the β-discounted value for Γ′. Stationary β-discounted
optimal strategies in Γ′ always exist and x ∈ X ′ is β-discounted optimal if and only if

v′βs ≤ (1− β) r(s, xs, ys) + β
∑
t∈S′

p(t|s, xs, ys) v′βt ∀ys ∈ Y ′s , ∀s ∈ S′.(1.7)

The results of Bewley and Kohlberg [1976] apply for Γ′ as well, so limβ↑1 v′β and
limN→∞ v′N exist and

v′1 := lim
β↑1

v′β = lim
N→∞

v′N .(1.8)

Note that we do not claim that v′1 is the limiting average value of Γ′, for even though
the players only observe pure actions, these do not correspond one-to-one to extreme
points of the restricted spaces of mixed actions. However, one can show, by using
an appropriate sequence of discount factors as in Mertens and Neyman [1981], that,
against any fixed strategy in Π′, for any ε > 0 player 2 can make sure that player 1’s
limiting average reward is at most v′1 + ε; i.e.,

sup
π∈Π′

inf
σ∈Σ′

γ(s, π, σ) ≤ v′1s ∀s ∈ S′.(1.9)

From now on, when we speak of rewards, values, or optimal strategies, we will
always have the limiting average reward in mind, unless mentioned otherwise.

The organization of the paper is as follows. In section 2 we will deal with optimal
strategies. We show that the existence of arbitrary optimal strategies implies the
existence of stationary ε-optimal strategies, for all ε > 0, and the existence of Markov
optimal strategies. We give such a construction for which we do not even need to
know any optimal strategy. This remarkable result should not only be regarded as a
simplification of optimal strategies, but also as a sufficient condition for the existence
of stationary ε-optimal strategies or Markov optimal strategies. For many classes of
stochastic games, where on the payoff or transition structures special conditions are
imposed, stationary ε-optimal strategies exist, for all ε > 0, while about sufficient con-
ditions for the existence of Markov optimal strategies, comparatively little is known.
Here, instead of providing such structural conditions, the existence of optimal strate-
gies will be proven to be sufficient. Moreover, an example will be provided to show
that the existence of stationary optimal strategies is not implied by the existence of
optimal strategies, so the result is sharp.

In section 3 we show that simplification of strategies can also be employed for a
class of strategies, containing the optimal ones, in view of the rewards they guarantee.
For this purpose we will evaluate a strategy π by the reward φs(π) that π guarantees
when starting in state s ∈ S. A strategy π is called “nonimproving” if φs(π) ≥
φs(π[h]) for all s and for all finite histories h with final state s, where π[h] is the
strategy π conditional on the history h, as defined above. Intuitively, a nonimproving
strategy, for any state, cannot guarantee a larger reward conditional on any past
history than initially. Using the evaluation φ, we may naturally define the relation
“ε-better” between strategies. A strategy π1 is called ε-better than π2 if φs(π

1) ≥
φs(π

2)− ε for all s ∈ S. We show that for any nonimproving strategy π, for all ε > 0,
there exists an ε-better stationary strategy and a (0-)better Markov strategy as well.
Optimal strategies are clearly nonimproving, since they guarantee the value and more
cannot be guaranteed; hence this result implies the above result for optimal strategies.

In section 4 we briefly discuss some extensions of the above results. We indi-
cate possible simplifications of strategies that are only optimal for particular initial



1336 J. FLESCH, F. THUIJSMAN, AND O. J. VRIEZE

states by “almost stationary” ε-optimal strategies and by “almost Markov” optimal
strategies. We also discuss the validity of the results when other rewards are used
to evaluate the long-term average payoffs. Some remarks concerning the proofs and
some consequences are mentioned.

2. Optimal strategies. In this section we show the following result.
Theorem 2.1. If player 1 has an optimal strategy then, for all ε > 0, player 1

has stationary ε-optimal strategies and Markov optimal strategies as well.
The proof will be constructive. We present such a construction for which we do

not even need to know the optimal strategy.
For s ∈ S let

X∗
s :=

{
xs ∈ Xs|

∑
t∈S

p(t|s, xs, ys) vt ≥ vs ∀ys ∈ Ys

}
, X∗ := ×s∈SX∗

s ,

so X∗
s is the set of optimal mixed actions for player 1 in the matrix game As (cf.

(1.6)). The sets X∗
s are nonempty polytopes. For s ∈ S let

Y ∗s :=

{
ys ∈ Ys|

∑
t∈S

p(t|s, xs, ys) vt = vs ∀xs ∈ X∗
s

}
, Y ∗ := ×s∈SY ∗s ;

the sets Y ∗s , called the equalizers in the corresponding matrix games, are nonempty
polytopes (in fact, by (1.5) all optimal mixed actions of player 2 in As belong to Y ∗s ).
Note the asimilarity in the definitions of X∗

s and Y ∗s , s ∈ S. It is easy to verify that,
for any s ∈ S, there exists a J∗s ⊂ Js such that Y ∗s = conv(J∗s ), where conv stands for
the convex hull of a set. Let

J∗ := ×s∈S J∗s .

As described in the Introduction, we may define a restricted game Γ∗, derived from
Γ, where the state space is S and the players are restricted to use strategies that only
prescribe mixed actions in X∗

s and Y ∗s if the play is in state s ∈ S. The sets of these
strategies are denoted by Π∗ and Σ∗. Let v∗β denote the β-discounted value for Γ∗,
and let v∗1 := limβ↑1 v∗β .

By the finiteness of the state and action spaces there exists a countable subset of
discount factors B ⊂ (0, 1) such that 1 is a limit point of B and there are stationary
β-discounted optimal strategies xβ ∈ X∗ in the restricted game Γ∗ such that the sets
{is ∈ Is|xβs (is) > 0}, s ∈ S, are independent of β ∈ B. In the sequel each time that
we are dealing with discount factors, discounted optimal strategies, or limits when
the discount factors converge to 1, we will have such a subset of discount factors B in
mind.

The following lemma clarifies why the sets X∗ and Y ∗ play an important role when
player 1 has an optimal strategy in the original game Γ. This lemma states that if π is
an optimal strategy for player 1 in Γ then, for any history with a positive occurrence
probability with respect to (π, σ) for some σ ∈ Σ∗, the strategy π prescribes a mixed
action belonging to X∗. In other words, if player 2 uses a strategy σ ∈ Σ∗ then the
optimal strategy π will behave as a strategy in Π∗.

Lemma 2.2. Let π ∈ Π be an optimal strategy for player 1 in the game Γ. Then
for all h ∈ H(α, ω), for any α, ω ∈ S, we have π(h) ∈ X∗

ω if Pαπσ(h) > 0 for some
σ ∈ Σ∗. Here Pαπσ(h) denotes the probability that the finite history h occurs when
the strategies π and σ are played and the initial state is α.
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Proof. Suppose the opposite. Then there exists a shortest history h̄n ∈ H(α, ω),
say, with length n, for some α, ω ∈ S, and a σ ∈ Σ∗ with Pαπσ(h̄n) > 0 such that
π(h̄n) /∈ X∗

ω. Since π(h̄n) /∈ X∗
ω there exists a jω ∈ Jω such that

τ := vω −
∑
s∈S

p(s|ω, π(h̄n), jω) vs > 0.

Let s1 := α, let sk, k ≥ 2, denote the random variable for the state at stage k, and
let hk denote the history up to stage k ∈ N. Let

δ ∈ (0,Ps1πσ(h̄n) · τ) .
Let σδ ∈ Σ be the strategy that prescribes to play as follows: play σ for the first n−1
stages and then, if hn = h̄n, play jω, while if hn 6= h̄n then play an optimal mixed
action in the matrix game Asn ; and finally, play a δ-optimal strategy afterwards. Note
that

Ps1πσδ(h̄
n) = Ps1πσ(h̄n) > 0.

Since we have chosen a shortest history h̄n with the above property, by the definitions
of X∗ and Y ∗ we have

Es1πσδ (vsn) = vs1 ,

and by the used mixed actions at stage n

Es1πσδ (vsn+1) ≤ Es1πσδ (vsn)− Ps1πσδ(h̄
n) · τ.

From stage n+ 1, player 2 plays a δ-optimal strategy, so the choice of δ yields

γ(s1, π, σδ) ≤ Es1πσδ (vsn+1) + δ ≤ Es1πσδ (vsn)− Ps1πσδ(h̄
n) · τ + δ

= vs1 − Ps1πσ(h̄n) · τ + δ < vs1 ,

which contradicts the optimality of π.
Based on the fact that any optimal strategy of player 1 in Γ guarantees the value

v and, in view of the previous lemma, it only prescribes mixed actions in X∗
s , if the

play is in state s, against any strategy of player 2 in Σ∗, we show that player 1 can
guarantee at least v in the restricted game Γ∗. On the other hand, as discussed in
(1.9), player 1 cannot guarantee more than the limit of the β-discounted values in Γ∗.

Lemma 2.3. Suppose that player 1 has an optimal strategy π ∈ Π. Then

vs ≤ sup
π∗∈Π∗

inf
σ∗∈Σ∗

γ(s, π∗, σ∗) ≤ v∗1s ∀s ∈ S.

Proof. The second inequality follows from (1.9), so we only have to show the first
one. For α, ω ∈ S let

H̄(α, ω) := {h ∈ H(α, ω)|Pαπσ∗(h) > 0 for some σ∗ ∈ Σ∗}.
Take an arbitrary x ∈ X∗. Using Lemma 2.2 we may define a strategy π∗ ∈ Π∗ as
follows: for h ∈ H(α, ω) let

π∗(h) :=

{
π(h) if h ∈ H̄(α, ω),
xω otherwise.
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Then, by the optimality of π and by the definition of π∗, we have

vs ≤ γ(s, π, σ∗) = γ(s, π∗, σ∗) ∀σ∗ ∈ Σ∗, ∀s ∈ S,

which implies the first inequality.
The next result shows the effectiveness of the β-discounted optimal strategies in

the restricted game Γ∗.
Lemma 2.4. Let ε > 0. For β ∈ B, let xβ ∈ X∗ be a β-discounted optimal

strategy of player 1 in Γ∗, and let y ∈ Y ∗. Suppose that E ⊂ S is a closed set of states
with respect to (xβ , y) for all β ∈ B. Then, for large β ∈ B,

γ(s, xβ , y) ≥ min
t∈E

v∗1t − ε ∀s ∈ E.

Proof. Using inequality (1.7) for Γ∗ we have

(1− β) r(xβ , y) + β Pxβy v
∗β ≥ v∗β ∀β ∈ B.

By (1.1), multiplying this inequality with Qxβy yields

Qxβy r(x
β , y) ≥ Qxβy v

∗β ∀β ∈ B.
The closedness of E implies that, for any s ∈ E, if q(t|s, xβ , y) > 0 then t ∈ E. Hence
for all s ∈ E and for large β ∈ B, using (1.2), we have

γ(s, xβ , y) =
∑
t∈E

q(t|s, xβ , y) r(t, xβt , yt) ≥
∑
t∈E

q(t|s, xβ , y) v∗βt

≥
∑
t∈E

q(t|s, xβ , y)(v∗1t − ε) ≥ min
t∈E

v∗1t − ε,

so the proof is complete.
Next we discuss some properties of stationary strategies belonging to X∗ or to

Relint(X∗), where Relint(X∗) stands for the relative interior of the polytope X∗ and
is defined as the set of points in X∗ which can be written as a convex combination of
all the extreme points of X∗ with only strictly positive coefficients.

Lemma 2.5. Let x ∈ X∗ and y ∈ Y . Suppose E is an ergodic set with respect to
(x, y). Then vs = vt for all s, t ∈ E. Furthermore, if x ∈ Relint(X∗), then necessarily
ys ∈ Y ∗s for all s ∈ E.

Proof. By x ∈ X∗ we obtain∑
t∈E

p(t|s, xs, ys) vt ≥ vs ∀s ∈ E.

Let Ē := {s ∈ E| vs = maxt∈E vt}. The above inequalities imply that Ē is a closed
set of states for (x, y), so since E is an ergodic set for (x, y) (minimal closed set of
states), we have Ē = E. Therefore, vs = vt =: vE for all s, t ∈ E.

Now suppose that x ∈ Relint(X∗). Then (x̄s, ys) only induces transitions to states
in E for any x̄s ∈ X∗

s , s ∈ E; hence∑
t∈S

p(t|s, x̄s, ys) vt =
∑
t∈E

p(t|s, x̄s, ys) vE = vE = vs ∀x̄s ∈ X∗
s , ∀s ∈ E,

which implies that ys ∈ Y ∗s for all s ∈ E.
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An important property of convex combinations of stationary strategies is stated
in the next lemma.

Lemma 2.6. For τ ∈ (0, 1), x1, x2 ∈ X let xτ := τx1 + (1 − τ)x2. Suppose that
E is an ergodic set with respect to (xτ , y) for some y ∈ Y . Let ε > 0 and d ∈ R. If

γ(s, x1, y) ≥ d ∀s ∈ E,

then for sufficiently large τ

γ(s, xτ , y) ≥ d− ε ∀s ∈ E.

Proof. Let δ ∈ (0, 1). Since

γ(s, x1, y) ≥ d ∀s ∈ E,

there exists a Kδ satisfying

Esx1y (RN ) ≥ d− δ ∀N ≥ Kδ, ∀s ∈ E,

where RN denotes the average payoff up to stage N . Choose τ ∈ (0, 1) such that

τK
δ ≥ 1− δ.

The strategy xτ can be interpreted as playing x1 with probability τ and x2 with
probability 1− τ at each stage, so the last inequality means that x1 will be played at
each Kδ consecutive stages with probability at least 1 − δ. Hence, with probability
at least 1 − δ, the expected average of the payoffs will be at least d − δ for any Kδ

consecutive stages. Let r denote the smallest payoff in the game. Then if δ is small,
by the law of large numbers we have

γ(s, xτ , y) ≥ (1− δ) (d− δ) + δ r ≥ d− ε ∀s ∈ E,

so the proof is complete.
The next lemma will enable us to construct Markov optimal strategies from sta-

tionary ε-optimal strategies which prescribe optimal mixed actions in the matrix
games As, s ∈ S (cf. (1.6)). Here we present a short proof, which uses some ar-
guments of Bewley and Kohlberg [1978] on so-called irreducible games.

Lemma 2.7. Suppose that for all ε > 0 player 1 has a stationary ε-optimal
strategy xε ∈ X∗ in Γ. Then player 1 also has a Markov optimal strategy f in Γ.

Proof. Consider the restricted game Γ∗(1), derived from Γ, where player 1 is
restricted to use strategies that only prescribe mixed actions in X∗

s , if the play is
in state s ∈ S. As before, Π∗ will denote the set of these strategies for player 1.
(Note that here only player 1 is restricted, in contrast with the game Γ∗, where both
players have a restriction.) Let v∗β(1) denote the β-discounted value in Γ∗(1) and let
v∗1(1) := limβ↑1 v∗β(1). Let v∗N (1) denote the value of the N -stage game Γ∗N (1),
and let fN be an N -stage Markov optimal strategy in Γ∗N (1). Using the assumption
that xε ∈ X∗ is ε-optimal in Γ for all ε > 0 and using (1.9) and (1.8), we obtain

vs ≤ sup
π∈Π∗

inf
σ∈Σ

γ(s, π, σ) ≤ v∗1s (1) = lim
N→∞

v∗Ns (1) ∀s ∈ S.(2.1)

Let f be the Markov strategy of player 1 which prescribes to play as follows: at stage
1, play f1; at the next two stages, play f2; at the next three stages, play f3; and so
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on. We show that f is optimal. Let s1 be the initial state and let sN , N ≥ 2, denote
the state for the first stage when fN is to be played. Take an arbitrary σ ∈ Σ. Notice
that f ∈ Π∗, hence by the definition of X∗,

Es1fσ(vsN ) ≥ vs1 ∀N ∈ N.

Thus using the N -stage optimality of fN and (2.1), for any δ > 0 if N is large, then

Es1fσ(RN ) ≥ Es1fσ

(
v∗NsN (1)

) ≥ Es1fσ (vsN )− δ ≥ vs1 − δ,(2.2)

where RN denotes the average payoff for those N consecutive stages when fN is
played. Let φ(K) be such that fφ(K) is to be played at stage K. Observe that

lim
K→∞

[∑
N<φ(K) N

K

]
= 1, lim

K→∞

[
K −∑N<φ(K) N

K

]
= 0,

so if RK denotes the average payoff up to stage K and r denotes the smallest payoff
in the game, then (2.2) gives

γ(s1, f, σ) = lim inf
K→∞

Es1fσ (RK)

≥ lim inf
K→∞

Es1fσ



∑

N<φ(K) N ·RN +
[
K −∑N<φ(K) N

]
· r

K




= lim inf
K→∞

∑
N<φ(K) N · Es1fσ

(
RN

)
K

≥ vs1 ,

which implies that f is optimal in Γ.
Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. We show the existence of stationary ε-optimal strategies

for all ε > 0, and then the existence of Markov optimal strategies follows from Lemma
2.7.

For β ∈ B, let xβ ∈ X∗ be a β-discounted optimal strategy of player 1 in Γ∗ and
let x ∈ Relint(X∗). For all τ ∈ (0, 1) and β ∈ B let

xτβ := τxβ + (1− τ)x.

By the convexity of X∗ and by x ∈ Relint(X∗) we have xτβ ∈ Relint(X∗) for all
τ ∈ (0, 1) and β ∈ B.

We show that, for any ε > 0, for large τ ∈ (0, 1) and for large β ∈ B the strategy
xτβ is ε-optimal. Let ε > 0. Since against a stationary strategy there always exists a
pure stationary best reply, and there are only finitely many pure stationary strategies,
it suffices to show that, for all j ∈ J , if τ ∈ (0, 1) and β ∈ B are large, then

γ(xτβ , j) ≥ v − ε 1z,

where 1z = (1, . . . , 1) ∈ R
z. Take a j ∈ J and let E ⊂ S be an arbitrary ergodic set

with respect to (xτβ , j). We start with showing that for large τ ∈ (0, 1), β ∈ B we
have

γ(s, xτβ , j) ≥ vs − ε ∀s ∈ E.(2.3)
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Since xτβ ∈ Relint(X∗), by Lemma 2.5 we obtain vs = vt := vE for all s, t ∈ E and
js ∈ J∗s for all s ∈ E. Let j∗s := js for all s ∈ E and let j∗s ∈ J∗s for all s /∈ E; so
j∗ ∈ J∗. By the definition of xτβ and by the properties of B, the set of states E is
closed with respect to (xβ , j) for all β ∈ B, so with respect to (xβ , j∗) for all β ∈ B
as well. Thus, applying Lemma 2.4 for Γ∗ and using Lemma 2.3 yields that for large
β ∈ B

γ(s, xβ , j) = γ(s, xβ , j∗) ≥ min
t∈E

v∗1t − 1

2
ε ≥ min

t∈E
vt − 1

2
ε = vE − 1

2
ε ∀s ∈ E.

Now Lemma 2.6 yields that for large τ ∈ (0, 1) and for large β ∈ B

γ(s, xτβ , j) ≥ vE − ε = vs − ε ∀s ∈ E,

which proves (2.3).
Using that xτβ ∈ X∗ we have

Pxτβj v ≥ v,

therefore

Qxτβj v ≥ v.

For any s ∈ S, q(t|s, xτβ , j) > 0 implies that t ∈ E for some ergodic set E with respect
to (xτβ , j); hence by (1.3) and (2.3), for large τ ∈ (0, 1) and β ∈ B, we obtain

γ(xτβ , j) = Qxτβj γ(xτβ , j) ≥ Qxτβj (v − ε 1z) = Qxτβj v − ε 1z ≥ v − ε 1z,

which completes the proof.
Example 1.
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Here player 1 chooses rows and player 2 chooses columns. In each entry, the corre-
sponding payoff is placed in the upper-left corner, while the transition is placed in
the bottom-right corner. In this game each transition is represented by the num-
ber of the state to which transition should occur with probability 1. Notice that
state 2 is absorbing. The value of this game is v = (1, 2). It is not hard to show
that there are optimal strategies for player 1 (later we will construct optimal Markov
strategies). Following the construction for stationary ε-optimal strategies, we have
X∗ = X, Y ∗1 = {(1, 0)}, Y ∗2 = {(1)}. Now the β-discounted optimal strategy of
player 1 in Γ∗ is xβ = ((0, 1), (1)) for all β ∈ (0, 1). Take a strategy x ∈ Relint(X∗),
for example, x = (( 1

2 ,
1
2 ), (1)). Then for τ, β ∈ (0, 1),

xτβ = τ · xβ + (1− τ) · x =

((
1

2
− 1

2
τ,

1

2
+

1

2
τ

)
, (1)

)
,
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so xτβ is ε-optimal for large τ and β (the strategies ((p, 1− p), (1)) are ε-optimal for
p ∈ (0, ε]). Note that player 1 has no stationary optimal strategy in this game.

Also, a Markov optimal strategy can be constructed as in Lemma 2.7. In this
game X = X∗, hence the restricted game Γ∗(1) is just the original game Γ. The
one-stage Markov optimal strategy and the one-stage value are

f1 =

((
1

3
,
2

3

)
, (1)

)
, v1 = v∗1(1) =

(
2

3
, 2

)
;

the two-stage Markov optimal strategy and the two-stage value are

f2 =

(((
3

13
,
10

13

)
, (1)

)
;

((
1

3
,
2

3

)
, (1)

))
, v2 = v∗2(1) =

(
28

39
, 2

)
;

and so on. So, as shown before, the Markov strategy f which prescribes to play f1

at the first stage, then f2 at the next two stages, f3 at the next three stages, and so
on, is optimal.

3. Nonimproving strategies. It is in the spirit of zero-sum games to evaluate
a strategy π of player 1 by the reward φ(π) it guarantees against any strategy of the
opponent. For a strategy π ∈ Π let

φs(π) := inf
σ
γ(s, π, σ) ∀s ∈ S, φ(π) := (φs(π))s∈S .

Using this evaluation φ we may naturally define the relation “ε-better” between strate-
gies of player 1. A strategy π1 is called ε-better than π2 if φs(π

1) ≥ φs(π
2)− ε holds

for all s ∈ S. 0-better strategies will simply be called better. We will call a strategy
π nonimproving if for any state s ∈ S and for any history h ∈ H(·, s) we have

φs(π) ≥ φs(π[h]).

Intuitively, a nonimproving strategy, for any state, cannot guarantee a larger reward
conditional on any past history than initially. Obviously, all stationary strategies are
nonimproving strategies. Also, optimal strategies are always nonimproving, since they
guarantee the value, and no higher reward can be guaranteed.

In this section we will indicate how the following result, which is a generalization
of Theorem 2.1, can be shown by using similar techniques as in section 2.

Theorem 3.1. For any nonimproving strategy, for any ε > 0, there exists an
ε-better stationary strategy and a better Markov strategy as well.

First we focus on the proof for the existence of ε-better stationary strategies,
ε > 0, and afterwards we explain how the existence of a better Markov strategy will
follow. Let π denote a fixed nonimproving strategy and let

w := φ(π).

For s ∈ S let

Bs :=

[∑
t∈S

p(t|s, is, js)wt

]
is∈Is, js∈Js

, Ws := Val (Bs),

where Val stands for the matrix game value. By using the nonimprovingness of π we
obtain

ws = φs(π) ≤
∑
t∈S

∑
is∈Is

π(s)(is) p(t|s, is, js) · φs(π[s, is, js, t])

≤
∑
t∈S

∑
is∈Is

π(s)(is) p(t|s, is, js) · wt =
∑
t∈S

p(t|s, π(s), js)wt ∀js ∈ Js, ∀s ∈ S,



SIMPLIFYING OPTIMAL STRATEGIES 1343

hence

ws ≤Ws = Val (Bs) ∀s ∈ S.(3.1)

This is the counterpart of (1.5), however, for w equality does not hold as for the value
v, which causes some additional difficulties. We will define a restricted game here as
well, but this restricted game will only be defined on a set of states s where ws = Ws,
so that we can use similar arguments as in section 2. Let

X̃s :=

{
xs ∈ Xs|

∑
t∈S

p(t|s, xs, ys)wt ≥ ws ∀ys ∈ Ys

}
, X̃ := ×s∈SX̃s,

so the set X̃s, which is a polytope, is the set of mixed actions of player 1 in state s
which assure that after transition w will not decrease in expectation. The inequalities
(3.1) imply that, for any state s ∈ S, all optimal mixed actions of player 1 in the
matrix game Bs belong to X̃s, which also means that the sets X̃s are nonempty.

Fix an arbitrary x ∈ Relint(X̃). For a pure stationary strategy j ∈ J let R(j)
denote the set of recurrent sets with respect to (x, j). Let

S′ := ∪j∈JR(j).

For s ∈ S′ let

J ′s := ∪j∈J, s∈R(j){js}, Y ′s := conv(J ′s), Y ′ := ×s∈S′Y ′s ,

where conv stands for the convex hull of a set. Notice that the sets R(j), S′, J ′s, Y
′
s , Y

′

are independent of the choice of x ∈ Relint(X̃) and also that the sets Y ′s are nonempty
polytopes. One can verify that all states s ∈ S′ are recurrent with respect to (x, y),
if y ∈ Y satisfies ys ∈ Relint(Y ′s ) for all s ∈ S′. If E is an ergodic set with respect to
(x, y) with ys ∈ Relint(Y ′s ) for all s ∈ S′, then, as in Lemma 2.5, one can show that
ws = wt for all s, t ∈ E. Since x ∈ Relint(X̃), this also yields that ws = Ws for all
s ∈ S′, so ws has a similar property as vs in (1.5). The sets S′ and Y ′ also have the
property that, for any y ∈ Y , if s ∈ S is recurrent with respect to (x, y), then s ∈ S′

and ys ∈ Y ′s . Let

X ′ := ×s∈S′X̃s.

Let Γ′ be the restricted game, derived from Γ, where the state space is S′ and the
players are restricted to using strategies that only prescribe mixed actions in X ′

s and
Y ′s , respectively, if the play is in state s ∈ S′. Note that, by the above property of S′

and Y ′, if player 1 uses mixed actions in Relint(X ′
s), s ∈ S′, then whatever stationary

strategy y player 2 uses, the play will eventually reach an ergodic set E ⊂ S′ in such a
way that w does not decrease in expectation, and ys ∈ Y ′s for all s ∈ E, so intuitively
the play will eventually proceed in Γ′. Now, using ws = Ws for all s ∈ S′, for the
restricted game Γ′, similar results can be shown as for the restricted game in section
2, which completes the proof for the existence of ε-better stationary strategies.

Now the existence of better Markov strategies can be shown along similar lines as
the proof of Lemma 2.7. One has to define a restricted game Γ′(1), derived from Γ,
where player 1 is restricted to use strategies that only prescribe mixed actions in X ′

s if
the play is in state s ∈ S. Notice that Γ′(1) is the counterpart of Γ∗(1) defined in the
proof of Lemma 7 and also that the above constructed ε-better stationary strategies
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belong to X ′, hence player 1 may use these strategies in the restricted game Γ′(1) as
well. Now in the game Γ′(1), analogous equalities and inequalities can be derived as
for Γ∗(1) in the proof of Lemma 2.7, but w has to be used instead of v, which leads
to the conclusion that better Markov strategies indeed exist.

Example 2.
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This example, known as the Big Match (cf. Gillette [1957], Blackwell and Fergu-
son [1968]), clarifies that, although optimality implies nonimprovingness, improving
strategies are indispensable for achieving ε-optimality. The notation is the same as
in Example 1. Notice that states 2 and 3 are absorbing. For initial state 1, the
limiting average value is v1 = 1

2 and player 1 has neither optimal strategies nor sta-
tionary ε-optimal strategies for small ε > 0, but for any N ∈ N player 1 can guarantee
1
2− 1

2(N+1) by playing the following strategy πN : for any history h without absorption,

if k(h) denotes the number of stages where player 2 has chosen action R minus the
number of stages where player 2 has chosen action L, player 1 has to play the mixed
action

πN (h) :=

(
1− 1

(k(h) +N + 1)2
,

1

(k(h) +N + 1)2

)
.

This strategy πN is clearly improving, since for the history h = (1, T,R, 1) we have
πN [h] = πN+1. Note that, in fact, all strategies that are ε-optimal for small ε > 0 must
be improving; otherwise, by Theorem 3.1, player 1 would have stationary ε-optimal
strategies (and Markov optimal strategies as well).

4. Concluding remarks. Finally we discuss some consequences. For the sake
of simplicity, we only focus on the results of section 2 here.

Remarks on the restricted game Γ∗. In Lemma 2.3 we showed that v∗1s ≥ vs for
all s ∈ S. In fact, this is the only statement for which we needed the condition that
player 1 has an optimal strategy. Therefore, if in a zero-sum game v∗1s ≥ vs holds for
all s ∈ S, then stationary ε-optimal strategies, ε > 0, and Markov optimal strategies
can be constructed exactly as in section 2. It also means that v∗1s ≥ vs for all s ∈ S
holds if and only if player 1 has an optimal strategy.

We also remark that, even if player 1 has an optimal strategy, one can find
examples where v∗1s > vs for some state s. However, if E is an ergodic set with
respect to some (x, y) ∈ Relint(X∗)×Relint(Y ∗), then there exists a state s ∈ E such
that v∗1s = vE (recall that the value v is a constant on E by Lemma 2.5). To see this
one can argue as follows. Suppose to the contrary that v∗1s ≥ vE + µ for all s ∈ E,
where µ > 0. Let xτβ ∈ Relint(X∗) be defined as in the proof of Theorem 2.1. Then
Lemmas 2.4 and 2.6 imply that for large τ and β we have

γ(s, xτβ , j) ≥ min
t∈E

v∗1t − µ

2
≥ vE +

µ

2
∀s ∈ E, ∀j ∈ J∗.(4.1)
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Here we used that there are only finitely many pure stationary strategies. Let player
1 play the strategy πδ, δ > 0, which prescribes to play as follows: play xτβ as long as
player 2 chooses actions in J∗s , s ∈ E, and start playing a δ-optimal strategy as soon as
player 2 chooses an action in Js \J∗s in some state s ∈ E. Note that if player 2 always
chooses actions in J∗s , s ∈ E, then (4.1) assures that the reward is at least vE + µ

2
(recall that against a stationary strategy there always exists a pure stationary best
reply). On the other hand, if player 2 chooses an action in Js \J∗s in some state s ∈ E,
then one can show that xτβs ∈ Relint(X∗

s ) yields that the original value v increases in
expectation by at least some ν > 0, so if δ ∈ (0, ν2 ), by the definition of πδ, the reward
is at least vE + ν

2 in this case. Therefore, πδ, with δ ∈ (0, ν2 ), guarantees a reward of
at least vE + 1

2 min(µ, ν) > vE , which contradicts the definition of the value. So we
have shown that v∗1s = vE holds for some state s ∈ E.

Optimal strategies for particular initial states. We briefly discuss a generalization
of the results of section 2, which concerns strategies that are only optimal for particular
initial states. Let S̃ denote the set of states for which player 1 has an optimal strategy.
First note that in each stochastic game there always exists at least one initial state
for which player 1 has optimal strategies (cf. Thuijsman and Vrieze [1991]), so the set
S̃ is always nonempty. Using similar techniques as in section 2, one can show that,
for any ε > 0, player 1 has a strategy ξε which for all initial states α ∈ S̃ satisfies the
following criteria: (i) ξε is ε-optimal, (ii) ξε is stationary until leaving S̃, (iii) there
exist stationary best replies of player 2 against ξε, (iv) the probability of ever leaving S̃
is zero with respect to (α, ξε, σ), if σ is a best reply. The difference between this result
and the corresponding result of section 2 is mainly due to the fact that stationary
strategies are not effective in states outside S̃, so player 1 may have to start playing
a behavior δ-optimal strategy if the play leaves S̃, for some δ > 0. Furthermore, one
can also show that player 1 has a strategy χ which for all initial states α ∈ S̃ satisfies
the following criteria: (v) χ is optimal, (vi) χ is Markov until leaving S̃, (vii) there
exist Markov best replies of player 2 against χ, (viii) the probability of ever leaving
S̃ is zero with respect to (α, χ, σ), if σ is a best reply. We remark here that Markov
best replies do not necessarily exist against a Markov strategy, but a Markov strategy
χ can be constructed so that (vii) holds.

Example 3.
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This example clarifies the existence of such “almost stationary” ε-optimal strategies
and “almost Markov” optimal strategies for initial states in S̃. The notation is the
same as in Example 1 except for two “mixed” transition vectors in entries (B1, L1)
and (B1, R1), which lead to state 2 with probability 1

2 and to state 4 with probability
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1
2 . For the sake of simplicity, we only focus on the possible simplifications by “almost
stationary” ε-optimal strategies. Notice that if the initial state is state 2, then this
game reduces to Example 2. So here the value is v = (1

4 ,
1
2 , 1, 0). As mentioned, for

initial state 2, player 1 has no optimal strategy, so S̃ = {1, 3, 4}. Since initial states
3, 4 ∈ S̃ are trivial, we assume the initial state to be 1 ∈ S̃. Consider the strategy ξ
for player 1 which prescribes playing action T1 as long as the play is in state 1, and as
soon as the play visits state 2 then prescribes starting to play a behavior 1

8 -optimal
strategy. This strategy ξ is optimal and clearly satisfies properties (i), (ii), (iii), and
(iv). Note that switching to a behavior strategy when entering state 2 is crucial,
because by stationary strategies player 1 could only guarantee 0 for initial state 2.
Note also that the use of action B1 would violate property (iv).

An alternative proof for Lemma 2.7. We wish to remark that, under the condition
of Lemma 2.7, other Markov optimal strategies exist as well . Let εn be a positive
sequence converging to zero. One can show that the Markov strategy which prescribes
xε1 for the first N1 stages, xε2 for the next N2 stages, and so on, is optimal for a well-
chosen increasing sequence Nn.

Subgame optimality. Note that the Markov strategy f , constructed in section 2,
is “subgame optimal”; namely, the strategy f [h] is optimal for any finite history h.

Alternative rewards and optimality. It is worthwhile to mention that sometimes
other rewards are used to evaluate the long-term average payoffs. The most common
rewards are the following ones:

γ1(s, π, σ) = Esπσ

(
lim inf
N→∞

RN

)
, γ2(s, π, σ) = lim inf

N→∞
Esπσ (RN ) ,

γ3(s, π, σ) = lim sup
N→∞

Esπσ (RN ) , γ4(s, π, σ) = Esπσ

(
lim sup
N→∞

RN

)
,

where RN is the random variable for the average payoff up to stage N ∈ N. It holds
that γ1 ≤ γ2 ≤ γ3 ≤ γ4. Notice that we have used γ = γ2 so far. Mertens and
Neyman [1981] showed that the value is the same for all these rewards. Optimality
and ε-optimality can be defined with respect to any of these four rewards. Sometimes a
fifth alternative is to require uniformity from the optimal strategy; i.e., π is uniformly
optimal for state s ∈ S if

∀δ > 0 ∃N δ: Esπσ (RN ) ≥ vs − δ ∀N ≥ N δ, ∀σ ∈ Σ.

The definition of uniform ε-optimality is similar.

Focussing only on section 2 again, we briefly examine the validity of the results
for all these criteria. First notice that it makes no difference in our results in which
way the strategy of player 1 is optimal. Furthermore, for stationary strategy pairs,
all the above optimality criteria are known to be equivalent (for example, cf. Bew-
ley and Kohlberg [1978]), so the simplifications by stationary strategies remain valid
with respect to all these alternatives. For Markov strategies, however, it is somewhat
different. Notice first that the Markov strategy constructed in section 2 is uniformly
optimal (see the proof of Lemma 2.7). Since γ2 ≤ γ3 ≤ γ4 we have that this Markov
strategy is also optimal for rewards γ3, γ4. However, when player 1 has an optimal
strategy, the existence of Markov optimal strategies for reward γ1 is not straightfor-
ward, not even by using an approach as in the alternative proof for Lemma 2.7.
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Abstract. We consider nonlinear optimal control problems with state constraints and nonneg-
ative cost in infinite dimensions, where the constraint is a closed set possibly with empty interior for
a class of systems with a maximal monotone operator and satisfying certain stability properties of
the set of trajectories that allow the value function to be lower semicontinuous. We prove that the
value function is a viscosity solution of the Bellman equation and is in fact the minimal nonnegative
supersolution.

Key words. viscosity solutions, nonlinear semigroups, accretive operators, dynamic program-
ming, optimal control with state constraints, optimality principles
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1. Introduction. We study optimal control infinite horizon problems with state
constraints in infinite dimensions. Let H be a real Hilbert space and let A be a
maximal monotone operator in H, possibly nonlinear and multivalued. Let U be a
Hilbert space and let f :D(A) × U → H; the precise assumptions on f are stated
in section 2. For x ∈ D(A) (where D(A) denotes the domain of A) and u ∈ L2 ≡
L2(0,∞;U) let y(·) = y(·, x, u) ∈ C([0,∞);H) be the mild solution of the state
equation {

y′(t) +Ay(t) 3 f(y(t), u(t)) for t ≥ 0,
y(0) = x.

(1.1)

Given a lower semicontinuous function g:D(A) → [0,+∞], we seek to minimize the
cost functional

J(x, u) =

∫ ∞

0

(
g(y(t)) + 1

2‖u(t)‖2
)
dt(1.2)

over all controls u ∈ L2, where y(·) = y(·, x, u) is a trajectory of the system (1.1).
The value function V :D(A) → [0,+∞] associated with this problem is

V (x) = inf
{
J(x, u): u ∈ L2(0,∞;U)

}
.(1.3)

Our choice of the running cost g forces a state constraint on the trajectories of the
system (1.1). Namely, let K denote the closure of dom(g) = {x: g(x) is finite}; we
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remark that K may have an empty interior (with respect to D(A)). Then clearly
V (x) = +∞ for x ∈ D(A) \K, so that dom(V ) ⊂ K. Observe that for x ∈ dom(V )
in (1.3) it is enough to take the infimum over all controls u ∈ U(x), where

U(x) =
{
u ∈ L2(0,∞;U): J(x, u) < +∞} ,(1.4)

and we can write

V (x) = inf {J(x, u): u ∈ U(x)} for x ∈ dom(V ) ⊂ K.(1.5)

In particular, for every x ∈ dom(V ) there exists a control u ∈ L2 such that g(y(t))
is finite for almost all t ≥ 0; that is, u is admissible for the state constraint K and
satisfies

y(t, x, u) ∈ K for all t ≥ 0.

We refer to M. Soner [20] for sufficient conditions for existence of admissible controls
at all points in the finite-dimensional case and to P. Cannarsa, F. Gozzi, and M. Soner
[6] for infinite-dimensional systems. We also recall I. Capuzzo-Dolcetta and P. L. Lions
[7] for a general study of constrained viscosity solutions in finite dimensions. In our
study we do not require the condition U(x) 6= ∅ for x ∈ K and thus dom(V ) may be
strictly contained in K.

As usual, following the dynamic programming approach, the value function V is
expected to solve in some weak sense the associated Bellman equation

〈Ax,DV 〉+ sup
u∈U

{−〈f(x, u), DV 〉 − 1
2‖u‖2

}
= g(x) in D(A).(1.6)

In particular, note that for f(x, u) = Bu, where B ∈ L(U,H) is bounded linear, (1.6)
becomes

〈Ax,DV 〉+ 1
2‖B∗DV ‖2 = g(x) in D(A).(1.7)

The main technical problems in proving (1.6) are due to the fact that K, and, conse-
quently, dom(V ), may have an empty interior. A suitable concept of solution, taking
into account this and the singularity of the Hamiltonian outside dom(g), is intro-
duced in section 3. It is clear that even if dom(V ) = D(A), solutions of (1.6) are
never unique, and this ill-posedness of the problem may not be fixed by prescribing
solutions to vanish at a particular point; see the paper by the second author [22] for
some examples.

A finite horizon version of the control problem we study, for a linear system, linear
operator A and convex cost g, and the time-dependent version of (1.7) associated with
it, were studied by P. Cannarsa and G. Di Blasio in [5]. In [5] the authors assume that
U(x) 6= ∅ for x ∈ K and define weak solutions of the evolution equation corresponding
to (1.7) as pointwise limits of increasing sequences of strong solutions of approximate
equations that are associated with unconstrained convex control problems. Strong
solutions are meant in the sense of convex control theory; see V. Barbu and G. Da
Prato [3].

Our approach is different. We directly define solutions of (1.6) as viscosity so-
lutions in the spirit of D. Tataru [24], [25] and M. G. Crandall and P. L. Lions
[15], modifying their definition to take into account the failure of comparison between
super- and subsolutions of (1.6) and to cope with extended real-valued solutions. This
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idea allows us to eliminate the convexity assumption and to extend the framework of
[5] to include certain nonlinear systems; see sections 2 and 6 for precise assumptions
and examples. On the other hand we do not prove general explicit formulas for the
optimal feedback law, as in [5]. This kind of result remains for now a peculiarity
of convex control, where more regular (e.g., convex) value functions are available.
We refer the reader also to [3] for these results in the case of unconstrained control
problems. We prove that the value function in (1.5) is the minimal nonnegative vis-
cosity supersolution of (1.6). To this end we extend to infinite-dimensional systems
certain optimality principles for viscosity supersolutions and subsolutions proved by
the second author in [21] and [22] in finite dimensions.

Our techniques have a broader scope. We decided to treat the infinite horizon
problem without discount factor and the stationary problem (1.6) here because of the
additional technical difficulties it poses, namely, the lack of comparison for viscosity
solutions of the Bellman equation. In the case of the finite horizon problem and the
infinite horizon problem with a positive discount factor, appropriate analogues of our
main result hold and are in fact easier to obtain. When g is Lipschitz, the correspond-
ing Hamilton–Jacobi equations do satisfy comparison and have unique solutions, as is
known from Crandall and Lions [15], which can be used to simplify our proofs. How-
ever, if g is merely extended real-valued and lower semicontinuous, one only expects
uniqueness results in the spirit of our Proposition 2.5.

The plan of the paper is as follows. Our assumptions and statements are discussed
in section 2. The definitions and references for the theory of viscosity solutions, as well
as some preliminary lemmas, are given in section 3. In section 4 we study the rela-
tionship between Hamilton–Jacobi–Bellman equations and value functions of control
problems. In section 5 we complete the proof of our main result. Finally, in section 6
we present some examples of systems and constraints satisfying our assumptions.

2. Preliminaries: Assumptions and statements. H is a fixed real Hilbert
space and A a maximal monotone (equivalently, m-accretive) operator in H. Then
−A generates a strongly continuous semigroup S(t) of contractions on D(A); we refer
the reader to V. Barbu [1] or H. Brézis [4] for the theory of nonlinear semigroups.

The function f in the state equation (1.1) will always satisfy
f :D(A)× U → H is continuous and

there exist L > 0, q ∈ [1, 2) such that for all x, z ∈ D(A), u ∈ U,
‖f(x, u)− f(z, u)‖ ≤ L‖x− z‖ and ‖f(x, u)‖ ≤ L (1 + ‖x‖+ ‖u‖q) .

(2.1)

Note that from (2.1) and Hölder’s inequality, for every x, z ∈ D(A), u ∈ L2, and
t > 0,

‖y(t, z, u)− x‖ ≤ ‖y(t, z, u)− S(t)z‖+ ‖S(t)z − S(t)x‖+ ‖S(t)x− x‖
≤
∫ t

0

‖f(y(s, z, u), u(s))‖ds+ ‖z − x‖+ ‖S(t)x− x‖

≤ L

∫ t

0

(1 + ‖y(s, z, u)‖+ ‖u(s)‖q) ds+ ‖z − x‖+ ‖S(t)x− x‖
≤ Lt+ L‖u‖qL2(0,t;U)t

1− q
2 + ‖z − x‖+ ‖S(t)x− x‖

+ L

∫ t

0

‖y(s, z, u)‖ds,

(2.2)
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and then by Gronwall’s lemma ‖y(t, z, u)‖ stays bounded for t bounded, uniformly in
u bounded in L2 and z bounded in D(A). Using (2.2) again we deduce

y(t, z, u) → x as t ↓ 0 and z → x, uniformly for u bounded in L2(0, T ;U), T > 0.
(2.3)

Our most restrictive, although natural, assumption on the system is one of the
following two stability conditions:{

if un ⇀ u in L2(0, T ;U) for some T > 0 and xn ⇀ x in D(A),
then for every t ∈ (0, T ), y(t, xn, un) ⇀ y(t, x, u) in H,

(W)

or {
if un ⇀ u in L2(0, T ;U) for some T > 0 and xn → x in D(A),
then for every t ∈ (0, T ), y(t, xn, un) → y(t, x, u) in H.

(S)

Conditions (W) and (S) are not directly comparable. Note however that by (2.1)
and Gronwall’s inequality we have that

‖y(t, z, u)− y(t, x, u)‖ ≤ ‖z − x‖eLt,

and therefore (S) is equivalent to its version with xn ≡ x ∈ D(A). Moreover, the
condition that y(·, x, un) converges pointwise to y(·, x, u) in (S) is equivalent to uniform
convergence in C([0, T ];U); see Theorem 2.3.1 in Vrabie [26].

It is well known (and can be easily deduced from the Duhamel principle) that the
weak condition (W) holds if the operator A is linear and f(x, u) = Bu, where B ∈
L(U,H). In particular, our framework extends that in [5]. If instead −A generates a
compact semigroup, then the strong condition (S) is satisfied when f(x, u) = f1(x) +
f2(x)u and fi, i = 1, 2 are Lipschitz; see Proposition 2.7 and Remark 2.8 below.
The condition (S) is also satisfied if f(x, u) = Bu, B ∈ L(U,H) is compact, and
A generates a weakly equicontinuous semigroup; see Remark 2.10 at the end of this
section.

Remark 2.1. All the results we present in this paper hold with trivial changes
even if we require the controls to satisfy the condition u(t) ∈ C ⊂ U for a.e. t ≥ 0,
where C 3 0 is such that L2(0, T ;C) is weakly closed in L2(0, T ;U) for T > 0, for
example, if C is closed and convex. For previous results on convex control problems
with control constraints see also Di Blasio [17].

In what follows, LSC(Ω), USC(Ω), w-LSC(Ω), and w-USC(Ω) will stand for
the spaces of all lower semicontinuous, upper semicontinuous, sequentially weakly
lower semicontinuous, sequentially weakly upper semicontinuous (possibly extended
real-valued) functions on Ω, respectively.

We will always assume that

g:D(A) → [0,+∞](2.4)

is at least lower semicontinuous and denote

K = dom(g) ⊆ D(A).

One can impose state constraints on the system (1.1) on given closed set K by start-
ing off with any g: D(A) → [0,+∞) and setting g ≡ +∞ off K, so that the value
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function V associated with such a running cost satisfies dom(V ) ⊂ K. Obviously
g ∈ LSC(D(A)) if and only if g|K ∈ LSC(K), and asking for g ∈ w-LSC(D(A))
roughly amounts to g|K ∈ w-LSC(K) and the set K to be weakly closed.

We state the main result of the paper, which says that the value function V given
by (1.3) can be uniquely characterized as the minimal nonnegative lower semicontin-
uous supersolution of (1.6). For the definition of viscosity solutions we refer to the
next section. Recall that V : D(A) → [0,+∞] satisfies dom(V ) ⊂ K and is given by
(1.3).

Theorem 2.2. Assume (2.1) and (2.4). Suppose that g ∈ w-LSC(D(A)) (g ∈
LSC(D(A)), respectively). If (W) ((S), respectively) holds, then V is a viscosity so-
lution of (1.6) and it is the minimal nonnegative, sequentially weakly lower semicon-
tinuous (strongly lower semicontinuous, respectively) extended real-valued viscosity
supersolution of (1.6).

Theorem 2.2 will follow from the following series of propositions. The first state-
ment is about the regularity of the value function. Note that the proof we give also
shows existence of optimal controls for our problem; see section 5.

Proposition 2.3. Assume (2.4) and suppose that (1.1) has a unique mild so-
lution for any u ∈ L2(0,∞;U) and x ∈ D(A). Suppose that g ∈ w-LSC(D(A))
(respectively, g ∈ LSC(D(A))). If (W) ((S), respectively) holds then V ∈ w-LSC(D(A))
(V ∈ LSC(D(A)), respectively).

The second statement relates the value function to the Hamilton–Jacobi equation.
Proposition 2.4. Assume (2.1) and (2.4) and suppose that g ∈ LSC(D(A)).

Then the value function V is a viscosity solution of (1.6).
The third statement characterizes the value function through the equation.
Proposition 2.5. Assume (2.1) and (2.4). Suppose that g ∈ w-LSC(D(A))

(respectively, g ∈ LSC(D(A))) and (W) ((S), respectively) holds. Suppose that w ∈
w-LSC(D(A)) (w ∈ LSC(D(A)), respectively) is a nonnegative, extended real-valued
viscosity supersolution of (1.6). Then w ≥ V on D(A), where V is the value function
given by (1.5).

We will prove more than the statement of Proposition 2.5, namely, an optimality
principle for supersolutions of (1.6). We refer to section 5 for the actual statement
of this result, see Lemma 5.5, and to [21] and [22] for similar results in the finite-
dimensional case. Note in particular that from Proposition 2.5 it follows that there
exists a viscosity supersolution of (1.6) which is finite at x if and only if V (x) is finite
and, therefore, if and only if there is at least one control providing a finite cost at x,
i.e., U(x) 6= ∅.

Remark 2.6. If A is linear, −A generates a compact semigroup, f(x, u) = Bu,
where B ∈ L(U,H), and (2.1) and (2.4) hold, then the following holds true (note that
it is stronger than both (W) and (S)):{

if un ⇀ u in L2(0, T ;U) for some T > 0 and xn ⇀ x in D(A),
then for every t ∈ (0, T ), y(t, xn, un) → y(t, x, u) in H.

Then statements a little bit stronger than the ones above hold; e.g., g ∈ LSC(D(A))
implies that V ∈ w-LSC(D(A)), etc.

We continue this section by proving the sufficient condition for (S) that we men-
tioned above.

Proposition 2.7. Suppose that f(y, u) = f1(y) + f2(y)u, where f1: D(A) → H
and f2: D(A) → L(U,H) are Lipschitz. If −A generates a compact semigroup then
(S) holds.
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Proof. Fix T > 0 and x̂ ∈ D(A) and suppose that un ⇀ u∞ in L2(0, T ;U). Then
{un} is bounded in L2(0, T ;U). For n = 1, 2, . . . ,∞ and w ∈ C([0, T ];H) denote by
En[w](·) the mild solution y(·) of{

y′ +Ay 3 f1(w) + f2(w)un in [0, T ],
y(0) = x̂.

Then for every 0 < t ≤ T , En:C ([0, t];H) → C ([0, t];H) and we claim that with
respect to the sup-norm in C ([0, t];H) the map

Ek
n is

Lk(
√
T + C)ktk/2√

k!
− Lipschitz for every k = 1, 2, . . . ,(2.5)

where L denotes a Lipschitz constant for f1 and f2, and C = maxn{‖un‖L2(0,T ;U)}.
If w1, w2 ∈ C ([0, t];H) then for every t ∈ [0, T ],

‖En[w1]− En[w2]‖L∞(0,t;H)

≤
∫ t

0

(‖f1(w1(s))− f1(w2(s))‖+ ‖f2(w1(s))− f2(w2(s))‖‖un(s)‖) ds

≤ L(t+ C
√
t)‖w1 − w2‖L∞(0,t;H) ≤ L

√
t(
√
T + C)‖w1 − w2‖L∞(0,t;H),

and (2.5) holds if k = 1. Suppose that (2.5) holds for k ≥ 1. Then

‖Ek+1
n [w1]− Ek+1

n [w2]‖L∞(0,t;H) ≤
∫ t

0

‖f1(E
k
n[w1](s))− f1(E

k
n[w2](s))‖ds

+

∫ t

0

‖f2(E
k
n[w1](s))− f2(E

k
n[w2](s))‖‖un(s)‖ds

≤
∫ t

0

L
Lk(

√
T + C)ksk/2√

k!
(1 + ‖un(s)‖)

·‖w1 − w2‖L∞(0,s;H)ds

≤ Lk+1(
√
T + C)k+1t(k+1)/2√

(k + 1)!
‖w1 − w2‖L∞(0,t;H),

since ∫ t

0

sk/2(1 + ‖un(s)‖)ds ≤ 2
k+2 t

k/2+1 + 1√
k+1

t(k+1)/2‖un‖L2(0,T ;U).

Then (2.5) follows by induction.
In particular, Ek

n is a contraction for big k. Note that y′ +Ay 3 f1(y) + f2(y)un
if and only if y is a fixed point of En: y = En[y]. For n = 1, 2, . . . ,∞ denote
yn(·) = y(·, x̂, un). Then by (2.5) yn can be obtained as a limit of iterations, starting
from the constant function 0

yn = lim
k→∞

Ek
n[0].

We claim that

‖yn−Ek
n[0]‖L∞(0,T ;H) ≤

(
T‖f1(0)‖+C

√
T‖f2(0)‖+ sup

s∈[0,T ]

‖S(s)x̂‖
) ∞∑
i=k

(L(T+C
√
T ))i√

i!
.

(2.6)
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From (2.5) for any m > k,

‖Em
n [0]− Ek

n[0]‖L∞(0,T ;H) ≤
m−1∑
i=k

‖Ei+1
n [0]− Ei

n[0]‖L∞(0,T ;H)

≤ ‖En[0]‖L∞(0,T ;H)

m−1∑
i=k

(L(T+C
√
T ))i√

i!
.

(2.7)

Since

‖En[0]‖L∞(0,T ;H) ≤ ‖En[0]− S(·)x̂‖L∞(0,T ;H) + sup
s∈[0,T ]

‖S(s)x̂‖

≤
∫ T

0

‖f1(0) + f2(0)un(s)‖ds+ sup
s∈[0,T ]

‖S(s)x̂‖,

letting m→∞ in (2.7) and Hölder’s inequality give (2.6).
We will prove that

lim
n→∞ ‖yn − y∞‖L∞(0,T ;H) = 0.(2.8)

Since for every k ≥ 1,

y∞ − yn =
(
y∞ − Ek

∞[0]
)

+
(
Ek
∞[0]− Ek

n[0]
)

+
(
Ek
n[0]− yn

)
and from (2.6) y∞−Ek

∞[0] and Ek
n[0]−yn go to 0 in L∞(0, T ;H) as k →∞, uniformly

in n, to prove (2.8) it is enough to show that

lim
n→∞ ‖Ek

∞[0]− Ek
n[0]‖L∞(0,T ;H) = 0 for every k ≥ 1.(2.9)

Since un → u∞ weakly in L2(0, T ;H), it follows that f1(0) + f2(0)un → f1(0) +
f2(0)u∞ weakly in L1(0, T ;H), and then En[0] → E∞[0] uniformly on [0, T ] as n→∞
by the Baras theorem; see, e.g., Corollary 2.3.1 in [26]. Thus (2.9) holds for k = 1.
Suppose that (2.9) is proved for k ≥ 1. Then fi(E

k
n[0]), i = 1, 2, uniformly converge

to fi(E
k
∞[0]) and then f1(E

k
n[0]) + f2(E

k
n[0])un → f1(E

k
∞[0]) + f2(E

k
∞[0])u∞ weakly

in L1(0, T ;H), and using the Baras theorem again gives (2.9) for k + 1. Therefore,
(2.9) is proved by induction, and consequently (2.8) is satisfied, and the proof of the
proposition is complete, since, as observed above, (S) is equivalent to its version with
xn = x̂.

Remark 2.8. The result of Proposition 2.7 has independent interest. However,
since the proof of the main result of this paper requires condition (2.1) on the vector
field f , there are really two cases where we can apply Proposition 2.7. Either f2 ≡
B ∈ L(U,H) is constant, or we choose our controls in the restricted set L2(0,+∞;C),
where C is convex, closed, and bounded in U ; see Remark 2.1. Note also that the
proof of Proposition 2.7 shows existence and uniqueness of mild solutions of y′+Ay 3
f1(y) + f2(y)u for any maximal monotone operator A.

Remark 2.9. Let Φ: H → R ∪ {+∞} be a lower semicontinuous and convex
function dom(Φ) 6= ∅. Then its subgradient ∂Φ is an example of a multivalued,
maximal monotone operator. Note that for our purposes it is not restrictive to assume
that Φ ≥ 0. In fact, if (x0, p0) ∈ ∂Φ, then defining

Φ̃(x) = Φ(x)− Φ(x0)− 〈p0, x− x0〉,
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we get Φ̃(x0) = 0 and (x0, 0) ∈ ∂Φ̃. In particular ∂Φ̃ = ∂Φ − p0 and Φ̃ ≥ 0, since Φ̃
is convex. Therefore, for A = ∂Φ̃ the properties of the system (1.1) are unaffected.

Assume now that Φ satisfies the following coercivity condition, namely, dom(Φ) ⊂
V ⊂ H, where V is a Hilbert space compactly and algebraically imbedded into H,
and there are two functions ω, ρ: [0,+∞) → [0,+∞), ρ nondecreasing, such that

ω(‖y‖V ) ≤ ρ(‖y‖) + Φ(y) and lim
r→+∞ω(r) = +∞.

Then for all λ ≥ 0 the sublevel set {y ∈ H: ‖y‖2 + Φ(y) ≤ λ} is bounded in V and is
hence compact in H. This means that Φ is of compact type, which is equivalent to
saying that −∂Φ generates a compact semigroup; see [26, Proposition 2.2.2].

The situation we just described appears in the so-called abstract parabolic varia-
tional inequalities, where we are given an operator in H of the form A = (Ã+ ∂ϕ) ∩
H × H. The operator Ã is supposed linear, bounded, and symmetric; Ã: V → V ′;
V ⊂ H ⊂ V ′; V is a Hilbert space compactly and algebraically imbedded into H; V
dense in H. Moreover, Ã satisfies for a > 0, b ∈ R,

〈Ãy, y〉 ≥ a‖y‖2
V + b‖y‖2, y ∈ V.

The function ϕ: H → R ∪ {+∞} is supposed to be nonnegative, lower semicontin-
uous and convex, dom(ϕ) 6= ∅. For simplicity of notation we suppose Ã monotone
(otherwise b < 0 and one has to consider Ã − bI in the following). Then by defining
Φ: H → R ∪ {+∞},

Φ(y) =

{
1
2 〈Ãy, y〉+ ϕ(y), y ∈ V,
+∞ y ∈ H\V,

we get ∂Φ = Ã + ∂ϕ and we fall into the situation above, namely, the operator
−A = −∂Φ generates a compact semigroup, and Proposition 2.7 applies.

Remark 2.10. Other situations are known in the literature where our condition
(S) is satisfied. We can consider systems of the form

y′(t) +Ay(t) 3 Bu(t),

where −A generates a weakly equicontinuous semigroup, B ∈ L(U,H) is compact,
and our set of admissible controls is restricted to L2(0,+∞;BU

R ) for some R > 0.
For the proof of this statement, see [26, Theorem 2.9.2]. See also Remark 2.1 and
section 6 for an explicit example.

3. Viscosity solutions. Over the last decade substantial progress in the theory
of Hamilton–Jacobi–Bellman–Isaacs equations in infinite-dimensional spaces has been
made due to the introduction of the notion of viscosity solution. In particular, very
general results have been obtained for equations with unbounded terms; see, e.g. [18],
[24], [15], and [25].

We seek to solve the partial differential equation

〈Ax,Du〉+ F (x, u(x), Du) = 0 in Ω,(3.1)

where Ω ⊆ D(A). Whenever the function u is regular enough, the derivative Du
is understood in the sense of Fréchet and is identified with an element of H. Thus
F : Ω × R × H → R is appropriate. However, in general our solutions will not be
smooth in the above sense and we need to relax the concept of solution. In case of a
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bounded A (see [10], [11], [12]) the theory of viscosity solutions for (3.1) is not much
different from the finite-dimensional one for which we refer the reader to [8]. For an
unbounded A one additional difficulty is in the interpretation of the term 〈Ax̂,Du(x̂)〉
when x̂ 6∈ D(A). The classical approach (see, e.g., work of Barbu and Da Prato [3]) is
restricted to equations with convex and Lipschitz ingredients and linear A. Crandall
and Lions [13], [14], [16] introduced a notion of viscosity solution suitable for a linear
A and more general nonlinearities F . Ishii [18] deals with the case of A = ∂h, where h
is convex and lower semicontinuous. The definition of solution suitable for (3.1) with
no additional assumptions on A besides maximal monotonicity has been introduced
by Tataru [24] and later refined by Crandall and Lions [15] and Tataru [25]. Here we
will follow Crandall–Lions’s approach [15].

As explained in [24], for ϕ ∈ C1(H) it is natural to interpret the unbounded
term 〈Ax,Dϕ〉 in terms of the derivatives of ϕ along the trajectories of S(t). This
motivates the following definition.

Definition 3.1. For a function Φ: D(A) → R and x̂ ∈ D(A) define

D−
AΦ(x̂) = lim inf

x→x̂
h↓0

Φ(x)− Φ (S(h)x)

h
and D+

AΦ(x̂) = lim sup
x→x̂
h↓0

Φ(x)− Φ (S(h)x)

h
.

We refer to [15] and [19] for basic properties of these operators. Next we introduce
“test functions.” Lip(Ω) will denote the space of all Lipschitz continuous functions
on Ω. Given ψ ∈ Lip(Ω), L(ψ) will denote its best Lipschitz constant. Hereafter we
denote with P the projection of H onto D(A).

Definition 3.2. We will say that Φ = ϕ + ψ ∈ C1(H) + Lip(H) is a subtest
(supertest, respectively) function if

ϕ(Px) ≤ ϕ(x) and ψ(Px) ≤ ψ(x) for x ∈ H,(3.2)

(ϕ(Px) ≥ ϕ(x) and ψ(Px) ≥ ψ(x) for x ∈ H, respectively) .(3.3)

Remark 3.3. As explained in [15], the restrictions on ψ in (3.2) and (3.3) are
made only for notational convenience. Since only the values of ψ on D(A) matter,
one can always extend ψ from D(A) to all of H via ψ(x) = ψ(Px) without increasing
its Lipschitz constant to guarantee that (3.2) and (3.3) hold.

The notion of viscosity solution we are about to introduce is specific for equations
of the form (1.6) but trivially adapts to include more general equations arising in
optimal control and differential games. The technical reasons for introducing a new
concept instead of following [15] exactly are presented in Remark 3.7 below along with
comments explaining the relationship between this notion and the one due to Tataru
and Crandall–Lions.

Given an extended real-valued function w on D(A), we denote by w∗ and w∗ its
upper and lower semicontinuous envelopes, respectively; i.e., for x ∈ D(A),

w∗(x) = lim sup
D(A)3y→x

w(y), w∗(x) = lim inf
D(A)3y→x

w(y).

Definition 3.4. Suppose that (2.1) holds and let g as in (2.4) be lower semi-
continuous. Then w ∈ USC(D(A)) (w ∈ LSC(D(A)), respectively) is a viscosity
subsolution (respectively, supersolution) of (1.6) if for every subtest (respectively, su-
pertest) function Φ = ϕ + ψ ∈ C1(H) + Lip(H) and a local maximum (respectively,
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minimum) x̂ ∈ dom(w) of w − Φ relative to D(A) we have

D−
AΦ(x̂) + sup

u∈U

{−〈f(x̂, u), Dϕ(x̂)〉 − L(ψ)‖f(x̂, u)‖ − 1
2‖u‖2

} ≤ g∗(x̂),(3.4)

(
D+
AΦ(x̂) + sup

u∈U

{−〈f(x̂, u), Dϕ(x̂)〉+ L(ψ)‖f(x̂, u)‖ − 1
2‖u‖2

} ≥ g(x̂)
)
.(3.5)

A function w (not necessarily continuous) defined on D(A) is a solution of (1.6) if
w∗ is a subsolution and w∗ is a supersolution of (1.6).

In the following we write Br(x) for the closed ball in H of radius r centered at x.
Note that in both (3.4) and (3.5) one can replace L(ψ) by a local Lipschitz constant
for ψ. Indeed, suppose that ψ is L−Lipschitz on Br(x̂). Let Q denote the (orthogonal)
projection onto Br(x̂) ∩D(A) and put ψ̃(x) = ψ(QPx). Then ψ̃(Px) = ψ̃(x) for all
x, ψ̃ is L−Lipschitz on H and coincides with ψ near x̂ on D(A), and therefore can
be used in place of ψ. Also by modifying ϕ away from x̂ using an appropriate cut-off
technique one can achieve that it is not restrictive to suppose ϕ ∈ Lip(H); this can
be done without destroying the subtest (or supertest) property.

Remark 3.5. Note that if u is a solution of (1.6) then the supersolution condition
(3.5) may have to be checked at all points x̂ ∈ dom(w∗), even for x̂ ∈ dom(w∗) \
dom(g), while the subsolution condition (3.4) is meaningful only at points x̂ ∈ D(A)
such that both w and g are locally bounded from above near x̂ on D(A), since other-
wise either x̂ 6∈ dom(w∗) or g∗(x̂) = +∞ and (3.4) is trivially satisfied. In particular,
it follows that (3.4) trivializes unless x̂ ∈ dom(g∗) ⊂ int(K) (the interior is taken
with respect to D(A)). This shows that in our problem, at least when K has an
empty interior, the role of subsolutions is neither particularly meaningful nor helpful.
We considered the Hamilton–Jacobi–Bellman equation (1.6) for our problem in the
whole of D(A) only for notational convenience. As a matter of fact the supersolution
condition really plays a role only in K = dom(g), as the following result shows.

Proposition 3.6. Let Ω ⊂ D(A) be relatively open and u ∈ LSC(D(A)) be
bounded from below. Then u is a supersolution of

〈Ax,Du〉 = +∞ in Ω(3.6)

if and only if u ≡ +∞ in Ω.
In the proof of Proposition 3.6 (and also in the proof of Lemma 5.5 below) we will

use a perturbed optimization technique due to Tataru (see [25] and also Crandall–
Lions [15]). For x, y ∈ D(A) define the Tataru distance d by

d(x, y) = inf
t≥0

{ t+ ‖x− S(t)y‖ } ;

d is almost a metric (it lacks symmetry). In [25] Tataru proved a version of the
classical Ekeland ε-variational principle with d in place of the norm. Subsequently,
this optimization technique was successfully employed in proofs of comparison and
uniqueness of viscosity solutions by Tataru and then Crandall and Lions; see [24],
[15], [25], and the proof of Lemma 5.5.

Proof of Proposition 3.6. Of course we only need to show the necessary part.
Suppose that u(z) < +∞, z ∈ Ω. Choose r > 0 such that B2r(z) ∩ D(A) ⊂ Ω and
pick any y ∈ Br(z) ∩D(A). Since u is bounded from below, by choosing sufficiently
large M > 0 we can guarantee that

g(z) + σ < inf {g(x): x ∈ D(A), ‖x− z‖ = 2r},(3.7)
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where σ > 0 and g(x) = u(x) + M‖x − y‖2 (inf ∅ = +∞). For ε > 0 use Tataru’s
perturbed optimization (see [25]) to find x̂ ∈ B2r(z)∩D(A) such that the mapping x 7→
g(x)+ε d(x, x̂) has at x̂ finite minimum over B2r(z)∩D(A). From (3.7) it follows that
if ε is sufficiently small then ‖x̂−z‖ < 2r and, consequently, u(x)+M‖x−y‖2+ε d(x, x̂)
has at x̂ local minimum relative to Ω. Denoting Φ(x) = −M‖x− y‖2 − ε d(x, x̂), Φ is
a supertest function and

D+
AΦ(x̂) ≤ −2M〈A◦y, x̂− y〉+ ε < +∞

(see Lemma 2.2 in [15]), which contradicts (3.6).
Remark 3.7. We recall here the definition of solution employed by Crandall and

Lions in [15] and compare it with ours. In order to interpret the term “Dψ” for merely
Lipschitz ψ in the general case of (3.1), for (x, r, p) ∈ Ω × R × H and λ > 0, they
introduce the notation

Fλ(x, r, p) = inf {F (x, r, p+ q): q ∈ H, ‖q‖ ≤ λ}
and

Fλ(x, r, p) = sup {F (x, r, p+ q): q ∈ H, ‖q‖ ≤ λ} .
A function u ∈ USC(Ω) (u ∈ LSC(Ω), respectively) is a CL-viscosity subsolution
(respectively, CL-supersolution) of (3.1) with a continuous F if for every subtest
(respectively, supertest) function Φ = ϕ+ψ ∈ C1(H)+Lip(H) and a local maximum
(respectively, minimum) x̂ ∈ dom(u) of u− Φ relative to Ω, we have

D−
AΦ(x̂) + FL(ψ)(x̂, u(x̂), Dϕ(x̂)) ≤ 0,(

D+
AΦ(x̂) + FL(ψ)(x̂, u(x̂), Dϕ(x̂)) ≥ 0, respectively

)
.

These definitions still make sense for extended real-valued F . In this case, as well as
in the case of discontinuous F , the definitions of sub- and supersolutions have to be
modified in a usual way by inserting appropriate semicontinuous envelopes (e.g., F∗
for the subsolution condition and F ∗ for supersolutions).

Note that if F (x, r, p) = supu∈U
{−〈f(x, u), p〉 − 1

2‖u‖2
}−g(x) is as in (1.6) then

both notions of supersolutions clearly coincide, while the notion of Crandall–Lions’
subsolution is stronger than the one given in Definition 3.4. The reason for introducing
a new concept of solution as in Definition 3.4 is to eliminate “error terms” which
appear while proving that the value function of a control problem or a differential
game solves the associated Hamilton–Jacobi equation; see, e.g., the proof in the next
section and also [12], [24], and [19]. Such error terms can be eliminated by means
of comparison principle if it holds for the equation under consideration; see [12] and
[19] for the appropriate argument. Problems of type (1.6) that we study here fail
to have unique solutions and we dispense with error terms by relaxing the notion
of solution. We observe however that our notion applied to Hamiltonians satisfying
typical conditions required to carry out the proof of uniqueness of viscosity solutions
yields the same unique solution as the one in [15].

Next two auxiliary lemmas on change of variables will be used in the proof of the
main result in section 5. For convenience, Lemmas 3.8 and 3.9 are stated for general
Hamiltonians and Crandall–Lions’s notion of supersolution. We will apply them to
Hamiltonians as in (1.6), recalling that in this case, by Remark 3.7, the two notions
of supersolutions as given in [15] and in Definition 3.4 are equivalent.
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Lemma 3.8. Suppose that w: Ω → [0,+∞] is a CL-supersolution of

〈Ax,Dw〉+ F (x,Dw) = 0 in Ω,(3.8)

where Ω ⊆ D(A) and F : Ω ×H → R is upper semicontinuous and locally uniformly
continuous in its second variable. Then W (x) = 1− e−w(x) is a CL-supersolution of

〈Ax,DW 〉+ F (x,W (x), DW ) = 0 in Ω ∩ {x:W (x) < 1} = Ω ∩ dom(w),(3.9)

where F (x, r, p) = (1− r)F (x, p/(1− r)).
Proof. For r ∈ R∪ {+∞} put ρ(r) = 1− e−r, where ρ(+∞) = 1; then W = ρ(w)

and 0 ≤ W ≤ 1, but W < 1 on dom(w). Let Φ = ϕ+ ψ be a supertest function and
suppose that W −Φ has a local minimum (relative to Ω∩dom(w)) at x̂ ∈ Ω∩dom(w),
so W (x̂) < 1. Without loss of generality we may assume that

ϕ(x̂) = W (x̂), ψ(x̂) = 0, ϕ+ ψ < 1, ϕ < 1 on H.(3.10)

Locally near x̂ on Ω ∩ dom(w),

W ≥ ϕ+ ψ = ρ(ϕ̃) + e−ϕ̃eϕ̃ψ = ρ
(
ϕ̃+ ρ−1

(
eϕ̃ψ

))
,

with equality at x̂, where ϕ̃ = ρ−1 (ϕ) = − ln(1 − ϕ). It follows that w − ϕ̃ − ψ̃ has
a local minimum relative to Ω at x̂, where ψ̃ = ρ−1(eϕ̃ψ) = − ln(1 − ψ

1−ϕ ). We will

show that ϕ̃+ ψ̃ is a supertest function. Clearly ϕ̃(Px) ≥ ϕ̃(x) for all x, ϕ̃ ∈ C1(H)
and Dϕ̃(x̂) = Dϕ(x̂)/(1−W (x̂)). Formally (but strictly a.e. in every direction)

Dψ̃(x) =
(1− ϕ(x))Dψ(x) + ψ(x)Dϕ(x)

(1− ϕ(x))(1− ϕ(x)− ψ(x))
→ Dψ(x̂)

1−W (x̂)
as x→ x̂.

Therefore,

L(ψ̃|Br(x̂)) ≤
L(ψ)

1−W (x̂)
+ o(1) as r ↓ 0,

and from (3.8) and the locally uniform continuity of H

D+
A(ϕ̃+ ψ̃)(x̂) + F

L(ψ)
1−W (x̂) (x̂, Dϕ(x̂)/(1−W (x̂))) ≥ 0.(3.11)

Now note that for any y ∈ D(A) and h > 0, from the mean value theorem

ϕ̃(y) + ψ̃(y)− ϕ̃ (S(h)y)− ψ̃ (S(h)y)

= ln (1− ϕ (S(h)y)− ψ (S(h)y))− ln(1− ϕ(y)− ψ(y))

= 1
α (ϕ(y) + ψ(y)− ϕ (S(h)y)− ψ (S(h)y))

for some number α between 1 − ϕ (S(h)y) − ψ (S(h)y) and 1 − ϕ(y) − ψ(y). From
(3.10) α→ 1−W (x̂) as y → x̂ and h ↓ 0 and consequently

D+
A(ϕ̃+ ψ̃)(x̂) ≤ 1

1−W (x̂)
D+
A(ϕ+ ψ)(x̂).

Combining this with (3.11) gives

D+
A(ϕ+ ψ)(x̂) + F

L(ψ)
(x̂,W (x̂), Dϕ(x̂)) ≥ 0

and (3.9) follows.
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Lemma 3.9. Let Ω ⊆ D(A) and F : D(A) × [0, 1] × H → R ∪ {+∞} be upper
semicontinuous. Suppose that W : Ω → [0, 1) is a CL-supersolution of

〈Ax,DW 〉+ F (x,W (x), DW ) = 0 in Ω.

Define

W̃ (x) =

{
W (x) if x ∈ Ω,

1 if x ∈ D(A)\Ω.

If F (x, 1, 0) ≥ 0 for x ∈ D(A)\Ω and W̃ ∈ LSC(D(A)), then it is a CL-supersolution
of

〈Ax,DW̃ 〉+ F (x, W̃ (x), DW̃ ) ≥ 0 in D(A).

Proof. Suppose that W̃−Φ has a local minimum relative to D(A) at x̂ ∈ D(A). If
x̂ ∈ Ω there is nothing to show. Otherwise, since Φ is a supertest function, it follows
that

Φ(x̂)− Φ(x) ≥ Φ(x̂)− Φ(Px) ≥ W̃ (x̂)− W̃ (Px) = 1− W̃ (Px) ≥ 0,

provided x ∈ H is sufficiently close to x̂, so Φ has a local maximum relative to H at
x̂ and therefore ‖Dϕ(x̂)‖ ≤ L(ψ). Moreover,

D+
AΦ(x̂) ≥ lim sup

h↓0

Φ(x̂)− Φ (S(h)x̂)

h
≥ 0

and then

D+
AΦ(x̂) + FL(ψ)

(
x̂, W̃ (x̂), Dϕ(x̂)

)
≥ F (x̂, 1, 0) ≥ 0.

4. Value functions, dynamic programming principle and Hamilton–
Jacobi equations. In this section we develop the dynamic programming approach
for the value function in (1.3) and an auxiliary value function which will be helpful
in the proof of the main result. Let f and g be as in (2.1) and (2.4), respectively. In
the following for t, λ > 0, x ∈ D(A), u ∈ L2, and w:D(A) → R, we denote

J(t, x, u) =

∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds

and

Jλ(t, x, u, w) =

∫ t

0

e−λs−J(s,x,u)
(
g(y(s)) + 1

2‖u(s)‖2
)
ds+ e−λt−J(t,x,u)w(y(t)),

(4.1)

where y(·, x, u) is the trajectory of the system (1.1) corresponding to the choice of
control u(·) and initial point x ∈ D(A).

We start considering the value function V given by (1.3),

V (x) = inf
u∈L2(0,+∞;U)

∫ ∞

0

(
g(y(t)) + 1

2‖u(t)‖2
)
dt
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and improve the representation formula in (1.5).
Lemma 4.1. Assume that V (x) is finite. Then there is Mx > 0 such that

V (x) = inf {J(x, u): u ∈ U(x), ‖u‖2 ≤Mx} .
Proof. The proof is immediate if we observe that by the assumption and the

fact that g is nonnegative for all ε-optimal controls u for V (x) with ε ≤ 1, we have
1
2‖u‖2

2 < V (x) + ε, and then we can take, e.g., Mx =
√

2(V (x) + 1).
As a consequence the following dynamic programming principle holds.
Lemma 4.2. Assume that V (x) is finite. Then there is a constant Mx > 0 such

that the constrained value function V satisfies, for all t ≥ 0,

V (x) = inf {J(t, x, u) + V (y(t, x, u)): u ∈ U(x), ‖u‖2 ≤Mx} for x ∈ dom(V ).

Proof. If x ∈ dom(V ), the proof of the fact that

V (x) = inf
u∈U(x)

{J(t, x, u) + V (y(t, x, u))}

is completely standard and we skip it. Since V is nonnegative by definition, the rest
of the statement follows by the same argument as in the proof of Lemma 4.1.

We now proceed with the proof of Proposition 2.4. We start recalling a prelimi-
nary technical lemma, which is based on ideas of Tataru, see [24] and [25], but for this
particular version of it we refer the reader to the paper by the authors and Świe↪ch
[19].

Lemma 4.3. Let Φ be a subtest function, x̂ ∈ D(A), and D−
AΦ(x̂) < +∞. Then

there exists a modulus ρ (i.e., ρ: [0,+∞) → [0,+∞) is continuous, nondecreasing and
ρ(0) = 0) such that if v ∈ L1(0, t;H) and y(·) solves{

y′(s) +Ay(s) 3 v(s) for 0 ≤ s ≤ t,
y(0) = ŷ,

(4.2)

then

Φ(y(t))− Φ(ŷ) ≤ −tD−
AΦ(x̂) +

∫ t

0

〈Dϕ(y(s)), v(s)〉ds+ L(ψ)

∫ t

0

‖v(s)‖ds

+ tρ
(∫ t

0

‖v(s)‖ds+ sup
s∈[0,t]

‖S(t)x̂− x̂‖
)(4.3)

for all 0 ≤ t < t̄, uniform for v bounded in L1(0, t̄;H) and ŷ sufficiently close to x̂.
Observe that a supertest version of the previous lemma holds as well by replacing

Φ with −Φ. To make the proof of Proposition 2.4 below self-contained we don’t
assume the lower semicontinuity of V (Proposition 2.3), and this is being taken care
of in the course of the proof by introducing V∗. The proof simplifies somewhat if
Proposition 2.3 is proved first.

Proof of Proposition 2.4. 1. We start with the supersolution case. Suppose that
V∗−Φ has a local minimum at x̂ ∈ dom(V∗) ⊂ K and V∗(x̂) = Φ(x̂). We start proving
that

D+
AΦ(x̂) > −∞.(4.4)

As we mentioned above, it is not restrictive to assume that Φ is Lipschitz. Let ε ∈ (0, 1]
be fixed and h > 0 be sufficiently small. Let xn → x̂ be such that V (xn) → V∗(x̂).
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From the proof of the dynamic programming principle Lemma 4.2 we can find a
control uhn with ‖uhn‖L2(0,h) ≤Mx̂ depending only on x̂ such that

εh+ V (xn) ≥
∫ h

0

(
g(y(s, xn, u

h
n)) + 1

2‖uhn(s)‖2
)
ds+ V (y(h, xn, u

h
n)),

and then as in (2.2), since g is nonnegative,

1
2

∫ h

0

‖uhn(s)‖2ds ≤ V (xn)− V∗(x̂) + V∗(x̂)− V∗(y(h, xn, uhn)) + εh

≤ V (xn)− V∗(x̂) + Φ(x̂)− Φ(y(h, xn, u
h
n)) + εh

≤ V (xn)− V∗(x̂) + Φ(x̂)− Φ(S(h)x̂) + εh

+ L(Φ)‖S(h)x̂− y(h, xn, u
h
n)‖

≤ V (xn)− V∗(x̂) + Φ(x̂)− Φ(S(h)x̂) + Cx̂h+ L(Φ)Lh1−q/2‖uhn‖qL2(0,h)

+ L(Φ)‖xn − x̂‖,
where we put Cx̂ to emphasize the dependence on x̂. Rearranging the terms we can
find M > 0 depending only on L, L(Φ), and q such that

V (xn)−V∗(x̂)+L(Φ)‖xn−x̂‖+Φ(x̂)−Φ(S(h)x̂)+Cx̂h ≥ h
(

1
2r

2
n − L(Φ)Lrqn

) ≥ −Mh,

where rn = ‖uhn‖L2(0,h)/
√
h, and then, letting n→ +∞ first, (4.4) follows.

We now argue by contradiction and suppose that

D+
AΦ(x̂) + sup

u∈U
{−〈f(x̂, u), Dϕ(x̂)〉+ L(ψ)‖f(x̂, u)‖ − 1

2‖u‖2} − g(x̂) < −2θ < 0.

That is, for all u ∈ L2(0,+∞;U) and t ≥ 0 we have

D+
AΦ(x̂)− 〈f(x̂, u(t)), Dϕ(x̂)〉+ L(ψ)‖f(x̂, u(t))‖ − 1

2‖u(t)‖2 − g(x̂) < −2θ < 0.

Observe that for xn → x̂ and V (xn) → V∗(x̂), by the proof of Lemma 4.2, the
constants Mxn ,Mx̂ can be chosen uniformly bounded in n, say, by M . From (2.2),
(2.3), and the assumptions on g, for every sufficiently small t > 0 and all u ∈ U(xn),
‖u‖L2 ≤M , we then have

D+
AΦ(x̂)−〈f(yn(s), u(s)), Dϕ(yn(s))〉+L(ψ)‖f(yn(s), u(s))‖− 1

2‖u(s)‖2−g(yn(s)) < −θ
for all s ∈ [0, t], where yn(·) = y(·, xn, u). Integrating from 0 to t gives

t
(
D+
AΦ(x̂) + θ

) ≤ ∫ t

0

(〈f (yn(s), u(s)) , Dϕ(yn(s))〉 − L(ψ)‖f(yn(s), u(s))‖)ds
+

∫ t

0

(
g (yn(s)) + 1

2‖u(s)‖2
)
ds

for every u ∈ U(xn), ‖u‖2 ≤M , and thus

t
(
D+
AΦ(x̂) + θ

) ≤ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(
g (yn(s)) + 1

2‖u(s)‖2
)
ds

+

∫ t

0

(〈f (yn(s), u(s)) , Dϕ(yn(s))〉 − L(ψ)‖f(yn(s), u(s))‖)ds}.
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We now use the dynamic programming principle Lemma 4.2, Lemma 4.3 (its super-
test version), and (2.3) and get, for t > 0 sufficiently small,

tθ ≤ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(g(yn(s)) + 1
2‖u(s)‖2)ds+ Φ(yn(s))− Φ(xn)

}
+ tρ(o(1) + ‖xn − x̂‖)

≤ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(g(yn(s)) + 1
2‖u(s)‖2)ds+ V (yn(s))− V∗(x̂)

}
+ Φ(x̂)− Φ(xn) + tρ(o(1) + ‖xn − x̂‖)

= V (xn)− V∗(x̂) + Φ(x̂)− Φ(xn) + tρ(o(1) + ‖xn − x̂‖),
where o(1) is independent of n. Hence a contradiction as n → +∞ first and t ↓ 0
next.

2. We now turn to the proof that V is a subsolution. Let Φ be a Lipschitz
continuous subtest function and assume that V ∗ − Φ attains a maximum at x̂ ∈
dom(V ∗); of course this implies that x̂ ∈ int(dom(V ∗)) ⊂ int(K) as V is nonnegative.
Moreover, it is not restrictive to assume V ∗(x̂) = Φ(x̂).

First we will prove that D−
AΦ(x̂) < +∞. Choose xn → x̂ such that V (xn) →

V ∗(x̂). We may also suppose that x̂ ∈ dom(g∗), as otherwise (3.4) is automatically
satisfied. Then for sufficiently small t > 0 and large n, the control u(s) ≡ 0 for
s ∈ [0, t] and suitably defined afterward is an admissible element of U(xn). Note to
this end that V is locally bounded at x̂; hence U(x) 6= ∅ for x close to x̂. From
x̂ ∈ dom(g∗) and (2.3) it follows that g(y(s, xn, u)) stay bounded uniformly in t small
and n big. Denote this upper bound by Cx̂; then by Lemma 4.2 we have

V (xn)− V (y(t, xn, u)) ≤
∫ t

0

g(y(s, xn, u))ds ≤ Cx̂t.

Letting n→∞ and proceeding as in (2.2) gives, for t sufficiently small,

Cx̂t ≥ V ∗(x̂)− V ∗(y(t, x̂, u)) ≥ Φ(x̂)− Φ(y(t, x̂, u))

≥ Φ(x̂)− Φ(S(t)x̂)− L(Φ)b‖y(t, x̂, u)− S(t)x̂‖ ≥ Φ(x̂)− Φ(S(t)x̂)− L(Φ)Ct,

with some constant C > 0, which implies that D−
AΦ(x̂) < +∞.

We now again argue by contradiction and suppose that

D−
AΦ(x̂) + sup

u∈U

{−〈f(x̂, u), Dϕ(x̂)〉 − L(ψ)‖f(x̂, u)‖ − 1
2‖u‖2

}− g∗(x̂) > 2θ > 0.

Then there is u∗ ∈ U such that

D−
AΦ(x̂)− 〈f(x̂, u∗), Dϕ(x̂)〉 − L(ψ)‖f(x̂, u∗)‖ − g∗(x̂)− 1

2‖u∗‖2 > 2θ.

Let xn → x̂ be such that V (xn) → V ∗(x̂). By the proof of Lemma 4.2 we can
choose the constants Mxn ,Mx̂ uniformly bounded, say, by M . Note that from x̂ ∈
int(dom(V ∗)) and by (2.3), for a sufficiently small t > 0 and then for n large, we
can find an admissible control ut ∈ U(xn) satisfying ut(s) = u∗ for s ∈ [0, t] (we can
suitably extend it outside [0, t]). Denoting yn(·) = y(·, xn, ut) from (2.1) and (2.3)
there exists t > 0 such that, for s ∈ [0, t] and large n,

D−
AΦ(x̂) − 〈f(yn(s), ut(s)), Dϕ(yn(s))〉

− L(ψ)‖f(yn(s), ut(s))‖ − g(yn(s))− 1
2‖ut(s)‖2 > θ.

(4.5)
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Integrating from 0 to t gives

t
(
D−
AΦ(x̂)− θ

) ≥ ∫ t

0

(〈f(yn(s), ut(s)), Dϕ(yn(s))〉+ L(ψ)‖f(yn(s), ut(s))‖) ds
+

∫ t

0

(
g(yn(s)) + 1

2‖ut(s)‖2
)
ds

and consequently, denoting y(·) = y(·, xn, u) for a general u ∈ U(xn),

t
(
D−
AΦ(x̂)− θ

) ≥ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(〈f(y(s), u(s)), Dϕ(y(s))〉

+ L(ψ)‖f(y(s), u(s))‖)ds+

∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds
}
.(4.6)

From this, using Lemma 4.3, we get

−tθ ≥ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds+ Φ(y(t))− Φ(xn)

}
− tρx̂(o(1) + ‖xn − x̂‖)

≥ inf
u∈U(xn),‖u‖2≤M

{∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds+ V ∗(y(t))

}
− V ∗(x̂)

+ Φ(x̂)− Φ(xn)− tρx̂(o(1) + ‖xn − x̂‖)
≥ V (xn)− V ∗(x̂) + Φ(x̂)− Φ(xn)− tρx̂(o(1) + ‖xn − x̂‖),

where o(1) does not depend on n as t ↓ 0. Letting n→ +∞ we then obtain −tθ ≥ o(t),
and this finally leads to a contradiction.

In the rest of this section, we proceed with some results concerning an auxiliary
problem we will need in the proof of Proposition 2.5, and for λ > 0 and w:D(A) → R

consider the value function

vλ(x) = inf
u∈L2

sup
t≥0

Jλ(t, x, u, w) for x ∈ D(A).(4.7)

The function vλ is known as the value of a stopping time control problem with stopping
cost w.

Lemma 4.4. Let g, w: D(A) → R satisfy 0 ≤ g ≤ C and 0 ≤ w ≤ 1− ε for some
ε, C > 0. Then for every λ > 0 we have 0 ≤ w ≤ vλ ≤ (C/(λ+ C)) ∧ (1− ε) < 1.

Proof. Taking t = 0 shows that vλ ≥ w. On the other hand, with the choice of
u(·) ≡ 0 we get

vλ(x) ≤ sup
t≥0

{
1− e

−λt−
∫ t

0
g(y(s))ds

(1− w(y(t)))− λ

∫ t

0

e
−λs−

∫ s
0
g(y(σ))dσ

ds
}

≤ sup
t≥0

{
1− εe

−λt−
∫ t

0
g(y(s))ds − λ

∫ t

0

e−(λ+C)sds
}

≤ sup
t≥0

{
1− εe−(λ+C)t + λ

λ+C

(
e−(λ+C)t − 1

)}
,

and then we easily reach the conclusion.
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Lemma 4.5. Under the assumptions and using the notation of Lemma 4.4, for a
fixed λ > 0 there are T,K > 0 independent of x ∈ D(A) such that

vλ(x) = inf
‖u‖L2(0,T )≤K

sup
t≥0

Jλ(t, x, u, w).

Proof. By definition of vλ, since g and w are nonnegative, we immediately obtain

vλ(x) ≥ inf
u∈L2

sup
t≥0

e−λtρ
(∫ t

0

1
2‖u(s)‖2ds

)
,

where we recall that ρ(r) = 1− e−r. Therefore, for any ε-optimal control u for vλ(x)
with ε ≤ ε independent of x, from Lemma 4.4 we have that

1 > M ≥ vλ(x) + ε ≥ e−λtρ
(∫ t

0

1
2‖u(s)‖2ds

)
for all t ≥ 0.

Therefore, if T > 0 is sufficiently small we get

ρ
(∫ t

0

1
2‖u(s)‖2ds

)
≤Meλt ≤MeλT < 1 for all t ≤ T

and the conclusion by definition of ρ.
As a consequence of the previous two lemmas, the following dynamic programming

principle holds for the auxiliary value function vλ defined by (4.7).
Lemma 4.6. Under the assumptions and using the notation of Lemma 4.4, for

all x ∈ D(A) and t ≥ 0 we have that

vλ(x) ≥ inf
‖u‖L2(0,T )≤K

Jλ(t, x, u, vλ).(4.8)

If moreover (vλ)
∗
(x) > w∗(x), there is ε > 0 such that for z ∈ D(A), ‖z − x‖ < ε,

and |vλ(z)− (vλ)
∗
(x)| < ε, we have

vλ(z) = inf
‖u‖L2(0,T )≤K

Jλ(t, z, u, vλ) for every 0 ≤ t ≤ ε.

Proof. The first part of the statement follows easily from the definition of vλ(x),
Lemma 4.5, and the usual dynamic programming principle arguments, and we skip
its proof.

We now assume that x ∈ D(A) and (vλ)
∗
(x) > w∗(x). If the statement was false,

we could find sequences xn ∈ D(A) and 0 < δn, tn < 1/n such that ‖xn − x‖ < 1/n,
|vλ(xn)− (vλ)

∗
(x)| < 1/n, and

vλ(xn) > inf
‖u‖L2(0,T )≤K

Jλ(tn, xn, u, v
λ) + δn.(4.9)

By definition of vλ(xn), for large n, 1/n ≤ T , we can choose a control un ∈ L2,
‖un‖L2(0,T ) ≤ K, such that

Jλ(tn, xn, un, v
λ) < vλ(xn)− δn < sup

t≥0
Jλ(t, xn, un, w),
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and then using the definition of vλ and Jλ, we can modify the control un off [0, tn]
(we still use the same notation however) in such a way that by a change of variables
in the integrals on the left-hand side we get

sup
t≥tn

Jλ(t, xn, un, w) < vλ(xn)− δn < sup
t≥0

Jλ(t, xn, un, w).

Hence there is a sequence sn ∈ [0, tn] such that

Jλ(sn, xn, un, w) ≥ vλ(xn)− δn.(4.10)

By the uniform L2 estimate on the controls un, i.e., ‖un‖L2(0,sn) ≤ K, the definition

of Jλ and by (2.3), we know that

sup
t∈[0,sn]

‖y(t, xn, un)− x‖ ≤ o(1) as n→ +∞.

Therefore, as n→∞ in (4.10) we obtain

w∗(x) ≥ (vλ)
∗
(x),

and then we have a contradiction.
Given Lemma 4.6, with a proof similar to the one of Proposition 2.4 we can show

the following result.
Proposition 4.7. Under the assumptions of Lemma 4.4, if w, g ∈ LSC(D(A)),

for any λ > 0 the value function vλ is a viscosity solution of

λvλ(x) + min
{
〈Ax,Dvλ〉+ sup

u∈U

{−〈f(x, u), Dvλ〉+ (vλ(x)− 1)( 1
2‖u‖2 + g(x))

}
,

vλ(x)− (1 + λ)w
}

= 0 in D(A),

(4.11)
where solutions of (4.11) are defined by adapting Definition 3.4 in an obvious way.

It is well known that stopping time control problems give rise to “quasi-variational
inequalities” of the form (4.11); see [23] and the references therein.

5. Regularity and optimality principle. In the course of the proof of our
main result we will use inf-convolutions to regularize various functions, including g.
For h:H → R ∪ {+∞} and ε > 0 put

hε(x) = inf
y∈H

{
h(y) + 1

2ε‖x− y‖2
}
.

If h is lower semicontinuous and bounded from below then hε converge to h pointwise
from below as ε ↓ 0. It is also known that if h is bounded or uniformly continuous
then hε is globally Lipschitz. Moreover, if h is weakly lower semicontinuous then
so is hε; see [9]. Therefore, combining inf-convolutions with an appropriate cut-
off technique, for any bounded from below, (weakly) lower semicontinuous function
h:D(A) → R ∪ {+∞} one can construct a sequence h1 ≤ h2 ≤ · · · ≤ hn ≤ · · · of
bounded, globally Lipschitz (weakly) lower semicontinuous functions on H such that
h = supn hn on D(A).

In what follows we will frequently rely on the following well-known simple fact.
X is going to be H equipped with either weak or strong topology.
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Lemma 5.1. Suppose that X is a topological space and let φ, φn:X → R∪ {+∞}
be sequentially lower semicontinuous. If φ1 ≤ φ2 ≤ · · · ≤ φn ≤ · · · and φ = supn φn
then

lim inf
n→∞ φn(xn) ≥ φ(x) whenever xn → x in X.(5.1)

Proof. For every N ≥ 1,

lim inf
n→∞ φn(xn) ≥ lim inf

n→∞ φN (xn) ≥ φN (x),

and taking a supremum over N gives (5.1).
The following lemma guarantees the existence of optimal controls in the problems

we consider and relies on one of the crucial assumptions (W) or (S) (see also Theorem
3.4 in [17]).

Lemma 5.2. Assume that (1.1) has a unique mild solution for any u ∈ L2(0,∞;U)
and x ∈ D(A). Suppose that g, gn, φ, φn ∈ w-LSC(D(A)) (LSC(D(A)), respectively),
0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φn ≤ · · ·, 0 ≤ g1 ≤ g2 ≤ · · · ≤ gn ≤ · · ·, supn φn = φ and
supn gn = g. If (W) ((S), respectively) holds and

C ≡ sup
n≥1

inf
u∈L2

sup
t≥0

{∫ t

0

(
gn(y(s)) + 1

2‖u(s)‖2
)
ds+ φn(y(t))

}
,

where y(·) = y(·, x, u) is the mild solution of (1.1) and x ∈ D(A) is fixed, then there
exists u# ∈ L2 such that

C = sup
t≥0

{∫ t

0

(
g(y(s, x, u#)) + 1

2‖u#(s)‖2
)
ds+ φ(y(t, x, u#))

}
.(5.2)

Proof. It is clear by definition that C is smaller than the right-hand side of (5.2)
for any choice of u# ∈ L2. To prove the opposite inequality, we may assume that
C < +∞. For every n there exists un ∈ L2 such that for every t ≥ 0

C + 1
n ≥

∫ t

0

(
gn(yn(s)) + 1

2‖un(s)‖2
)
ds+ φn(yn(t)) ≥

∫ t

0

1
2‖un(s)‖2ds.

Hence un are uniformly bounded in L2, and one can find u# ∈ L2 such that un ⇀ u#

weakly in L2(0, T ;U) for every T > 0 (passing to a subsequence if necessary). By
the stability assumption yn(s) ≡ y(s, x, un) converges to y#(s) ≡ y(s, x, u#) weakly
(respectively, strongly) in H for every s > 0. Using the lower semicontinuity of φn’s,
gn’s, and the norm, from Lemma 5.1 and Fatou’s lemma we deduce

lim inf
n→∞

∫ t

0

(
gn(yn(s)) + 1

2‖un(s)‖2
)
ds+ φn(yn(t))

≥
∫ t

0

(
g(y#(s)) + 1

2‖u#(s)‖2
)
ds+ φ(y#(t))

for every t ≥ 0 and the result follows.
Corollary 5.3. Under the assumptions of Proposition 2.3 the value function V

in (1.5), i.e.,

V (x) = inf
u∈L2

∫ ∞

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds = inf

u∈L2
sup
t≥0

{∫ t

0

(
g(s) + 1

2‖u(s)‖2
)
ds

}
has optimal controls.
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Proof. Apply Lemma 5.2 with gn ≡ g and φn ≡ 0.
Given existence of optimal controls, we show that V is lower semicontinuous.
Proof of Proposition 2.3. Suppose for instance that g ∈ w-LSC(D(A)) and that

(W) holds (the other case follows similarly). Let xn ⇀ x, xn, x ∈ D(A). We may
assume that lim infn→∞ V (xn) < +∞, and, passing to a subsequence, that V (xn)
converges to lim infn→∞ V (xn). From Corollary 5.3 for every n there exists un ∈ L2

an optimal control for V (xn); that is,

V (xn) ≥
∫ t

0

(
g(y(s, xn, un)) + 1

2‖un(s)‖2
)
ds for every t ≥ 0.(5.3)

Then ‖un‖2 are uniformly bounded and there is u# ∈ L2 such that un ⇀ u# weakly
in L2(0, T ;U) for all T > 0 (passing to a subsequence if necessary), and then by (W)
y(s, xn, un) ⇀ y#(s) ≡ y(s, x, u#) weakly in H for every s > 0. Taking lim inf as
n→∞ in (5.3) yields, as in the proof of Lemma 5.2,

lim inf
n→∞ V (xn) ≥

∫ t

0

(
g(y#(s)) + 1

2‖u#(s)‖2
)
ds

for every t > 0 and therefore lim infn→∞ V (xn) ≥ V (x).
Proposition 2.5 is contained in the statement of Lemma 5.5 below, which is an

optimality principle for viscosity supersolutions of equation (1.6). First, however, we
prove the following elementary statement.

Lemma 5.4. Let F :D(A)×H × R× [0, 1) → R be defined by

F (x, p, r, s) = sup
u∈U

{−〈f(x, u), p〉+ ‖f(x, u)‖r − 1
2‖u‖2(1− s)

}
,

where f satisfies (2.1). Then for all R > 0 and k ∈ (0, 1) there is C = C(R, k) > 0
such that if x ∈ D(A), ‖p‖, |r| ≤ R and s ∈ [0, 1 − k] then ‖u∗‖ ≤ C(1 +

√‖x‖) for
any u∗ ∈ U satisfying

F (x, p, r, s)− 1 ≤ −〈f(x, u∗), p〉+ ‖f(x, u∗)‖r − 1
2‖u∗‖2(1− s).

Proof. Observe that by the assumption (2.1), F (x, p, r, s) is finite for all (x, p, r, s) ∈
D(A)×H × R× [0, 1). From one side, by choosing u = 0 we have by (2.1)

F (x, p, r, s)− 1 ≥ −1− L(1 + ‖x‖)(‖p‖+ |r|) ≥ −1− 2LR(1 + ‖x‖),
for x ∈ D(A), ‖p‖, |r| ≤ R, and s ∈ [0, 1). On the other hand, if x ∈ D(A), ‖p‖, |r| ≤
R, and s ∈ [0, 1− k] then, again by (2.1), we have for all u ∈ U ,

−〈f(x, u), p〉+ ‖f(x, u)‖r − 1
2‖u‖2(1− s) ≤ L(1 + ‖x‖+ ‖u‖q)(‖p‖+ |r|)− 1

2k‖u‖2

≤ 2LR(1 + ‖x‖+ ‖u‖q)− 1
2k‖u‖2.

Therefore, to reach the conclusion it is enough to consider only u’s such that

‖u‖q − k
4LR‖u‖2 ≥ −2(1 + ‖x‖)− 1

2LR .(5.4)

We will use the elementary fact that for every q ∈ [1, 2) there is a constant C depending
only on q (namely, C = ( q2 )q/(2−q) − ( q2 )2/(2−q)) such that

sq ≤ εs2 + C
(

1
ε

)q/(2−q)
for all ε > 0, s ≥ 0.
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(One quick way to prove this is to realize that it is equivalent to proving ψ(sε1/(2−q)) ≥
−C for ψ(r) = r2 − rq.) Taking ε = k

8LR from (5.4) it follows that only u’s satisfying

− 1
2LR − 2(1 + ‖x‖) ≤ − k

8LR‖u‖2 + C( 8LR
k )q/(2−q)

or equivalently

‖u‖2 ≤ 16LR
k (1 + ‖x‖) + C( 8LR

k )2/(2−q) + 4
k

are of interest, from which the conclusion follows easily.
We are now left with the most delicate step of the proof.
Lemma 5.5. Assume (2.1) and (2.4). Suppose that g ∈ w-LSC(D(A)) (g ∈

LSC(D(A))) and (W) ((S), respectively) holds. Suppose that w ∈ w-LSC(D(A)) (w ∈
LSC(D(A)), respectively) is a nonnegative extended real-valued viscosity supersolution
of (1.6). Then

w(x) = inf
u∈L2

sup
t≥0

{∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds+ w(y(t))

}
for all x ∈ D(A).

(5.5)

In particular w ≥ V .
Proof. We treat the weakly lower semicontinuous case, the other case being

similar.
1. Suppose that w ∈ w-LSC(D(A)) is a nonnegative supersolution of (1.6).

Construct two increasing sequences 0 ≤ g1 ≤ g2 ≤ · · · and 0 ≤ w1 ≤ w2 ≤ · · · of
bounded, globally Lipschitz and weakly lower semicontinuous functions defined on H
such that on D(A) g = supn gn and w = supn wn, as at the beginning of this section.
For every n put Wn(x) = 1 − e−wn(x) ≡ ρ(wn(x)); 0 ≤ Wn < 1. Note that from
(2.1) the Hamiltonian Hn(x, p) = supu∈U{−〈f(x, u), p〉− 1

2‖u‖2}−gn(x) is uniformly

continuous on bounded subsets of D(A)×H and therefore from Lemma 3.8 for every
λ > 0 and n ∈ N, W = ρ(w) is a CL-supersolution of

λW (x) + 〈Ax,DW 〉+ sup
u∈U

{−〈f(x, u), DW 〉+ (W (x)− 1)(gn(x) + 1
2‖u‖2)

}
= 0

on {x ∈ D(A): W (x) < 1} = dom(w). We extend W by 1 off dom(w) (we still
call this extended function W ). Since W ∈ w-LSC(D(A)), by Lemma 3.9 W is a
CL-supersolution of

λW (x)+min
{
〈Ax,DW 〉+Hn(x,W (x), DW ), W (x)−(1+λ)Wn(x)

}
= 0 in D(A),

(5.6)

where for (x, r, p) ∈ D(A)× [0, 1]×H we denote

Hn(x, r, p) = sup
u∈U

{−〈f(x, u), p〉+ 1
2 (r − 1)‖u‖2

}
+ (r − 1)gn(x).

Observe that Hn(x, 1, p) may be infinite, but Hn(x, 1, 0) = 0 so that H
∗
n(x, 1, 0) ≥ 0

and the proof of Lemma 3.9 applies. Also note that from Lemma 5.4 one can easily
show that Hn is uniformly continuous on bounded closed subsets of D(A)× [0, 1)×H.
By Remark 3.7, W is a supersolution of (5.6) in the sense of Definition 3.4.
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2. For n ∈ N and x ∈ D(A) let U(x) = infu∈L2 supt≥0 J
λ
n (t, x, u,Wn) be as in

(4.7) and (4.1) with g ≡ gn. By Lemma 4.4 there is κ > 0 such that 0 ≤ U ≤ 1− 2κ.
Moreover, U∗ is a subsolution of (5.6) by Proposition 4.7. We will show that

U∗ ≤W on D(A).(5.7)

The proof of (5.7) follows along the lines of the standard comparison theorem despite
the Hamiltonian in (5.6) being possibly discontinuous and extended real valued, and
we will only highlight the main points. To show (5.7) we argue by contradiction and
suppose that U∗(ẑ)−W (ẑ) ≡ 2γ > 0 for some ẑ ∈ D(A).

We first make the following general remark. Let Ψ: H × H → R, Ψ = ϕ + ψ,
be a nonnegative subtest function for the operator A× A on D(A)×D(A). Assume
that U∗(x)−W (y)−Ψ(x, y) attains a maximum point at (x̂, ŷ) and U∗(x̂)−W (ŷ)−
Ψ(x̂, ŷ) > 0. In particular we get

0 ≤W (ŷ) ≤ U∗(x̂) ≤ 1− 2κ.

Hence (ŷ,W (ŷ)) ∈ dom(w) × [0, 1 − 2κ] and at x̂, ŷ we can use the equations for
U∗, W , respectively, and the uniform continuity of Hn on the bounded subsets of
D(A) × [0, 1 − 2κ] × H. It follows that with such test functions the proof of the
doubling Theorem 3.1 in [15] can be applied (no matter if we use the notion of solution
introduced in Definition 3.4 instead of the one employed in [15]).

3. For the sake of simplicity we start assuming that (0, 0) ∈ A, so that ϕ(x) = ‖x‖2

is a subtest function and D−
Aϕ ≥ 0, as easily checked. For α, δ > 0 and x, y ∈ D(A)

let

Φ(x, y) = U∗(x)−W (y)− α
2 ‖x− y‖2 − δ‖x‖2 − δ‖y‖2;

note that Φ ≤ 1− 2κ and, for sufficiently small δ,

sup Φ ≥ U∗(ẑ)−W (ẑ)− 2δ‖ẑ‖2 ≥ γ.

For every ε > 0 use perturbed optimization with Tataru’s distance to find x̂, ŷ ∈ D(A)
such that Φ(x̂, ŷ) ≥ sup Φ − ε and the map Φ(x, y) − εd(x, x̂) − εd(y, ŷ) has a strict
global maximum at (x̂, ŷ). Note that

sup{Φ(x, y)− εd(x, x̂)− εd(y, ŷ)} = Φ(x̂, ŷ) ≥ γ − ε ≥ γ

2
> 0(5.8)

for small ε.
Consider two cases. If U∗(x̂) ≤Wn(x̂) then

U∗(x̂)−W (ŷ) ≤Wn(x̂)−Wn(ŷ).(5.9)

Otherwise, as we mentioned above, we can apply the doubling theorem in [15] to
obtain

λ(U∗(x̂)−W (ŷ))− 2ε

≤ sup
u∈U

{
− 〈f(ŷ, u), α(x̂− ŷ)− 2δŷ〉+ ε‖f(ŷ, u)‖+ (W (ŷ)− 1)(1

2‖u‖2 + gn(ŷ))
}

− sup
u∈U

{
− 〈f(x̂, u), α(x̂− ŷ) + 2δx̂〉 − ε‖f(x̂, u)‖+ (U∗(x̂)− 1)( 1

2‖u‖2 + gn(x̂))
}
.
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Note that from (5.8) W (ŷ) ≤ U∗(x̂). By standard arguments (see, e.g., Lemma 3.2
in [15]), we can show that

lim sup
α→∞

lim sup
δ↓0

lim sup
ε↓0

(
α‖x̂− ŷ‖2 + δ‖x̂‖2 + δ‖ŷ‖2

)
= 0.(5.10)

Moreover, since Φ decays quadratically at infinity, for α and δ fixed, x̂ and ŷ remain
bounded uniformly in ε ↓ 0. Therefore, letting ε ↓ 0 and using Lemma 5.4 gives

lim sup
ε↓0

λ(U∗(x̂)−W (ŷ))

≤ lim sup
ε↓0

(
Hn(ŷ, U∗(x̂), α(x̂− ŷ)− 2δŷ)−Hn(x̂, U∗(x̂), α(x̂− ŷ) + 2δx̂)

)
.

(5.11)

Let R > 0 and suppose that x ∈ D(A), ‖p‖ + δ‖x‖ ≤ R, and 0 ≤ r ≤ 1 − 1
R . By

Lemma 5.4 we can find C = C(R) such that

Hn(x, r, p) = sup
‖u‖≤C(1+

√
‖x‖)

{−〈f(x, u), p〉+ 1
2 (r − 1)‖u‖2

}
+ (r − 1)gn(x).

From (2.1) we then get

|Hn(x, r, p+ δx)−Hn(x, r, p)| ≤ δ‖x‖L
(
1 + ‖x‖+ Cq(1 +

√
‖x‖)q

)
≤ δ‖x‖L

(
1 + ‖x‖+ (2C)

q
(
1 + ‖x‖

q
2

))
→ 0, if δ + δ‖x‖2 → 0,

(5.12)

uniformly for δ‖x‖+ ‖p‖ ≤ R, 0 ≤ r ≤ 1− 1
R .

From (5.11), (5.12), and (2.1), by letting δ → 0,

lim sup
δ↓0

lim sup
ε↓0

λ(U∗(x̂)−W (ŷ))

≤ lim sup
δ↓0

lim sup
ε↓0

(
Hn(ŷ, U∗(x̂), α(x̂− ŷ))−Hn(x̂, U∗(x̂), α(x̂− ŷ))

)
≤ lim sup

δ↓0
lim sup

ε↓0

(
Lα‖x̂− ŷ‖2 + |gn(ŷ)− gn(x̂)|) ,(5.13)

and finally taking lim sup as α → ∞ and using (5.10) and the uniform continuity of
gn yields

lim sup
α→∞

lim sup
δ↓0

lim sup
ε↓0

(U∗(x̂)−W (ŷ)) ≤ 0.

The same inequality also holds in the first case because of (5.9) and ‖x̂− ŷ‖ → 0, and
then (5.8) yields a contradiction.

If (0, 0) 6∈ A then one replaces δ‖x‖2 by δ‖x − x̄‖2 for any fixed x̄ ∈ D(A). As
D−
A‖x−x‖2 ≥ 2〈A◦x̄, x− x̄〉, additional terms of the form 2δ〈A◦x̄, x̂− x̄〉 appear, but

they will vanish when δ ↓ 0.
4. Thus (5.7) is proved and for every λ > 0 and n ≥ 1,

W (x) ≥ inf
u∈L2

sup
t≥0

Jλn (t, x, u,Wn) for x ∈ D(A).(5.14)

Fix x ∈ D(A). Letting λ ↓ 0 in (5.14) we obtain for every fixed T > 0,

W (x) ≥ inf
u∈L2

sup
t∈[0,T ]

{
1− e

−
∫ t

0
(gn(y(s))+

1
2‖u(s)‖2)ds

(1−Wn(y(t)))

}
= inf

u∈L2
sup

t∈[0,T ]

{
1− e

−
∫ t

0
(gn(y(s))+

1
2‖u(s)‖2)ds−wn(y(t))

}
= ρ

(
inf
u∈L2

sup
t∈[0,T ]

{∫ t

0

(gn(y(s)) + 1
2‖u(s)‖2)ds+ wn(y(t))

})
,
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which implies, for all n ≥ 1 and T > 0,

w(x) ≥ inf
u∈L2

sup
t∈[0,T ]

{∫ t

0

(gn(y(s)) + 1
2‖u(s)‖2)ds+ wn(y(t))

}
.(5.15)

Sending n→∞ in (5.15) as in Lemma 5.2 (hence here we finally use the assumption
(W)), we get, for every x ∈ D(A),

w(x) ≥ inf
u∈L2

sup
t∈[0,T ]

{∫ t

0

(
g(y(s)) + 1

2‖u(s)‖2
)
ds+ w(y(t))

}
.(5.16)

In order to pass to the limit as T → ∞ in (5.16) we proceed as follows. For given
ε > 0, we apply (5.16) with T = 1 and find u1 ∈ L2 such that

w(x) + ε
2 ≥

∫ t

0

(
g(y(s, x, u1)) + 1

2‖u1(s)‖2
)
ds+ w(y(t, x, u1))

for t ∈ [0, 1]. Then we apply (5.16) again at y(1, x, u1) with T = 1 and find u2 ∈ L2

such that

w(y(1, x, u1))+
ε
22 ≥

∫ t

0

(
g(y(s, y(1, x, u1), u2)) + 1

2‖u2(s)‖2
)
ds+w(y(t, y(1, x, u1), u2))

for t ∈ [0, 1], and so forth. We proceed recursively and define u(t) = u[t]+1(t− [t]) for
t ≥ 0, where [t] denotes the largest integer in [0, t]. It then follows that

w(x) + ε ≥
∫ t

0

(
g(y(s, x, u)) + 1

2‖u(s)‖2
)
ds+ w(y(t, x, u)) for all t ≥ 0;

therefore, in particular u ∈ L2 since g and w are nonnegative and u ∈ U(x). Since ε
was arbitrary we obtain for all x ∈ D(A),

w(x) ≥ inf
u∈L2

sup
t≥0

{∫ t

0

(g(y(s)) + 1
2‖u(s)‖2)ds+ w(y(t))

}
,

which concludes the proof since the other inequality follows immediately by choosing
t = 0 on the right-hand side.

6. Examples. In this section we will quickly present some examples of nonlinear
systems satisfying the strong stability condition (S) to which the results of this paper
can be applied. These examples are meant to show that the condition is quite natural
and is known to be satisfied in many interesting instances. More examples of nonlinear
partial differential equations leading to systems of the form (1.1) with −A generating a
compact semigroup on a Hilbert space, e.g., reaction-diffusion systems, can be found
in [26] and [2]. We do not present examples with a linear operator A that, as we
mentioned above, satisfy the weak stability condition (W), but instead we refer the
reader to [5].

Example 6.1 (p-Laplace operator). Let Ω be a bounded domain in R
n, n ≥ 1,

with smooth boundary Γ, and let p ≥ 2. For λ ≥ 0 consider the nonlinear parabolic
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equation with distributed parameters

∂y

∂t
−

n∑
i=1

∂

∂xi

(∣∣∣∣ ∂y∂xi
∣∣∣∣p−2

∂y

∂xi

)
+ λy|y|p−2 = f(y, u)

for (t, x) ∈ (0, T )× Ω,

−
n∑
i=1

∣∣∣∣ ∂y∂xi
∣∣∣∣p−2

∂y

∂xi
· ni ∈ ∂φ(y) for (t, x) ∈ (0, T )× Γ,

y(0, x) = y0(x) for x ∈ Ω.

(6.1)

Here n = (n1, . . . , nn) denotes the outward normal to Γ and φ: R → [0,+∞] is lower
semicontinuous and convex, φ(0) = 0. Then (6.1) gives rise to a system of the form
(1.1) in H = L2(Ω) with a maximal monotone A, which is in fact the subgradient
of a lower semicontinuous and convex function on H and such that −A generates a
compact semigroup in H; see [26, Remark 2.2.5]. If f in (6.1) satisfies the assumptions
of Proposition 2.7, then (S) holds.

In the previous example, by choosing specific functions φ we obtain a number of
physical models interesting for the applications; see [2, section 4.3].

Example 6.2. Let Ω be a bounded domain in R
n, n ≥ 2, with smooth boundary

Γ. Consider the boundary value problem
∂y

∂t
−∆y + y3 = f(y, u) for (t, x) ∈ (0, T )× Ω,

αy(t, x) + β
∂y

∂n
(t, x) = 0 for (t, x) ∈ (0, T )× Γ,

y(0, x) = y0(x) for x ∈ Ω,

(6.2)

where α, β ≥ 0 and α + β > 0. Then again (6.2) can be written in the form (1.1)
in H = L2(Ω) with a nonlinear maximal monotone A, D(A) ⊂ H2(Ω); see, e.g.,
[2, p. 256]. From the compact embedding theorem it follows that −A generates a
compact semigroup and Proposition 2.7 applies.

In the previous example, the nonlinear perturbation y3 of the Laplacian is the
derivative of a convex function. Such example therefore falls into the class of problems
that can be described by means of abstract parabolic variational inequalities; see
Remark 2.9. As a matter of fact, the term y3 can be replaced by any subgradient of a
lower semicontinuous and convex function φ: R → R∪{+∞}. When φ has nontrivial
domain then the corresponding operator is apparently multivalued and our generality
is motivated. We will now describe a more explicit and specific example which is a
special case of the one-phase Stefan problem; see [2, p. 279].

Example 6.3 (parabolic variational inequalities). Let Ω be a bounded domain in
R
n, n ≥ 2, with smooth boundary Γ. Consider the boundary value problem

∂y

∂t
−∆y ≥ f(y, u) for (t, x) ∈ (0, T )× Ω,

∂y

∂t
−∆y = f(y, u) if y(t, x) > 0,

y ≥ 0,

αy(t, x) + β
∂y

∂n
(t, x) = 0 for (t, x) ∈ (0, T )× Γ,

y(0, x) = y0(x) for x ∈ Ω,

(6.3)

where α, β ≥ 0 and α+β > 0. Here again H = L2(Ω). In this example, we are in the
situation described in Remark 2.9, where V = H1(Ω) (or V = H1

0 (Ω) is β = 0) and
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the operator Ã ∈ L(V, V ′) (for β 6= 0) is defined by the position

〈Ãy, z〉 =

∫
Ω

Dy ·Dz dx+ α
β

∫
∂Ω

yz dσ.

Moreover, the function ϕ: H → R ∪ {+∞} is the indicator function of the set {y ∈
V : y ≥ 0}. Note that a state constraint (y ≥ 0) appears in the formulation of the
problem (6.3), but it is included here in the abstract definition of the operator rather
than in the cost g.

We end this section by presenting an example that can be described in abstract
form with a noncompact semigroup but still satisfies our stability condition (S); see
Remark 2.10. For other examples of this sort, again we refer to [26].

Example 6.4 (nonlinear hyperbolic equations). Let Ω be a bounded domain in
R
n, n ≥ 2, with smooth boundary Γ. Consider the boundary value problem

∂2y

∂t2
−∆y + β

(
∂y

∂t

)
=

k∑
i=1

wi(x)ui(t) for (t, x) ∈ (0, T )× Ω,

y(t, x) = 0 for (t, x) ∈ (0, T )× Γ,
y(0, x) = y0(x) for x ∈ Ω,
∂y

∂t
(0, x) = y1(x) for x ∈ Ω.

(6.4)

Here wi ∈ L2(Ω), the control set BU
R ⊂ U = R

k is finite dimensional, so the linear
operator defined by the right-hand side of (6.4) has finite-dimensional range, and
β: R → R is continuous, nondecreasing, and of linear growth. One has to check that
(6.4) can be described in an abstract form with an operator −A in H = L2(Ω)×H1

0 (Ω)
generating a weakly equicontinuous semigroup, and for this purpose we refer to [26,
Theorem 2.9.4]; see also Remark 2.10.

In all the examples above, there are many standard state constraints K that are
of interest for the applications. Some instances are described by one of the conditions
‖y‖L2(Ω) ≤ R, y ≥ 0, ‖y‖L∞(Ω) ≤ R. Note that the last two define subsets of L2(Ω)

with empty interior. Any lower semicontinuous function l: D(A) → [0,+∞) could be
combined with the indicator function of K,

IK(y) =

{
0, y ∈ K,
+∞, y /∈ K,

to provide a running cost acceptable for our statements, namely, g = l + IK . An
example, for H = L2(Ω), which leads to a nonconvex cost is the integral of a w-
shaped potential, e.g.,

g(y) =

∫
Ω

(|y(x)|2 − 1)2 dx+ I
B
L∞(Ω)
1

(y), y ∈ H.

Note that again dom(g) = B
L∞(Ω)
1 has an empty interior. In some cases, if y ≡ 1 and

y ≡ −1 are solutions of the parabolic equation with a given control u(·), such control
can be proven to produce trajectories fulfilling the constraint for any initial condition
in dom(g) by the maximum principle.

Acknowledgment. The authors wish to thank one of the referees for suggesting
some examples of systems that satisfy the abstract assumptions of the paper.
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Abstract. Full von Karman system accounting for in-plane accelerations and describing the
transient deformations of a thin, elastic plate subject to edge loading is considered. The energy
dissipation is introduced via the nonlinear velocity feedback acting on a part of the edge of the
plate. It is known [J. Puel and M. Tucsnak, SIAM J. Control Optim., 33 (1995), pp. 255–273]
that in the case of linear dissipation and “star-shaped” domains, boundary velocity feedback with
the tangential derivatives of horizontal displacements leads to the exponential decay rates for the
energy of the resulting closed loop system. The main goal of the paper is to derive the uniform
energy decay rates valid for the model without the above-mentioned restrictions. In particular, it is
shown that simple, monotone nonlinear feedback (without the tangential derivatives of the horizontal
displacements) provides the uniform decay rates for the energy in the absence of geometric hypotheses
imposed on the controlled part of the boundary. This is accomplished by establishing, among other
things, “sharp” regularity results valid for the boundary traces of solutions corresponding to this
nonlinear model and by employing a Holmgren-type uniqueness result proved recently in [V. Isakov,
J. Differential Equations, 97 (1997), pp. 134–147] for the dynamical systems of elasticity which are
overdetermined on the boundary.
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1. Introduction. We consider a model of dynamic nonlinear plate that is re-
ferred to as the full von Karman system and is introduced in [11]. We associate with
this model a nonlinear damping represented by moments and shears applied to the
edge of the plate. Here the variables w and u = (u1, u2) represent, respectively, the
vertical and in-plane displacement of a thin plate occupying a two-dimensional domain
Ω with sufficiently smooth boundary Γ = Γ0 ∪Γ1. We shall assume that Γ0 ∩Γ1 = ∅.
The governing equations are given by

utt + b1ut − div[C[ε(u) + f(∇w)]] = 0 in Ω× (0,∞),

[I − γ∆]wtt + b2wt +D∆2w − div[C[ε(u) + f(∇w)]∇w] = 0 in Ω× (0,∞)(1.1)

with Dirichlet boundary conditions on the “uncontrolled part” of the boundary Γ0,

u = w = ∇w = 0 on Γ0 × (0,∞).

The dissipative boundary conditions on the “controlled part” of the boundary Γ1 are
given by

C[ε(u) + f(∇w)]ν = −g(ut),
D[∆w + (1− µ)B1w] = −h1(Dnwt),

D[Dn∆w + (1− µ)B2w]− γDnwtt − [C[ε(u) + f(∇w)]ν · ∇w]

= −Dτh2(Dτwt).(1.2)
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With (1.1) and (1.2) we associate the initial conditions

u(0) = u0, ut(0) = u1, w(0) = w0, wt(0) = w1 in Ω.(1.3)

The vector ν represents an outward normal and τ represents the tangential direction.
Dn (resp., Dτ ) stand for the normal and tangential derivatives. D represents the
flexural rigidity, the constant 0 < µ < 1/2 is Poisson’s modulus, and a positive
constant γ is proportional to the thickness of the plate.

The fourth-order tensor C is defined by

C(ε) ≡ E

(1− 2µ)(1 + µ)
[µ trace ε I + (1− 2µ)ε],

where ε(u) ≡ 1/2(∇u+∇Tu). It can be easily verified that the tensor C is symmetric
and strictly positive. The function f is given by

f(s) ≡ (1/2)s× s, s ∈ R2,

and the boundary operators are defined by

B1 ≡ 2ν1ν2D
2
x,y − ν2

1D
2
y,y − ν2

2D
2
x,x,

B2 ≡ Dτ [(ν
2
1 − ν2

2)D2
x,y + ν1ν2(D

2
y,y −D2

x,x)] + lI.

The dissipation in the system is represented by a nonlinear vector function g and
scalar functions hi, which are assumed continuous, monotone increasing, zero at the
origin, and of linear growth at infinity.

The following well-posedness/regularity results are proved for this model (see the
Appendix).

Proposition 1.1.
(1) Regular solutions. We assume that h1, h2 ∈ C1(R), g ∈ C1(R2) are monotone,

increasing functions with hi
′ (resp., g′) ∈ L∞(R) (resp., L∞(R2)). For any initial

data

u0, u1 ∈ [H2(Ω)]2 × [H1(Ω)]2, w0, w1 ∈ H3(Ω)×H2(Ω)

subject to the compatibility conditions satisfied on the boundary Γ,

u0 = w0 = ∇w0 = w1 = ∇w1 = 0 on Γ0 × (0,∞),

C[ε(u0) + f(∇w0)]ν = −g(u1) on Γ1 × (0,∞),

D[∆w0 + (1− µ)B1w0] = −h1(Dnw1) on Γ1 × (0,∞),(1.4)

there exists a unique, global solution

(u,w) ∈ C(0, T ; [H2(Ω)]2 ×H3(Ω)), (ut, wt) ∈ C(0, T ; [H1(Ω)]2 ×H2(Ω)),

where T > 0 is arbitrary.
(2) Weak solutions. In the case of linear damping (i.e., g′(s) = g0 > 0, hi

′(s) =
hi,0 > 0), there exist a unique, global solution of finite energy. This is to say that for
any initial data

u0, u1 ∈ [H1(Ω)]2 × [L2(Ω)]2, w0, w1 ∈ H2(Ω)×H1(Ω),

subject to the boundary conditions satisfied on the boundary Γ0,

u0 = w0 = ∇w0 = w1 = 0 on Γ0 × (0,∞),(1.5)
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there exists a unique solution

(u,w) ∈ C(0, T ; [H1(Ω)]2 ×H2(Ω)), (ut, wt) ∈ C(0, T ; [L2(Ω)]2 ×H1(Ω)),

where T > 0 is arbitrary.
Remark 1.1. The existence of regular solutions, the result stated in the first part

of Proposition 1.1, is proved in the appendix by using the nonlinear Galerkin method.
It can also be proved by the same arguments (based on an application of Shaffer’s
theorem) as those used in [3] for the modified von Karman system with nonlinear
dissipation.

The uniqueness of regular solutions follows from a rather standard energy type
argument which is given in section 7.2.

For the case of linear dissipation, the existence and uniqueness of strong solutions
was proved in [23]. (However, the techniques of [23] are not readily extendible for
treating nonlinear boundary feedback.)

In the case of linear damping the existence of weak solutions (i.e., (u,w) ∈ C(0,
∞; [H1(Ω)]2 ×H2(Ω)); (ut, wt) ∈ C(0,∞; [L2(Ω)]2 ×H1(Ω)) follows from the usual
Galerkin-type argument. The uniqueness of weak solutions was recently proved in [24]
for the case of Dirichlet boundary conditions and with γ = 0. In section 7.3 we adopt
Sedenko’s method to prove the uniqueness of weak solutions for the model of interest
(i.e., Proposition 1.1(2)). We also note that the uniqueness of weak solutions for the
modified von Karman equations was proved recently in [3]. However, the arguments
employed in [3] and based on sharp regularity of the Airy stress function are not
applicable here.

The main goal of this paper is to show that the solutions decay to zero at the
uniform rate. To state this result, we recall that the energy functional associated with
the plate model (1.1) is given by

E(t) = Ek(t) + Ep(t)(1.6)

with the kinetic energy

Ek(t) =

∫
Ω

|ut|2 + w2
t + γ|∇wt|2dΩ(1.7)

and the potential energy

Ep(t) = a(w,w) +

∫
Ω

[CN(u,w) ·N(u,w)] dΩ,(1.8)

where the bilinear form a(w, z) is defined by

a(w, z) ≡ D

∫
Ω

[wx,xzx,x + wy,yzy,y + µwx,xzy,y + µwy,yzx,x

+2(1− µ)wx,yzx,y]dΩ + l

∫
Γ1

wzdΓ1,

and the stress resultants N(u,w) are given by

N(u,w) ≡ ε(u) + f(∇w).

It is well known that Ep(t) is topologically equivalent to H2(Ω)× [H1(Ω)]2 topol-
ogy.
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To formulate our result we introduce the following functions:

H0(s) ≡ G(s) +H1(s) +H2(s),

where the functions G,H1,H2 are concave, strictly increasing functions, zero at the
origin and such that the following inequalities are satisfied for |s| ≤ 1

G(~sg(~s)) ≥ |~s|2 + |g(~s)|2, ~s ∈ R2,

H1(sh1(s)) ≥ s2 + h2
1(s), s ∈ R,

H2(sh2(s)) ≥ s2 + h2
2(s), s ∈ R.

Due to the assumed monotonicity of the nonlinear functions g, hi, one can easily
construct functions G,H1,H2 with the properties listed above (see [19]).

We are ready to state the main result of this paper. To this end we introduce the
following hypothesis which will be assumed throughout the paper.

Assumption 1.
(1) Let h(x) be a vector field defined by

h(x) ≡ x− x0, where x0 ∈ R2.

We assume that

hν ≤ 0 on Γ0.(1.9)

(2) There exist positive constants 0 < m ≤ M such that for |s| ≥ R with a
constant R sufficiently large, we have

m|s|2 ≤ (g(s), s)R2 ≤M |s|2, ms2 ≤ hi(s)s ≤Ms2, i = 1, 2.(1.10)

(3) The “coefficients” b1, b2 ∈ L(L2(Ω)) representing a potential “light damping”
are assumed to satisfy (b1u, u)[L2(Ω)]2 ≥ 0, (b2w,w)L2(Ω) ≥ 0 for all u ∈ [L2(Ω)]2 and
w ∈ L2(Ω).

Theorem 1.2. Let u,w be a strong solution to the original system (1.1) and let
us assume that either l > 0 or Γ0 6= ∅.

Part I. In addition to Assumption 1 we make Assumption 2 as follows.
Assumption 2. Either b1 or b2 are injective or Ω is star-shaped.

Then there exists a constant T0 > 0 such that the following estimate holds

E(t) ≤ C(E(0))s(t/T0 − 1)), t ≥ T0,(1.11)

where a real variable function s(t) converges to zero as t→∞ and it obeys the ordinary
differential equation

st(t) + q(s(t)) = 0, s(0) = E(0).(1.12)

The (nonlinear), monotone increasing function q(s) is determined entirely from the
behavior at the origin of the nonlinear functions g, hi, and it is given by the following
algorithm:

q ≡ I − (I + p)−1,(1.13)

p ≡ (kI +H)−1,(1.14)

H ≡ H0(·/mesΣ1),(1.15)
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where the constant k is proportional to 1
mesΣ1

(m−1 +M) with Σ1 ≡ Γ1 × (0, T ).
Part II. If Assumption 2 does not hold, then the conclusion of Part I holds for all

initial data incrementally more regular, i.e.,

u0 ∈ H1+ε(Ω), w0 ∈ H2+ε(Ω),

where ε > 0 is arbitrary and the constant C in (1.11) may depend on the norms of
these data, i.e.,

C = C(|u0|H1+ε(Ω), |w0|H2+ε(Ω), E(0)).

Remark 1.2. If the nonlinear functions g, h1, h2 are bounded from below by a
linear function, then it can be shown that the decay rates predicted by Theorem 1.2 are
exponential. This is to say that there exist positive constants C,ω possibly depending
on E(0) and such that

E(t) ≤ Ce−ωt for t > T0.

If instead these functions have a polynomial growth at the origin, then the decay rates
are algebraic (see [19]).

Remark 1.3. The light damping terms represented by the coefficients b1, b2 cor-
respond, typically, to a possibility of having small viscous damping. We note that
this damping alone (even if it is fully active, i.e., b1 and b2 are uniformly positive on
Ω) will not cause a uniform decay for the energy (it may, at most, cause the strong
stability of the solutions). For the former, the presence of the boundary dissipation
or of a much stronger viscous damping is necessary. From the mathematical point of
view, the presence of light damping is beneficial at the level of eliminating lower-order
terms from the appropriate inequalities (see section 5) which is done by using the new
uniqueness result due to Isakov [9]. Indeed, the application of this uniqueness result
requires sufficient regularity of solutions to the linearized equations. This, in turn,
can be established if one of the bi’s is injective or Ω is star-shaped. In the general
case, however, the needed regularity can be shown provided we start off with minimally
more regular initial data (see Part II of Theorem 1.2). At this point, it is not known
whether this regularity requirement is necessary for the result to hold.

Remark 1.4. The decay rates guaranteed in Part II of Theorem 1.2 can be ex-
tended to hold for all H1+ε(Ω)×H2+ε(Ω) solutions with ε arbitrary small. Indeed, this
can be done by applying the usual density argument [11] combined with the uniqueness
result stated in the Appendix. Similarly, in view of the uniqueness result valid for
weak solutions in the case of linear dissipation, the result of Part I of Theorem 1.2
could be extended to all such weak solutions.

Literature relevant to the problem. Problems related to boundary stabilization of
von Karman equations have attracted considerable attention in recent years. Indeed,
starting with [11] and followed by papers [6], [7] uniform decay properties for the
energy of the modified von Karman system with boundary dissipation were established.
As it is well known, the modified von Karman system does not account for in-plane
accelerations and, therefore, it can be “almost” decoupled via the Airy stress function.
This is in contrast to the full von Karman system, where the nonlinear coupling is
strong. Moreover, the additional difficulty (in the case of the two-dimensional model)
results from the unboundedness of nonlinear terms in the topology induced by the
energy functional.

Energy decay rates for the one-dimensional full von Karman model were first de-
rived in [14]. The two-dimensional version of this model has been subsequently treated
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in [13], where the uniform decay rates were proved for a combination of static/dynamic
models with a nonlinear boundary dissipation of a linear growth at the infinity and of
a polynomial growth at the origin. A fully dynamic von Karman system accounting
for in-plane accelerations (as considered in this paper) was treated in [22]. The model
considered in [22], and inspired by [13], accounts for the linear boundary dissipation
of the form

C[ε(u) + f(∇w)]ν = −a(h · ν)ut − b(Dτu2,−Dτu1),

D[∆w + (1− µ)B1w] = −a(h · ν)Dnwt,

D[Dn∆w + (1− µ)B2w]− γDnwtt − [C[ε(u) + f(∇w)]ν · ∇w]

= a(h · ν)wt + a(Dτ (h · ν)Dτwt),(1.16)

where the constants a, b are strictly positive. The exponential decay rates obtained
in [22] for this model above hold under the following conditions: (i) geometric star-
shaped conditions are assumed also on the controlled portion of the boundary Γ1; (ii)
the constant “b” in (1.16) is strictly positive but suitably small. This “smallness”
requirement is dictated by the existence theory presented in [23].

Putting aside, for a moment, questions related to unjustified, on physical grounds,
geometric conditions imposed on the controlled portion of the boundary and the lin-
ear nature of boundary dissipation, the major somewhat disappointing feature of this
result is the fact that while the decay rates derived in [22] depend critically on the
positivity of the constant b in (1.16) (in fact, they go to zero when b tends to zero),
the very same constant needs to be assumed small in order to guarantee the existence
of the solutions (see [23]). Moreover, since the estimates break down when b = 0, the
authors in [22] suggest the necessity of these tangential components of vector u in the
structure of the stabilizing feedback. This leads to an unpleasant dichotomy where
the “factotum/savior” for the stabilization result is “knocked down” by the existence
theory. It was precisely this aspect of the problem that provided the main motivation
for gaining a better understanding and searching for more powerful techniques ade-
quate for studying this nonlinear problem. Thus, the main question being asked is,
can we obtain the uniform decay rates for the energy without the additional tangential
components of the horizontal displacement u present in the structure of the feedback?
(For example, can the constant b in (1.16) be equal to zero?)

This paper provides an affirmative answer to the above question. In fact, the
results stated in Theorem 1.2 yield the uniform decay rates for the model without the
additional component of the boundary feedback corresponding to the b term in (1.16)
(contrary to the authors’ conjecture in [22]). Moreover, our feedback is nonlinear and
without any assumptions on the growth at the origin. Finally, the result of Theo-
rem 1.2 does not require any geometric hypotheses on the controlled portion of the
boundary Γ1, which is in agreement with the physical understanding of propagations.

Let us state at the outset that the technique employed in [22], and based on a
combination of multipliers and the Lyapunov method (used earlier also in [13], [12])
cannot be extended to treat the problem at hand. Instead, our main strategy is to
obtain a certain nonlinear algebraic relation for the energy function which then leads,
via suitable comparison argument, to the ordinary differential equation describing
the decay rates for the solutions. This approach, very different from the Lyapunov
function approach used by many authors (including [22]), has been introduced in
[19] in a context of the wave equation. The main advantage of this technique is
its flexibility in handling various “unstructured” terms of the equation (in contrast
to the Lyapunov function method which is very sensitive to the structure of the
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problem). However, the main new ingredients critical to the proof of Theorem 2.1
are (i) appropriate “sharp” trace estimates for the solutions to the nonlinear system
(1.1) and (ii) a Holmgren-type uniqueness result valid for the nonlinear system which
is overdetermined on the boundary.

Indeed, as to the point in (i), these “trace” estimates are responsible for handling
the geometrical conditions as well as for showing the decay rates without the addi-
tional tangential boundary terms present in (1.16). We note that a version of sharp
trace estimates was used before in [21], [6] for the purpose of eliminating geomet-
ric conditions in the context of wave and plate equations. However, in the present
case, the situation is more complicated due to strong and nonlinear coupling of the
equations.

A unique continuation result (point (ii) above) is needed at the level of absorbing
lower-order terms. We show the validity of this unique continuation property by
applying a new uniqueness result due to Isakov [9]. However, in order to do this, we
need to establish a priori the regularity of the “overdetermined” solutions. This, in
turn, can be proved for all finite energy solutions, provided, however, there is some
light damping in the system (see Part I of Theorem 1.2). In the general case, however,
we need to assume an incremental a priori smoothness of the initial data. (See Part
II.) We note that this is in contrast with a modified von Karman system where one
can show that the solutions overdetermined on the boundary display (without any
interior damping) an arbitrary level of regularity. Proof of this “smoothing” property,
carried out in [17], is based on sharp regularity of the Airy stress function established
in [3]. Unfortunately, we do not have an analogue of this property valid for the present
model.

2. Preliminary results and trace regularity. In this section we shall formu-
late and prove several preliminary estimates which deal with the trace regularity of
solutions to the nonlinear equations given by (1.1). These results, while important in
proving the main theorem, are also of independent interest in their own right.

2.1. Dissipativity equality. A starting point is, as usual, the dissipativity
equality which states that the energy of the entire system is nonincreasing. This
fact alone does not prove, of course, that the energy is decaying, but it is a necessary
preliminary step of stability analysis.

Lemma 2.1. Let u,w be a finite energy solution of system (1.1). Then, for any
s ≤ t,

E(t) + 2

∫ t

s

∫
Γ1

[g(ut) · ut + h1(Dnwt)Dnwt + h2(Dτwt)Dτwt]dΓ1dt

+2

∫ t

s

∫
Ω

[b1ut · ut + b2wtwt]dΩdt = E(s).(2.1)

Proof. The proof is standard and it follows by the classical energy type of argu-
ment (we multiply (1.1) by ut, wt, integrate over Ω× (s, t), and apply the divergence
theorem first to smooth solutions and then we extend it by density to all weak solu-
tions).

2.2. Trace regularity. This subsection provides several trace regularity results
that are critical for the proof of stability estimates without assuming the geometric
conditions on Γ1 and without considering tangential components of the horizontal
displacement in the structure of the stabilizing feedback. These estimates are based on
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the corresponding trace estimates valid for (i) the linear model of dynamic elasticity
and (ii) the linear Kirchhoff model obtained by methods of microlocal analysis in
[5] and [21], respectively. Here the main idea is to obtain the estimates for the
tangential derivatives on the boundary in terms of the velocity traces and lower-
order terms. To formulate these results we introduce some notation. Let T > 0 be
fixed. In fact, from now on we shall assume that T is sufficiently large and greater
than the finite speed of propagation corresponding to equation (1.1). We denote
Q ≡ [0, T ]×Ω, Σα ≡ [α, T−α]×Γ1, where α < T/2. We also have that Σ1 ≡ [0, T ]×Γ1,
Σ0 ≡ [0, T ]× Γ0, Σ ≡ [0, T ]× Γ.

We shall also use the following notation for Sobolev norms:

|u|α,Ω ≡ |u|Hα(Ω), |u|α,Γ ≡ |u|Hα(Γ)

and for the inner products

(u, v)Ω ≡ (u, v)L2(Ω); 〈u, v〉Γ ≡ (u, v)L2(Γ).

Using the same symbol we shall also denote norms/inner products of two copies of L2

or Hα spaces. This should not create any confusion, since the meaning will be clear
from the context.

The constant C is a generic constant, different in various occurrences. C(E(0))
denotes the quantities bounded in terms of E(0).

Lemma 2.2. Let u,w be a finite energy solution corresponding to the system
(1.1). Then, for any ε < 1/4, there exists a constant C(E(0)) such that the following
trace regularity takes place:∫

Σα

|∇u|2dΣα ≤ C

∫
Σ1

[|ut|2 + |g(ut)|2]dxdt

+C(E(0))

∫ T

0

[|w|22−ε,Ω + |u|21−ε,Ω]dt.(2.2)

Remark 2.1. Notice that the regularity of the trace of ∇u proclaimed by Lemma
2.2 (see also Lemma 2.5 below) does not follow from the standard interior regularity
of finite energy solutions via the trace theory. These are independent regularity re-
sults that rely heavily on microlocal arguments applied to both the dynamic system of
elasticity and the dynamic Kirchhoff plate.

Proof.
Step 1. We shall begin with the following trace regularity result valid [5] for the

linear model of dynamic elasticity (see also [20] where the analogous result was proved
for the wave equation). Define

F (x, y, t) ≡ div[Cf(∇w(x, y, t))],(2.3)

where w is a finite energy solution corresponding to the system (1.1). Then the
solution u satisfies the following “linear” system of dynamic elasticity

utt + b1ut − divC[ε(u)] = F in Q.(2.4)

According to [5], [28] for all ε < 1/2, we have the estimate∫
Σα

|∇u · τ |2dΣα ≤ C

∫ T

0

[|ut|20,Γ1
+ |ε(u) · ν|20,Γ1

+ |F |2−1/2,Ω + |u|21−ε,Ω]dt(2.5)
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and using the boundary conditions satisfied on Γ1 we have∫
Σα

|∇u · τ |2dΣα ≤ C

∫ T

0

[|ut|20,Γ1
+ |g(ut)|20,Γ1

+ |f(∇w)|20,Γ1

+|F |2−1/2,Ω + |u|21−ε,Ω]dt.(2.6)

Remark 2.2. The estimate in inequality (2.6), when applied to the homogeneous
system of dynamic elasticity, states that the traces of the tangential derivatives of u
are bounded by the traces of velocity modulo lower-order terms. A result of similar
nature was obtained first for the classical wave equation in [20].

Step 2. We shall estimate the fourth term on the right-hand side of the inequality
in (2.6).

Proposition 2.3. Let ε < 1/2 . Then the function F defined in (2.3) satisfies,
for all t ≥ 0,

|F (t)|−1/2,Ω ≤ C|w(t)|2,Ω|w(t)|2−ε,Ω.(2.7)

Proof. Let φ ∈ H1/2(Ω). Direct computations give

(F, φ)0,Ω = (div[Cf(∇w)], φ)0,Ω ≤ C|w|2,Ω|Dwφ|0,Ω,(2.8)

where D stands for a first-order differential operator. But

|Dwφ|0,Ω ≤ C|w|W 1
2p(Ω)|φ|L2q(Ω),

where 1/p+ 1/q = 1. By Sobolev’s embedding

H2−ε(Ω) ⊂W 1
4 (Ω), H1/2(Ω) ⊂ L4(Ω) ε ≤ 1/2(2.9)

we obtain

|Dwφ|0,Ω ≤ C|w|2−ε,Ω|φ|1/2,Ω,(2.10)

and going back to (2.8) we obtain

|(F, φ)0,Ω| ≤ C|w|2,Ω|w|2−ε,Ω|φ|1/2,Ω,(2.11)

which, via duality, proves the assertion in the proposition.
Step 3. We shall next estimate the normal derivatives of the vector u.
Proposition 2.4. For all ε < 1/4 we have

∫
Σα

|∇u · ν|2dΣ1 ≤ C

∫
Σα

[|g(ut)|2 + |∇u · τ |2]dΣα + C(E(0))

∫ T−α

α

|w|22−ε,Ωdt.
(2.12)

Proof. Reading off the boundary conditions for the variable u we obtain the
relation

ε(u) · ν = ~g,(2.13)

where we introduce the variable

~g ≡ −C−1g(ut)− f(∇w) · ν,



UNIFORM STABILIZABILITY OF A FULL VON KARMAN SYSTEM 1385

where ~g satisfies the estimate

|~g|2L2(Σα) ≤ C[|g(ut)|2L2(Σα) + |(∇w)2|2L2(Σα)]

≤ C

[
|g(ut)|2L2(Σα) + |w|2L∞(0,T ;W 1

4 (Γ1))

∫ T−α

α

|w(t)|2W 1
4 (Γ1)

]

≤ C|g(ut)|2L2(Σα) + C(E(0))

∫ T−α

α

|w|22−ε,Ω(2.14)

and where we have used the estimate

|(∇w)2|2L2(Σα) ≤ C

∫ T−α

α

|∇w(t)|4L4(Γ)dt ≤ CE(0)

∫ T−α

α

|w(t)|22−ε,Ωdt.(2.15)

This last estimate follows, in turn, from the trace theorem, the dissipativity equality
(2.1), and the following Sobolev embedding:

H3/2−ε(Γ) ⊂W 1
4 (Γ), ε ≤ 1/4.(2.16)

On the other hand, denoting

~d ≡ ∇u · τ
and writing

ε(u) · ν = ~g,(2.17)

∇u · τ = ~d,(2.18)

leads to the algebraic linear system of the form

A~u = [~g, ~d]T ,

where ~u ≡ [u1,x, u1,y, u2,x, u2,y] and the determinant of the matrix A is equal to
−1/2. Solving the above system pointwise and integrating the result over Σα yields
the inequality ∫

Σα

[|Dxu|2 + |Dyu|2]dΣα ≤ C

∫
Σα

[|~g|2 + |~d|2]dΣα.(2.19)

The above estimate together with (2.14) leads to the result in (2.12).
Step 4. Collecting the results of the estimates (2.6), (2.12), (2.7) we obtain∫

Σα

|∇u|2dΣα ≤ C

∫
Σ1

[|ut|2 + |g(ut)|2 + |f(∇w)|2]dxdt

+C(E(0))

∫ T

0

[
|w(t)|2−ε,Ωdt+

∫ T

0

|u(t)|1−ε
]
dt.(2.20)

Estimating the term |f(∇w)|20,Σ1
once more and using the inequality in (2.15) leads

us to the desired result in Lemma 2.2.
Our next result deals with the improved trace regularity for the vertical displace-

ment w.
Lemma 2.5. Let u,w be a finite energy solution to (1.1) with the boundary con-

ditions (1.2). Then ∫
Σα

[|D2
nw|2 + |D2

τw|2 + |DnDτw|2]dΣα ≤ CT

∫
Σ1

[|∇wt|2

+|h1(Dnwt)|2 + |h2(Dτwt)|2 + C(E(0))|ut|2]dΣ + CT (E(0))

∫ T

0

|w|22−ε,Ωdt.(2.21)
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Proof.
Step 1. Define

F ≡ div[C[ε(u) + f(∇w)]∇w];

then w satisfies the following equation of linear Kirchhoff plate

[I − γ∆]wtt + b2wt +D∆2w = F in Q.(2.22)

According to the estimates in Theorem 2.1 in [21] the following improved trace regu-
larity is valid for (2.22) ∫

Σα

[|D2
nw|2 + |D2

τw|2 + |DnDτw|2]dΣα

≤ CT

∫
Σ1

[|∇wt|2

+|h1(Dnwt)|2 + |h2(Dτwt)|2]dΣ1

+

∫ T

0

[|C[ε(u) + f(∇w)]ν · ∇w|2−1,Γ1

+|F (t)|2(H3/2(Ω))′ + C|w(t)|22−ε,Ω]dt

≤ CT

∫
Σ1

[|∇wt|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1

+CT

∫ T

0

[|g(ut) · ∇w|2−1,Γ1
+ |F (t)|2(H3/2(Ω))′ + |w(t)|22−ε,Ω]dt,(2.23)

where we used the boundary conditions for the “u” equation.
Step 2. We shall estimate first the contribution of the term F in (2.23). This is

accomplished by the proposition below.
Proposition 2.6. For all ε < 1/2 the following estimates hold:

|F (t)|(H3/2(Ω))′ ≤ C[|N(u(t), w(t))|0,Ω|w(t)|2−ε,Ω + |ut(t)|0,Γ1 |w(t)|2−ε,Ω].(2.24)

Hence ∫ T

0

|F (t)|2(H3/2(Ω))′dt ≤ C(E(0))

∫ T

0

[|w(t)|22−ε,Ω + |ut(t)|20,Γ1
]dt.(2.25)

Proof. Let φ ∈ H3/2(Ω). Applying the divergence theorem and accounting for
the boundary conditions we obtain

(F, φ)0,Ω = (div[C[ε(u) + f(∇w)]∇w], φ)0,Ω = −(C[ε(u) + f(∇w)]∇w,∇φ)0,Ω

+(C[ε(u) + f(∇w)]ν · ∇w, φ)0,Γ1

= (C[ε(u) + f(∇w)],∇φ×∇w)0,Ω + (g(ut)∇w, φ)0,Γ1
.(2.26)

The first interior term in (2.26) is estimated as follows:

(C[ε(u) + f(∇w)],∇φ×∇w)0,Ω ≤ C|N(u,w)|0,Ω|∇w ×∇φ|0,Ω
≤ C|N(u,w)|0,Ω|∇w|L4(Ω)|∇φ|L4(Ω) ≤ C|N(u,w)|0,Ω|w|2−ε,Ω|φ|3/2,Ω,(2.27)

where we have used Sobolev’s embedding (2.9).
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To estimate the boundary term that appeared in (2.26) we proceed as follows:

(g(ut)∇w, φ)0,Γ1
≤ |g(ut)|0,Γ1

|∇wφ|0,Γ1

≤ C|ut|0,Γ1
|w|1,Γ1

|φ|1,Γ1
≤ C|ut|0,Γ1

|w|3/2,Ω|φ|3/2,Ω.(2.28)

Combining inequalities in (2.26)–(2.28) leads to the result stated in the first part of
the proposition. The second inequality follows simply by integrating the first part
and taking into account the dissipativity property (2.1).

Step 3.
Proposition 2.7. We have∫ T

0

|g(ut)∇w|2−1,Γ1
dt ≤ CE(0)|ut|20,ΣT

.(2.29)

Proof. As a bypass of the computations in (2.28) we obtain

|g(ut)∇w|−1,Γ1 ≤ C|ut|0,Γ1 |w|1,Γ1 ≤ C|ut|0,Γ1 |w|2−ε,Ω.
Integrating the above inequality with respect to time and recalling the dissipativity
property we obtain the result claimed in Proposition 2.7.

Step 4. Complete the proof of Lemma 2.5.
Combining the results of both propositions together with inequality (2.23) leads

to the final conclusion of Lemma 2.5.

3. Stabilizability estimate. The main aim in this section is to prove the fol-
lowing stabilizability estimate in Lemma 3.1.

Lemma 3.1. Let u,w be a regular solution to (1.1). Assume the geometric condi-
tion on Γ0 (1.9). Then there exists T large enough such that for any constant ε < 1/4
the following estimate takes place:

E(0) + E(T ) +

∫ T

0

E(t)dt ≤ CT (E(0))

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1
+ C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ CT (E(0))lot(u,w),(3.1)

where we have used the notation for the lower-order terms (lot(u,w))

lot(u,w) ≡
∫ T

0

[|u(t)|21−ε,Ω + |w(t)|22−ε,Ω]dt.(3.2)

The estimate of Lemma 3.1, critical to the proof of the main stabilizability result,
is an inverse type of estimate. Indeed, it allows us to reconstruct the energy of
the system, modulo lower-order terms, from the measurements of velocities on the
boundary. The remainder of this section is devoted to the proof of Lemma 3.1. Here,
the strategy used for the proof is to first apply the usual “ multipliers” method (for an
exposition of this method see the books [15], [11], [10] and references therein), which
leads to the estimate for the energy in terms of all boundary traces and lower-order
terms. The next crucial step is to eliminate the “unwanted” boundary traces by using
sharp trace regularity results presented in section 2.

Remark 3.1. The result of Lemma 3.1 can be extended to hold for all finite energy
(weak) solutions. Indeed, this can be accomplished by applying a special “regulariza-
tion” argument as in [19]. In order to avoid the additional technical complications
and for the sake of clarity of exposition we shall not do this here, and for details we
refer the reader to [19], [6], [7].
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3.1. Variational formulation and preliminary identities. We shall begin
by writing system (1.1) in a variational form. To this end let us have two test functions
φ ∈ H1(Ω) ×H1(Ω) and ψ ∈ H2(Ω). The von Karman system admits the following
variational form:

(utt, φ)Ω + (b1ut, φ)Ω + (C[ε(u) + f(∇w)], ε(φ))Ω + 〈g(ut), φ〉Γ1 − 〈Cε(u)ν, φ〉Γ0 = 0,

(3.3)
(wtt, ψ)Ω + γ(∇wtt,∇ψ)Ω + a(w,ψ) + (b2wt, ψ)Ω + (C[ε(u) + f(∇w)],∇ψ ×∇w)Ω

+〈h1(Dnwt), Dnψ〉Γ1 + 〈h2(Dτwt), Dτψ〉Γ1 − 〈∆w,Dnψ〉Γ0 = 0.(3.4)

Note that we have used the boundary conditions satisfied on Γ.
We shall apply this variational form with various choices of test functions φ and

ψ. In order to facilitate verification of rather tedious computations below, we will
provide a few elementary tensor identities.

In what follows the vector field h always denotes the radial vector field

ε(h∇u) = ε(u) +M,(3.5)

where the tensor M is given by

M ≡
[

D2
x1,xiu1hi 1/2[D2

x2,xiu1hi +D2
x1,xiu2hi]

1/2[D2
x2,xiu1hi +D2

x1,xiu2hi] D2
x2,xiu2hi

]
,(3.6)

and we have adopted double index notation to indicate the summation of the terms.
If A is any symmetric fourth-order tensor identified by its coefficients ai,j ,

A ≡ {ai,j},
then it is straightforward to show that

A ·M = ak,jD
2
xk,xi

ujhi,(3.7)

∇(∇wh) = ∇w + [wx1,xihi, wx2,xihi],(3.8)

and

∇(∇wh)×∇w = ∇w ×∇w +∇w × [wx1,xihi, wx2,xihi],(3.9)

A · (∇(∇wh)×∇w) = A · ∇w ×∇w + ak,jwxjwxk,xihi.(3.10)

Let B be another symmetric tensor such that

aj,i = cj,lbl,i

with constant and symmetric coefficients cj,i. Then

div[A ·Bh] = 2A ·B + ci,lDxkbl,jbi,jhk = 2A ·B + 2aj,iDxkbj,ihk.(3.11)

In the particular case when the tensors A and B are given by

A = C[ε(u) + f(∇w)],

B = ε(u) + f(∇w),

the formula above reads

div[C[ε(u) + f(∇w)] · [ε(u) + f(∇w)]h] = 2C[ε(u) + f(∇w)] · [ε(u) + f(∇w)]

+2ai,j [D
2
xk,xj

ui + wxjD
2
xi,xk

w]hk.(3.12)
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3.2. First estimate. In this subsection we shall prove a preliminary estimate
which shows that the energy of the system is bounded by the boundary traces mod-
ulo the lower-order terms. Computations carried below, based on the “multiplier’s
method,” are reminiscent of those performed earlier in [13], [12], and later in [22].

Lemma 3.2. Let u,w be a regular solution to (1.1). Assume the geometric con-
dition (1.9) holds on Γ0. Then there exists T large enough such that for any constant
ε < 1/4 the following estimate takes place:

E(T ) +

∫ T

0

E(t)dt ≤ CT (E(0))

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1 + C

∫
Σ1

[|∇u|2 + |D2
nw|2 + |DnDτw|2 + |D2

τw|2]dΣ1

+C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ CT (E(0))lot(u,w).(3.13)

Proof.
Step 1. We use φ ≡ ∇uh as a test function in the first variational equality. By

the virtue of (3.5), (3.7) applied with

A ≡ C[ε(u) + f(∇w)],

we obtain

(C[ε(u) + f(∇w)], ε(∇uh)) = (C[ε(u) + f(∇w)], ε(u)) + (ai,j , D
2
xk,xj

uihk)(3.14)

and integrating over Q

(ut,h∇u)Ω|T0 +

∫ T

0

(b1ut,h∇u)Ωdt− 1/2

∫
Σ

|ut|2h · νdΣ +

∫
QT

|ut|2dQ

+

∫ T

0

[(C[ε(u) + f(∇w)], ε(u))Ω + (ai,j , D
2
xk,xj

uihk)Ω + 〈g(ut),h∇u〉Γ1

−〈Cε(u), ε(u)νh〉Γ0
]dt = 0,(3.15)

where we have used the fact that u vanishes on Γ0 and, therefore,

Cε(u)ν∇uh = Cε(u) · ε(u)νh on Γ0.(3.16)

To see (3.16), it suffices to notice the following identities taking place on Γ0

∇uh = Dnuνh, trace ε(u) = Dnuν,

ε(u)ν = [Dnu1ν
2
1 , Dnu2ν

2
2 ] + (1/2)νT (Dnuν

T ),

ε(u) · ε(u) = Dnu
2
i ν

2
i + (1/2)(Dnuν

T )2.

Hence

ε(u)ν∇uh = {[Dnu1ν
2
1 , Dnu2ν

2
2 ] + (1/2)νT (Dnuν

T )}Dnuνh

= (Dnu
2
i ν

2
i + (1/2)(Dnuν

T )2)νh = ε(u) · ε(u))νh.(3.17)

Similarly

trace (ε(u))Iν∇uh = (Dnuν)
2νh = trace ε(u)I · ε(u)νh.(3.18)
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The identity in (3.16) follows now from (3.17) and (3.18) and the definition of the
tensor C.

To obtain appropriate estimates for the second variable we apply the variational
form with the test function ψ ≡ ∇wh. From (3.10) we have

(C[ε(u) + f(∇w)],∇(∇wh)×∇w) = 2(Cε(u) + f(∇w), f(∇w))

+(ai,jwxj , D
2
xi,xk

whk).(3.19)

Integrating the result over Q we have

(wt,h∇w)Ω|T0 + γ(∇wt,∇(h∇w))Ω|T0 +

∫ T

0

[|wt|20,Ω + (b2wt,h∇w)Ω + a(w,w)

+2(C[ε(u) + f(∇w)], f(∇w))Ω + (ai,jwxj , D
2
xi,xk

whk)Ω]dt

= 1/2

∫
Σ1

[|wt|2 + γ|∇wt|2 −D/2[w2
x,x + w2

y,y + 2νwx,xwy,y + 2(1− µ)w2
x,y]hν

+h1(Dnwt)Dn(h∇w) + h2(Dτwt, Dτh∇w)]dΣ1 −D/2

∫
Σ0

|∆w|2hνdΣ0.(3.20)

Adding inequalities in (3.15) and (3.20) yields∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), N(u,w))Ω + (CN(u,w), f(∇w))Ω

+(ai,j , [D
2xk, xjui + wxjD

2
xj ,xk

w]hk)Ω]dt ≤ C[E(0) + E(T )]

+1/2

∫
Σ1

[|ut|2 + g(ut)h∇u+ |wt|2 + γ|∇wt|2 + h1(Dnwt)Dn(h∇w)

+h2(Dτwt)Dτ (h∇w)−D/2[w2
x,x + w2

y,y + 2νwx,xwy,y + 2(1− ν)w2
x,y]hν]dΣ1

+

∫ T

0

[(b1ut,h∇u)Ω + (b2wt,h∇w)Ω]dt+

∫
Σ0

[C(ε(u))νh∇u+ |∆w|2hν]dΣ0.(3.21)

Using the relations (3.12) in (3.21), applying the divergence theorem, and recalling
(3.16) yields∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), f(∇w))Ω]dt ≤ C[E(0) + E(T )]

+1/2

∫
Σ1

[|ut|2 + g(ut)h∇u+ |wt|2 + γ|∇wt|2 + h1(Dnwt)Dn(h∇w)

+h2(Dτwt)Dτ (h∇w)−D/2[w2
x,x + w2

y,y + 2νwx,xwy,y + 2(1− ν)w2
x,y]hν]dΣ1

+

∫
Σ0

[1/2C(ε(u))νh∇u+ |∆w|2hν]dΣ0 − 1/2

∫
Σ1

CN(u,w) ·N(u,w)hνdΣ1

+

∫ T

0

[(b1ut,h∇u)Ω + (b2wt,h∇w)Ω]dt.(3.22)

On the other hand,∫
Σ1

|N(u,w)|2dΣ1 ≤ C

∫
Σ1

|∇u|20,Γ1
dΣ1 + C(E(0))

∫ T

0

|w|2−ε,Ωdt,(3.23)

(b1ut,h∇u)Ω ≤ ε1|b∗11/2(h∇u)|20,Ω + Cε1(b1ut, ut)Ω ≤ ε0|u|21,Ω + Cε0(b1ut, ut)Ω,

(3.24)

(b2wt,h∇w)Ω ≤ ε1|b∗21/2(h∇w)|20,Ω + Cε1(b2wt, wt)Ω ≤ ε0|w|21,Ω + Cε0(b2wt, wt)Ω.

(3.25)
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Combining with (3.22) we obtain

∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), f(∇w))Ω]dt ≤ C[E(0) + E(T )

+1/2

∫
Σ1

[|ut|2 + g(ut)h∇u+ |wt|2 + γ|∇wt|2 + h1(Dnwt)Dn(h∇w) + h2(Dτwt)

·Dτ (h∇w)]dΣ1 −
∫

Σ1

D/2[w2
x,x + w2

y,y + 2νwx,xwy,y + 2(1− ν)w2
x,y]hνdΣ1

+

∫
Σ0

[1/2C(ε(u))νh∇u+ |∆w|2hν]dΣ0 +

∫
Σ1

|∇u|20,Γ1
dΣ1 + C(E(0))

∫ T

0

|w|2−ε,Ωdt

+Cε0

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ ε0

∫ T

0

|u|21,Ωdt.(3.26)

Remark 3.2. Note that in a special case when the geometric conditions are
assumed also on Γ1, then the last three boundary integrals in (3.26) can be discarded.

Step 2. We apply the variational equality with the following test functions: φ = u,
ψ = w. We have

(ut, u)Ω|T0 +

∫ T

0

[(CN(u,w), ε(u))Ω − |ut|20,Ω + (b1ut, u)Ω + 〈g(ut), u〉Γ1

−〈Cε(u)ν, u〉Γ0
]dt = 0,(3.27)

(wt, w)Ω|T0 + γ(∇wt,∇w)Ω|T0 +

∫ T

0

[a(w,w) + (b2wt, w)Ω + (CN(u,w),∇w ×∇w)Ω

−|wt|20,Ω − γ|∇wt|20,Ω − 〈h1(Dnwt), Dnw〉Γ1
+ 〈h2(Dτwt), Dτw〉Γ1

]dt = 0.(3.28)

Here we took into account the boundary conditions on Γ0 for the variable w.
Multiplying equality (3.27) by a positive constant A, multiplying equality (3.28)

by a negative constant B, adding the result to the inequality (3.26), and accounting
for a correct sign of the boundary terms on Γ0 yields

∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), f(∇w))Ω

+A{(CN(u,w), ε(u))Ω − |ut|20,Ω}
+B{a(w,w) + 2(CN(u,w), f(∇w))Ω − |wt|20,Ω − γ|∇wt|20,Ω}]dt

≤ C[E(0) + E(T )] + C

∫
Σ1

[|ut|2 + g(ut)h∇u+ |wt|2 + γ|∇wt|2 + h1(Dnwt)Dn(h∇w)

+h2(Dτwt)Dτ (h∇w)−D/2[w2
x,x + w2

y,y + 2νwx,xwy,y + 2(1− ν)w2
x,y]hν

−|∇u|2]dΣ1 + C

∫ T

0

[〈g(ut), u〉Γ1
+ 〈h1(Dnwt), Dnw〉Γ1

+ 〈h2(Dτwt), Dτw〉Γ1

+Cε0((b1ut, ut)Ω + (b2wt, wt)Ω) + (b1ut, u)Ω + (b2wt, w)Ω + ε0|u|21,Ω
+Cε(E(0))|w|22−ε,Ω]dt.(3.29)

Selecting constants A = 1/2, B = −1/4 and upper bounding the boundary terms by
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the trace theorem yields∫ T

0

[|ut|20,Ω + |wt|20,Ω + γ|∇wt|20,Ω + a(w,w) + (CN(u,w), N(u,w))Ω]dt

≤ C[E(0) + E(T )] + C

∫
Σ1

[|ut|2 + |g(ut)|2 + |wt|2 + γ|∇wt|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2 + |∇u|2 + |D2
nw|2 + |DnDτw|2 + |D2

τw|2]dΣ1

+

∫ T

0

[Cε0((b1ut, ut)Ω +(b2wt, wt)Ω)+ ε0|u|21,Ω]dt+C(E(0))

∫ T

0

[|w|22−ε,Ω + |u|21−ε,Ω]dt.

(3.30)

Recalling the definition of the energy together with the coercivity of Ep in H2(Ω) ×
H1(Ω) and taking ε0 small enough yields

1/2TE(T ) + 1/2

∫ T

0

E(t)dt ≤ CE(T )

+C

∫
Σ1

[|ut|2 + |g(ut)|2 + |wt|2 + γ|∇wt|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2 + |∇u|2 + |D2
nw|2 + |DnDτw|2 + |D2

τw|2]dΣ1

+C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ C(E(0))

∫ T

0

[|w|22−ε,Ω + |u|21−ε,Ω]dt.(3.31)

Taking T large enough (note that the constant C in front of the term E(T ) is inde-
pendent on T ) yields the conclusion of Lemma 3.2

Remark 3.3. We note that the proof carried above provides a (new?) uniqueness
result for the problem which is overdetermined on the boundary and defined on the star-
shaped domain. Indeed, in the special case when the geometric conditions are satisfied
also on Γ1,b1 = b2 = 0, and solutions are required to have zero velocity traces on the
boundary for t ∈ [0, T ], with T sufficiently large, the argument above gives

E(t) ≡ 0.

Indeed, applying inequalities (3.22), (3.27), (3.28) to the case considered above gives∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), f(∇w))Ω]dt ≤ C[E(0) + E(T )],(3.32)

(ut, u)Ω|T0 +

∫ T

0

[(CN(u,w), ε(u))Ω − |ut|20,Ω]dt = 0,(3.33)

(wt, w)Ω|T0 + γ(∇wt,∇w)Ω|T0 +

∫ T

0

[a(w,w) + (CN(u,w),∇w ×∇w)Ω

−|wt|20,Ω − γ|∇wt|20,Ω]dt = 0.(3.34)

Multiplying equality (3.33) by a positive constant A, multiplying equality (3.34) by
a negative constant B, and adding the result to the inequality (3.32) yields∫ T

0

[|ut|20,Ω + |wt|20,Ω + a(w,w) + (CN(u,w), f(∇w))Ω

+A{(CN(u,w), ε(u))Ω − |ut|20,Ω}
+B{a(w,w) + 2(CN(u,w), f(∇w))Ω − |wt|20,Ω − γ|∇wt|20,Ω}]dt

≤ C[E(0) + E(T )].(3.35)
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Selecting constants A = 1/2, B = −1/4 yields

∫ T

0

[|ut|20,Ω + |wt|20,Ω + γ|∇wt|20,Ω + a(w,w) + (CN(u,w), N(u,w))Ω]dt

≤ C[E(0) + E(T )].(3.36)

Since, in our case, E(t) = E(T ), (3.36) gives

TE(T ) =

∫ T

0

E(t)dt ≤ CE(T )(3.37)

and taking T large enough we conclude E(t) ≡ 0. Hence u = w ≡ 0, which is the
desired uniqueness result for the nonlinear problem at hand.

3.3. Absorption of boundary traces and completion of the proof of
Lemma 3.1. In this subsection we shall show that the boundary traces involving the
second-order derivatives of w and the first-order derivatives of u are redundant. This
will be done with the help of trace regularity results formulated in section 2.

Lemma 3.3. Under the assumptions of Lemma 3.2 we have

E(T ) +

∫ T

0

E(t)dt ≤ CT (E(0))

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1
+ C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ CT,ε(E(0))lot(u,w).

(3.38)

Proof. From the result of Lemma 3.2 applied to the interval [α, T − α] we obtain

∫ T−α

α

E(t)dt ≤ CT (E(0))

∫
Σα

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣα
+ C

∫
Σα

[|∇u|2 + |D2
nw|2 + |DnDτw|2 + |D2

τw|2]dΣα

+C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt+ CT (E(0))lot(u,w).(3.39)

Here we took advantage of the dissipativity property in Lemma 2.1 which allows us
to upper bound E(α) by E(0). On the other hand, from regularity results stated in
Lemmas 2.2 and 2.5 we infer the estimates∫

Σα

[|∇u|2 + |D2
nw|2 + |D2

τw|2 + |DnDτw|2]dΣα

≤ C

∫
Σ1

[|ut|2 + |g(ut)|2 + |∇wt|2 + h1(Dnwt)|2 + |h2(Dτwt|2

+C(E(0))|ut|2]dΣ1 + C(E(0))

∫ T

0

[|w|22−ε,Ω + |u|21−ε,Ω]dt.(3.40)

Combining (3.39) and (3.40) and recalling, again, the dissipativity equality in Lemma
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2.1 gives

E(T − α) +

∫ T−α

α

E(t)dt ≤ CT (E(0))

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2

+|h1(Dnwt)|2 + |h2(Dτwt)|2]dΣ1
+ C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt

+C(E(0))

∫ T

0

[|w|22−ε,Ω + |u|21−ε,Ω]dt.(3.41)

To complete the proof of the lemma we need to estimate the contribution of the
energy on the subintervals [0, α] and [T − α, T ]. To accomplish this we denote the
right-hand side of (3.41) by F . From dissipativity relation (2.1) and (3.41) we have,
for all t ∈ [0, T ],

E(t) ≤ E(T − α) + 2

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1 ≤ CF(3.42)

and by (3.41) ∫ α

0

E(t)dt+

∫ T

T−α
E(t)dt ≤ CF ,(3.43)

which completes the proof of the Lemma 3.3.
Lemma 3.1 follows from Lemma 3.3 and from the dissipativity equality in Lemma

2.1. .

4. Absorption of lower-order terms. Our next step is to eliminate lower-
order terms from the inequality in Lemma 3.1. This is done by applying an appro-
priate compactness/uniqueness argument where a critical role is played by a recent
uniqueness result due to Isakov which applies to domains with C4 boundaries and
with star-shaped unobserved portions of the boundaries (see [9, Remark 1.2], and
[8, p. 750], where the geometry of the domains of unique continuation is explicitly
described).

Lemma 4.1. Let u,w be a solution to (1.1). Then, there exist T > 0 large enough
so that the following parts hold.

Part I. Under Assumption 2 (in Theorem 1.2) we have

lot(u,w) ≡
∫ T

0

[|u(t)|21−ε,Ω + |w(t)|22−ε,Ω]dt ≤ CT (E(0))

[∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2

+|h1(Dnwt)|2 + |h2(Dτwt)|2
]
dΣ1

+ C

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt.(4.1)

Part II. If the above assumption fails, then the constant CT in (4.1) depends on

Eα(0) ≡ E(0) + |u0|21+α,Ω + |w0|22+α,Ω,
where α can be taken to be arbitrarily small.

Proof. We argue by contradiction. Let un, wn be a pair of solutions to (1.1) such
that

lot(un, wn)

P (un, wn)
→∞ when n→∞,(4.2)
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where

P (u,w) ≡
∫

Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2

+|h2(Dτwt)|2]dΣ1 +

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt.(4.3)

From the boundedness of the initial energy (E(0) ≤M) we conclude that the sequence
un, wn satisfies

En(t) ≤M,

where En denotes E(un, wn).
Hence, on a subsequence,

un → u in L∞(0, T ; [H1(Ω)]2) weakly?,

un,t → ut in L∞(0, T ; [L2(Ω)]2) weakly?,

wn → w in L∞(0, T ;H2(Ω)) weakly?,

wn,t → wt in L∞(0, T ;H1(Ω)) weakly?.(4.4)

Thus, by the compactness of the lower-order terms (with respect to the topology
induced by the energy) we conclude that

lot(un, wn) → lot(u,w).(4.5)

We shall consider two separate cases.
Case 1. We have that

lot(u,w) 6= 0.

Then, P (un, wn) → 0 and

un,t → 0 in [L2(Σ)]2,

∇wn,t → 0 in L2(Σ),

g(un,t) → 0 in [L2(Σ)]2,

h1(Dnwn,t) → 0 in L2(Σ),

h2(Dτwn,t) → 0 in L2(Σ),

b1un,t → 0 in [L2(Ω)]2,

b2wn,t → 0 in L2(Ω).(4.6)

Passing with the limit as n→∞ on the original equation (this is straightforward due
to weak continuity of the nonlinear terms) we deduce that the limit functions u,w
satisfy the original equations

utt + b1ut − div[C[ε(u) + f(∇w)]] = 0 in Q,

[I − γ∆]wtt + b2wt +D∆2w − div[C[ε(u) + f(∇w)]∇w] = 0 in Q,(4.7)

C[ε(u) + f(∇w)]ν = 0 in Σ1,

D[∆w + (1− µ)B1w] = 0 in Σ1,

D[Dn∆w + (1− µ)B2w] = 0 in Σ1,

u = w = ∇w = 0 in Σ0(4.8)
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with the overdetermined boundary conditions

ut = 0,∇wt = 0 on Σ,(4.9)

and

b1ut = 0, b2wt = 0 in Q.

Denoting

ũ ≡ ut, w̃ ≡ wt,

we obtain the following system statisfied by the new variables

ũtt + b1ũt − divC[ε(ũ)] = L1(w̃, w) in Q,

[I − γ∆]w̃tt + b2w̃t +D∆2w̃ = L2(ũ, u, w̃, w) = 0 in Q(4.10)

with the overdetermined boundary conditions on the boundary Γ

ũ = ∇w̃ = 0 on Σ, ε(ũ)ν = 0 on Σ1, ∆w̃ = 0, Dn∆w̃ = 0 on Σ1,

where we have used the notation

L1(w, w̃) ≡ 1/2 divC[∇w̃ ×∇w] + 1/2 divC[∇w ×∇w̃],(4.11)

L2(ũ, u, w̃, w) ≡ div[C(ε(ũ))∇w + C(ε(u))∇w̃
+ 1/2C(∇w̃ ×∇w)∇w + 1/2C(∇w ×∇w̃)∇w + Cf(∇w)∇w̃].(4.12)

Our goal is to show that

u ≡ 0, w ≡ 0 in Q.(4.13)

We shall treat separately cases considered in Parts I and II of Lemma 4.1. Let us
notice first that in the case when the geometric conditions on the controlled portion of
the boundary Γ1 are satisfied (i.e., Ω is star-shaped), the conclusion in (4.13) follows
at once from the uniqueness of solutions to the original equations (4.7), (4.8), (4.9)
(see Remark 3.3). Thus, under the assumptions of Part I it suffices to consider the
cases when either b1 or b2 are injective. Let us assume first that b1 is injective. Then,
we have ut ≡ 0 and consequently

divCN(u,w) = 0 in Ω,

N(u,w)ν = 0 on Γ1, u = w = ∇w = 0 on Γ0,(4.14)

which, in turn, implies

div
d

dt
C(f(∇w)) = 0 in Q.(4.15)

Since a priori f(∇w)εH1−ε(Ω),divf(∇w) ∈ C(0, T ;H−ε(Ω)) we obtain divCε(u) ∈
C(0, T ;H−ε(Ω)) and by (4.14) ε(u) · ν|Γ1

∈ C(0, T ;H1/2−ε(Γ1)). From elliptic regu-
larity, we conclude the improved regularity for the variable u, i.e.,

u ∈ C(0, T ;H2−ε(Ω)).(4.16)

Going back to the equation satisfied by w, denoting by H(w) the matrix of the second
derivatives of w (i.e., Hessian), and taking into account (4.14) we infer

[I − γ∆]wtt + b2wt +D∆2w = CN(u,w) ·H(w) in QT ,

D[∆w + (1− µ)B1w] = 0 in Σ1,

D[Dn∆w + (1− µ)B2w] = 0 in Σ1,(4.17)
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and the zero clamped boundary conditions on Γ0. Differentiating (in the sense of
distributions) the above equation in time yields

[I − γ∆]w̃t,t + b2w̃t +D∆2w̃ = CN(u,w)H(w̃) + C[1/2(∇w̃ ×∇w)

+1/2(∇w ×∇w̃)]H(w) in Q,

D[∆w̃ + (1− µ)B1w̃] = 0 in Σ1,

D[Dn∆w̃ + (1− µ)B2w̃] = 0 in Σ1(4.18)

with the overdetermined boundary conditions on Γ1

w = ∇w = 0 on Σ.

Equation (4.18) is a linear equation in the variable w̃ with the coefficients depending on
u,w. Therefore, provided that these coefficients are smooth enough and the solution
itself is regular enough (and this is established in section 6, Theorem 6.2), we are in
a position to apply the uniqueness result due to Isakov [9, Theorem 1.2], valid for the
Kirchhoff plate, which gives

w̃ = wt = 0 in Q.

Thus, we have ut = 0, wt = 0 in Q. With this information we go back to the original
equation (4.7), which now reads

divCN(u,w) = 0 in Ω,

CN(u,w)ν = 0 on Γ1, u = 0 on Γ0,

D∆2w − divC[N(u,w)∇w] = 0 in Ω,

D[∆w̃ + (1− µ)B1w̃] = 0 on Γ1,

D[Dn∆w + (1− µ)B2w] = 0 on Γ1(4.19)

and the zero clamped boundary conditions on Γ0. Multiplying the first equation by u,
multiplying the second by (1/2)wt, integrating over Ω, and adding the results yields

N(u,w) ≡ 0, a(w,w) ≡ 0;

hence w ≡ 0 and ε(u) ≡ 0. This combined with ε(u)ν = 0 on Γ1 and u = 0 on Γ0

gives u ≡ 0, w ≡ 0 as desired. Thus we have proved the assertion (4.13) when b1 is
injective.

We shall examine next the case when b2 is injective. In this case we obtain that
wt = w̃ ≡ 0 in Q. Therefore, L1(w, w̃) ≡ 0 and the variable ũ satisfies

ũtt + b1ũt − div[Cε(ũ)] = 0 in Q,(4.20)

ũ = 0 on Σ, ε(ũ)ν = 0 on Σ1.(4.21)

The Holmgren type of uniqueness result for the elastic system (see, for instance, more
precise results given in Theorem 1.2 and [8]) with the overdetermined boundary values
gives that ũ = 0 in QT . This, in turn, implies that both ut and wt are identically
zero. As a result, we obtain the same static problem as in (4.19), which then yields
the conclusion u ≡ 0 and w ≡ 0 as desired. Thus, the assertion (4.13) has been proved
under the assumption of Part I of Lemma 4.1.

For Part II, the situation is more complicated and the assumption in Part II of
Lemma 4.1 is also required. This is due to the fact that, in this case, our proof relies
on an application of a new uniqueness result due to Isakov [9] in the context of a fully
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dynamic von Karman system. This, in turn, requires the additional smoothness of
the solutions and the coefficients corresponding to the system (4.10). The required
regularity follows from Theorem 6.5 in section 6, which is proved under the additional
assumption: u0 ∈ H1+α(Ω), w0 ∈ H2+α(Ω) for α > 0. Therefore, Theorem 1.3 in [9]
applies to the linearized equation (4.10) and gives

ũ = w̃ = 0.

Hence, u,w satisfy the static equation in (4.19) and we have u = w = 0. Thus we
have established that under the assumptions of Parts I or II of Lemma 4.1 we always
have u = w = 0. But this is a contradiction with the assumption made for Case 1.
We shall next proceed to Case 2.

Case 2. lot(u,w) = 0. In this case, we do not need to distinguish between the
Part I and Part II.

We define new variables

ûn ≡ un
cn
, ŵn ≡ wn

cn
,

where

cn
2 ≡ lot(un, wn) → 0.

Thus we have

lot(ûn, ŵn) = 1, (1/c2n)P (un, wn) → 0,(4.22)

which in turn implies

ûn,t → 0 in L2(Σ),

∇ŵn,t → 0 in L2(Σ),

(1/cn)g(un,t) → 0 in L2(Σ),

(1/cn)h1(Dnŵn,t) → 0 in L2(Σ),

(1/cn)h2(Dτ ŵn,t) → 0 in L2(Σ).(4.23)

Also, it is straightforward to verify that the new variables ûn, ŵn satisfy the system

ûn,tt + b1ût − div[C[ε(ûn) + (1/cn)f(∇wn)]] = 0 in Q,

[I − γ∆]ŵn,tt + b2ŵt +D∆2ŵn − div[C[ε(ûn) + (1/cn)f(∇wn)]∇wn] = 0 in Q

(4.24)

with the Dirichlet boundary conditions on the uncontrolled part of the boundary Γ0

ûn = ŵn = ∇ŵn = 0 on Σ0

and the dissipative boundary conditions on the controlled part of the boundary Γ1

C[ε(ûn) + (1/cn)f(∇wn)]ν = −(1/cn)g(un,t) in Σ1,

D[∆ŵn + (1− µ)B1ŵn] = −(1/cn)h1(Dnwn,t) in Σ1,

D[Dn∆ŵn + (1− µ)B2ŵn]− γDnŵn,tt − [C[ε(ûn) + (1/cn)f(∇wn)]ν · ∇wn]

= −(1/cn)Dτh2(Dτwn,t).(4.25)

Denoting

En ≡ E(un, wn)
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and recalling the stabilizability estimate in Lemma 3.1 together with (4.22) gives

(1/c2n)

[
En(0) + En(T ) +

∫ T

0

En(t)dt

]
≤ C(En(0))[(1/c2n)P (un, wn) + lot(ûn, ŵn)] ≤M.

(4.26)

Elementary calculations show that (4.26) implies

|ûn(t)|1,Ω ≤ C,

|ûn,t(t)|0,Ω ≤ C,

|ŵn(t)|2,Ω ≤ C,

|ŵn,t(t)|1,Ω ≤ C.(4.27)

Hence, on a subsequence,

ûn → û in L∞(0, T ;H1(Ω)) weakly?,(4.28)

ûn,t → ût in L∞(0, T ;L2(Ω)) weakly?,(4.29)

ŵn → ŵ in L∞(0, T ;H2(Ω)) weakly?,(4.30)

ŵn,t → ŵt in L∞(0, T ;H1(Ω)) weakly ? .(4.31)

By the compactness of the lower-order term lot and (4.22) we infer that

lot(ûn, ŵn) → lot(û, ŵ) = 1.(4.32)

We also notice that due to the uniform boundedness in (4.27)

wn = ŵncn → 0 in L∞(0, T ;H2(Ω)).(4.33)

Therefore, passing on the limit in the equation for ûn, ŵn (via routine arguments),
using (4.31), (4.33), (4.23), and

|(1/cn)f(∇wn)|L2(Ω) ≤ C|∇ŵn|L4(Ω)|∇wn|L4(Ω) → 0(4.34)

leads to a decoupled system

ûtt + b1ût − div[C[ε(û)] = 0 in Q,

[I − γ∆]ŵtt + b2ŵt +D∆2ŵ = 0 in Q(4.35)

with Dirichlet/clamped boundary conditions on the uncontrolled part of the boundary
Γ0

û = ŵ = ∇ŵ = 0 on Σ0,

homogeneous boundary conditions on the controlled part of the boundary Γ1

C[ε(û)]ν = 0 in Σ1,

D[∆ŵ + (1− µ)B1ŵ] = 0 in Σ1,

D[Dn∆ŵ + (1− µ)B2ŵ] = 0 in Σ1,(4.36)

and the overdetermined boundary conditions

ût = 0,∇ŵt = 0 on Σ.
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Denoting

ũ ≡ ût, w̃ ≡ ŵt,

we obtain that ũ, w̃ satisfy the same equation (4.35) with the boundary conditions

ũ = w̃ = ∇w̃ = 0 on Σ,(4.37)

Dnũ = ∆w̃ = Dn∆w̃ = 0 on Σ1.(4.38)

A standard Holmgren-type uniqueness result valid for these linear equations (see also
[9]) yields

ũ ≡ 0, w̃ ≡ 0,

and going back to the static equation (4.19) we obtain

û = 0, ŵ = 0.

This is a contradiction of (4.32). The proof is thus completed.

5. Completion of the proof of Theorem 1.2. By combining the results of
Lemmas 3.1 and 4.1 we obtain Lemma 5.1.

Lemma 5.1. Let u,w be a regular solution to the original system. Then there
exists a constant T0 > 0 such that for any T > T0,

E(0) + E(T ) +

∫ T

0

E(t)dt ≤ CT (E(0))

∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2

+|h1(Dnwt)|2 + |h2(Dτwt)|2]dΣ1
+

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt.(5.1)

In what follows we shall denote

ΣA ≡ {(t, x) ∈ Σ1 : |ut| ≤ 1}
and

ΣB ≡ Σ1 − ΣA.

Recalling the definition of the function G we obtain∫
Σ1

[|ut|2 + |g(ut)|2]dΣ1 ≤
∫

ΣA

G(ut, g(ut))dΣA + C

∫
ΣB

g(ut)utdΣB

≤
∫

Σ1

[G(ut, g(ut)) + Cutg(ut)]dΣ1.(5.2)

A similar argument applies to the remaining feedback terms:∫
Σ1

[|∇wt|2 + |h1(Dnwt)|2 + |h2(Dτwt)|2]dΣ1 ≤
∫

Σ1

[C[Dnwth1(Dnwt)

+Dτwt, h2(Dτwt)] +H1(Dnwt, h1(Dnwt)) +H2(Dτwt, h2(Dτwt))]dΣ1.(5.3)

Using Jensen’s inequality we infer∫
Σ1

[|ut|2 + |∇wt|2 + |g(ut)|2 + |h1(Dnwt)|2 + |h2(Dτwt)|2]dΣ1

≤ [CI +H]

∫
Σ1

[utg(ut) + h1(Dnwt)Dnwt + h2(Dτwt)Dτwt]dΣ1.(5.4)
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Denoting by

F ≡
∫

Σ1

[utg(ut) + h1(Dnwt)Dnwt + h2(Dτwt)Dτwt]dΣ1

+

∫ T

0

[(b1ut, ut)Ω + (b2wt, wt)Ω]dt(5.5)

we have that the inequality in (5.1) reads

E(0) + E(T ) +

∫ T

0

E(t)dt ≤ CT (E(0))[F +H(F)].(5.6)

Since the function H+ I is monotone, we can write

[I +H]−1E(T )/CT (E(0)) ≤ F = E(0)− E(T ),(5.7)

which in turn gives

p(E(T )) + E(T ) ≤ E(0),(5.8)

where the monotone function p is defined in section 1. Thus we have proved Lemma
5.2.

Lemma 5.2. Let u,w be a solution to the original equation. Then there exists a
constant T > 0 such that

p(E(T )) + E(T ) ≤ E(0),(5.9)

where the monotone function p is defined in section 1.
The final conclusion of Theorem 1.2 follows now from (5.9) and Lemma 3 in

[19].

6. Regularity of the problem which is overdetermined on the boundary.
We recall that for the proof of Lemma 4.1 in section 4 we have used the unique
continuation results due to Isakov, which, however, require an additional regularity of
the solutions to (4.14), (4.18), and (4.10). The purpose of this section is to establish
the needed regularity. In fact, we shall show that solutions to these overdetermined
on the boundary problems display an arbitrary level of smoothness. We shall begin
our analysis with a simpler case of a semidynamic problem consisting of the system
of equations given by (4.14), (4.18). (See the proof of Part I in Lemma 4.1.) Thus we
are led to consider the following problem:

[I − γ∆]w̃tt + b2w̃t +D∆2w̃ = L(u, w̃, w) in Q(6.1)

with the homogeneous boundary conditions on the boundary Γ

∇w̃ = 0 on Γ, ∆w̃ = 0, Dn∆w̃ = 0 on Γ1,(6.2)

where we have used the notation

L(u, w̃, w) ≡ CN(u,w)H(w̃) + 1/2C(∇w̃ ×∇w)H(w) + 1/2C(∇w ×∇w̃)H(w).
(6.3)

We know a priori (see (4.16)) that for any ε > 0,

u ∈ C(0, T ;H2−ε(Ω)), w ∈ C(0, T ;H2(Ω)), w̃ ∈ C(0, T ;H1(Ω)),
w̃t ∈ C(0, T ;L2(Ω)).

(6.4)
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Our first result follows in Lemma 6.1.
Lemma 6.1. Let w̃ be the solution to (6.1) with regularity specified above and the

overdetermined boundary conditions given in (6.2). Then

w̃ ∈ C(0, T ;H2(Ω)) ∩ C1(0, T ;H1(Ω)).(6.5)

Proof. The idea is to use Carleman’s estimates, which are derived from [27]
(see also [26]) and applied to equation (6.1). However, in order to do this we need to
consider smoother solution than the ones given a priori. Therefore, we take a sequence
of the initial data

w̃n,0 ∈ H2
0 (Ω), w̃n,1 ∈ H1

0 (Ω)

such that

wn,0 → w̃(0) in H1(Ω), wn,1 → w̃t(0) in L2(Ω).(6.6)

Accounting for the regularity of the right-hand side in equation (6.1), i.e., term L
which satisfies the estimate

|L(u, w̃, w)|[H1(Ω)]′ ≤ C|w̃|2,Ω[|u|2−ε,Ω + |w|22,Ω],

we infer by standard perturbation argument in linear semigroup theory that the so-
lutions corresponding to the regularized initial data and denoted by w̃n(t) satisfy

w̃n ∈ H2
0 (Ω), w̃n,t ∈ H1

0 (Ω),(6.7)

w̃n → w̃(t) in H1(Ω), w̃n,t → w̃t(t) in L2(Ω).(6.8)

Since the term L(u,w, w̃n) ∈ C(0, T ;H−1(Ω)) we are in a position to apply Carle-
man’s estimates in [27] to equation (6.1) satisfied by w̃n. To do this, we need to
introduce some notation. Let φ denotes a pseudoconvex function with respect to
the real characteristics of the differential operator associated with the elastic and
Kirchhoff system. In particular one can take

φ(x) = |x− x0|2 − c(t− T/2)2,

where the constant c is suitably small (see [27]). Let ψ be a nonnegative nondecreasing
smooth real function with the following properties:

ψ(0) = 0, ψ(x) > 0 for x > 0,(6.9)

ψ
′
ψk/ψ is bounded on R+ for k = 1, 2, 3.(6.10)

We define

z ≡ ψ(φ).

Applying the estimate of Theorem 2 in [27] (with p = −1) and noting that the
anisotropic norms in the normal direction are irrelevant due to the zero overdetermined
boundary conditions gives ∫ T

0

|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ωdt

≤ C/τ

∫ T

0

|zeτφL(w̃n, u, w)|2−1,Ωdt+Mτ (u,w, w̃n),(6.11)
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where the constant τ can be arbitrarily large. The term Mτ (u,w, w̃) is bounded by
the a priori regularity of u,w, and, moreover, depends linearly on the lower-order
norms of w̃n, i.e.,

Mτ (u,w, w̃n) ≤Mτ,u,w

∫ T

0

|w̃n|21,Ω + |w̃n,t|20,Ωdt.(6.12)

Estimating the right-hand side of (6.11) gives∫ T

0

|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ωdt

≤ C/τ

∫ T

0

|zeτφw̃n|22,Ωdt[|w|2L∞(0,T ;H2(Ω)) + |u|L∞(0,T ;H2−ε(Ω))]

+Mτ (u,w, w̃n).(6.13)

Taking the constant τ to be large enough and recalling the a priori regularity in (6.4)
gives ∫ T

0

[|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ω]dt ≤Mτ (u,w, w̃n).(6.14)

Since ψ can be selected in such a way that

zeτφ ≥ 1 on [t0, t1] ∈ [0, T ],

the inequality in (6.14) gives∫ t1

t0

|w̃n,t|21,Ω + |w̃n|22,Ωdt ≤Mτ (u,w, w̃n).(6.15)

Define

Ẽn(t) ≡ |w̃n,t(t)|21,Ω + |w̃n(t)|22,Ω.
Noting that ∫ t1

s

|L(w, u, w̃n)|2−1,Ωdt

≤ C

∫ t1

s

[|w̃n|22,Ω]dt[|w|2L∞(0,T );H2(Ω) + |u|2L∞(0,T );H2−ε(Ω)] +Mτ (u,w, w̃n),(6.16)

applying standard energy inequality to equation (6.1), and accounting for (6.15), we
obtain for t0 ≤ s ≤ t1,

Ẽn(t1) ≤ CẼn(s) + C

∫ t1

s

|L(w, uw̃n)|2−1,Ω

≤ CẼn(s) +Mτ (u,w, w̃n) + C

∫ t1

s

Ẽn(t)dt ≤ CẼn(s) + CMτ (u,w, w̃n).(6.17)

Integrating the above inequality with respect to s yields

(t1 − t0)Ẽn(t1) ≤ C

∫ t1

t0

Ẽn(s)ds+ CTMτ (u,w, w̃).(6.18)
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From (6.15) and (6.18) we infer

Ẽn(t1) ≤ CTMτ (u,w, w̃n).(6.19)

Since the problem is linear in the variable w̃ and the term Mτ (u,w, w̃n) depends
on the lower-norm estimates for w̃n, see (6.12), we apply the same argument to the
sequence w̃n − w̃m. From (6.8) and (6.12) it follows that

Mτ (u,w, w̃n − w̃m) → 0.(6.20)

Passing through the limit on the right-hand side of (6.19) (this time written for
the difference between the two solutions) and accounting for (6.20) we conclude
that w̃n(t1), w̃n,t(t1) is a Cauchy sequence in H2(Ω) × H1(Ω) and it converges to
w̃(t1), w̃t(t1). Standard semigroup argument yields the improved regularity for w̃:

w̃ ∈ C(0, T ;H2(Ω)),(6.21)

w̃t ∈ C(0, T ;H1(Ω)).(6.22)

In order to apply Isakov’s uniqueness result in the context of equation (4.18), one
needs to assert the regularity of solutions as well as the regularity of the coefficients
of equation (4.18), which, in our case, amounts to the regularity of u,w. Since the
variables ũ, w̃ are nothing but time derivatives of u,w, we have so far obtained

wt ∈ C(0, T ;H2(Ω)), wtt ∈ C(0, T ;H1(Ω)).(6.23)

In order to obtain a higher spatial regularity, we return to the original equation
satisfied by u,w. Recalling the fact that the traces of velocities of u’s and ∇w’s are
zero on Γ1, we obtain

divC[ε(u) + f(∇w)] = 0 in Q,

D∆2w = −[I − γ∆]wtt − b2wt + div[C[ε(u) + f(∇w)]∇w] in Q,

u = w = ∇w = 0 on Σ0,

C[ε(u) + f(∇w)]ν = 0 in Σ1,

D[∆w + (1− µ)B1w] = 0 in Σ1,

D[Dn∆w + (1− µ)B2w] = 0 in Σ1.(6.24)

By straightforward calculations and accounting for the result of Lemma 6.1 we infer
that

div[Cf(∇w)] ∈ C(0, T ;H−ε(Ω)),(6.25)

[I − γ∆]wtt + b2wt + div[C[ε(u) + f(∇w)]∇w] ∈ C(0, T ;H−1−ε(Ω)).(6.26)

From the regularity of the biharmonic problem, we further infer that

w ∈ C(0, T ;H3−ε(Ω)).

Hence,

f(∇w) ∈ C(0, T ;H1(Ω)),

and going back to (6.24) we have that

div[Cf(∇w)] ∈ C(0, T ;L2(Ω)),(6.27)

[I − γ∆]wtt + div[C[ε(u) + f(∇w)]∇w] ∈ C(0, T ;H−1(Ω)).(6.28)
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Since

f(∇w)|Γ1
∈ C(0, T ;H1/2(Γ1)),

by reading off the boundary conditions in (6.24) we also obtain that

C[ε(u)]|Γ1 ∈ C(0, T ;H1/2(Γ1)).

We are now in a position to apply elliptic estimates to the problem (6.24) and conclude
that

u ∈ C(0, T ;H2(Ω)), w ∈ C(0, T ;H3(Ω)).(6.29)

Differentiating in time equation (6.1) and reiterating the same argument over and
over we arrive at the conclusion that

u,w, ũ, w̃ ∈ C∞(Q).

Thus we have obtained Theorem 6.2.
Theorem 6.2. Let u,w be a finite energy solution to the system (4.7), (4.8) with

the overdetermined boundary data (4.9) such that ut ≡ 0. Then

u,w ∈ C∞(Q).

This gives us the improved regularity of the coefficients and of the solutions to
equation (4.18), which, in turn, justifies the application, in section 4, of Isakov’s
Theorem 3 in [9]. From Theorem 3 in [9] we infer that the solution to (4.18) is
identically zero, proving Corollary 6.3.

Corollary 6.3. Let u,w be a finite energy solution to the system (4.7), (4.8)
with the overdetermined boundary data (4.9) such that ut ≡ 0. Then

u,w ≡ 0 in Q.

Now we consider the more difficult case, when Isakov’s uniqueness property is used
in the context of proving Lemma 4.1 under the assumptions of Part II. Application of
Isakov’s result requires that we show that the solutions and the coefficients of a fully
dynamic system (4.10) are sufficiently smooth. Under the assumption of Part II, we
have Eα ≤M , which leads us to the limit solutions with the incrementally improved
regularity (see [18]). This is to say that in equation (4.10) the coefficients u,w are
in C(0, T ;H1+α(Ω) × H2+α(Ω)), where the parameter α may be arbitrarily small.
Our goal is to show that this incremental improvement of regularity of the initial data
implies that the solution to the problem (4.10) with the zero overdetermined boundary
data is C∞(Q). Thus we are led to consider the following problem. Let u,w be a finite
energy solution corresponding to the original system with the additional regularity
specified below, i.e., we assume the following.

Assumption 3. We have that

u ∈ C(0, T ;H1+α(Ω)), w ∈ C(0, T ;H2+α(Ω)).(6.30)

We consider the coupled system (see (4.10))

ũtt + b1ũt − div[C[ε(ũ)] = L1(w̃, w) in Q,

[I − γ∆]w̃tt + b2w̃t +D∆2w̃ = L2(ũ, u, w̃, w) in Q,(6.31)
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with the homogeneous boundary conditions on the boundary Γ

ũ = ∇w̃ = 0 on Γ, ∆w̃ = 0, Dn∆w̃ = 0 on Γ1,

where we have used the notation

L1(w, w̃) ≡ 1/2div[∇w̃ ×∇w] + 1/2div[∇w ×∇w̃],(6.32)

L2(ũ, u, w̃, w) ≡ div[C(ε(ũ))∇w + C(ε(u))∇w̃
+1/2C(∇w̃ × w)∇w + 1/2C(∇w ×∇w̃)∇w + Cf(∇w)∇w̃].(6.33)

Our result follows in Lemma 6.4.
Lemma 6.4. Under Assumption 3, stated above, any solution ũ, w̃ to the problem

(6.31) with the zero overdetermined boundary conditions

∇ũ = 0, ∇w̃ = 0, ∆w̃ = Dn∆w̃ = 0 on Γ1

and such that a priori ũ, w̃ ∈ C(0, T ;L2(Ω)×H1(Ω)) satisfies

ũ, w̃ ∈ C(0, T ;H1(Ω)×H2(Ω)) ∩ C1(0, T ;L2(Ω)×H1(Ω)).(6.34)

Proof. As before, the key idea is to use Carleman’s estimates applied to the
“regularized” problem, i.e., with “smooth” initial conditions such that (6.6) holds
and, moreover,

ũn,0 ∈ H1
0 (Ω), ũn,1 ∈ L2(Ω),(6.35)

ũn,0 → ũ(0) in L2(Ω), ũn,1 → ũt(0) in H−1(Ω).(6.36)

In this case, the corresponding solutions ũn, w̃n satisfy (6.7), (6.8) and, moreover,

ũn(t) ∈ H1
0 (Ω), ũn,t(t) ∈ L2(Ω),(6.37)

ũn(t) → ũ(t) in L2(Ω), ũn,t(t) → ũt(t) in H−1(Ω).(6.38)

With the improved regularity of regularized solutions and by virtue of Assumption 3
we easily verify that

L1(w, w̃n) ∈ C(0, T ;L2(Ω)), L2(u, ũn, w, w̃n) ∈ C(0, T ;H−1(Ω)).

The above regularity allows us to apply Carleman’s estimates given in [27]. Indeed,
Theorem 2 in [27] applied separately to the Kirchhoff plate (6.31) and also to the
system of elasticity (after decoupling into two wave equations and applying the esti-
mates for the wave equation with p = −1 [25]) yields the following inequalities that
are valid with any large constant τ : ∫ T

0

|zeτφũn,t|20,Ω + |zeτφũn|21,Ωdt

≤ C/τ

∫ T

0

|zeτφL1(w̃n, w)|20,Ωdt+Mτ (u,w, ũn, w̃n),(6.39) ∫ T

0

|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ωdt

≤ C/τ

∫ T

0

|zeτφL2(ũn, w̃n, u, w)|2−1,Ωdt+Mτ (u,w, ũn, w̃n),(6.40)
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where the constant Mτ (u,w, ũ, w̃) is bounded by the a priori regularity of the solution
ũ, w̃ and u,w. More precisely,

Mτ (u,w, ũn, w̃n) ≤Mτ,u,w

∫ T

0

[|ũn|20,Ω + |w̃n|21,Ω + |w̃n,t|20,Ω]dt.(6.41)

Estimating the terms on the right-hand sides of these two inequalities leads to∫ T

0

|zeτφũn,t|20,Ω + |zeτφũn|21,Ωdt

≤ C/τ

∫ T

0

|zeτφw̃n|22,Ωdt|w|2L∞(0,T );H2+ε(Ω) +Mτ (u,w, ũn, w̃n),(6.42)∫ T

0

|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ωdt ≤ C/τ

∫ T

0

[|zeτφε(ũn)∇w|20,Ω + |zeτφε(u)∇w̃n|20,Ω
+|zeτφ(∇w̃n ×∇w)∇w|20,Ω + |zeτφ(∇w ×∇w)∇w̃n|20,Ω]dt+Mτ (u,w, ũn, w̃n)

≤ C/τ

∫ T

0

[|zeτφũn|21,Ω + |zeτφw̃n|22,Ω]dt|w|2L∞(0,T );H2+ε(Ω)

+

∫ T

0

|zeτφw̃n|22,Ωdt|u|2L∞(0,T );H1+ε(Ω) +Mτ (u,w, ũn, w̃n).(6.43)

Combining (6.42) and (6.43) gives∫ T

0

|zeτφũn,t|20,Ω + |zeτφũn|21,Ωdt+

∫ T

0

|zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ωdt

≤ C(u,w)/τ

[∫ T

0

|zeτφw̃n|22,Ω + |zeτφũn|21,Ω
]
dt+Mτ (u,w, ũn, w̃n).(6.44)

Taking the constant τ large enough gives

∫ T

0

[|zeτφũn,t|20,Ω + |zeτφũn|21,Ωdt+ |zeτφw̃n,t|21,Ω + |zeτφw̃n|22,Ω]dt ≤Mτ (u,w, ũn, w̃n).

(6.45)

Since ψ can be selected in such a way that

zeτφ ≥ 1 on [t0, t1] ∈ [0, T ],

the inequality in (6.45) gives∫ t1

t0

|ũn,t|20,Ω + |ũn|21,Ωdt+ |w̃n,t|21,Ω + |w̃n|22,Ωdt ≤ CMτ (u,w, ũn, w̃n).(6.46)

Next define

Ẽn(t) ≡ |ũn,t(t)|20,Ω + |ũn(t)|21,Ωdt+ |w̃n,t(t)|21,Ω + |w̃n(t)|22,Ω.
Noting that ∫ t1

s

|L1(w, w̃n)|20,Ω + |L2(ũn, w̃n, u, w)|2−1,Ω]dt

≤ C

∫ t1

s

[|ũn|21,Ω + |w̃n|22,Ω]dt[|w|2L∞(0,T );H2+ε(Ω) + |u|2L∞(0,T );H1+ε(Ω)] +Mτ (u,w, ũn, w̃n),

(6.47)
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applying the standard energy inequality to equation (6.31), and accounting for (6.47)
we obtain that

Ẽn(t1) ≤ CẼn(s) + C

∫ t1

s

|L1(w, w̃n)|20,Ω + |L2(ũn, w̃n, u, w)|2−1,Ω]dt

≤ CẼn(s) + CMτ (u,w, ũn, w̃n) + Cu,w

∫ t1

s

Ẽn(t)dt.(6.48)

Integrating the above inequality with respect to s yields

(t1 − t0)Ẽn(t1) ≤ C

∫ t1

t0

Ẽn(s)ds+ CT

[
Mτ (u,w, ũn, w̃n) +

∫ t1

t0

Ẽn(t)dt

]
.(6.49)

From (6.46) and (6.49) we infer that

Ẽn(t1) ≤ CMτ (u,w, ũn, w̃n).(6.50)

Applying the same argument to the difference of solutions ũn − ũm, w̃n − w̃m and
taking advantage of (6.38), (6.8), (6.41) we conclude that

ũn(t1), ũn,t(t1), w̃n(t1), w̃n,t(t1)

are Cauchy sequences in

H1(Ω)× L2(Ω)×H2(Ω)×H1(Ω).

This leads, via standard semigroup argument, to the improved regularity for ũ, w̃:

ũ ∈ C(0, T ;H1(Ω)), w̃ ∈ C(0, T ;H2(Ω)),(6.51)

ũt ∈ C(0, T ;L2(Ω)), w̃t ∈ C(0, T ;H1(Ω)).(6.52)

In order to apply Isakov’s uniqueness result, in the context of equation (4.10) we
need to assert the regularity of solutions as well as the regularity of the coefficients of
the equation, which, in our case, amounts to the regularity of u,w. Since the variables
ũ, w̃ are the time derivatives of u,w, we have so far obtained

ut ∈ C(0, T ;H1(Ω)), wt ∈ C(0, T ;H2(Ω)),(6.53)

utt ∈ C(0, T ;L2(Ω)), wtt ∈ C(0, T ;H1(Ω)).(6.54)

In order to obtain a higher spatial regularity, we return to the original equation
satisfied by u,w. Recalling the fact that the traces of velocities of u,∇w are zero on
Γ1, we obtain

div[C[ε(u)]] = utt + b1ut − div[Cf(∇w)] in Q,

D∆2w = −[I − γ∆]wtt − b2wt + div[C[ε(u) + f(∇w)]∇w] in Q,

u = w = ∇w = 0 on Σ0,

C[ε(u) + f(∇w)]ν = 0 in Σ1,

D[∆w + (1− µ)B1w] = 0 in Σ1,

D[Dn∆w + (1− µ)B2w] = 0 in Σ1.(6.55)

By straightforward calculations and accounting for the result of Lemma 6.4 we infer
that

utt + b1ut − div[Cf(∇w)] ∈ C(0, T ;H−ε(Ω)),(6.56)

[I − γ∆]wtt + b2wt + div[C[ε(u) + f(∇w)]∇w] ∈ C(0, T ;H−1−ε(Ω)),(6.57)
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and from the regularity of the biharmonic problem we then infer that

w ∈ C(0, T ;H3−ε(Ω)).

Hence,

f(∇w) ∈ C(0, T ;H1(Ω)),

and going back to (6.55) we have that

utt + b1ut − div[Cf(∇w)] ∈ C(0, T ;L2(Ω)),(6.58)

[I − γ∆]wtt + b2wt + div[C[ε(u) + f(∇w)]∇w] ∈ C(0, T ;H−1(Ω)).(6.59)

Since

f(∇w)|Γ1 ∈ C(0, T ;H1/2(Γ1)),

hence

C[ε(u)]|Γ1
∈ C(0, T ;H1/2(Γ1)).

We are now in a position to apply elliptic estimates to the problem (6.55), and we
conclude that

u ∈ C(0, T ;H2(Ω)), w ∈ C(0, T ;H3(Ω)).(6.60)

Differentiating in time equation (6.31) and reiterating the same argument over and
over we arrive at the conclusion that

u,w, ũ, w̃ ∈ C∞(Q).

Thus we have proved Theorem 6.5.
Theorem 6.5. Let u,w be a finite energy solution of the system (4.7), (4.8) with

the overdetermined boundary conditions (4.9) and such that

|u(t)|1+α,Ω + |w(t)|2+α,Ω ≤ ∞,

where α > 0 can be arbitrary small. Then

u,w ∈ C∞(Q).

This gives us the improved regularity of the coefficients and solutions to equation
(4.10) which is, in turn, required for the application of Theorem 3 in [9] in the context
of the proof of Part II of Lemma 4.1. Theorem 3 in [9] then implies that the solution
to (4.10) is identically zero, which proves Corollary 6.6.

Corollary 6.6. Under the assumptions of Theorem 6.5 we have

u,w ≡ 0 in Q.

7. Appendix. Proof of Proposition 1.1.

7.1. Existence of regular solutions: Proof of Part 1 of Proposition 1.1.
We shall use the nonlinear Galerkin method. Indeed, let h denote a parameter tending
to zero and let Uh (resp., Wh) be a finite-dimensional subspace of H2

Γ0
(Ω) (resp.,

H3
Γ0

(Ω)), where the subindex Γ0 indicates that the functions are subject to zero
boundary conditions (see (1.1)) on Γ0. We then denote

Uh ≡ Uh × Uh, Vh ≡ Uh ×Wh.
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We consider the following semidiscrete approximation of the original problem
(1.1), (1.2).

Given (uh,0, wh,0, uh,1, wh,1) ∈ Vh×Vh, find (uh(t), wh(t)) ∈ Vh such that uh(0) =
uh,0, wh(0) = wh,0, uh,t(0) = uh,1, wh,t(0) = wh,1, and

(uh,tt, φ)Ω + (b1uh,t, φ)Ω + (CN(uh, wh), ε(φ))Ω + 〈g(uh,t), φ〉Γ1 = 0,(7.1)

(wh,tt, ψ)Ω + γ(∇wh,tt,∇ψ)Ω + a(wh, ψ) + (b2wh,t, ψ)Ω

+(CN(uh, wh),∇ψ ×∇wh)Ω + 〈h1(Dnwh,t), Dnψ〉Γ1
+ 〈h2(Dτwh,t), Dτψ〉Γ1

= 0
(7.2)

for all (φ, ψ) ∈ Vh.
Global existence and uniqueness of semidiscrete solutions follows from the fact

that nonlinear terms are locally Lipschitz on Vh together with a standard a priori
bound

Eh(t) ≤ Eh(0),(7.3)

where

Eh(t) ≡
∫

Ω

|uh,t|2 + |wh,t|2 + γ|∇wh,t|2dΩ + a(wh(t), wh(t))

+

∫
Ω

[CN(uh(t), wh(t)) ·N(uh(t), wh(t))] dΩ.(7.4)

Moreover, the solutions (uh(t), wh(t)) are C∞([0, T0), Vh) for some T0 > 0. We
shall show that Galerkin approximations defined by (7.2) are stable in higher norms.
Indeed, differentiating (7.2) in time and denoting

ū ≡ uh,t, w̄ ≡ wh,t, Nt(uh, wh) ≡ d

dt
N(uh, wh) = ε(ū) +

d

dt
f(∇wh)

we obtain the following equation satisfied for the new variables:

(ūtt, φ)Ω + (b1ūt, φ)Ω + (CNt(uh, wh), ε(φ))Ω + 〈g′(uh,t)ūt, φ〉Γ1 = 0,(7.5)

(w̄tt, ψ)Ω + γ(∇w̄tt,∇ψ)Ω + a(w̄h, ψ) + (b2w̄t, ψ)Ω + (CNt(uh, wh),∇ψ ×∇wh)Ω
+(CN(uh, wh),∇ψ ×∇w̄)Ω + 〈h1

′(Dnwh,t)Dnw̄t, Dnψ〉Γ1

+〈h2
′(Dτwh,t)Dτ w̄t, Dτψ〉Γ1 = 0(7.6)

for all (φ, ψ) ∈ Vh.
Taking φ = ūt, ψ = w̄t yields

1/2
d

dt
[|ūt|2Ω + (CNt(uh, wh), Nt(uh, wh))Ω + |w̄t|2Ω + γ|∇w̄t|2Ω + a(w̄, w̄)]

+(b2w̄t, w̄t)Ω + (b1ūt, ūt)Ω + 〈g′(uh,t)ūt, ūt〉Γ1
+ 〈h1

′(Dnwh,t)Dnw̄t, Dnw̄t〉Γ1

+〈h2
′(Dτwh,t)Dτ w̄t, Dτ w̄t〉Γ1

= (CNt(uh, wh),∇w̄ ×∇w̄)Ω − (CN(uh, wh),∇w̄t ×∇w̄)Ω = 0.(7.7)

We denote

Ē(t) ≡ |ūt(t)|2Ω + (CNt(uh(t), wh(t)), Nt(uh(t), wh(t)))Ω + |w̄t(t)|2Ω + γ|∇w̄t(t)|2Ω
+a(w̄(t), w̄(t)).(7.8)
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It is straightforward to verify that Ē(t) is bounded from above and below by the
expression C(|ū|1,Ω, |ūt|0,Ω, |w̄|2,Ω, |w̄t|1,Ω). This fact will be used frequently without
further mention.

Integrating (7.7) from 0 to t, integrating by parts the last term in (7.7), and
recalling the monotonicity of boundary feedback yields the inequality

Ē(t) ≤ Ē(0) + 6

∫ t

0

(CNt(uh, wh), f(∇w̄))Ωdt− 2(CN(uh, wh), f(∇w̄))Ω|t0.(7.9)

By Sobolev’s embedding L4(Ω) ⊂ H1/2(Ω) and the classical interpolation inequal-
ity |w|21/2,Ω ≤ C|w|1,Ω|w|0,Ω, we obtain

|f(∇w̄)|0,Ω ≤ C|w̄|2,Ω|wh,t|1,Ω ≤ C[Eh(0)]1/2|w̄|2,Ω,(7.10)

where in the last step we have used the a priori bound in (7.3). Combining (7.9) with
(7.10) and using, again, the a priori bound in (7.3) gives

Ē(t) ≤ Ē(0) + CEh(0)

∫ t

0

|Nt(uh, wh)|0,Ω|w̄|2,Ωdt+ ε|w̄(0)|22,Ω
+ε|w̄(t)|22,Ω + CεEh(0)[|N(uh(0), wh(0))|20,Ω + |N(uh(t), wh(t))|20,Ω]

≤ CĒ(0) + CEh(0)

∫ t

0

|Nt(uh, wh)|0,Ω|w̄|2,Ωdt+ ε| ¯w(t)|22,Ω + CεEh(0)
3
.(7.11)

Taking ε small enough, recalling the definition of Ē, and applying Gronwall’s
inequality yields

Ē(t) ≤ CT (Eh(0))[Ē(0) + [Eh(0)]3], t ≤ T,(7.12)

where CT does not depend on h.
In order to provide an effective estimate (independent on h) of the right side of

inequality (7.12) we need to estimate Ē(0), Eh(0). To this end we make the following
natural approximation/stability properties imposed on our approximating spaces. We
assume that the following conditions hold.

(i) For any u ∈ Hs
Γ0

(Ω), there exists φ ∈ Uh such that

|u− φ|s,Ω → 0 when h→ 0, s ≤ 2.

(ii) For any w ∈ Hs
Γ0

(Ω), there exist ψ ∈ Wh such that

|w − ψ|s,Ω → 0 when h→ 0, s ≤ 3.

Moreover, there exist p > 0 such that the following “inverse approximation prop-
erties” hold

(iii)

|φ|0,Γ ≤ Ch−p|φ|0,Ω, |∇ψ|0,Γ ≤ Ch−p|ψ|1,Ω for φ, ψ ∈ Vh,

(iv)

|D1[u− φ]|L2(Γ) ≤ Chp|u|2,Ω, |Dl[w − ψ]|L2(Γ) ≤ Chp|w|l+1,Ω, l = 1, 2,

where by Di we have denoted the differential operator of order i.
We note that the approximation properties listed above are the standard ones for

a variety of approximating subspaces including cubic splines defined on quasi-uniform
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mesh. (This last property is guaranteed by the inverse approximation properties. In
this case we have p = 1/2.)

Let us denote by C0 a constant which depends on |w0|2,Ω, |w1|1,Ω, |u0|1,Ω, |u1|0,Ω
and by C1 a constant depending on the higher-order norms of the initial data, i.e.,
|w0|3,Ω, |w1|2,Ω, |u0|2,Ω, |u1|1,Ω.

Now, we assume that uh,0, uh,1, wh,0, wh,1 are “good” approximations of the initial
data; i.e., the approximation properties listed above are satisfied and, in particular,

|u0 − uh,0|2,Ω → 0 when h→ 0, |u1 − uh,1|1,Ω → 0 when h→ 0,

|w0 − wh,0|3,Ω → 0 when h→ 0, |w1 − wh,1|2,Ω → 0 when h→ 0.(7.13)

By stability of the estimates resulting from (7.13) and the regularity of the initial
conditions we obtain

Eh(0) ≤ C0.

Moreover, since ū(0) = uh,1, w̄(0) = wh,1, we also have

|ū(0)|1,Ω ≤ |u1|1,Ω ≤ C1, |w̄(0)|2,Ω ≤ |w1|2,Ω ≤ C1.(7.14)

In order to estimate |ūt(0)|0,Ω we shall use the compatibility conditions. In fact from
(7.2) we have

(ūt(0), φ)0,Ω ≤ |(b1uh,1, φ)Ω + (divCN(uh,0, wh,0), φ)0,Ω

−〈CN(uh,0, wh,0)ν + g(uh,1), φ〉Γ1
| for all φ ∈ Uh.(7.15)

Hence

(ūt(0), φ)0,Ω ≤ C[|uh,0|2,Ω + |wh,0|3,Ω + |uh,1|0,Ω]|φ|0,Ω
+C|N(uh,0, wh,0)ν + g(uh,1)−N(u0, w0)ν − g(u1)|0,Γ1 |φ|0,Γ1 ,(7.16)

where we have used the compatibility relations (1.4) for the first equation. By Lips-
chitz continuity of the feedback g and the inverse approximation properties listed in
(iii), (iv) we obtain

|N(uh,0, wh,0)ν + g(uh,1)−N(u0, w0)ν − g(u1)|0,Γ1
|φ|0,Γ1

≤ C[|uh,0 − u0|1,Γ1
+ C1|∇[wh,0 − w0]|0,Γ1 + |uh,1 − u1|0,Γ]h−p||φ|0,Ω

≤ C[|u0|2,Ω + C1|w0|2,Ω + |u1|1,Ω]hph−p||φ|0,Ω ≤ C[C1 + C1C0]|φ|0,Ω.(7.17)

Since φ is arbitrary in Uh, we obtain

|ūt(0)|0,Ω ≤ C1 + C1C0(7.18)

providing a desired an a priori bound for the initial datum ūt(0). In the same manner
we obtain an a priori bound for the second variable, i.e.,

|w̄t(0)|1,Ω ≤ C1 + C0 + C0C1 = C(C0, C1).(7.19)

Indeed,

(w̄t(0), ψ)1,Ω = (w̄t(0), ψ)Ω + γ(∇w̄t(0),∇ψ)Ω

= −a(wh(0), ψ)− (b2wh,t(0), ψ)Ω − (C[N(uh(0), wh(0))∇wh(0)],∇ψ)Ω

−〈h1(Dnw̄(0)), Dnψ〉Γ1
− 〈h2(Dτ w̄(0)), Dτψ〉Γ1

.(7.20)
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Application of the first Green formula together with compatibility conditions (1.4)
yield

(w̄t(0), ψ)1,Ω = a1(wh(0), ψ)− (b2wh,t(0), ψ)Ω − (C[N(uh(0), wh(0))∇wh(0)],∇ψ)Ω

−〈h2(Dτ w̄(0)), Dτψ〉Γ1
+X = 0,(7.21)

where we have denoted

X ≡ 〈D[∆wh(0)+(1−µ)B1wh(0)−∆w0−(1−µ)B1w0]−h1(Dnwh,1)+h1(Dnw1), Dnψ〉Γ1

and a1(w,ψ) ≤ C|w|3,Ω|ψ|1,Ω. By using approximation properties listed in (iii), (iv),
in the same manner as before, together with Lipschitz continuity of h1 we obtain

|X| ≤ Chp|w0|3,Ωh−p|ψ|1,Ω + Chp|w1|2,Ωh−p|ψ|1,Ω
≤ C1|ψ|1,Ω.(7.22)

A priori bounds in (7.14) together with the estimate (7.22) and the fact that h2 is
bounded from H1/2(Γ1) into itself yield

(w̄t(0), ψ)1,Ω ≤ C1|ψ|1,Ω + C[|wh(0)|3,Ω|ψ|1,Ω + |w̄(0)|0,Ω|ψ|0,Ω
+(|uh(0)|2,Ω + |wh(0)|2,Ω)|wh(0)|2,Ω|ψ|1,Ω + |h2(Dτ w̄(0))|1/2,Γ1

|Dτψ|−1/2,Γ1
]

≤ C1|ψ|1,Ω + C[|wh(0)|3,Ω|ψ|1,Ω + |w̄(0)|0,Ω|ψ|0,Ω
+(|uh(0)|2,Ω + |wh(0)|2,Ω)|wh(0)|2,Ω|ψ|1,Ω + |(Dτ w̄(0))|1/2,Γ1

|Dτψ|−1/2,Γ1
]

≤ C[|wh(0)|3,Ω|ψ|1,Ω + |w̄(0)|0,Ω|ψ|0,Ω + (|uh(0)|2,Ω + |wh(0)|2,Ω)|wh(0)|2,Ω|ψ|1,Ω
+|w̄(0)|2,Ω|ψ|1/2,Γ1

+ C1|ψ|1,Ω ≤ C[C1 + C0 + C1C0]|ψ|1,Ω.(7.23)

This gives the desired result in (7.19).
Collecting (7.14), (7.18), (7.19) we conclude that Ē(0) ≤ C(C0, C1), and by (7.12)

Ē(t) ≤ C(C0, C1).

Hence the a priori bounds

|uh,t(t)|1,Ω + |uh(t)|1,Ω + |uh,tt(t)|0,Ω + |wh,t(t)|2,Ω + |wh(t)|2,Ω + |wh,tt(t)|1,Ω ≤ C
(7.24)

hold uniformly in h for all t < T where T is arbitrary.
We can now extract convergent subsequences (denoted by the same symbol) such

that

uh → u weakly? in L∞(0, T ;H1(Ω)), uh,t → ut weakly? in L∞(0, T ;H1(Ω)),

uh,tt → utt weakly? in L∞(0, T ;L2(Ω)),

wh → w weakly? in L∞(0, T ;H2(Ω)), wh,t → wt weakly? in L∞(0, T ;H2(Ω)),

wh,tt → wtt weakly? in L∞(0, T ;H1(Ω)).(7.25)

Now, we can pass with the limit on the original semidiscrete form of equation (7.2).
Indeed, this is possible due to weak continuity of the von Karman nonlinearity and
due to the fact that from (7.25) we have the strong convergence of the boundary traces

uh,t|Γ → ut|Γ, ∇wh,t|Γ → ∇wt|Γ strongly in L∞(0, T ;H1/2−ε(Γ)).(7.26)
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Thus, the assumption imposed on nonlinear feedback, which implies the continuity of
g, hi from L∞(0, T ;Hα(Γ1)), α ≤ 1/2 into itself, allows us to conclude that

g(uh,t) → g(ut),

h1(Dnwh,t) → h1(Dnwt); h2(Dτwh,t) → h2(Dτwt) strongly in L2(Σ).(7.27)

Passing through the limit we conclude that u,w satisfy the weak form of the original
equation (1.1) and, moreover, they display the regularity

u ∈ C(0, T ;H1(Ω)), ut ∈ C(0, T ;H1(Ω)), utt ∈ L∞(0, T ;L2(Ω)),

w ∈ C(0, T ;H2(Ω)), wt ∈ C(0, T ;H2(Ω)), wtt ∈ L∞(0, T ;H1(Ω)).(7.28)

In order to obtain higher regularity in the space variable, we proceed as usual by
reading off the elliptic regularity. Indeed, from (7.28) for each 0 ≤ t ≤ T we now have

div[CN(u,w)] ∈ L2(Ω), ut|Γ1 ∈ H1/2(Γ1), f(∇w) ∈ H1−ε(Ω), f(∇w)|Γ1 ∈ H1/2−ε(Γ1).

(7.29)

Hence

div[Cε(u)] ∈ H−ε(Ω), C[ε(u)]ν = −f(∇w)ν − g(ut) ∈ H1/2−ε(Γ1), u = 0 on Γ0.

(7.30)

By standard elliptic theory we conclude that

u(t) ∈ C(0, T ;H2−ε(Ω)).(7.31)

As for the variable w we shall use standard, by now, semigroup formulation of the
underlying PDE. Indeed, we rewrite (see [4], [1]) the original equation for w as

Aw = −[I + γAN ]wtt − b2wt −AG1h1(Dnwt)−AG2Dτh2(Dτwt) + F (u,w),

(7.32)

where we have used the following operators:

Aw = D∆2w,w ∈ D(A),

D(A) = {w ∈ H4
Γ0

; [∆w + (1− µ)B1w] = 0, [Dn∆w + (1− µ)B2w] = 0 on Γ1},
(7.33)

Gi : L2(Γ1) → L2(Ω) are given by

∆2Gig = 0 in Ω, Gig = 0, DnGig = 0 on Γ0,(7.34)

[∆ + (1− µ)B1]G1g = g on Γ1, [Dn∆ + (1− µ)B2]G1g = 0 on Γ1,

[∆ + (1− µ)B1]G2g = 0 on Γ1, [Dn∆ + (1− µ)B2]G2g = g on Γ1,(7.35)

ANw = −∆w, w ∈ D(AN ) =

{
w ∈ H2

Γ0
(Ω);w = 0,

∂w

∂ν
= 0; on Γ1

}
,(7.36)

F (u,w) = divCN(u,w)∇w +AG2CN(u,w)ν∇w.(7.37)

Taking advantage of the improved regularity for u (see (7.31)) we obtain

N(u,w)∇w ∈ H1−ε(Ω);N(u,w)∇w|Γ1 ∈ H1/2−ε(Γ1).(7.38)

By elliptic regularity we have

G2 : H1/2−4ε(Γ1) → H4−4ε(Ω) ⊂ D(A7/8−ε).
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Thus,

F (u,w) ∈ H−ε(Ω) +D(A1/8+ε)′ ⊂ D(A1/4)′ ∼ D(AN
1/2)′.(7.39)

We write w = w1 + w2, where

Aw1 = −[I + γAN ]wtt − b2wt + F (u,w),(7.40)

Aw2 = −AG1h1(Dnwt)−AG2Dτh2(Dτwt).(7.41)

By (7.39) and the fact that wtt ∈ H1(Ω) = D(AN
1/2), ANwtt ∈ D(AN

1/2)′ =
D(A1/4)′, we conclude that Aw1 ∈ D(A1/4)′. Hence,

w1 ∈ D(A3/4) ∈ H3(Ω).(7.42)

On the other hand, w2 = −G1h1(Dnwt) − G2Dτh2(Dτwt). By the regularity of
Green’s maps Gi together with the fact that h1(Dnwt) ∈ H1/2(Γ1), Dτh2(Dτwt) ∈
H−1/2(Γ1) we also have

G1h1(Dnwt) +G2Dτh2(Dτwt) ∈ H3(Ω).(7.43)

Hence

w2(t) ∈ H4(Ω)⊕H3(Ω) ∈ H3(Ω).(7.44)

Combining (7.42) and (7.44) gives the desired assertion

w ∈ C(0, T,H3(Ω)),

and going back to (7.28) we further improve the regularity by ε, obtaining u ∈
C(0, T ;H2(Ω)), as desired for the proof of the existence of regular solutions.

7.2. Uniqueness of regular solutions. To complete the proof of the first part
of Proposition 1.1, we need to establish the uniqueness of the solutions. The proof of
the uniqueness is standard, and it relies on the fact that nonlinear terms are locally
Lipschitz with respect to the topology considered for regular solutions. In fact, one
can prove an even stronger uniqueness result which is stated below.

Lemma 7.1. The solutions are unique in the space

Xε ≡ C(0, T ;H1+ε(Ω)) ∩ C1(0, T ;L2(Ω))× C(0, T ;H2+ε(Ω)) ∩ C1(0, T ;H1(Ω)),

where ε is an arbitrary positive number.
Proof. Let ũ ≡ u1 − u2, w̃ ≡ w1 − w2 with (u1, w1), (u2, w2) be two potential

solutions living in the space Xε. Then ũ, w̃ satisfy the system of equations

(ũtt, φ)Ω + (b1ut, φ)Ω + (C[ε(ũ)], ε(φ))Ω + 〈g(u1,t)− g(u2,t), φ〉Γ1

= −(C[f(∇w1)− f(∇w2)], ε(φ))Ω(7.45)

(w̃tt, ψ)Ω + γ(∇w̃tt,∇ψ)Ω + a(w̃, ψ) + (b2w̃t, ψ)Ω

+〈(h1(Dnw1,t)− (h1(Dnw2,t)), Dnψ〉Γ1
+ 〈(h2(Dτw1,t)− (h2(Dτw2,t)), Dτψ〉Γ1

= −(C[ε(u1) + f(∇w1)]∇w1 − C[ε(u2) + f(∇w2)]∇w2,∇ψ)Ω(7.46)

for all φ ∈ [H1(Ω)]2;ψ ∈ H1(Ω).
The following regularity can be easily shown:

|f(∇w1)− f(∇w2)|0,Ω ≤ C|w̃|1,Ω[|w1|2+ε1,Ω + |w2|2+ε1,Ω](7.47)
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and ∣∣∣∣ ddt [f(∇w1)− f(∇w2)]

∣∣∣∣
0,Ω

≤ C|w̃t|1,Ω[|w1|2+ε1,Ω + |w2|2+ε1,Ω].(7.48)

Integration by parts gives∫ t

0

(C[f(∇w1)− f(∇w2)], ε(ũs))Ωds = (C[f(∇w1)− f(∇w2)], ε(ũt))Ω|t0

−
∫ t

0

(
d

ds
C[f(∇w1)− f(∇w2)], ε(ũ)

)
Ω

ds.(7.49)

From (7.48)

∫ t

0

(
d

ds
C[f(∇w1)− f(∇w2)], ε(ũ)

)
Ω

ds ≤ C

∫ t

0

|ũ|21,Ωds+

∫ t

0

|w̃t|21,Ω[|w1|2+ε1,Ω
+ |w2|2+ε1,Ω)]

2ds.

(7.50)

On the other hand

(C[f(∇w1)− f(∇w2)], ε(ũt))Ω|t0 ≤ ε0|ũ(t)|21,Ω + Cε0 |f(∇w1(t))− f(∇w2(t)|20,Ω.

(7.51)

But

|f(∇w1(t, x))− f(∇w2(t, x))| ≤ C|∇w̃(t, x)||∇wi(t, x)|

= C

∣∣∣∣
∫ t

0

∇w̃t(t, x)ds

∣∣∣∣ [|∇w1(t, x)|+ |∇w2(t, x)|]

≤ CT

[∫ t

0

|∇w̃t(s, x)|2ds
]1/2

[|w1(t)|2+ε1,Ω + |w2(t)|2+ε1,Ω].(7.52)

Hence

|f(∇w1(t))− f(∇w2(t))|20,Ω ≤ CT

∫ t

0

|w̃s|21,Ωds[|w1(t)|22+ε1,Ω + |w2(t)|22+ε1,Ω].(7.53)

Combining (7.51), (7.53) gives

(C[f(∇w1)− f(∇w2)], ε(ũt))Ω|t0 ≤ ε0| ˜u(t)|21,Ω + Cε0,T

∫ t

0

|w̃s|21,Ωds[|wi(t)|22+ε1,Ω]

+[|wi(t)|22+ε1,Ω].(7.54)

Setting in (7.45) φ ≡ ũt, taking advantage of inequalities in (7.50), (7.54), and recalling
the monotonicity of g yields

|ũt|20,Ω + |ũ|21,Ω ≤ Cε0,T

∫ t

0

|w̃t|21,Ω[|w1|22+ε,Ω + |w2|22+ε,Ω] + |ũ|21,Ωds+ ε0|ũ|21,Ω.
(7.55)

Similarly,

|[ε(u1)− ε(u2)]∇w1|0,Ω ≤ C|ũ|1,Ω|w1|2+ε,
|ε(u2)[∇w1 −∇w2]|0,Ω ≤ C|w̃|2,Ω|u|W 1,∞(Ω) ≤ C|w̃|2,Ω|u2|1+ε,Ω,(7.56)
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|[f(∇w1)∇w1 − f(∇w2)∇w2]|0,Ω ≤ C|w̃|2,Ω[|w1|22+ε,Ω + |w2|22+ε,Ω].(7.57)

From (7.46) (where we set ψ = w̃t) and (7.57) and accounting for the monotonicity
of hi we obtain the estimate

|w̃t|21,Ω + |w̃|22,Ω ≤ C

∫ t

0

|w̃|22,Ω[|u2|1+ε,Ω + |ũ|1,Ω|w1|2+ε,Ω]dt.(7.58)

Combining Gronwall’s lemma gives ũ ≡ 0, w̃ ≡ 0, as desired.

7.3. Uniqueness of weak solutions: Proof of Part II of Proposition 1.1.
Here we adapt the method proposed in [24] where Marguerre–Vlasov equations were
considered with the zero Dirichlet boundary data. We note that the presence of
the damping on the boundary as well as the fact that the boundary conditions are
dynamic and of the higher order (as treated in this paper) add substantial technical
difficulties with respect to the homogeneous Dirichlet case.

To begin with, let us introduce the operators providing for the semigroup repre-
sentation of the part of the system corresponding to the longitudinal displacements
u. Indeed, let A0 be the generator corresponding to the system of elasticity, and let
G0 be the corresponding Green map defined as below:

A0u ≡ −divCε(u);D(A0) = {u ∈ H2
Γ0

(Ω); Cε(u)ν = 0 on Γ1},

G0g ≡ g iff divCε(v) = 0 in Ω, v = 0 on Γ0, Cε(v)ν = g on Γ1.

Let ũ ≡ u1−u2, w̃ ≡ w1−w2, where u1, w1 and u2, w2 are two potential solutions
of finite energy (i.e., weak solutions). Using the definitions of operators A0, G0 given
above and M,A, Gi introduced in the previous section we rewrite the original PDE
as an abstract second-order system defined on [D(A0)]

′ × [D(A)]′ (see [1], [4], [16]):

ũtt + b1ũt +A0ũ+A0G0(G
∗
0A0ũt) = f1(w̃, wi),

Mw̃tt + b2w̃t +Aw̃ +AG1(G
∗
1Aw̃t) +AG2(D

2
τG

∗
2Aw̃t) = f2(ũ, w̃, ui, wi),(7.59)

where the forcing terms fi are defined as follows:

f1(w̃, wi) ≡ divC[f(∇w1)− f(∇w2)]−A0G0G
∗
0A0C[f(∇w1)− f(∇w2)]ν,

f2(ũ, w̃, ui, wi) ≡ div[CN(u1, w1)∇w1 − CN(u2, w2)∇w2]

+AG2G
∗
2A[CN(u1, w1)∇w1 − CN(u2, w2)∇w2]ν.(7.60)

Since the damping is linear, we have assumed, without the loss of generality, that
g0, hi0 = 1; i = 1, 2.

Denoting

A1 ≡
[

0 I
−A0 −A0G0G

∗
0A0 − b1

]
,(7.61)

A1 : H1 → H1 with H1 ≡ [D(A0
1/2]2 × [L2(Ω)]2,

D(A1) = {(u1, u2) ∈ [D(A0
1/2)]2 × [D(A0

1/2)]2;u1 +G0G
∗
0A0u2 ∈ D(A0)},

A2 ≡
[

0 I
−M−1A −M−1(AG1G

∗
1A+AG2D

2
τG

∗
2A0 + b2)

]
,(7.62)
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A2 : H2 → H2 with H2 ≡ D(A1/2)×D(AN )1/2,

D(A2) = {(w1, w2) ∈ D(A1/2)×D(A1/2);A(w1 +G1G
∗
1Aw2 +G2D

2
τG

∗
2Aw̃2)

∈ [D(AN
1/2)]′},(7.63)

we rewrite (7.59) as(
ũ(t)
ũt(t)

)
t

= A1

(
ũ(t)
ũt(t)

)
+

(
0

f1(w̃, wi)

)
,(7.64)

(
w̃(t)
w̃t(t)

)
t

= A2

(
w̃(t)
w̃t(t)

)
+

(
0

M−1f2(ũ, w̃, ui, wi)

)
.(7.65)

It is well known that the operators A1, (resp., A2) are generators of a contraction

semigroup on the spaces [D(A0
1/2)]2×[L2(Ω)]2 and D(A1/2)×D(AN

1/2), respectively.
By the standard semigroup argument we also know that these operators generate
strongly continuous semigroups on the dual spaces [D(A∗1)]

′ and [D(A∗2)]
′, respectively,

where the duality is, as usual, with respect to the H1, H2 topology. This implies the
following negative norm estimates:

|(ũ, ũt)|[D(A∗1)]′ ≤ C

∫ t

0

|(0, f1)|[D(A∗1)]′dt,

|(w̃, w̃t)|[D(A∗2)]′ ≤ C

∫ t

0

|(0,M−1f2)|[D(A∗1)]′dt.(7.66)

On the other hand, by direct computations of [A∗i ]
−1 we obtain

|(u1, u2)|2[D(A∗1)]′ = |u1|20,Ω + |A0
−1/2u2 +A0

1/2G0G
∗
0A

∗
0u1|20,Ω,

|(w1, w2)|2[D(A∗2)]′ = |M1/2w1|20,Ω + |A−1/2Mw2 +A1/2[G1G
∗
1Aw1 +G2D

2
τG

∗
2Aw1]|20,Ω.

(7.67)

Thus, in particular,

|ũ(t)|20,Ω ≤ C

∫ t

0

|A−1/2
0 f1|20,Ωdt,

|w̃(t)|21,Ω ≤ C

∫ t

0

|A−1/2f2|20,Ωdt.(7.68)

Inequalities in (7.68) form the basis for subsequent analysis.
Let φ ∈ [L2(Ω)]2. We compute

(A
−1/2
0 f1, φ)0,Ω = −(C[f(∇w1)− f(∇w2)], ε(A

−1/2
0 φ))0,Ω.(7.69)

Hence,

|A−1/2
0 f1|0,Ω ≤ C|f(∇w1)− f(∇w2)|0,Ω.(7.70)

Let Pn be the orthogonal projection on the subspace spanned by n eigenvectors of
A and let Qn = I − Pn. (One could also take a projection on the subspace spanned
by the eigenvectors of the biharmonic operator with clamped boundary conditions;
this particular choice is not critical for the arguments.) The following “logarithmic”



UNIFORM STABILIZABILITY OF A FULL VON KARMAN SYSTEM 1419

estimate resulting from Sobolev’s embedding and the Holder inequality is known [24],
[2]:

|(Pnf)g|0,Ω ≤ Clg(1 + λn)
1/2|f |0,Ω|g|1,Ω,(7.71)

where λn is an eigenvalue of A and the constant C is independent of n. Applying
(7.71) and abusing notation slightly by using the projection operator applied to a
vector function (meaning the projection is applied to each component) we obtain

|(f(∇w1)− f(∇w2))|0,Ω ≤ C|∇w̃ ×∇(w1 + w2)|0,Ω ≤ C|(Pn∇w̃)×∇(w1 + w2)|0,Ω
+|(Qn∇w̃)×∇(w1 + w2)|0,Ω ≤ Clg(1 + λn)

1/2|w̃|1,Ω[|w1|2,Ω + |w2|2,Ω]

+C|Qn∇w̃|ε,Ω[|w1|2,Ω + |w2|2,Ω].(7.72)

On the other hand we have

|Qn∇w̃|ε,Ω ≤ C|A1/4εQn∇w̃|0,Ω ≤ C|A1/4(ε−β0)Qn|L(L2(Ω))|∇w̃|β0,Ω

≤ Cλn
1/4(ε−β0)|∇w̃|β0,Ω| ≤ Cλn

1/4(ε−β0)|w̃|3/2,Ω,(7.73)

where β0 < 1/2.
Combining (7.72), (7.73), (7.70) gives

|(A−1/2
0 f1|0,Ω ≤ C|(f(∇w1)− f(∇w2)|0,Ω

≤ C[lg(1 + λn)
1/2|w̃|1,Ω + λn

−β ][|w1|2,Ω + |w2|2,Ω]

≤ C(E(0))lg(1 + λn)
1/2|w̃|1,Ω + C(E(0))λn

−β ,(7.74)

where β < 1/8 and E(0) denotes the initial energy of weak solutions. The estimate
for f2 is carried out next. With ψ ∈ L2(Ω) we have

(A−1/2f2, ψ)0,Ω = (CN(u1, w1)∇w1 − CN(u2, w2)∇w2,∇A−1/2ψ)0,Ω.(7.75)

We shall compute the right-hand side of (7.75). By using (7.71) we obtain

(ε(u2)∇w̃,∇A−1/2ψ)0,Ω ≤ C|u2|1,Ω|∇w̃ ×∇A−1/2ψ|0,Ω
≤ C|u2|1,Ω[log(1 + λn)

1/2|w̃|1,Ω|∇A−1/2ψ|1,Ω + λn
−β [|w1|2,Ω + |w2|2,Ω]|∇A−1/2ψ|1,Ω]

≤ C[lg(1 + λn)
1/2|w̃|1,Ω + λn

−β [|w1|2,Ω + |w2|2,Ω]]|u2|1,Ω|ψ|0,Ω].(7.76)

By the divergence theorem we have

(ε(ũ)∇w1,∇A−1/2ψ)0,Ω = 〈ũ, (1/2∇w1 ×∇A−1/2ψ) + (1/2∇w1 ×∇A−1/2ψ)T ν〉0,Γ1

−(ũ, div((1/2∇w1 ×∇A−1/2ψ) + (1/2∇w1 ×∇A−1/2ψ)T ))Ω.(7.77)

Define

K ≡ 1/2∇w1 ×∇A−1/2ψ + (1/2∇w1 ×∇A−1/2ψ)T .

Simple calculations and (7.71) imply

|(ũ, divK)0,Ω| ≤ |(Pnũ, divK)0,Ω + (Qnũ, divK)0,Ω]

≤ C[|ũ|0,Ωlg(1 + λn)
1/2|w1|2,Ω|∇A−1/2ψ|1,Ω + |ũ|1,Ωλn−β |w1|2,Ω|∇A−1/2ψ|1,Ω]

≤ C[|ũ|0,Ωlg(1 + λn)
1/2

+ |ũ|1,Ωλn−β ]|w1|2,Ω|ψ|0,Ω.(7.78)
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Also, by the trace theorem we have

〈ũ,Kν〉Γ ≤ C|ũ|0,Γ1
|K|1/2+ε,Ω ≤ C|ũ|0,Γ1

|w1|2,Ω|ψ|0,Ω.(7.79)

The crucial boundary term |ũ|0,Γ1
will be estimated later.

Finally the term (f(∇w1)∇w1 − f(∇w2)∇w2,∇A−1/2ψ)0,Ω is estimated directly
as

(f(∇w1)∇w1 − f(∇w2)∇w2,∇A−1/2ψ)0,Ω ≤ C|w̃|1,Ω[|w1|22,Ω + |w1|22,Ω]|ψ|0,Ω.
(7.80)

Collecting (7.75)–(7.80) yields

(A−1/2f2, ψ)0,Ω ≤ Clg(1 + λn)
1/2

[|ũ|0,Ω + |w̃|1,Ω]

· [|w1|2,Ω + |w2|2,Ω + |u2|1,Ω + |u1|1,Ω + |w1|22,Ω + |w2|22,Ω]|ψ|0,Ω
+C|ũ|0,Γ1 |w1|2,Ω|ψ|0,Ω + Cλn

−β [|w1|22,Ω + |w2|22,Ω + |u2|21,Ω + |u1|21,Ω]|ψ|0,Ω.(7.81)

Hence ∫ t

0

|A−1/2f2|20,Ωds ≤ C(E(0)) lg(1 + λn)

∫ t

0

[|ũ|20,Ω + |ũ|20,Γ1
+ |w̃|21,Ω]ds

+C(E(0))

∫ t

0

|ũ|20,Γ1
ds+ λn

−2βCT (E(0)).(7.82)

The crucial next step is to prove the following trace estimate∫ t

0

|ũ|20,Γ1
ds ≤ C(E(0)) lg(1 + λn)

∫ t

0

|w̃|21,Ωds+ CT (E(0))λn
−2β .(7.83)

To prove (7.83), the idea is to use the energy estimates for a new variable u∗ defined
as

u∗(t) ≡
∫ t

0

ũds.

Denoting

f̃ ≡ C[f(∇w1)− f(∇w2)], f∗(t) ≡
∫ t

0

f̃ds,

we obtain the following equation satisfied by the new variable u∗:

u∗tt +A0u
∗ + b1u

∗
t +A0G0(G

∗
0A0u

∗
t ) = divf∗ −A0G0G

∗
0A0f

∗ν.(7.84)

Multiplying this equation by u∗t and integrating by parts yield

|u∗t (t)|20,Ω + |u∗(t)|21,Ω +

∫ t

0

|u∗t (s)|20,Γ1
ds ≤ CT

∫ t

0

(f∗, ε(u∗t ))0,Ωds.(7.85)

When we integrate by parts in time the last term in the above inequality yields

|u∗t (t)|20,Ω + |u∗(t)|21,Ω +

∫ t

0

|u∗t (s)|20,Γ1
ds ≤ C

[∫ t

0

|f∗t |0,Ω|u∗|1,Ωds+ |f∗(t)|0,Ω|u∗(t)|1,Ω
]
.

(7.86)
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Hence, in particular,∫ t

0

|ũ(s)|20,Γ1
=

∫ t

0

|u∗t (s)|20,Γ1
ds ≤ CT

[∫ t

0

|f∗t |20,Ωds+ |f∗(t)|20,Ω
]
.(7.87)

On the other hand, ∫ t

0

|f∗t |20,Ωds =

∫ t

0

|f̃ |20,Ωd ≤ C

∫ t

0

|∇w̃ ×∇wi|20,Ωds

≤ C

∫ t

0

|Pn∇w̃ ×∇wi|20,Ω + |Qn∇w̃ ×∇wi|20,Ωds

≤ C lg(1 + λn)

∫ t

0

|w̃|21,Ω|wi|22,Ωds+ Cλn
−2β

∫ t

0

|w̃|22,Ω|wi|22,Ωds.(7.88)

Similarly,

|f∗(t)|20,Ω ≤ CT

∫ t

0

|f̃ |20,Ωds

≤ C lg(1 + λn)

∫ t

0

|w̃|21,Ω|wi|22,Ωds+ Cλn
−2β

∫ t

0

|w̃|22,Ω|wi|22,Ωds.(7.89)

Collecting (7.87)–(7.89) leads to the desired conclusion in (7.83). From (7.82) and
(7.83) we conclude

∫ t

0

|A−1/2f2|20,Ωds ≤ C(E(0)) lg(1 + λn)

∫ t

0

[|ũ|20,Ω + +|w̃|21,Ω]ds+ λn
−2βC(E(0)).

(7.90)

From (7.74) and (7.90) we obtain∫ t

0

[|A−1/2f2|20,Ω + |A0
−1/2f1|20,Ω]ds ≤ C(E(0))[lg(1 + λn)]

∫ t

0

[|ũ|20,Ω + |w̃|21,Ω]

+λn
−βCT (E(0)),(7.91)

and combining this with (7.68) and Gronwall’s inequality, we have

|ũ(t)|20,Ω + |w̃(t)|21,Ω ≤ CT (E(0))λn
−2β(1 + λn)C(E(0))t.(7.92)

Taking t < T0, where T0 is sufficiently small yields the conclusion of the lemma for
t < T0. Applying the “boost trap” argument completes the proof of the second part
of Proposition 1.1.
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Abstract. We study a problem of singular perturbations for a special class of nonlinear filtering
problems in which the dimension of the signal process is 2 and only one of the two components of
this process is observed. We propose an approximate filter of finite dimension for the observed part.
Using this filter, we construct an approximate filter of infinite dimension for the nonobserved part.
This filter solves a Zakai-type equation whose spatial variable dimension is 1 even though the spatial
variable dimension of the Zakai equation solved by the exact filter is 2. The method used gives the
order of the approximation error.

Key words. nonlinear filtering, singular perturbations, partially observed process, Zakai’s
equation

AMS subject classifications. 93E11, 60G35, 60F99

PII. S0363012995287040

Introduction. This paper considers an asymptotic problem in nonlinear filtering
when the signal observes only one component of X. In recent years, nonlinear filtering
with high signal-to-noise ratio has been studied in numerous publications, some of
whose fundamental results we will now recall before presenting our work.

Consider the following filtering problem:



Xt = X0 +

∫ t

0

f(Xs)ds+

∫ t

0

g(Xs)dVs,

Yt =

∫ t

0

h(Xs)ds+ εWt,

(1)

where Xt is a nonobserved vectorial process and Yt is the observation.

The filtering problem consists of computing the best approximation of the law
of Xt using the observation of Y up to instant t: it is the conditional law of Xt

given Yt = σ{Ys, 0 ≤ s ≤ t}. In the nonlinear case, the solution of this problem has
infinite dimension. Indeed, the unnormalized conditional law of Xt given Yt satisfies
a parabolic partial differential equation (PDE) called Zakai’s equation (see Zakai [16]
or Pardoux [5], [6]). As is often the case in practice, we will suppose throughout our
work that ε is small. We are therefore dealing with the case of high signal-to-noise
ratio.

We will often use the notation X̂t
∆
= E[Xt/Yt].

Filtering with high signal-to-noise ratio.

Case where h is one to one. When ε = 0, dYt = h(Xt)dt, and if h is one to
one, X is perfectly observed. We expect that Xt is “almost Yt-measurable” when ε
is small in the sense that (Xt − E[Xt/Yt]) is small in the Lp-norm. In fact, suppose
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X̂t −Xt = O(εk) (we will define the meaning of O(εk) rigorously in Definition 1.2).
For any function ϕ smooth enough, we have

ϕ(Xt) = ϕ(X̂t) + ϕ′(X̂t)(Xt − X̂t) +
1

2
ϕ′′(ξt)(Xt − X̂t)

2

with ξt ∈ [Xt, X̂t]. Taking the conditional expectation of this expression, we get

E[ϕ(Xt)/Yt] = ϕ(X̂t) +O(ε2k).(2)

In this case we see that if we have a good approximation of X̂t, we also get a good
estimation of the whole conditional law since it is “concentrated” around X̂t and
the filtering problem is considerably simplified as there is no need to compute the
whole conditional law of Xt given Yt (i.e., E[ϕ(Xt)/Yt] with ϕ varying in a large
class of functions) but merely an approximation of X̂t. We will therefore try to find
an approximate filter for X̂t. There is an extensive literature on the existence of
approximate filters of finite dimension in the case of a high signal-to-noise ratio, and
the list of articles referenced in this paper is far from exhaustive. We have mostly
used the following papers by Picard: [7], [8], [9], [10].

An approximate filter is a Yt-measurable process here denoted by Mt, defined
by a finite number of equations. We will use only first-order filters here, but it is
possible to define second-order filters like the extended Kalman filter, which uses an
approximation of the conditional variance E[(Xt − X̂t)

2/Yt], or third-order filters
[12]. For example, under sufficient assumptions, the process Mt defined below is an
approximate filter of the process Xt defined in (1):

Mt = m0 +

∫ t

0

f(Ms)ds+

∫ t

0

1

ε
(h′)−1(h′gg∗h′∗)

1
2 (Ms)(dYs − h(Ms)ds),(3)

and we get the following result:

Xt −Mt = O(
√
ε).(4)

This estimation is easily established (we will give the proof for a particular case in
the proof of Lemma 1.3), and we deduce immediately that

X̂t −Mt = O(
√
ε),(5)

which can be improved to get

X̂t −Mt = O(ε).(6)

This new estimation is much more difficult to establish than the previous one: it
will require techniques of time reversal of diffusion processes (Picard [7]), techniques
of derivation with respect to the initial condition or derivation in the Wiener space
(Picard [9]), or fine techniques of PDEs (Bensoussan [1]). (In some particular cases,

such as the semilinear case, or for higher-order filters, we get estimations of order ε
3
2

or even of order ε2 (Picard [7], [10])). For regular ϕ functions we can then, using (2),
estimate E[ϕ(Xt)/Yt] by ϕ(Mt) and the error is of order ε.
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Case where h is not one to one. The function h can be locally, but not
globally, one to one. In this work we will consider the case where h is not one to one
because it observes only some of the components of X. As expected, the components
of X which are nonobserved are not Yt-measurable when ε = 0. We distinguish two
different cases.

1) The case where the conditional variance of any component of X converges to
0 with ε. Therefore, there exist approximate filters for X. The process X is said to
be observable.

2) The case where X is not perfectly observed when ε = 0. In this case, we can
construct approximate filters for the observed components of X, but no approximate
filter can exist for the other components.

Zeitouni and Dembo [17] give cases of observability of the system. Picard [11]
shows that the detectability of the system is a sufficient criterion for the conditional
variance to converge to 0 with ε. Except for the linear detectable case where the
terms of the conditional variance matrix can be estimated (the variance satisfies a
Riccati equation; see [6]), it seems that the only method to prove the convergence of
the variance to 0 with ε is to construct an approximate filter for X. In [15] using a
formal asymptotic development for the conditional law, Yaesh, Bobrovsky, and Schuss
give detectability criteria when the dimension of X is 2 and when Y , whose dimension
is 1, observes only a component of X. Approximate filters are given for the observed
part of X.

In the case 2) (we can suppose without restriction that X1 is the observed
part of X, and X2 the nonobserved one), Takeuchi and Akashi [14], using a theo-
rem of martingale convergence, prove that E[ϕ(Xt)/Yt] converges in probability to
E[ϕ(Xt)/X 1

t ] (X 1
t = σ(X1

s , 0 ≤ s ≤ t)) when ε converges to 0. Sachs [13] obtains the
same result in the linear case. In particular, E[ϕ(X2

t )/Yt] converges to E[ϕ(X2
t )/X 1

t ].
When ε = 0, X1 is perfectly observed and the conditional law of X2 given X 1

t satisfies
the associated Zakai equation. This equation is a parabolic PDE whose partial vari-
able dimension is the dimension of X2. As seen above, approximate filters of finite
dimension do not exist for X2, but we can expect that there exists an approximate fil-
ter which satisfies a Zakai-type equation whose spatial variable has dimension smaller
than that of the exact Zakai equation satisfied by E[ϕ(Xt)/Yt]. The advantage of this
filter is that the numerical computations of the Zakai equation are easier.

In this work, we give such an approximate filter for X2 in the case dim(X1) =
dim(X2) = dim(Y ) = 1. To define it, we use an approximate filter of finite dimension
forX1. The idea is to replaceX1 byM in the Zakai equation satisfied byE[ϕ(X2

t )/X 1
t ]

(which is equal to E[ϕ(X2
t )/Yt] when ε = 0). The method shows that the rate of

convergence is of order ε.

This paper is organized as follows: in section 1, we give the assumptions and we
define the approximate filter for X1 as well as the approximate filter for X2 and the
Zakai-type equation it satisfies. In section 2, we give an expression for the difference
between the exact and the approximate filters as a function of (X1 −M). In section
3, we recall results about the rate of convergence of M . We deduce the order of the
rate of convergence of our problem.

1. Approximate filters definitions.

1.1. Assumptions. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space. All
the filtrations we are using here are completed and right-continuous. If (Xt)t≥0 is a



1426 A. GEGOUT-PETIT

process, we call Xt its natural completed filtration Xt = σ(Xs, 0 ≤ s ≤ t).

We consider the filtering problem:


X1
t = X1

0 +

∫ t

0

f1(X
1
s , X

2
s )ds+ V 1

t ,

X2
t = X2

0 +

∫ t

0

f2(X
1
s , X

2
s )ds+ V 2

t ,

Yt =

∫ t

0

h(X1
s )ds+ εWt,

(7)

where X1, X2, and Y are scalar. We note that the observation-function h only
depends on X1.

Assumptions.
H.1. V 1

t , V
2
t , and Wt are scalar-independent Wiener processes.

H.2. X1
0 is deterministic.

H.3. X2
0 is independent of V 1

t , V
2
t , and Wt.

H.4. f1 and f2 are bounded and have derivatives of order 3 which are bounded.

H.5. Let g(x1, x2) =
∫ x1

0
f1(u, x

2)du. We suppose that g and its derivatives are
bounded. (This is true if, for example, the support of f1 relative to x1 is compact.)

H.6. h is C2
b and there exists 0 < α < δ such that ∀x ∈ R, 0 < α < h′(x) < δ.

1.2. An approximate filter for X1. We define a new process (Mt, 0 ≤ t <∞)
which is an approximate filter for X1

t (cf. Lemma 1.3):


M0 = X1
0 ,

dMt =
1

ε
(dYt − h(Mt)dt).

(8)

Remark 1.1. The filtrations Yt and Mt are equal ∀t ≥ 0. We will use the two
notations interchangeably.

We will see that (X1 −M) is of order
√
ε, but only on each time interval [t0,∞].

This is why we give the following definition.
Definition 1.2. Let Zt be an adapted process defined on Ω. Let us suppose that

Z depends on ε. We say that Z is of order εk (and note that Zt = O(εk)) if there exist
ε0 > 0 and r ∈ R (r could be negative) such that ∀t0 > 0 and 1 ≤ q < ∞, ∃C > 0
such that for all ε < ε0,

sup
t0≤t<∞

‖Zt‖q ≤ Cεk and sup
0≤t<∞

‖Zt‖q ≤ Cεr.(9)

Let us denote by ‖ ‖p the norm of Lp(Ω,F , P ). Likewise we will say that Zt is of

order εk under the probability P̃ (introduced at (10)) if (9) is true for ‖ ‖∼p , the norm

of Lp(Ω,F , P̃ ).
We will see later that M is an approximate filter of order ε for X1. For the

moment, we only use the following result, whose proof is easier.
Lemma 1.3. Under the probability P we have the following two assertions:

i) (X1
t −Mt) = O(

√
ε),

ii) E[X1
t /Yt]−Mt = O(

√
ε).
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Proof. The conditional expectation is an Lp-contraction, so i) implies ii). Using
assumption H.6, i) is equivalent to h(X1

t )− h(Mt) = O(
√
ε). Using Itô’s formula, we

obtain

d(h(X1
t )− h(Mt)) = −h

′(Mt)

ε
(h(X1

t )− h(Mt))dt+ h′(X1
t )dV

1
t − h′(Mt)dWt

+

(
f1(X

1
t , X

2
t )h

′(X1
t ) +

1

2
(h′′(X1

t )− h′′(Mt))

)
dt,

h(X1
t )− h(Mt) = exp

(
−1

ε

∫ t

0

h′(Ms)ds

)
(h(X1

0 )− h(M0))

+

∫ t

0

e
− 1

ε

∫ t

s
h′(Mr)dr

(
f1(X

1
s , X

2
s )h

′(X1
s ) +

1

2
(h′′(X1

s )− h′′(Ms))

)
ds

+

∫ t

0

e
− 1

ε

∫ t

s
h′(Mr)dr(h′(X1

s )dV
1
s − h′(Ms)dWs).

Again using H.6 (h′(x) > α), the first term is of order e−
c
ε for t ≥ t0, the second is of

order ε, and the last is of order
√
ε.

Remark 1.4. We will need later the fact that X1
0 is deterministic. In the last

equation, we see that we do not need the assumption M0 = X1
0 to establish Lemma

1.3. The error at time t = 0 disappears because of the exponential function. The filter
therefore has a “short memory.”

1.3. Change of probability. Let Γt = exp(
∫ t
0
f1(X

1
s , X

2
s )dX

1
s− 1

2

∫ t
0
(f1(X

1
s , X

2
s ))

2ds).

We can define a new probability P̃ on Ft by

dP̃

dP

∣∣∣∣∣
Ft

= Γ−1
t .(10)

Under P̃ , X1
t is a Wiener process which does not depend on V2 ∨W.

If we define

g(x1, x2) =

∫ x1

0

f1(u, x
2)du(11)

and apply Itô’s formula to the process g(X1
t , X

2
t ), Γt can be rewritten in the following

way:

Γt = exp

(
g(X1

t , X
2
t )− g(X1

0 , X
2
0 )−

∫ t

0

[L(X1
s )g(X

1
s , .)](X

2
s )ds

− 1

2

∫ t

0

∂f1

∂x1
(X1

s , X
2
s )ds−

∫ t

0

∂g

∂x2
(X1

s , X
2
s )dV

2
s(12)

− 1

2

∫ t

0

(f1(X
1
s , X

2
s ))

2ds

)
,

with

L(y)ϕ(x) =
1

2
ϕ′′(x) + ϕ′(x)f2(y, x).(13)
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Under this new expression of Γ we see that we can “freeze” X1 in the Γt definition.
For a function x ∈ C([0, t]), let us define

X2
t (x)

∆
= X2

0 +

∫ t

0

f2(xs, X
2
s (x))ds+ V 2

t ,

Γt(x) = exp

(
g(xt, X

2
t (x))− g(x0, X

2
0 )−

∫ t

0

L(xs)g(xs, .)(X
2
s (x))ds

− 1

2

∫ t

0

∂f1

∂x1
(xs, X

2
s (x))ds−

∫ t

0

∂g

∂x2
(xs, X

2
s (x))dV 2

s(14)

− 1

2

∫ t

0

(f1(xs, X
2
s (x)))2ds

)
.

The assumptions on f1 will make Γt bounded in the Lp norm. We deduce that the
order of a process (in the sense of Definition 1.2) is the same under the two probabilities
P and P̃ .

Lemma 1.5. Under the assumptions of the Introduction, for a fixed T > 0, ∀p ∈
R, there exists c(p) such that ∀t ≤ T and ∀x ∈ C([0, T ]),

E[(Γt(x))p] ≤ c(p).(15)

Proof. We use H.4 and H.5 to show that the first exponential below is bounded
for all x ∈ C([0, T ]):

(Γt(x))p = exp p

(
g(xt, X

2
t (x))− g(x0, X

2
0 )−

∫ t

0

L(xs)g(xs, .)(X
2
s (x))ds

− 1

2

∫ t

0

∂f1

∂x1
(xs, X

2
s (x))ds− 1

2

∫ t

0

(f1(xs, X
2
s (x)))2ds

+
p

2

∫ t

0

(
∂g

∂x2
(xs, X

2
s (x))

)2

ds

)

× exp

(
−p

∫ t

0

∂g

∂x2
(xs, X

2
s (x))dV 2

s −
p2

2

∫ t

0

(
∂g

∂x2
(xs, X

2
s (x))

)2

ds

)

≤ c(p, T ) exp

(
−p

∫ t

0

∂g

∂x2
(xs, X

2
s (x))dV 2

s −
p2

2

∫ t

0

(
∂g

∂x2
(xs, X

2
s (x))

)2

ds

)
.(16)

c(p, T ) does not depend on the function x. The last term is an exponential martingale
whose expectation is equal to 1.

Lemma 1.6. Let (Zt)t≤0 be a process defined on Ω, T > 0. The following two
properties are equivalent:

i) ∀t ≤ T, Zt = O(εk) under P,

ii) ∀t ≤ T, Zt = O(εk) under P̃ .
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Proof of Lemma 1.6. We use Lemma 1.5:

E[(Zt)
p] = Ẽ[(Zt)

pΓt]

≤
√
Ẽ[(Zt)2p]

√
Ẽ[(Γt)2]

≤
√
Ẽ[(Zt)2p]

√
E[(Γt)]

≤ c(T )εkp

for t large enough.

Remark 1.7. The results of Lemma 1.3 are true under the probability P̃ . From
now on, when we say that a process is of order εk, we mean under both P and P̃ .

1.4. An approximate filter for X2.

1.4.1. Definition. Let us consider the filtering problem (7) at the limit case
ε = 0. Because h is one to one relative to X1, X1 is perfectly observed and (7) is
reduced to the filtering problem when X1 is the observation and X2 the nonobserved
process. The last change of probability now becomes natural because we need to work
under the probability which makes the observation (X1 if ε = 0) a Brownian motion.

Under the classical filtering results (see [16] and [6]), for a function ϕ ∈ C2
b (R),

the process Ẽ[ϕ(X2
t )Γt/X 1

t ] satisfies the well-known Zakai equation

(17)

Ẽ[ϕ(X2
t )Γt/X 1

t ]

= E[ϕ(X2
0 )] +

∫ t

0

Ẽ[L(X1
s )ϕ(X2

s )Γs/X 1
s ]ds+

∫ t

0

Ẽ[(ϕ(X2
s )f1(X

1
s , X

2
s ))Γs/X 1

s ]dX1
s .

To give a heuristic explanation about the method we use to construct the approxi-
mate filter µt(ϕ) for E[ϕ(X2

t )/Yt], we can say that, when ε is small, by the results
[13], [14] explained in the Introduction, we can expect Ẽ[ϕ(X2

t )Γt/X 1
t ] and an un-

normalized version of E[ϕ(X2
t )/Yt] to be close. This leads us to replace X1 by M

in Ẽ[ϕ(X2
t )Γt/X 1

t ] in order to define the filter. Because of a sort of continuity of
Ẽ[ϕ(X2

t )Γt/X 1
t ] relative to X1 the process obtained will converge to the unnormal-

ized version of E[ϕ(X2
t )/Yt].

Let us define

X̆2
t

∆
= X2(M),(18)

Γ̆t
∆
= exp

(∫ t

0

f1(Ms, X̆
2
s )dMs − 1

2

∫ t

0

(f1(Ms, X̆
2
s ))

2ds

)
.(19)

Applying Itô’s formula to g(Mt, X̆
2
t ) as in (12), we see from (14) that Γ̆t = Γt(Mt).

Let ϕ be a function from R to R and

µt(ϕ)
∆
=

Ẽ[ϕ(X̆2
t )Γ̆t/Mt]

Ẽ[Γ̆t/Mt]
.(20)

We will show that µt(ϕ) is an approximate filter for E[ϕ(X2
t )/Yt].
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1.4.2. Equation satisfied by the filter µt. When ϕ is twice-differentiable, the
process µt(ϕ) satisfies the Kushner–Stratonovitch-type equation, as in the following
proposition.

Proposition 1.8. For ϕ ∈ C2
b (R),

µt(ϕ) = E[X2
0 ] +

∫ t

0

µs(L(Ms)ϕ)ds(21)

+

∫ t

0

[µs(f1(Ms, .)ϕ)− µs(f1(Ms, .))µs(ϕ)][dMs − µs(f1(Ms, .))ds],

where L is as defined in (13).
Remark 1.9. As mentioned in the Introduction, this equation no longer depends

on X1, although the Kushner–Stratonovitch equation for the exact filter E[ϕ(X2
t )/Yt]

is coupled with E[ϕ(X1
t )/Yt].

Proof. We first derive the associated Zakai-type equation using the two following
lemmas.

Lemma 1.10. Let σt(ϕ) = Ẽ[ϕ(X̆2
t )Γ̆t/Mt] ∀ϕ ∈ C2

b (R). Then

σt(ϕ) = σ0(ϕ) +

∫ t

0

σs(L(Ms)ϕ)ds+

∫ t

O

σs(f1(Ms, .)ϕ)dMs.(22)

Remark 1.11. Equation (22) is identical to (17), with X1 replaced by M .
Proof of Lemma 1.10. As for the proof of the exact Zakai equation (see Pardoux

[6, Theorem 2.3.3]), by Itô’s formula we have

Γ̆tϕ(X̆2
t ) = ϕ(X2

0 ) +

∫ t

0

L(Ms)ϕ(X̆2
s )Γ̆sds+

∫ t

0

Γ̆sϕ
′(X̆2

s )dV
2
s

+

∫ t

0

ϕ(X̆2
s )Γ̆sf1(Ms, X̆

2
s )dMs.

We take the conditional expectation Ẽ[. . . /Yt] of this equation. We use the result
(see, for example, [6, Lemma 2.2.4]) to pass the conditional expectation through the
integral. We obtain

—Ẽ[
∫ t
0
ϕ(X̆2

s )Γ̆sf1(Ms, X̆
2
s )dMs/Yt] =

∫ t
0
Ẽ[ϕ(X̆2

s )Γ̆sf1(MS , X̆
2
s )/Yt]dMs because

of Remark 1.1;
—Ẽ[

∫ t
0
ϕ′(X̆2

s )Γ̆sdV
2
s /Yt] = 0, using the independence of V 2 and Yt under P̃ ;

—Ẽ[
∫ t
0
L(Ms)ϕΓ̆sds/Yt] =

∫ t
0
Ẽ[L(Ms)ϕΓ̆s/Yt]ds.

The proof of Lemma 1.10 will be completed if we can replace Yt and Ys in the
conditional expectations. Unlike the proof of the exact Zakai equation, we do not
work here under the probability P̃ which turns Yt into a Brownian motion. The
filtration Yt does not satisfy Yt = Ys ∨ Yt

s, where Ys and Yt
s are independent (Yt

s =
σ{Yr − Ys, s ≤ r ≤ t}). However, we have the following lemma.

Lemma 1.12. For any map F : R
2 → R, we have

Ẽ[F (Ms, X̆
2
s )Γ̆s/Yt] = Ẽ[F (Ms, X̆

2
s )Γ̆s/Ys].

Proof of Lemma 1.12. F (Mt, X̆
2
t )Γ̆t depends only on σ(X2

0 , V
2
s s ≤ t) and Yt. Us-

ing the independence of these two filtrations under P̃ , the properties of the conditional
expectation allow us to write

Ẽ[F (Ms, X̆
2
s )Γ̆s/Yt] = Ẽ[F (xs, X

2
s (x))Γs(x)]|(x=M)

= Ẽ[F (Ms, X̆
2
s )Γ̆s/Ys].
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Γ̆s = Γs(M) is justified by (14).
To show Proposition 1.8, we only need to normalize the above process as is done

for the exact Kushner–Stratonovitch equation (see [6, Theorem 2.3.7]), and we get
(21).

2. µt(ϕ) − E[ϕ(X2
t )/Yt] as a function of (X1 −M). We need to show

the convergence of µt(ϕ) to E[ϕ(X2
t )/Yt]. We first prove that the processes µt(ϕ)−

E[ϕ(X2
t )/Yt] and Ẽ[ϕ(X2

t )Γt/Yt]−Ẽ[ϕ(X̆2
t )Γ̆t/Yt] have the same rate of convergence.

Proposition 2.1. Let T <∞. Let us suppose that ∀t ≤ T and for any function
ϕ ∈ C2

b (R), ∃k such that the following assertion holds:

Ẽ[ϕ(X2
t )Γt/Yt]− Ẽ[ϕ(X̆2

t )Γ̆t/Yt] = O(εk).

Then, ∀ϕ ∈ C2(R), we have

µt(ϕ)− E[ϕ(X2
t )/Yt] = O(εk).

Proof. We will use the Kallianpur–Striebel formula [6]:

E[|E[ϕ(X2
t )/Yt]− µt(ϕ)|p]

= E

[∣∣∣∣∣ Ẽ[ϕ(X2
t )Γt/Yt]

Ẽ[Γt/Yt]
− Ẽ[ϕ(X̆2

t )Γ̆t/Yt]
Ẽ[Γ̆t/Yt]

∣∣∣∣∣
p]

≤ KE

[∣∣∣∣∣ Ẽ[ϕ(X2
t )Γt/Yt]− Ẽ[ϕ(X̆2

t )Γ̆t/Yt]
Ẽ[Γt/Yt]

∣∣∣∣∣
p]

+ KE

[∣∣∣∣∣ Ẽ[ϕ(X̆2
t )Γ̆t/Yt]

Ẽ[Γ̆t/Yt]
1

Ẽ[Γt/Yt]
(Ẽ[Γt/Yt]− Ẽ[Γ̆t/Yt])

∣∣∣∣∣
p]

.(23)

The first term of this expression is bounded by the Cauchy–Schwarz inequality:

E

[∣∣∣∣∣ Ẽ[ϕ(X2
t )Γt/Yt]− Ẽ[ϕ(X̆2

t )Γ̆t/Yt]
Ẽ[Γt/Yt]

∣∣∣∣∣
p]

≤
√√√√E

[(
1

Ẽ[Γt/Yt]

)2p
]√

E[(Ẽ[ϕ(X2
t )Γt/Yt]− Ẽ[ϕ(X̆2

t )Γ̆t/Yt])2p]

= O(εkp).

Indeed, the last equality is true because of the Jensen inequality applied to the convex
function x→ ( 1

x )1−2p on R
+. We get

E

[(
1

Ẽ[Γt/Yt]

)2p
]

= Ẽ
[
Γt(Ẽ[Γt/Yt])−2p

]
= Ẽ[(Ẽ[Γt/Yt])1−2p]

≤ Ẽ[(Γt)
1−2p]

= E[(Γt)
−2p],

and the last expression does not depend on ε.
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Remarking that

Ẽ[ϕ(X̆2
t )Γ̆t/Yt]

Ẽ[Γ̆t/Yt]
≤ ‖ϕ‖∞,

we obtain in the same way the order of the second term of (23). The proof is now
complete.

In order to compute the rate of convergence of µt(ϕ) to E[ϕ(X2
t )/Yt], we will

express Ẽ[ϕ(X2
t )Γt/Yt]−Ẽ[ϕ(X̆2

t )Γ̆t/Yt] as a function of (X1−M). To give the general
idea of the proof without using computations that are too big, let us first establish
this expression for the process Ẽ[X2

t − X̆2
t /Yt] (in this case the computations are

easier). We will later give an expression for Ẽ[Γt−Γ̆t/Yt], and finally for Ẽ[ϕ(X2
t )Γt−

ϕ(X̆2
t )Γ̆t/Yt].
2.1. Order of Ẽ[X2

t − X̆2
t /Yt].

Lemma 2.2. Let T > 0. Then, ∀0 ≤ t ≤ T , we have the estimation

X2
t − X̆2

t = O(
√
ε).

Proof. We use assumption H.4, Gronwall’s lemma, and Lemma 1.3.
This first estimation shows that X̆2

t converges to X2
t when ε converges to 0. But

we will see that if we condition by Yt, the rate of convergence will be better.
Let us define the following directional derivative by

Z2
t (x, y) = lim

λ→0

X2
t (x+ λy)−X2

t (x)

λ
.(24)

We have an exact formula for Z2
t (x, y), given in Lemma 2.3.

Lemma 2.3.

Z2
t (x, y) =

∫ t

0

exp

(∫ t

s

∂f2

∂x2
(xu, X

2
u(x))du

)
∂f2

∂x1
(xs, X

2
s (x))ysds.(25)

Proof. As there is no λ in the stochastic integral, the computations are easy:

Z2
t (x, y) = lim

λ→0

∫ t

0

f2(xs + λys, X
2
s (x+ λy))− f2(xs, X

2
s (x))

λ
ds

=

∫ t

0

∂f2

∂x1
(xs, X

2
s (x))ys +

∂f2

∂x2
(xs, X

2
s (x))Z2

s (x, y)ds.

We have

d

dt
Z2
t (x, y) =

∂f2

∂x1
(xt, X

2
t (x))yt +

∂f2

∂x2
(xt, X

2
t (x))Z2

t (x, y),

and the result follows.
Using Lemma 1.3 and the exact formula for Z2

t , we can deduce the following
corollary.

Corollary 2.4. Let T > 0. Then, ∀t ≤ T and λ ∈ [0, 1], we have

Z2
t (M + λ(X1 −M), X1 −M) = O(

√
ε).
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To make the computations simpler, let us note that

L(s,t)(x) = exp

(∫ t

s

∂f2

∂x2
(xu, X

2
u(x))du

)
.(26)

For x, y ∈ C([0, T ], R) and λ ∈ [0, 1], let us note that ρt(λ) = X2
t (y + λ(x− y)); the

difference X2
t (x)−X2

t (y) can be written as

X2
t (x)−X2

t (y) = X2
t (y + (x− y))−X2

t (y)

= ρt(1)− ρt(0)

=

∫ 1

0

ρ′t(λ)dλ

=

∫ 1

0

Z2
t (y + λ(x− y), (x− y))dλ

because ρ′t(λ) = Z2
t (y + λ(x− y), x− y).

Lemma 2.5. Let x, y ∈ C([0, T ], R). We have

|Z2
t (x+ λy, y)− Z2

t (x, y)| ≤ c(T )

(∫ t

0

(ys)
2ds+

(∫ t

0

|ys|ds
)2
)
.

Proof. Let x, y be two functions of C([0, T ], R) and let us denote γt(l)
∆
= Z2

t (x+
ly, y). Rolle’s theorem (or the Taylor–Lagrange theorem) gives

Z2
t (x+ λy, y)− Z2

t (x, y) = γt(λ)− γt(0) = λ γ′t(l)

with l ∈ [0, λ]. We have

|γ′t(l)| =
∣∣∣∣
∫ t

0

(∫ t

s

[
∂2f2

∂x1∂x2
(xu + lyu, X

2
u(x+ ly))yu +

∂2f2

∂2x2
(. . .)Z2

u(x+ ly, y)

]
du

)

× L(s,t)(x+ ly)
∂f2

∂x1
(xs + lys, X

2
s (x+ ly))ysds

+

∫ t

0

L(s,t)(x+ ly)

(
∂2f2

∂x2
1

(. . .)ys +
∂2f2

∂x1∂x2
(. . .)Z2

s (x+ ly, y)

)
ysds

∣∣∣∣
≤ c(T )

(∫ t

0

(ys)
2ds+

(∫ t

0

|ys|ds
)2
)
.(27)

Lemmas 1.3 and 2.5 imply the following result.
Lemma 2.6. Let T > 0. Then, ∀t ≤ T , we have

Z2
t (M + λ(X1 −M), X1 −M) = Z2

t (M,X1 −M) +O(ε).

Proposition 2.7. Let T > 0. ∀t ≤ T ,

Ẽ[X2
t − X̆2

t /Yt](28)

= Ẽ

[∫ t

0

L(s,t)(M)
∂f2

∂x1
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]

+O(ε).
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Proof.

Ẽ[X2
t − X̆2

t /Yt]

= Ẽ

[∫ 1

0

Z2
t (M + λ(X1 −M), X1 −M)dλ/Yt

]
= Ẽ[Z2

t (M,X1 −M)/Yt] +O(ε)

= Ẽ

[∫ t

0

L(s,t)(M)
∂f2

∂x1
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]

+O(ε).

Using Lemma 1.3, we see that Ẽ[X2
t − X̆2

t /Yt] is of order
√
ε. We will later improve

this estimation and see that the rate of convergence is of order ε.

2.2. Order of Ẽ[Γt− Γ̆t/Yt]. As seen above, Γt− Γ̆t = Γt(X
1)− Γ̆t(M). Γt(x)

depends on x directly and via X2
t (see (14)). One can, however, write

Γt(x)− Γt(y) = Γt(y + (x− y))− Γt(y)

= σt(1)− σt(0)

=

∫ 1

0

σ′t(λ)dλ(29)

with

σt(λ) = Γt(y + λ(x− y)).(30)

We need to differentiate Γt(y + λ(x− y)) with respect to λ. We have already noticed
the differentiability of X2

t . The problem will come from the stochastic integral, but
using the Kunita method we can show the following result.

Proposition 2.8. For λ ∈]− 1, 1[, the derivative of the stochastic integral∫ t

0

∂g

∂x2
(x1

s + λys, X
2
s (x+ λy))dV 2

s

with respect to λ exists and is given by

∂

∂λ

(∫ t

0

∂g

∂x2
(x1

s + λys, X
2
s (x+ λy))dV 2

s

)
=

∫ t

0

∂

∂λ

(
∂g

∂x2
(x1

s + λys, X
2
s (x+ λy))

)
dV 2

s .

This result is proposed in an exercise in Kunita ([3, exercise 3.1.5]) and is proved
in our specific case in Gégout-Petit [2, Part I, Appendix]. We don’t give the proof
here.

Then

σ′t(λ) = Γt(y + λ(x− y))
∂

∂λ
log(Γt(y + λ(x− y))).(31)

Write

ψ1(x, y) = −
(

1

2

∂2f1

∂x2
2

+
∂f1

∂x2
f2 +

∂g

∂x2

∂f2

∂x1
+

1

2

∂2f1

∂x2
1

+
∂f1

∂x1
f1

)
(x, y),

ψ2(x, y) = −
(

1

2

∂3g

∂x3
2

+
∂2g

∂x2
2

f2 +
∂g

∂x2

∂f2

∂x2
+

1

2

∂2f1

∂x1∂x2
+

∂f1

∂x2
f1

)
(x, y).
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We obtain

∂

∂λ

(
log(Γt(y + λ(x− y)))

)
= −f1(y0 + λ(x0 − y0), X

2
0 )(x0 − y0)

+ f1(yt + λ(xt − yt), X
2
t (y + λ(x− y)))(xt − yt)

+
∂g

∂x2
(yt + λ(xt − yt), X

2
t (y + λ(x− y)))

× Z2
t (y + λ(x− y), x− y)

+

∫ t

0

ψ1(ys + λ(xs − ys), X
2
s (y + λ(x− y)))(xs − ys)ds

+

∫ t

0

ψ2(ys + λ(ys − ys), X
2
s (y + λ(x− y)))

× Z2
s (y + λ(x− y), x− y)ds

+

∫ t

0

∂f1

∂x2
(ys + λ(xs − ys), X

2
s (y + λ(x− y)))(xs − ys)dV

2
s

−
∫ t

0

∂2g

∂x2
2

(ys + λ(xs − ys), X
2
s (y + λ(x− y)))

× Z2
s (y + λ(x− y), x− y)dV 2

s .

Lemma 2.9. Let us note that

(32)

Ψ1,t,λ(y, x− y)

= (f1(yt + λ(xt − yt), X
2
t (y + λ(x− y)))− f1(yt, X

2
t (y)))(xt − yt)

+
∂g

∂x2
(yt + λ(xt − yt), X

2
t (y + λ(x− y)))Z2

t (y + λ(x− y), x− y)

− ∂g

∂x2
(yt, X

2
t (y))Z

2
t (y, x− y)

+

∫ t

0

(ψ1(ys + λ(xs − ys), X
2
s (y + λ(x− y)))− ψ1(ys, X

2
s (y)))(xs − ys)ds

+

∫ t

0

ψ2(ys + λ(xs − ys), X
2
s (y + λ(x− y)))Z2

s (y + λ(x− y), x− y)

− ψ2(ys, X
2
s (y))Z

2
s (y, x− y)ds

+

∫ t

0

(
∂f1

∂x2
(ys + λ(xs − ys), X

2
s (y + λ(x− y)))− ∂f1

∂x2
(ys, X

2
s (y))

)
× (xs − ys)dV

2
s

−
∫ t

0

(
∂2g

∂x2
2

(ys + λ(xs − ys), X
2
s (y + λ(x− y)))Z2

s (y + λ(x− y), x− y)

− ∂2g

∂x2
2

(ys, X
2
s (y))Z

2
s (y, x− y)

)
dV 2

s .
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For λ ∈ [0, 1] the following equality holds:

∂

∂λ

(
log(Γt(y + λ(x− y)))

)
= f1(y0 + λ(x0 − y0), X

2
0 )(x0 − y0)

+ f1(yt, X
2
t (y))(xt − yt) +

∂g

∂x2
(yt, X

2
t (y))Z

2
t (y, x− y)

+

∫ t

0

ψ1(ys, X
2
s (y))(xs − ys)ds+

∫ t

0

ψ2(ys, X
2
s (y))Z

2
s (y, x− y)ds

+

∫ t

0

∂f1

∂x2
(ys, X

2
s (y))(xs − ys)dV

2
s

−
∫ t

0

∂2g

∂x2
2

(ys, X
2
s (y))Z

2
s (y, x− y)dV 2

s

+ Ψ1,t,λ(y, x− y).

Thanks to Rolle’s theorem, there exists

Θλ(x−y)
y ∈ [log(Γt(y + λ(x− y))), log(Γt(y))](33)

such that

Γt(y + λ(x− y)) = Γt(y) + exp(Θλ(x−y)
y )[log(Γt(y + λ(x− y)))− log(Γt(y))].(34)

Remark 2.10. Thanks to (33) and Lemma 1.5 we can claim that for a fixed
T > 0, ∀p ∈ R, there exists c(p) such that ∀t ≤ T and ∀x ∈ C([0, T ]),

E[(exp(Θλ(x−y)
y ))p] ≤ c(p).(35)

We now use (29), (31), Lemma 2.9, and (34) in the case x = X1 and y = M to write
Γt − Γ̆t in the following way:

(36)

Γt − Γ̆t

= Γt(M + (X1 −M))− Γt(M)

=

∫ 1

0

Γt(M + λ(X1 −M))
∂

∂λ
log(Γt(M + λ(X1 −M)))dλ

= − Γt(M + λ(X1 −M))f1(M0λ+ (X1
0 −M0), X

2
0 )(X1

0 −M0)

+ Γt(M)f1(Mt, X
2
t (M))(X1

t −Mt)

+ Γt(M)
∂g

∂x2
(Mt, X

2
t (M))Z2

t (M, (X1 −M))

+ Γt(M)

∫ t

0

ψ1(Ms, X
2
s (M))(X1

s −Ms) + ψ2(Ms, X
2
s (M))Z2

s (M,X1 −M)ds

+

∫ 1

0

[exp(Θ
λ(X1−M)
M )[log(Γt(M + λ(X1 −M)))− log(Γt(M))]]

×
[
f1(Mt, X

2
t (M))(X1

t −Mt) +
∂g

∂x2
(Mt, X

2
t (M))Z2

t (M,X1 −M)
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+

∫ t

0

ψ1(Ms, X
2
s (M))(X1

s −Ms) + ψ2(Ms, X
2
s (M))Z2

s (M,X1 −M)ds

+

∫ t

0

[
∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)

− ∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)

]
dV 2

s

]
dλ

+ Γt(M)×
∫ t

0

[
∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)

− ∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)

]
dV 2

s

+

∫ 1

0

Γt(M + λ(X1 −M))Ψ1,t,λ
t (X1, X1 −M)dλ.

We now take the Yt-conditional expectation of this formula and then propose to show
that all the terms of Ẽ[Γt−Γ̆t/Yt] are small because (X1

t −Mt) is small with ε (Lemma
1.3). Without assumption H.2 and equation (8), the first term need not be small. We
group the terms of order ε, using the following estimations.

Lemma 2.11. Fix T <∞. ∀t < T, ∀λ ∈ [0, 1], we have

κλt
∆
= log(Γt(M + λ(X1 −M)))− log(Γt(M)) = O(

√
ε)(37)

and

Ψ1,t,λ
t (X1, X1 −M) = O(ε).(38)

Sketch of the proof. We use the following results:

—X1 −M = O(
√
ε) (Lemma 1.3);

—Z2
t (M + λ(X1 −M), X1 −M) = O(

√
ε) (Corollary 2.4);

—For all F from R
2 into R, bounded with bounded derivatives, F (X1

t , X
2
t ) −

F (Mt, X̆
2
t ) = O(

√
ε).

All the terms of Ψ1,t,λ
t (X1, X1 − M) (see (32)) are products of two terms of

order
√
ε, and by Lemma 2.6, Z2

t (M + λ(X1 −M), X1 −M) − Z2
t (M,X1 −M) =

O(ε).

Some terms of (36) are clearly of order ε. Indeed, if we use Jensen’s and Cauchy–
Schwarz’s inequalities, we get

Ẽ[|Ẽ[exp(Θ
λ(X1−M)
M )(log(Γt(M + λ(X1 −M)))− log(Γt(M)))

× f1(Mt, X
2
t (M))(X1

t −Mt)/Yt]|p]
= Ẽ[|Ẽ[exp(Θ

λ(X1−M)
M )κλt f1(Mt, X

2
t (M))(X1

t −Mt)/Yt]|p]
≤ (Ẽ[(exp(Θ

λ(X1−M)
M )κλt f1(Mt, X

2
t (M)))2p])

1
2 (Ẽ[(X1

t −Mt)
2p])

1
2 .

Also, using Lemma 2.11 and Remark 2.10, we get∫ 1

0

Ẽ[exp(Θ
λ(X1−M)
M )κλt f1(Mt, X

2
t (M))(X1

t −Mt)/Yt]dλ = O(ε).
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By the same method we get∫ 1

0

Ẽ

[
exp(Θ

λ(X1−M)
M )κλt ×

(
∂g

∂x2
(Mt, X

2
t (M))Z2

t (M,X1 −M)

+

∫ t

0

ψ1(Ms, X
2
s (M))(X1

s −Ms) + ψ2(Ms, X
2
s (M))Z2

s (M,X1 −M)ds

+

∫ t

0

∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)

− ∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)dV 2
s

)
/Yt

]
dλ

= O(ε)

and

Ẽ

[∫ 1

0

Γt(M + λ(X1 −M))Ψ1,t,λ
t (X1, X1 −M)dλ/Yt

]
= O(ε).

Proposition 2.12. For a fixed T > 0 and ∀t ≤ T we have

Ẽ[Γt − Γ̆t/Yt]
= Ẽ[Γt(M)f1(Mt, X

2
t (M))(X1

t −Mt)|Yt]

+ Ẽ

[
Γt(M)

∫ t

0

ψ1(Ms, X
2
s (M))(X1

s −Ms)ds/Yt
]

+ Ẽ

[
Γt(M)

∫ t

0

ψ2(Ms, X
2
s (M))

∫ s

0

L(u,t)(M)
∂f2

∂x1
(Mu, X

2
u(M))(X1

u −Mu)duds/Yt
]

+ Ẽ

[
Γt(M)

∂g

∂x2
(Mt, X

2
t (M))

∫ t

0

L(s,t)(M)
∂f2

∂x1
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]

+ Ẽ

[
Γt(M)

∫ t

0

∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)

− ∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)dV 2
s /Yt

]
+ O(ε).

Corollary 2.13.

Ẽ[Γt − Γ̆t/Yt] = O(
√
ε).

2.3. Order of Ẽ[ϕ(X2
t )Γt − ϕ(X̆2

t )Γ̆t/Yt].

Proposition 2.14. Let ϕ ∈ C2
b (R). For a fixed T > 0 and ∀t ≤ T , we have the

following expression for the difference between the two filters:

Ẽ[ϕ(X2
t )Γt − ϕ(X̆2

t )Γ̆t/Yt]
= Ẽ[ϕ(X2

t (M))Γt(M)f1(Mt, X
2
t (M))(X1

t −Mt)/Yt](39)

+ Ẽ

[
ϕ(X2

t (M))Γt(M)

∫ t

0

ψ1(Ms, X
2
s (M))(X1

s −Ms)ds/Yt
]

(40)



APPROXIMATE FILTER OF A PARTIALLY OBSERVED PROCESS 1439

+ Ẽ

[
ϕ(X2

t (M))Γt(M)

∫ t

0

ψ2(Ms, X
2
s (M))

×
∫ s

0

L(u,s)(M)
∂f2

∂x1
(Mu, X

2
u(M))(X1

u −Mu)duds/Yt
]

(41)

+ Ẽ

[
Γt(M)

(
ϕ(X2

t (M))
∂g

∂x2
(Mt, X

2
t (M)) + ϕ′(X2

t (M))

)

×
∫ t

0

L(s,t)(M)
∂f2

∂x1
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]

(42)

+ Ẽ

[
Γt(M)ϕ(X2

t (M))

∫ t

0

[
∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)

− ∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)

]
dV 2

s

]
(43)

+ O(ε).

Proof. By the method used in the previous section, we write

Γt(x)ϕ(X2
t (x))− Γt(y)ϕ(X2

t (y)) = νt(1)− νt(0)

=

∫ 1

0

ν′t(λ)dλ

with

νt(λ) = Γt(y + λ(x− y))ϕ(X2
t (y + λ(x− y))),(44)

with σ defined by (30):

ν′t(λ) = Γt(y + λ(x− y))ϕ′(X2
t (y + λ(x− y)))Z2

t (y + λ(x− y), x− y)

+ σ′t(. . .)ϕ(X2
t (. . .)).

If we proceed as in the previous sections, we get the required result.
All the terms of the difference in Proposition 2.14 are clearly of order

√
ε. In

order to give a finer estimation of the rate of convergence we now recall other results
about filtering.

3. Rate of convergence of µt(ϕ) to E[ϕ(X2
t )/Yt].

3.1. Mt, approximate filter of order ε. If we study our system under the
probability P̃ , we have 


X1
t ,

Yt =

∫ t

0

h(X1
s )ds+ εWt,

(45)

where X1
t is a Wiener process independent of W . The drift is therefore “erased” and

X1 no longer depends on X2. So, h being one to one in X1, we can apply Picard’s
results [9, Main Theorem of section 2] and we have the following proposition.

Proposition 3.1. In the sense of Definition 1.2 we have

Ẽ[X1
t /Yt]−M1

t = O(ε).(46)
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Remark 3.2. The proof of this result is more difficult than the case
√
ε. As seen

in the proof of Lemma 1.3, to show
√
ε order we first show that (X1 −M) = O(

√
ε)

and, by contraction, the same estimation for Ẽ[X1
t /Yt]−M1

t follows. By computing
the conditional variance of X1 (in the linear detectable case, the computations are
explicit; for the nonlinear case, see Picard [7]), we notice that the order of convergence
for X1 − M is exactly

√
ε. The conditional expectation improves the convergence,

but makes the majoration more difficult. The method used in [9] uses techniques of
differentiation on a Wiener space.

As seen in Definition 1.2, the convergence is not good when t is near 0. Even in
the case when X1

0 is deterministic and X1
0 = M0, this problem remains. But as Picard

remarked it [9] (see the discussion after the main theorem of section 2), the proof of
his main theorem applied to the case X1

0 = M0 gives estimates of Ẽ[X1
t /Yt]−Mt for

small t. Indeed, we have the following result.
Proposition 3.3. In the case when X1

0 = M0 ∀q ≥ 1, ∃C > 0 such that

sup
0≤t≤√ε

‖Ẽ[X1
t /Yt]−Mt‖q ≤ C

√
ε, sup√

ε≤t<∞
‖Ẽ[X1

t /Yt]−Mt‖q ≤ Cε.(47)

3.2. Order of convergence of filter. We can now estimate all the terms ob-
tained for Ẽ[ϕ(X2

t )Γt − ϕ(X̆2
t )Γ̆t/Yt] in Proposition 2.14. We will deal separately

with (i) term (39), which is a special case, (ii) the Lebesgue integrals (40), (41), and
(42), and (iii) the stochastic integrals (43).

We will use the results of the previous section. An important property used in
the proofs below is the fact that V2 and X 1 ∨ Y are independent under P̃ .

Estimation of term (39).
Proposition 3.4. In the sense of Definition 1.2 we have

Ẽ[ϕ(X2
t (M))Γt(M)f1(Mt, X

2
t (M))(X1

t −Mt)/Yt] = O(ε).

Proof.

Ẽ[ϕ(X2
t (M))Γt(M)f1(Mt, X

2
t (M))(X1

t −Mt)/Yt]
= Ẽ[Ẽ[ϕ(X2

t (M))Γt(M)f1(Mt, X
2
t (M))/X 1

t ∨ Yt](X1
t −Mt)/Yt]

= Φ1
t (M)Ẽ[(X1

t −Mt)|Yt].
The fact that V2

t and X 1
t ∨ Yt are independent allows us to write

Ẽ[ϕ(X2
t (M))Γt(M)f1(Mt, X

2
t (M))/X 1

t ∨ Yt] = Φ1
t (M),(48)

Φ1
t (M) = Ẽ[Γt(x)f1(x,X

2
t (x))]|x=M .(49)

Using Lemma 1.5 and the Cauchy–Schwarz inequality we get, ∀x ∈ C([0, t], R), ∀p ≥
1,

Ẽ[|Γt(M)f1(M,X2
t (M))|p] ≤

√
Ẽ[f2p

1 (M,X2
t (M))]

√
Ẽ[(Γt(M))2p]

≤ c′(p).(50)

(50) and (47) allow us to conclude the proof.
Remark 3.5. The law of V 2 being the same under P and under P̃ , we can also

take the expectation under P in (49).



APPROXIMATE FILTER OF A PARTIALLY OBSERVED PROCESS 1441

3.2.1. Estimation of the Lebesgue integrals.
Estimation of terms (40), (42). These two terms are a priori not the same

because of the non-Fs-measurability of L(s,t)(x) in (42). Using (26) we can note,
however, that

L(s,t)(x) = exp

(∫ t

s

∂f2

∂x2
(xu, X

2
u(x))du

)
= L(0,t)(x)(L(0,s)(x))−1.

The two terms can then be represented by

Ẽ[Φt(M.,X
2
. (M))

∫ t

0

Ψ(Ms, X
2
s (M))(X1

s −Ms)ds/Yt],

where Φt looks like Γt(M). In other words, Φt is a function of the paths of M and
X2(M) from 0 to t, bounded either in L∞ or in all Lp with 1 ≤ p <∞. The function
Ψ is Fs-measurable and bounded.

Let us first study the convergence of Ẽ[X1
s/Yt] to Ms. We have (X1

s −M1
s ) =

O(
√
ε), which implies Ẽ[X1

s/Yt] −M1
s = O(

√
ε). It seems that the order

√
ε cannot

be improved.1

Nevertheless, when we integrate X1 −M from 0 to t, we get a term of order ε.
We obtain

Ẽ

[∫ t

0

(X1
s −M1

s )ds/Yt
]

= O(ε).

We will not show this result but a stronger one because of Φ and Ψ, which appear in
term 2.

Proposition 3.6. For all 0 ≤ t ≤ T , we have

Ẽ

[
Φt(M.,X

2
. (M))

∫ t

0

Ψ(Ms, X
2
s (M))(X1

s −Ms)ds/Yt
]

= O(ε).(51)

Proof.

Ẽ

[∣∣∣∣Ẽ
[
Φt(M.,X

2
. (M))

∫ t

0

Ψ(Ms, X
2
s (M))(X1

s −Ms)ds/Yt
]∣∣∣∣
p
]

≤
(
Ẽ
[∣∣Φt(M.,X

2
. (M))

∣∣2p]) 1
2

(
Ẽ

[∣∣∣∣
∫ t

0

Ψ(Ms, X
2
s (M))(X1

s −Ms)ds

∣∣∣∣
2p
]) 1

2

.(52)

The first square root is bounded.
Let us assume for a moment the following proposition.
Proposition 3.7. When (Fs)0≤s≤t is adapted to the filtration Ys∨V2

s and in Lp

for 1 ≤ p <∞, then in the sense of Definition 1.2 we have∫ s

0

Fs(X
1
s −Ms)ds = O(ε).

1This conjecture is due to J. Picard (private communication) and is based on the following
considerations (the first one is proved and the last two are heuristic).

1) The order of X1
s − E[X1

s /Ys] is exactly O(
√
ε) (Picard [7, Corollary 6.2]).

2) The information given by the future after s is not better than that given by the past, so as
in 1) we have E[X1

s /Ys]− E[E[X1
s /Ys]/Yt

s] = O(
√
ε).

3) Since Yt
s and Ys are independent given Ys and Yt = Ys∨Yt

s, we can conjecture that Ẽ[X1
s /Ys]

and E[E[X1
s /Ys]/Yt

s] are very closed and that Ẽ[X1
s /Yt]− Ẽ[X1

s /Ys] = O(
√
ε) ∀t > s.
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It follows that the second square root of (52) is of order ε. This shows Proposition
3.6.

Proof of Proposition 3.7. We write the Taylor formula at point Ms for h(X1
s ) and

we get

h(X1
s )− h(Ms) = (X1

s −Ms)h
′(Ms) +

1

2
h′′(θs)(X1

s −Ms)
2 with θs ∈ [X1

s ,Ms],

(X1
s −Ms) =

1

h′(Ms)
(h(X1

s )− h(Ms)) +
h′′(θs)

2h′(Ms)
(X1

s −Ms)
2.(53)

By assumption H.6 and Lemma 1.3, we have

h′′(θs)
2h′(Ms)

(X1
s −Ms)

2 = O(ε).

Then

(X1
s −Ms)− 1

h′(Ms)
(h(X1

s )− h(Ms)) = O(ε).(54)

The proof of Lemma 1.3 shows that the estimation is good for all s ≥ 0. Taking the
conditional expectation given Ys under P̃ in equation (53), we also have

Ẽ[h(X1
s )/Ys]− h(Ms) = h′(Ms)(Ẽ[X1

s/Ys]−Ms) +O(ε).

By Proposition 3.3 and assumption H.6, we have Ẽ[X1
s/Ys] − Ms = O(ε), which

implies

h(Ms) = Ẽ[h(X1
s )/Ys] +O(ε).(55)

We have seen (Proposition 3.3) that the expectation of |h(Ms)− Ẽ[h(X1
s )/Ys]|p is not

bounded by Cεp for s ≥ 0 but only for s ≥ √ε. For s ≤ √ε, it is bounded by C(
√
ε)p.

We integrate an error
√
ε during a time

√
ε. We thus get an error of order ε. By (54)

and (55) we have∫ t

0

Fs(X
1
s −Ms)ds

=

∫ t

0

Fs
h′(Ms)

[(h(X1
s )− Ẽ[h(X1

s )/Ys])ds+ εdWs]−
∫ t

0

Fs
h′(Ms)

εdWs︸ ︷︷ ︸
=O(ε)

+O(ε)

=

∫ t

0

Fs
h′(Ms)

(dYs − Ẽ[h(X1
s )/Ys]ds) +O(ε).(56)

We have used the assumptions on Fs and the fact that

Fs
h′(Ms)

∈ Lp for 1 ≤ p <∞.

In filtering theory, the process It
∆
= Yt −

∫ t
0
Ẽ[h(X1

s )/Ys]ds is called the innovation

process, and under the probability P , ( Itε )0≤t≤T is a Yt-Wiener process (Pardoux [6]).

Again using the fact that Y ∨ X 1 and V2 are independent under P̃ , we get without
difficulty the following proposition.
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Proposition 3.8. Under P̃ , ( Itε )0≤t≤T is a Yt ∨ V2
t Brownian motion.

The process

Fs
h′(Ms)

being Ys ∨ V2
s measurable, then ∫ t

0

Fs
h′(Ms)

dIs

is a stochastic integral. We can therefore use the Burkholder–Davis–Gundy inequali-
ties:

Ẽ

[∣∣∣∣
∫ t

0

Fs
h′(Ms)

dIs

∣∣∣∣
p
]
≤ c(p)Ẽ


(∫ t

0

(
Fs

h′(Ms)

)2

ε2ds

) p
2




≤ c′(p)εp.

The result follows.
Remark 3.9. In the study of (39) the conditioning by Yt is indispensable in

obtaining the order ε. For (40) and (42), it is not necessary.

Estimation of term (41). Again using L(u,s) = L(0,s)(L(u,s))
−1, we can write

(41) as

Ẽ

[
Φt(M.,X

2
. (M))

∫ t

0

Ψ(Ms, X
2
s (M))

∫ s

0

ψ(Mu, X
2
u(M))(X1

u −Mu)duds/Yt
]
.

Φ is bounded in Lp, and Ψ and ψ are bounded. This term is also of order ε.
We use the same techniques as for the computation of terms (40) and (42). By

Hölder’s and Jensen’s inequalities,

Ẽ

[∣∣∣∣Φt(M.,X
2
. (M))

∫ t

0

Ψ(Ms, X
2
s (M))

∫ s

0

ψ(Mu, X
2
u(M))(X1

u −Mu)duds

∣∣∣∣
p
]

≤ c(p, t)Ẽ

[∫ t

0

|Φt(M.,X
2
. (M))Ψ(Ms, X

2
s (M))

∫ s

0

ψ(Mu, X
2
u(M))(X1

u −Mu)du|pds
]

≤
(
Ẽ

[∫ t

0

|Φt(M.,X
2
. (M))Ψ(Ms, X

2
s (M))|2pds

]) 1
2

×
(∫ t

0

Ẽ

[∣∣∣∣
∫ s

0

ψ(Mu, X
2
u(M))(X1

u −Mu)du

∣∣∣∣2p ds
]) 1

2

.

The first square root is bounded and, using Proposition 3.7, the second one is bounded
by Cεp.

3.2.2. Estimation of the stochastic integrals.
Proposition 3.10.

Ẽ

[
Γt(M)

∫ t

0

∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)dV
2
s /Yt

]

− Ẽ

[
Γt(M)

∫ t

0

∂2g

∂x2
s

(Ms, X
2
s (M))Z2

s (M,X1 −M)dV 2
s /Yt

]
= O(ε).
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Proof. We use here the techniques of differentiation on the Wiener space (Malli-
avin calculus). Let us denote by Ds the operator of differentiation with respect to
the perturbation of the Brownian motion, V 2

s . We can apply an integration-by-parts
formula thanks again to the fact that Yt and V2

t are independent. (See Ocone [4] or
Pardoux [6, chapter 5.])

Ẽ

[
Γt(M)

∫ t

0

∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)dV
2
s /Yt

]

= Ẽ

[∫ t

0

DsΓt(M)
∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]
.(57)

Let us write the expressions for DsX
2
t and DsΓt(M). Using (18), we get

DsX̆
2
t = exp

(∫ t

s

∂f2

∂xs
(Mu, X̆

2
u)du

)
.(58)

Using (19), we also have

DsΓt(M) = Γt(M)(D0X̆
2
s )
−1

[∫ t

0

(
∂f1

∂x2
(Mu, X̆

2
u)− f1

∂f1

∂x2
(Mu, X̆

2
u)

)
D0X̆

2
udMu

−
∫ s

0

(
∂f1

∂x2
(Mu, X̆

2
u)− f1

∂f1

∂x2
(Mu, X̆

2
u)

)
D0X̆

2
udMu

]
.(59)

(57) now becomes

(60)

Ẽ

[
Γt(M)

∫ t

0

∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)dV
2
s /Yt

]

= Ẽ

[
Γt(M)

(∫ t

0

(
∂f1

∂x2
(Mu, X̆

2
u)− f1

∂f1

∂x2
(Mu, X̆

2
u)

)
D0X̆

2
udMu

)

×
∫ t

0

(D0X̆
2
s )
−1 ∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]

− Ẽ

[
Γt(M)

∫ t

0

(D0X̆
2
s )
−1

(∫ s

0

(
∂f1

∂x2
(Mu, X̆

2
u)− f1

∂f1

∂x2
(Mu, X̆

2
u)

)
D0X̆

2
udMu

)

× ∂f1

∂x2
(Ms, X

2
s (M))(X1

s −Ms)ds/Yt
]
.

Except for (X1
s −Ms), this expression is only a function on M and V 2. Provided

the dMu-integrals in (60) are bounded in Lp, the terms of this equation look like the

Lebesgue integrals estimated in the previous section. Ẽ[Γt(M)
∫ t
0
∂f1
∂x2

(Ms, X
2
s (M))(X1

s−
Ms)dV

2
s /Yt] will be of order ε if we show the following lemma holds.

Lemma 3.11. Let v be a bounded function from R
2 to R. Let us suppose that

its derivative with respect to the second variable is bounded. There exists ε0 > 0 such
that

∀0 ≤ t ≤ T, ∀p ≥ 1, ∃Cp such that ∀ε < ε0, Ẽ

[∣∣∣∣
∫ t

0

v(Ms, X̆
2
s )dMs

∣∣∣∣
p
]
≤ Cp.
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Proof of Lemma 3.11. Let us define Υ(x1, x2) =
∫ x1

0
v(u, x2)du. By Itô’s formula,∫ t

0

v(Ms, X̆
2
s )dMs = Υ(Mt, X̆

2
t )−Υ(X1

0 , X
2
0 )−

∫ t

0

∂Υ

∂x2
(Ms, X̆

2
s )dX

2
s ,

we obtain

Ẽ

[∣∣∣∣
∫ t

0

v(Ms, X̆
2
s )dMs

∣∣∣∣
p
]

≤ c(p)

(
Ẽ[|Υ(Mt, X̆

2
t )|p] + Ẽ[|Υ(X1

0 , X
2
0 )|p +

∫ t

0

Ẽ

[∣∣∣∣ ∂Υ

∂x2
(Ms, X̆

2
s )f2(Ms, X̆

2
s )

∣∣∣∣p
]
ds

+ Ẽ

[∣∣∣∣
∫ t

0

∂Υ

∂x2
(Ms, X̆

2
s )dV

2
s

∣∣∣∣
p
])

≤ c(p)

(
Ẽ[|Υ(Mt, X̆

2
t )|p] + Ẽ[|Υ(X1

0 , X
2
0 )|p] +

∫ t

0

Ẽ

[∣∣∣∣ ∂Υ

∂x2
(Ms, X̆

2
s )f2(Ms, X̆

2
s )

∣∣∣∣p
]
ds

+ c′(p)Ẽ


∣∣∣∣∣
∫ t

0

(
∂Υ

∂x2
(Ms, X̆

2
s )

)2

ds

∣∣∣∣∣
p
2




 .(61)

We have used the Burkholder–Davis–Gundy inequalities.
Using Lemma 1.3, we also have

Ẽ[|Υ(Mt, X̆
2
t )|p] ≤ ‖v‖p∞Ẽ[|Mt|p]

≤ c(p)‖v‖p∞(Ẽ[|Mt −X1
t |p] + Ẽ[|X1

t |p])
≤ C(p)(C(ε0) + Ẽ[ sup

0≤t≤T
|X1

t |p]).(62)

The parameter ε0 is the parameter which appears in Definition 1.2. X1
t being a

Brownian motion under probability P̃ , Ẽ[sup0≤t≤T |X1
t |p] no longer depends on ε.

By the same method, we show the existence of a constant C(ε0, p, T ) such that

∀ε < ε0, ∀0 ≤ t ≤ T, Ẽ

[∣∣∣∣ ∂Υ

∂x2
(Mt, X̆

2
t )

∣∣∣∣p
]
≤ C(ε0, p, T ).(63)

f2 being bounded (see H.5), we find that

Ẽ

[∣∣∣∣
∫ t

0

v(Ms, X̆
2
s )dMs

∣∣∣∣
p
]
≤ c(ε0, p, T ).

By the same method we find

Ẽ

[
Γt(M)

∫ t

0

∂2g

∂x2
2

(Ms, X
2
s (M))Z2

s (M,X1 −M)dV 2
s /Yt

]
= O(ε).

Proposition 3.10 is thus proved.
We can now conclude with the following theorem.
Theorem 3.12. Under the assumptions of section 1.1, ∀ϕ ∈ C2

b (R), we have

Ẽ[ϕ(X2
t )Γt − ϕ(X̆2

t )Γ̆t|Yt] = O(ε).(64)

Corollary 3.13. Under the assumptions of section 1.1, ∀ϕ ∈ C2
b (R), we have

µt(ϕ)− E[ϕ(X2
t )/Yt] = O(ε).(65)

The corollary is the direct consequence of Theorem 3.12 and Proposition 2.1.
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4. Conclusion. In this work we have used a method which gives an approxima-
tion of the order of convergence between the approximate filter and the exact filter.
The main element used to obtain this approximation is the integration by parts of
section 1.3, which makes it possible to express µt(ϕ)− E[ϕ(X2

t )/Yt] as a function of
(X1−M). It is easy to notice that the method extends without difficulty to the case
where there is a coefficient of diffusion σ(X1) in front of dV 1 and a coefficient σ(X2)
in front of dV 2. We can also generalize this result to the case where the dimension of
X2 is greater than 1, but where f1 is a potential in X2.

In the case when the integration by parts is not valid (in particular, the case
when the dimension of X1 is greater than 1, which would be useful for numerical
applications), it seems possible to construct an approximate filter for the conditional
law of X2 given Yt of the same type as µt, and it is very likely that this filter converges
when ε tends to 0. However, the method used in this paper to compute the rate of
convergence of such an approximate filter cannot be used. It remains an open problem
to prove the convergence.

Acknowledgments. Proposition 3.7, which improves the order of convergence,
is due to J. Picard. This work is part of a Ph.d. Thesis under the direction of E.
Pardoux at the Université de Provence (France).
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Abstract. We study a general approximation scheme for infinite-dimensional linear program-
ming (LP) problems which arise naturally in stochastic control. We prove that the optimal value of
the approximating problems converges to the value of the original LP problem. For the controls, we
show that if the approximating optimal controls converge, the limiting control is an optimal control
for the original LP problem.

As an application of this theory, we present numerical approximations to the LP formulation of
stochastic control problems in continuous time. We study long-term average and discounted control
problems. For the example for which the theoretical solution is known, our approximation results
are very accurate.

Key words. linear programming, stochastic control, numerical approximation, long-term aver-
age criterion, discounted criterion

AMS subject classifications. 49M35, 93E20, 93E25

PII. S0363012996313367

1. Introduction. This paper addresses the task of solving linear programming
problems of the following form:

P0 :


minimize

∫
c(x, u)µ(dx× du)

subject to

∫
Af(x, u)µ(dx× du) = 0 ∀f ∈ D(A),

µ is a probability measure,

where c denotes the cost function, A is an operator on functions f, and D(A) denotes
the domain of the operator. (Refer to section 2 for a formal definition of P0.) Observe
that optimization occurs over the space of measures satisfying the given constraints,
which is typically infinite-dimensional. Often explicit solutions are difficult to deter-
mine due to this infinite-dimensionality. For such problems, it is necessary to make
some reduction to finite dimensions.

This paper considers a general approach to approximating P0 by a sequence of
linear programs:

Pn :


minimize

∫
cn(x, u)µn(dx× du)

subject to

∫
Anfn(x, u)µn(dx× du) = 0 ∀fn ∈ D(An),

µn is a probability measure
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where the function fn approximates f , the operator An approximates the operator A,
the cost function cn is related to the original cost function c, and D(An) denotes the
domain of the operator An. The optimal values of the approximating problems Pn will
be shown to be approximately optimal for the original problem P0. The application
of the general approximation scheme will be to obtain linear programming problems
Pn which are finite-dimensional and hence accessible to computational solutions.

Linear programming problems of the form P0 arise as an equivalent formulation
of stochastic control problems. The idea of reformulating problems in a space of
measures was introduced by Young [23] for calculus of variations problems and has
been applied to nonstochastic control problems by Rubio [17, 18]. The use of linear
programming to solve stochastic control problems has been studied for more than
three decades. Early work concentrated on control problems in a discrete setting:
discrete state space, discrete control space, and/or discrete time (see, for example,
[3, 4, 15, 21, 22]). Recently, Hernández-Lerma, Hennet, and Lasserre [11] considered
discrete time Markov decision processes with Borel state and control spaces under a
long-run expected average cost criterion. Working in continuous time, Kurtz [12] and
Stockbridge [19] studied control problems when the state space E and control space U
are allowed to be locally compact, complete, and separable metric spaces. Stockbridge
showed that stochastic control problems involving the long-term average cost can
be reformulated as LP problems. The equivalence depended upon the existence of
stationary solutions but was limited in that the optimal control was not characterized.
This equivalence has been improved in several ways independently by Bhatt and
Borkar [2] and Kurtz and Stockbridge [13]. Both papers characterize the optimal
control and also extend the LP formulation to infinite horizon discounted and finite
horizon control problems. Kurtz and Stockbridge [13] also extend the results to first
passage control problems, and Bhatt and Borkar [2] relax the local compactness of
the state space.

An LP formulation has been used by Heinricher and Stockbridge [9] to solve a
stochastic control problem for processes modeling the wear of a system. Also, Ghosh,
Arapostathis, and Marcus [6] used an LP formulation to show existence of an optimal
solution for the ergodic control problem but then used dynamic programming to
express the solution in terms of the Hamilton–Jacobi–Bellman equation.

This paper studies a general approximation of these types of LP problems with
the goal of providing numerical methods of solution. In our example, the reduc-
tion to finite dimensions uses the Markov chain approximations studied extensively
by Kushner and Dupuis [14] and others. They use dynamic programming on these
approximations to solve control problems, whereas our approach relies on linear pro-
gramming methods. They justify the results using weak convergence techniques and
work with measures on the space of stochastic processes, whereas our justification
uses weak convergence directly on measures on the state and control spaces. Some
other papers which study finite-dimensional approximations of linear programming
problems are [20, 8].

The paper is organized as follows. In section 2 we show that, given a linear
programming problem P0, we can define approximating problems Pn, whose optimal
solutions converge to the optimal solution for P0. Convergence of the controls is also
considered. Section 3 examines finite-dimensional LP approximations to the original
infinite-dimensional LP problem for two examples. Both examples are modifications
of the bounded follower problem studied by Beneš, Shepp, and Witsenhausen [1]. The
first one uses a long-term average criterion for which the solution is known; the second
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one uses an infinite horizon discounted cost criterion.

2. Mathematical formulations and theoretical results. This section is di-
vided into three sections. Section 2.1 contains the formal definition of the linear pro-
gramming problem P0. Section 2.2 defines the approximating LP problems. Section
2.3 provides results about the existence of the solutions to the approximating linear
programming problems Pn and their convergence to the solution of P0. Section 2.3.1
deals with convergence of the values, while section 2.3.2 considers convergence of the
controls.

2.1. The original LP problem. In this section we formally define the LP
problem.

Denote the state space by E and the control space by U . We assume E and U
are compact, metric spaces. We denote the distance between points in E and U by
| · − · | and on the product space by d(·, ·). Denote by P(E) and P(U) the space of
probability measures on E and U , respectively. Also, let C(E) and C(E ×U) denote
the spaces of continuous functions on E and E × U , respectively, and let M(E × U)
denote the space of measurable functions on E × U .

Let A : D(A) → C(E × U), where D(A) ⊂ C(E) denotes the domain of the
operator A.

2.1.1. Conditions on the generator A and cost function c. We assume
that A satisfies the following conditions:

(C1) D(A) is an algebra which is dense in C(E), and
(C2) there exists some reference measure π on (E,B(E)) such that if µ ∈ P(E×U)

satisfies the stationarity condition
∫
E×U Af(x, u)µ(dx × du) = 0 for each

f ∈ D(A), µ0(·) = µ(· × U) is absolutely continuous with respect to π.
Condition (C1) is used in [13] to prove that many stochastic control problems

can be equivalently written as LP problems of the form P0. Condition (C2) implies
that any set that has π-measure zero also has µ0-measure zero for each stationary
distribution µ.

Let c(x, u) : E × U → R be a continuous function.

2.1.2. Statement of the original LP problem. We need to place one addi-
tional restriction on the optimization problem concerning the types of controls over
which optimization occurs. In order to state the condition, we need the following
observation and terminology.

Observe that, for any µ ∈ P(E × U), we can decompose µ as µ(dx × du) =
η(x, du)µ0(dx) in which µ0 is the marginal of µ on E and η is the regular conditional
distribution on U given x under µ0. We refer to η as a relaxed control.

We make the following restriction. The only relaxed controls η we consider for
the optimization problem satisfy

(R1) η, as a measure-valued function of the state, is continuous almost everywhere
(in the Prohorov metric (see [5, section 3.1])) with respect to the reference
measure π of (C2).

This is a continuity restriction about the relaxed controls and is necessary for the
weak convergence arguments we use in this paper. From a practical point of view,
(R1) is not a serious limitation. The measure π is typically absolutely continuous
with respect to Lebesgue measure so sets of positive π measure will be uncountable.
Implementation of controls having infinitely many discontinuities is impossible. In ad-
dition, it is often possible to show a priori that the optimal control for the unrestricted
problem satisfies (R1). When this is so, there is no loss of generality.
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Let Dη denote the set of x ∈ E where η(x, ·) is discontinuous as a function of x.
We define the linear programming problem P0 as

P0 :



minimize

∫
E×U

c(x, u)µ(dx× du)

subject to

∫
E×U

Af(x, u)µ(dx× du) = 0 ∀f ∈ D(A),

µ ∈ P(E × U) satisfies (R1) for some cond. dist. η.

To simplify notation, µ = ηµ0 is used to indicate µ(dx × du) = η(x, du)µ0(dx),
and for a function g ∈M(E × U) and a probability measure µ ∈ P(E × U), let

〈g, µ〉 =

∫
E×U

g(x, u)µ(dx× du) .

We define feasibility and optimality as follows:
Feasibility: A probability measure µ ∈ P(E×U) is a feasible point for P0 if 〈Af, µ〉 = 0
for each f ∈ D(A) and µ has decomposition ηµ0 for some η satisfying (R1). We denote
the set of P0-feasible points by A.
Optimality: µ∗ is an optimal solution for P0 if µ∗ ∈ A and for each µ ∈ A

〈c, µ∗〉 ≤ 〈c, µ〉.

Kurtz and Stockbridge [13] show that the conditional distribution η∗(x, du) of an
optimizing µ∗ identifies an optimal control for the stochastic control problem.

2.2. The approximating LP problems. Throughout the remainder of this
paper we adopt the following notation. For n ≥ 0, let En and Un be compact metric
spaces. We assume that for each n there exist measurable functions

ψ1
n : En → E, ψ2

n : Un → U,

φ1
n : E → En, φ2

n : U → Un

such that
(C3) supu∈U

∣∣u− ψ2
n

(
φ2
n(u)

)∣∣→ 0 as n→∞ and

(C4)
∣∣x− ψ1

n

(
φ1
n(x)

)∣∣→ 0 as n→∞ for each x ∈ E.
We denote

Ψn = (ψ1
n, ψ

2
n) : En × Un → E × U and Φn = (φ1

n, φ
2
n) : E × U → En × Un :(2.1)

E × U

Φn

−→
←−
Ψn

En × Un
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For each n, we transfer the cost function c to the approximating space En × Un

by defining cn = c ◦Ψn. Note that cn : En × Un → R.

Given µ ∈ P(E×U), we define µ̂n := µ◦Φ−1
n , the distribution on En×Un induced

by Φn. Equivalently, µ̂n can be defined as the distribution on En × Un such that for
each continuous h∫

En×Un
h(y, v)µ̂n(dy × dv) =

∫
E×U

h
(
φ1
n(x), φ2

n(u)
)
µ(dx× du) .(2.2)

Similarly, given µn ∈ P(En × Un), we define µn := µn ◦ Ψ−1
n as the distribution on

E × U which satisfies∫
E×U

h(x, u)µn(dx× du) =

∫
En×Un

h
(
ψ1
n(y), ψ2

n(v)
)
µn(dy × dv)(2.3)

for each h ∈ C(E × U).

The notation for the measures in this paper can at times appear quite cumbersome
since we use the marginals of measures, measures on En × Un induced by measures
on E × U , and measures on E × U induced by measures on En × Un in various
combinations. We have adopted the following conventions, hoping to aid the reader.

◦ For a measure µ on a product space, the marginal on the first component
(E or En) is denoted µ0.

◦ For a measure µ ∈ P(E × U), the induced measure on En × Un is denoted
by placing “̂n ” over the µ. The “hat” is to indicate that the measure
“comes from” a measure on E × U .

◦ For a measure µ ∈ P(En × Un), the induced measure on E × U is denoted
by placing “ ” over the µ. The “bar” is to indicate that the measure
“comes from” a measure on En × Un.

◦ The use of ∗ with a measure indicates that it is an optimal measure for the
linear programming problem.

An example of this notation is µ̂n0 , which represents the marginal of the measure µ̂n

on E × U , which is induced by the measure µ̂n on En × Un, that is in turn induced
by the measure µ on E × U .

2.2.1. Definition of the approximating LP problem. Given En, Un, and
Ψn as defined above, for each n ≥ 1, let

An : D(An) ⊂ C(En) → C(En × Un)

be such that, for each f ∈ D(A), there exists fn ∈ D(An) satisfying

(C5) supy∈En

∣∣fn(y)− f
(
ψ1
n(y)

)∣∣→ 0 as n→∞ and
(C6) sup(y,v)∈En×Un |Anfn(y, v)−Af (Ψn(y, v))| → 0 as n→∞ .

We assume

(C7) for each n, for each relaxed control η̂n : En × B(Un) → [0, 1], there exists a
probability measure µ̂n0 ∈ P(En) such that∫

En

∫
Un

Anfn(y, v)η̂n(y, dv)µ̂n0 (dy) = 0 ∀fn ∈ D(An) ;

i.e., each relaxed control induces some stationary distribution µ̂n0 on the
states.
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In our application, the spaces En and Un are a discretization of E and U , re-
spectively, and the function Ψn is the embedding of En × Un into E × U . Φn maps
intervals into a single point in the interval. Thus, conditions (C3) and (C4) are easily
verified. As for conditions (C5), (C6), and (C7), we approximate a diffusion process
by a finite-state Markov chain so these conditions can also be readily verified.

Another way of satisfying these conditions is to take En = E, Un = U , Φn and
Ψn to be the identity and fn = f and approximate the generator A uniformly by a
sequence An. For example, if A is a diffusion operator, An can be an approximat-
ing diffusion in which the drift and diffusion coefficients uniformly approximate the
corresponding coefficients of A.

The approximating LP problem is given by

Pn :



minimize 〈cn, µn〉

subject to 〈Anfn, µ
n〉 = 0 ∀fn ∈ D(An),

µn ∈ P(En × Un).

As before, we say that a probability measure µn is Pn-feasible if 〈Anfn, µ
n〉 = 0 for

each fn ∈ D(An), and we denote the collection of Pn-feasible points by An. We say
∗n
µ is Pn-optimal if

∗n
µ ∈ An and 〈cn,

∗n
µ 〉 ≤ 〈cn, µn〉 for each µn ∈ An.

2.3. Convergence results. In this section we state and prove the results that
justify the use of the solution of Pn to approximate the solution of P0. We first consider
the convergence of the optimal values and then the convergence of the optimal controls.

2.3.1. Convergence of the values. In this section we show the following re-
sults. First, a convergent sequence of Pn-feasible points converges to a P0-feasible
point. Then, given any P0-feasible point, we can construct a sequence of Pn-feasible
points that converges to it, and finally, if those points are Pn-optimal solutions, any
limit is P0-optimal.

Theorem 1. Let {µn} be a sequence of Pn-feasible points. Define µn(dx× du) ∈
P(E × U) by (2.3); i.e., for each continuous h∫

E×U
h(x, y)µn(dx× dy) =

∫
En×Un

h
(
ψ1
n(y), ψ2

n(v)
)
µn(dy × dv).

If there exists a µ ∈ P(E × U) and some subsequence {nk} such that µnk ⇒ µ, then∫
E×U

Afdµ = 0 ∀f ∈ D(A) ;

i.e., µ is P0-feasible.
Proof. Let f ∈ D(A), and let µ be as in the statement of the theorem. Without

loss of generality, assume the entire sequence converges in distribution to µ; i.e.,
µn ⇒ µ. Observe that

∫
Anfndµ

n = 0 since µn is Pn-feasible, so∫
E×U

Af(x, y)µ(dx× du) =

∫
E×U

Af(x, u)µ(dx× du)

−
∫
En×Un

Af
(
ψ1
n(y), ψ2

n(v)
)
µn(dy × dv)
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+

∫
En×Un

Af
(
ψ1
n(y), ψ2

n(v)
)
µn(dy × dv)

−
∫
En×Un

Anfn(y, v)µn(dy × dv)

=

{∫
E×U

Af(x, u)µ(dx× du)−
∫
E×U

Af(x, u)µn(dx× du)

}
+

{∫
En×Un

[
Af

(
ψ1
n(y), ψ2

n(v)
)−Anfn(y, v)

]
µn(dy × dv)

}
.

Since Af is (bounded and) continuous and µn ⇒ µ, then∫
E×U

Af(x, u)µ(dx× du)−
∫
E×U

Af(x, u)µn(dx× du) → 0 .

Also, by condition (C6),

sup
(y,v)∈En×Un

∣∣Af (ψ1
n(y), ψ2

n(v)
)−Anfn(y, v)

∣∣→ 0 ,

so ∫
En×Un

[
Af

(
ψ1
n(y), ψ2

n(v)
)−Anfn(y, v)

]
µn(dy × dv) → 0 .

Therefore, ∫
E×U

Af(x, u)µ(dx× du) = 0 ;

i.e., µ is P0-feasible.
The second theorem in this section shows that given any P0-feasible point µ = ηµ0,

there exists a distribution ν0 ∈ P(E) and Pn-feasible points µ̂n such that their induced
measure µ̂n on E × U converges to ην0. This result does not assume uniqueness of
the stationary distribution on E for the control η. When the control η has a unique
stationary distribution, then µ0 = ν0 (see Corollary 3).

Theorem 2. Let µ be a P0-feasible point having some decomposition µ(dx×du) =
η(x, du)µ0(dx) with η satisfying the restriction (R1). For each n, define the relaxed
control η̂n : En × B(Un) → [0, 1] satisfying∫

Un

h(v)η̂n(y, dv) =

∫
U

h(φ2
n(u))η(ψ1

n(y), du) ∀h ∈ C(U),

and let µ̂n0 ∈ P(En) be the stationary distribution satisfying condition (C7) with con-
trol η̂n. Then there exists a distribution ν0 ∈ P(E) such that

(i) η(x, du)ν0(dx) is P0-feasible and
(ii) for each continuous function h on E × U ,∫

En

∫
Un

h
(
ψ1
n(y), ψ2

n(v)
)
η̂n(y, dv)µ̂n0 (dy) →

∫
E

∫
U

h(x, u)η(x, du)ν0(dx) .

Proof. Let µ, η, η̂n, and µ̂n0 be as in the statement of the theorem. Let

µ̂n(dy × dv) = η̂n(y, dv)µ̂n0 (dy),
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and define µ̂n ∈ P(E × U) as in (2.3) so that for all h ∈ C(E × U),∫
E×U

h(x, u)µ̂n(dx× du) =

∫
En×Un

h
(
ψ1
n(y), ψ2

n(v)
)
µ̂n(dy × dv).

Let µ̂n0 (dx) = µ̂n(dx× U) be the state marginal of µ̂n. Observe that∫
E×U

h(x, u)µ̂n(dx× du) =

∫
En

∫
Un

h
(
ψ1
n(y), ψ2

n(v)
)
µ̂n(dy × dv)

=

∫
En

∫
Un

h
(
ψ1
n(y), ψ2

n(v)
)
η̂n(y, dv)µ̂n0 (dy)

=

∫
En

∫
U

h
(
ψ1
n(y), ψ2

n(φ2
n(u))

)
η
(
ψ1
n(y), du

)
µ̂n0 (dy)

=

∫
E

∫
U

h
(
x, ψ2

n(φ2
n(u))

)
η(x, du)µ̂n0 (dx) .(2.4)

Since E × U is compact, { µ̂n } is tight and hence relatively compact. Thus, there
exists a subsequence {nk} and a ν ∈ P(E × U) such that µ̂nk ⇒ ν; without loss of
generality, we can assume that µ̂n ⇒ ν; i.e.,∫

E×U
h(x, u)µ̂n(dx× du) →

∫
E×U

h(x, u)ν(dx× du) .(2.5)

Letting ν0 denote the state marginal of ν, it immediately follows that µ̂n0 ⇒ ν0.
Since h is continuous on the compact set E × U , given ε > 0 ∃δ > 0 such that
d ((x1, y1), (x2, y2)) < δ implies

|h(x1, u1)− h(x2, u2)| < ε .

By condition (C3),
∣∣u− ψ2

n

(
φ2
n(u)

)∣∣→ 0 uniformly as n→∞, so there exists N > 0
such that ∀n ≥ N , ∣∣u− ψ2

n

(
φ2
n(u)

)∣∣ < δ .

Then ∀n ≥ N ,∣∣∣∣∫
E

∫
U

h
(
x, ψ2

n

(
φ2
n(u)

))
η(x, du)µ̂n0 (dx)−

∫
E

∫
U

h(x, u)η(x, du)µ̂n0 (dx)

∣∣∣∣
≤
∫
E

∫
U

∣∣h (x, ψ2
n

(
φ2
n(u)

))− h(x, u)
∣∣ η(x, du)µ̂n0 (dx) < ε .

Since ε is arbitrary,

lim
n→∞

∣∣∣∣∫
E

∫
U

h
(
x, ψ2

n

(
φ2
n(u)

))
η(x, du)µ̂n0 (dx)−

∫
E

∫
U

h(x, u)η(x, du)µ̂n0 (dx)

∣∣∣∣ = 0,

and so, by (2.4),

lim
n→∞

∣∣∣∣∫
E×U

h(x, u)µ̂n(dx× du)−
∫
E

∫
U

h(x, u)η(x, du)µ̂n0 (dx)

∣∣∣∣ = 0.

Then, by (2.5), we conclude that

lim
n→∞

∫
E

∫
U

h(x, u)η(x, dx)µ̂n0 (dx) =

∫
E×U

h(x, u)ν(dx× du) .
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Recall, Dη is the set of discontinuity points of η. We claim that ν0(Dη) = 0. To
see this, let f ∈ D(A) be arbitrary but fixed, and let h(x, u) = Af(x, u). Then∫

En

∫
Un

Af
(
ψ1
n(y), ψ2

n(v)
)
η̂n(y, dv)µ̂n0 (dy) →

∫
E

∫
U

Af(x, u)ν(dx× du) .(2.6)

Also, condition (C6) on the generators An implies∫
En

∫
Un

∣∣Af (ψ1
n(y), ψ2

n(v)
)−Anfn(y, v)

∣∣ η̂n(y, dv)µ̂n0 (dy) → 0,

and so∣∣∣∣∫
En

∫
Un

Af
(
ψ1
n(y), ψ2

n(v)
)
η̂n(y, dv)µ̂n0 (dy)−

∫
En

∫
Un

Anfn(y, v)η̂n(y, dv)µ̂n0 (dy)

∣∣∣∣→ 0.

Since µ̂n0 is chosen so that the second term is zero, (2.6) implies∫
E

∫
U

Af(x, u)ν(dx× du) = 0.

Thus, ν is P0-feasible, and condition (C2) implies ν0 � π, and therefore ν0(Dη) = 0,
proving the claim.

The continuous mapping theorem [5, Corollary 3.1.9] implies∫
E

∫
U

h(x, u)η(x, du)ν0(dx) = lim
n→∞

∫
E

∫
U

h(x, u)η(x, du)µ̂n0 (dx)

=

∫
E×U

h(x, u)ν(dx× du)

=

∫
E

∫
U

h(x, u)η(x, du)ν0(dx) .

Taking h(x, u) = h1(x)h2(u), for h1 ∈ C(E) and h2 ∈ C(U),∫
E

h1(x)

(∫
U

h2(u)η(x, du)

)
ν0(dx) =

∫
E

h1(x)

(∫
U

h2(u)η(x, du)

)
ν0(dx).

Since this is true for each h1 ∈ C(E), it follows that for each h2 ∈ C(U),∫
U

h2(u)η(x, du) =

∫
U

h2(u)η(x, du) a.e. (almost everywhere) ν0,

and thus

η(x, ·) = η(x, ·) a.e. ν0 .

This shows that ν has decomposition

ν(dx× du) = η(x, du)ν0(dx).(2.7)

From the definition of µ̂n, (2.5), and (2.7), the result is established.
Corollary 3. Suppose η is a relaxed control satisfying restriction (R1). Suppose

also there is a unique µ0 ∈ P(E) such that for each f ∈ D(A),∫
E

∫
U

Af(x, u) η(x, du)µ0(dx) = 0.
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Define η̂n and µ̂n0 as in Theorem 2. Then∫
En

∫
Un

h(ψ1
n(y), ψ2

n(v))η̂n(y, dv)µ̂n0 (dy) →
∫
E

∫
U

h(x, u)η(x, du)µ0(dx).

Proof. The fact that µ0 is unique implies that µ0 is the ν0 of Theorem 2. The
result now follows from Theorem 2.

Finally, we only need to show that the limit of optimal solutions in Pn is an
optimal solution in P0.

Theorem 4. Suppose
∗n
µ is an optimal solution for Pn, and as in (2.3), let

∗n
µ =

∗n
µ ◦Ψ−1

n . Suppose that, for each η satisfying (R1), there is a unique stationary
distribution µ0 such that 〈Af, ηµ0〉 = 0 for all f ∈ D(A). Then any µ∗ which is a

weak limit of { ∗nkµ } for some subsequence {nk} is P0-optimal.
Proof. By Theorem 1, µ∗ is a P0-feasible point. Let µ be any other P0-feasible

point, and let {µ̂n = η̂nµ̂n0} be the Pn-feasible points given in the statement of Theo-
rem 2. By Corollary 3, the induced measures µ̂n ⇒ µ. By the Skorohod representation
theorem, there exists a sequence of E × U -valued random variables {(Xn, Un)} and
an E×U -valued random variable (X,U) such that Xn → X almost surely (a.s.) and

Un → U a.s. This implies that
∫
c dµ̂n → ∫

c dµ. In a similar manner, it follows that∫
c d

∗n
µ → ∫

c dµ∗. Thus,∫
E×U

c(x, u)µ(dx× du) = lim
n→∞

∫
E×U

c(x, u)µ̂n(dx× du)

= lim
n→∞

∫
En×Un

c
(
ψ1
n(y), ψ2

n(v)
)
µ̂n(dy × dv)

≥ lim
n→∞

∫
En×Un

c
(
ψ1
n(y), ψ2

n(v)
) ∗n
µ (dy × dv)

= lim
n→∞

∫
E×U

c(x, u)
∗n
µ (dx× du)

=

∫
E×U

c(x, u)µ∗(dx× du) .(2.8)

2.3.2. Convergence of controls. This section presents results concerning the
controls. We show that, given any control η ∈ P(U) satisfying restriction (R1), the
induced controls η̂n converge in distribution to η for almost all x. We also show that
a limit of Pn-optimal controls is a P0-optimal control.

Theorem 5. Given any η : E × B(U) → [0, 1] satisfying restriction (R1), define
η̂n : En × B(Un) → [0, 1] such that ∀g ∈ C(U),∫

Un

g(v)η̂n(y, dv) =

∫
U

g
(
φ2
n(u)

)
η
(
ψ1
n(x), du

)
,

and define η̂n : E × B(U) → [0, 1] such that ∀h ∈ C(U),∫
U

h(u)η̂n(x, du) =

∫
Un

h
(
ψ2
n(v)

)
η̂n
(
φ1
n(x), dv

)
.
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Then

η̂n(x, ·) ⇒ η(x, ·) a.e. π.

Proof. Let h ∈ C(U). Select ε > 0 arbitrarily. Since h is continuous on a compact
space, find δ > 0 such that |h(u1)−h(u2)| ≤ ε/2 whenever |u1−u2| ≤ δ. By condition
(C3), find N1 such that for all n ≥ N1, |u− ψ2

n(φ2
n(u))| ≤ δ. Then for all n ≥ N1,∣∣∣∣∫

U

h(u)η̂n(x, du)−
∫
U

h(u)η(x, du)

∣∣∣∣
=

∣∣∣∣∫
U

h
(
ψ2
n

(
φ2
n(u)

))
η
(
ψ1
n

(
φ1
n(x)

)
, du

)− ∫
U

h(u)η(x, du)

∣∣∣∣
=

∣∣∣∣∫
U

[
h
(
ψ2
n

(
φ2
n(u)

))− h(u)
]
η
(
ψ1
n

(
φ1
n(x)

)
, du

)
+

∫
U

h(u)η
(
ψ1
n

(
φ1
n(x)

)
, du

)− ∫
U

h(u)η(x, du)

∣∣∣∣
≤ ε

2
+

∣∣∣∣∫
U

h(u)η
(
ψ1
n

(
φ1
n(x)

)
, du

)− ∫
U

h(u)η(x, du)

∣∣∣∣ .
By condition (C4),

∣∣x− ψ1
n

(
φ1
n(x)

)∣∣ → 0 as n → ∞. Letting xn = ψ1
n

(
φ1
n(x)

)
, we

have xn → x. Since η is continuous a.e. π, η(xn, ·) → η(x, ·) in the Prohorov metric
for a.e. x (dπ). Therefore,

η(xn, ·) ⇒ η(x, ·) a.e. π,

or equivalently,

lim
n→∞

∫
U

h(u)η(xn, du) =

∫
U

h(u)η(x, du) a.e. π .

So we can select N2 such that ∀n ≥ N2,∣∣∣∣∫
U

h(u)η(xn, du)−
∫
U

h(u)η(x, du)

∣∣∣∣ < ε

2
,

and taking N = max(N1, N2),∣∣∣∣∫
U

h(u)η̂n(x, du)−
∫
U

h(u)η(x, du)

∣∣∣∣ < ε ∀n ≥ N.

Therefore,

η̂n(x, ·) ⇒ η(x, ·) a.e. π .(2.9)

Next we show that a limit of the Pn-optimal controls is an optimal control for the
P0-problem.

Theorem 6. Let
∗n
η : En × B(Un) → [0, 1] be an optimal control for Pn, i.e.,

there exists some
∗n
µ0 ∈ P(En) such that for each µn ∈ An,∫

En

∫
Un

cn(y, v)
∗n
η (y, dv)

∗n
µ0 (dy) ≤

∫
En×Un

cn(y, v)µn(dy × dv).
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Let
∗n
η : E × B(U) → [0, 1] be the induced control satisfying∫

U

h(u)
∗n
η (x, du) =

∫
Un

h
(
ψ2
n(v)

) ∗n
η
(
φ1
n(x), dv

)
for each h ∈ C(U), and let

∗n
µ0 ∈ P(E) be the induced measure satisfying∫

E

h(x)
∗n
µ0 (dx) =

∫
En

h
(
ψ1
n(y)

) ∗n
µ0 (dy)

for each h ∈ C(E). Suppose there exists η : E × B(U) → [0, 1] which, as a measure-
valued function of x, is continuous a.e. π, η induces a unique stationary distribution

µ0 on the state space E, and
∗n
η (x, ·) ⇒ η(x, ·) for almost every x with respect to π.

Then
∗n
µ0 ⇒ µ0 and η(x, du)µ0(dx) is P0-optimal.

Proof. Define
∗n
µ (dx × du) =

∗n
η (x, du)

∗n
µ0 (dx). Since E × U is compact, { ∗n

µ }
is tight, and hence

∗n
µ ⇒ µ̃ along a subsequence for some µ̃ ∈ P(E × U). Let µ̃0 be

the marginal of µ̃, and decompose µ̃ as

µ̃(dx× du) = η̃(x, du)µ̃0(dx)

for some regular conditional distribution η̃ on U given x. Since µ̃ is the limit of
Pn-feasible solutions, it is P0-feasible by Theorem 1.

Since by assumption µ̃0 � π, then µ̃0(Dη) = 0. Using the argument which pro-
duces (2.7), η(x, ·) is a version of η̃(x, ·). Since µ̃ is P0-feasible and has decomposition
µ̃(dx × du) = η(x, du)µ̃0(dx), the uniqueness of the stationary distribution induced
by η implies µ̃0 = µ0. Therefore, for each h ∈ C(E × U),∫

E

∫
U

h(x, u)
∗n
η (x, du)

∗n
µ0 (dx) →

∫
E

∫
U

h(x, u)η(x, du)µ0(dx)

along the subsequence. By Theorem 4, µ = ηµ0 is P0-optimal.

3. Numerical solutions using finite-dimensional LP approximations. In
this section we approximate infinite-dimensional LP problems with finite-dimensional
problems by approximating a jump-diffusion process with a sequence of finite state
Markov chains. The convergence results of the previous section indicate that the
optimal values for the approximations will be close to the optimal value of the original
problem. In addition, the numerical results are consistent with convergence of the
optimal controls.

3.1. The bounded follower problem. One of the stochastic control processes
studied by Beneš, Shepp, and Witsenhausen [1] is the bounded follower problem. The
state of this process is x+ wt − ξt, in which w is a Brownian motion process, x+ wt

gives the location in R
1 at time t of an object, and ξt gives the location at time t of

something which attempts to follow the object. In this, ξ is an absolutely continuous
process whose rate of change is bounded between θ0 and θ1. The objective is to
minimize the expected discounted square of the difference between the locations of
the object and the follower:

E

[∫ ∞

0

e−αt(x+ wt − ξt)
2 dt

]
.
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This problem has as its optimal control

ξ̇t =

{
θ0, x+ wt − ξt < δ,
θ1, x+ wt − ξt ≥ δ,

where δ is determined from the parameters α, θ0, and θ1. We refer the reader to [1]
for the specific expression for δ, but when θ0 = −θ1, the switch point δ equals 0.

For our examples we modify the stochastic process of the difference in locations
x− ξ + w by truncating the state space to an interval [−b, b] and having the process
stick at the boundary for an exponential (λ) amount of time, after which it jumps to
zero. For simplicity, we take b = 1 and θ0 = −1 and θ1 = 1. Specifically, when the
process is in the interval (−1, 1), it follows the stochastic differential equation

dxt = utdt+ σdwt,

where w is a standard Brownian motion process and u is a nonanticipating process
with −1 ≤ ut ≤ 1.

3.2. Long-term average criterion. The first example we investigate uses a
long-term average criterion for which the exact optimal control and optimal cost are
known.

3.2.1. The original LP problem. The state space E, control space U , cost
function c, and generator A are

E = [−1, 1], U = [−1, 1], c(x, u) = x2, and

Af(x, u) =

[
uf ′(x) +

σ2

2
f ′′(x)

]
I(−1,1)(x) + λ [f(0)− f(x)] I{±1}(x),(3.1)

where D(A) = C2(E).
The original LP problem P0 is

P0 :



minimize

∫
[−1,1]×[−1,1]

x2µ(dx× du)

subject to

∫
[−1,1]×[−1,1]

{[
uf ′(x) +

σ2

2
f ′′(x)

]
I(−1,1)(x)

+ λ [f(0)− f(x)] I{±1}(x)

}
µ(dx× du) = 0 ∀f ∈ C2(E) ,

µ ∈ P(E × U).

Observe that each regular conditional distribution η on the control space specifies
a nondegenerate diffusion. It is well known (see [7, section 18, Theorem 1]) that the
stationary distribution of a nondegenerate diffusion (with η specified) is absolutely
continuous with respect to Lebesgue measure. Thus, condition (C2) is satisfied in this
example with the measure π consisting of Lebesgue measure on the interval (−1, 1)
and placing unit point masses at the endpoints {−1, 1}.

To verify the uniqueness of the stationary distribution µ0 on the state for a given
η, we display µ0. The reader is referred to the appendix of [16] for the verification.
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The measure µ0 has the density in the interval (−1, 1)

p(x) =


p+(x), x ≥ 0,

p−(x), x < 0,

in which, letting u(x) =

∫
U

u η(x, du),

p+(x) =

∫ 1

x

2λK1e

∫ x

y
2u(r)dr

dy,

p−(x) =

∫ x

−1

2λK2e

∫ x

y
2u(r)dr

dy.

In this the constant K1 = c3
c1c4+c2c3

and K2 = c4
c1c4+c2c3

, where

c1 = 1 + 2λ

∫ 0

−1

∫ x

−1

e

∫ x

y
2u(r)dr

dydx,

c2 = 1 + 2λ

∫ 1

0

∫ x

0

e

∫ x

y
2u(r)dr

dydx,

c3 = 2λ

∫ 0

−1

e

∫ 0

y
2u(r)dr

dydx,

c4 = 2λ

∫ 1

0

e

∫ 0

y
2u(r)dr

dydx.

The masses of µ0 at the endpoints {±1} are µ0({−1}) = K2 and µ0({1}) = K1.

3.2.2. The exact solution. Helmes and Stockbridge [10] have shown that this
formulation is equivalent to the P0 problem stated in section 3.1. They have also
found that the exact optimal solution to this problem takes the form

u∗(x) = −sign(x) when λ < 5.55471

and for λ ≥ 5.55471

u∗(x) =



− 1, −1 ≤ x < −a,

1, −a ≤ x < 0,

0, x = 0,

− 1, 0 ≤ x < a,

1, a ≤ x < 1,

(3.2)

where the switch point a is a function of λ and is the solution to the equation

a2 + a+

(
r − 1

2

)
(e2a − 1) = 0,
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where

r =
1
12 [−8a3 − 6a2 − 6a+ 6a2e(2a−2) − 6ae(2a−2) + 3e(2a−2) + 3e2a − 2] + 1

λ
1
2 [−4a+ e2a + e(2a−2)] + 1

λ

.

Values of a for some selected values of λ are given in Table 1.

Table 1
Values of the switch point a.

λ a
10 .88706
20 .80607

100 .72990
1000 .71066

3.2.3. The approximating LP problems Pn. Let l = l(n) and m = m(n) be
odd integers such that l,m→∞ as n→∞. (This allows different discretizations for
the E and U spaces.) Let hl = 2/(l − 1) and hm = 2/(m− 1), and note that hl and
hm → 0 as n→∞. Define

x
(n)
1 = −1, x

(n)
i = −1 + (i− 1)hl (i = 2, . . . , l − 1), x

(n)
l = 1;

u
(n)
1 = −1, u

(n)
i = −1 + (i− 1)hm (i = 2, . . . ,m− 1), u(n)

m = 1,

and set

En =
{
x

(n)
1 , x

(n)
2 , . . . , x

(n)
l

}
and Un =

{
u

(n)
1 , u

(n)
2 , . . . , u(n)

m

}
.

• •• • •

• • • • • • • • •
E

−1 1

U

−1 1

En

x
(n)
1

x
(n)
l−1
2

x
(n)
l

−1 0 1

Un

u
(n)
1

u
(n)
m−1

2
u

(n)
m

−1 0 1
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Define

φ1
n(x) = x

(n)
i for

(
x

(n)
i − 1

2
hl

)
≤ x <

(
x

(n)
i +

1

2
hl

)
, i = 1, 2, . . . , l, x ∈ E,

φ2
n(u) = u

(n)
i for

(
u

(n)
i − 1

2
hm

)
≤ u <

(
u

(n)
i +

1

2
hm

)
, i = 1, 2, . . . ,m, u ∈ U,

ψ1
n

(
x

(n)
i

)
= x

(n)
i for x

(n)
i ∈ En,

ψ2
n

(
u

(n)
i

)
= u

(n)
i for u

(n)
i ∈ Un,

and Φn : E×U → En×Un and Ψn : En×Un → E×U by (2.1). Note that Ψn is the

identity and embeds En×Un in E×U . Since cn = c◦Ψn, then cn(x
(n)
i , u

(n)
j ) = (x

(n)
i )2.

Also, for all n, define fn ≡ f |En
and Anfn using the finite difference approximations

for the derivatives of Af as in section 5.3 of Kushner and Dupuis [14],

Anfn(x
(n)
i , u

(n)
j ) =

σ2

2

fn

(
x

(n)
i + hl

)
+ fn

(
x

(n)
i − hl

)
− 2fn

(
x

(n)
i

)
h2
l

+u
(n)+

j

(
fn(x

(n)
i + hl)− fn(x

(n)
i )

)
/hl

+u
(n)−

j

(
fn(x

(n)
i )− fn(x

(n)
i − hl)

)
/hl

 I(−1,1)(x
(n)
i )

+λ
[
fn(0)− fn(x

(n)
i )

]
I{±1}(x

(n)
i ),(3.3)

where u
(n)+

j = u
(n)
j ∨ 0 and u

(n)−

j = −u(n)
j ∨ 0.

The approximating LP problem Pn is therefore

Pn :



minimize
l∑

i=1

m∑
j=1

(
x

(n)
i

)2

µn(x
(n)
i , u

(n)
j )

subject to 0 =

l∑
i=1

m∑
j=1

{ σ2

2h2
l

+
u

(n)+

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i + hl)

+

 σ2

2h2
l

− u
(n)−

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i − hl)

+ λI{±1}(x
(n)
i )fn(0)

−
[σ2

h2
l

+
u

(n)+

j

hl
− u

(n)−

j

hl

 I(−1,1))(x
(n)
i )

+ λI{±1}(x
(n)
i )

]
fn(x

(n)
i )

}
µn(x

(n)
i , u

(n)
j

∀fn ∈ D(An),

µn ∈ P(En × Un).
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Conditions (C3)–(C6) are easily verified. In order to verify condition (C7), we rewrite
the generator Anfn in (12) as

Anfn(x
(n)
i , u

(n)
j ) =

 σ2

2h2
l

+
u

(n)+

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i + hl)

+

 σ2

2h2
l

− u
(n)−

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i − hl)

+λI{±1}(x
(n)
i )fn(0)

−
σ2

h2
l

+
u

(n)+

j

hl
− u

(n)−

j

hl
I(−1,1)(x

(n)
i )

+ λI{±1}(x
(n)
i )

 fn(x
(n)
i ) .

Let

γ(x
(n)
i ) =

σ2

h2
l

+
u

(n)+

j

hl
+
u

(n)−

j

hl

 I(−1,1)(x
(n)
i ) + λI{±1}(x

(n)
i ),

and define

P
(
x

(n)
i+1|x(n)

i , u
(n)
j

)
=

σ2

2h2
l

+
u

(n)+

j

h

γ(x
(n)
i )

I(−1,1)(x
(n)
i ),

P
(
x

(n)
i−1|x(n)

i , u
(n)
j

)
=

σ2

2h2
l

+
u

(n)−
j

h

γ(x
(n)
i )

I(−1,1)(x
(n)
i ),

P
(
0|x(n)

i , u
(n)
j

)
=

λ

γ(x
(n)
i )

I{±1}(x
(n)
i ),

P
(
x

(n)
k |x(n)

i , u
(n)
j

)
= 0, k 6= i− 1, i+ 1,

l − 1

2
.

Note that for each x
(n)
i , u

(n)
j ,

P
(
x

(n)
k |x(n)

i , u
(n)
j

)
≥ 0 ∀k = 1, . . . , l

and

l∑
k=1

P
(
x

(n)
k |x(n)

i , u
(n)
j

)
= 1,

and therefore we can write

Anfn(x
(n)
i , u

(n)
j ) = γ(x

(n)
i )

l∑
k=1

[
fn(x

(n)
k )− fn(x

(n)
i )

]
P
(
x

(n)
k |x(n)

i , u
(n)
j

)
∀x(n)

i , u
(n)
j .

This has the form of a generator for a finite state, continuous time Markov chain.
Since σ2 > 0, the chain is irreducible for each fixed control η so there exists a unique
stationary distribution on E, and condition (C7) is verified.
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3.2.4. Reduction of the Pn-problem constraints. We now show that it is
sufficient to consider a finite collection of indicator functions fi, i = 1, . . . , l. Let

g(x) =


(1− x2)3, −1 ≤ x ≤ 1,

0 otherwise,

and define the collection of functions fi in D(A) as

fi(x) = g

(
x− x

(n)
i

hl/2

)
∀x ∈ [−1, 1] .

Then fi(x) ∈ C2(E) and fi(x)|En
= I{x(n)

i
}(x) for x ∈ En. Denote the restriction of

fi to En by f
(n)
i . Since any function on En can be expressed as a linear combination of

these indicator functions, it is sufficient to consider the stationarity constraints using

only f
(n)
i , i = 1, . . . , l. Thus, the constraints given in Pn reduce to

◦ For f
(n)
i (x) = I{x(n)

i
}(x) when x

(n)
i 6= 1,−1, 0,

0 =

m∑
j=1

 σ2

2h2
l

+
u

(n)+

j

hl

µn(x
(n)
i−1, u

(n)
j ) +

 σ2

2h2
l

− u
(n)−

j

hl

µn(x
(n)
i+1, u

(n)
j )

−
 σ2

2h2
l

+
u

(n)+

j

hl
− u

(n)−

j

hl

µn(x
(n)
i , u

(n)
j )

 .
◦ For f

(n)
i (x) = I{x(n)

i
}(x), when x

(n)
i = 0,

0 =

m∑
j=1

[ σ2

2h2
l

+
u

(n)+

j

hl

µn(x
(n)
i−1, u

(n)
j ) +

 σ2

2h2
l

− u
(n)−

j

hl

µn(x
(n)
i+1, u

(n)
j )

−
 σ2

2h2
l

+
u

(n)+

j

hl
− u

(n)−

j

hl

µn(x
(n)
i , u

(n)
j ) + λµn(−1, u

(n)
j )

+ λµn(1, u
(n)
j )

]
.

◦ For f
(n)
i (x) = I{x(n)

i
}(x), when x

(n)
i = −1 (i.e., when i = 1),

0 =

m∑
j=1

 σ2

2h2
l

− u
(n)−

j

hl

µn(x
(n)
i+1, u

(n)
j )− λµn(x

(n)
i , u

(n)
j )

 .

◦ For f
(n)
i (x) = I{x(n)

i
}(x), x

(n)
i = 1 (i.e., when i = l),

0 =

m∑
j=1

[(
σ2

2h2
l

+
u

(n)+
j

hl

)
µn(x

(n)
i−1, u

(n)
j )− λµn(x

(n)
i , u

(n)
j )

]
.
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In addition to the constraints for stationarity, there is the constraint that µn be a
probability measure:

m∑
j=1

l∑
i=1

µn(x
(n)
i , u

(n)
j ) = 1 and µn(x

(n)
i , u

(n)
j ) ≥ 0 ∀i, j .

3.2.5. Pn-optimal solution. The Pn problem is solved using a program written
in SAS which utilizes the LP procedure. Since in this example the optimal control
only takes the values −1, 0 and 1 in U even when hm = 0.1, all the numerical
approximations presented here therefore use hm = 0.5.

Figure 1 shows the optimal control obtained for the discretized problem Pn (hl =
.10, λ = 100) represented by the dots, and the induced control in the interval [−1, 1]
represented by the solid line.

Figures 2–4 illustrate how the optimal control changes as a function of λ. When
λ = 5, the optimal control is −sign(x), while for λ = 20 and λ = 100 the optimal
control is of the form (3.2), where the switch location a depends on λ and a decreases
as λ increases.

Table 2 gives the interval in which the positive “switch point” occurs for Pn. The
results for the negative switch point follow by symmetry. Note that the P0 switch
point a falls within the switch interval for Pn.

Table 2
“Switch point” as a function of λ, h = .01.

λ = 10 λ = 20 λ = 100 λ = 1000
Pn hl = .05 (.85, .90) (.80, .85) (.70, .75) (.70, .75)

switch hl = .02 (.88, .90) (.80, .82) (.72, .74) (.70, .72)
interval hl = .01 (.88, .89) (.80, .81) (.72, .73) (.71, .72)

P0 switch .88706 .80607 .72990 .71066

Table 3
Optimal values for the long-term average cost.

λ = 5 λ = 10 λ = 100
hl = .20 .218321 .173058 .113664
hl = .10 .208359 .167671 .118411

Pn hl = .05 .201667 .162920 .119131
hl = .02 .197067 .160184 .118735
hl = .01 .195432 .159153 .118452

P0 .193746 .158037 .117969

The values for the cost function for three values of λ and five values of hl are
given in Table 3. Note that as the mesh size decreases, the Pn-optimal values well-
approximate the P0-optimal value.

3.3. Discounted cost criterion. For this example, we examine a discounted
cost of the processes considered in the previous section. Note that this is the same
cost criterion used by Beneš, Shepp, and Witsenhausen [1] in the bounded follower
problem, though the dynamics have been modified. In this section, α denotes the
discount rate.
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Fig. 1. Long-term average (LTA) optimal control induced by Pn, hl = .10, λ = 100.

Fig. 2. Pn optimal control for LTA, λ = 5, h = .02.
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Fig. 3. Pn optimal control for LTA, λ = 20, h = .02.

Fig. 4. Pn optimal control for LTA, λ = 1000, h = .02.
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3.3.1. The original LP problem. Kurtz and Stockbridge [13] show that the
LP formulation of the discounted control problem adjusts the cost by a factor of α and
introduces a jump term into the generator of the process. The original LP problem
P0 is

P0 :



minimize
1

α

∫
[−1,1]×[−1,1]

x2µ(dx× du)

subject to

∫
[−1,1]×[−1,1]

{[
uf ′(x) +

σ2

2
f ′′(x)

]
I(−1,1)(x)

+ λ [f(0)− f(x)] I{±1}(x)

+ α [f(0)− f(x)]

}
µ(dx× du) = 0

∀f ∈ C2(E) ,

µ ∈ P(E × U).

3.3.2. The approximating LP problem Pn. Using the same Markov chain
approximations, we have

Pn :



minimize
1

α

l∑
i=1

m∑
j=1

(
x

(n)
i

)2

µn(x
(n)
i , u

(n)
j )

subject to 0 =

l∑
i=1

m∑
j=1

{ σ2

2h2
l

+
u

(n)+

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i + hl)

+

 σ2

2h2
l

− u
(n)−

j

hl

 I(−1,1)(x
(n)
i )fn(x

(n)
i − hl)

+ λI{±1}(x
(n)
i )fn(0)

−
[σ2

h2
l

+
u

(n)+

j

hl
− u

(n)−

j

hl

 I(−1,1)(x
(n)
i )

+ λI{±1}(x
(n)
i )

]
fn(x

(n)
i )

+ α
[
fn(0)− fn(x

(n)
i )

]}
µn(x

(n)
i , u

(n)
j ) ∀fn ∈ D(An),

µn ∈ P(En × Un).



1470 MARTA S. MENDIONDO AND RICHARD H. STOCKBRIDGE

Fig. 5. Pn optimal control for the discounted problem, λ = 1000, α = 0.3, hl = .01.

Fig. 6. Pn optimal control for the discounted problem, λ = 1000, α = 20.0, hl = .01.
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The same reduction to a finite number of constraints can be adopted using the func-

tions {f (n)
i } for the long-term average LP problem Pn.

3.3.3. Pn-optimal solutions. The numerical solution to the discounted prob-
lem takes the same form as the one for the long-term average problem. In the case of
λ ≤ 5.55471, the optimal control is the u(x) = −sign(x) for every value of α.

Figures 5 and 6 illustrate the effect of α on the optimal control when λ = 1000.
In these examples, hl = .01 and α takes the values 0.3 and 20. Note that the “switch
point” for the control that occurs in the (.71, .72) interval in Table 2 (α = 0) does not
change when α takes the value .3, but it changes to (.77, .78) when α takes the value
20. As the discount rate increases, the switch point moves closer to the boundary. It
should be noted that a value of α = 0.3 corresponds to an annual inflation rate of
35% and α = 20 corresponds to a daily inflation rate of 5.6%.

One approach to solving long-term average control problems is to begin with the
discounted problem, normalize the cost by multiplying by α, and let α go to zero.
Table 4 gives the values of the α-normalized cost function for three values of λ. Note
that as α → 0, the α-normalized cost function for the discounted problem converges
to the cost function for the long-term average problem. (These values are calculated
using h = .01.)

Table 4
α-normalized Pn-values.

λ = 5 λ = 10 λ = 1000
α = 20 .801494 .670752 .053619
α = 10 .681642 .523903 .064713
α = 5 .543192 .389026 .080350
α = 1 .301076 .216418 .104629
α = .3 .230261 .177057 .110719
α = .1 .207339 .165193 .112596
α = .05 .201449 .162582 .113025
α = 0 .201667 .159153 .113559
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DYNAMIC THICK RESTARTING OF THE DAVIDSON,
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Abstract. The Davidson method is a popular preconditioned variant of the Arnoldi method for
solving large eigenvalue problems. For theoretical as well as practical reasons the two methods are
often used with restarting. Frequently, information is saved through approximated eigenvectors to
compensate for the convergence impairment caused by restarting. We call this scheme of retaining
more eigenvectors than needed “thick restarting” and prove that thick restarted, nonpreconditioned
Davidson is equivalent to the implicitly restarted Arnoldi. We also establish a relation between thick
restarted Davidson and a Davidson method applied on a deflated system. The theory is used to
address the question of which and how many eigenvectors to retain and motivates the development
of a dynamic thick restarting scheme for the symmetric case, which can be used in both Davidson
and implicit restarted Arnoldi. Several experiments demonstrate the efficiency and robustness of the
scheme.

Key words. Davidson method, Arnoldi method, Lanczos method, implicit restarting, deflation,
eigenvalue, preconditioning
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1. Introduction. The computation of a few eigenpairs of large, sparse, eigen-
value problems Ax = λx is central to many scientific applications [19]. The Arnoldi
method and its equivalent in the symmetric case, the Lanczos method, have been the
traditional approach to solving these problems. Preconditioning, through some shift-
and-invert technique [22], is frequently employed to improve robustness. A different
approach is followed by the generalized Davidson (GD) method [8, 16, 6] which is a
popular preconditioned variant of the Lanczos iteration. Instead of using a three-term
recurrence to build an orthonormal basis for the Krylov subspace, the GD algorithm
obtains the next basis vector by explicitly orthogonalizing the preconditioned resid-
ual (M − λI)−1(A− λI)x against the existing basis. A straightforward extension to
the nonsymmetric case has also been studied in [21]. When M = A, the precondi-
tioned residual yields back x, thus providing no improvement. The Jacobi–Davidson
(JD) modification, proposed in [23], suggests that the proper way to precondition
the residual is through an operator with range orthogonal to x. The GD and its JD
modification can be regarded as two ways of improving convergence and robustness
at the expense of a more complicated step.

Often, eigenvalue problems are very large and ill conditioned. As a result, eigen-
value methods require a large number of steps and need to save all the vector iterates
for extracting the eigenvectors. Such cases exhibit overwhelming storage requirements.
In addition, the Lanczos and Arnoldi processes, which traditionally had been consid-
ered without restarting, are plagued by orthogonality problems and spurious solutions.
For the above reasons many restarting variants are used in practice [7, 18, 24, 2]. The
GD method improves convergence and solves some of the aforementioned problems
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through orthogonalization and preconditioning. However, the number of iterations
can still grow very large and cause similar storage problems. The problem is actually
aggravated in the symmetric case, where the better theoretical framework and soft-
ware has led researchers to consider matrices of huge size that allow only a few vectors
to be stored. The GD method also can be restarted every time the basis contains m
vectors (GD(m)). If the l lowest eigenvalues are needed, the l lowest Ritz values are
computed at the mth step, and their corresponding Ritz vectors are used as initial
guesses for the restarted GD iteration.

Truncating the Krylov sequence is expected to impair the convergence rate of
the method. There are two main reasons: the new vectors entering the basis repeat
some of the information that was discarded when restarting, and the Rayleigh–Ritz
procedure does not minimize over the whole Krylov subspace. There has been much
discussion about the problems caused by restarted methods for both linear systems
and eigenvalue problems [27, 20, 24]. Some methods tend to save additional infor-
mation at each restart [14, 3, 11]. For the Davidson method, Murray, Racine, and
Davidson [17] and Van Lenthe and Pulay [29] have proposed restarting with two vec-
tors per required Ritz vector with some success. In an effort to minimize execution
time, Crouzeix, Philippe, and Sadkane [6] have proposed a dynamically chosen size m.

Recently, “implicit restarting” has gained popularity as a means of improving
convergence of the restarted Arnoldi procedure [24]. By using p = m− k steps of the
implicit QR algorithm on the Hessenberg matrix, the basis is truncated down to k
vectors. It turns out that the k new basis vectors can be considered the Arnoldi vectors
obtained from a polynomially transformed starting vector. This is the basis of the
popular eigenvalue package ARPACK [13]. Preconditioners for eigenvalue problems
usually vary between steps, in which case the implicitly restarted Arnoldi (IRA(k,m))
is not straightforward to apply. Further, in case of the GD(m) where the residual is
preconditioned, the Ritz vectors cannot be described with a polynomial of A. Clearly,
a new restarting scheme is needed.

In this paper, we study an extension to the IRA(k,m) technique for the GD(m),
which we call “thick restarting” and denote by GD(k,m), and which depends on an
integer parameter k. GD(k,m) restarts with k Ritz vectors instead of the l wanted
ones, where l ≤ k < m. The principle idea is mentioned by Kosugi in [11], Slei-
jpen and van der Vorst in [23], and Morgan in [15]. In the literature, the benefits
of IRA(k,m) are studied in relation to the polynomially transformed initial vector.
This paper addresses the question of which and how many Ritz vectors should be
kept. The theory presented motivates a dynamic strategy of thick restarting that can
be used in both IRA(k,m) and GD(k,m). Although the results are proved for the
nonpreconditioned case, the idea of thick restarting is readily applicable to the pre-
conditioned GD(k,m) and similar behavior is expected. Compared with IRA(k,m),
GD(k,m) can also assume any number of initial guesses and/or enhancements of the
basis through arbitrary vectors during the procedure.

After briefly presenting the IRA(k,m) and GD(k,m) algorithms in section 2, in
section 3 we prove as an extension to [15] that in the absence of preconditioning, and
for arbitrary targeting scheme of GD(k,m), the IRA(k,m) using the Ritz values as
shifts and GD(k,m) are equivalent, in the sense that their basis vectors span exactly
the same space. In section 4 a theorem is proved that relates the IRA(k,m), and
thus GD(k,m), with an Arnoldi process applied on an approximately deflated initial
vector. This extends the ideas that appeared recently in [28]. In section 5, a dynamic
choice of k is derived for the symmetric case, where the rate of convergence is described
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by well-known bounds. In section 6, numerical experiments on matrices from the
Harwell–Boeing collection demonstrate the effectiveness of GD(k,m).

2. The restarted Arnoldi and Davidson methods. Throughout this paper
we assume that the matrix A is diagonalizable, of order N , with eigenpairs (λi, xi).
We look for l outermost eigenpairs (e.g., lowest or highest in the symmetric case). The
Arnoldi and Davidson methods use a basis size of m > l. The following descriptions of
the algorithms serve for establishing the notation. For theoretical and implementation
details refer to [24, 13, 8, 16, 6, 23]. For all quantities the superscripts in parentheses
denote the corresponding restarting step. These superscripts are dropped whenever
there is no ambiguity.

Restarted Arnoldi’s method in its simplest form can be expressed as follows.
ALGORITHM 2.1 Restarted Arnoldi.

0. Start: Choose initial unit vector v(0)

1. For s = 0, 1, . . . Do
2. v1 = v(s), V (s)

1 = {v1}
3. For j = 1, . . . ,m Do
4. hij = (Avj , vi), i = 1, . . . , j,
5. wj = Avj −

∑j
i=1 hijvi

6. hj+1,j = ‖wj‖2, if hj+1,j = 0 stop.
7. vj+1 = wj/hj+1,j
8. Enddo
9. Compute the wanted eigenpairs (µ(s)

i , y
(s)
i ) of H(s)

m = (hi,j)
and the Ritz vectors x(s)

i = V
(s)
m y

(s)
i , where V (s)

m = {v1, . . . , vm}
10. v(s+1) =

∑
cix

(s)
i , for some ci, and the wanted x(s)

i

11. Enddo
The algorithm builds a Hessenberg matrix, from which the approximate eigen-

pairs are extracted through the Rayleigh–Ritz procedure. For the symmetric case,
H

(s)
m is a tridiagonal matrix, and a three-term recurrence replaces the above orthog-

onalization step. A linear combination of the wanted Ritz vectors are used to restart
the algorithm. Such a restarting strategy, however, may discard a lot of information
and result in degradation of the convergence rate.

Implicitly restarted Arnoldi applies the implicit QR algorithm with the m − l
unwanted eigenvalues as shifts to the Hessenberg matrix and uses the generated or-
thogonal transformations to truncate the basis down to l vectors. Therefore, it avoids
the need to restart with a single vector which captures the information for all l eigen-
vectors. The number of vectors in the new basis after restart may also be larger than l,
say k. For the rest of the paper we assume that l ≤ k < m, p = m−k, and IRA(k,m)
denotes the associated method. An outline of the IRA(k,m) algorithm follows.

ALGORITHM 2.2 Implicitly restarted Arnoldi.
0. Start: Choose initial vector v(0)

1

1. Build an initial Arnoldi iteration of k steps: (V (0)
k , H

(0)
k )

2. For s = 0, 1, . . . Do
3. Test for convergence
4. Extend V (s)

k to k + p vectors, taking p more Arnoldi steps: (V (s)
k+p, H

(s)
k+p)

5. Choose shifts µi, i = 1, . . . , p
6. Hk+p = QTH

(s)
k+pQ, with Q the orthogonal matrix obtained through

the implicit QR algorithm with µi, i = 1, . . . , p shifts
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7. Define V (s+1)
k = (V (s)

k+pQ)( Ik
0 ), and

8. H
(s+1)
k = ( Ik 0 )Hk+p( Ik

0 )
9. Enddo
The power of the IRA(k,m) lies in the following two properties. First,

v
(s+1)
1 = ψ(A)v(s)

1 =
p∏
i=1

(A− µiI)v(s)
1 ,(2.1)

for any choice of shifts µi, not limited to the exact shifts (Ritz values), and thus the
new Arnoldi iteration starts with a polynomially transformed initial vector. Second,
the vectors v(s+1)

2 , . . . , v
(s+1)
k can be considered the Arnoldi vectors of the Arnoldi

process started with v(s+1)
1 . Thus, no matrix–vector multiplications are needed for the

first k Arnoldi vectors. Among various interpretations, IRA(k,m) can be considered
a truncation of the QR algorithm for dense matrices as well as an efficient and robust
implementation of the subspace iteration with polynomial transformations.

The Davidson method first appeared as a diagonally preconditioned version of
the Lanczos method for the symmetric eigenproblem. Extensions, to both general
preconditioners and to the nonsymmetric case, have been given since. The following
describes the algorithm for the symmetric case. For the nonsymmetric case, line 5
should also include the computation of the last row of the projection matrix T

(s)
j .

MGS denotes the modified Gram–Schmidt procedure.
ALGORITHM 2.3 Generalized Davidson.

0. Choose initial unit vectors U (0)
l = {u(0)

1 , . . . , u
(0)
l }

1. For s = 0, 1, . . . Do
2. w

(s)
i = Au

(s)
i , i = 1, . . . , l − 1

3. For j = l, . . . ,m Do
4. w

(s)
j = Au

(s)
j .

5. ti,j = (w(s)
j , u

(s)
i ), i = 1, . . . , j, the last column of T (s)

j

6. Compute some wanted eigenpair, say (µ1, z1) of T (s)
j .

7. x1 = U
(s)
j z1 and r = Ax1 − µ1x1, the Ritz vector and its residual

8. Test ‖r‖ for convergence. If satisfied target a new vector.
9. Solve M(s,j)t = r, for t.
10. b

(s)
j+1 = MGS(U (s)

j , t)
11. Enddo
12. Set U (s+1)

k = {x1, . . . , xk}, k < m, and restart
13. Enddo
The preconditioning is performed by solving the equation at step 9, with M(s,j)

approximating (A − µ1I) in some sense. In [23] Sleijpen and van der Vorst show
that for stability, robustness, as well as efficiency, the operator M(s,j) should have
a range orthogonal to x. This is the Jacobi–Davidson (JD) method, and it solves
approximately the projected correction equation (‖x1‖2 = 1)

(I − x1x
T
1 )(A− µ1I)(I − x1x

T
1 ) t = (I − x1x

T
1 )(µ1I −A)x1 = −r.

The projections can be easily applied if an iterative linear solver is used. For precon-
ditioners which approximate A directly, such as incomplete factorizations and approx-
imate inverses, the above orthogonality condition is enforced through an equivalent
formulation known as Olsen method. Since the purpose of this paper is the study of
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restarting strategies, we use the general description of GD, and the results are valid
whether step 9 is performed through JD or otherwise.

A Davidson step is more expensive than that of the Lanczos and Arnoldi algo-
rithms, to allow for preconditioning. In addition, the Davidson algorithm can start
with any number of initial vectors and include in the basis any extra information that
can be available during the execution. The targeted eigenpair (i.e., the one chosen for
preconditioning) may vary in different steps, allowing for a variable targeting scheme.
Finally, it can restart with the approximate eigenvectors, so it does not share the
problems of the original restarted Arnoldi. As in IRA(k,m), the Davidson method
can also restart with more Ritz vectors than needed. This version is “thick restart-
ing” and we denote it by GD(k,m), where l, k, and m are defined as in IRA(k,m).
In the following section, we show that IRA(k,m) and GD(k,m) are equivalent in the
nonpreconditioned case, but GD(k,m) offers all the aforementioned advantages and
extensions.

3. Thick and implicit restarting. It is known that the Lanczos and the David-
son methods are equivalent when no preconditioning is used. However, this has been
pointed out only for the nonrestarted case, where one eigenvalue is sought [16]. Re-
cently, the equivalence of the IRA(k,m) with an Arnoldi method restarting with a
Ritz vector and augmented by k− 1 Ritz vectors has been shown [15]. In this section
we prove that, in the nonpreconditioned case, if GD(k,m) and IRA(k,m) start with
the same initial vector, they are equivalent for any targeting scheme of GD(k,m).

The first lemma is an extension of Lemma 3.10 in [24], and it is the basis for the
equivalence proof. Note that the implicit QR algorithm is applied to any diagonaliz-
able matrix H.

LEMMA 3.1. Let λ(H) = {λ1, . . . , λk} ∪ {µ1, . . . , µp} be a disjoint partition of the
eigenvalue set of a diagonalizable matrix H. Let Q = Q1Q2 · · ·Qp, where Qi is the
orthogonal matrix implicitly defined by the shift µi in the implicit QR algorithm on
H. Then, the first k columns of Q span the same space as the k eigenvectors yi of H
associated with the eigenvalues λi, i = 1, . . . , k.

Proof. After p steps of the implicit QR algorithm, it holds that

QR = Q1Q2 · · ·QpRp · · ·R2R1 =
p∏
i=1

(H − µi),

where QiRi is the QR decomposition of Hi − µi at the ith step, and R = (rij) =
Rp · · ·R2R1 denotes an upper triangular matrix. Since the shifts µi, i = 1, . . . , p, are
eigenvalues of H, QR is a rank k matrix, and if the decompositions are performed with
traditional column pivoting, rii 6= 0, i = 1, . . . , k, and rii = 0, i = k+1, . . . , k+p. For
Hessenberg matrices it is shown in [24] that q1 = Qe1 is in the span of {y1, . . . , yk}.
Using a similar argument, if e1 =

∑k+p
j=1 ξjyj ,

QRe1 = q1r11 =
k∑
j=1

ξj

p∏
i=1

(λj − µi)yj ,

and q1 ∈ span{y1, . . . , yk}. Inductively, let q1, . . . , qs ∈ span{y1, . . . , yk}. If es+1 =∑k+p
j=1 ξs,jyj ,

QRes+1 =
s∑
j=1

rj,s+1qj + rs+1,s+1qs+1 =
k∑
j=1

ξs,j

p∏
i=1

(λj − µi)yj ,
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and since rs+1,s+1 6= 0, qs+1 ∈ span{y1, . . . , yk}. Since Q is an orthogonal matrix, its
first k columns are independent and therefore span{q1, . . . , qk} = span{y1, . . . , yk}.

In the special case where the matrix H is the Hessenberg matrix obtained from
the Arnoldi procedure, an immediate consequence is the following.

LEMMA 3.2. If at step s the basis vectors U (s)
m and V (s)

m of GD(k,m) and IRA(k,m),
respectively, span the same space, then, after restarting both methods,

span(V (s+1)
k ) = span(U (s+1)

k ).

Proof. From the assumption, the Ritz vectors are the same for both methods
at the end of the sth step, and after restarting, U (s+1)

k contains the k chosen ones,
say Xk. If Q(1 : k) are the first k columns of the orthogonal matrix of Lemma 3.1,
we have V (s+1)

k = V
(s)
m Q(1 : k) = V

(s)
m Y (1 : k)C = XkC, where Y (1 : k) are the

chosen k eigenvectors of the Hessenberg matrix Hm, and C is some k × k coefficient
matrix.

The above shows the equivalence of the two methods at restart. To conclude
the proof we need the following proposition which describes the residuals of the Ritz
vectors of the Arnoldi procedure [19].

PROPOSITION 3.3. At the jth step of inner Arnoldi loop, let yi be the ith eigenvec-
tor of Hj associated with the eigenvalue λi, and xi be the Ritz approximate eigenvector
xi = Vjyi. Then,

(A− λiI)xi = hj+1,je
H
j yi vj+1.

THEOREM 3.4. If GD(k,m) without preconditioning and IRA(k,m) are executed
with the same initial vector v(0), and at each restarting the p shifts used in IRA(k,m)
are the Ritz values of the Ritz vectors discarded by GD(k,m), then the basis vec-
tors produced by the two methods span the same space, for any targeting scheme of
GD(k,m), and thus the methods are equivalent.

Proof. If the two methods start with the same initial vector and no restarting
is used, the vectors built are identical. This is an immediate consequence of Propo-
sition 3.3, for any selection of targets in GD(k,m). This is well established in the
literature (see [16, 21]).

For the general case, a simple induction on the number s of restarts is used. From
the above, it follows that for s = 0, the bases built by IRA(k,m) and GD(k,m) satisfy
V

(0)
m = U

(0)
m .

Let, for s > 0, span(V (s)
m ) = span(U (s)

m ). After restarting both methods, and from
Lemma 3.2, span(V (s+1)

k ) = span(U (s+1)
k ). As a result, at this k step, the Ritz vectors

for both methods are the same, and because of Proposition 3.3, the next expansion
vectors for both methods are parallel. Thus it holds, span(V (s+1)

k+1 ) = span(U (s+1)
k+1 ),

and inductively

span(V (s+1)
m ) = span(U (s+1)

m ).

A few comments are in order. Lemma 3.1 can be applied to the Hessenberg matri-
ces built by Krylov subspace methods, if these are diagonalizable. This assumption is
always satisfied by the tridiagonal matrices built in the symmetric case. This justifies
the use of this result in Lemma 3.2 for the nonpreconditioned case.

Further, Lemma 3.1 applies to any non-Hessenberg diagonalizable matrix, and
although Lemma 3.2 discusses the IRA(k,m) method, it is true for all methods that
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use an implicit restarting scheme. Consequently, implicit restarting can be applied
to the projection, full matrix T obtained from the preconditioned basis vectors of
GD(k,m). If exact shifts are used, it produces a sequence of vectors that span the
same space with the required Ritz vectors. Several numerical examples, however,
have shown that this can be an unstable process. The reason is traced back to the
forward numerical instability of the QR process. Treatments of the problem have
been developed [12], but we find it inexpensive and stable to thick restart with the
orthogonal (or orthogonalized in the nonsymmetric case) Ritz vectors.

In the preconditioned case, the application of implicit restarting does not result
in a polynomial transformation as in (2.1). Specifically, let U = {u(0)

1 , . . . , u
(0)
m }

be the GD(k,m) basis before restarting, with decomposition AU = UT + E and
UHE = 0. Following steps similar to Lemma 3.1 and to those in [24], the first basis
vector u(1)

1 after the implicit restarting can be expressed as u(1)
1 = ψ(UUHAUUH)u(0)

1

= Uψ(T )UHu(0)
1 , where ψ is the polynomial having the implicit shifts as roots. The

polynomial transformation involves the projected matrix on the space spanned by U
and not the full rank matrix A. An arbitrary choice of shifts may lead to a different
polynomial, but there are no clear advantages for doing so.

Finally, in the unlikely case where preconditioning produces a defective projection
matrix, both implicit and thick restarting may fail as described earlier. Working
with the Schur vectors rather than the Ritz vectors provides a stable solution to the
problem. The algorithm has been proposed recently in [10] and consists of a slight
modification to the GD(k,m): instead of finding the eigendecomposition of T , a Schur
decomposition is computed and the diagonal elements of the upper triangular matrix
are used as shifts in the implicit restarting procedure. In this way the algorithm
computes a partial Schur decomposition of A. Note that thick restarting can still be
applied keeping more Schur vectors than needed.

4. The deflation connection. Krylov methods for linear systems, such as con-
jugate gradient (CG) and GMRES, demonstrate a superlinear convergence at later
iterations. One explanation of this phenomenon is the convergence of the outermost
eigenpairs of the matrix, so that each method behaves as if deflation has occurred,
resulting in faster convergence. Such observations have appeared as early as in [5],
but actual quantification of the behavior appears in [20] and [27, 28]. In the latter
papers, the optimality of the CG and GMRES polynomials is employed to relate each
method after some iterations with a similar process of the same method on a deflated
residual.

Results similar to [28] cannot be applied directly to the residual and eigenvalues
in the nonsymmetric Arnoldi, since there is no optimality principle. In the following,
we extend the results found in [28] to the Arnoldi method by considering the distance
of some eigenvector from the Arnoldi–Krylov subspace. Again, preconditioning is not
considered since the space that it creates is not a Krylov subspace. This general result
is used later in the context of thick/implicit restarting to justify the expected benefits
and to help provide a good choice of k.

For simplicity, let A be a diagonalizable matrix, X−1AX = Λ = diag(λi), of
order N . The results in this section can be extended naturally to the Jordan form
of A, following the methodology in [28]. However, the presentation is more involved.
Let v = Xξ be the expansion of the starting Arnoldi vector to the eigenvector basis.
Also let Kk(v) be the Krylov subspace of dimension k generated by v. Define three
numbers satisfying l < k′ ≤ k, where k− 1 is the number of steps that a nonrestarted
Arnoldi method takes starting from v. We can assume an eigenvalue ordering so that
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the first l ones are wanted, and the eigenvalues l+ 1, . . . , k′ are well approximated by
the k− 1 steps of Arnoldi. Let µi be the k Ritz values from this Kk(v) space. At this
point we let the Arnoldi process take p more steps and build the space Kk+p(v). The
following shows the ordering of these numbers:

1 k’ k k+pl

wanted deflated p additional stepsfirst k steps

Define D(k) a diagonal matrix with elements

D(k)
jj =

{
0, for j = l + 1, . . . , k′,∏k′

i=l+1
λj−λi
λj−µi , for j ≤ l or j = k′ + 1, . . . , N.

(4.1)

Assuming the above definitions we have the following theorem.
THEOREM 4.1. Let xj be an eigenvector to be approximated from the Krylov sub-

space Kk+p(v), and x̃j be the corresponding Ritz vector from Kk(v), whose components
of xl+1, . . . , xk′ have been removed. If these Krylov subspaces can be built, then for
any j = 1, . . . , l

dist(xj ,Kk+p(v)) ≤ |1−D(k)
jj |+ ‖XD(k)X−1‖ dist(xj ,Kp(x̃j)).

Proof. At step k− 1 of the Arnoldi procedure, the Ritz vector x′j from Kk(v) has
the following expression:

x′j = qj(A)v/‖qj(A)v‖, with

qj(t) =
k∏

i=1,i 6=j
(t− µi).

We define h(t) a polynomial of degree k − 1 as

h(t) =
k′∏

i=l+1

(t− λi)
(t− µi)

qj(t).

Note that the eigencomponents l + 1, . . . , k′ of the vector h(A)v are annihilated. If
ξ̃i = 0 for i = l + 1, . . . , k′ and ξ̃i = ξi otherwise, then x̃j = 1

φXqj(Λ)ξ̃, where φ is a
normalization factor. Since any vector in Kk+p(v) can be expressed as a polynomial of
A applied on v, if π∗ is some polynomial of degree p, and ej is the jth orthocanonical
vector, we have

dist(xj ,Kk+p(v)) = min
q,deg(q)=k+p−1

‖xj − q(A)v‖

≤ ‖xj − π∗(A)h(A)Xξ‖
= ‖xj −Xπ∗(Λ)D(k)qj(Λ)ξ‖
= ‖xj −XD(k)X−1Xπ∗(Λ)qj(Λ)ξ̃‖
= ‖xj −XD(k)X−1π∗(A)φx̃j‖
= ‖xj −XD(k)X−1(Xej −Xej + π∗(A)φx̃j)‖
≤ ‖xj −D(k)

jj xj‖+ ‖XD(k)X−1‖‖xj − π∗(A)φx̃j‖.(4.2)
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The result follows by choosing π∗ = 1
φπd, where πd is the polynomial that minimizes

the distance of xj from Kp(x̃j), and assuming ‖xj‖ = 1.
The term ‖XD(k)X−1‖ is bounded as follows [28]:

‖XD(k)X−1‖ < k2(X) max
j 6=l+1,...,k′

k′∏
i=l+1

λj − λi
λj − µi

= k2(X)Fk,

where k2(X) = ‖X‖‖X−1‖ is the condition number of the matrix X. If k is large
enough, then the approximations µi converge to λi for i = 1, . . . , k′. Thus, Fk → 1,
and |1 − D(k)

jj | → 0. Even when these are not accurately converged, provided that

O(dist) < O(|1−D(k)
jj |), the distance behaves similarly to the distance from a deflated

Krylov subspace. It should be noted that the above bound is rather pessimistic, since
D(k) converges to a part of the identity matrix and thus XD(k)X−1 converges to a
spectral projector.

4.1. Deflation in IRA (k,m). Theorem 4.1 can be applied to the k+p vectors
at the end of an IRA(k,m) step. As previously, l eigenpairs are needed, k pairs are
retained after each restart, and p = m− k additional vectors are built. Theorem 4.1
applies with the same l, k, p, and k′ = k:

dist(xj ,Kk+p(v(s))) ≤ |1−D(k,s)
jj |+ ‖XD(k,s)X−1‖ dist(xj ,Kp(x̃j)).

Note that the space Kk(v(s)) contains exactly the wanted k Ritz vectors at the end of
the previous s−1 step. From the comments in section 2, the Krylov space Kk+p(v(s))
is built implicitly by only p steps. Therefore, Theorem 4.1 relates the p steps of the
deflated method, to p, rather than k + p steps of the original method.

The diagonal elements of D(k,s) depend on two parameters: k is the number of
the initial Krylov steps, and s is the restarting step on which the theorem is applied.
Since k in IRA(k,m) is bounded, the reason for convergence of D(k,s)

jj is assumed by
s, the step number. It has been proved for the symmetric case, and under certain
assumptions for the nonsymmetric case [24], that the retained eigenpairs in IRA(k,m)
converge. Thus, F (s)

k → 1 and |1−D(k,s)
jj | → 0, as s→∞. After several restarts, the

IRA(k,m) method builds a space close to the one built by an IRA(k,m) applied on a
system deflated from the eigencomponents l + 1, . . . , k. Because of Theorem 3.4, the
GD(k,m) performs in a similar way.

The above results suggest that there are advantages in keeping more vectors at
each restart, i.e., using a thicker restart. If only the wanted eigenpairs (1, . . . , l)
are retained at restart, the method does not demonstrate the deflation behavior for
any other eigenpairs. At every restarting the current approximations of eigenpairs
(l + 1, . . . , k + p) are annihilated, and thus they do not converge. Frequently, some
eigenvalues close to the wanted ones or close to the other end of the spectrum are
relatively well approximated before restarting, and if retained, they would have con-
verged soon. Even more undesirable is the fact that these approximations will slowly
reappear in the Krylov subspace, since their approximations are not accurate enough
to completely annihilate the corresponding eigenvectors. Therefore, thick restarting
should almost always be beneficial.

5. Dynamic thick restarting in the symmetric case. In this section we
restrict the discussion to the symmetric case where explicit bounds for convergence
rates are known. Two difficulties are associated with thick restarting: the choice of
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which eigenpairs to retain and how many of them. It is well known that the Arnoldi
method constructs vectors with strong components in the direction of the extreme
eigenvectors (associated with extreme eigenvalues) and, therefore, close to the few
wanted ones. Sleijpen and van der Vorst in [23] argue that the restarted Arnoldi
method repeats the information for these extreme eigenpairs that are dispensed in
previous iterations, and they propose keeping l + 1, . . . , k eigenvalues closest to the
wanted ones. A similar strategy is followed in the implicit restarting of the ARPACK
code. We denote this special case of GD(k,m) as TR(k), implying the basis size m.

The preceding discussion suggests that thick restarting should aim at improving
the convergence of the method through deflation. TR(k) attempts to increase the gap
of the wanted eigenvalues from the rest of spectrum by keeping nearby eigenpairs.
The same objective is followed by subspace iteration where the number of vectors
determines the rate of convergence. Since IRA(k,m) can be interpreted as an effi-
cient way to perform subspace iteration [12], similar restarting considerations hold.
However, convergence depends on the gap ratios of the eigenvalues and, therefore,
the other end of the spectrum is also of importance. A more general form of thick
restarting would be TR(L,R), where L lowest (leftmost) and R highest (rightmost)
eigenvectors are kept.

We need to address the issue of choosing optimal restarting parameters. In
ARPACK, k is chosen dynamically, starting from a relatively small number and in-
creasing it every time an eigenvalue converges. This attempts to maintain a “constant”
gap, and it is slightly different from the strategy reported in [24], where values of k
close to m/2 usually gave the best results.

Because of the deflation relation, the thicker the restarting, the larger the part
of the spectrum that is deflated. However, the basis size m is limited, and if too
many vectors are retained when restarting, the Lanczos process cannot effectively
build additional basis vectors. A dynamic choice of the parameters L and R should
be able to capture this trade-off. For the Lanczos procedure, convergence is governed
by a term involving a Chebyshev polynomial. If p Lanczos steps are taken, the error
of the ith eigenvalue involves the following term:

1
T 2
p (1 + 2γi)

, with γi =
λi − λi+1

λi+1 − λN
.

γi is the gap ratio of the ith eigenvalue, and for small gap ratios (i.e., difficult prob-
lems) the above term behaves as

1
T 2
p (1 + 2γi)

≈ 2e−2p
√
γi .(5.1)

The L and R thick restarting parameters should maximize the deflated gap ratio
γi = (λi−λL+1)/(λL+1−λN−R) and also maximize the number of new Lanczos steps
p = m − L − R. The trade-off is captured by minimizing the error approximation
equation (5.1). Since the actual eigenvalues are not known, the m approximate Ritz
values (µi) before restarting should be used to estimate the spectrum. Thus, assuming
the l lowest eigenpairs are sought, L and R are obtained dynamically by maximizing
the following expression:

max
L=l,...,m, R=0,...,m−l, L+R<m

(m− L−R)

√
λi − λL+1

λL+1 − λm−R
.
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We implement a combination of the dynamic restarting and the TR(L) schemes.
Similarly to subspace iteration and ARPACK, we keep at least L′ > l vectors from
the side of the required eigenpairs to guarantee an increased separation gap. In the
experiments in the next section the value L′ = 10 is chosen. The dynamic scheme is
adopted for the rest of the vectors, maximizing the above expression for L = L′, . . . ,m.
In this way, we capture the benefits from both strategies. It has been observed that
if some unwanted eigenvector has converged, it is usually beneficial to include it in
restarting, since this information may be slowly repeated. We do not consider this
option and let the dynamic choice of L and R take care of such cases.

For the nonsymmetric GD(k,m) a similar expression may be maximized, where
the Ritz values are ordered according to the required objective, i.e., largest modulus,
largest real part, etc. Often, this ordering corresponds to the outermost eigenvalues of
the spectrum that the Arnoldi method approximates first, and thus similar deflation
arguments can be made. However, this may not always be true, and the choice is more
ad hoc because of lack of general expressions for convergence rates. The dynamic
strategy can also be used in case of preconditioning, although its effects are expected
to be less pronounced for two reasons. First, the spectrum of the varying operator is
transformed by the preconditioners and, second, the preconditioning equation usually
targets one specific eigenvector for correction, offering little improvement to the rest
of the eigenvectors. Often, however, the use of less efficient preconditioners does not
affect the eigenvalue order significantly, and thick restarting can perform as well in
this case. Finally, dynamic thick restarting can be used in both GD(k,m) and in the
IRA(k,m) of the ARPACK package.

6. Numerical experiments. In the first part of this section we give a small
artificial example which demonstrates the increasing effect of deflation in thick restart
TR(k). In the second part, we present results from a large number of tests on the
symmetric matrices of the Harwell–Boeing collection [9]. The GD(k,m) code is based
on a program published in [25] and the extensions proposed in [26]. It implements a
variable block generalized Davidson method, using the reverse communication proto-
col for matrix–vector multiplication and preconditioning operations. Robust shifting
and the Olsen strategy, which is equivalent to the Jacobi–Davidson approach in ex-
act arithmetic [23], are adopted in preconditioning. In the third and fourth parts,
the dynamic strategy is used to provide the shifts to the IRA(k,m) of the ARPACK
implementation. Results from standard nonsymmetric cases are reported in the third
part. In the last part, comparisons with the original ARPACK code, and with the
ARPACK code using Leja shifts [2] in the symmetric case, facilitate a discussion on
the effects of the basis size.

6.1. Deflation works. The GD(k,m) is applied on an artificially generated
diagonal matrix of order 100 and elements:

Ajj =

 j/55, for j = 1, . . . , 8,
19/55 + j/55, for j = 9, . . . , 16,
j − 16, for j = 17, . . . , 100.

(6.1)

The lowest eigenvalues of this matrix are grouped in two clusters of eight equidistant
eigenvalues each. The separation between the two groups is equal to the separation
of the second group from eigenvalue 17. Figure 6.1 depicts the lowest part of this
spectrum. We look for the lowest eigenvalue and allow for 20 basis vectors in all
versions of GD(k,m). The history of the logarithm of the eigenvalue error is plotted
in Figure 6.2 for various restarting thicknesses of TR(k).
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FIG. 6.1. The lowest 20 eigenvalues of the 100 × 100 matrix. The first two clusters contain
eight equidistant eigenvalues each. The rest of the 80 eigenvalues are the integers from 5 up to 84.
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FIG. 6.2. Effects of thick restarting to the convergence of the generalized Davidson. No precon-
ditioning is used, and the lowest eigenvalue is sought. TR(k) denotes GD(k,20).

As expected, the poor separation of the lowest eigenvalue results in a very slow
original GD(20) (or TR(1)) method. A very good approximation of the second eigen-
value is available quite early, and thus when retained (TR(2)), the convergence rate
improves by 30%, and similarly with TR(4) and TR(8). The superlinear conver-
gence is more evident in TR(8). In early iterations, higher eigenvalues are not well
approximated and TR(8) behaves similarly to TR(1) and TR(2). Later, as better
approximations for eigenvalues 2–4 appear, TR(8) is similar to TR(4), and as higher
eigenvalues settle down, TR(8) exhibits a concave convergence curve.

Methods TR(k), with 8 < k < 16, are similar to TR(8) since there is no significant
improvement to the deflated gap ratio. In theory, TR(16) should be different because
of the large separation between eigenvalues 16 and 17. In practice, however, TR(16)
does not perform significantly better than TR(8). The reason is that the Krylov
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subspace is of dimension 20, and it is difficult for the 16th Ritz eigenvalue to converge.
The dynamic thick restarting, shown as Dyn in the figure, takes advantage of both
ends of the spectrum and performs better than TR(8) and close to TR(16), requiring
no prior knowledge about the spectrum.

6.2. Harwell–Boeing tests. To confirm the theoretical benefits of thick and
dynamic thick restarting, a wide variety of tests have been performed on the symmetric
matrices from the Harwell–Boeing collection. This includes a set of 67 matrices with
orders ranging from 48 to 15,439. Some of matrices have been derived from eigenvalue
problems, but for almost all of them, the lowest end of the spectrum is very poorly
conditioned, making them particularly hard test problems. The higher end of the
spectrum usually consists of well separated, very large eigenvalues, providing a good
test for easy or intermediate problems.

We have compared three different versions of GD(k,m) for both the lower and
the higher part of the spectrum. Five eigenvalues are sought and the basis size m
for all GD methods is 20. An eigenpair is considered converged when the norm
of its residual is less than 10−12‖A‖F , where ‖A‖F is the Frobenius norm of its
matrix. For the highest eigenvalues only the nonpreconditioned versions of GD(k,m)
are considered, while for the lowest ones we consider diagonal and approximate inverse
preconditioning. The former is computed at every step as (diag(A) − µ)−1, and the
latter is only computed once as the approximate inverse of A [4]. Since most of the
matrices are positive definite, this is a relatively powerful preconditioner.

In Table 6.1, the results from the lower part of the spectrum are reported. A
maximum number of 5000 matrix–vector multiplications is allowed. The table does
not include any of the diagonal matrices. As it is easily seen, TR(11) outperforms the
original Davidson method (TR(5)), except for BCSSTK22. It is usually several times
faster, and offers better robustness, converging for six additional matrices. Further,
dynamic thick restarting improves both the robustness and the speed in almost all
cases. Sometimes the reduction in the matrix–vector multiplication number can be as
high as 50 to 70% over TR(11). With diagonal preconditioning TR(11) still outper-
forms TR(5) in both convergence and robustness. Dynamic thick restarting improves
convergence even further, although the improvements are not as impressive as in the
nonpreconditioned case. On average, the approximate inverse preconditioner is better
than the diagonal one but with several exceptions since it depends on the character-
istics of the matrix. Dynamic thick restarting still performs much better than the
original approach, and it is relatively faster and more robust than TR(12). However,
as mentioned in the previous section, in those cases where approximate inverse works
well, the differences between thick and dynamic thick restarting diminish because of
the higher quality preconditioner.

Similar behavior of the methods is shown in Table 6.2, where the five largest
eigenpairs are required. Dynamic thick restarting improves on the performance of
TR(10) which in turn improves on the performance of TR(5). However, the few steps
required for the problems in this table do not yield the same impressive improvements
as in Table 6.1.

6.3. The effect of the basis size. The dynamic thick restarting strategy, de-
veloped for the GD(k,m), can also be used to provide the shifts to the ARPACK
code through the supplied reverse communication protocol. Results from this imple-
mentation when seeking one lowest eigenpair of the Harwell–Boeing collection appear
in Table 6.3. Two tests are performed, one with basis size of 25 and one with basis
size of 10. The dynamic restarting significantly improves the speed and robustness of
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TABLE 6.1
Comparison of thick (TR(L)) and dynamic thick restarting (Dyn) with original Davidson

(TR(5)) on symmetric Harwell–Boeing matrices, with diagonal and approximate inverse precon-
ditioners. The number of matrix–vector multiplications is reported, with a maximum of 5000. Five
smallest eigenvalues are sought. The GD codes use basis size of 20.

No preconditioning Diagonal preconditioning Approximate inverse
Matrix TR(5) TR(11) Dyn TR(5) TR(10) Dyn TR(5) TR(12) Dyn
BCSSTK01 - 1675 360 288 132 124 264 96 108
BCSSTK02 - 209 204 - 194 190 188 89 92
NOS4 321 178 171 405 261 244 127 90 91
BCSSTK03 - - - - 3697 1225 - 4699 1685
BCSSTK04 - - 1905 - 189 188 - 208 221
BCSSTK22 4054 - 1626 - 931 721 - 320 300
LUND A - 2017 727 858 271 250 3623 394 349
LUND B - - 1347 774 396 349 909 381 338
BCSSTK05 1174 975 612 1322 465 409 358 247 251
BCSSTK07 - - - - - 1401 - - 3158
BCSSTM07 - - 3171 1018 406 363 - 2390 1195
NOS5 - 2016 921 2659 1401 819 837 387 354
662 BUS - - - 3220 1482 902 699 307 291
NOS6 - - - - - 1434 - - -
685 BUS - - 1793 2473 987 763 486 272 267
NOS7 - - - 200 216 194 128 109 94
GR 30 30 259 228 229 248 224 221 204 146 143
NOS3 2179 620 458 2096 878 664 524 253 258
BCSSTK09 - 1206 721 2283+ 1508 964 3291 363 352
BCSSTK10 - - - - - 2808 - 2093 1076
BCSSTM10 498 226 207 448 258 250 3266 3189 2636
BCSSTK27 - - - - - 3307 - - 3017
BCSSTM27 - 4455 1689 - 4304 1768 - 636 509
BCSSTK14 - - - - - 2136 - - 3723
BCSSTM13 - - - 381 285 269 291 183 177
BCSSTK21 - - - - 2568+ 1141 1776 877 601
BCSSTK16 3962 1333 676 2410 905 663 752 331 317
BCSSTK18 - - - - - 3098 - - -
BCSSTM25 - - - 62 64 55 40 38 37

+ denotes that one eigenpair has been skipped

the native restarting scheme of ARPACK, which for one eigenvalue is the equivalent
with thick restart of half the basis size. What is more interesting is that dynamic
restarting seems much less sensitive to reduction of the basis size. Similar insensitiv-
ity to the basis size has recently been demonstrated through the use of Leja points as
shifts in IRA(k,m) [2]. We have implemented the Leja shifts restarting strategy as
outlined in [2], and the results appear in Table 6.3. For the small basis size, dynamic
thick restarting and Leja shifts are comparable. However, as the basis size increases,
the dynamic strategy is more efficient and even more robust. Although Leja shifts
may be better for extremely small spaces (less than five vectors), they are harder to
implement and they are more expensive to compute.

Experience with the dynamic thick restarting has shown that most of the vectors
are retained at every restart, and only three or four are annihilated. The range of the
annihilated ones varies from step to step. Figure 6.3 shows the range of eigenvalues
which the filtering polynomial covers, as well as the shifts of this polynomial, at every
restart for a typical case. We have observed that it is important to have both a
small degree polynomial at every restart (i.e., only few eigenvalues annihilated) and
to also vary the range from where these shifts are chosen. Therefore, TR(16) does
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TABLE 6.2
Comparison of thick (TR(10)) and dynamic thick restarting (Dyn) with original Davidson

(TR(5)) on Harwell–Boeing matrices. The number of matrix–vector multiplications is reported.
Five largest eigenvalues are sought. The GD codes use basis size of 20.

No preconditioning
Matrix TR(5) TR(10) Dyn
BCSSTK01 57 42 38
BCSSTK02 62 49 52
NOS4 176 107 114
BCSSTK03 51 44 43
BCSSTK04 103 84 78
BCSSTK22 106 71 65
LUND A 195 124 120
LUND B 92 66 68
BCSSTK05 81 67 66
NOS1 257 147 133
PLAT362 165 111 114
BCSSTK06 332 114 109
BCSSTK07 332 114 109
BCSSTM07 240 172 155
NOS5 210 117 111
662 BUS 65 54 55
NOS6 123 91 87
685 BUS 31 30 30
NOS7 88 65 68
BCSSTK19 113 100 92
GR 30 30 502 451 396

No preconditioning
Matrix TR(5) TR(10) Dyn
NOS2 2236 906 520
NOS3 194 156 150
BCSSTK08 36 35 33
BCSSTK09 316 236 206
BCSSTK10 146 94 90
BCSSTM10 443 151 137
1138 BUS 84 73 75
BCSSTK27 129 89 81
BCSSTM27 130 96 87
BCSSTK11 441 220 200
BCSSTM12 164 115 129
BCSSTK14 195 73 75
PLAT1919 102 94 100
ZENIOS 53 48 48
BCSSTK24 112 118 121
BCSSTK21 1144 418 335
BCSSTK15 - 1374 328
BCSSTK16 99 83 83
BCSSTK17 82 67 62
BCSSTK18 166 86 86
BCSSTK25 45 59 44

not perform as well as dynamic restarting, even though, on average, it retains the
same number of vectors. Also, if we force the dynamic restarting to annihilate more
than five or six shifts at every restart, the scheme does not perform as well either.
The efficiency of the dynamic thick restarting may be attributed to the fact that the
filtering polynomial is of low degree and seems to select the best region to dampen,
without growing fast outside these regions. The efficient use of the Leja shifts in the
ARPACK also exhibits analogous requirements.

Finally, we should point out that the above results compare the number of matrix–
vector multiplications of the methods. This is an acceptable performance metric if
the matrix–vector operation is expensive. Since, on average, thick restarting uses
more vectors in the basis than the original Davidson, its Davidson step is also more
expensive. Although improvements like the ones in Table 6.1 justify any increase in
the expense of the Davidson step, for easier cases a less aggressive choice of restarting
might be more effective.

6.4. Thick restarting in the nonsymmetric case. As in the symmetric case,
we can likewise use the dynamic thick restarting scheme to provide the shifts to
the nonsymmetric ARPACK code. Results from this implementation applied on the
nonsymmetric matrices of the test matrix collection of eigenvalue problems of Bai et
al. [1] appear in Table 6.4. All the matrices stem from standard eigenvalue problems,
except odep400a which is included because it is close to symmetric. Since for almost
all examples the rightmost eigenpairs are of interest, we look for five eigenpairs with
largest real parts. The convergence threshold for ARPACK is set to 10−12, and a
maximum of 5000 matrix–vector multiplications is allowed.

The shifts for thick restarting are chosen similarly to the symmetric case. First,
we order the Ritz values according to their real parts. The dynamic scheme works on
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TABLE 6.3
Implementation of the Leja shifts and dynamic thick restarting for the ARPACK code. Native is

the restarting scheme used internally by ARPACK, Leja(k) refers to implicit restarting with k Leja
shifts, and Dyn is the dynamic thick restarting. The number of matrix–vector multiplications is
reported for two tests with basis sizes 10 and 25 on Harwell–Boeing matrices. One lowest eigenvalue
is sought.

ARPACK
Basis size of 10 Basis size of 25

Matrix Native Leja(3) Dyn Native Leja(5) Dyn
BCSSTK01 - 3805 3922 1637 1309 341
BCSSTK02 530 235 198 129 134 124
NOS4 220 136 166 116 114 120
BCSSTM03 1165 1696 298 265 1014 90
BCSSTK04 - - - - - 2013
BCSSTK22 - 1132 1222 1520 1124 999
BCSSTM22 240 166 149 103 104 89
LUND A - 2461 1644 2079 1774 759
LUND B - 1990 2777 3002 1404 1150
BCSSTK05 2810 727 874 766 609 588
BCSSTM06 4675 1462 494 792 529 243
NOS5 - 1123 1546 1494 864 880
BCSSTM20 - - - - - 896
494 BUS - - - - - 3634
662 BUS - 1642 1547 2443 1429 1108
685 BUS - 2482 2515 1962 1819 700
NOS3 1210 388 492 402 334 348
BCSSTK09 1140 367 419 337 309 304
BCSSTM10 420 214 274 181 164 174
BCSSTM27 - 2698 1931 2781 1509 1461
BCSSTM11 65 196 41 25 25 25
BCSSTM13 - 4285 3471 - 4459 2995
ZENIOS 60 58 56 90 84 80
BCSSTK16 - 946 1063 1000 774 712
BCSSTK25 - - - - - 1399

these real parts, yielding the numbers L and R on the real axis. We then supply the
corresponding Ritz values as shifts to ARPACK, requiring that conjugate Ritz values
are either annihilated together or kept together.

The results show that the thick restarted versions improve efficiency and robust-
ness of the native scheme of ARPACK, and that thicker restarting schemes achieve
better efficiencies. This is expected by analogy with the subspace iteration method.
The dynamic thick restarting is not uniformly better than the rest as in the symmetric
case. In fact, it seems comparable to TR(20) which, on average, keeps the same num-
ber of vectors as the dynamic one. As mentioned in section 5, the extreme eigenpairs
chosen by the dynamic scheme are based on the ordering of the real parts of the Ritz
values and may not always represent the extreme eigenpairs approximated well by the
Arnoldi method. In spite of this, dynamic thick restarting is still the most robust of
the methods used and shows that the efficiency of the one-sided thick restarting can
be improved.

7. Conclusions. Restarting is a necessary technique for solving large eigenvalue
problems, which may cause significant convergence deterioration. In this paper we
consider a class of restarting techniques which, at every restart, retain more Ritz
vectors than needed, and we denote it as “thick restarting.” The GD(k,m) and
IRA(k,m) are proved to be equivalent in the absence of preconditioning and a rela-
tion is given between thick restarted Davidson and a Davidson method applied on a
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FIG. 6.3. The range annihilated by the filtering polynomial of dynamic thick restarting at every
restart. Each interval includes the m-L-R Ritz values, depicted as circles, which are picked for
annihilation by the dynamic scheme. The example matrix is BCSSTK05 from Harwell–Boeing and
basis size of 20 is used. The crosses on the top of the graph represent the location of the eigenvalues
on the real axis.

TABLE 6.4
Implementation of thick and dynamic thick restarting for the nonsymmetric ARPACK code.

Native (Nat) is the restarting scheme used internally by ARPACK, (12) and (20) are one-sided thick
restarting with 12 and 20 vectors, respectively, and Dyn is the dynamic thick restarting. The number
of matrix–vector multiplications is reported for the test-matrix collection for eigenvalue problems.
Five eigenvalue with largest real parts are sought.

ARPACK
Matrix Nat (12) (20) Dyn
BWM200 558 207 185 180
BWM2000 - - - 3999
CDDE5 357 272 252 237
DW2048 681 675 815 495
DW8192 - - - 4942
DWA512 118 116 116 113
DWB512 350 298 315 267
GRCAR200 2606 698 524 572
LOP163 383 279 214 242
ODEP400A 1683 837 1005 704
OLM100 548 357 255 316
OLM1000 - - - 3602
OLM500 4303 2514 1867 1622
PDE225 343 281 234 254
PDE2961 192 140 124 130

ARPACK
Matrix Nat (12) (20) Dyn
QH768 - 2935 751 881
RDB1250 610 454 145 139
RDB1250L 524 513 436 449
RDB2048 887 181 185 170
RDB2048L 755 615 588 598
RDB3200L 842 738 736 729
RDB450 376 259 90 85
RDB450L 343 295 280 309
RDB800L 429 421 354 391
RW136 170 128 109 108
RW496 247 179 164 168
RW5151 743 514 406 473
TOLS90 - - 330 1295
TUB100 318 181 154 165
TUB1000 - 4042 3730 1696
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deflated system. These theoretical results imply that retaining more outermost Ritz
pairs can enhance convergence.

For the symmetric case, the results can be interpreted as an effort to increase the
gap ratio for the required eigenvalues. Since the number of basis vectors is limited,
the actual objective is to maximize the error reduction between restarts. This gives
rise to a dynamic thick restarting technique which applies to IRA(k,m) and to the
preconditioned GD(k,m). The extensive numerical experiments demonstrate the ef-
ficiency and robustness of the dynamic thick restarting and show that the robustness
carries over to the nonsymmetric case. In addition, this scheme seems to be much
less sensitive to smaller Krylov subspace dimensions and can be extremely beneficial
in very large eigenvalue problems.
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Abstract. In the above-mentioned paper [SIAM J. Control Optim., 34 (1996), pp. 2116–2132],
despite the correct results, the proof of Theorem 4.6 has a subtle mistake. In the following paragraphs
the correct proof, including Lemmas 4.7, 4.8, and 4.9, are given.
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Theorem 4.6. Consider the following variational inequality for all (x, π) ∈
R
n × [0, 1]:

max

{
sup
u∈U

[−`(x, u)− g(x, u)·DxV (x, π)], V (x, π)− ψ(x, π)

}
= 0,(1)

and make all the assumptions of Theorem 4.2; then if ψ(x, π) ≥ 0 ∀ (x, π) ∈ R
n×[0, 1]

there is at most one viscosity solution of (1).
Without loss of generality we drop π in all the following arguments. We will need

the following lemmas.
Lemma 4.7. Define H(x, p): = supu∈U [−`(x, u) − g(x, u) · p]; then H(x, p) is a

convex function with respect to p.
Proof. This is easily verified.
Lemma 4.8. Define

H̃(x, r, p): = max{H(x, p), r − ψ(x)},
where

`(x, u) ≥ δ > 0 ∀ (x, u) ∈ R
n × U,

ψ(x) ≥ 0 ∀ x ∈ R
n.

Then H̃(x, V,DV ) has a strict subsolution [BP88]; i.e.,

∃w ∈ C1(Rn) ∩BUC(Rn), B > 0, s.t. H̃(x,w,Dw) ≤ −β < 0 in R
n.

Proof. It is easily seen that w(x) ≡ −δ is a strict subsolution; i.e., max{H(x, 0), −
δ − ψ(x)} ≤ −δ < 0.

Lemma 4.9. Assume that v1(x) is a viscosity subsolution of H̃(x, V,DV ) = 0.
Then vη = ηv1 + (1− η)w is a viscosity subsolution of

H̃(x, V,DV ) ≤ −(1− η)δ < 0,(2)
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where w(x) is a strict subsolution and η ∈ (0, 1).
Proof. v1 is a viscosity subsolution of H̃(x, V,DV ) = 0, so for all ϕ ∈ C1(Rn), if

v1 − ϕ attains a local maximum at x0 ∈ R
n, then

H̃(x0, v1(x0), Dϕ(x0)) ≤ 0.

When v1−ϕ attains a local maximum at x0, so does ηv1 +(1− η)w− (ηϕ+(1− η)w)
for η ∈ (0, 1). Here w ∈ C1(Rn) is a strict subsolution of H̃. Now we show that
ηv1 + (1− η)w is a strict viscosity subsolution of H̃:

H̃(x0, ηv1(x0) + (1− η)w(x0), ηDϕ(x0) + (1− η)Dw(x0))

= max{H(x0, ηDϕ(x0) + (1− η)Dw(x0)), ηv1(x0) + (1− η)w(x0)− ψ(x0)}
≤ max{ηH(x0, Dϕ(x0)) + (1− η)H(x0, Dw(x0)), ηv1(x0) + (1− η)w(x0)− ψ(x0)}
≤ ηmax{H(x0, Dϕ(x0)), v1(x0)− ψ(x0)}

+ (1− η) max{H(x0, Dw(x0)), w(x0)− ψ(x0)}
≤ −(1− η)δ < 0,

because v1 is a viscosity subsolution and w is a strict subsolution.
Proof of Theorem 4.6. Consider the following auxiliary test function:

Φε,α(x, y) = vη(x)− v2(y)− | x− y |2
2ε

− α

2
(| x |2 + | y |2), ε, α > 0,

where vη and v2 are a viscosity subsolution and a viscosity supersolution of (2) and (1),
respectively. By definition, vη, v2 ∈ BUC(Rn). Let us define Mη = sup

Rn(vη − v2);
then if Mε,α denotes the maximum of Φε,α, one can prove the following properties
(refer to Theorem 2.11 in [Bar94]).

• Mε,α →Mη as (ε, α) → 0.
• If (xε,α, yε,α) denotes the maximum point of Φε,α then

(a) vη(xε,α)− v2(yε,α) →Mη when (ε, α) → 0,

(b)
|xε,α−yε,α|2

ε → 0 when (ε, α) → 0,
(c) α(| xε,α |2 + | yε,α |2) → 0 when (ε, α) → 0.

Thus one can conclude that | xε,α − yε,α |→ 0 and αxε,α, αyε,α → 0 when (ε, α) → 0.
Define

w1(x) = v2(yε,α) +
| x− yε,α |2

2ε
+
α

2
(| x |2 + | yε,α |2);

then obviously w1 ∈ C∞(Rn) and vη −w1 attains its maximum at xε,α. According to
Lemma 4.9 we have

max{H(xε,α, pε,α + αxε,α), vη(xε,α)− ψ(xε,α)} ≤ −δη < 0,(3)

where pε,α: = (xε,α − yε,α)/ε and δη: = (1− η)δ. Now define

w2(y) = vη(xε,α)− | xε,α − y |2
2ε

− α

2
(| xε,α |2 + | y |2),

where w2 ∈ C∞(Rn) and v2 − w2 attains its minimum at yε,α, thus

max{H(yε,α, pε,α − αyε,α), v2(yε,α)− ψ(yε,α)} ≥ 0.(4)
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The inequality in (3) implies that

{
H(xε,α, pε,α + αxε,α) ≤ −δη < 0
vη(xε,α)− ψ(xε,α) ≤ −δη < 0

∀ε, α > 0.(5)

One can show that

|H(xε,α, pε,α + αxε,α)−H(yε,α, pε,α − αyε,α)| ≤ m`(|xε,α − yε,α|)
+K|xε,α − yε,α||pε,α + αxε,α|
+ Cα|xε,α + yε,α|,

where m` ∈ C([0,∞)) with m`(0) = 0 (i.e., m` is the modulus of continuity for `),
K is the Lipschitz constant of g, and C = sup(x,u) |g(x, u)|. Finally taking the limit
when (ε, α) → 0 gives

lim
(ε,α)→0

|H(xε,α, pε,α + αxε,α)−H(yε,α, pε,α − αyε,α)| = 0;

thus there exists ε0, α0 > 0 such that for all 0 < ε < ε0 and 0 < α < α0 we have (see
the first inequality in (5))

H(yε,α, pε,α − αyε,α) ≤ −δη/2 < 0.(6)

Using (4) and (6) one can easily conclude that

v2(yε,α)− ψ(yε,α) ≥ 0 ∀ 0 < ε < ε0 and 0 < α < α0.

Since for all x ∈ R
n, Φε,α(x, x) ≤ Φε,α(xε,α, yε,α), one can write

vη(x)− v2(x)− α | x |2 ≤ vη(xε,α)− v2(yε,α)− |xε,α − yε,α|2
2ε

− α

2
(|xε,α|2 + |yε,α|2),

= (vη(xε,α)− ψ(xε,α))− (v2(yε,α)− ψ(yε,α))

+ (ψ(xε,α)− ψ(yε,α))− |xε,α − yε,α|2
2ε

− α

2
(|xε,α|2 + |yε,α|2),

≤ (ψ(xε,α)− ψ(yε,α))− |xε,α − yε,α|2
2ε

− α

2
(|xε,α|2 + |yε,α|2),

where in the last inequality we have 0 < ε < ε0 and 0 < α < α0, so when (ε, α) → 0
one gets vη(x)− v2(x) ≤ 0 or

vη(x) ≤ v2(x).

Now let vη(x) = ηv1(x) + (1− η)w(x), where v1 is a viscosity subsolution and w is a
strict subsolution (see Lemma 4.9); then we have

ηv1(x) + (1− η)w(x) ≤ v2(x) ∀x ∈ R
n and η ∈ (0, 1).
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Let η → 1 and one finally gets

v1(x) ≤ v2(x).(7)

The inequality in (7) simply says that any viscosity subsolution is less than or equal
to any viscosity supersolution. A viscosity solution is both a viscosity subsolution and
a viscosity supersolution, so if V1 and V2 are two different viscosity solutions for (1),
then by (7) we must have V1 ≤ V2 and V1 ≥ V2, which implies that V1 = V2. So there
is at most one viscosity solution of (1).
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Abstract. We discuss the relation between exponential stabilization and asymptotic controllabil-
ity of nonlinear control systems with constrained control range at singular points. Using a discounted
optimal control approach, we construct discrete feedback laws minimizing the Lyapunov exponent of
the linearization. Thus we obtain an equivalence result between uniform exponential controllability
and uniform exponential stabilizability by means of a discrete feedback law.
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1. Introduction. In this paper we will present a technique for the exponential
stabilization of nonlinear control systems with constrained control range at singular
points. In particular we address the relation between asymptotic controllability and
exponential stabilization and will derive an equivalence theorem. In our context a
singular point is a fixed point for each admissible control value of the control system.
Such singular situations do typically occur if the control enters in the parameters of
an uncontrolled system at a fixed point, for instance, when the restoring force of a
nonlinear oscillator is controlled. One example to which our results can be applied is
the stabilization problem of an inverted pendulum for which the suspension point is
moved up and down periodically and the period of this motion can be controlled; cf.
[14]. The main tool used throughout this paper is the linearization of the nonlinear
system which forms a semilinear system. For two-dimensional control affine systems
this linearization approach has been carried out in [4], giving a characterization of
feedback stabilizability by algebraic methods.

The approach we follow here is based on optimal control techniques. More pre-
cisely, we consider the Lyapunov exponents of the linearization and formulate a dis-
counted optimal control problem in order to minimize these exponents—an idea that
was first presented in [12]. Lyapunov exponents have recently turned out to be a
suitable tool for the stability analysis of semilinear systems, see, e.g., [7] and [8], and
also for their stabilization [11]. However, due to the fact that for discounted opti-
mal control problems optimal feedback laws are in general not available, we modify
the feedback concept and introduce discrete feedback laws that are based on a discrete
time sampled approximation of the given continuous time system. Using this approach
it could be shown in [11] that, for semilinear systems satisfying an accessibility con-
dition, exponential null controllability is equivalent to exponential stabilizability by
discrete feedback. Using a similar feedback concept, a result on the relation between
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asymptotic null controllability and practical stabilization for nonlinear systems has
been developed in [5] using Lyapunov functions.

This paper is organized into two parts. In the first part we will focus on semilinear
systems and extend the results from [11] and [12]. In particular in section 3 we will
discuss different null controllability concepts for semilinear systems and extend the
approximation results from [12] to general semilinear systems without any accessibility
assumptions. Then in section 4 we will use this result in order to construct a stabilizing
discrete feedback law following the outline of [11].

In the second part we will apply this discrete feedback to a general nonlinear
system at a singular point. For this purpose we will first prove a robustness property
of the discrete feedback in section 5. Using this result we will present the main theorem
in section 6, stating that (local) uniform exponential null controllability is equivalent
to (local) exponential stabilizability by means of a discrete feedback.

2. Preliminaries. We are interested in the stabilization of nonlinear control
systems on R

d ×M given by

ẋ(t) = f(x(t), y(t), u(t)),
ẏ(t) = g(y(t), u(t)),

(2.1)

where x ∈ R
d and y ∈ M , M is some Riemannian manifold and f and g are vector

fields which are C2 in x, Lipschitz in y, and continuous in u. The control function
u(·) may be chosen from the set U := {u : R → U |u(·) measurable}, where U ⊂ R

m

is compact, i.e., we have a constrained set of control values.
For each pair (x0, y0) of initial values, the trajectories of (2.1) will be denoted by

the pair (x(t, x0, y0, u(·)), y(t, y0, u(·))) and we assume them to exist uniquely for all
times.

Our interest lies in the stabilization of the x-component at a singular point x∗,
i.e., a point where f(x∗, y, u) = 0 for all (y, u) ∈ M × U . Throughout the paper we
will assume x∗ = 0.

Note that our general setup covers several models: the additional equation for y
allows us to model systems where time varying parametric excitations governed by an
additional (nonlinear) control or dynamical system enter the system to be stabilized.
The case in which the control u does not enter explicitly in the function f and the
case in which f does not depend on y occur as special situations in this setup; hence
they are also covered.

Our main tool for the stabilization is the linearization of (2.1) at the singular
point which is given by

ż(t) = A(y(t), u(t))z(t),
ẏ(t) = g(y(t), u(t)).

(2.2)

Here A(y, u) := ∂
∂xf(x∗, y, u) ∈ R

d×d and f(x, y, u) = A(y, u)x + f̃(x, y, u). Then for
any given compact subset K ⊂ M the differentiability assumption on f implies the
inequality

‖f̃(x, y, u)‖ ≤ Cf‖x‖2(2.3)

which holds for some constant Cf for all y ∈ K and all x in a neighborhood of x∗.
As above we denote the trajectories of (2.2) by (z(t, z0, y0, u(·)), y(t, y0, u(·))) for

the pair of initial values (z0, y0).
The first step is now to analyze and characterize the null controllability of (2.2).
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3. Lyapunov exponents and their approximation. This section is con-
cerned with the asymptotic null controllability of the semilinear system (2.2). From
[7] it is known for bilinear systems that exponential null controllability of (2.2) can
be characterized by certain Lyapunov exponents, provided an accessibility condition
holds and the matrix A does not depend on y. These conditions will be dropped
here and in addition we will show that the characterization is also valid if we replace
exponential null controllability with asymptotic null controllability.

We will first introduce some concepts that will help us characterize the properties
of (2.2); see [6] and [7] for more details. Afterwards we will show the relation between
different concepts of null controllability and then use these results in order to extend
the approximation results from [12].

In order to measure the exponential null controllability we define the Lyapunov
exponent of a trajectory of (2.2) by

λ(z0, y0, u(·)) := lim sup
t→∞

1

t
ln ‖z(t, z0, y0, u(·)‖.

Clearly λ(z0, y0, u(·)) < 0 iff the corresponding trajectory converges to the origin
exponentially fast. For each pair of initial values we define the infimal Lyapunov
exponent by

λ∗(z0, y0) := inf
u(·)∈U

λ(z0, y0, u(·)).

From the linearity of (2.2) it follows that λ(z0, y0, u(·)) = λ(αz0, y0, u(·)) for all
α ∈ R \ {0}. Hence we can use the projection of the z component to the unit sphere
S
d−1 which is given by

ṡ(t) = h(s(t), y(t), u(t)),
ẏ(t) = g(y(t), u(t)),

(3.1)

where h(s, y, u) = [A(y, u) − sTA(y, u)s, Id]s, where Id denotes the d × d identity
matrix. Denoting the projected trajectory by s(t, s0, y0, u(·)), it follows from the chain
rule that for s0 = z0

‖z0‖ the Lyapunov exponent can be written as

λ(s0, y0, u(·)) = lim sup
t→∞

1

t

∫ t

0

q(s(τ, s0, y0, u(·)), y(τ, y0, u(·)), u(τ))dτ,(3.2)

where q(s, y, u) := sTA(y, u)s. This integral is also referred to as an averaged func-
tional.

By defining the exponential growth rate in finite time t,

λt(z0, y0, u(·)) :=
1

t
ln
‖z(t, z0, y0, u(·)‖

‖z0‖ ,

it is easily seen that

‖z(t, z0, y0, u(·))‖ = etλ
t(z0,y0,u(·))‖z0‖.(3.3)

As above, this expression can be written in integral form using the projected system,
i.e., for s0 = z0

‖z0‖ we obtain

λt(s0, y0, u(·)) =
1

t

∫ t

0

q(s(τ, s0, y0, u(·)), y(τ, y0, u(·)), u(τ))dτ.
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In our definitions of null controllability we need the notion of a positively invariant
set for the subsystem on M .

Definition 3.1. A subset K ⊆M is called positively invariant for the subsystem
of (2.2) on M if for all y0 ∈ K and all control functions u(·) ∈ U the corresponding
trajectory satisfies y(t, y0, u(·)) ∈ K for all t > 0.

Now we can define the concepts of null controllability; cf. also the stability con-
cepts in [15].

Definition 3.2. Let K ⊆ M be a compact positively invariant set for the sub-
system of (2.2) on M .

(i) The system (2.2) is called asymptotically null controllable over K if for any
pair of initial values (z0, y0) ∈ R

d ×K there exists a control function u(·) ∈ U such
that

lim
t→0

‖z(t, z0, y0, u(·))‖ = 0.

(ii) The system (2.2) is called exponentially null controllable over K if λ∗ satisfies
sup(z0,y0)∈Rd×K λ∗(z0, y0) < 0.

(iii) The system (2.2) is called uniformly exponentially null controllable over K if
there exist constants C, α > 0, such that for any pair of initial values (z0, y0) ∈ R

d×K
there exists a control function u(z0,y0)(·) ∈ U with

‖z(t, z0, y0, u(z0,y0)(·))‖ ≤ Ce−αt‖z0‖.

An immediate consequence from (3.3) is that (2.2) is uniformly exponentially null
controllable over K iff there exists a time T > 0 and a constant σ < 0 such that for any
pair of initial values (z0, y0) ∈ R

d ×K there exists a control function u(z0,y0)(·) ∈ U
with

λt(z0, y0, u(z0,y0)(·)) ≤ σ < 0

for all t ≥ T .
It is easily seen from this definition that (iii) ⇒ (ii) ⇒ (i). In fact the converse is

also true, i.e., the definitions are equivalent as the following proposition shows.
Proposition 3.3. Let K ⊆ M be a compact positively invariant set for the

subsystem of (2.2) on M . Then for the system (2.2), asymptotic null controllability
over K implies uniform exponential null controllability over K.

Proof. We will first show the following property: there exist T > 0 and σ < 0 such
that for each (z, y) ∈ R

d ×K there exists a control function u(z,y)(·) ∈ U and a time
t(z,y) ≤ T such that λt(z,y)(z, y, u(z,y)(·)) < σ.

The asymptotic null controllability implies that for each (z̃0, ỹ0) ∈ R
d ×K there

exists a time t̃(z̃0,ỹ0) and a control function ũ(z̃0,ỹ0)(·), such that

‖z(t̃(z̃0,ỹ0), z̃0, ỹ0, ũ(z̃0,ỹ0)(·))‖ <
1

3
‖z̃0‖.

Considering only those z̃0 with ‖z̃0‖ = 1 (i.e., z̃0 ∈ S
d−1) and using the continuous

dependence on the initial value, we find a neighborhood U(z̃0, ỹ0) in S
d−1 ×K such

that for each (z, y) ∈ U(z̃0, ỹ0) it holds that

‖z(t̃(z̃0,ỹ0), z, y, ũ(z̃0,ỹ0)(·))‖ <
1

2
‖z‖.
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Hence it follows that λt̃(z̃0,ỹ0)(z, y, ũ(z̃0,ỹ0)(·)) < γ(z̃0,ỹ0) < 0, where

γ(z̃0,ỹ0) =
ln 1

2

t̃(z̃0,ỹ0)
.

By the compactness of S
d−1 × K we may pick a finite number of pairs (z̃0, ỹ0)

such that the neighborhoods U(z̃0, ỹ0) cover S
d−1 ×K. Now the independence of λt

from the norm of z yields the asserted property, where T is the maximum over all
t̃(z̃0,ỹ0) and σ < 0 the maximum over all γ(z̃0,ỹ0).

Now pick an arbitrary pair (z0, y0) of initial values. We use the control u0(·) :=
u(z0,y0)(·) from above up to the time t1 := t(z0,y0) < T from above and end up at the
point (z1, y1) = (z(t1, z0, y0, u0(·)), y(t0, y0, u0(·))). We continue iteratively by defining
ti+1 := ti+ t(zi,yi) and ui(·) := u(zi,yi)(·) and define a control function u : R

+ → U by

u(t) := ui(t− ti), t ∈ [ti, ti+1]

for i ∈ N0, where t0 := 0.

This yields λti(z0, y0, u(·)) < σ for all ti, i ∈ N0, and since ti− ti−1 < T, it follows
that for any t > 0 there exists ti =: ti(t) with 0 ≤ t− ti(t) < T . By the definition of
λt we obtain

λt(z0, y0, u(·)) =
ti(t)

t
λti(t)(z0, y0, u(·)) +

t− ti(t)

t
λt−ti(t)(zi, yi, ui(·))

which yields

λt(z0, y0, u(·)) < σ + ε(t),

where

ε(t) =
t− ti(t)

t

(
λt−ti(t)(zi, yi, ui(·))− λti(t)(z0, y0, u(·))),

implying ε(t) → 0 for t→∞ independently from (z0, y0) since λt is uniformly bounded
for all t > 0 and all (z, y) ∈ R

d ×K. Hence there exists ε > 0 and a time T > 0 such
that λt(z0, y0, u(·)) < σ + ε < 0 for all t ≥ T, and the assertion follows.

Using essentially the same arguments as in the previous proof, we can also deter-
mine the uniform upper bound for the values of the λt.

Proposition 3.4. Let K ⊆ M be a compact positively invariant set for the
subsystem of (2.2) on M . Let σ := sup(z0,y0)∈Rd×K λ∗(z0, y0). Then for each ε > 0

there exists a T > 0 such that for any (z0, y0) ∈ R
d×K there exists a control function

u(·) ∈ U satisfying

λt(z0, y0, u(·)) < σ + ε

for all t ≥ T .

Proof. For any pair (z̃0, ỹ0) ∈ R
d × K there exists a control function ũ(z̃0,ỹ0)(·)

and a time t̃(z̃0,ỹ0) such that

λt̃(z̃0,ỹ0)(z̃0, ỹ0, ũ(z̃0,ỹ0)(·)) < σ +
ε

3
.
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As in the previous proof, continuous dependence and compactness implies that for
any pair (z, y) there exist t(z,y) bounded by some T̃ and control functions u(z,y) ∈ U ,
such that

λt(z,y)(z, y, u(z,y)(·)) < σ +
ε

2
.

Following the previous proof we can iteratively construct control functions satis-
fying

λt(z0, y0, u(·)) < σ +
ε

2
+ ε(t).

Again ε(t) can be chosen independently from (z0, y0) and ε(t) → 0 as t → ∞; hence
the assertion follows by choosing T such that ε(t) < ε

2 for all t ≥ T .
This result implies that the α in Definition 3.2 (iii) can be chosen arbitrarily close

to the sup-inf Lyapunov exponent σ as defined in Proposition 3.4. This Lyapunov
exponent therefore gives the characteristic value for the null controllability of (2.2).

The construction of the stabilizing discrete feedback in the next section — follow-
ing the outline of [11] — is based on the minimization of the Lyapunov exponent. This
is related to minimizing (3.2) which forms an average time optimal control problem,
for which the construction of optimal feedback controls is still an unsolved problem.

Hence we will not approach this problem directly but will use the approximation
of (3.2) by a discounted functional with discount rate δ > 0 defined by

Jδ(s0, y0, u(·)) :=

∫ ∞

0

e−δτq(s(τ, s0, y0, u(·)), y(τ, y0, u(·)), u(τ))dτ.(3.4)

The function

vδ(s0, y0) := inf
u(·)∈U

Jδ(s0, y0, u(·))(3.5)

is called the optimal value function of this discounted optimal control problem.
The relation between this problem and the minimization of (3.2) has been dis-

cussed in [12] for the case where (3.1) is locally accessible, exploiting the controllability
properties of (3.1). Here we will use Proposition 3.4 in combination with a stronger
version of the approximation theorems from [12] in order to show this relation without
assuming local accessibility.

Lemma 3.5 (approximation theorems). Let q : R → R be a measurable function
satisfying |q(s)| < Mq for almost all s ∈ R.

(i) Assume there exists a time T > 0 such that

1

t

∫ t

0

q(τ)dτ < σ for all t ≥ T.

Then for any ε > 0 and all 0 < δ < ε
(Mq+σ+ε)T the following inequality holds:

δ

∫ ∞

0

e−δτq(τ)dτ ≤ σ + ε.

(ii) Let δ > 0 be arbitrary and let

δ

∫ ∞

0

e−δτq(τ)dτ =: σ.
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Then for any ε > 0 there exists a T ∈ [ ε
(4Mq+4σ+ε)δ ,− 1

δ ln ε
4Mq

] satisfying

1

T

∫ T

0

q(τ)dτ ≤ σ + ε.

(iii) Let δ > 0 be arbitrary and let σ ∈ R such that

δ

∫ ∞

0

e−δτq(t+ τ)dτ ≤ σ for all t ≥ 0.

Then

lim sup
T→∞

1

T

∫ T

0

q(τ)dτ ≤ σ

Proof. The rather technical proof can be found in the appendix.
Next we can formulate the consequence for the optimal value function.
Theorem 3.6. Let K ⊆M be a compact positively invariant set for the subsystem

on M of (2.2). Then

lim
δ→0

sup
(s,y)∈Sd−1×K

δvδ(s, y) = sup
(s,y)∈Sd−1×K

λ∗(s, y).

Proof. Let σ := sup(s,y)∈Sd−1×K λ∗(s, y) and ε > 0. By Proposition 3.4 there exists

a time T > 0 such that for each pair (s, y) ∈ S
d−1 ×K there exists a control function

u(·) ∈ U such that

λt(s, y, u(·)) < σ +
ε

2
.

By Lemma 3.5 (i) this implies

δJδ(s, y, u(·)) < σ + ε

for all sufficiently small δ > 0. Since ε > 0 was arbitrary this implies

lim sup
δ→0

sup
(s,y)∈Sd−1×K

δvδ(s, y) ≤ σ.

Now assume lim infδ→0 sup(s,y)∈Sd−1×K δvδ(s, y) = γ < σ. Then there exists δ > 0
such that by Bellman’s optimality principle [19, Theorem 1.2] for each pair (s, y) there
exists a control function u(·) satisfying

δJδ(s(t, s, y, u(·)), y(t, y, u(·)), u(t+ ·)) < γ̃ < σ

for all t ≥ 0. Now by Lemma 3.5 (iii) it follows that λ∗(s, y) ≤ γ̃ < σ which contradicts
the definition of σ. Hence the assertion follows.

This theorem states that the Lyapunov exponent that gives the characteristic
number for null controllability can be approximated by the value function of a dis-
counted optimal control problem.

Since algorithms for the numerical computation of vδ are known (cf., e.g., [9]
and [13]) this theorem also lays the foundation for the numerical null controllability
analysis of semilinear systems; see also [12]. This is of particular interest because
the question of whether (2.2) is null controllable cannot in general be answered by
analytical methods.
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4. Construction of the discrete feedback. We will now present a feedback
construction for the (approximately) optimal solution of the discounted optimal con-
trol problem defined by (3.4) and (3.5), which will then be stabilizing for (2.2).

In general the construction of optimal feedback laws for discounted optimal con-
trol problems is an unsolved problem. One of the main problems is that optimal
feedbacks are typically discontinuous and hence properties such as the existence and
uniqueness of the corresponding solutions are no longer guaranteed. Some effort has
been made in order to take these difficulties into account, e.g., by using differential
inclusions (see [10] and [1]). However, apart from the fact that this approach leads
to a characterization of optimal trajectories rather than to a construction of a feed-
back law, from the stabilization (and application) point of view it seems desirable to
preserve these properties. Furthermore we will need a certain robustness property, as
discussed in section 5, in order to apply the feedback to the nonlinear system.

These considerations lead to a somewhat modified feedback concept which is
based on an approximation of U as introduced in [11]. Theorem 3.6 yields the property
needed for the construction of the stabilizing discrete feedback in sections 3 and 4 of
[11] and our construction now follows this outline. We will therefore just give the idea
of the construction and omit the proofs except for the concluding theorem.

We approximate U by

Uh := {u : R → U |u|[ih,(i+1)h) ≡ ui for all i ∈ Z}
for some time step h > 0. This discretization for discounted optimal control problems
bears some similarity to the discretization in [2] and [3]; in fact what we obtain is a
discrete time system by the process of sampling (cf., [21, section 2.10]):

si+1 = s(h, si, yi, ui), yi+1 = y(h, yi, ui),(4.1)

where (ui)i∈Z ∈ UZ.
Defining

vhδ (s0, y0) := inf
u(·)∈Uh

Jδ(s0, y0, u(·)),

the approximation property

‖vδ − vhδ ‖∞ ≤ Ch
γ
2

holds for γ = δ/L where L denotes the Lipschitz constant of (3.1); see [3].
Bellman’s optimality principle [19, Theorem 1.2] yields

vhδ (s0, y0)

= inf
u∈U

{∫ h

0

e−δτq(s(τ, s0, y0, u), y(τ, y0, u), u)dτ +e−δhvhδ (s(h, s0, y0, u), y(h, y0, u))

}
.

By the continuity of all functions involved and the compactness of U, we can now
define a function F : S

d−1 × K → U by choosing F (s0, y0) := u ∈ U such that the
infimum above is attained in u.

We may now apply F to (3.1) by

ṡ(t) = h(s(t), y(t), F (s(
[
t
h

]
h), y(

[
t
h

]
h))),

ẏ(t) = g(y(t), F (s(
[
t
h

]
h), y(

[
t
h

]
h))).

(4.2)
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We denote the solution trajectories of (4.2) by (sF (t, s0, y0), yF (t, y0)).
Feedback laws of this kind can be found in the literature under the name of

modified feedback control [16], [17], sample-and-hold control, or sampled feedback [20],
[22], and step-by-step control [18]. Of particular interest in this context is the recent
work [5] where a stabilization result using a “sampled feedback” control is presented.
We will discuss the relation between this work and the present paper in section 6.

In our terminology we call F a “discrete” feedback control, a notion being mo-
tivated by the fact that F is indeed a feedback control for the discrete time system
(4.1). From this interpretation the existence and uniqueness of the trajectories of (4.2)
is immediately clear.

If we evaluate

Jδ(s, y, F ) :=

∫ ∞

0

e−δτq
(
sF (τ, s, y), yF (τ, y), F

(
sF

([ τ
h

]
h, s, y

)
, yF

([ τ
h

]
h, y

)
τ
))

dτ,

i.e., the discounted value along the trajectories of (4.2), it follows that Jδ(s, y, F ) =
vhδ (s, y) for all initial values (s, y) ∈ S × K ([11, Theorem 3.6]). Hence F forms an
optimal discrete feedback for the discounted optimal control problem with respect to
the discretized control functions from Uh.

In the same way we define the averaged value along the trajectories by

λt(s, y, F ) :=
1

t

∫ t

0

q
(
sF (τ, s, y), yF (τ, y), F

(
sF

([ τ
h

]
h, s, y

)
, yF

([ τ
h

]
h, y

)
τ
))

dτ.

By defining FR(z, y) := F (z/‖z‖, y) we can apply FR to the nonprojected system
(2.2) by

ż(t) = A(y(t), FR(s(
[
t
h

]
h), y(

[
t
h

]
h)))z(t),

ẏ(t) = g(y(t), FR(z(
[
t
h

]
h), y(

[
t
h

]
h))).

(4.3)

As above we denote the corresponding trajectories by (xFR
(t, x0, y0), yFR

(t, y0)). Ap-
plying FR this way we can state the following theorem.

Theorem 4.1. Let K ⊆M be a compact positively invariant set for the subsystem
of (2.2) on M. Then (2.2) is asymptotically null controllable over K iff there exists a
time step h and a discrete feedback law FR : R×K → U such that (4.3) is uniformly
exponentially stable, i.e., there exists C, α > 0 such that every trajectory of (4.3)
satisfies the condition from Definition 3.2 (iii).

Proof (“ ⇒ ”). Assume asymptotic null controllability of (2.2). By [11, Corollary
3.7], it follows that for any ε > 0 there exists h > 0 such that the discrete feedback
as defined above satisfies

δJδ(s, y, F ) < δvδ(s, y) + ε.(4.4)

Choosing δ > 0 sufficiently small, Proposition 3.3 implies that there exists σ < 0 such
that δJδ(s, y, F ) < σ, hence from Lemma 3.5 (ii) we can conclude that for any ε > 0
there exists a bounded time t = t(ε) > 0 such that λt(s, y, F ) < σ + ε. Using [11,
Lemma 4.1] we obtain estimate (4.4) for the next trajectory piece and can inductively
obtain the assertion as in the proof of Proposition 3.3.

(“⇐”). This direction is immediately clear.
Note that this stabilizing discrete feedback law is numerically computable — at

least for lower-dimensional systems — using the algorithm proposed in [11] and [13].
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5. Robustness of the discrete feedback control. From the definition of the
discrete feedback F and FR it is obvious that these functions are typically discontin-
uous. Hence by applying this feedback law, continuous dependence of the trajectories
on the initial value will in general not hold.

This gives rise to the question of the robustness of the optimal trajectories. More
precisely: do optimal trajectories remain approximately optimal under small pertur-
bations?

The answer is given in the following proposition and is essentially based on the
Hölder continuity of vhδ which satisfies

|vhδ (s, y)− vhδ (s̃, ỹ)| ≤ C(dS(s, s̃) + dM (y, ỹ))γ ,

where γ = δ/L and L is the Lipschitz constant of (3.1). For systems in R
n this

immediately follows from [3, Lemma 4.1]; the proof is easily transferred to general
manifolds. Here dS and dM denote some metrics on S and M , respectively.

In what follows we allow time varying perturbations of the following kind: assume
that we have a time varying system on S

d−1 ×K given by

ṡ(t) = h̃(t, s(t), y(t), u(t)),
ẏ(t) = g̃(t, y(t), u(t)),

(5.1)

with trajectories (s̃(t, t∗, s0, y0, u(·)), ỹ(t, t∗, y0, u(·))) using the initial time t∗. For
some pair of initial values (s0, y0) and a discrete Feedback F with time step h > 0,
we denote the solution trajectories of (5.1) applying F with initial time t∗ = 0 by
(s̃F (t, s0, y0), ỹF (t, y0)). Using the abbreviations ti := ih, s̃i := s̃F (ti, s0, y0), ỹi :=
ỹF (ti, y0), and ui := F (s̃i, ỹi) we assume

dS(s̃(t, ti, s̃i, ỹi, ui), s(t, s̃i, ỹi, ui)) + dM (ỹ(t, ti, ỹi, ui), y(t, ỹi, ui)) < εi(5.2)

for all t ∈ [0, h], all i ∈ N, and some sequence (εi)i∈N.
Proposition 5.1. Consider the system (3.1), a time step h, the corresponding

optimal value function vhδ , and the optimal discrete feedback F . Assume that a sys-
tem (5.1) with the property (5.2) for some pair of initial values (s, y) is given and
denote the trajectories of (5.1) with initial time t∗ = 0 and the discrete feedback F by
(s̃F (t, s0, y0), ỹF (t, y0)).

Then for any k ∈ N the following inequality holds:

|vhδ (s, y)− J̃δ(s, y, F )| < C
k−1∑
i=0

e−δhiεγi + 2e−δhk
Mq

δ
,

where

J̃δ(s, y, F ) :=

∫ ∞

0

e−δτq
(
s̃F (τ, s, y), ỹF (τ, y), F

(
s̃F

([ τ
h

]
h, s, y

)
, ỹF

([ τ
h

]
h, y

)
τ
))

dτ

is the value along the discrete feedback controlled trajectory of (5.1) and Mq is the
bound of |q| on S

d−1 ×K.
Remark 5.2. Note that the right-hand side of this inequality becomes small if the

εi are small for all sufficiently large i ∈ N.
Proof. From the definition of F and the assumption (5.2) it follows that

vhδ (s, y) =

∫ h

0

q(sF (τ, s, y), yF (τ, y), F (s, y)) + e−δhvhδ (sF (h, s, y), yF (h, y))

=

∫ h

0

q(s̃F (τ, s, y), ỹF (τ, y), F (s, y)) + e−δhvhδ (s̃F (h, s, y), ỹF (h, y)) + C̃εγ0 ,
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where |C̃| < C. On the other hand, we obtain

J̃δ(s, y, F ) =

∫ h

0

q(s̃F (τ, s, y), ỹF (τ, y), F (s, y)) + e−δhJ̃δ(s̃F (h, s, y), ỹF (h, y), F ).

This yields

|vhδ (s, y)− J̃δ(s, y, F )|
≤ e−δh|vhδ (s̃F (h, s, y), ỹF (h, y))− J̃δ(s̃F (h, s, y), ỹF (h, y), F )|+ Cεγ0 .

By observing that vhδ and J̃δ are bounded by Mq/δ, the assertion follows by induc-
tion.

This robustness property is the main tool for the linearization result in the next
section.

6. Stabilization of the nonlinear system. We will now return to our original
system (2.1). We recall the fact that f(x, y, u) = A(y, u)x+ f̃(x, y, u), where for y in
a compact set K ⊂ M the estimate ‖f̃(x, y, u)‖ ≤ Cf‖x‖2 holds for all x ∈ Bηf (0),
the ball with radius ηf around 0; cf. (2.3).

In analogy to Definition 3.2 we begin by defining the controllability concepts for
system (2.1). Since we assume that the singular point x∗ coincides with the origin
we may again formulate these concepts in terms of null controllability. As in the
semilinear case, we denote the exponential growth rates of a trajectory by

λtf (x0, y0, u(·)) :=
1

t
ln
‖x(t, x0, y0, u(·))‖

‖x0‖
and

λ∗f (x0, y0) := inf
u(·)∈U

lim sup
t→∞

λt(x0, y0, u(·)).

Definition 6.1. Let K ⊆ M be a compact positively invariant set for the sub-
system of (2.1) on M .

(i) The system (2.1) is called (locally) asymptotically null controllable over K if
there exists a neighborhood B(0) of 0 such that for any pair of initial values (x0, y0) ∈
B(0)×K there exists a control function u(·) ∈ U with

lim
t→0

‖x(t, z0, y0, u(·))‖ = 0.

(ii) The system (2.1) is called (locally) exponentially null controllable over K if
there exists a neighborhood B(0) of 0 such that sup(x0,y0)∈B(0)×K λ∗f (x0, y0) < 0.

(iii) The system (2.2) is called (locally) uniformly exponentially null controllable
over K if there exists a neighborhood B(0) of 0 and constants C, α > 0, such that
for any pair of initial values (x0, y0) ∈ B(0) × K there exists a control function
u(x0,y0)(·) ∈ U with

‖z(t, x0, y0, u(x0,y0)(·))‖ ≤ Ce−αt‖x0‖.

As in the semilinear case, the implications (iii) ⇒ (ii) ⇒ (i) are obvious. However,
for nonlinear systems the converse is not true, as the example below will show. Note
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that frequently the notion of exponential stability already demands the uniformity as
in (iii); cf., e.g., [23] or [24].

We will now first prove some a priori estimates for the solutions of (2.1) and (2.2).
Lemma 6.2. Abbreviate with (x(t), y(t)) and (z(t), y(t)) the solutions of the sys-

tems (2.1) and (2.2) for a pair of initial values (x0, y0) and a control function u(·).
Let T > 0 be a given time.

Then there exist constants α, β, C > 0, and η(T ) > 0 independent from u(·) such
that for all t ∈ [0, T ] the following estimates hold:

(i) ‖x(t)‖ ∈ [e−αt‖x0‖, eαt‖x0‖] for all x0 ∈ Bη(T )(0),

(ii) ‖z(t)‖ ∈ [e−αt‖x0‖, eαt‖x0‖] for all x0 ∈ R
d,

(iii) ‖x(t)− z(t)‖ ≤ tCeβt‖x0‖2 for all x0 ∈ Bη(T )(0),
where Bη(T )(0) denotes the ball with radius η(T ) around the origin.

Proof. (i) We show the estimate for the upper bound; the estimate for the lower
bound follows from (ii) and (iii). From the linearization it follows that

x(t) = x0 +

∫ t

0

A(y(τ), u(τ))x(τ) + f̃(x(τ), y(τ), u(τ))dτ.

As long as x(t) ∈ Bηf (0), this implies

‖x(t)‖ ≤ ‖x0‖+

∫ t

0

α‖y(τ)‖dτ

for some constant α > 0. This yields ‖x(t)‖ ≤ eαt‖x0‖ as long as eαt‖x0‖ ≤ ηf and
hence the assertion follows with η(T ) = ηf/e

αT .
(ii) This is an easy consequence from the linearity of the system.
(iii) Define m(t) := x(t)−z(t). From (i) and (ii) it follows that ‖m(t)‖ ≤ eαt‖x0‖.

Furthermore m is a solution of the differential equation

ṁ(t) = A(y(t), u(t))m(t) + f̃(y(s), m(t) + z(t), u(t)), z(0) = 0

and thus satisfies

‖m(t)‖ ≤
∫ t

0

‖A(y(τ), u(τ))m(τ)‖+ ‖f̃(y(τ), m(τ) + z(τ), u(τ))‖dτ

≤
∫ t

0

‖A(y(τ), u(τ))m(τ)‖+ Cf (‖m(τ)‖2 + ‖z(τ)‖‖m(τ)‖+ ‖z(τ)‖2)dτ

≤ tCfe
2αt‖x0‖2 +

∫ t

0

γ‖m(s)‖ds

for some constant γ > 0. Now the Gronwall lemma yields

‖m(t)‖ ≤ tCfe
2αt‖x0‖2eγt

and thus the assertion.
As in the semilinear case, we may now write the exponential growth rate in finite

time in integral form

λtf (x0, y0, u(·)) =
1

t

∫ t

0

qf (x(τ, x0, y0, u(·)), y(τ, y0, u(·)), u(τ))dτ,
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where

qf (x, y, u) = q

(
x

‖x‖ , y, u
)

+
xtf̃(x, y, u)

‖x‖2

which can be calculated using the chain rule.
A simple calculation shows that

‖x(t, x0, y0, u(·))‖ = ‖x0‖etλtf (x0,y0,u(·))t.

We can now apply the discrete feedback FR from the previous sections to (2.1) by

ẋ(t) = f(x(t), y(t), FR(x(
[
t
h

]
h), y(

[
t
h

]
h))),

ẏ(t) = g(y(t), FR(x(
[
t
h

]
h), y(

[
t
h

]
h))),

(6.1)

and denote the resulting trajectories by (xFR
(t, x0, y0), yFR

(t, y0)).
Defining the growth rate of ‖xFR

(t, x0, y0)‖ in finite time by

λtf (x0, y0, FR) :=
1

t
ln
‖xFR

(t, x0, y0)‖
‖x0‖ ,

we obtain the following estimate.
Lemma 6.3. Let δ, h > 0 and let F be an optimal discrete feedback with respect to

vhδ for the linearization (2.2). Let σ := sup(s,y)∈Sd−1×K δvhδ (x, y). Then for any ε > 0

there exists an interval [C−(ε), C−(ε)] and a constant η(ε) > 0 such that for all pairs
of initial values x0, y0 where x0 ∈ Bη(ε)(0) the estimate

λtf (x0, y0, FR) ≤ σ + ε

holds for some t ∈ [C−(ε), C−(ε)].
Proof. For a fixed pair of initial values (x0, y0) and a control function u(·) ∈ U we

abbreviate x(t) := x(t, x0, y0, u(·)) and define

h̃(t, s, y, u) =
f(x(t), y, u)

‖x(t)‖ −
〈
f(x(t), y, u)

‖x(t)‖ , s

〉
s

for s ∈ S
d−1. With s0 := x0/‖x0‖ and s̃(t, s0, y0, u(·)) := x(t)/‖x(t)‖ it follows that

˙̃s(t, s0, y0, u(·)) = h̃(t, s̃(t, s0, y0, u(·)), y(t, y0, u(·)), u(t));

hence the projection of the trajectory x(t) onto S forms a solution trajectory of this
time varying control system.

Now let xi := xFR
(ih, x0, y0). Using Lemma 6.2 we obtain∥∥∥∥ z(h, xi, yi, u)

‖z(h, xi, yi, u)‖ −
x(h, xi, yi, u)

‖x(h, xi, yi, u)‖
∥∥∥∥ ≤ hC1‖xi‖.

By Lemma 6.2, xi can be made arbitrarily small for each fixed i ∈ N by choosing
x0 sufficiently small, and we can use Proposition 5.1 with s = z/‖z‖ and s̃ = x/‖x‖
in order to obtain the estimate

δJ̃δ(x0, y0, F ) ≤ σ +
ε

4
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for all sufficiently small x0.
From the linearization estimates we obtain∣∣∣∣∣x

t
if̃(xi, u)

‖xi‖2
∣∣∣∣∣ ≤ Cf‖xi‖ ≤ Cfe

γt‖x0‖

for all sufficiently small ‖xi‖, i.e., all sufficiently small ‖x0‖.
Hence ‖q(xFR

(t, x0, y0), ·, ·)/‖xFR
(t, x0, y0)‖ − qf (xFR

(t, x0, y0), ·, ·)‖ can be made
arbitrarily small on each bounded time interval by choosing x0 sufficiently close to
the origin, and using [3, Lemma 4.1] we can conclude

δ

∫ ∞

0

e−δτqf
(
xFR

(τ, x, y), yFR
(τ, y), FR

(
xFR

([ τ
h

]
h, x, y

)
, yFR

([ τ
h

]
h, y

)))
dτ ≤ σ+

ε

2

for all sufficiently small ‖x0‖.
Now Lemma 3.5 (ii) yields the assertion.
In order prove the stability of (6.1) the last thing that remains to do is putting

together the trajectory pieces.
Proposition 6.4. Consider system (2.1). Let K ⊆ M be a compact positively

invariant set for the subsystem of (2.1) on M . Assume that the linearization (2.2) is
asymptotically null controllable over K. Then there is δ > 0 and h > 0 such that the
system (6.1) with the discrete feedback FR is uniformly exponentially stable in some
neighborhood of the origin.

Proof. From the assumptions on the linearization, Lemma 6.3 can be applied with
σ < 0.

Hence for all sufficiently small initial values ‖x0‖ there exists a t ∈ [C−(ε), C−(ε)]
such that

1

t
ln
‖xFR

(t, x0, y0)‖
‖x0‖ ≤ σ + ε < 0.

Abbreviating x1 := xFR
(t, x0, y0), it holds that ‖x1‖ < ‖x0‖. Thus we can proceed

inductively as in the proof of Proposition 3.3 and the assertion follows.
This proposition gives a characterization of exponential discrete feedback stabi-

lizability by looking at its linearization. However, we would also like to have a char-
acterization in terms of the nonlinear system itself. Clearly, since we are dealing with
linearizations, asymptotic null controllability of the nonlinear system is not sufficient;
see, e.g., [4, Example 15].

In fact, even exponential null controllability is not sufficient, as the following
example shows. Consider

ẋ =

( −1 0
0 1

)
x+ u1

(
− 1

2 0

− 1
3

1
2

)
x+ u2

(
− 1

2 0
1
3

1
2

)
x+ u3

(
x2

2

0

)
,

where U = [−1, 1]3.
We claim that the linearized system is not asymptotically null controllable: looking

at the initial values z0 = (0, z2)
T , z2 > 0, it is easily seen that

A(u)z0 =

(
0

(1 + 1
2u1 + 1

2u2)z2

)
.
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Denoting the solution by z(t, x0, u(·)) = (z1(t, z0, u(·)), z2(t, z0, u(·)))T , we obtain
z1(t, z0, u(·)) ≡ 0 and z2(t, z0, u(·)) ≥ z2 since (1 + 1

2u1(t) + 1
2u2(t)) ≥ 0 for all

u(·) ∈ U and all t ≥ 0. Thus we can conclude that ‖z(t, z0, u(·))‖ ≥ ‖z2‖ for all
u(·) ∈ U , meaning that for all initial values z0 of the considered form no possible
trajectory converges to the origin, which implies our claim.

However, for any x = (x1, x2)
T ∈ C, where C is the cone defined by

C :=

{(
x1

x2

)
∈ R

2

∣∣∣∣
∣∣∣∣x2

x1

∣∣∣∣ < 1

10

}
,

we can choose the control ux = (ux1, ux2, ux3) := ( 2x2

x1/3−x2
, 0, 0) ∈ U . Then a simple

computation yields

f(x, ux) =

(
−1− 1

2
ux1

)
x,

and since uαx = ux for all α ∈ R \ {0} the solution for ux(·) ≡ ux satisfies

x(t, x, ux(·)) = e(−1− 1
2ux1)tx.

Hence the corresponding trajectory satisfies ‖x(t, x, ux)‖ ≤ e−
1
2 t‖x‖ and thus con-

verges to the origin exponentially fast.
For all initial values x0 ∈ R

2 \ C we choose u(t) ≡ (−1,−1, sgn(x1)) (with the
convention sgn(0) = 1) as long as the corresponding trajectory stays outside C and
switch to ux from above once the trajectory reaches a point x ∈ C.

Using this control function, any trajectory will enter the cone C in some finite
time and then converge to the origin exponentially fast; thus the overall trajectory
also converges to the origin exponentially fast. Hence the nonlinear system is expo-
nentially null controllable, although the semilinear system is not even asymptotically
null controllable. Thus exponential null controllability of the nonlinear system does
not imply asymptotic null controllability of the linearized system.

In order to formulate the desired result we therefore need the notion of uniform
exponential null controllability.

Theorem 6.5. Consider system (2.1). Let K ⊆M be a compact positively invari-
ant set for the subsystem of (2.1) on M . Then the following properties are equivalent:

(i) (2.1) is (locally) uniformly exponentially null controllable over K.
(ii) (2.2) is asymptotically null controllable over K.
(iii) There is h > 0 and a discrete feedback that (locally) stabilizes (2.1) uniformly

exponentially over K.
Proof. “(ii)⇒(iii)” is Proposition 6.4; “(iii)⇒(i)” is immediately clear. It remains

to show “(i)⇒(ii)”:
Let B(0) be the neighborhood in which uniform exponential null controllability

holds. From (i) it follows that for any ε > 0 there exists a T > 0 such that for all
(x0, y0) ∈ B(0)×K there exists a control function u(x0,y0)(·) ∈ U with

λTf (x0, y0, u(x0,y0)(·)) < −α + ε.

Using the estimates from the proof of Lemma 6.3, we obtain for the growth rate of
(2.2),

λT (x0, y0, u(x0,y0)(·)) < −α + 2ε
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for x0 sufficiently close to the origin. Due to the linearity of (2.2) this estimate holds
for all x0 ∈ R

d. Now by induction we obtain the assertion as in the proof of Proposition
3.3.

This theorem shows in particular that any attempt to stabilize (2.1) at a singular
point by using its linearization must fail if uniform exponential controllability is not
satisfied, because the linearized system will not even be asymptotically null control-
lable. Conversely, exponential discrete feedback stabilization is always possible under
this condition. We have therefore obtained the strongest result possible within the
linearization approach.

A related result has been developed in [5] using Lyapunov functions: it is shown
that for nonlinear systems, asymptotic controllability to a (not necessarily singular)
point x implies stabilizability by means of a discrete feedback, where in order to reach
x the step size h must tend to 0. The result can therefore be interpreted as a kind of
practical stabilization. In contrast to this practical stability here we obtain exponential
stability using a discrete feedback with a fixed step size.

7. Conclusions. In this paper we developed results on the relation between
null controllability and exponential stabilization by using a discrete feedback law for
nonlinear systems at singular points. The construction of the feedback is obtained
by minimizing the Lyapunov exponent of the linearized system, which forms a semi-
linear system. For semilinear systems, asymptotic null controllability and exponen-
tial stabilizability by a discrete feedback turned out to be equivalent. For general
nonlinear systems the equivalence between uniform exponential controllability and
uniform exponential stabilizability has been shown. An example illustrated that uni-
form exponential controllability is in fact a necessary condition for the applicability
of linearization techniques.

8. Appendix: Proof of Lemma 3.5. (i) Fix ε > 0. We may assume σ = −ε;
otherwise we use q − σ − ε and Mq + σ + ε instead of q and Mq. Hence there exists
0 ≤ T0 < T such that∫ T0

0

q(τ) dτ = −T0ε and

∫ t

0

q(τ) dτ < −tε for all t > T0.(8.1)

This yields ∫ t

T0

q(τ) dτ < (t− T0)(−ε) for all t > T0.(8.2)

Since for all y ∈ [0, 1) the inequality ln(1− y) ≤ −y and hence e−y ≥ 1− y holds, we
obtain ∣∣∣∣∣

∫ T0

0

q(τ) dτ −
∫ T0

0

e−δtq(τ) dτ

∣∣∣∣∣ ≤ T0(1− e−δT0)M

≤ T (1− e−δT )M

≤ δT 2M.

Thus the inequality in (8.1) implies for δ < ε
MT < ε

MT0

δ

∫ T0

0

e−δτq(τ) dτ < δ(−T0ε+ δT 2M) < 0.(8.3)
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Now fix ε̃ > 0. Since q is bounded there exists T1 > T0 such that∣∣∣∣∣
∫ ∞

T0

e−δτq(τ) dτ −
∫ T1

T0

e−δτq(τ) dτ

∣∣∣∣∣ ≤ ε̃.(8.4)

From estimate (8.2) choose γ > 0 maximal with the property∫ T1

T0

q+(τ) dτ −
∫ T1−γ

T0

q−(τ) dτ = 0,(8.5)

where q+ and q− denote the positive and negative parts of q, respectively. Now we
can define a monotonically decreasing sequence τi, i ∈ N by τ1 := T1, τ2 := T1 − γ,
and

τi+1 := min

{
t ∈ [T0, τi] | −

∫ τi

t

q−(τ) dτ +

∫ τi−1

τi

q+(τ) dτ = 0

}
.

This sequence is well defined: assume that there exists τi for some i ≥ 2. In the case
i > 2 for all j with i ≥ j ≥ 3, the equality

−
∫ τj

T0

q−(s) ds+

∫ τj−1

τj

q+(s) ds = −
∫ τj−1

T0

q−(s) ds+

∫ τj−2

τj−1

q+(s) ds

holds, and by induction and the choice of γ in (8.5) it follows

−
∫ τi

T0

q−(τ) dτ +

∫ τi−1

τi

q+(τ) dτ = −
∫ T1−γ

T0

q−(τ) dτ +

∫ T1

T1−γ
q+(τ) dτ ≤ 0.

This guarantees the existence of τi+1. Since (τi) is monotone and bounded, the se-
quence converges to some τ̃ ≥ T0. We claim τ̃ = T0.

By the definition of τi it follows that − ∫ T1−γ
τi+1

q−(τ) dτ +
∫ T1

τi
q+(τ) dτ = 0. The

convergence τi → τ̃ yields the equality

−
∫ T1−γ

τ̃

q−(τ) dτ +

∫ T1

τ̃

q+(τ) dτ = 0.

This implies
∫ τ̃
T0
q(τ) dτ = 0, which shows the asserted equality using (8.2).

Hence we can choose k ∈ N such that |τk−1 − T0| ≤ ε̃ and replace τk by τk = T0.
Thus we can estimate∫ T1

T0

e−δτq(τ) dτ ≤
k−1∑
i=2

(
−
∫ τi

τi+1

e−δτq−(τ) dτ +

∫ τi−1

τi

e−δτq+(τ) dτ

)
+Mε̃

≤
k−1∑
i=2

(
−
∫ τi

τi+1

e−δτiq−(τ)dτ +

∫ τi−1

τi

e−δτiq+(τ)dτ

)
︸ ︷︷ ︸

=0

+Mε̃

= Mε̃.

In connection with (8.3) and (8.4) this yields∫ ∞

0

e−δτq(τ) dτ =

∫ T0

0

e−δτq(τ) dτ+

∫ T1

T0

e−δτq(τ) dτ+

∫ ∞

T1

e−δτq(τ) dτ < 0+Mε̃+ε̃.
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Since ε̃ > 0 was arbitrary this proves (i).
(ii) Assume the opposite: let

1

t

∫ t

0

q(τ)dτ > σ + ε for all t ∈
[

ε

(4M + 4σ + ε)δ
,− ln ε

4M

δ

]
.

We define q̃ via

q̃(τ) :=

{
q(τ), τ ≤ − ln ε

4M

δ ,

σ + ε, τ > − ln ε
4M

δ .

This yields

1

t

∫ t

0

q̃(τ)dτ > σ + ε for all t ≥ ε

(4M + 4σ + ε)δ
,

and by (i) (with opposite signs and inequalities) we obtain

δ

∫ ∞

0

e−δτ q̃(τ)dτ ≥ σ +
3

4
ε.

Hence

δ

∫ ∞

0

e−δτq(τ)dτ = δ

∫ ∞

0

e−δτ q̃(τ)dτ − δ

∫ ∞

− ln ε
4M
δ

q̃(τ)− q(τ)dτ

≥ σ +
3

4
ε− δ

∫ ∞

− ln ε
4M
δ

e−δτ2Mdτ = σ +
1

4
ε,

which contradicts the assumption on this discounted integral.
(iii) By (ii) for any ε > 0 there exist times τ(t) bounded from below and above

such that

1

τ(t)

∫ τ(t)

0

q(t+ τ)dτ < σ + ε.

Hence τ0 := 0, τi+1 = τi+ τ(τi) defines a monotonically increasing sequence diverging
to infinity for which there exists a ∈ R such that τi+1 − τi < a for all i ∈ N. For
arbitrary T > 0 let τi(T ) be the maximal element of this sequence satisfying τi(T ) ≤ T .
Thus we obtain

lim sup
T→∞

1

T

∫ T

0

q(τ)dτ = lim sup
T→∞

1

T


i(T )∑

j=0

∫ τj

τj−1

q(τ)dτ +

∫ T

τi(T )

q(τ)dτ




≤ lim sup
T→∞

(
σ + ε+

aM

T

)
= σ + ε.

Since ε > 0 was arbitrary the assertion follows.
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Abstract. We consider stochastic linear plants which are controlled by dynamic output feed-
back and subjected to both deterministic and stochastic perturbations. Our objective is to develop
an H∞-type theory for such systems. We prove a bounded real lemma for stochastic systems with
deterministic and stochastic perturbations. This enables us to obtain necessary and sufficient con-
ditions for the existence of a stabilizing compensator which keeps the effect of the perturbations on
the to-be-controlled output below a given threshhold γ > 0. In the deterministic case, the analogous
conditions involve two uncoupled linear matrix inequalities, but in the stochastic setting we obtain
coupled nonlinear matrix inequalities instead. The connection between H∞ theory and stability
radii is discussed and leads to a lower bound for the radii, which is shown to be tight in some special
cases.

Key words. stochastic systems, state dependent noise, H∞ control, bounded real lemma,
matrix inequalities

AMS subject classifications. 93C55, 93D09, 93E15
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1. Introduction. The objective of this paper is to develop an H∞-type theory
over infinite time horizons for the disturbance attenuation of stochastic systems by dy-
namic output feedback. We consider systems Σ described by Ito stochastic differential
equations of the form

dx(t) = Ax(t)dt+A0x(t)dw1(t) +B0v(t)dw2(t) +B1v(t)dt+B2u(t)dt,(1)

z(t) = C1x(t) +D11v(t) +D12u(t),

y(t) = C2x(t) +D21v(t),

where wi, i = 1, 2 are zero mean scalar Wiener processes, not necessarily independent.
In applications, such models are often obtained by linearization, and then x(t), z(t),
and u(t) represent deviations from desired fixed values of the state, the output, and the
control (for instance, in a tracking problem; see [30]). We view v as an unknown finite
energy stochastic disturbance which adversely affects the to-be-controlled output z
(whose desired value is represented by 0). The disturbing effect is to be ameliorated
via control action u based on dynamic feedback from the measured output y. A
feedback controller K : y 7→ u has to be chosen in such a way that the closed loop
system Σcl is stabilized. The effect of the disturbances on the to-be-controlled output
z of Σcl is then described by the perturbation operator Lcl : v 7→ z of Σcl which (for
zero initial state) maps finite energy disturbance signals v into the corresponding finite
energy output signals z of the closed loop system. The size of this linear operator is
measured by the induced norm. The larger that this norm is, the larger is the effect
of the unknown disturbance v on the to-be-controlled output z in the worst case.
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The problem is to determine whether or not for each γ > 0 there exists a stabilizing
controller K achieving ‖Lcl‖ < γ. Moreover, we want to know how such controllers,
if they exist, can be constructed.

In the deterministic case, the norm ‖Lcl‖ is given by the H∞-norm of the asso-
ciated rational transfer matrix, and so the theory dealing with the above problem is
known as H∞-control theory. In the present stochastic context the term H∞ control
may be a misnomer, but we use it nevertheless to refer, in a succinct and suggestive
way, to the above disturbance attenuation problem.

System (1) may be regarded as a perturbed version of the stochastic system

ẋ(t) = (A+A0ẇ1(t))x(t) +B2u(t),

z(t) = C1x(t) +D12u(t),(2)

y(t) = C2x(t),

representing a linear time-invariant system with multiplicative white noise. Such
systems are widely considered in the stochastic literature, especially in stochastic
stability analysis; see [10, ch. 6], [1, ch. 11], and [4, ch. 11]. By adding unknown
disturbances to this equation we lay the groundwork for an analysis of robust stability
of these systems; see section 5.

The disturbance of the state equation in our model (1) is composed of two parts,
B1v(t)dt and B0v(t)dw2(t). Although v is in general a stochastic vector, we view
the first term as the deterministic and the second as the stochastic component of
the disturbance. To motivate this terminology, let v = ∆z, where ∆ is an unknown
matrix, and assume that the two Wiener processes in (1) are equal: w1 = w2 = w.
Then the state equation in (1) reads

dx(t) = (A+B1∆C1)x(t)dt+ (A0 +B0∆C1)x(t)dw(t) +B2u(t)dt.(3)

So the deterministic disturbance term B1∆C1 represents a perturbation of A, i.e., of
the deterministic parameters, and the stochastic disturbance term B0∆C1 represents
a perturbation of the stochastic parameters of the system. The presence of both types
of disturbances in (1) is essential to obtain a full generalization of the H∞-control
problem to the stochastic context. As a special case, it contains, on the one hand,
(A0 = 0, B0 = 0), the general deterministic H∞-control problem (without regularity
assumptions) as stated, e.g., in [8], [9], [17], [25], and [26]. On the other hand, it also
includes the “purely stochastic” case where B1 = 0, see [16].

It may seem odd that we use the same disturbance vector v in both the deter-
ministic and stochastic disturbance terms. But this is in fact more general since
distinct disturbance vectors v0 and v1 can be accounted for by setting B0 = [B0

0 0],
B1 = [0 B1

1 ], and v =
[
v0
v1

]
. Similarly, it would simplify the situation if we assumed

that the two Wiener processes w1 and w2 are independent. But we avoid this assump-
tion in order to derive formulae which are equally applicable to the case where, e.g.,
w1 = w2 = w; see (3).

In order to keep the notational burden as low as possible, we do not deal with
more general models or more general multiperturbation structures, where the single
stochastic terms in (1) are replaced by sums of similar terms. In section 6 we make
some comments about the extension of our results to such systems.

The main complication in the H∞-control problem studied here is due to the
presence of both deterministic and stochastic perturbations terms in (1). In the case
of purely stochastic disturbances, the problem has been solved in [16]. The key result
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on which the general solution will be based is the Stochastic Bounded Real Lemma
which will be proved in the next section. This result states necessary and sufficient
conditions for a given stochastic system to be stable with ‖L‖ < γ. It is of independent
interest, because it allows one to determine ‖L‖ which measures the influence of the
disturbances in the worst case scenario. The centerpiece of our conditions is no longer
a Riccati-type equation or the corresponding matrix inequality (as in the deterministic
case) but is a rational matrix equation which appears to be new. For the associated
matrix inequality we could not find existence results in the literature. Our proof
proceeds—as in the theory of algebraic Riccati equations—via the study of a finite
time optimization problem which, due to the structure of our disturbance model, has
a number of subtleties.

While section 2 deals with a problem of system analysis (under which conditions
does the input output operator L of a stable stochastic system have a norm ‖L‖ < γ?)
the synthesis problem of H∞-control will be treated in section 3. Here we follow the
linear matrix inequalities (LMI) approach developed for deterministic systems; see [8],
[17]. The idea is to apply the Stochastic Bounded Real Lemma to the compensated
system Σcl in such a way that the matrices of compensator parameters, which achieve
stability and ‖Lcl‖ < γ, are characterized by a linear matrix inequality. Then, apply-
ing the projection lemma [8] we are able to obtain necessary and sufficient conditions
in terms of the given data. The result is a characterization in terms of a pair of
matrix inequalities. But in contrast to the deterministic case the two matrix inequal-
ities are coupled and nonlinear. Specializing to the case A0 = B0 = 0, however, the
inequalities are linear and decoupled, and we regain the deterministic results as given
in [8].

In section 4 we deal with the so-called regular case. The matrix inequalities—
although still coupled and nonlinear—are greatly simplified via the regularity as-
sumptions, and it is possible to derive explicit formulae for full order suboptimal
compensators. In the deterministic context, this was the case for which the H∞-
control problem was first resolved via a pair of Riccati equations [5]. In the stochastic
context, we do not obtain an analogous pair of rational matrix equations. In fact it
has been shown for the special case A0 = B1 = 0 that, in general, it is not possible to
replace the two inequalities by equalities; see [16]. Therefore, even for regular data,
matrix inequalities seem to be indispensable tools of an H∞-type optimal control
theory in the stochastic context. For the deterministic case A0 = B0 = 0, however,
our conditions reduce to the well-known Riccati inequalities from which the results in
[5] follow via standard theorems about the relationship between Riccati inequalities
and equations.

In section 5, we consider stability radii for a nominal system where all direct
input output couplings are zero (a singular problem). If (2) is stable, u = 0, and
v = ∆z, the associated stability radius is the maximum ρ such that all the perturbed
systems with ‖∆‖ < ρ are stable. We will use the results of section 2 to obtain a lower
bound for the radius. In the deterministic case there is a close relationship between
the singular H∞-control problem and the problem of maximizing the stability radius
of a given system by state or dynamic output feedback; see [13]. We will use this
relationship to show how the radius may be enhanced by feedback. However, we do
not determine precise formulae for the stability radius or for the supremal stability
radius achievable by feedback. The general problem of characterizing and maximizing
stability radii of stochastic systems of the form (1) is still open.

In some concluding remarks (section 6) we will comment on further open problems
and possible extensions of our work.
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The stabilization of stochastic systems with multiplicative noise has been studied
since the late sixties, particularly in the context of linear quadratic optimal control;
see, e.g., [20], [27], and [29]. The subject of robust stabilization is of more recent
vintage. An early reference is [28], where the problem is considered in an almost
disturbance decoupling framework. More recently, a number of papers have been
published which deal with robust stability and robust stabilization problems in the
spirit of H∞-control or the stability radius approach. In [6], El Ghaoui describes
how the maximization of an estimate for the stability radius by state feedback can
be formulated—for general multi noise structures—as a convex optimization problem
over linear matrix inequalities. In [22], the norm of the perturbation operator of a
time-varying stable linear system with state dependent noise (B0 = 0, B1 = 0) is
related to a parametrized Riccati equation. Formulae for stability radii and supremal
stability radii of stochastic systems have been obtained for various special cases. The
first formula was derived for the case A0 = 0, B1 = 0 in [2]. Morozan [21] extended
this formula to the case where B1 = 0 and the nominal system contains a sum of white
noise terms. The maximization of stability radii via state feedback was first considered
in [13]. A full H∞ and stability radius theory for stochastic multiperturbations of a
deterministic system was developed in [16]. However, all these characterizations of
stability radii apply only to the special case of purely stochastic parameter disturbances
(B1 = 0). First results concerning stability radii subjected to simultaneous determin-
istic and stochastic parameter perturbations have been presented in [15]. These are
improved in the present paper. However, our main intention is to develop a counter-
part of H∞-control for linear stochastic systems. The conceptual difference between
H∞-control theory and the theory of stability radii, which has been blurred by the
fact that they yield similar results for deterministic time-invariant linear systems,
stands out more clearly in the stochastic context.

2. A stochastic version of the bounded real lemma. The main tool that
we will use in our analysis of the stochastic disturbance attenuation problem is an
extension of the bounded real lemma to stochastic systems. This result is of indepen-
dent interest and, in fact, we regard it as the main result of this paper. In order to
describe it we consider the following system

dx(t) = Ax(t)dt+A0x(t)dw1(t) +B0v(t)dw2(t) +Bv(t)dt,(4)

z(t) = Cx(t) +Dv(t),

where

(5)

(A,A0, B0, B,C,D) ∈ K
n×n×K

n×n×K
n×`×K

n×`×K
q×n×K

q×`, K = R or C.

w1, w2 are zero mean real scalar Wiener processes on a probability space (Ω,F , µ)
relative to an increasing family (Ft)t∈R+

of σ-algebras Ft ⊂ F . We assume that

E((wi(t)− wi(s))(wj(t)− wj(s))) = qij(t− s), i, j = 1, 2, t, s ∈ R+, t > s.

So Q = (qij) is the incremental covariance matrix of the two-dimensional Wiener
process [

w1(t)

w2(t)

]
.
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In (4), the input process v(t) is viewed as a stochastic disturbance and the out-
put process z(t) is viewed as a vector of the to-be-controlled variables. The system
equation contains multiplicative state and input dependent noise terms which may be
interpreted as white noise parameter perturbations of the following matrices A and B:

dx(t) = (A+A0ẇ1(t))x(t)dt+ (B +B0ẇ2(t))v(t)dt.

In this paper, we provide all spaces K
k, k ≥ 1 with the usual inner product 〈·, ·〉 and

the corresponding 2-norm ‖ · ‖. Let L2(Ω,Kk) denote the space of square-integrable
K
k-valued functions (modulo equivalence) on the probability space (Ω,F , µ). For

any 0 < T ≤ ∞, we write [0, T ] for the closure of the open interval (0, T ) in R

and denote by L2
w([0, T ]; L2(Ω,Kk)) the space of nonanticipative stochastic processes

y(·) = (y(t))t∈[0,T ] with respect to (Ft)t∈[0,T ] (see, e.g., [7]) satisfying

‖y(·)‖2L2
w

= E
(∫ T

0

‖y(t)‖2dt
)

=

∫ T

0

E(‖y(t)‖2)dt <∞.(6)

For arbitrary 0 < T < ∞ and (v, x0) ∈ L2
w([0, T ];L2(Ω,K`)) × K

n, there exists a
unique solution x(·) = x(·, v, x0) ∈ L2

w([0, T ]; L2(Ω,Kn)) of (4) with x(0) = x0 [18],
i.e., x(·) is a continuous nonanticipative stochastic process satisfying the Ito integral
equation

(7)

x(t) = x0 +

∫ t

0

(Ax(s) +Bv(s))ds+

∫ t

0

[A0x(s) B0v(s)]d

[
w1(s)

w2(s)

]
, t ∈ [0, T ].

Moreover, x(·) has bounded second moments on [0, T ].
Definition 2.1. The system (4) is called internally stable if there exists a con-

stant c > 0 such that

E
∫ ∞

0

‖x(t)‖2dt ≤ c‖x0‖2, x0 ∈ K
n,

where x(·) = x(·; 0, x0) is the free trajectory of (7) starting at x0 (i.e., v = 0).
It has been shown (see [4]) that an equivalent condition is that there exist con-

stants M ≥ 1, ω > 0 such that

E‖x(t; 0, x0)‖2 ≤Me−ωt‖x0‖2 for all x0 ∈ K
n, t ≥ 0.

Let Hn(K) denote the set of Hermitian matrices in K
n×n. It is known [4] that (4) is

stable in the above sense if and only if there exists P ∈ Hn(K), P ≺ 0 such that

PA+A∗P + q11A
∗
0PA0 = In.(8)

It is easily seen that in this stability criterion the identity matrix (on the right-hand
side of (8)) may be replaced by any other positive definite matrix Q0 ∈ Hn(K).

The following definition generalizes the concept of finite gain L2 stability from
deterministic input output systems to stochastic systems of the form (4).

Definition 2.2. The system (4) is said to be externally stable or L2 input-output
stable if, for every v(·) ∈ L2

w(R+;L2(Ω,K`)),

z(·) = Cx(·, v, 0) +Dv(·) ∈ L2
w(R+;L2(Ω,Kq)),
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and there exists a constant γ ≥ 0 such that

‖z(·)‖L2
w(R+;L2(Ω,Kq)) ≤ γ‖v(·)‖L2

w(R+;L2(Ω,K`)), v ∈ L2
w(R+;L2(Ω,K`)).(9)

Definition 2.3. Suppose that (4) is externally stable. The operator

L : L2
w(R+;L2(Ω,K`)) → L2

w(R+;L2(Ω,Kq)),

defined by

(Lv)(t) = Cx(t, v, 0) +Dv(t), t ≥ 0, v(·) ∈ L2
w(R+;L2(Ω,K`)),(10)

is called the perturbation operator of (4). Its norm is defined as the minimal γ ≥ 0
such that (9) is satisfied, i.e.,

‖L‖ = sup
v∈L2

w(R+;L2(Ω,K`)),v 6=0

‖Cx(·, v, 0) +Dv(·)‖L2
w(R+;L2(Ω,Kq))

‖v(·)‖L2
w(R+;L2(Ω,K`))

.(11)

‖L‖ is a measure of the worst effect the stochastic disturbance v(·) may have on the
to-be-controlled output z(·) of the system. Therefore it is important to find a way of
determining the norm ‖L‖. The stochastic bounded real lemma which we will derive
in this section provides a method for computing ‖L‖.

We proceed by associating a finite time quadratic cost functional with the problem

(12)

Jγ
2

T (x0, v) =

∫ T

0

E [γ2‖v(t)‖2 − ‖z(t)‖2]dt =

∫ T

0

E [γ2‖v(t)‖2 − ‖Cx(t) +Dv(t)‖2]dt,

where x(·) = x(·, v, x0) denotes the solution of (4) with x(0) = x0 and v(·) ∈ L2
w =

L2
w([0, T ];L2(Ω,K`)), and z(·) = z(·, v, x0) is the corresponding output. We will see

that the problem of minimizing this functional will lead us to a solution of the supre-
mum problem on the right-hand side of (11). Formally, the problem of minimizing

Jγ
2

T (x0, v) has the form of an optimal control problem and so in our development in
this section we will refer to the disturbance v as a “control.” Our first step is to show
that an internally stable system (4) is also externally stable. For every P ∈ Hn(K),
we set

M(P ) =

[
PA+A∗P + q11A

∗
0PA0 − C∗C PB + q12A

∗
0PB0 − C∗D

B∗P + q12B
∗
0PA0 −D∗C γ2I` + q22B

∗
0PB0 −D∗D

]
.(13)

Lemma 2.4. Suppose P (·) : [0, T ] 7→ Hn(K) is continuously differentiable, T > 0.
Then for every x0 ∈ K

n, v(·) ∈ L2
w,

Jγ
2

T (x0, v) = 〈x0, P (0)x0〉 − E〈x(T ), P (T )x(T )〉

+

∫ T

0

E
(
〈x(t), Ṗ (t)x(t)〉+

〈[
x(t)

v(t)

]
,M(P (t))

[
x(t)

v(t)

]〉)
dt,

(14)

where M(P ) is defined by (13) and x(·) = x(·, v, x0).
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Proof. Let x0 ∈ K
n, v(·) ∈ L2

w, and let x(·) = x(·, v, x0) denote the corresponding
solution of (4). Then the vector function ϕ(s) = (Ax(s)+Bv(s)) and the n×2 matrix
function Φ(s) = [A0x(s) B0v(s)] satisfy the conditions of Ito’s lemma (see [4, ch. 4,
section 5]) and, by (7),

x(t) = x0 +

∫ t

0

ϕ(s)ds+

∫ t

0

Φ(s)d

[
w1(s)

w2(s)

]
, t ∈ [0, T ].

Applying Ito’s formula to F (t, x(t)) = 〈x(t), P (t)x(t)〉 and taking expectations we
obtain, for every T > 0.

E〈x(T ), P (T )x(T )〉 − 〈x0, P (0)x0〉 = E
∫ T

0

〈x(t), Ṗ (t)x(t)〉dt

+ E
∫ T

0

2Re

〈
P (t)x(t),Φ(t)d

[
w1(s)

w2(s)

]〉

+ E
∫ T

0

2Re〈P (t)x(t), Ax(t) +Bv(t)〉dt

+ E
∫ T

0

tr{P (t)[A0x(t) B0v(t)]Q[A0x(t) B0v(t)]
∗}dt,

where tr denotes the trace. We first prove (14) under the condition that v(·) ∈ L2
w is

bounded, i.e.,

∃c > 0 : ‖v(t, ω)‖K` ≤ c, (t, ω) ∈ [0, T ]× Ω.

Applying an estimate for the moments of x(·) (see [19, p. 81, Corollary 6]) there exist
constants c0, c1 > 0 such that

E‖x(t, v, x0)‖2Kn ≤ c0‖x0‖2Kn + c1E
∫ t

0

‖v(s)‖2
K`ds.(15)

Hence, E‖x(t, v, x0)‖2
Kn is bounded on [0, T ] and therefore,

E
∫ T

0

〈
P (t)x(t),Φ(t)d

[
w1(s)

w2(s)

]〉
= E

∫ T

0

〈P (t)x(t), A0x(t)〉dw1(t)

+ E
∫ T

0

〈P (t)x(t), B0v(t)〉dw2(t) = 0.

Now

tr{P (t)[A0x(t) B0v(t)]Q[A0x(t) B0v(t)]
∗}

= tr

{[
x(t)∗A∗0
v(t)∗B∗0

]
P (t)[A0x(t) B0v(t)]Q

}

= tr

{[
x(t)∗A∗0P (t)A0x(t) x(t)∗A∗0P (t)B0v(t)

v(t)∗B∗0P (t)A0x(t) v(t)∗B∗0P (t)B0v(t)

][
q11 q12

q12 q22

]}

=

〈[
x(t)

v(t)

]
,

[
q11A

∗
0P (t)A0 q12A

∗
0P (t)B0

q12B
∗
0P (t)A0 q22B

∗
0P (t)B0

] [
x(t)

v(t)

]〉
.
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Hence,

Jγ
2

T (x0, v) + E〈x(T ), P (T )x(T )〉 − 〈x0, P (0)x0〉

= E
∫ T

0

{
〈x(t), Ṗ (t)x(t)〉+ γ2‖v(t)‖2 − ‖Cx(t) +Dv(t)‖2

+ 〈P (t)x(t), Ax(t) +Bv(t)〉 + 〈Ax(t) +Bv(t), P (t)x(t)〉

+

〈[
x(t)

v(t)

]
,

[
q11A

∗
0P (t)A0 q12A

∗
0P (t)B0

q12B
∗
0P (t)A0 q22B

∗
0P (t)B0

] [
x(t)

v(t)

]〉}
dt

= E
∫ T

0

{
〈x(t), Ṗ (t)x(t)〉

+

〈[
x(t)

v(t)

]
,

[
P (t)A+A∗P (t)− C∗C P (t)B − C∗D

B∗P (t)−D∗C γ2I −D∗D

] [
x(t)

v(t)

]〉

+

〈[
x(t)

v(t)

]
,

[
q11A

∗
0P (t)A0 q12A

∗
0P (t)B0

q12B
∗
0P (t)A0 q22B

∗
0P (t)B0

] [
x(t)

v(t)

]〉}
dt

=

∫ T

0

E
{
〈x(t), Ṗ (t)x(t)〉+

〈[
x(t)

v(t)

]
,M(P (t))

[
x(t)

v(t)

]〉}
dt.

This proves (14) for all bounded v(·) ∈ L2
w and x0 ∈ K

n. Now consider the linear
maps

L2
w ×K

n → L2
w([0, T ];L2(Ω,Kn)), (v, x0) 7→ x(·, v, x0),

L2
w ×K

n → L2(Ω,Kn), (v, x0) 7→ x(T, v, x0),

where we endow L2
w ×K

n with the norm ‖(v, x0)‖ = (‖x0‖2
Kn + ‖v(·)‖2L2

w
)1/2. By the

estimate (15), these are bounded linear operators. As a consequence, for any fixed
x0 ∈ K

n the left- and right-hand sides of (12) depend continuously on v ∈ L2
w. They

coincide on the linear subspace L2
b of bounded v ∈ L2

w which is dense in L2
w. Therefore

(12) holds for all v ∈ L2
w, x0 ∈ K

n.
Proposition 2.5. Suppose (4) is internally stable. Then (4) is externally stable.

Moreover, there exist γ > 0 and P ∈ Hn(K), P ≺ 0 such that

(16)

M(P ) =

[
PA+A∗P + q11A

∗
0PA0 − C∗C PB + q12A

∗
0PB0 − C∗D

B∗P + q12B
∗
0PA0 −D∗C γ2I` + q22B

∗
0PB0 −D∗D

]
� 0,

and, for each pair (γ, P ) ∈ (0,∞) × Hn(K) satisfying (16) and P ≺ 0, we have
‖L‖ < γ.

Proof. Since (4) is internally stable, there exists P ∈ Hn(K), P ≺ 0 such that

PA+A∗P + q11A
∗
0PA0 − C∗C � 0.(17)

For any Hermitian block matrix M =
[
M11 M12

M21 M22

] ∈ K
(n+`)×(n+`), we have the well-

known definiteness criterion

M � 0 ⇔ (M22 � 0 and M11 −M12M
−1
22 M21 � 0).(18)
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Applying this criterion to M(P ) (with the above P ) we see that, for γ sufficiently
large, M(P ) � 0. Hence, there exists a pair (γ, P ) ∈ (0,∞) ×Hn(K) satisfying (16)
and P ≺ 0.

Now assume that (γ, P ) ∈ (0,∞)×Hn(K) is any pair satisfying (16) and P ≺ 0.
Choose ε > 0 sufficiently small such that M(P ) � ε2I. Then, setting P (t) = P and
x0 = 0 in (14), we obtain for all v(·) ∈ L2

w(R+;L2(Ω,K`)) and all T > 0,

Jγ
2

T (0, v) =

∫ T

0

E [γ2‖v(t)‖2 − ‖z(t)‖2]dt ≥ ε2
∫ T

0

E‖v(t)‖2dt,(19)

since P ≺ 0. It follows that z(·) = z(·, v, 0) ∈ L2
w(R+;L2(Ω,Kq)) and

‖Lv‖2L2
w(R+;L2(Ω,Kq)) =

∫ ∞

0

E‖z(t)‖2dt ≤ (γ2 − ε2)

∫ ∞

0

E‖v(t)‖2dt

for all v(·) ∈ L2
w(R+;L2(Ω,K`)). This concludes the proof.

Remark 2.6. (i) By setting C = In and D = 0, we see that x(·, v, 0) ∈
L2
w(R+;L2(Ω,Kn)) for v(·) ∈ L2

w(R+;L2(Ω,K`)), and since x(t, v, x0) = x(t, 0, x0) +
x(t, v, 0), we conclude that x(·, v, x0) ∈ L2

w(R+;L2(Ω,Kn)) for all (v(·), x0) ∈ L2
w×K

n.
(ii) Suppose that M(P ) � 0 for some γ > 0 and P ∈ Hn(K) with P ≺ 0 (as in

Proposition 2.5). Then there exists δ > 0 such that P � −δ2I, and by (14),

γ2

∫ ∞

0

E‖v(t)‖2dt ≥ Jγ
2

T (x0, v) ≥ 〈x0, Px0〉 − E〈x(T ), Px(T )〉
≥ 〈x0, Px0〉+ δ2E‖x(T )‖2, T > 0.

It follows that E‖x(t, v, x0)‖2 is bounded in t ∈ R+, for all (v(·), x0) ∈ L2
w ×K

n.
Corollary 2.7. Suppose that (16) holds for some pair (γ, P ) ∈ (0,∞)×Hn(K)

with P ≺ 0. Then (4) is internally stable and ‖L‖ < γ.
Proof. Suppose that (16) holds. Since (16) implies (17), system (4) is internally

stable. Hence, ‖L‖ < γ follows from the previous proposition.
We will now show the converse of Corollary 2.7, i.e., we will prove the following

characterization of the norm of the perturbation operator which can be viewed as a
stochastic version of the bounded real lemma.

Theorem 2.8 (stochastic bounded real lemma). For any set of data (5) and any
positive real number γ, the following statements are equivalent:

(i) The system (4) is internally stable and ‖L‖ < γ.
(ii) There exists P ∈ Hn(K) such that (16) is satisfied.
It remains to prove that (i) implies (ii). In order to do this we need a number of

lemmata. Using the notation

Hγ2

(P ) = γ2I`+q22B
∗
0PB0−D∗D ∈ H`(K), K(P ) = PB+q12A

∗
0PB0−C∗D ∈ K

n×`,

we can write M(P ), defined by (13), in the following way:

M(P ) =

[
PA+A∗P + q11A

∗
0PA0 − C∗C K(P )

K(P )∗ Hγ2

(P )

]
� 0.(20)

Lemma 2.9. Suppose F (·) ∈ C([0, T ],K`×n) and P γ2

F (·) satisfies the linear dif-
ferential matrix equation

Ẋ(t) +X(t)(A+BF (t)) + (A+BF (t))∗X(t) + q11A
∗
0X(t)A0

+ q22F (t)∗B∗0X(t)B0F (t) + q12A
∗
0X(t)B0F (t)

+ q12F (t)∗B∗0X(t)A0 + γ2F (t)∗F (t)− (C +DF (t))∗(C +DF (t)) = 0,(21)
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with P γ2

F (T ) = 0. Then if v(·) ∈ L2
w([0, T ];L2(Ω,K`)), we have

Jγ
2

T (x0, v + FxF ) = 〈x0, P γ2

F (0)x0〉

+

∫ T

0

E [〈v,NxF 〉+ 〈NxF , v〉+ 〈v,Hγ2

(P γ2

F )v〉]dt,
(22)

where xF (·) = xF (·, v(·), x0) = x(·, F (·)xF (·) + v(·), x0) is the solution of

dxF (t) = (A+BF (t))xF (t)dt+A0xF (t)dw1(t) +B0F (t)xF (t)dw2(t)

+ B0v(t)dw2(t) +Bv(t)dt,(23)

with xF (0) = x0 and N(t) = K(P γ2

F (t))∗ + Hγ2

(P γ2

F (t))F (t). In particular, if v = 0,
then

Jγ
2

T (x0, FxF ) = 〈x0, P γ2

F (0)x0〉.(24)

Proof. The left-hand side of (21) can be written as

Ẋ(t) +

[
I

F (t)

]∗
[
X(t)A+A∗X(t) + q11A

∗
0X(t)A0 − C∗C X(t)B + q12A

∗
0X(t)B0 − C∗D

B∗X(t) + q12B
∗
0X(t)A0 −D∗C γ2I + q22B

∗
0X(t)B0 −D∗D

]

[
I

F (t)

]
.

Hence, P γ2

F (t) satisfies

Ẋ(t) + [I F ∗(t)]M(X(t))

[
I

F (t)

]
= 0, X(T ) = 0.(25)

Therefore, applying Lemma 2.4 with P (·) = P γ2

F (·) and F (·)xF (·) + v(·) for v(·), we

obtain that Jγ
2

T (x0, FxF + v) is equal to

〈x0, P γ2

F (0)x0〉+ E
∫ T

0

{
〈xF (t), Ṗ γ2

F (t)xF (t)〉

+

[
xF (t)

F (t)xF (t) + v(t)

]∗
M(P γ2

F (t))

[
xF (t)

F (t)xF (t) + v(t)

]}
dt

= 〈x0, P γ2

F (0)x0〉+ E
∫ T

0

[〈v(t), N(t)xF (t)〉

+ 〈N(t)xF (t), v(t)〉+ 〈v(t), Hγ2

(P γ2

F (t))v(t)〉]dt.
Hence, (22) holds. Setting v = 0 in (22), we obtain (24).
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Lemma 2.10. Suppose (4) is internally stable and ‖L‖ < γ. Then there exists
c > 0 such that

Jγ
2

T (x0, v) ≥ −c‖x0‖2, x0 ∈ K
n, v(·) ∈ L2

w([0, T ];L2(Ω,K`)), T > 0.(26)

Proof. Denote by XT (t) the solution of (21) with F (t) ≡ 0 and final value
XT (T ) = 0, i.e., XT (t) solves

Ẋ(t) +X(t)A+A∗X(t) + q11A
∗
0X(t)A0 − C∗C = 0, X(T ) = 0.

By time invariance, XT (t) = XT−t(0). By linearity, we have x(t, v, x0) = x(t, 0, x0) +
x(t, v, 0). Applying (22) with F (t) ≡ 0, we get

Jγ
2

T (x0, v)− Jγ
2

T (0, v) = 〈x0, XT (0)x0〉

+ E
∫ T

0

[〈v(t), NT (t)x(t, 0, x0)〉+ 〈NT (t)x(t, 0, x0), v(t)〉]dt,

where NT (t) = K(XT (t))∗. Let 0 < ε2 < γ2 − ‖L‖2. Then,

Jγ
2

T (0, v) ≥ γ2‖v̄‖2L2
w([0,∞];L2(Ω,K`)) − ‖(Lv̄‖2L2

w([0,∞];L2(Ω,K`)),

≥ ε2‖v̄‖2L2
w([0,∞];L2(Ω,K`)) = ε2‖v‖2L2

w([0,T ];L2(Ω,K`)),

where v̄ denotes the extension of v from [0, T ] to R+ by 0. Hence,

(27)

Jγ
2

T (x0, v) ≥ 〈x0, XT (0)x0〉+

∫ T

0

E [ε2〈v(t), v(t)〉+ 〈v(t), NT (t)x(t, 0, x0)〉

+ 〈NT (t)x(t, 0, x0), v(t)〉]dt

= 〈x0, XT (0)x0〉+

∫ T

0

E [‖εv(t) + ε−1NT (t)x(t, 0, x0)‖2

− ‖ε−1NT (t)x(t, 0, x0)‖2]dt

≥ 〈x0, XT (0)x0〉 −
∫ T

0

E‖ε−1NT (t)x(t, 0, x0)‖2dt.

Since (4) is stable, there exists c0 > 0 such that∫ ∞

0

E‖x(t, 0, x0)‖2dt ≤ c0‖x0‖2.

Hence, by (24) there exist constants c1, c2 > 0 independent on T such that

0 ≥ 〈x0, XT (t)x0〉 = 〈x0, XT−t(0)x0〉 = Jγ
2

T−t(x
0, 0)

≥ −
∫ ∞

0

E‖Cx(s, 0, x0)‖2ds ≥ −c1‖x0‖2

and

‖NT (t)‖ = ‖XT (t)B + q12A
∗
0XT (t)B0 − C∗D‖ ≤ c2, t ∈ [0, T ], T > 0.
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Thus, by (27)

Jγ
2

T (x0, v) ≥ −c1‖x0‖2 − c22ε
−2c0‖x0‖2, T > 0.

This concludes the proof.
Lemma 2.11. Suppose (4) is internally stable, ‖L‖ < γ, F (·) ∈ C([0, T ],K`×n),

T > 0, and P γ2

F (·) satisfies (21) with P γ2

F (T ) = 0. Then,

γ2I −D∗D � 0 and Hγ2

(P γ2

F (t)) � (γ2 − ‖L‖2)I`, t ∈ [0, T ].(28)

Proof. We will first prove that Hγ2

(P γ2

F (t)) � 0. Suppose this is false and there

exists t̂ ∈ [0, T ], u ∈ K
`, ‖u‖ = 1 such that 〈u,Hγ2

(P γ2

F (t̂ ))u〉 ≤ −η for some η > 0.
Assume t̂ < T . Then, for δ > 0 sufficiently small,

〈u,Hγ2

(P γ2

F (t))u〉 ≤ −η/2, t ∈ [t̂, t̂+ δ] ⊂ [0, T ].

Define

v(t) =

{
0 if t ∈ [0, t̂ ) ∪ (t̂+ δ,∞),

u if t ∈ [t̂, t̂+ δ].

Now apply Lemma 2.9 to this v(·) and x0 = 0. Then, xF (t) = xF (t, v(·), 0) = 0 for
t ∈ [0, t], and

E
∫ ∞

0

[
γ2‖v(t)‖2 − ‖CxF (t) +Dv(t)‖2] dt ≤ E

∫ T

0

[
γ2‖v(t)‖2 − ‖CxF (t) +Dv(t)‖2] dt

=

∫ T

0

E [〈v(t), N(t)xF (t)〉+ 〈N(t)xF (t), v(t)〉+ 〈v(t), Hγ2

(P γ2

F (t))v(t)〉]dt

≤
∫ t̂+δ

t̂

(2‖N(t)∗u‖ ‖ExF (t)‖ − η/2)dt.

Choosing δ > 0 sufficiently small, the integrand becomes negative, since ExF (t) is

continuous and ExF (t̂ ) = 0. This yields a contradiction whence Hγ2

(P γ2

F (t)) � 0. If
t̂ = T , a similar proof applies, replacing the interval [t̂, t̂+ δ] by [T − δ, T ].

Now let ε be any positive number such that ‖L‖2 < γ2−ε2. Applying the previous
step with γ̃ = (γ2 − ε2)1/2 instead of γ we obtain, for the corresponding solution

P γ̃2

F (t) of (21) (with γ̃ instead of γ), H γ̃2

(P γ̃2

F (t)) � 0. For any t0 ∈ [0, T ), define

Ft0(t) = F (t+ t0), t ∈ [0, T − t0]. Let P γ̃2

Ft0
(t) be the solution of (21) with γ replaced

by γ̃ and F replaced by Ft0 on the interval [0, T − t0] such that P γ̃2

Ft0
(T − t0) = 0.

Then,

P γ̃2

Ft0
(t) = P γ̃2

F (t+ t0), t ∈ [0, T − t0].

Hence by (24), for any t0 ∈ [0, T ), x0 ∈ K
n,

〈x0, P γ̃2

F (t0)x
0〉 = 〈x0, P γ̃2

Ft0
(0)x0〉 = J γ̃

2

T−t0(x
0, Ft0xFt0 )

≤ Jγ
2

T−t0(x
0, Ft0xFt0 ) = 〈x0, P γ2

F (t0)x
0〉,
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and so Hγ2−ε2(P γ2

F (t0)) � Hγ2−ε2(P γ̃2

F (t0)) � 0, i.e., Hγ2

(P γ2

F (t)) � ε2I for all
t ∈ [0, T ] (by continuity). Since this holds for arbitrary ε2 < γ2 − ‖L‖2, (28) follows,
and

γ2I −D∗D = Hγ2

(P γ2

F (T )) � 0.

This completes the proof.
We will now study the matrix differential equation

(29)

Ẋ +XA+A∗X + q11A
∗
0XA0 − C∗C −K(X)Hγ2

(X)−1K(X)∗ = 0, X(T ) = 0.

The function

f(X) = XA+A∗X + q11A
∗
0XA0 − C∗C −K(X)Hγ2

(X)−1K(X)∗

is continuously differentiable on its domain of definition Df = {X ∈ Hn(K);

det(Hγ2

(X)) 6= 0} in the real vector space Hn(K). For every T > 0, there exists
a (unique) solution of (29) backwards in time on a maximal interval (t−(T ), T ]. The
following proposition shows, in particular, that t−(T ) < 0 for all T > 0.

Proposition 2.12. Suppose (4) is internally stable and ‖L‖ < γ. Then (29) has
a unique solution PT (·) on [0, T ] for every T > 0. Moreover, the feedback control

vT (t) = FT (t)xFT (t), FT (t) = −Hγ2

(PT (t))−1K(PT (t))∗,(30)

where xFT (·) satisfies

dxFT (t) = (A+BFT (t))xFT (t)dt+A0xFT (t)dw1(t)

+ B0FT (t)xFT (t)dw2(t), xFT (0) = x0,

minimizes Jγ
2

T (x0, v), and the optimal cost is

min
v∈L2

w

Jγ
2

T (x0, v) = 〈x0, PT (0)x0〉.(31)

Proof. Since (29) is time invariant, we have

PT (t) = PT−t(0), t ∈ (t−(T ), T ] and t−(T − τ) = t−(T )− τ, τ ∈ R.(32)

Let T̃ = inf{T ≥ 0; t−(T ) ≥ 0}. Then T̃ > 0, and t−(T̃ ) = 0 if T̃ < ∞. For every
T < T̃ , we have t−(T ) < 0, and PT (·) is continuously differentiable on [0, T ]. Setting
F (t) = FT (t), t ∈ [0, T ] in (25), we get from (20) and (30)

ṖT +

[
I

FT

]∗
M(PT )

[
I

FT

]

= ṖT +

[
I

FT

]∗ [
PTA+A∗PT + q11A

∗
0PTA0 − C∗C K(PT )

K(PT )∗ Hγ2

(PT )

] [
I

FT

]

= ṖT + PTA+A∗PT + q11A
∗
0PTA0 − C∗C −K(PT )Hγ2

(PT )−1K(PT )∗ = 0.
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Hence PT (·) satisfies (25), or equivalently (21), with F (t) = FT (t) on [0, T ] for all
T < T̃ , i.e.,

P γ2

FT
(t) = PT (t), t ∈ [0, T ].

Moreover, with this choice of F (t),

N(t) = K(PT (t))∗ +Hγ2

(PT (t))FT (t) = 0,

and so Lemma 2.9 implies that

Jγ
2

T (x0, v + FTx) = 〈x0, PT (0)x0〉+

∫ T

0

E [〈v(t), Hγ2

(PT (t))v(t)〉]dt.

But by Lemma 2.11,

Hγ2

(PT (t)) = Hγ2

(P γ2

FT
(t)) � (γ2 − ‖L‖2)I` � 0, t ∈ [0, T ].(33)

Hence, the control vT (t) = FT (t)x(t) minimizes Jγ
2

T (x0, v) and the optimal costs are

given by (31), for all T < T̃ . As a consequence, we obtain

〈x0, PT (τ)x0〉 = 〈x0, PT−τ (0)x0〉 = Jγ
2

T−τ (x
0, vT−τ ) ≤ Jγ

2

T−τ (x
0, 0) ≤ 0, τ ∈ [0, T ].

On the other hand,

〈x0, PT (τ)x0〉 = Jγ
2

T−τ (x
0, vT−τ ) ≥ −c‖x0‖2, x0 ∈ K

n, τ ∈ [0, T ],

for all T < T̃ by Lemma 2.10. Hence,

−cIn � PT (t) � 0, t ∈ [0, T ], T < T̃ .(34)

Now, suppose T̃ <∞ so that t−(T̃ ) = 0. Then −cI � PT̃ (t) � 0 for all t ∈ (0, T̃ ] and

hence, the solution PT̃ (t) of (29) (with T = T̃ ) cannot escape to ∞ as t ↓ 0. It follows

that there exists a boundary point P 0 ∈ Hn(K), det(Hγ2

(P 0)) = 0 of the domain Df

which is a limit point of PT̃ (t) as t ↓ 0. But this contradicts the fact that by (33),

Hγ2

(PT̃ (t)) = Hγ2

(PT̃−t(0)) � (γ2−‖L‖2)I` for all t ∈ (0, T̃ ). Thus, T̃ = ∞ and the
proposition is proved.

Now we examine what happens as T →∞.
Lemma 2.13. Suppose (4) is internally stable and ‖L‖ < γ. Then PT (t) decreases

as T increases for each t ∈ [0, T ].
Proof. Suppose T ′ > T, t ∈ [0, T ], and x0 ∈ K

n. Let vT−t be optimal for x0 on
[0, T − t], and set v(τ) = vT−t(τ) for τ ∈ [0, T − t] and v(τ) = 0 for τ ∈ (T − t, T ′− t].
Then,

〈x0, PT ′(t)x0〉 ≤ JT ′−t(x0, v) = JT−t(x0, vT−t)−
∫ T ′−t

T−t
E‖z(s)‖2ds

≤ JT−t(x0, vT−t) = 〈x0, PT (t)x0〉.
We are now in a position to prove Theorem 2.8.
Proof of Theorem 2.8. By Corollary 2.7, it only remains to prove that (i) implies

(ii). Assume (i), i.e., (4) is internally stable and ‖L‖ < γ. Using (34), it follows from
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Lemma 2.13 that PT (t) converges as T →∞ for any t ≥ 0. But PT (t) = PT−t(0), so
the limit limT→∞ PT (t) = limT→∞ PT (0) = P is constant. It follows from (34) and
(33) that P satisfies

P � 0 and Hγ2

(P ) � 0(35)

and is a solution of the rational matrix equation

PA+A∗P + q11A
∗
0PA0 − C∗C −K(P )Hγ2

(P )−1K(P )∗ = 0.(36)

Now replace C by Cδ =
[
C
δI

]
and D by Dδ =

[
D
0

]
in Definition 2.3 to obtain the

perturbation operator Lδ for the modified data. Then ‖Lδ‖ < γ for sufficiently small
δ > 0, and so applying the above result to the modified data we find that there exists
Pδ ∈ Hn(K), Pδ � 0 satisfying

(37)

PδA+A∗Pδ+q11A∗0PδA0−C∗C−δ2I−K(Pδ)H
γ2

(Pδ)
−1K(Pδ)

∗ = 0, Hγ2

(Pδ) � 0.

By stability, Pδ ≺ 0, and the above equation implies

PδA+A∗Pδ + q11A
∗
0PδA0 − C∗C −K(Pδ)H

γ2

(Pδ)
−1K(Pδ)

∗ � 0, Hγ2

(Pδ) � 0.

Applying the definiteness criterion (18), we get that M(Pδ) � 0, and (ii) is
proved.

For later use we add the following consequence of Theorem 2.8.
Corollary 2.14. For any set of data (5), the following conditions are equivalent:
(a) The system (4) is internally stable and ‖L‖ < γ.
(b) There exist δ > 0 and Pδ ≺ 0 satisfying (37).
(c) There exist P ∈ Hn(K), P ≺ 0 such that


PA+A∗P + q11A

∗
0PA0 PB + q12A

∗
0PB0 C∗

B∗P + q12B
∗
0PA0 γ2I + q22B

∗
0PB0 D∗

C D I


 � 0.(38)

Proof. In the above proof, we have shown that (a) implies (b) and (b) implies
condition (ii) of Theorem 2.8 (hence (a)). So it remains to show the equivalence of
conditions (ii) and (c). This follows from the equality


I 0 −C∗
0 I −D∗
0 0 I






PA+A∗P + q11A
∗
0PA0 PB + q12A

∗
0PB0 C∗

B∗P + q12B
∗
0PA0 γ2I + q22B

∗
0PB0 D∗

C D I






I 0 0

0 I 0

−C −D I




=




PA+A∗P + q11A
∗
0PA0 − C∗C PB + q12A

∗
0PB0 − C∗D 0

B∗P + q12B
∗
0PA0 −D∗C γ2I + q22B

∗
0PB0 −D∗D 0

0 0 I




=

[
M(P ) 0

0 I

]
.

The following scalar example illustrates the above results.
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Example 2.15. Consider the following system of the form (4), with n = 1, K = R,
and D = 0:

dx(t) = ax(t)dt+ a0x(t)dw1(t) + b0v(t)dw2(t) + bv(t)dt, y(t) = cx(t),(39)

where a, a0, b, b0, c ∈ R and w1(t), w2(t) are Wiener processes, as before. Equation
(16) is equivalent to

2pa+ q11a
2
0p− c2 − (b+ q12a0b0)

2p2/(γ2 + q22b
2
0p) > 0, γ2 + q22b

2
0p > 0.(40)

Suppose a = −1, a0 = b = b0 = c = 1, and assume first that w1 = w2 = q11 = q12 =
q22 = 1. The inequalities (40) become

−p− 1− 4p2/(γ2 + p) > 0, γ2 + p > 0,

and these in turn are equivalent to

0 > 5p2 + (1 + γ2)p+ γ2 and γ2 + p > 0.(41)

The first inequality holds if and only if

(9 +
√

80 < γ2or γ2 < 9−
√

80 ) and 10p < −(1 + γ2) + (γ4 − 18γ2 + 1)1/2.

So

10(γ2 + p) < (γ4 − 18γ2 + 1)1/2 + 9γ2 − 1.

Hence, the constraint γ2 + p > 0 requires γ2 > 1/9 > 9 − √
80 which excludes the

alternative γ2 < 9 − √
80. Therefore, 9 +

√
80 < γ2 is a necessary and sufficient

condition for (41) to have a joint negative solution p. Thus, ‖L‖2 = 9 +
√

80.
We will now analyze what happens if the incremental covariance matrix of the

system is changed. Let q11 = 1, q12 = q22 = 0 so that the stochastic perturbation
term v(t)dw2(t) is absent from (39). In this case, the inequalities (40) reduce to

−p− 1− p2/γ2 > 0.

This inequality has a negative solution p if and only if γ2 > 4. Hence ‖L‖ = 2.

3. Resolution of the general disturbance attenuation problem. We will
study the H∞-type disturbance attenuation problem for stochastic systems of the
form

Σ :

dx(t) = Ax(t)dt+A0x(t)dw1(t) +B0v(t)dw2(t) +B1v(t)dt+B2u(t)dt,

z(t) = C1x(t) +D11v(t) +D12u(t),

y(t) = C2x(t) +D21v(t),

(42)

where

(A,A0, B0, B1, B2) ∈ K
n×n ×K

n×n ×K
n×` ×K

n×` ×K
n×m,

(C1, C2, D11, D12, D21) ∈ K
q×n ×K

p×n ×K
q×l ×K

q×m ×K
p×`,

and w1, w2 are as in the previous section. There are two vector valued input variables
u, v and two vector valued output variables y, z. v represents an unknown stochas-
tic disturbance signal, u the control, z the vector of the to-be-controlled variables,
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and y the measurements. As compensator we choose—as usual in H∞-theory—a
finite-dimensional time-invariant deterministic linear system which is driven by the
measurement process y(·) of Σ and produces the (random) control values u(t):

ΣK : dx̂(t) = AK x̂(t)dt+BKy(t)dt, u(t) = CK x̂(t) +DKy(t),(43)

where (AK , BK , CK , DK) ∈ K
n̂×n̂×K

n̂×p×K
m×n̂×K

m×p and the dimension n̂ ≥ 0 is
arbitrary. If n̂ = 0, the state equation of ΣK vanishes and we obtain u(t) = DKy(t),
i.e., a static linear output feedback control law. For arbitrary n̂ ≥ 0, let

MK =

[
AK BK

CK DK

]
.

The resulting closed loop system is

Σcl :
dx̄(t) = Aclx̄(t)dt+A0

clx̄(t)dw1(t) +B0
clv(t)dw2(t) +Bclv(t)dt,

z(t) = Cclx̄(t) +Dclv(t),
(44)

where

x̄ =

[
x

x̂

]
, Acl =

[
A+B2DKC2 B2CK

BKC2 AK

]
, A0

cl =

[
A0 0

0 0

]
,

B0
cl =

[
B0

0

]
Bcl =

[
B1 +B2DKD21

BKD21

]
,

Ccl = [C1 +D12DKC2, D12CK ], Dcl = D11 +D12DKD21.

(45)

Suppose (44) is internally stable in the sense of the previous section, and the linear
operator

Lcl : L2
w(R+;L2(Ω,K`)) → L2

w(R+;L2(Ω,Kq)),

is defined by

(Lclv)(t) = Cclx̄(t, v, 0) +Dclv(t), t ≥ 0, v(·) ∈ L2
w(R+;L2(Ω,K`)),(46)

where x̄(t, v, x̄0) is the solution of (44) with x̄(0) = x̄0, for every v(·) ∈
L2
w(R+;L2(Ω,K`)). Lcl describes the effect of the disturbance signal v(·) on the

to-be-controlled output vector z(·) of the closed loop system. Given γ > 0, our aim
is to determine whether or not there is a compensator (43) which stabilizes system
(42) internally and achieves ‖Lcl‖ < γ. Such controllers will be called suboptimal of
level γ. In case of existence, we want to know how these compensators MK can be
constructed.

Remark 3.1. In the linear quadratic Gaussian control problem, additive noise
terms are present in the basic model and one may ask why we have excluded them
here. Consider the following model with additive white noise in the state and the
measurement equations:

dx(t) = Ax(t)dt+A0x(t)dw1(t) +B0v(t)dw2(t) +B1v(t)dt+B2u(t)dt+ E1dw3(t),

z(t) = C1x(t) +D11v(t) +D12u(t),

dy(t) = C2x(t)dt+D21v(t)dt+ E2dw3(t),



STOCHASTIC H∞ 1521

where (E1, E2) ∈ K
n×r × K

p×r, and w3 is a vector of r scalar Wiener processes.
Suppose the compensator has the form

dx̂(t) = AK x̂(t)dt+BKdy(t), u(t) = CK x̂(t).

Then the closed loop system is

dx̄(t) = Aclx̄(t)dt+A0
clx̄(t)dw1(t) +B0

clv(t)dw2(t) +Bclv(t)dt+ Ecldw3(t),

z(t) = Cclx̄(t) +Dclv(t),

where x̄ =
[
x
x̂

]
, Acl, A

0
cl, B

0
cl, Ccl, Dcl are as in (45) with DK = 0 and Ecl =

[
E1

BKE2

]
. In

order for the H∞ problem to make sense over infinite time horizons, the map from v to
z (with initial state x̄(0) = 0) must be linear or must at least map the zero input onto
the zero output. For the preceding closed loop system, this will only be the case if the
additive noise term w3 is completely decoupled from z. In the case where the diffusion
term is absent in the nominal system equation (A0 = 0), this would require that the
kernel of Ccl must contain the smallest Acl-invariant subspace generated by the range
of Ecl. Thus, the presence of additive white noise would impose an additional, very
restrictive, condition on the controllers. In fact, it is our opinion that adding a specific
white noise term is not really appropriate in an H∞-type disturbance attenuation
problem. In this framework, measurement and state disturbances are modelled by
the unknown random process v (so that, e.g., measurement noise is represented by
the term D21v(t) in the second output equation.

We will show that the above disturbance attenuation problem can be solved via
the resolution of matrix inequalities. Our approach follows the one developed by
Gahinet and Apkarian for the deterministic case [8]. The key tool which makes this
possible is the stochastic version of the bounded real lemma derived in the previous
section. From deterministic H∞-control theory, we will need the following so-called
projection lemma. A proof of this lemma can be found in [8].

Lemma 3.2 (projection lemma). Suppose N ∈ K
`×m,M ∈ K

n×m, and H ∈
Hm(K). Then the linear matrix inequality

H +N∗X∗M +M∗XN � 0

has a solution X ∈ K
n×` if and only if H is positive definite on ker N and ker M .

To simplify the presentation, the following notations will be used:

A0 =

[
A 0

0 0n̂×n̂

]
, B0 =

[
B1

0n̂×`

]
, C0 = [C1, 0q×n̂], D0

12 = [0q×n̂, D12],

BI =

[
0 B2

In̂ 0

]
, CI =

[
0 In̂

C2 0

]
, D0

21 =

[
0n̂×`
D21

]
.

Then the closed loop matrices can be written as

Acl = A0 +BIMKC
I , Bcl = B0 +BIMKD

0
21, Ccl = C0 +D0

12MKC
I ,

Dcl = D11 +D0
12MKD

0
21, A0

cl, B
0
cl as in (45).

(47)

In order to save space we will not write out the upper triangle of large Hermitian
matrices but will use a ? notation.



1522 D. HINRICHSEN AND A. J. PRITCHARD

Theorem 3.3. For any system of the form (42) and γ > 0, the following condi-
tions are equivalent:

(i) There exists a compensator (43) of dimension n̂ such that the resulting closed
loop system (44) is internally stable and ‖Lcl‖ < γ.

(ii) There exists a Pcl ∈ Hn+n̂(K), Pcl ≺ 0 such that the matrix ΦPcl = Φ∗Pcl is
positive definite on ker U and ΨPcl = Φ∗Pcl is positive definite on ker V, where

ΨPcl =




(A0)∗Pcl + PclA
0 + q11(A

0
cl)
∗PclA0

cl ? ?

(B0)∗Pcl + q12(B
0
cl)
∗PclA0

cl γI` + q22(B
0
cl)
∗PclB0

cl ?

C0 D11 Iq


 ,

ΦPcl =




P−1
cl 0 0

0 I` 0

0 0 Iq


ΨPcl




P−1
cl 0 0

0 I` 0

0 0 Iq


 ,

and

U = [(BI)∗, 0(n̂+m)×`, (D0
12)

∗], V = [CI , D0
21, 0(n̂+p)×q].(48)

Proof. Applying Corollary 2.14 with A = Acl, A0 = A0
cl, etc. we see that (i) is

equivalent to the existence of Pcl ≺ 0 such that




(Acl)
∗Pcl + PclAcl + q11(A

0
cl)
∗PclA0

cl ? ?

(Bcl)
∗Pcl + q12(B

0
cl)
∗PclA0

cl γ2I` + q22(B
0
cl)
∗PclB0

cl ?

Ccl Dcl Iq


 � 0.

Substituting for Acl, B
0
cl, etc. the expressions in (47), we obtain that this is equivalent

to
 (A0 +BIMKC

I)∗Pcl + Pcl(A
0 +BIMKC

I) + q11(A0
cl)

∗PclA0
cl ? ?

((B0)∗ + (D0
21)∗M∗

K(BI)∗)Pcl + q12(B0
cl)

∗PclA0
cl γ2I` + q22(B0

cl)
∗PclB0

cl ?

C0 +D0
12MKC

I D11 +D0
12MKD

0
21 Iq


 � 0.

Or, separating the data and the design parameters,

ΨPcl +




PclB
I

0`×(n̂+`)

D0
12


MK [CI , D0

21, 0(n̂+p)×q]

+




(CI)∗

(D0
21)

∗

0q×(n̂+p)


M∗

K [(BI)∗Pcl, 0(n̂+`)×`, (D0
12)

∗] � 0.

That is,

ΨPcl + U∗PclMKV + V ∗M∗
KUPcl � 0,(49)

where UPcl = [(BI)∗Pcl, 0(n̂+m)×`, (D0
12)

∗] and V is defined as in (48).
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Applying the projection lemma, we conclude that (i) is equivalent to ΨPcl being
positive definite on ker V and ker UPcl . To complete the proof, note that

UPcl = U




Pcl 0 0

0 I` 0

0 0 Iq


 .

The characterization in the above theorem is awkward since it involves both Pcl and
its inverse. However, a simpler form can be obtained by partitioning Pcl. To achieve
this, the following lemma will be useful; see Lemma 7.5 in [23].

Lemma 3.4. Let n, n̂ ≥ 1. Suppose P ∈ Hn+n̂(K) and its inverse P−1 are
partitioned as follows:

P =

[
S N

N∗ Q

]
, P−1 =

[
R M

M∗ T

]
, R, S ∈ Hn(K),(50)

and P ≺ 0, then

S � R−1 ≺ 0 and rank [R−1 − S] ≤ n̂.(51)

Conversely, if R,S ∈ Hn(K) are given such that (51) is satisfied, then there exists
P ∈ Hn+n̂(K), P ≺ 0 such that P and its inverse can be partitioned as in (50) (with
suitable N, Q, M, T ).

Theorem 3.5. For any system of the form (42) and γ > 0, the following condi-
tions are equivalent:

(i) There exists a stabilizing compensator (43) of dimension n̂ such that ‖Lcl‖ < γ.
(ii) There exists (R,S) ∈ Hn(K)×Hn(K) such that

S � R−1 ≺ 0, rank(R−1 − S) ≤ n̂ and Πγ(S) = γ2I` + q22B
∗
0SB0 � 0,(52)

[
AR +RA∗ + q11RA

∗
0SA0R RC∗1

C1R I`

]
−
[
B1 + q12RA

∗
0SB0

D11

]

Πγ(S)−1

[
B1 + q12RA

∗
0SB0

D11

]∗
� 0 on ker [B∗2D

∗
12]

(53)

and [
SA+A∗S + q11A

∗
0SA0 SB1 + q12A

∗
0SB0

B∗1S + q12B
∗
0SA0 Πγ(S)

]

−
[

C∗1
D∗11

] [
C∗1
D∗11

]∗
� 0 on ker [C2 D21].

(54)

Proof. By Theorem 3.3, (i) is equivalent to the existence of Pcl ∈ Hn+n̂(K),
Pcl ≺ 0 such that the matrix ΦPcl is positive definite on ker U and ΨPcl is positive
definite on ker V . If we partition

Pcl =

[
S N

N∗ Q

]
, P−1

cl =

[
R M

M∗ T

]
, R, S ∈ Hn(K),
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we obtain from the preceding lemma that

S � R−1 ≺ 0 and rank [R−1 − S] ≤ n̂.

Let us first consider the condition that ΨPcl is positive definite on ker V . Since, by
definition (48),

V =

[
0 In̂ 0 0n̂×q
C2 0 D21 0p×q

]
,

ker V can be represented as

ker V = Im




V1 0

0 0

V2 0

0 Iq


 ,

where
[
V1

V2

]
is a basis matrix for ker [C2, D21]. Partitioning ΨPcl accordingly, a straight-

forward calculation yields

ΨPcl =




SA+A∗S + q11A
∗
0SA0 ? ? ?

N∗A 0 ? ?

B∗1S + q12B
∗
0SA0 B∗1N Πγ(S) ?

C1 0 D11 Iq


 .

Now,

[
V ∗1 0 V ∗2 0

0 0 0 Iq

] 
SA+A∗S + q11A∗0SA0 A∗N SB1 + q12A∗0SB0 C∗1

N∗A 0 N∗B1 0

B∗1S + q12B∗0SA0 B∗1N Πγ(S) D∗
11

C1 0 D11 Iq






V1 0

0 0

V2 0

0 Iq




=




[V ∗1 V ∗2 ]

[
SA+A∗S + q11A∗0SA0 SB1 + q12A∗0SB0

B∗1S + q12B∗0SA0 Πγ(S)

] [
V1

V2

]
[V ∗1 V ∗2 ]

[
C∗1
D∗

11

]

[C1 D11]

[
V1

V2

]
Iq


 .

Using (18), it follows therefore that ΨPcl is positive definite on ker V if and only if[
SA+A∗S + q11A

∗
0SA0 SB1 + q12A

∗
0SB0

B∗1S + q12B
∗
0SA0 Πγ(S)

]

−
[

C∗1
D∗11

]
[C1 D11] � 0 on ker [C2 D21] ,

i.e., if and only if (54) is satisfied.
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The condition that the matrix ΦPcl is positive definite on ker U can be analyzed
in a similar way. Since, by definition (48),

U =

[
0 In̂ 0n̂×` 0

B∗2 0 0m×` D∗12

]
,

ker U can be represented by

ker U = Im




U1 0

0 0

0 I`

U2 0


 ,

where
[
U1

U2

]
is a basis for ker [B∗2 D∗12]. Partitioning ΦPcl accordingly, we obtain by a

straightforward calculation that

ΦPcl =




AR +RA∗ + q11RA
∗
0SA0R ? ? ?

(AM + q11RA
∗
0SA0M)∗ q11M

∗A∗0SA0M ? ?

(B1 + q12RA
∗
0SB0)

∗ q12B
∗
0SA0M Πγ(S) ?

C1R C1M D11 Iq


 .

Now,

[
U∗1 0 0 U∗2
0 0 I` 0

] 
AR+RA∗ + q11RA∗0SA0R ? ? ?

(AM + q11RA∗0SA0M)∗ q11M∗A∗0SA0M ? ?

(B1 + q12RA∗0SB0)∗ q12B∗0SA0M Πγ(S) ?

C1R C1M D11 Iq






U1 0

0 0

0 I`

U2 0




=




[U∗1 U∗2 ]

[
AR+RA∗ + q11RA∗0SA0R RC∗1

C1R Iq

] [
U1

U2

]
[U∗1 U∗2 ]

[
B1 + q12RA∗0SB0

D11

]

[
B1 + q12RA∗0SB0

D11

]∗ [
U1

U2

]
Πγ(S)


 .

Hence, again using (18), ΦPcl is positive definite on ker U if and only if Πγ(S) � 0
and (53) hold. Altogether we see that (i) implies (ii).

Conversely, suppose (R,S) ∈ Hn(K)×Hn(K), R ≺ 0, S ≺ 0 satisfy the conditions
in (ii). Applying Lemma 3.4, we obtain that there exist N , M ∈ K

n×`, Q, T ∈ H`(K)
such that

Pcl :=

[
S N

N∗ Q

]
≺ 0, P−1

cl =

[
R M

M∗ T

]
.

Now define ΨPcl , ΦPcl as in Theorem 3.3. We have just proved that (53) and (54)
imply that the matrix ΦPcl is positive definite on ker U and ΨPcl is positive definite
on ker V . But this is equivalent to (i).
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Let γopt be the optimal value of our H∞-control problem, i.e.,

(55)

γopt = inf{γ ≥ 0;∃ compensator (43) s.t. (44) is internally stable and ‖Lcl‖ < γ}.
By the previous theorem, γopt is the infimum of all γ ≥ 0 for which there exist
(R,S) ∈ Hn(K)×Hn(K) such that (52), (53), and (54) are satisfied. Now the condition
rk(R−1 − S) ≤ n̂ is automatically satisfied for n̂ ≥ n and conditions (53), (54) do not
depend on n̂. Therefore we obtain, as a consequence of the previous theorem, that for
every γ > γopt there exists a stabilizing controller (43) of dimension ≤ n such that
‖Lcl‖ < γ.

Remark 3.6. (i) In the deterministic case (A0 = 0, B0 = 0), we have Πγ(S) = γ2I
and so (53) and (54) become[

AR +RA∗ −B1B
∗
1/γ

2 RC∗1 −B1D
∗
11/γ

2

C1R−D11B
∗
1/γ

2 I −D11D
∗
11/γ

2

]
� 0, on ker [B∗2 D∗12] ,(56)

[
SA+A∗S − C∗1C1 SB1 − C∗1D11

B∗1S −D∗11C1 γ2I −D∗11D11

]
� 0, on ker [C2 D21] .(57)

These, together with

S � R−1 ≺ 0, rank (R−1 − S) ≤ n̂,

are precisely the LMI solvability conditions for the suboptimal H∞ synthesis problem
as stated in [8].

(ii) Suppose R,S satisfying the conditions in part (ii) of the previous theorem have
been found for a given value of γ. Then, stabilizing compensators that achieve ‖Lcl‖ <
γ can be constructed just as for deterministic systems [8]. First, one constructs Pcl,
followed by ΨPcl and ΦPcl , and then one solves (49) for MK . An explicit construction
will be given in the next section for the regular case.

(iii) Comparing (53), (54) with (56), (57), we see that the presence of multi-
plicative state and control dependent noise leads to nonlinear instead of linear matrix
inequalities and to a one-sided coupling of “controller” and “observer” matrix inequal-
ities. Note, however, that the “observer” inequality (54) is still linear and independent
of (53) so that it can be considered separately. Its solutions then have to be fed into
the controller inequality (53) which is a quadratic matrix inequality in R.

We can replace inequalities (53), (54) by inequalities on the whole space at the
sake of introducing scalar parameters. Namely, (53) is equivalent to the existence of
α > 0 such that[

AR +RA∗ + q11RA
∗
0SA0R RC∗1

C1R I

]

−
(

B1 + q12RA
∗
0SB0

D11

)
Πγ(S)−1

(
B1 + q12RA

∗
0SB0

D11

)∗

+ α2

[
B2

D12

]
[B∗2 D∗12] � 0,

(58)



STOCHASTIC H∞ 1527

and (54) is equivalent to the existence of β > 0 such that[
SA+A∗S + q11A

∗
0SA0 SB1 + q12A

∗
0SB0

B∗1S + q12B
∗
0SA0 Πγ(S)

]

−
[

C∗1
D∗11

] [
C∗1
D∗11

]∗
+ β2

[
C∗2
D∗21

]
[C2 D21] � 0.

(59)

Furthermore, we can replace the above inequalities with lower-dimensional ones. In
fact, applying (18), (58) is equivalent to I + α2D12D

∗
12 −D11Πγ(S)−1D∗11 � 0 and

AR + RA∗ + q11RA
∗
0SA0R

− (B1 + q12RA
∗
0SB0)Πγ(S)−1(B1 + q12RA

∗
0SB0)

∗ + α2B2B
∗
2

− [RC∗1 − (B1 + q12RA
∗
0SB0)Πγ(S)−1D∗11 + α2B2D

∗
12

]
[
I + α2D12D

∗
12 −D11Πγ(S)−1D∗11

]−1

× [RC∗1 − (B1 + q12RA
∗
0SB0)Πγ(S)−1D∗11 + α2B2D

∗
12

]∗ � 0.

(60)

Similarly, we obtain that (59) is equivalent to Πγ(S) + β2D∗21D21 −D∗11D11 � 0 and

(61)

SA + A∗S + q11A
∗
0SA0 − C∗1C1 + β2C∗2C2

− [SB1 + q12A
∗
0SB0 − C∗1D11 + β2C∗2D21

]
× [Πγ(S) + β2D∗21D21 −D∗11D11

]−1[
SB1 + q12A

∗
0SB0 − C∗1D11 + β2C∗2D21

]∗ � 0.

Thus, we have the following corollary.
Corollary 3.7. For any system of the form (42) and any γ > 0, the following

conditions are equivalent:
(i) There exists a stabilizing compensator (43) of dimension n̂ such that ‖Lcl‖ < γ.
(ii) There exist (R,S) ∈ Hn(K)×Hn(K), α > 0, β > 0, such that

S � R−1 ≺ 0, rk(R−1 − S) ≤ n̂, Πγ(S) = γ2I + q22B
∗
0SB0 � 0,

I + α2D12D
∗
12 −D11Πγ(S)−1D∗11 � 0, Πγ(S) + β2D∗21D21 −D∗11D11 � 0,

and (60), (61) hold.
We conclude this section with a brief discussion of the state feedback case, where

C2 = In and D21 = 0. Then (54) is equivalent to

Πγ(S)−D∗11D11 = γ2I + q22B
∗
0SB0 −D∗11D11 � 0.

The following corollary determines what can be achieved by static state feedback:

u(t) = Fx(t), F ∈ K
m×n.(62)

Corollary 3.8. There exists a stabilizing static state feedback controlled (62)
such that ‖Lcl‖ < γ if and only if there exists R ∈ Hn(K), R ≺ 0 satisfying

Πγ(R
−1)−D∗11D11 = γ2I + q22B

∗
0R

−1B0 −D∗11D11 � 0(63)
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and [
AR +RA∗ + q11RA

∗
0R

−1A0R RC∗1
C1R I

]

−
[
B1 + q12RA

∗
0R

−1B0

D11

]
Πγ(R

−1)−1

[
B1 + q12RA

∗
0R

−1B0

D11

]∗
� 0

on ker [B∗2 D∗12] .

(64)

Proof. In the static state feedback case, we have n̂ = 0 and hence (52) implies S =
R−1. But with S = R−1, (53) and (54) are equivalent to (64) and (63), respectively.
Thus the statement follows from Theorem 3.5.

An interesting question is whether or not lower levels of γ can be achieved by
employing dynamic state feedback. This has been answered in the negative for the
deterministic case A0 = 0, B0 = 0, (see, e.g., [26]) and for the special stochastic case
A0 = 0, B1 = 0, see Proposition 5.6 in [16]. The following corollary generalizes these
results to the general stochastic case where the nominal system’s noise w1(t) and the
perturbation noise w2(t) are independent.

Corollary 3.9. For any system of the form (42) with q12 = 0 and any γ > 0,
the following conditions are equivalent:

(i) There exists a stabilizing static state feedback controller (62) such that
‖Lcl‖ < γ.

(ii) There exists a stabilizing dynamic state feedback controller of dimension n̂ ≥ 0
(i.e., (43) with y(t) = x(t)) such that ‖Lcl‖ < γ.

Proof. Only the implication (ii) ⇒ (i) needs to be proved. Assume (ii); then by
Theorem 3.5 there exists (R,S) ∈ Hn(K)×Hn(K), such that S � R−1 ≺ 0, and the
following inequalities are satisfied:[

AR +RA∗ + q11RA
∗
0SA0R RC∗1

C1R I

]

−
[

B1

D11

]
Πγ(S)−1

[
B1

D11

]∗
� 0 on ker [B∗2 D∗12] ,

Πγ(S)−D∗11D11 = γ2I + q22B
∗
0SB0 −D∗11D11 � 0.

But since S � R−1 ≺ 0, it follows that 0 ≺ Πγ(S) � Πγ(R
−1) and q11RA

∗
0SA0R �

q11RA
∗
0R

−1A0R. Hence, the previous two inequalities hold with S replaced by R−1.
Therefore (i) follows from Corollary 3.8.

4. The regular case. In this section we consider the so-called regular case and
make the following usual assumptions [5]:

D11 = 0, D∗12D12 = I, D21D
∗
21 = I, D∗12C1 = 0, D21B

∗
1 = 0.(65)

Then (60) becomes

AR +RA∗ + q11RA
∗
0SA0R

− (B1 + q12RA
∗
0SB0)Πγ(S)−1(B1 + q12RA

∗
0SB0)

∗ + α2B2B
∗
2

− (RC∗1 + α2B2D
∗
12)(I + α2D12D

∗
12)

−1(RC∗1 + α2B2D
∗
12)

∗ � 0.
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By (65),

(I + α2D12D
∗
12)

−1D12 = (1 + α2)−1D12, (I + α2D12D
∗
12)

−1C1 = C1,

and hence

RC∗1 (I + α2D12D
∗
12)

−1(RC∗1 + α2B2D
∗
12)

∗ = RC∗1C1R.

Therefore, (60) is equivalent to

AR +RA∗ + q11RA
∗
0SA0R− (B1 + q12RA

∗
0SB0)Πγ(S)−1(B1 + q12RA

∗
0SB0)

∗

+ α2B2B
∗
2 −RC∗1C1R− α4B2D

∗
12(I + α2D12D

∗
12)

−1D12B
∗
2 � 0.

Now D∗12(I + α2D12D
∗
12)

−1D12 = (1 + α2)−1I, so (60) is equivalent to

(66)

AR +RA∗ + q11RA
∗
0SA0R− (B1 + q12RA

∗
0SB0)Πγ(S)−1(B1 + q12RA

∗
0SB0)

∗

+α2(1 + α2)−1B2B
∗
2 −RC∗1C1R � 0.

Equation (61) becomes

SA+A∗S + q11A
∗
0SA0 − C∗1C1 + β2C∗2C2

−(SB1 + q12A
∗
0SB0 + β2C∗2D21)(Πγ(S) + β2D∗21D21)

−1

(SB1 + q12A
∗
0SB0 + β2C∗2D21)

∗ � 0.

Suppose, in addition, that D21B
∗
0 = 0, then after similar calculation to the ones above

we obtain the equivalent inequality

SA+A∗S + q11A
∗
0SA0 − C∗1C1 + β2γ2(β2 + γ2)−1C∗2C2

−(SB1 + q12A
∗
0SB0)Πγ(S)−1(SB1 + q12A

∗
0SB0)

∗ � 0.
(67)

If (66), (67) are satisfied for some given α, β > 0, they are also satisfied for all larger
values. Taking limits as α → ∞, β → ∞, we see that (66) and (67) are equivalent,
respectively, to

AR +RA∗ + q11RA
∗
0SA0R +B2B

∗
2 −RC∗1C1R

−(B1 + q12RA
∗
0SB0)Πγ(S)−1(B1 + q12RA

∗
0SB0)

∗ � 0,

SA+A∗S + q11A
∗
0SA0 − C∗1C1 + γ2C∗2C2

−(SB1 + q12A
∗
0SB0)Πγ(S)−1(SB1 + q12A

∗
0SB0)

∗ � 0.(68)

Setting R−1 = P , the first inequality is equivalent to

PA+A∗P + q11A
∗
0SA0 + PB2B

∗
2P − C∗1C1

−(PB1 + q12A
∗
0SB0)Πγ(S)−1(PB1 + q12A

∗
0SB0)∗ � 0.(69)

Altogether we have derived the following consequence of Corollary 3.7.
Proposition 4.1. Suppose the regularity conditions (65) and D21B

∗
0 = 0. Then

the following statements are equivalent:
(i) There exists a stabilizing compensator (43) of dimension n̂ such that ‖Lcl‖ < γ.
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(ii) There exist P, S ∈ Hn(K) such that S � P ≺ 0, rank(P − S) ≤ n̂, γ2I +
q22B

∗
0SB0 � 0 and (68), (69) hold.
We now show how to explicitly calculate a compensator in the special case that

n̂ = n. Suppose that condition (ii) of the previous proposition is satisfied with n̂ = n.
Then there exist P, S ∈ Hn(K) such that S ≺ P ≺ 0, γ2I + q22B

∗
0SB0 � 0, and

ΠS � 0, ΠP � 0, where

ΠS = SA+A∗S + q11A
∗
0SA0 − C∗1C1 + γ2C∗2C2

−(SB1 + q12A
∗
0SB0)Πγ(S)−1(SB1 + q12A

∗
0SB0)

∗,

ΠP = PA+A∗P + q11A
∗
0SA0 + PB2B

∗
2P − C∗1C1

−(PB1 + q12A
∗
0SB0)Πγ(S)−1(PB1 + q12A

∗
0SB0)

∗.

Define

BK = γ2(P − S)−1C∗2 , CK = B∗2P, DK = 0,(70)

then,

Acl =

[
A B2B

∗
2P

γ2(P − S)−1C∗2C2 AK

]
, A0

cl =

[
A0 0

0 0

]
, B0

cl =

[
B0

0

]
,

Bcl =

[
B1

γ2(P − S)−1C∗2D21

]
, Ccl = [C1 D12B

∗
2P ], Dcl = 0.

So condition (ii) of Theorem 2.8 is equivalent to the existence of Pcl ≺ 0 such that

(71)

Π := PclAcl +A∗clPcl + q11A
0∗
cl PclA

0
cl − C∗clCcl

−(PclBcl + q12A
0∗
cl PclB

0
cl)(γ

2I + q22B
0∗
cl PclB

0
cl)
−1(PclBcl + q12A

0∗
cl PclB

0
cl)
∗ � 0.

Choosing Pcl =
[
S N
N∗ Q

]
, with N = −Q = (P − S) then Pcl ≺ 0 and partitioning

Π =
[
Π11 Π12

Π∗
12 Π22

]
, we obtain from (71),

Π11 = SA+A∗S + q11A
∗
0SA0 + 2γ2C∗2C2 − C∗1C1

−(SB1 + q12A
∗
0SB0 + γ2C∗2D21)Πγ(S)−1(SB1 + q12A

∗
0SB0 + γ2C∗2D21)

∗,

Π12 = SB2B
∗
2P +NAK +A∗N − γ2C∗2C2

−(SB1 + q12A
∗
0SB0 + γ2C∗2D21)Πγ(S)−1(NB1 − γ2C∗2D21)

∗,

Π22 = NB2B
∗
2P + PB2B

∗
2N −NAK −A∗KN − PB2B

∗
2P

−(NB1 − γ2C∗2D21)Πγ(S)−1(NB1 − γ2C∗2D21)
∗.

Now Π11 = ΠS , and Π12 simplifies to

Π12 = SB2B
∗
2P +NAK +A∗N − (SB1 + q12A

∗
0SB0)Πγ(S)−1B∗1N.

Thus, choosing

AK = −N−1[SB2B
∗
2P +A∗N − (SB1 + q12A

∗
0SB0)Πγ(S)−1B∗1N + ΠS ],(72)
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we get Π12 = −ΠS . Finally, Π22 simplifies to

Π22 = NB2B
∗
2P+PB2B

∗
2N−NAK−A∗KN−PB2B

∗
2P−γ2C∗2C2−NB1Πγ(S)−1B∗1N.

Substituting for AK , we get Π22 = ΠP + ΠS . Hence Π =
[

ΠS −ΠS

−ΠS ΠP+ΠS

]
, and since

ΠS � 0, ΠP � 0, it follows that Π � 0, i.e., the above Pcl satisfies (71). We conclude
from Theorem 2.8 that the closed loop system is stable and ‖Lcl‖ < γ.

Remark 4.2. (i) Using (68) and (69) one can show that

AK = A−BKC2 +B2CK −B1Πγ(S)−1(B∗1P + q12B
∗
0SA0)−N−1ΠP .

The first three terms are familiar from pole-placement based deterministic dynamic
output feedback stabilization. If B0 = 0, the fourth term is γ−2B1B

∗
1P and this is

familiar from deterministic H∞ control. In this case, the last term (N−1ΠP ) is zero
for the so-called “central controller.”

(ii) We have shown in [16] that in a stochastic setting it is not possible, in general,
to replace both inequalities (68) and (69) by equalities in Proposition 4.1.

5. Stability radii. In this section we turn to a singular control problem and
discuss the application of our general results to stability radii. First we show how the
results of section 2 can be used to derive a lower bound for stability radii of stochastic
systems. Then we use the results of section 3 to show how to increase the radii via
feedback. The corresponding H∞-type control problem is singular because all three
feedthrough matrices D11, D12, D21 are zero in this case. For the analysis problem,
we adopt the notation of section 2 and, for the synthesis problem, the notation of
section 3. Suppose that a stable linear stochastic model

Σ0 : dx(t) = Ax(t)dt+A0x(t)dw1(t)(73)

is perturbed to

Σ∆ : dx(t) = (A+B∆C)x(t)dt+A0x(t)dw1(t) +B0∆Cx(t)dw2(t),(74)

where

(A,A0, B0, B,C) ∈ K
n×n ×K

n×n ×K
n×` ×K

n×` ×K
q×n.

The Wiener processes wi, i = 1, 2 are as in section 2, and ∆ ∈ D(K) = K
`×q repre-

sents an unknown disturbance matrix. We view the term B∆C in (74) as a parameter
perturbation of the nominal system matrix A and view B0∆Cx(t)dw2(t) as a stochas-
tic perturbation (multiplicative noise). If w1 = w2 = w, we can interpret B0∆C as a
parameter perturbation of A0 and write (74) in the following way:

ẋ(t) = (A+B∆C)x(t) + (A0 +B0∆C)x(t)dw(t).(75)

The fact that the same ∆ is used in both perturbations is not really a restriction
since, if we set B0 = [B0

0 0], B = [0 B1], and ∆ =
[
∆0

∆1

]
, we obtain

ẋ(t) = (A+B1∆1C)x(t) + (A0 +B0
0∆0C)x(t)dw(t).

We will take this up again in Example 5.8.
The size of each ∆ ∈ D(K) is measured by its operator norm (with respect to

the Euclidean norms on K
q,K`). Our aim is to determine which bounds ρ > 0 on
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the size of the perturbations ensure the stability of the perturbed system (74). The
maximum ρ for which all the perturbed systems (74) with ‖∆‖ < ρ are stable is called
the stability radius of (73).

Definition 5.1. The stability radius of the stochastic system (73), with respect
to perturbations as in (74), is

rwK = rwK (A,A0;B,B0, C) = inf{‖∆‖; ∆ ∈ D(K), (74) is not stable}.(76)

In particular, rw
K

= ∞ if there does not exist ∆ ∈ D(K) such that (74) is not stable.
The stability radius is a quantitative index of robust stability of the system Σ0

(73) under perturbations of the form Σ0 Ã Σ∆ (74). Since robust stability is a basic
requirement for every control system with uncertain parameters, it is of considerable
interest to have computable formulae or good estimates for the stability radii of a
given system.

To connect the stability radius problem with the analysis in section 2, observe
that the perturbed system (74) is identical with the closed loop system obtained from

dx(t) = Ax(t)dt+A0x(t)dw1(t) +B0v(t)dw2(t) +Bv(t)dt(77)

z(t) = Cx(t),

by setting v(t) = ∆z(t). The open loop gain of this closed loop system is given
by ‖L∆‖, where L : v(·) 7→ Cx(·, v, 0) is the perturbation operator associated with
(77) (see Definition 2.3). It is therefore reasonable to expect that the norm of the
perturbation operator plays a crucial role in the determination of the stability radius.

Remark 5.2. (i) If the data A, A0, B, B0, C are real, two stability radii are
obtained depending on whether one chooses K = C (complex perturbations) or K = R

(real perturbations) in (76). In a deterministic framework, the real and the complex
stability radii are, in general, distinct; see [14]. The complex stability radius is equal to
‖L‖−1 [12], whereas the real stability radius is characterized via second order singular
values [24].

(ii) A stability radius with respect to time-varying and/or nonlinear perturbations
can be defined via (76) by extending the perturbation class D(K) appropriately. For
example, let Dtn(K) denote the set of all Lebesgue measurable ∆ : R+ × K

q 7→ K
`

which are Lipschitz bounded and linearly bounded in y; that is, for all T > 0 there
exists L = L(T ) such that

‖∆(t, y)−∆(t, ŷ)‖ ≤ L‖y − ŷ‖ for all y, ŷ ∈ K
q, t ∈ [0, T ],

and there exists K > 0 such that

‖∆(t, y)‖ ≤ K‖y‖ for all t ∈ R+, y ∈ K
q.(78)

The size of ∆ ∈ Dtn(K) is measured by the smallest K for which (78) holds. The
stability radius of (73) with respect to time-varying nonlinear perturbations of the
form

dx(t) = (Ax(t) +B∆(t, Cx(t)))dt+A0x(t)dw1(t) +B0∆(t, Cx(t))dw2(t)(79)

is then defined by (76) with (74) replaced by (79), and D(K) replaced by Dtn(K). Here
the nonlinear system (79) is said to be stable (recall Definition 2.1) if the solutions
x∆(·, x0) of (79) satisfy∫ ∞

0

E‖x∆(t, x0)‖2dt ≤ c‖x0‖2, x0 ∈ K
n,
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for some suitable constant c. In the deterministic context (A0 = 0, B0 = 0), it is
known [14] that the complex stability radius is not changed by such an extension of the
perturbation class, whereas the real stability radius is. In the special case where the
nominal model (73) is deterministic and the perturbations are purely stochastic, i.e.,
A0 = 0, B = 0, it has been shown in [2] that the real and the complex stability radii
coincide and are equal to the inverse of the norm of the perturbation operator (‖L‖−1)
if nonlinear disturbances are considered. In this case, it is also possible to analyze the
effect of blockdiagonal perturbations, where the single stochastic perturbation term
B0∆Cx(t)dw2(t) is replaced by a sum of the form

∑N
i=1 B

i
0∆

iCix(t)dwi
2(t). In the

deterministic context, the analysis of blockdiagonal perturbations is the object of µ-
analysis. In [16] it was shown that, in the case of purely stochastic perturbations
of a deterministic system, the real and complex radii coincide and, although they
are not equal to ‖L‖−1, they are equal to the inverse of the norm of a suitably
scaled perturbation operator. Analogous results are not available for deterministic
blockdiagonal perturbations.

Proposition 5.3. Suppose that (73) is stable and ∆ ∈ Dtn(K) is a time-varying
nonlinearity satisfying ‖∆‖ = sup{‖∆(t, y)‖/‖y‖; t ≥ 0, y ∈ K

q, y 6= 0} < ‖L‖−1,
where L is the perturbation operator associated with data (A,A0, B0, B,C, 0) (see Def-
inition 2.3). Then the perturbed system (79) is stable. In particular,

rwK (A,A0;B,B0, C) ≥ ‖L‖−1.(80)

Proof. Since ∆ is Lipschitz bounded and linearly bounded, for every x0 ∈ K
n,

T > 0, there exists a unique solution x∆(·) = x∆(·, x0) ∈ L2
w([0, T ];L2(Ω,Kn)) of

(79) satisfying x∆(0) = x0 with bounded second moments [19]. x∆(·) is a continuous
nonanticipative stochastic process on R+ satisfying the Ito integral equation

x∆(t) = x0 +

∫ t

0

(Ax∆(s) +B∆(s, Cx∆(s)))ds

+

∫ t

0

[A0x∆(s) B0∆(s, Cx∆(s))]d

[
w1(s)

w2(s)

]
, t ≥ 0.

So x∆(·) satisfies (7) with v(·) = v∆(·) = ∆(·, Cx∆(·)) ∈ L2
w([0, T ];L2(Ω,K`)) for

every T > 0. Since ‖∆‖ < ‖L‖−1, there exists γ > ‖L‖ such that γ‖∆‖ < 1. Applying
Theorem 2.8 to (74), there are δ > 0 and P = P ∗ ≺ 0 satisfying M(P ) � δ2I. By
Lemma 2.4 we obtain, for every x0 ∈ K

n and T > 0,

Jγ
2

T (x0, v∆) = 〈x0, Px0〉 − E〈x∆(T ), Px∆(T )〉

+

∫ T

0

E
(〈[

x∆(t)

v∆(t)

]
,M(P )

[
x∆(t)

v∆(t)

]〉)
dt.

Substituting ∆(·, Cs∆(·)) for v∆(·) and making use of definition (12) and inequality
M(P ) � δ2I, we obtain

〈x0, Px0〉 − E〈x∆(T ), Px∆(T )〉 ≤
∫ T

0

[γ2E‖∆(t, Cx∆(t))‖2

− E‖Cx∆(t)‖2 − δ2E‖x∆(t)‖2]dt.
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Now, γ2E‖∆(t, Cx∆(t))‖2 ≤ γ2‖∆‖2E‖Cx∆(t)‖2 ≤ E‖Cx∆(t)‖2 and −P ≥ ηI for
some η > 0. Hence,

ηE‖x∆(T )‖2 ≤ −E〈x∆(T ), Px∆(T )〉 ≤ ‖P‖ ‖x0‖2 −
∫ T

0

δ2E‖x∆(t)‖2dt, T > 0,

and it follows that ∫ ∞

0

E‖x∆(t)‖2dt ≤ ‖P‖ ‖x0‖2/δ2,

i.e., (79) is stable.
We illustrate the above result by considering the same scalar stochastic system as

in Example 2.15. In this simple example, we will see that the estimate (80) is tight.
Example 5.4. Consider

dx(t) = −x(t)dt+ x(t)dw1(t) + v(t)dw2(t) + v(t)dt, z(t) = x(t),(81)

and assume first that q11 = 1, q12 = q22 = 0 so that the stochastic perturbation term
v(t)dw2(t) is absent from (81). We have shown in Example 2.15 that ‖L‖ = 2 in this
case. The corresponding perturbed equation (74) takes the form

dx(t) = −(1−∆)x(t)dt+ x(t)dw1(t).

By (8), this stochastic equation is stable if and only if there exists p < 0 such that

−(2−∆−∆∗)p+ p > 0, i.e., −(2−∆−∆∗) + 1 < 0.

Hence, ∆ = 1/2 is a destabilizing real disturbance, and by Proposition 5.3 there is no
smaller disturbance ∆ ∈ C which destabilizes. So rw

R
= rw

C
= ‖L‖−1 = 1/2.

Now suppose w1 = w2 = w and q11 = q12 = q22 = 1. We have shown in
Example 2.15 that ‖L‖2 = 9 +

√
80. The perturbed model takes the form

dx(t) = −(1−∆)x(t)dt+ (1 + ∆)x(t)dw(t).

By (8), this stochastic equation is stable if and only if there exists p < 0 such that

−(2−∆−∆∗)p+ |1 + ∆|2p > 0, i.e., − (2−∆−∆∗) + |1 + ∆|2 < 0.

A short calculation shows that ∆ =
√

5−2 is the smallest disturbance ∆ ∈ C violating

this condition. Hence rw
R

= rw
C

=
√

5− 2, but ‖L‖−1 = 1/
√

9 +
√

80 =
√

9−√80 =√
5− 2. Therefore, in this case we again have rw

R
= rw

C
= ‖L‖−1.

As was to be expected, the presence of the stochastic disturbance term ∆x(t)dw(t)
effectively decreases the stability radius of the system. This is not necessarily so if
there is more than one disturbance parameter, i.e., max{`, q} > 1.

We now turn to the synthesis problem. The perturbed closed loop equation
obtained by setting v = ∆z in (44) is

dx̄(t) = (Acl +Bcl∆Ccl)x̄(t)dt+ (A0
cldw1(t) +B0

cl∆Ccldw2(t))x̄(t).(82)

As an immediate corollary of Proposition 5.3 and Theorem 3.3 we have the following.
Corollary 5.5. Let γopt be defined by (55). Then for any γ > γopt, there exists

a stabilizing compensator (43) such that the corresponding closed loop system has a
stability radius rw

K
(Acl, A

0
cl;Bcl, B

0
cl, Ccl) > γ−1.
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In the following examples, we indicate how the synthesis problem may be solved
under simplifying assumptions. We first consider two system classes (4) for which the
estimate (80) is tight.

Example 5.6. A0 = 0, B0 = 0. For this deterministic case, we have shown [12] that
rw

C
= ‖Lcl‖−1, but in general rw

R
> rw

C
[14]. Equations (60) and (61) are equivalent to

ΠR = AR +RA∗ −RC∗1C1R−B1B
∗
1/γ

2 + α2B2B
∗
2 � 0.(83)

ΠS = SA+A∗S − C∗1C1 − SB1B
∗
1S/γ

2 + β2C∗2C2 � 0.(84)

Let

ropt = sup{rwC (Acl, 0;Bcl, 0, Ccl);∃ compensator MK s.t. Acl is stable}.
Then we have ropt = γ−1

opt. For any γ > 0, γ−1 < ropt, using the same procedure as
that in section 4, it is easy to verify that, provided there exist R,S ∈ Hn(K), α, β > 0
satisfying S ≺ R−1 ≺ 0 and (83), (84), the following compensator of order n achieves
rw

C
> γ−1:

BK = β2(R−1 − S)−1C∗2 , CK = α2β∗2R
−1, DK = 0,

AK = A−BKC2 +B2CK −B1B
∗
1R

−1/γ2 − (I −RS)−1ΠRR
−1,

where ΠR is defined by (83).
Example 5.7. A0 = 0, B1 = 0. For this case, we have shown that if nonlinear

perturbations ∆ are allowed, then rw
R

= rw
C

= ‖Lcl‖−1 [16]. Equations, (53) and (54)
are equivalent to

AR +RA∗ −RC∗1C1R � 0 on ker B∗2(85)

SA+A∗S − C∗1C1 � 0 on ker C2, Πγ(S) = γ2I + q22B
∗
0SB0 � 0.(86)

Let

ropt = sup{rwC (Acl, 0; 0, B0
cl, Ccl),∃ a compensator MK s.t. Acl is stable}.

Then again we have ropt = γ−1
opt, and for any γ > 0, γ−1 < ropt we can use (85)

and (86) together with (52) to obtain a compensator which achieves rw
C
> γ−1. In

fact, in [16] we have shown that (by scaling) it is possible to explicitly construct
such compensators for more general perturbation structures where B0∆C1x(t)dw2(t)

is replaced by a sum of the form
∑N

i=1 B
i
0∆

iCi
1x(t)dwi

2(t), and wi
2 are independent

Wiener processes.
Finally we consider an example where we do not know whether or not (80) is

tight.
Example 5.8: A0 = 0, B0 = [B0

0 0], B1 = [0 B1
1 ], where B0

0 ∈ K
n×`1 . For

v =
[
v0
v1

]
, (42) has the form

dx(t) = Ax(t)dt+B0
0v0(t)dw2(t) +B1

1v1(t)dt+B2u(t)dt,

z(t) = C1x(t),

y(t) = C2x(t).

Moreover, if [
v0

v1

]
= ∆z =

[
∆0

∆1

]
C1x,
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then the perturbed equation is

dx(t) = (A+B1
1∆1C1)x(t)dt+B0

0∆0C1x(t)dw2(t) + B2u(t)dt.

Because of the presence of both stochastic and deterministic perturbations, we do not
know whether the stability radius is equal to ‖Lcl‖−1 or whether this is just a lower
bound.

Since B1B
∗
0 = 0, we have B1(γ

2I + q22B
∗
0SB0)

−1B∗1 = B1B
∗
1/γ

2, and hence (60)
and (61) are equivalent to

ΠR = AR +RA∗ −RC∗1C1R−B1B
∗
1/γ

2 + α2B2B
∗
2 � 0,(87)

ΠS = SA+A∗S − C∗1C1 − SB1B
∗
1S/γ

2 + β2C∗2C2 � 0.(88)

For γ > 0, provided there exist R, S ∈ Hn(K), α, β > 0 satisfying S ≺ R−1 ≺ 0, γ2I+
q22B

∗
0SB0 � 0 and (87), (88), the same compensator as that given in Example 5.6

achieves rw
C
> γ−1.

6. Concluding remarks. We have posed and solved an H∞-type problem
where both stochastic and deterministic perturbations are present. In opening up
this field, which appears to be fruitful, we think that it would be interesting to pursue
research into the following problems.

• Since our theory includes both cases where w1, w2 are independent and
w1 = w2, we think we have laid the foundation for considering the stochastic
multiperturbation H∞ problem

dx(t) = Ax(t)dt+
N∑
i=1

Ai
0x(t)dwi(t) +

N∑
i=1

Bi
0v

i(t)dwi(t)

+

N∑
i=1

Bi
1v

i(t)dt+B2u(t)dt,

z(t) = C1x(t) +
N∑
i=1

Di
11v

i(t) +D12u(t),(89)

y(t) = C2x(t) +
N∑
i=1

Di
21v

i(t),

where wi are independent Wiener processes.
• In Proposition 5.3, we obtained the estimate rw

K
(A,A0;B,B0, C) ≥ ‖L‖−1 for

the stochastic stability radii. It would be interesting to know under what con-
ditions equality holds. To do this, it is necessary to construct a destabilizing
perturbation with norm as close as we like to ‖L‖−1.

• A stability radius can be associated with the above multiperturbation problem
(89) in a number of different ways. For example, if all the D’s are zero
and vi = ∆iz = ∆iC1x, we get the so-called full block case, whereas if
vi = ∆izi = ∆iC

i
1x we get the blockdiagonal case. In both cases, ‖Lcl‖−1 will

be a lower bound for the radii and, for full bock perturbations, it may well
be tight. But we cannot expect this for blockdiagonal perturbations since in
a deterministic setting this is a µ problem. The estimate can be improved
by scaling Bi

0 7→ αiB
i
0, B

i
1 7→ αiB

i
1, C

i
1 7→ α−1

i Ci
1, αi > 0 which does not
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change the radius but does change the corresponding ‖Lα
cl‖, and we have

shown in [16] that for suitable αi this estimate is tight for purely stochastic
multiperturbations of a deterministic system. It would be interesting to know
under what conditions this is true when deterministic perturbations are also
present.
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Abstract. We define a general methodology to deal with a large family of scheduling problems.
We consider the case where some of the constraints are expressed through the minimization of a loss
function. We study in detail a benchmark example consisting of some jigsaw puzzle problem with
additional constraints. We discuss some algorithmic issues typical of scheduling problems, such as
the apparition of small unused gaps or the representation of proportionality constraints. We also
carry on an experimental comparison between the Metropolis algorithm, simulated annealing, and
the iterated energy transformation method to see whether asymptotical theoretical results are a good
guide towards practically efficient algorithms.

Key words. scheduling problems, Metropolis algorithm, simulated annealing, IET algorithm
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Introduction. The aim of this paper is to describe a general strategy to deal
with scheduling problems and to illustrate its use on the resolution of jigsaw puzzles.
We will assume that we can put our scheduling problem in the form of a task assign-
ment problem, and we will turn it into the minimization of a cost function defined on
a suitable search space. This cost function will be minimized by a Monte Carlo algo-
rithm of the Metropolis kind: either simulated annealing or our recently introduced
iterated energy transformation (IET) method. We have already studied some of the
theoretical aspects of these two methods in previous papers (see [6], [7]).

We have chosen to experiment on a jigsaw puzzle problem with rectangular pieces
because this is a typical instance of the kind of difficulties encountered when building
time tables, and because it is in itself a difficult problem (it is NP-complete) which
deserves special attention. In the course of this experimentation, we will compare
four algorithms: a randomized descent algorithm (the Metropolis dynamic at temper-
ature zero), the Metropolis algorithm, simulated annealing, and the iterated energy
transformation algorithm.

1. An abstract task assignment framework. Let B be a finite set of tasks.
Let E be a set of resources needed to perform these tasks. The set E may be any
kind of set, a finite set, a domain in R

n, etc. In applications it can represent various
things, such as a set of people who are to perform the tasks, in which case it is natural
to see it as a finite set, or it can also represent space and time needed for the tasks,
in which case it is sometimes natural to see it as a domain in R

n. More often it is
a product space of both kinds. Anyhow, we will only consider a finite collection of
subsets of E; therefore it will always be possible to consider that E is a finite set
from the theoretical point of view. This is reasonable, because a computer can only
handle a finite number of possible ways to allocate resources and also because, in many
problems of the time-table type, continuous quantities, such as time, are discretized
(for instance when one tries to schedule lectures, they are usually constrained to start
at full hours). Anyhow, the reader should think of E as a large set and our methods,
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inherited from statistical mechanics, are precisely meant to cope with a large state
space.

The abstract scheduling problem we will consider is to allocate to each task in B
a set of resources in a way which satisfies a set of constraints.

At this level of generality, we will not represent the constraints by equations or
logical relations; we will merely view them as a subset S of P(B × E) (where P(A)
is the set of subsets of the set A). We will call S the “solution space.” A solution x
in S is a subset of the product space B × E. We will use the notations πB and πE
for projections on B and E. The fact that (b, e) ∈ x means that the task b uses the
resource e. The set of resources used by b is πE(π−1

B (b)∩x), for which we will use the
functional notation x(b).

We will assume that each solution x ∈ S is a complete assignment, in the sense
that all the tasks are scheduled:

πB(x) = B for any x ∈ S.

Our scheduling problem is to construct a solution x belonging to the solution space
S.

The idea of considering scheduling problems as putting objects in boxes in a multi-
dimensional space is not new and can be found, for instance, in Abramson [1], where a
specialized simulated annealing hardware is described for handling some generic types
of cost functions.

2. The jigsaw puzzle example. This example is meant to be a benchmark,
where the main algorithmic issues of scheduling problems are present.

The set of resources E will be a discretized rectangular frame

E = {0, . . . ,M − 1} × {0, . . . , N − 1} ⊂ Z
2.

The set of tasks B will be the set of pieces of the jigsaw puzzle. Each piece r has
a rectangular shape defined by its width wr ∈ N

∗ and by its height hr ∈ N
∗. The

constraint is that pieces should not overlap. Thus the solution space is

S = {x ⊂ B × E : x(r) = [ar, ar + wr[×[br, br + hr[, (ar, br) ∈ E, r ∈ B,

and x(r) ∩ x(r′) = ∅, r 6= r′ ∈ B}.

The problem is to build the jigsaw puzzle; that is, to construct x ∈ S. Although
the shape of pieces is very simple, this problem can be seen to be very complex. In
fact, it is easy to see that it is NP complete, because it contains the partition problem
among its instances (see [14]). Indeed, the partition of given integers {c1, . . . , cN}
into two sets I and J such that ∑

i∈I
ci =

∑
j∈J

cj

can be viewed as a jigsaw puzzle with N pieces, respectively, of width ci and height
1, and a frame of width (1/2)

∑N
i=1 ci and height 2 (see Fig. 2.1).

3. A method of resolution based on the Metropolis dynamic. In this
section we will sketch a methodology to solve the abstract problem of section 1. The
general idea is to perform a random search for a solution in a state space larger than
the solution space. This search space should be easy to describe and easy to search
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Fig. 2.1.

by a Markov chain performing a succession of elementary moves. Of course, we will
not use a Markov chain which uniformly samples the search space because, usually,
the search space we will be able to build will be very large when compared to the
solution space, and drawing points at random in the search space would seldom lead
to discovering a solution.

Instead we will use a Markov chain with rare transitions, whose invariant measure
is concentrated in a neighborhood of the solution space. This optimization technique
is well known, but its improvement is still a subject of active research. The prototype
algorithm we will start from is the Metropolis dynamic at low temperature. The
Metropolis dynamic has been designed to simulate statistical mechanics systems, and
not for optimization purposes. In order to improve its performance as an optimization
algorithm, some speed-up techniques have been proposed. The most famous one is
simulated annealing [15], [18]. We have also proposed recently another technique,
which we called the iterated energy transformation method (IET) [7]. We will describe
and use both of these.

3.1. Choice of a search space. The first step of the method is to choose a
search space S̃ containing the solution space S. The most popular way to construct S̃

is to relax some constraints about the solution and to measure, instead, how much the
constraints have been violated by a score function one has afterwards to minimize.
For instance, in circuits placement applications (one of the earliest applications of
simulated annealing) the constraint that circuits should not overlap is often relaxed,
and the overlapping of circuits is instead merely discouraged by some score function
of the surface of the overlap. Our strategy will be somewhat of the same kind, with
the difference that we will not relax a constraint which is specific to the problem.
Instead, we will allow partial solutions, where only some proportion of the tasks have
been scheduled. Defining partial solutions is usually very easy and very natural.
Most of the time, this is how the problem is posed from the beginning. Indeed the
constraints come usually from incompatibilities between tasks, such as sharing the
same resource or needing to be performed in a given order, and can be expressed
without assuming that all the tasks are already scheduled.

From the technical point of view, we will assume that the search space (the space
of partial solutions) satisfies the following properties:

• The empty solution is in the search space: ∅ ∈ S̃.
• There is a path from the empty solution leading to any partial solution x ∈ S̃

along which tasks are scheduled one after the other. This can be expressed
in the following way:

For any x ∈ S̃, x 6= ∅, there is b ∈ πB(x) such that x \ π−1
B (b) ∈ S̃.

• All complete solutions in the search space satisfy the constraints. In other
words, the solution space is exactly made of the complete solutions of the
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search space. This is expressed by the following equation:

S = {x ∈ S̃ : πB(x) = B}.

Let us notice that the “best” choice for S̃ would be {x∩π−1
B (C) : x ∈ S, C ⊂ B},

the set of all partial solutions contained in global solutions. Anyhow, this set is,
in practical situations, never defined by simple relations, because when you have
scheduled some of the tasks, it is never possible (except for trivial problems) to foretell
whether there will remain suitable resources to schedule the remaining ones. Therefore
the search space S̃ is, most of the time, much broader than S and contains many dead
ends.

3.2. Building the dynamic: Constructions and destructions. The next
idea is to define on S̃ two kinds of dynamics, a constructive dynamic and a destructive
dynamic. These two random dynamics are characterized by two Markov matrices qC
and qD,

qC : S̃× S̃ −→ [0, 1],

qD : S̃× S̃ −→ [0, 1].

We will assume that the transitions allowed by qC consist of either keeping the
current partial solution or scheduling one more task. In a similar way the transitions
allowed by qD consist of unscheduling a given number of tasks. We allow unscheduling
of more than one task at a time, because it is in some situations more sensible to do
so. For instance, if many tasks have to share the same resource, it may sometimes
speed up the allocation process to unschedule all of them at the same time (think of
students sharing the same teacher).

This conception of constructions and destructions can be expressed by the follow-
ing equations, where |A| is the number of elements in the finite set A:



• {(x, y) : qC(x, y) > 0, x 6= y}

= {(x, y) : y ∩ π−1
B (πB(x)) = x, |πB(y)| = |πB(x)|+ 1},

• {(x, y) : qC(y, x) > 0, x 6= y}

⊂ {(x, y) : qD(x, y) > 0}

⊂
+∞⋃
n=1

{(x, y) : qnC(y, x) > 0} .

(1)

Let us remark that, usually, constructions will decompose into two steps, one
being to choose an unscheduled task b ∈ B \ πB(x) and the second one being to try
to allocate a set of resources to it. This second step is sometimes unsuccessful (either
because it is impossible or the proper allocation has not been discovered); therefore
as a rule, we have qC(x, x) > 0 for a substantial number of partial solutions. On the
contrary, destructions are simple moves, where you have only to choose a scheduled
task b in πB(x) and to remove it. Therefore as a rule, we will have qD(x, x) = 0,
except when x = ∅, for which qD(∅, ∅) = 1.

When the two above assumptions are satisfied, the whole search space S̃ can be
constructed by qC starting from the empty solution ∅, and reversely, any solution can
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be shrunk to the empty solution by successive applications of qD. More precisely, the
following proposition holds.

Proposition 3.1.

S̃ =

+∞⋃
n=0

{y : qnC(∅, y) > 0}

=

+∞⋃
n=0

{x : qnD(x, ∅) > 0}.

3.3. Building the cost function. Now we will build a cost, or energy, function
defined on the search space, which penalizes partial solutions: we will call it U : S̃ −→
R. Namely, we will require the following properties to hold:



• arg min
x∈S̃

U(x) = S.

• There is a positive con-
stant γ such that U(y) ≥
U(x)+γ when x 6= y and
qD(x, y) > 0.

(2)

A typical example for U is

U(x) = µ(B \ πB(x)),

where µ is a positive measure on B. In this case the assumptions on U are satisfied
and the largest choice of γ is

γ = min
b∈B

µ(b).

3.4. Building a Metropolis dynamic. From Proposition 3.1, we see that any
Markov matrix of the form λqC + (1− λ)qD with λ ∈]0, 1[ is irreducible. Therefore a
straightforward way to build a Metropolis dynamic would be to consider the Markov
matrix

pT (x, y) =




(λ qC(x, y) + (1− λ) qD(x, y))e−(U(y)−U(x))+/T , x 6= y

1−
∑
z 6=x

pT (x, z), x = y.

In fact, we can do better because we know in advance that, during a construction,
the energy will decrease, and that during a destruction, the energy will increase by
a quantity at least equal to γ. This avoids applying uselessly the kernel qD at low
temperatures in situations where we know that it will, most of the time, generate a
move to be rejected.

More precisely, we will use the following Markov matrix:

pT (x, y) = λ e−γ/T qD(x, y)e−(U(y)−U(x)−γ)+/T

+ qC(x, y)


1− λ

∑
z∈S̃

qD(x, z)e−(U(z)−U(x)−γ)+/T−γ/T


 ,(3)
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where λ is again a positive parameter in the interval 0 < λ ≤ 1. A choice of λ < 1
avoids that destructions should always be chosen at high temperatures. Usually we
will take λ = 1/2 or λ = 1. The positive part in (U(y) − U(x) − γ)+ is needed only
to cover the case where x = y.

The computer implementation of this Metropolis dynamic is the following: start-
ing from the state x,

• first flip a coin with odds λe−γ/T and 1 − λe−γ/T to decide whether or not
to try a destruction.

• in case a destruction is tried,
– choose a transition (x, y), drawing y according to the probability distri-

bution qD(x, y).
– then flip a second coin with odds exp−((U(y) − U(x) − γ)+/T ) and

1− exp−((U(y)−U(x)−γ)+/T ) to decide whether or not to apply this
move.

• if the answer to one of the two previous tosses was no, then choose a transition
(x, y), where y is chosen according to the distribution qC(x, y), and apply it.

The hypotheses we made about qC , qD, and U are what are needed to prove the
following proposition.

Proposition 3.2. For any temperature T > 0, the matrix pT is an irreducible
Markov matrix.

Considering the rate function V : S̃× S̃ → R+ ∪ {+∞} defined by

V (x, y) =

{
(U(y)− U(x))

+
if qD(x, y) + qC(x, y) > 0 and x 6= y,

+∞ otherwise,

we see that there is a positive constant κ such that, whenever x, y ∈ S̃, x 6= y,

κ e−V (x,y)/T ≤ pT (x, y) ≤ 1

κ
e−V (x,y)/T .

Moreover V satisfies the weak reversibility condition of Hajek–Trouvé with respect
to U . More precisely, if Γx,y is the set of paths from x to y, we put for any γ = (γ1 =
x, . . . , γr = y) ∈ Γx,y

H(γ) = max
i=1,...,r−1

U(γi) + V (γi, γi+1)

and

H(x, y) = min
γ∈Γx,y

H(γ).

The weak reversibility condition of Hajek–Trouvé states that for any x, y ∈ S̃

H(x, y) = H(y, x).

Due to this reversibility property, U is a quasi-potential for pT . We mean by this
statement that the (unique) invariant probability measure µT of pT satisfies for some
positive constant α (independent of T ) and for any x ∈ S̃

α ≤ µT (x)e(U(x)−minU)/T ≤ 1/α.
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Corollary 3.1. We can build optimization algorithms based on pT following
the results of Catoni [7] and Trouvé [22]. More precisely, for any fixed value of the
temperature T , the homogeneous Markov chain with transition matrix pT is a gen-
eralized Metropolis algorithm with quasi-potential function U . In the same way, for
any decreasing sequence of temperatures (Tn)n∈N, the nonhomogeneous Markov chain
(Xn)n∈N on S̃ with transitions

P (Xn = y : Xn−1 = x) = pTn(x, y)

is a generalized simulated annealing algorithm. Its behavior has been studied in [22]
and [24] and is very similar to the behavior of classical simulated annealing as studied
in [6].

We can also apply the iterated energy transformation method to pT , which will be
described in a further section of this paper and is studied in [7].

Proof. The only nonstraightforward point to check is the Hajek–Trouvé weak
reversibility condition. Let us consider x, y ∈ S̃, and γ ∈ Γx,y. We build a path
from y to x in the following way. Replace any edge (z, t) ∈ γ by the edge (t, z)
if qC(z, t) > 0 or pT (z, t) = 0. If neither of the above two conditions is true, this
means that qD(z, t) > 0; then there is a path ϕ ∈ Γt,z such that qC(u, v) > 0 for
any edge (u, v) ∈ ϕ, and we replace (z, t) by ϕ. The path ϕ is such that H(ϕ) =
U(z) + V (z, t) = U(t) because for any (u, v) ∈ ϕ, U(v) < U(u) and V (u, v) = 0.
Therefore by concatenating all these reversed edges and paths in reverse order we get
a path ψ ∈ Γy,x such that H(ψ) = H(ϕ). Therefore H(y, x) = H(x, y).

Remarks.

• In the search space we consider, there is a natural starting point for optimiza-
tion algorithms, which is the empty schedule ∅.

• In many scheduling problems, it is not known in advance whether a complete
solution exists or whether one can possibly be found within the available
computer time. Our method has the advantage of finding at least a partial
solution, where some proportion of the tasks are scheduled in a coherent way.
This is not the case if other constraints are relaxed, as is usually done. For
instance, if the aim is to schedule the lectures at a university, a solution where
some lectures share the same room at the same time has no practical interest,
whereas a solution where some proportion of the lectures are scheduled in a
coherent way can be applied.

• A slight variant of the present setup is the case where the search space sat-
isfies condition (1), but one does not know whether it is possible to schedule
all the tasks, and wants instead to schedule as many tasks as possible. In
this situation the energy can weigh (through a positive measure) the relative
importance of tasks.

In the three following sections, we are going to recall briefly some theoretical
results about the speed of convergence of three optimization algorithms.

3.5. Rate of convergence of the Metropolis algorithm. In this section we
consider the canonical process (Xn)n∈N on the canonical space (S̃N,B), where B is
the sigma field generated by the events depending on a finite number of coordinates.

For any temperature T ∈ R+, PT will be the probability distribution on (S̃N,B) of
a Markov chain with transition matrix pT (where pT is as in Proposition 3.2). Under
this distribution, (Xn)n∈N is a Metropolis algorithm and has the following convergence
speed.
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Proposition 3.3. There exists a positive constant d, depending only on the
choice of the search space S̃, of the constructive and destructive dynamics qC and qD
and of the parameter λ, 0 < λ < 1, such that for any energy function U satisfying the
hypothesis (2) of section 3.3, for any positive constant η,

max
x∈S̃

PT (U(XN ) ≥ Umin + η |X0 = x)

≤ d

(
exp−

(
N

d
e−H1/T

)
+ e−η/T

)
,

where H1(V ) is the first critical depth of the rate function V defined in Proposition 3.2.
The exponent H1(V )/T is optimal when η is small and when T tends to 0 and N tends
to +∞. With the notations of Proposition 3.2,

H1(V ) = max
x6∈S

min
y∈S

H(x, y)− U(x).

As a consequence, considering 1/T = (1/H1) log(N H1/d η logN), we see that there
is a constant d (independent of U and η), such that

inf
T∈R+

max
x∈S̃

PT (U(XN ) ≥ Umin + η |X0 = x)

≤ d

(
d η

H1(V )

logN

N

)η/H1(V )

.

Moreover the exponent η/H1(V ) is optimal for small enough values of η ∈ (U(E) −
Umin).

For a proof see, for instance, Cot and Catoni [9].
This proposition does not give a quantitative upper bound for the probability of

failure for N iterations, since it does not give an estimate for constant d; nevertheless,
the fact that this constant is independent of U allows us to compare the probability
of failure for different energy functions U for a large finite number of iterations N
and not only when N tends to infinity. More precisely, it shows that the convergence
speed of the Metropolis algorithm is slow when there are states with energies close to
Umin. Indeed if one wants to study the convergence to S, one has to choose

η = min{U(x)− Umin , x ∈ S̃ \ S}.

If η is small, then it will reflect on the exponent η/H1(V ).
This is a theoretical justification for the introduction of simulated annealing,

which will not suffer from this drawback, when proper robust cooling schedules are
used.

3.6. Rate of convergence of simulated annealing. We consider now a non-
increasing triangular sequence TN

1 ≥ TN
2 ≥ · · · ≥ TN

N of temperatures and the measure

P(TN1 ,...,TN
N

) on S̃N of the nonhomogeneous Markov chain with transitions

P(TN1 ,···,TN
N

)(Xn = y |Xn−1 = x) = pTNn (x, y).

The rate of convergence of such an algorithm has been studied in [6], [8], and [22]
(see also [24] in English, translated from [22]). We give here a simple result; for more
precise estimates, we refer to the original papers.
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Proposition 3.4 ([6], [22], [24]). There is a positive constant K such that

K−1N−D−1 ≤ inf
TN1 ≥···≥TN

N

max
x∈S̃

P(TN1 ,...,TN
N

)(U(XN ) > Umin |X0 = x) ≤ KN−D−1

,

where the constant D = D(V ) is the difficulty of the rate function V . With the
notations of Proposition 3.2, the definition of D(V ) is

D(V ) = max
x∈S̃\S

min
y∈S

H(x, y)− U(x)

U(x)−minU
.

For any A > 0, there is a positive constant K such that the triangular exponential
schedule

TN
n =

1

A

(
A

(logN)2

)n/N

gives a convergence speed of

max
x∈S̃

PTN. (U(XN ) > Umin |X0 = x) ≤ K

(
logN log logN

N

)D(V )−1

,

for N large enough.
In the case of simulated annealing, we have a probability of failure for N iterations

of order ε �log (1/N)1/D (meaning that the logarithms on both sides of this equation
are equivalent when N tends to infinity). The important feature of this theoretical
result is that the exponent 1/D is independent of the precision with which we want
to reach Umin but depends, on the contrary, only on the structure of the local minima
of U .

One other interesting point is that the exponential triangular cooling schedule
TN
n = A−1(A/(logN)2)n/N is robust: it gives a convergence rate with the optimal

exponent 1/D(V ) for any energy function U .

3.7. Rate of convergence of the energy transformation method. We
introduced in [7] the iterated energy transformation method as another mean to dis-
courage uphill moves from low energy states more than from high energy states. In
simulated annealing this effect is produced by an exogenous control of the tempera-
ture parameter: in “typical” successful runs of simulated annealing, the energy of the
current state is moving downwards on the average, and at the same time uphill moves
are more and more discouraged. In the iterated energy transformation method, a
temporary hypothesis is made about the value of Umin, and a concave transformation
is applied to U on the basis of this hypothesis. Then the algorithm is run at con-
stant temperature using the transformed energy. This produces the desired effect of
discouraging more uphill moves from low energy states. Of course, in the beginning,
the hypothesis about Umin is necessarily grossly underestimated, so that the energy
transform is not very efficient, but after some iterations, it can be improved (this will
work with a probability close to one) depending on the values of the energies of the
explored states.

The convergence of the lower bound estimate for Umin towards the true value of
Umin is exponentially fast (with a probability close to one), and therefore the energy
transformation is quickly tuned to an efficient value.
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The iterated energy transformation method applied to our problem is described
as follows. For any strictly concave, strictly increasing energy transformation F :
R −→ R ∪ {−∞}, we consider the Markov matrix

pF (x, y) = 1(F (x)>−∞)

{
λe(F (U(x))−F (U(x)+γ))qD(x, y)e(F (U(x)+γ)−F (U(y)))−

+ qC(x, y)

(
1− λ

∑
z

qD(x, z)eF (U(x))−F (U(x)+γ)+(F (U(x)+γ)−F (U(z)))−
)}

+ 1(F (x)=−∞)1(x=y).

Consider for any positive constant α, any real shift τ , and any positive tempera-
ture T , the transformation

Fα,T,τ (U) =

{
αU +

1

T
log(U + τ) if U + τ > 0,

−∞ otherwise .

Let us introduce the simplified notation pα,T,τ = pFα,T,τ .
Given parameters M ∈ N (number of iterations performed with each energy trans-

form), two real numbers ρ > 0 and η0 ≥ 0 (two parameters for the update of the shift
τ), and an initial lower bound δ < Umin, we consider the canonical process (Xn)n∈N

on S̃N with probability distribution Pα,T,M,ρ,η0
defined by the following conditional

distributions:

Pα,T,M,ρ,η0
(Xn = y | (X0, . . . , Xn−1) = (x0, . . . , xn−1))

= pα,T,τn(x0,...,xn−1)(xn−1, y),

with


τr = η0 − δ, 0 < r ≤M,

τkM+r = τkM − 1

1 + ρ

(
min

n,n≤kM
U(Xn) + τkM

)
+ η0, 0 < k, 0 < r ≤M.

We have proved in [7] the following theorem.
Theorem 3.1 (Catoni). For any fixed α > 0, the family of processes described

above satisfies for some positive constants B and K, for any choice of r ∈ N, η0 ≥ 0,
ρ > 0,

max
x∈S̃

Pθ(U(XrM ) ≥ η |X0 = x) ≤ ε

where θ = (α, T,M, ρ, η0),

T =
log(1 + ρ)

log(Kr/ε)

M = B
( ε

K r

)− log(1+D̃η0 )/ log(1+ρ)

log
K r

ε
,

=
B

T
log(1 + ρ)

(
1 + D̃η0

)1/T

,

η = Umin + ρ

(
ρ

1 + ρ

)r−1

(Umin − δ + η0) + η0ρ(1 + ρ),
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and where the constant D̃η0
(V ) is given by

D̃η0
(V ) = max

x∈S̃\S
min
y∈S

H(x, y)− U(x)

U(x)− Umin + η0

< D(V ).

Corollary 3.2.

lim sup
N→+∞

(logN)
−2

log inf
T,M,η0,ρ

P (U(XN ) > Umin | X0 = x) ≤ − 1

4 log(1 +D)
.

The interest of this theorem lies mainly in its corollary, which shows that a proper
tuning of the parameters leads to a faster scale of convergence speed than the one
achieved by simulated annealing (see [7]). This remark of course deals with the
comparison of two long runs of both algorithms. For repeated trials of bounded
length, which we will consider in section 6.3, the question of knowing which algorithm
is faster is open.

We will discuss practical means of choosing the parameters in connection with
the jigsaw puzzle benchmark.

4. Solving jigsaw puzzles. We will illustrate on jigsaw puzzles the different
steps of the general method of resolution.

First of all, we have to choose a search space. This will be the set of partial
solutions where only some of the pieces are put in the frame.

S̃ = {x ⊂ B × E : x(r) = [ar, ar + wr[×[br, br + hr[ ,

r ∈ πB(x), x(r) ∩ x(r′) = ∅, r 6= r′ ∈ πB(x)}.
Let us define now qC(x, .), the constructive dynamic starting from state x:
• First choose r ∈ B \ πB(x) according to the uniform distribution on this set.
• Then choose (z, t) ∈ E \ πE(x) according to the uniform distribution.
• Then try to expend this germ to a rectangle [ar, ar +wr[×[br, br + hr[ of the

desired size by adding alternatively a column to the left (or else to the right)
and a line to the top (or else to the bottom). If it is not possible to grow the
germ to its final size, just abandon the construction.

• Then draw a number k at random in the interval [0,max drift[ and move the
location of [ar, br[ k steps along the direction (−1,−1) (that is, to the upper
left corner, according to usual image indexing) if there is enough room to do
so, or else move it as far as possible in this direction (until it bumps into
other pieces).

The last two actions are better described by the following self-explanatory pseudo-C
code, where [a, c [×[b, d [ is the current germ:

int expend() {

a=z; c=z+1; b=t; d=t+1;

while((test1=(c-a<w))||(test2=(d-b<h))) {

if (test1&&grow_left()&&grow_right()) return 1;

if (test2&&grow_up()&&grow_down()) return 1;

}

for (k=rand(0,max_drift);k;k--) {

if (move_left()&move_up()) break;

} return 0;

}



1550 OLIVIER CATONI

where the functions expend(), grow_left(), grow_right(), grow_up(), grow_

down(), move_left(), and move_up() return 0 on success and 1 on failure.
The destructive dynamic qD is simpler:
• Draw r ∈ πB(x) at random,
• Form y = x ∩ π−1

B (B \ {r}), the partial solution where the piece labeled “r”
has been removed from the frame.

The mechanism that was chosen for the constructions is meant to discourage the
formation of small gaps between pieces. If nothing were done, when the discretization
step of the grid is fine, small gaps would be left between the pieces with a large
probability, and a complete solution to the puzzle, where pieces necessarily stick
together, would never be discovered.

We have now to choose an energy function. Here again we will discourage the
formation of gaps between pieces by introducing a term proportional to the contact
length. By contact length we mean the sum of the contact lengths between pieces
and between pieces and the edge of the frame.

Let µ be the counting measure on E. We take

U(x) = −µ(πE(x))− α× contact-length.

For this choice of U , we can take the constant γ in equation (2) to be equal to
the size of the smallest piece:

γ = min
r∈B

wr hr.

5. Minimizing a loss function.

5.1. Statement of the problem. We will discuss in the next two sections the
case where some loss function V : S −→ R has to be minimized on the state space S

of global solutions of a task assignment problem. We consider the same framework
as in the first section, with the difference that the problem is now to find a solution
x belonging to arg miny∈SV (y).

5.2. A general method of resolution. We will extend the method of section 3
to deal with a loss function.

The two first steps, building the search space and the constructive and destructive
dynamics, will be the same as in section 3.

The change comes from the choice of the energy function. First we need to extend
the loss function V to the search space S̃ of partial solutions. Ideally, we would like
to use the extension V : S̃ −→ R defined by

V (x) = min{V (y) : y ∈ S, x ⊂ y}.
Usually this is not an easily computable function, but in many situations there is a
natural way to define a loss function for partial solutions. A simple way to do so, if
there is nothing else at hand, is to set V (y) = c for y ∈ S̃ \ S, where c is a constant
and c ≥ maxx∈SV (x). Then we build a compound energy function

W (x) = αU(x) + V (x), x ∈ S̃,

where the real positive coefficient α is chosen such that, for some positive constant γ,{
arg min

x∈S̃
W (x) ⊂ S,

W (y)−W (x) ≤ −γ < 0, x ⊂ y, x 6= y ∈ S̃.
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These conditions are always satisfied for α large enough. However, the difficulty D
of the energy landscape, related to the performance of simulated annealing, tends to
+∞ when α tends to +∞. Therefore it is better to keep α as small as possible. In
the next section, we will give an example for which we can take α arbitrarily small,
and even α = 0 if we are satisfied with γ = 0.

Equipped with this new energy function, we can proceed just as in the simpler
case of section 3.

5.3. Some example of useful loss function. Often in task assignment prob-
lems, we would like some resources to be distributed according to some prescribed
distribution. For instance, in a time-table problem we may want to schedule an equal
number of hours in each week of the year.

This can be formalized in the following way. We consider first some function
Φ : B × E −→ F, where F is a finite set (which may be the discretization of a
domain in R

n). Typically, Φ will be the projection on the time axis in a time-table
problem. Then we consider a target distribution ρ defined on F . Let us consider
some reference measure µ on B ×E (such as the counting measure). To each partial
solution x ⊂ B × E, we may associate the restriction µx of µ to x, defined by

µx(A) = µ(x ∩A).

This induces a measure µx ◦Φ−1 on F . The constraint we would like to represent by a
loss function is that µx ◦Φ−1 is approximately proportional to the reference measure
ρ. This can be reflected in a loss function of the type

V (x) =

∫
h

(
µx ◦ Φ−1

ρ

)
dρ,

where h(x) = (1−x)2 or h(x) = 1−x+x log x. The function h is in both cases strictly
convex, satisfies h(1) = h′(1) = 0, and h′ is strictly increasing; therefore µx ◦Φ−1 = ρ
if and only if V (x) = 0 and the minimum of V (x) on the set µx(B × E) = constant
is attained when µx ◦ Φ−1 is proportional to ρ, when this is feasible.

The following proposition holds.
Proposition 5.1. Assume that the total weight µx(B × E) of any solution is a

function of the tasks to be scheduled only. This means that there is a measure µ̃ on
B such that

µx(B × E) = µ(x) = µ̃(πB(x)), x ∈ S̃.

Then for all global solutions x ∈ S, µx(B × E) = µ(x) = µ̃(B) is a constant.
Assume moreover that the measure ρ defining the constraint is such that ρ(F ) ≥

µ̃(B), and assume also that{
x ∈ S :

µx ◦ Φ−1

ρ
≡ constant

}
6= ∅.

Then

arg min
s∈S̃

V (x) =

{
s ∈ S :

µx ◦ Φ−1

ρ
≡ constant

}
,

meaning that the partial solutions minimizing V are exactly the global solutions x for
which µx ◦ Φ−1 is proportional to the constraint ρ.
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The assumptions of the proposition will be satisfied when µx(B×E) measures the
amount of assigned resources, and the amount of resources to be allocated to a task
depends only on the task and not on the way it is scheduled. Typically, for instance,
the number of hours of a course of teaching will be prescribed in advance and will not
depend on the choice of a schedule for the lectures.

Now let us make the supplementary assumption that (µx ◦ Φ−1/ρ) ≤ 1 for any
x ∈ S̃. We can always make this assumption true by increasing ρ by a suitable
multiplicative factor (at least when ρ is strictly positive on F ). In some cases we may,
on the contrary, want to restrict S̃ by adding the new constraint (µx ◦ Φ−1/ρ) ≤ 1.
This will be done when the constraint has a practical meaning for the problem. For
instance, if µx◦Φ−1 measures the number of lectures taking place in each hour of time
in the week, we may want to fix ρ to a constant equal to the total number of available
lecture rooms, add the constraint (µx ◦ Φ−1/ρ) ≤ 1 to indicate that there is to be
enough rooms to schedule all the lectures, and use the loss function

∫
h(µx ◦Φ−1/ρ)dρ

to indicate that we would like the rooms to be evenly occupied during the week (in a
weekly time-table problem).

If the assumption (µx ◦ Φ−1/ρ) ≤ 1, x ∈ S̃ holds, then only the decreasing part
of h is used, and the loss function V is always increasing during a destruction and
decreasing during a construction. Therefore if γ is the constant corresponding to U
in Eq. (2), we will have

W (y) ≥W (x) + αγ, x, y ∈ S̃, x 6= y, qD(x, y) > 0.

6. The practical issue of the choice of parameters. In practical situations,
the critical constants of the energy landscape are usually unknown. Therefore it is not
possible to rely on the theoretical results we recalled in preceding sections to choose
the parameters of algorithms. In the following subsections, we explain how we set the
parameters in the experiments about jigsaw puzzles.

6.1. Simulated annealing. The cooling schedule can be written as

1

TN
n

= βmin

(
βmax

βmin

)n/N
.

We choose βmin and βmax by looking at the repartition function of the energies of the
explored states in simulations at constant temperatures. We keep a value of βmin for
which the slope of the repartition function stays large up to the largest values of the
energies, meaning that states with high energies have a significant probability to be
explored. For βmax we require, on the contrary, a repartition function concentrated
on the lowest energy values.

The theory tells us that we can safely underestimate βmin and overestimate βmax,
which makes their choice possible from a qualitative inspection of repartition func-
tions.

Figures 6.1 and 6.2 are two examples of repartition functions, corresponding to
values of βmin and βmax which have been retained during the experiments.

6.2. The iterated energy transformation method. In this case, the choice
of parameters is perhaps less straightforward. The analogy with simulated annealing
can serve as a guideline: the high temperature regime corresponds to the case τ = τ1
(i.e., to the first energy transform used). The low temperature regime corresponds to

τ = (1 + ρ)η0 − Umin.
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In order to test the behavior of the algorithm in these two configurations, we make a
short test using a small value of ρ (ρ << 1). The law of evolution of τk shows that, for
a small value of ρ, the algorithm will quickly switch from the high temperature regime
during the first step to a low temperature regime during the following steps. In fact the
value ρ = 0 may sometimes even be used. However, when this is done the algorithm
sometimes encounters a state with a nondefined energy transform too quickly, and
there are not enough iterations to compute a reliable repartition function for the low
temperature regime. This problem, when encountered, can be circumvented by using
a low but nonzero value of ρ.

We compute the repartition function of energies during the first step of the test
run and during the last. The first function describes the equivalent of the “high tem-
perature regime” and is tuned by the choice of the constant α and of the temperature
parameter T ; the second function corresponds to the “low temperature regime” and
is tuned by a proper choice of η̃0 = η0(1 + ρ).

Once these two choices are made, there remains a free parameter, namely, ρ.
The theory [7] indicates an optimal choice of ρ of order

√
N and an optimal choice

of r = N/M of order
√
N log(N). On the other hand, as soon as log(1 + ρ) > 1, the

convergence rate will be better than for simulated annealing. This indicates that a
large value of ρ may safely be chosen and that r can then be set to make

(Umin − γ + η0)ρ

(
ρ

1 + ρ

)(r−1)

small. This will ensure a small dependence of the final value of the shift τN with
respect to its initial value τ1 = δ − η0.

6.3. Repeated optimizations. In this section, we will consider that N itera-
tions are to be divided into N/M trials of length M , and that we will keep the best
solution found out of these N/M trials. In this context, the probability of failure in
the worst case with respect to the starting point of each trial is ε1(M)N/M , where

ε1(M) = max
x∈S̃

P (U(XN ) > Umin | X0 = x) .

The first remark to be made (see Azencott [2], [3]) is that for all the algorithms we
have considered, limM→+∞(1/M) log ε1(M) = 0. Therefore when N is large enough,
the optimal value for M is independent of N .

We will discuss here the choice of the length M of each run of the algorithm. For
simulated annealing, we can, on the basis of the theoretical bound on the probability
of failure, namely, (A/Mα)N/M for N iterations divided into N/M runs of length
M , conjecture that an overestimation of M will be relatively harmless, whereas an
underestimation would be more penalizing. This can be seen on the derivative

∂

∂M

(
A

Mα

)N/M
=

(
A

Mα

)N/M
N (α(logM − 1)− logA)

M2
,

but is may be more vividly illustrated by a small numerical application. If we take,
for example, A = e4, α = 1, and N = 1000, and if we put ε(M) = (A/Mα)N/M , we
see that

min
M

ε(M) = ε(148) ' 0.0012,
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and that for this optimal value the probability of failure in each run is ' 0.37.
Here are some values taken by ε(M)

M 74 100 148 300 500 1000
ε(M) 0.016 0.0024 0.0012 0.0034 0.012 0.055

and a graphic of this function is shown in Fig. 6.3.
These figures show that, as far as this rough theoretical bound is a good guideline,

there is a clear benefit in performing multiple runs instead of one long run, but that
an overestimation of a factor two of the length of each run is relatively harmless. We
remark also that a quite low confidence level for each run is favorable in this example
where the difficulty is one.

The same kind of reasoning would also hold for the theoretical bound of order
ε(M) = (A/Mα logM )N/M obtained for the iterated energy transformation method.
In this case the derivative of the confidence level ε(M) is

∂

∂M
ε(M) = ε(M)

N (α((logM)2 − 2 logM)− logA)

M2
.

Figure 6.4 shows a plot of this function for some choice of the parameters α, N , and A:
the tolerance with respect to an overestimation of M is even better than for simulated
annealing.

For a comparison between repeated searches and interacting parallel searches, we
refer to Graffigne [16] and Azencott and Graffigne [4].

6.4. A partial freezing method. In [7] we saw that the simulated annealing
algorithm is not efficient to deal with a state space made of a large number of indepen-
dent components. By “independent components,” we mean the case when the energy
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function is a sum of terms depending on distinct coordinates. Here the different tasks
to be scheduled interact through the constraints and through the contact length term
in the energy; therefore we cannot describe their assignment by independent coordi-
nates. Nevertheless, in the end of the optimization process, we would like to be able
to perform some last small local improvements on the current solution depending on
distinct small subsets of tasks, with the assignment of the other tasks remaining un-
touched. We can write (formally) the energy function in a suitable neighborhood of
the current solution as a sum of such possible local improvements. In the end of the
optimization, we will be working at low temperature; therefore the current solution
will, most of the time, be a local minimum and we will typically not try more than
one local improvement at a time. Therefore (this is only a heuristic reasoning) we can
expect the optimization process to behave approximately the same as in the indepen-
dent component case when it draws to the end (that is, at low temperatures). It is
easy to show (see [7]) that an efficient way to deal with independent components is
to perform a series of local optimizations, resetting after each step the current solu-
tion to the best solution found. This will do much better than the global algorithms
we described so far when the number of components is large. The reason is that
a global algorithm cannot efficiently move one task around without disturbing the
others. These considerations suggest adding a postprocessing to global optimization,
made up of a series of local optimizations. When we put these things and the use
of repeated optimizations together, we end up with a partial freezing method, which
can be symbolically described by the following nested loops:



SOLVING SCHEDULING PROBLEMS BY SIMULATED ANNEALING 1557

repeat

reset the current solution to the empty assignment

for (n taking increasing values from 0 to max)

repeat

choose at random a set of n ‘‘frozen’’ tasks among

the scheduled tasks

repeat

run a stochastic optimization algorithm during

which the frozen tasks stay untouched

endrepeat

reset the current solution to the best solution

encountered in the previous loop

endrepeat

endfor

endrepeat

return the best solution encountered in the outer loop.

The stochastic algorithm used in the inner loop may be one of the three algorithms
we studied here. It is applied to the subset of the state space defined by the current
assignment of the frozen tasks. When the number of currently scheduled tasks is
less than n, we freeze all the scheduled tasks. In the experimental section we will
show results obtained with this partial freezing method applied to the iterated energy
transformation algorithm. One advantage of the partial freezing method is that it is
less demanding on the global optimization step and is therefore tolerant of a looser
choice of the parameters of the algorithm.

7. Experimental results. We tried to solve two kinds of puzzles: a small
“tight” puzzle with nine pieces and no loss function, and a big “loose” 60-piece puzzle
with a loss function. By “tight” we mean that there is just enough room in the frame
to put all the pieces, and by “loose” we mean, on the contrary, that there is some
extra room left in the frame, the difficulty being then to minimize the loss function.

7.1. Small “tight” jigsaw puzzle. Our small jigsaw puzzle is a nine-piece
problem. The algorithm we used to solve it corresponds to the description given in
section 4. The frame is a 40×50 grid. The size of the pieces are (14, 27), (8, 36), (8, 9),
(6, 14), (34, 5), (18, 9), (22, 9), (18, 21), (18, 15). The problem has several solutions,
due to symmetry properties. Figure 7.1 shows one solution: the parameters of the
algorithms were set using the heuristics described in section 6.

We performed 40 runs of the simulated annealing algorithm and the same num-
ber of runs of the IET algorithm. For each algorithm, we computed the repartition
function of the energy of the best solution encountered during each run and computed
the repartition function of the energy of the final state of the algorithm. Of course,
the former repartition function is always above the latter; therefore we can unam-
biguously plot them on the same diagram. In order to perform a “fair” comparison,
we allowed the same number of iterations in both cases, namely, N = 5000 iterations
per run.

The results (Figs. 7.2 and 7.3) are of the same order, with some advantage in
favor of the IET method. This is especially true when the energy of the final state is
considered. An interpretation of this fact is that the IET algorithm is more efficient
in preventing the process from leaving the global minimum once it has reached it.

We were also able to check the influence of the drift towards the upper left corner.
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Fig. 7.2. Performance of simulated annealing.
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Fig. 7.3. Performance of the iterated energy transformation method.

In the two previous experiments, the maximum number of steps of the drift (the
constant max_drift in the pseudocode of section 4) is 10. We have also tried a
maximum number of steps of 50, for simulated annealing. We obtained on 40 runs
the improvement in the performance shown in Fig. 7.4.

7.2. A big “loose” jigsaw puzzle. Our big jigsaw puzzle has 60 pieces, cov-
ering an area of 230 unit squares. The frame is a grid of size 30× 10. The sizes of the
pieces are the following:

number of pieces width height

15 3 2

15 2 1

5 5 2

5 2 4

20 1 1

The loss function is of the type described in the previous section. The function
Φ here is the projection on the second axis, Φ((r, a, b)) = b, (r, a, b) ∈ B ×E, so that
the constraint indicates how much of each line the pieces should fill. On the following
diagram, we have plotted the constraint function ρ (see Fig. 7.5).

With this choice of ρ, the constraint is tight, meaning that ρ(F ) is equal to the
area of the pieces. When we use tight constraints, we build problems of the partition
type, which are therefore NP complete. We chose the size of the pieces such that
the set of global solutions is not empty. However, for a 60-piece problem, it is very
difficult to find a (complete) solution.

We have chosen a coarse discretization step to keep the difficulty of the problem
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to a reasonable level, since we had to switch off the vertical drift. Indeed keeping a
vertical drift would have decreased the stability of minimizing configurations in an
unfavorable way.

We tried two kinds of energies. In order to have a point of comparison, we tried to
use the simple energy U(x) = −µ(x)+maxy∈S̃µ(y), where µ is the counting measure.

Then we tried a compound energy W (x) = U(x) + αV (x) for a large value of α
and for V (x) =

∫
(1− (µx ◦ Φ/ρ)2dρ.

Eventually, we tried to relax the constraint, changing ρ to ρ̃ = 6/5× ρ.

7.2.1. Experiments with a simple energy function. In order to have a
point of comparison, we recorded first the performance of repeated relaxations. The
relaxation algorithm we used corresponds to a choice of λ = 0, or equivalently to a
choice of β = +∞ in the Metropolis algorithm.

Then we considered the Metropolis algorithm for different values of λ and of
β. We tried λ = 1 and λ = 0.5, two “natural” choices for λ. The former let us
inhibit destructions only according to the energy increment, whereas the latter let
constructions and destructions have equal frequencies at infinite temperature.

The first conclusion we reached was that a significant improvement over the re-
laxation scheme could be obtained using the Metropolis algorithm with a moderate
number of steps. We compared relaxation with 300 steps (for which convergence was
always reached) with Metropolis with λ = 1, β = 1, and N = 4000. In order to
compare methods using the same number of iterations, we repeated Metropolis 20
times and the relaxation algorithm b(4000× 20)/300c = 266 times. On the following
diagram (Fig. 7.6) we plotted the repartition functions of the best solution found for
each of the 20 runs of Metropolis (dashed lines), along with the best 20 results out of
the 266 runs of the relaxation algorithm (solid lines).
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We obtained very suggestive evolutions for the Metropolis algorithm, such as the
following (Fig. 7.7).

On this plot of un = U(Xn) for n = 300, . . . , 4000, we see the “staircase” shape
of the trajectories of the Metropolis algorithm. The algorithm “falls” into deeper and
deeper maximal cycles [13] of the domain S̃ \ S. We refer to [5] for a theoretical study
of the exit path of the Metropolis algorithm from a domain at low temperature. For
a study of the trajectories of simulated annealing algorithms, we refer to [6] and
[22], which rely on more complex but also more general induction proofs which cover
the time inhomogeneous case. For a semigroup approach of the same question in the
continuous time case, we refer to [10], [11], [12], [17], [19], [20], and [21].

The energy evolution can be decomposed into a decreasing part un = mink≤n uk
and a “wandering” part un = un − un, as in the following diagram (Fig. 7.8).

The repartition function of the wandering part gives information about the depth
of secondary attractors from which the algorithm is able to escape within the time
of the simulation. It is a useful tool to choose the inverse temperature parameter β.
Following is the repartition function corresponding to the preceding plot (Fig. 7.9).

The best results for the Metropolis algorithm of time length N = 4000 were
obtained for β = 1 and λ = 1 or for β = 0.8 and λ = 0.5. This shows that in this
case, the choice of λ is not crucial. In the following, we will use λ = 1, because we
can hope to take better advantage of the discrimination made by the energy function
between small and big pieces when we use this value of λ.

Then we used the Metropolis algorithm and simulated annealing on long time
intervals. Namely, we took N = 20000, βmin = 0.7, βmax = 1.1 for simulated annealing
and β = 1 for the Metropolis algorithm. On 10 runs of each algorithm, we could notice
a clear gain in performance in favor of simulated annealing.
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We tried eventually to get a better improvement using the IET algorithm. Since
the state space is already rather large, we followed the idea introduced in [7] to use
transformations Fα,T,τ with a nonzero value of α.

We took α = 0.3, β = 1/T = 30, 1
1+ρ = 0.5, r = 4, and η0 = 15. We obtained

the following comparative results for the best energy found in each of 10 runs of
each algorithm. The mean values are 16.2 for the Metropolis algorithm (solid lines),
11.6 for simulated annealing (dashed lines), and 10.9 for the IET algorithm (dash-dot
lines). The repartition functions are plotted on the next diagram (Fig. 7.10).

7.2.2. Experiments with a compound energy function. We used the
energy

W (x) = U(x) + αV (x),

with a huge value of α = 10000.
The range of this energy is very large, when compared with the previous one,

since Wmax = 2300230, whereas Wmin = 0 and removing a piece of size 1 × 1 from
a complete solution in a line of weight ρ(y) = 30 costs ∆W ' 334.33. Therefore we
may expect more spectacular improvements from the speed-up techniques.

We tried different temperatures for the Metropolis algorithm with N = 20000.
The best results were obtained when β = 8 × 10−4. On 10 runs, the average best
value was 15853.

Using simulated annealing with βmin = 10−4, βmax = 10−3, we improved the
performance on the average, as shown in the next diagram. On 10 runs, the average
best energy value was 8765.

We obtained some more improvement using the IET algorithm (with γ = 5×10−5,
β = 10, and η0 = 2000). On 10 runs the average best energy value was 6280.
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Figure 7.11 shows a diagram of the repartition functions of the best energy value
for ten runs of the Metropolis algorithm (solid lines), simulated annealing (dashed
lines), and the IET algorithm (dash-dot lines).

7.2.3. Experiments with a relaxed constraint. We explored also an alter-
native in the optimization design, which consists of replacing ρ by ρ̃ = 6

5ρ. We consid-

ered accordingly a larger search space S̃ where the constraint µx◦Φ−1

ρ ≤ 1 is relaxed to
µx◦Φ−1

ρ̃ ≤ 1. We took again a compound energy of the type W (x) = U(x) + αV (x),
with α = 10000. The range of W is between Wmin = 76666.66 and Wmax = 2760230.

In this example, we can perform the same kind of comparison as in the case of tight
constraints. We made 10 runs of length N = 20000 of each algorithm. The average of
the best energy value found in each run is 8731 for the Metropolis algorithm, 8685 for
simulated annealing, and 8567 for the IET algorithm. Figure 7.12 shows a diagram
of the corresponding repartition functions (solid lines for the Metropolis algorithm,
dashed lines for simulated annealing, and dash-dot lines for the IET algorithm).

The best solution was found by the IET algorithm. It has an energy of W (x) =
78750 and is shown in Fig. 7.13.

In this solution, all the pieces are set in the frame. We can judge the quality of the
solution with respect to the proportionality constraint on the following diagram (Fig.
7.14), where we have plotted ρ̃ (dashed lines), the measure expressing the constraint,
and µx ◦ Φ−1 (solid lines), giving the number of unit squares actually filled on each
line by the solution. The optimum would be µx ◦Φ−1 = ρ = 5/6× ρ̃. We are not too
far from that: the two entries µx ◦Φ−1(2) and µx ◦Φ−1(4) are one unit too large, and
µx◦Φ−1(9) is two units short from the optimum. This is the best approximation to an
optimal solution we were able to compute on this example. This seems to show that
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relaxing the constraint slightly and introducing the loss function V (x) in the energy
eases the optimization process.

This should be compared with the best solution found without relaxing the con-
straint (Fig. 7.15) and its constraint diagram (Fig. 7.16).

For this solution, U(x) = 6. Solutions of energy U(x) = 6 were also found using
the simple energy U to guide the search. Therefore the advantage of introducing the
V component in the energy function is not obvious when the constraint is really tight.

It is also interesting to consider typical energy evolutions of those three algorithms.
On the following diagrams (Figs. 7.17–7.19), we have plotted the sequence

un = U(Xn).

As we have already mentioned, these sequences of energy values can be decomposed
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into a decreasing component

un = min{uk : k ≤ n},

and a wandering component

un = un − un.

The repartition functions of (un, n = 1, . . . , N) can help to properly set the param-
eters. It indicates the depth of the attractors from which the algorithm is able to
escape.

It is interesting to compare the energy evolutions of the three algorithms. The
comparison between the Metropolis algorithm and simulated annealing shows clearly
that the temperature used in Metropolis is too low during the first 4000 iterations
and too high during the last 8000 iterations. As for the IET algorithm, we can see
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that the fluctuations of the wandering part are decreasing with time, as in the case
of simulated annealing, but that the evolution of the energy is more unstable: it can
go up and down faster (in other words, its peaks are sharper). This explains why it
is able to sample more efficiently a state space containing many local minima.

7.2.4. Experiment with the partial freezing method. In this experiment,
we took the IET algorithm, which had proved to be the best when used globally, and
we added a postprocessing stage where we froze all but three of the tasks. At the
same time we decreased the global optimization step from 20000 iterations to 3000
iterations and kept 50 times 300 iterations for postprocessing (we drew 50 different
frozen configurations and made 300 iterations for each; in each frozen configuration,
only three pieces were left unfrozen). Thus we decreased slightly the total number of
iterations from 20000 to 18000 (in answer to a suggestion of one of our referees that a
more complex algorithm should be allowed less iterations). At the same time, we got
an improvement on 10 trials for both the mean value of the energy and its minimum
value over the 10 trials (Fig. 7.20). We also found that it was much easier to tune
the parameters of the IET algorithm.

Figure 7.21 shows an energy evolution typical of the partial freezing method,
where the lower plot shows the evolution of η0 − τn: we see that the partial freezing
allows us to go faster up and down the energy landscape (in other words, it allows us
to work at a higher temperature).

7.2.5. Is the number of iterations a fair measure of complexity? In
the case of the three algorithms in this paper, the inner loop is the same except for
the computation of the rejection probabilities. When one goes from the Metropolis
algorithm to simulated annealing, one has to add the cost of updating the temperature,
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that is, the cost of one multiplication (in fact, it is even possible to use piecewise
constant temperature schedules with the same theoretical properties; see [9], for which
the update of the temperature is not in the inner loop and therefore has little influence
on the computer time). When one goes from the Metropolis algorithm to the IET
algorithm, one has to compute the energy transformation, that is, log U+∆U

U , this
means one addition, one multiplication, and a logarithm. The fact that one uses the
value of U and not only the value of ∆U , the energy increment, does not really make
a difference in practice since one will, anyhow, want to record the value of the energy
U in order to keep the best solution encountered and not systematically keep the last
current solution. Anyhow, computing U from the accumulated energy increments
requires only one addition per iteration.

In fact, in our experiments, these differences in the computing time of the rejection
probability does not seem to be the leading factor in the variations of the cpu time.
The unix function “time” gave us the following figures: 66.3 seconds of user cpu
time for 20000 iterations of the simulated annealing algorithm, 61.1 seconds for 20000
iterations of the IET algorithm, and 35.2 seconds for 18000 iterations of the IET
algorithm combined with the partial freezing method. These figures are somewhat
unexpected. Our interpretation is that all the moves do not have the same complexity.
This is particularly true with the partial freezing method, where during most of the
time (15000 iterations) the state space is restricted; therefore the choice of a task
to schedule or to destroy and the choice of the resources to allocate are made from
smaller sets and therefore are faster. To a minor degree the same happens with the
IET algorithm and Simulated Annealing: the IET algorithm spends more time at low
energy levels where more tasks are scheduled and where scheduling a new task is done
from a smaller set of available tasks and resources.



1570 OLIVIER CATONI

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 Energy/time for the Metropolis algorithm

Fig. 7.18.

In conclusion, the number of iterations is not a perfect measure of complexity but
has the advantage of being machine independent. To get a real cpu time complexity
study, one would need to analyze dynamically the complexity of moves, which depends
on the current configuration, and to gather statistics from profile files, which we have
not done in the framework of this study.

8. Comparison with other energy landscapes. The most common way to
enlarge the space of solutions to create a search space is to allow overlaps. In the task
assignment formulation, this means that the same resource is allowed to be used by
more than one task at the same time. In the jigsaw puzzle formulation, this means
that we allow pieces to sit on top of each other. We will maintain the jigsaw puzzle
terminology in the following discussion.

Let us discuss first the case where the aim is simply to find a complete admissible
solution. We will discuss afterwards the case where a cost function has to be optimized
on the set of complete solutions.

So for the moment, the energy in the overlap case will be made up of the total
area of the overlaps and, in the partial solution case, will be made up of the total area
of unused pieces.

We can expect the overlap approach to generate the same kind of energy barriers
as ours. Indeed if the problem is “tight,” meaning that there is just enough room to
put all the pieces in the frame, it will be necessary, in order to move a task from one
location to another distant location in the frame, to put it in an already occupied
location, creating an overlap of the order of the area of the piece to be moved. In the
partial solution approach, one has to remove two pieces from the frame. This means
that the energy barrier will be from one to two times the energy barrier of the overlap
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approach, depending on whether or not the pieces to be moved around are of equal
bulk. If one has to exchange a large piece with a number of small pieces, the energy
barrier will be the area of the large piece plus the largest area of the small pieces,
because once the large piece is removed, the small ones can be transferred one at a
time. This is what we can say about the “H” term in the difficulty. Now we have
to compare it with the “U” term. For the U term, our approach is better since the
energy is quantized: a local minimum solution has at least one piece out; therefore
the “U” term is larger than the area of the smallest piece. On the contrary, if space
is not discretized, or is finely discretized, the overlap in an imperfect solution of the
overlap approach may be arbitrarily small, leading to an arbitrarily large difficulty.
Thus the overlap energy cannot safely be used alone. Usually, what is done is to
allow pieces to overlap not only between themselves, but also with the outside of
the frame—this last kind of overlap being given a specific weight (increasing with
time). This is very much like allowing partial solutions, leads to a more complicated
algorithm where the balance between two energy terms has to evolve with time, and
does not solve completely the problem posed by almost perfect solutions with small
scattered overlaps which cannot be improved by local moves.

Let us discuss now the case where some other cost function has to be optimized on
the state space of complete solutions. In the partial solution approach, it is usually
quite easy to build a cost function which decreases with the number of scheduled
tasks and therefore can be used alone. It will be the case, for instance, when the cost
function is a sum of negative terms depending on (small) clusters of scheduled tasks.
When a task is removed, some of the scheduled clusters are suppressed, the others
being unchanged, and so the cost function is increased. It is not so easy and natural
to build cost functions which are decreasing with the area of the overlap. Therefore
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in the overlap approach an “artificial” overlap term with a big enough weight has to
be added to the cost function in the definition of the energy function, creating new
energy barriers and increasing the difficulty of the energy landscape.

For all these (qualitative) reasons, we think that the partial solution approach
we propose here has some merits, at least in the case of “tight” problems, when
it is compared with the traditional overlap approach. This would of course require
confirmation by quantitative experimental comparisons.

Conclusion. We touched in this paper on three related topics with various de-
grees of generality. Our first aim was to bring experimental evidences comforting
theoretical results about the behavior of algorithms. We wanted to show that the
theory was not concerned with a “never-reached” asymptotic and led to the same
qualitative ranking of performances to which an experimental benchmark would lead.
Our second aim was to describe a general purpose methodology to deal with schedul-
ing tasks. We insisted on two problems that are likely to be encountered in many
situations: the creation of small gaps in the allocation of resources and the way to
handle “proportionality constraints.”

The third aspect of the paper was to account for experiments on a benchmark
of the “jigsaw puzzle” type. Here we were confronted with the practical problem of
the choice of parameters and of optimization design options (such as relaxing some
of the constraints). Our conclusion on this third point is that we have acquired some
know-how about the choice of parameters, which we tried to reflect in section 6, but
that we have presently no systematic rule to choose them. We worked very much in
a trial and error way, looking at the repartition functions we mentioned, to guide our
intuition. A trial and error procedure is somehow justified by the theoretical result
that many trials of moderate length are preferable to a long one. This gives us the
opportunity to tune the parameters trial after trial.

Anyhow, we have to admit that the choice of parameters requires some skill,
especially for the simulated annealing and IET algorithms, where there are more than
one parameter to tune. What we did not find too hard to do was, starting from a given
Metropolis algorithm at inverse temperature βMet, to find βmin < βMet < βmax for
which simulated annealing performs better than Metropolis. Then we could get some
more improvement using the IET algorithm, where again we chose the parameters in
relation with those used for simulated annealing. We are not sure at all that this is
the best way to tune simulated annealing or the IET algorithm, but it shows at least
that the theoretical gains of one algorithm upon the previous one could be obtained
in practice. Finally, in the partial freezing method the choice of parameters is easier
because the algorithm runs, most of the time, on a restricted state space for which
the tuning of parameters is less crucial.

Another positive result of these experiments is that it is possible to get good, if
not optimal, solutions even in the case where very nonmonotonous evolutions of the
energy are needed, as it is the case here, since the only way to move a piece of the
puzzle is to remove it and put it somewhere else afterwards, a succession of two moves
the first of which implies an energy increase.

Of course we have touched in this paper on only a limited number of questions.
For instance, we leave open the practical question of the best choice of parameters
for simulated annealing and for the IET algorithm, since we used only a robust “all
purpose” set of parameters, namely, exponential temperature sequences in the case
of simulated annealing and logarithmic energy transforms for the IET algorithm.
Another question we left purposely in the dark is the choice of elementary moves.
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Although it is clear that a benefit can be obtained from the use of more complex
compound moves, we felt such an investigation would have been too dependent on
the precise examples we chose to study. Rather we tried to lay the stress on general
ideas and tools, with the hope that they could be useful in a variety of situations.
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Abstract. We consider a hybrid system consisting of two flexible beams connected by a point
mass. The constant of rotational inertia is assumed to be nonzero. In a previous paper we have
proved that, in the presence of the point mass, the system is well posed in asymmetric spaces in
which solutions have one more degree of regularity to one side of the mass.

We are interested in the problem of controllability when the control acts on the free extreme
of one of the beams. We prove that when the control time is large enough the system is exactly
controllable in an asymmetric space. This result is sharp. The proofs combine classical techniques
from asymptotic analysis and the theory of nonharmonic Fourier series.

Key words. flexible beams, point mass, asymmetric spaces, Fourier series, controllability
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1. Introduction. In this paper we study the boundary controllability of a linear
system modelling the vibrations of two flexible beams connected by a point mass.

We assume that the beams occupy the intervals (−1, 0) and (0, 1) and that the
point mass is located at x = 0. By means of the scalar function u = u(x, t) defined for
x ∈ (−1, 1) and t > 0, we describe the vertical displacements of the beams and the
point mass. The linear equations describing the small vibrations of this system can
be written as follows:

γ∂2utt − utt − ∂4u = 0, for x ∈ (−1, 0), t > 0,

γ∂2utt − utt − ∂4u = 0, for x ∈ (0, 1), t > 0,

[u] (0, t) = [∂u](0, t) = 0, for t > 0,

Mutt(0, t) + [∂3u](0, t) = 0, for t > 0,

Mγ0∂utt(0, t)− [∂2u](0, t) = 0 for t > 0,

(1)

where ∂ denotes partial derivation with respect to x and the index t derivation with
respect to time. [u](0) = u(0+) − u(0−) denotes the jump of the function u at the
point x = 0 where the mass is located. Assuming that the beams are hinged at their
extremes, system (1) has to be completed with the following boundary conditions:

u(±1, t) = ∂2u(±1, t) = 0, for t > 0.(2)

In (1) the dynamic of the beams is described by the Rayleigh beam equation, where
γ ≥ 0 represents the constant of rotational inertia. The third equation guarantees
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that u and ∂u are continuous across x = 0 while the last two equations describe the
vibrations of the point mass at x = 0. M is the total mass concentrated in x = 0 and
γ0 is the rotational inertia at this point.

To simplify the exposition we assume M = 1 and γ = γ0, although the analysis
is valid for other values of the parameters.

It is worth noting that, in the particular case in which the constant γ of rotational
inertia vanishes (γ = 0), ∂2u is continuous across x = 0, also. This implies that the
effect of the mass point is weaker on the behavior of the system when γ = 0 than
when γ > 0. Thus the properties of system (1.1)–(1.2), when γ = 0, are much closer
to the case in which the point mass is not present. We refer to [5] and [9] for precise
statements and the details of the proofs.

Throughout this paper we assume that γ > 0.
System (1)–(2) has to be completed with suitable initial conditions for u(x, t),

u(0, t), and ∂u(0, t). The last two quantities will be denoted by y and z, resp., i.e.,

u(0, t) = y(t); ∂u(0, t) = z(t).(3)

The initial conditions are then
u(x, 0) = u0(x) in (−1, 0) ∪ (0, 1) ; y(0) = y0, z(0) = z0,

ut(x, 0) = u1(x) in (−1, 0) ∪ (0, 1); yt(0) = y1, zt(0) = z1.
(4)

System (1)–(2) has been studied in [4] where it was proven that, with appropriate
regularity and compatibility conditions, on the initial data it admits a unique solution
in a suitable class. On the other hand, its energy

E(t) =

∫ 1

−1

[∣∣∂2u(x, t)
∣∣2 + γ |∂ut(x, t)|2 + |ut(x, t)|2

]
dx+|ut(0, t)|2+γ |∂ut(0, t)|2(5)

is constant along trajectories.
In this paper we assume that a control function q = q(t) acts on the system

through the extreme x = 1 on the quantity ∂2u(1, t). Then the boundary conditions
in (2) have to be replaced by

u(±1, t) = ∂2u(−1, t) = 0; ∂2u(1, t) = q(t) for t > 0.(6)

The problem of exact controllability can be formulated as follows: Given T > 0, find
the class H of initial conditions for which there exists a control q, say, in L2(0, T )
such that the solution of (1), (3) with boundary conditions (6) is at rest at time t = T ,
i.e., it satisfies

u(x, T ) = 0 for x ∈ (−1, 0) ∪ (0, 1), y(T ) = 0, z(T ) = 0,

ut(x, T ) = 0 for x ∈ (−1, 0) ∪ (0, 1), yt(T ) = 0, zt(T ) = 0.
(7)

In this formulation of the control problem we have chosen the control to belong
to L2(0, T ). This is not, of course, the unique choice, but it is the one that comes
more naturally when studying the problem of controllability by means of J.-L. Lions’
HUM method (see [8]).

It turns out that the space H of controllable initial data cannot be found among
the family of energy spaces in which system (1)–(2) is well posed. Indeed, all the energy
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spaces have in common the fact that solutions in those classes have the same regularity
on both sides of the point mass. For instance, the energy E in (5) corresponds to
solutions u in H2 to both sides of x = 0 and such that ut belongs to H1(−1, 1).
However, the space of controllable data turns out to be asymmetric in the sense that
its elements have one more degree of regularity to the left of x = 0.

The same phenomena was observed in [6] in the case of two flexible strings con-
nected by a point mass. In [6] this was proved by using the explicit formula for
solutions of the one-dimensional wave equation in terms of its initial data, and it was
seen that this is a consequence of the fact that solutions gain one derivative when
crossing the mass. In [6] it was also observed that the spectral gap of the wave equa-
tion vanishes in the presence of a point mass, and it was conjectured these two facts
(i.e., the asymmetry of the controllable space and the lack of the spectral gap) to be
closely related. Later on, in [3] it was proved that these two properties are equivalent
(see also [1]).

For the fourth order system that we are considering here it has been observed
that, in the presence of the point mass, the spectral gap vanishes, also (see [4]). Using
Fourier developments of solutions, it is also proved in [4] that system (1)–(2) is well
posed in asymmetric spaces in which the solutions have one more degree of regularity
to one side of x = 0. This result applies only when γ > 0 since, as we said above,
when γ = 0 the presence of the mass has a much weaker effect on the behavior of the
system. In this case (γ = 0), system (1)–(2) is not well posed in asymmetric spaces of
this kind.

Thanks to the existence of the asymmetric spaces in which system (1)–(2) is well
posed and by means of the theory of nonharmonic Fourier series, and more precisely,
of some results by D. Ulrich [10], we prove sharp observability results. These results
establish the equivalence between a suitable asymmetric norm of the initial data

and the quantity
∫ T
0
|∂u(1, t)|2 dt which measures the amount of energy concentrated

at x = 1 during the time interval t ∈ (0, T ). This result requires the time T to
be sufficiently large and, more precisely, T ≥ 4

√
γ. This is due to the finite speed

of propagation underlying in system (1) when γ > 0, and therefore it is a natural
restriction to the observability to hold.

By means of HUM and as a direct consequence of this observability result, we
prove the exact controllability of the system. We show, roughly, that when γ > 0
the space of controllable data coincides with the subspace of H2(−1, 1) ×H1(−1, 1)
of those elements that, restricted to (−1, 0), have one more degree of regularity, i.e.,
belong to H3(−1, 0)×H2(−1, 0).

It is worth mentioning that, in the absence of mass, the space of controllable data
coincides with H2(−1, 1) × H1(−1, 1) (see [7]). Thus, as in the context of flexible
strings with a point mass (see [6]), the presence of the point mass reduces the space
of controllable data by one derivative on the opposite side of the mass with respect
to the extreme in which the control is located.

The rest of the paper is organized as follows. In section 2 we recall without
proofs some basic analytical results of the uncontrolled system (1)–(2) given in [4].
In particular we state the well posedness of the system in asymmetric spaces using
Fourier series. In section 3 we prove suitable observability properties. In section 4
we solve system (1) with nonhomogeneous boundary conditions to give sense to the
solutions of the controlled problem, where we have to consider the boundary condition
(6). Finally, in section 5 we obtain the main controllability results.
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2. Preliminary results. In this section, we set some analytical properties of
the solutions of system (1) which will be used along this work. The proofs of the
results can be seen in [4].

2.1. Spectral analysis. When decomposing solutions of (1)–(2) in Fourier se-
ries, one is led to consider solutions in separated variables u = eiλtϕ(x). In this class
of solutions, system (1.1)–(1.2) becomes

∂4ϕ = λ2ϕ− γλ2∂2ϕ , for x ∈ (−1, 0),

∂4ϕ = λ2ϕ− γλ2∂2ϕ , for x ∈ (0, 1),

[ϕ](0) = [∂ϕ](0) = 0,

[∂2ϕ](0) = −γλ2∂ϕ(0),

[∂3ϕ](0) = λ2ϕ(0),

ϕ(±1) = ∂2ϕ(±1) = 0.

(8)

We introduce the operator (I − γ∂2)−1 : L2(−1, 1) → H2 ∩H1
0 (−1, 1) such that

u = (I − γ∂2)−1F if and only if u ∈ H2 ∩H1
0 (−1, 1) and satisfies u− γ∂2u = F .

If we define the vector valued eigenfunction φ = (ϕ,ϕ(0), ∂ϕ(0)), system (8) can
be written as {

Kφ = λ2φ,
∂2ϕ(±1) = 0,

(9)

where K is the linear operator given by

K =

 (I − γ∂2)−1∂4
(−1,1)/{0} 0 0

∂3
+ − ∂3

− 0 0
− 1

γ

(
∂2
+ − ∂2

−
)

0 0

 .

Here ∂4
(−1,1)/{0} represents the operator which assigns to each function, not necessarily

continuous in x = 0, the fourth order derivative to both sides of x = 0, and ∂k±
represents the distribution which assigns to a function u the value ∂ku(0±).

The following result is proved in [4].

Proposition 2.1. The eigenvalues {λk}k∈N
of system (9) are simple and consti-

tute a sequence of positive real numbers:

0 < λ1 < λ2 < · · · < λk < · · · → ∞.

Moreover, the corresponding eigenfunctions {φk}k∈ N may be normalized to form
an orthonormal basis of the space

H =
{
φ = (ϕ,ϕ(0), ∂ϕ(0)) ∈ H2 ∩H1

0 (−1, 1)× R× R
}

with the norm

‖φ‖H =

[∫ 1

−1

|∂2ϕ|2dx
]1/2

.
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Remark 1. All the results of the above proposition except the simplicity of the
eigenvalues can be proved using classical theory on compact self-adjoint operators.
The simplicity of the eigenvalues requires a detailed analysis of the system under
consideration.

From Proposition 2.1, the space H can also be written as follows:

H =

{
u : u =

∑
k∈N

akφk, ‖ u ‖2H=
∑
k∈N

| ak |2<∞
}
.(10)

We can also define the following fractional Hilbert spaces (Hα, ‖ · ‖α)α∈R
:

Hα =

{
u =

∑
k∈N

akφk :‖ u ‖2α=
∑
k∈N

| ak |2 λ4α
k <∞

}
.(11)

We will denote by < ·, · >α the scalar product in Hα.
Clearly H0 = H and ‖ · ‖H=‖ · ‖0.
Observe that, if u =

∑
k∈N

akφk, then Ku =
∑

k∈N

ak
λ2
k

φk. Clearly K is an isomor-

phism from Hα into Hα+1. We can also write explicitly K−1:

K−1u =
∑
k∈N

λ2
kakφk

which is continuous from Hα+1 into Hα.
We need to identify the spaces Hα for some values of the parameter α ∈ R. To do

that, we denote by Hs ((−1, 1)\ {0})∩H2∩H1
0 (−1, 1) the subspace of H2∩H1

0 (−1, 1)
constituted by the elements such that its restrictions to (−1, 0) and (0, 1) belong to
Hs.

We have the following characterizations of the fractional spaces Hα.
Proposition 2.2. (a) H1/2 coincides algebraically and topologically with the sub-

space of

H3 ((−1, 1)\ {0}) ∩H2 ∩H1
0 (−1, 1)× R× R

constituted by the elements (u, y, z) such that

∂2u(±1) = 0, u(0) = y, ∂u(0) = z.(12)

(b) H−1/2 coincides with the subspace of H1
0 (−1, 1)×R×R constituted by the elements

(u, y, z) such that u(0) = y.
Moreover,

‖ (u, y, z) ‖2−1/2=

∫ 1

−1

[
γ | ∂u |2 + | u |2] dx+ | y |2 +γ | z |2.(13)

(c) H−1 coincides algebraically and topologically with the quotient space of L2(−1, 1)×
R × R constituted by the classes (u, y, z) characterized in the following way: Two
elements (u1, y1, z1) and (u2, y2, z2) belong to the same class if and only if

(u1 − u2, y1 − y2, z1 − z2) = α(m,−1, 0) + β(n, 0, γ−1),
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where α, β ∈ R, and m and n are the functions

m(x) =


sinh( 1+x√

γ
)

2
√
γ cosh( 1√

γ
)

if x ∈ [−1, 0],

sinh( 1−x√
γ

)

2
√
γ cosh( 1√

γ
)

if x ∈ [0, 1],
n(x) =


sinh( 1+x√

γ
)

2γ sinh( 1√
γ
)

if x ∈ [−1, 0],

− sinh( 1−x√
γ

)

2γ sinh( 1√
γ
)

if x ∈ [0, 1].

(14)
(d) H−3/2 coincides with the quotient space of H−1(−1, 1) × R × R constituted by
the classes (u, y, z) characterized in the following way: Two elements (u1, y1, z1) and
(u2, y2, z2) belong to the same class if and only if

(u1 − u2, y1 − y2, z1 − z2) = α(m,−1, 0) + β(n, 0, γ−1),

where α, β ∈ R, and m and n are the functions given in (14).
Let us recall now how solutions of (1)–(2) can be developed in Fourier series.
Consider the energy space H = H0 × H−1/2 and define φ̄k = (φk, iλkφk) where

λ−k = −λk and φ−k = φk. The set (φ̄k)k∈Z constitutes an orthonormal basis in H.
Then, for any initial data ((u0, y0, z0), (u1, y1, z1)) ∈ H we can find a sequence of
coefficients (ak) such that

((u0, y0, z0), (u1, y1, z1)) =
∑
k∈Z

akφ̄k,

and the vector valued solution U = ((u, y, z), (ut, yt, zt)) of (1), (2), (3), and (4) is
given by

U(t) =
∑
k∈Z

ake
iλktφ̄k.(15)

The conservation of the energy E in (5) is equivalent to the fact that system
(1)–(2) generates a group of isometries in H. More precisely,

E(t) =‖ U(t) ‖2H=
∑
k∈Z

∣∣akeiλktφ̄k∣∣2 =
∑
k∈Z

| ak |2=‖ U(0) ‖2H= E(0).(16)

Obviously, one can also obtain developments in Fourier series of the form (15) for
solutions of (1)–(2) in other classes Hα = Hα ×Hα−1/2.

2.2. Asymptotics of the spectrum. In this section we recall the main results
concerning the asymptotic behavior of the eigenvalues and eigenfunctions of (9) that
we will need later to prove the observability inequalities.

Proposition 2.3. We have

λ2k−1 =
kπ − π/2√

γ
− c1(γ)√

γ (kπ − π/2)
+O(k−2), as k →∞,(17)

λ2k =
kπ − π/2√

γ
− c2(γ)√

γ (kπ − π/2)
+O(k−2), as k →∞,(18)

where c1(γ) =
(
2γ +

√
γ tanh

(
γ−1/2

))−1
+(2γ)−1 and c2(γ) = γ−1/2 coth γ−1/2−2+

(2γ)−1.
Moreover,

λ2k − λ2k−1 =
C(γ)

(kπ − π/2) γ1/2
+O(k−2), as k →∞,(19)
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where C(γ) = c1(γ)− c2(γ) > 0, for all γ > 0.
Remark 2. In the absence of mass the asymptotic behavior of eigenvalues is as

follows:

λk =
kπ

2
√
γ

+O(k−2), as k →∞.

This shows that the first term of the asymptotic expansion of λ2k is affected by the
presence of the mass but not the first term of the asymptotic expansion of λ2k−1.

In view of (19) the asymptotic gap λ2k − λ2k−1 decays like 1/k as k →∞ in the
presence of the mass. Note, however, that in the absence of the mass the eigenvalues
are uniformly separated and the gap is of the order of π/(2

√
γ) for all k.

Concerning the eigenfunctions we have the following.
Proposition 2.4. The eigenfunctions of (9) normalized in H2 ∩H1

0 (−1, 1) are

ϕ2k−1(x)(20)

=
ρ2k−1

(µ+
2k−1)

2

[
sin
(
µ+

2k−1(1− |x|))− µ+
2k−1 cosµ+

2k−1

µ−2k−1 coshµ−2k−1

sinh
(
µ−2k−1(1− |x|))] ,

ϕ2k(x) = − ρ2k

(µ+
2k)

2

[
sin

(
µ+

2k

(
x

|x| − x

))
− sinµ+

2k

sinhµ−2k
sinh

(
µ−2k

(
x

|x| − x

))]
,(21)

where ρk = 1 +O(k−1) and

µ+
k = λk

√
γ

√√√√1

2
+

1

2

√
1 +

4

γ2λ2
k

, µ−k =
1

√
γ

√
1
2 + 1

2

√
1 + 4

γ2λ2
k

.(22)

Moreover, ∂ϕk(1) 6= 0.
Remark 3. We observe that the eigenfunctions ϕ2k−1 are even while ϕ2k are

odd. This fact is due to the symmetry of the problem with respect to x = 0. On the
other hand, as the mass only affects the first term in the asymptotic expansion of
the eigenvalues corresponding to odd eigenfunctions, these are the only eigenfunctions
which are affected in a significant way by the point mass.

2.3. Asymmetric spaces. In this section we are going to introduce and charac-
terize some asymmetric spaces. It is easy to see that these spaces are stable under the
flow generated by system (1)–(2), and they are natural spaces to solve the boundary
control problem.

With the notations of section 2.1 we set

Yα =

U =
∑

k∈Z\{0}
akφ̄k ∈ H :

‖ U ‖2Yα=
∑

k∈Z\{0}

( | a2k−σk |2
δ4α
k

+
| a2k − a2k−σk |2

δ4α+2
k

)
<∞

 ,(23)

where δk = λ2k − λ2k−σk , σk = sgn k, i.e., σk = 1 if k > 0 and σk = −1 if k < 0.
Clearly Yα endowed with the norm ‖ · ‖Yα is a Hilbert space. On the other hand,

it is clear that if all the δk were uniformly positive and bounded above, then Yα would
coincide algebraically and topologically with one of the energy spaces Hα.
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- 1 1 - 1 1

Fig. 1. (ϕ1 − ϕ2)/2 and (ϕ1 + ϕ2)/2.

Since, in view of Proposition 2.3, δk = O(k−1) = O(λ−1
k ) → 0 as k → ∞, we

deduce that Yα is a strict subspace of Hα.

We have the following result.

Proposition 2.5. Let U0 =
(
(u0, y0, z0), (u1, y1, z1)

)
be an element of Yα. Then,

the solution U(t) = ((u(t), y(t), z(t)) , (ut(t), yt(t), zt(t))) of (1)–(2) with initial data
U0 belongs to Yα for every t > 0 and α ∈ R. Furthermore, for any T > 0 there exists
a constant C(T ) > 0 such that

‖ U(t) ‖Yα≤ C(T ) ‖ U0 ‖Yα , ∀ 0 ≤ t ≤ T, ∀ U0 ∈ Yα.(24)

The following theorem provides a precise characterization of the spaces Y0 and
Y−1.

Theorem 2.6. (a) Y0 is the subspace of elements U0 =
(
(u0, y0, z0), (u1, y1, z1)

)
of H such that the restriction of (u0, u1) to (0, 1) belongs to H3(0, 1)×H2(0, 1) and,
in addition to the compatibility conditions of H (u0(0) = y0, ∂u0(0) = z0, u1(0) = y1

)
,

the following hold:

∂u1(0+) = z1, ∂2u0(1) = 0.(25)

Furthermore, the norm ‖ · ‖Y0 is equivalent to

[
‖ U ‖2H +

∥∥(u0 |(0,1), u1 |(0,1)
)∥∥2

H3×H2(0,1)

]1/2
.

(b) Y−1 is the subspace of elements U0 =
(
(u0, y0, z0), (u1, y1, z1)

)
of H−1 such that

the restriction of (u0, u1) to (0, 1) belongs to H1(0, 1)× L2(0, 1) and verify

u0(0+) = y1, u0(1) = 0.(26)

Remark 4. The spaces Yα are asymmetric in the sense that their elements have
one more degree of regularity to the left of x = 0.

The characterization of Yα as asymmetric spaces can be explained as follows: The
vectors pk = δ2α

k (φ̄2k−1 + φ̄2k)/2, qk = δ2α+1
k (φ̄2k−1 − φ̄2k)/2 constitute a Riesz basis

of Yα. We observe that pk and qk are constituted by the functions (ϕ2k−1 + ϕ2k)/2,
(ϕ2k−1 − ϕ2k)/2 weighted differently. As it can be seen in Figure 1 for k = 1, due
to the presence of the mass, the profiles of (ϕ2k−1 + ϕ2k)/2 and (ϕ2k−1 − ϕ2k)/2 are
essentially one reflection of the other with respect to x = 0.

This explains the asymmetric structure of Yα.



1584 CARLOS CASTRO AND ENRIQUE ZUAZUA

3. Observability. As we mentioned in the introduction, using HUM [8], the
controllability of system (1) with controls of the form (6) can be reduced to the
obtention of suitable observability estimates for the system in the absence of control:

γ∂2utt − utt − ∂4u = 0, for x ∈ (−1, 0), 0 < t < T
γ∂2utt − utt − ∂4u = 0, for x ∈ (0, 1), 0 < t < T
[u] (0, t) = [∂u] (0, t) = 0, for 0 < t < T
utt(0, t) +

[
∂3u

]
(0, t) = 0, for 0 < t < T

γ∂utt(0, t)−
[
∂2u

]
(0, t) = 0, for 0 < t < T

u(±1, t) = ∂2u(±1, t) = 0, for 0 < t < T
(u(x, 0), u(0, 0), ∂u(0, 0)) = (u0, y0, z0),
(ut(x, 0), ut(0, 0), ∂ut(0, 0)) = (u1, y1, z1).

(27)

As in previous sections, we identify the solution u of (1) with the vector valued
unknown U . The following holds.

Lemma 3.1. For any T > 0, there exists C(T ) > 0 such that∫ T

0

|∂u(1, t)|2 dt ≤ C ‖ U0 ‖2Y−1
, ∀ U0 ∈ Y−1.(28)

Moreover, if T ≥ 4
√
γ, there exists C(T ) > 0 such that

‖ U0 ‖2Y−1
≤ C

∫ T

0

|∂u(1, t)|2 dt, ∀ U0 ∈ Y−1.(29)

Remark 5. The first estimate (28) of this lemma establishes a hidden regularity
result since, in view of Proposition 2.5 and Theorem 2.6, the fact that U0 ∈ Y−1

implies u
∣∣
(0,1) ∈ C

(
[0, T ];H1(0, 1)

) ∩ C1
(
[0, T ];L2(0, 1)

)
, but this is not sufficient to

guarantee that ∂u(1, t) ∈ L2(0, T ).
The second estimate (29) of the lemma guarantees that the norm of the initial data

in Y−1 can be observed continuously in terms of the L2(0, T )-norm of ∂u(1, t). In view
of Proposition 2.5 this implies that the norm of the solution U in C([0, T ], Y−1) can be
observed, also. Due to the finite speed of propagation of the system, the time required
for the uniform observability (29) has to be large enough. The lower bound 4

√
γ is

sharp.
In order to prove Lemma 3.1, we need the following result on nonharmonic Fourier

series due to Ulrich [10].
Theorem 3.2. Let (σn)n∈Z and (τn)n∈Z be two sequences of distinct complex

numbers such that σn 6= τn for all n ∈ Z and

lim
|n|→∞

|σn − n| = lim
|n|→∞

|τn − n| = 0.(30)

Then
{
eiσnt

}
n∈Z

forms a Riesz basis of L2(0, 2π) and moreover,

{
eiσnt

}
n∈Z

∪
{
eiσnt − eiτnt

σn − τn

}
n∈Z

(31)

forms a Riesz basis of L2(0, 4π).
Remark 6. We refer to [3] and [1] for a generalization of this result.
As an immediate consequence of this result the following holds.
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Corollary 3.3. Let γ > 0. Then, if
{
λ2
k

}
k∈Z

denote the eigenvalues of sys-

tem (27), {
eiλ2kt

}
k∈Z

∪
{
eiλ2kt − eiλ2k−σk t

λ2k − λ2k−σk

}
k∈Z

(32)

form a Riesz basis of L2
(
0, 4

√
γ
)
.

Proof. We introduce the change of variables s = tπ/
√
γ that transforms the func-

tions in (32) into

e−is/2
{
ei(λ2k

√
γ/π+1/2)s

}
k∈Z

∪ e−is/2
{
ei(λ2k

√
γ/π+1/2)s − ei(λ2k−σk

√
γ/π+1/2)s

δk

}
k∈Z

,

and the interval t ∈ (0, 4√γ) into s ∈ (0, 4π). Obviously the common multiplicative

factor e−is/2 does not affect whether or not these functions constitute a Riesz basis
of L2(0, 4π).

By setting

τk = λ2k

√
γ

π
+

1

2
, σk = λ2k−σk

√
γ

π
+

1

2
,

we are in the conditions of Theorem 3.2 in view of the asymptotic form of the eigen-
values proved in Propositions 2.3.

Undoing the change of variables, we deduce that Corollary 3.3 holds.
The following characterization of Riesz basis (which can be seen in Young [11])

will also be used.
Theorem 3.4. Let H be a separable Hilbert space. The following two properties

are equivalent:
(a) {en}n∈Z

forms a Riesz basis of H;
(b) {en}n∈Z

is a complete sequence in H and there exists two positive constants
A,B > 0 such that

A

n∑
i=1

| ci |2≤
∥∥∥∥∥

n∑
i=1

ciei

∥∥∥∥∥
2

H

≤ B
n∑
i=1

| ci |2

for any n ∈ N and ci, i = 1, · · · , n.
We are now ready to prove Lemma 3.1.
Proof of Lemma 3.1. Recall that the solution u of (27) can be written as

(u, u(0), ∂u(0)) =
∑

k∈Z\{0}
ake

iλktφk(x),

where φk = (ϕk, ϕk(0), ∂ϕk(0)) are the eigenfunctions of the eigenvalue problem (8)
with ϕk normalized in H2 ∩H1

0 (−1, 1) such that (−1)k∂ϕk(1) > 0.
The eigenfunctions are of the form

ϕ2k−σk(x) =
ρ2k−σk(
µ+

2k−σk
)2
[

sin
(
µ+

2k−σk(1− x)
)

− µ+
2k−σk cosµ+

2k−σk
µ−2k−σk coshµ−2k−σk

sinh
(
µ−2k−σk(1− x)

)]
,

ϕ2k(x) = − ρ2k(
µ+

2k

)2
[
sin
(
µ+

2k(1− x)
)− sin

(
µ+

2k

)
sinh

(
µ−2k

) sinh
(
µ−2k(1− x)

)]
in the interval (0, 1).
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We introduce the following change in the Fourier coefficients of the solutions:
ãk = akλk |∂ϕk(1)|. Then,

u(x, t) =
∑

k∈Z\{0}

ãk
λk | ∂ϕk(1) |e

iλktϕk(x).

Observe that {ak} ∈ `2 if and only if {ãk} ∈ `2. For that it is sufficient to see
that there exist positive constants A,B > 0 such that A ≤| λk || ∂ϕk(1) |≤ B for all
k. To do that, we observe that

|λ2k−σk∂ϕ2k−σk(1)| = λ2k−σkρ2k−σk(
µ+

2k−σk
)2

(
µ+

2k−σk − µ+
2k−σk

cosµ+
2k−σk

coshµ−2k−σk

)

=
1√
γ

+O(k−1),(33)

|λ2k∂ϕ2k(1)| = λ2kρ2k(
µ+

2k

)2
(
µ+

2k −
sin
(
µ+

2k

)
µ−2k

sinh
(
µ−2k

) )
=

1√
γ

+O(k−1)(34)

in view of (22) and the asymptotic results of section 2.2. Thus | λk∂ϕk(1) |→ 1/
√
γ as

| k |→ ∞ and, on the other hand, | λk∂ϕk(1) |6= 0 for all k 6= 0. Therefore constants
A,B > 0 exist.

Consequently

A
∑

k∈Z\{0}
| ak |2≤

∑
k∈Z\{0}

| ãk |2≤ B
∑

k∈Z\{0}
| ak |2.(35)

On the other hand, the norm in the asymmetric space Y−1 can also be written in an
equivalent form in terms of the coefficients ãk. Indeed,

A2

 ∑
k∈ZZ\{0}

δ4
k |a2k−σk |2 +

∑
k∈Z\{0}

δ2
k | a2k − a2k−σk |2


≤

∑
k∈ZZ\{0}

δ4
k |ã2k−σk |2 +

∑
k∈Z\{0}

δ2
k| ã2k − ã2k−σk |2

≤ B2

 ∑
k∈ZZ\{0}

δ4
k | a2k−σk |2 +

∑
k∈Z\{0}

δ2
k| a2k − a2k−σk |2

 .(36)

We start with the second inequality:∑
k∈Z\{0}

δ2
k| ã2k − ã2k−σk |2

=
∑

k∈Z\{0}
δ2
k| a2kλ2k | ∂ϕ2k(1) | −a2k−σkλ2k−σk | ∂ϕ2k−σk(1) ||2

≤ 4
∑

k∈Z\{0}

[
| a2k |2 δ4

k

∣∣∣∣λ2k | ∂ϕ2k(1) | −1/
√
γ

δk

∣∣∣∣2

+ | a2k−σk |2 δ4
k

∣∣∣∣λ2k−σk | ∂φ2k−σk(1) | −1/
√
γ

δk

∣∣∣∣2
]
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+
2

γ

∑
k∈Z\{0}

δ2
k| a2k − a2k−σk |2

≤ C

∑
k∈Z

δ4
k |a2k−σk |2 +

∑
k∈Z\{0}

δ4
k | a2k |2


+

2

γ

∑
k∈Z\{0}

δ2
k| a2k − a2k−σk |2(37)

since, in view of (33)–(34), | λ2k | ∂ϕ2k(1) | −1/
√
γ |, | λ2k−σk | ∂ϕ2k−σk(1) | −1/√

γ |, and δk are of the order of 1/k.
Clearly the last term in (37) can be bounded in terms of∑

k∈Z\{0}
δ4
k | a2k−σk |2 +

∑
k∈Z\{0}

δ2
k | a2k − a2k−σk |2.

The first inequality in (36) can be proved in a similar way.
Now, taking into account that ∂u(1, t) =

∑
k∈Z\{0} ak∂ϕk(1)eiλkt we deduce that

∫ T

0

|∂u(1, t)|2 dt =

∫ T

0

∣∣∣∣∣∣
∑

k∈Z\{0}
ak∂ϕk(1)eiλkt

∣∣∣∣∣∣
2

dt =

∫ T

0

∣∣∣∣∣∣
∑

k∈Z\{0}
(−1)k

ãk
λk

eiλkt

∣∣∣∣∣∣
2

dt

=

∫ T

0

∣∣∣∣∣∣
∑

k∈Z\{0}

[(
ã2k

λ2k
− ã2k−σk
λ2k−σk

)
eiλ2kt + δk

(
ã2k−σk
λ2k−σk

)
eiλ2kt − eiλ2k−σkt

δk

]∣∣∣∣∣∣
2

dt

≤ C
∑

k∈Z\{0}

(∣∣∣∣ ã2k

λ2k
− ã2k−σk
λ2k−σk

∣∣∣∣2 + δ2
k

∣∣∣∣ ã2k−σk
λ2k−σk

∣∣∣∣2
)

≤ C
∑

k∈Z\{0}

(
|ã2k − ã2k−σk |2

λ2
2k

+ |ã2k−σk |2
∣∣∣∣ 1

λ2k
− 1

λ2k−σk

∣∣∣∣2 +
δ2
k

λ2k−σk
|ã2k−σk |2

)

≤ C
∑

k∈Z\{0}

(
δ2
k |ã2k − ã2k−σk |2 + δ4

k |ã2k−σk |2
)
≤ C ‖ U0 ‖2Y

in view of Corollary 3.3, inequalities (36), and the fact that λ2k ∼ 1/δk and λ2k−σk ∼
1/δk.

A similar computation shows that (29) holds, also.
Inequalities (36) imply the statement of Lemma 3.1 in view of Theorem 3.4.

4. On the solvability of the system with nonhomogeneous data. In this
section we analyze the existence, uniqueness, and regularity of nonhomogeneous bound-
ary value problems that appear when addressing the control problem.

In order to state the main results of this section it is convenient to introduce the
following asymmetric spaces:

V +
0 =

{
(ϕ, η, ξ) ∈ H−3/2 : ϕ|(0,1) ∈ L2(0, 1)

}
;(38)

V +
1 =

{
(ϕ, η, ξ) ∈ H−1 : ϕ|(0,1) ∈ H1(0, 1), ϕ(0+) = η, ϕ(1) = 0

}
.(39)
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In these notations the superscripts + indicate that the elements of these spaces are
more regular to the right of x = 0, while the subscripts 0 (resp., 1) indicates that the
maximal regularity is L2 (resp., H1).

Remark 7. In view of the characterization of Y−1 given in Theorem 2.6, we
observe that Y−1 = V +

1 × V +
0 .

This section is divided in two parts. In the first one we analyze systems with
nonzero right-hand side terms. In the second one we address nonhomogeneous bound-
ary value problems by transposition.

4.1. Systems with nonzero right-hand side. Let us consider the nonhomo-
geneous system: 

γ∂2utt − utt − ∂4u = f, x ∈ (−1, 0), 0 < t < T,
γ∂2utt − utt − ∂4u = f, x ∈ (0, 1), 0 < t < T,
[u] (0, t) = [∂u] (0, t) = 0, 0 < t < T,
utt(0, t) +

[
∂3u

]
(0, t) = g, 0 < t < T,

γ∂utt(0, t)−
[
∂2u

]
(0, t) = h, 0 < t < T,

u(±1, t) = ∂2u(±1, t) = 0, 0 < t < T,
(u(x, 0), u(0, 0), ∂u(0, 0)) =

(
u0, y0, z0

)
,

(ut(x, 0), ut(0, 0), ∂ut(0, 0)) = (u1, y1, z1).

(40)

Observe that the boundary conditions at x = ±1 vanish.
We have the following result.
Theorem 4.1. Assume that U0 =

(
(u0, y0, z0), (u1, y1, z1)

) ∈ H−1/2 ×H−1 and

((1− γ∂2)−1f, g, h) ∈ L2
(
0, T ;H−1

)
.(41)

Then, there exists a unique solution U ∈ C
(
[0, T ];H−1/2 ×H−1

)
of (40).

Moreover, there exists C(T ) > 0 such that∫ T

0

|∂u(1, t)|2 dt

≤ C
(
‖ ((1− γ∂2)−1f, g, h) ‖2L1(0,T ;H0(−1,1)) + ‖ U0 ‖2H−1/2×H−1

)
(42)

for all U0 and (f, g, h) as above.
Remark 8. The first result of this theorem is classical and provides the existence

of solutions with values in H−1/2 ×H−1, which is a natural symmetric energy space
for solving (40).

Inequality (42) extends the “hidden regularity” result of Lemma 3.1 to the solutions
of the nonhomogeneous system. However, (42) is not sharp since it requires the same
degree of regularity at both sides of x = 0, while in Lemma 3.1 this degree of regularity
is only required on (0, 1). The next theorem provides a sharp result.

Theorem 4.2. Assume that U0 ∈ Y−1 and ((1 − γ∂2)−1f, g, h) ∈ L1(0, T ;V +
0 ).

Then, there exists a unique solution U ∈ C ([0, T ];Y−1) of (40).
Moreover, there exists C(T ) > 0 such that∫ T

0

|∂u(1, t)|2 dt ≤ C
[ ‖ ((1− γ∂2)−1f, g, h) ‖2

L1(0,T ;V +
0 )

+ ‖ U0 ‖2Y−1

]
,(43)

for every U0 and (f, g, h) as above.
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The proof of both theorems is rather similar. For simplicity we only prove Theo-
rem 4.2.

Proof of Theorem 4.2. Taking into account that the system is linear, and in view
of Lemma 3.1, it is sufficient to prove it when U0 ≡ 0.

To simplify the notation we identify (I − γ∂2)−1f and the vector valued function(
(I − γ∂2)−1f, g, h

)
.

We observe that (I − γ∂2)−1f ∈ L1(0, T ;V +
0 ) and then, in view of Remark 7, we

have
(
0, (I − γ∂2)−1f

) ∈ L1(0, T ;Y−1).
On the other hand, composing system (27) with the operator (I − γ∂2)−1 and

identifying the unknown vector (u, u(0), ∂u(0)) with u, it can be written as

utt +Au = (I − γ∂2)−1f,

where A = K−1 is the underlying elliptic operator.
Since U0 ≡ 0, by the variation of constants formula u(t) =

∫ t
0
v(t− s; s)ds, where

v(·, ·; s) satisfies {
vtt +Av = 0,
v(0; s) = 0, vt(0; s) = (I − γ∂2)−1f(s).

(44)

In view of Proposition 2.5 it is easy to see that u or, more precisely, its corresponding
vector valued solution U , belongs to C([0, T ];Y−1).

On the other hand, in view of Lemma 3.1, we have∫ T

0

|∂v(1, t; s)|2 dt ≤ C
∥∥(0, [(I − γ∂2)−1f

]
(s)
)∥∥2

Y−1

= C ‖ [(I − γ∂2)−1f
]
(s) ‖2

V +
0

, ∀ s ∈ [0, T ].

By Minkowski’s inequality we deduce that

‖ ∂u(1, t) ‖L2(0,T ) =

∥∥∥∥∫ t

0

∂v(1, t− s; s)ds

∥∥∥∥
L2(0,T )

≤ C
∥∥(I − γ∂2)−1f

∥∥
L1(0,T ;V +

0 )
.

The following result is also needed.
Theorem 4.3. Assume that U0 ≡ 0 and (f, g, h) = ∂t(F,G,H) satisfying ((I −

γ∂2)−1F,G,H) ∈ L1
(
0, T ;V +

1

)
. Then the solution of (40) verifies U ∈ C([0, T ];Y−1).

Moreover, there exists C(T ) > 0 such that∫ T

0

|∂u(1, t)|2 dt ≤ C ‖ ((I − γ∂2)−1F,G,H) ‖2
L1(0,T ;V +

1 )
(45)

for every (F,G,H) as above.
Proof of Theorem 4.3. As in Theorem 4.2 above, we identify (I − γ∂2)−1F (resp.,

(I − γ∂2)−1Ft) with ((I − γ∂2)1F,G,H) (resp., (I − γ∂2)−1Ft, Gt, Ht)) to simplify
the notation.

On the other hand, u = vt where v, which is also identified with the unknown
vector (v, v(0), ∂v(0)), is the solution of{

vtt +Av = (I − γ∂2)−1F,
v(0) = vt(0) = 0.

(46)
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Observe that we have taken null initial data for v. This is due to the fact that
in this proof we may assume ((1− γ∂2)−1F,G,H) to be of compact support in time.
Indeed, if Theorem 4.3 is proved for those ((1−γ∂2)−1F,G,H), it can then be extended
by density to all ((1− γ∂2)−1F,G,H) ∈ L1(0, T ;V +

1 ).

With this in mind we see that the appropriate initial conditions for v are as
follows:

v(0) = ut(0) = 0; vt(0) = utt(0) = (I − γ∂2)−1F (0)−Au(0) = 0.

To complete the proof of Theorem 4.3 it is sufficient to prove that the following
lemma holds.

Lemma 4.4. Assume that U0 = 0 and ((1− γ∂2)−1f, g, h) ∈ L1(0, T ;V +
1 ). Then,

there exists C > 0 such that the solution of (40) satisfies∫ T

0

|∂ut(1, t)|2 dt ≤ C ‖ ((1− γ∂2)−1f, g, h) ‖2
L1(0,T ;V +

1 )
(47)

for all (f, g, h) as above.

Proof of Lemma 4.4. First of all we observe that, in view of the characteri-
zation of the asymmetric space Y−1 given in Theorem 2.6, it is easy to see that
((I − γ∂2)−1f, 0) ∈ L1(0, T ;Y−1). Note that we identify (I − γ∂2)−1f with the vector
((I − γ∂2)−1f, g, h) to simplify the notation.

As in Theorem 4.2 above, u =
∫ t
0
v(x, t− s; s)ds where v solves (44). Then ω = vt

verifies {
ωtt +Aω = 0,
ω(0; s) = (I − γ∂2)−1f(s), ωt(0; s) = 0.

(48)

In view of Lemma 3.2, we have∫ T

0

|∂ω(1, t)|2 dt ≤ C ‖ ((I − γ∂2)−1f, 0) ‖2Y−1
= C ‖ (I − γ∂2)−1f ‖2

V +
1

.(49)

On the other hand,

∂ut =

∫ t

0

∂vt(t− s; s)ds =

∫ t

0

∂ω(t− s; s)ds,

and therefore, ∫ T

0

|∂ut(1, t)|2 dt =

∥∥∥∥∫ t

0

∂ω(1, t− s; s)ds

∥∥∥∥2

L2
t (0,T )

.(50)

Now, by Minkowski’s inequality and (49) we deduce that∥∥∥∥∫ t

0

∂ω(1, t− s; s)ds

∥∥∥∥
L2
t (0,T )

≤ C ‖ (I − γ∂2)−1f ‖L1(0,T ;V +
1 ) .(51)

Combining (50)–(51) we deduce that (47) holds.

This concludes the proof of Lemma 4.4 and Theorem 4.3.
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4.2. Nonhomogeneous boundary conditions. Let us consider now the
system 

γ∂2utt − utt − ∂4u = 0, x ∈ (−1, 0), 0 < t < T,
γ∂2utt − utt − ∂4u = 0, x ∈ (0, 1), 0 < t < T,
[u] (0, t) = [∂u] (0, t) = 0, 0 < t < T,
utt(0, t) +

[
∂3u

]
(0, t) = 0, 0 < t < T,

∂utt(0, t)−
[
∂2u

]
(0, t) = 0, 0 < t < T,

u(±1, t) = ∂2u(−1, t) = 0, ∂2u(1, t) = q(t), 0 < t < T,
(u(x, 0), u(0, 0), ∂u(0, 0)) =

(
u0, y0, z0

)
,

(ut(x, 0), ut(0, 0), ∂ut(0, 0)) =
(
u1, y1, z1

)
.

(52)

Observe that the boundary conditions in (52) are nonhomogeneous since the
boundary condition ∂2u(1, t) takes the value q.

We assume that

q ∈ L2(0, T )(53)

and

U0 ∈ Y − =
{
U0 ∈ H0 ×H−1/2 : u0|(−1,0) ∈ H3(−1, 0), ∂2u0(−1) = 0,

u1|(−1,0) ∈ H2(−1, 0), ∂u1(0−) = z1
}
.(54)

Observe that Y − is the reflection of the space Y0 (characterized in Theorem 2.6) with
respect to x = 0. In other words, U0 ∈ Y − if and only if V 0(x) = U0(−x) ∈ Y0.

In view of Proposition 2.5, and taking into account that system (52) is symmetric
with respect to x = 0 when q = 0, the following holds.

Lemma 4.5. When q ≡ 0 and U0 ∈ Y −, system (6.16) admits a unique solution
U ∈ C([0, T ];Y −). Moreover, there exists C(T ) > 0 such that

‖ U ‖L∞(0,T ;Y −)≤ C(T ) ‖ U0 ‖Y − , ∀ U0 ∈ Y −.(55)

As a consequence of this lemma, and since system (52) is linear, it is sufficient to
analyze solutions of (52) when U0 ≡ 0 and q is as in (53). Therefore in the following
we assume that U0 ≡ 0.

Solutions of (52) can be understood in the sense of transposition. To make this
notion precise we consider the adjoint system

γ∂2ϕtt − ϕtt − ∂4ϕ = f, x ∈ (−1, 0), 0 < t < T,
γ∂2ϕtt − ϕtt − ∂4ϕ = f, x ∈ (0, 1), 0 < t < T,
[ϕ] (0, t) = [∂ϕ] (0, t) = 0, 0 < t < T,
ϕtt(0, t) +

[
∂3ϕ

]
(0, t) = g(t), 0 < t < T,

γ∂ϕtt(0, t)−
[
∂2ϕ

]
(0, t) = h(t), 0 < t < T,

ϕ(±1, t) = ∂2ϕ(±1, t) = 0, 0 < t < T,
(ϕ(x, T ), ϕ(0, T ), ∂ϕ(0, T )) = (ϕt(x, T ), ϕt(0, T ), ∂ϕt(0, T )) ≡ 0.

(56)

Given ((I − γ∂2)−1f, g, h) ∈ L1(0, T ;V +
0 ), and taking into account that system

(56) is time reversible, in view of Theorem 4.2 we deduce that (56) admits a unique
solution Φ ∈ C([0, T ];Y−1) (by Φ we denote the vector valued unknown associated
with ϕ).

On the other hand, ∂ϕt(1, t) ∈ L2(0, T ).
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Multiplying in (52) by ϕ and integrating by parts we get, at least formally, the
following identity:∫ T

0

< (I − γ∂2)u, (I − γ∂2)−1f >H1
0 ,H

−1 dt+

∫ T

0

y(t)g(t)dt+

∫ T

0

z(t)h(t)dt

=

∫ T

0

∂ϕ(1, t)q(t)dt,(57)

where y(t) = u(0, t), z(t) = ∂u(0, t), and <,>H1
0 ,H

−1 represents the duality product

between H1
0 (−1, 1) and H−1.

Note that we have used the self-adjointness of (I − γ∂2)−1 in the identity∫ 1

−1

uf =

∫ 1

−1

(I − γ∂2)u(I − γ∂2)−1f =< (I − γ∂2)u, (I − γ∂2)−1f >H1
0 ,H

−1.

We adopt (57) as a definition of solution of (52) when U0 ≡ 0.
Definition 4.6. We say that U ∈ C(0, T ;Y −) is a solution of (52) with U0 ≡ 0

in the sense of transposition if (57) holds for any ((I−γ∂2)−1f, g, h) ∈ L1(0, T ;V +
0 ).

Remark 9. As we will see below, solutions in the sense of transposition are more
regular on the left-hand side of x = 0. They satisfy

u|(−1,0) ∈ C
(
[0, T ];H3(−1, 0)

) ∩ C1
(
[0, T ];H2(−1, 0)

)
(58)

and the compatibility conditions

∂ut(0
−, t) = zt(t), ∂2u(−1) = 0.(59)

Observe that the initial condition U0 ≡ 0 is implicit in (57).
Theorem 4.7. When U0 ≡ 0 and q is as in (53), system (52) admits a unique

solution in the sense of transposition.
Moreover, there exists C(T ) > 0 such that

‖ U ‖C([0,T ];Y −)≤ C(T ) ‖ q ‖L2(0,T ),(60)

for every q as above.
Proof of Theorem 4.7. In view of Theorem 4.2, the right-hand side of (57) defines

a linear continuous operator in L1(0, T ;V +
0 ). Therefore, by duality we deduce that

there exists a unique (u, y, z) ∈ L∞
(
0, T ; (V +

0 )′
)

solution of (57) where
(
V +

0

)′
denotes

the dual of V +
0 . Moreover, there exists C > 0 such that

‖ ((I − γ∂2)u, y, z) ‖L∞(0,T ;(V +
0 )′)≤ C ‖ q ‖L2(0,T ).(61)

Furthermore, as a consequence of Theorem 4.2 we deduce that (ut, yt, zt) ∈
L∞(0, T ; (V +

1 )′), and the estimate∥∥((I − γ∂2)ut, yt, zt
)∥∥

L∞(0,T ;(V +
1 )

′
) ≤ C ‖ q ‖L2(0,T )(62)

holds for every q as in (53).

Observe now that the duals of V +
0 ,

(
V +

0

)′
, and V +

1 coincide, resp., with the spaces

V −1 =
{
(v, y, z) ∈ L2(−1, 1)× R× R : v|(−1,0) ∈ H1(−1, 0), v(−1) = 0,

[(I − γ∂2)−1v](0) = y, [∂(I − γ∂2)−1v](0) = z
}
,

V −0 =
{
(v, y, z) ∈ H−1(−1, 1)× R× R : v|(−1,0) ∈ L2(−1, 0),

[(1− γ∂2)−1v](0) = y, [∂(1− γ∂2)−1v](0−) = z
}
.
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On the other hand, V −1 × V −0 is the image of the space Y − by the operator L
defined as

L((u0, y0, z0), (u1, y1, z1)) = (((I − γ∂2)u0, y0, z0), ((I − γ∂2)u1, y1, z1)).(63)

We observe that L is in fact an isomorphism from Y − to V −1 × V −0 .

With the above considerations and (61)–(62), we deduce

‖ U ‖L∞(0,T ;Y −)≤ C(T ) ‖ q ‖L2(0,T ) .

Now by density it follows that (60) holds. To see this, it is sufficient to observe
that when q is smooth enough and of compact support, solutions of (52) belong to
C
(
[0, T ];H1/2 ×H0

)
.

5. Controllability. In this section we prove the main controllability result for
the system 

γ∂2utt − utt − ∂4u = 0, x ∈ (−1, 0), 0 < t < T,
γ∂2utt − utt − ∂4u = 0, x ∈ (0, 1), 0 < t < T,
[u] (0, t) = [∂u] (0, t) = 0, 0 < t < T,
utt(0, t) +

[
∂3u

]
(0, t) = 0, 0 < t < T,

γ∂utt(0, t)−
[
∂2u

]
(0, t) = 0, 0 < t < T,

u(±1, t) = ∂2u(−1, t) = 0, ∂2u(1, t) = q(t), 0 < t < T,
(u(x, 0), u(0, 0), ∂u(0, 0)) =

(
u0, y0, z0

)
,

(ut(x, 0), ut(0, 0), ∂ut(0, 0)) =
(
u1, y1, z1

)
.

(64)

The following holds.

Theorem 5.1. Assume that T ≥ 4
√
γ.Then for every ((u0, y0, z0), (u1, y1, z1)) ∈

Y − there exists a control q ∈ L2(0, T ) such that the solution of (64) in the sense of
transposition satisfies

((u(x, T ), u(0, T ), ∂u(0, T )), (ut(x, T ), ut(0, T ), ∂ut(0, T ))) ≡ 0.(65)

Moreover, there exists C > 0 such that

‖ q ‖L2(0,T )≤ C ‖ U0 ‖Y − , ∀ U0 ∈ Y −.(66)

Remark 10. Theorem 5.1 states the exact controllability of (64) in the space Y −

with controls in L2(0, T ), provided T ≥ 4
√
γ.

The functional frame we have chosen for the control problem (U0 ∈ Y − and
q ∈ L2(0, T )) is not unique. A similar result holds for U0 in Y −−1, where

Y −−1 =
{
U0 ∈ H−1 ×H−3/2 : u0|(−1,0) ∈ H1(−1, 0),

u1|(−1,0) ∈ L2(−1, 0), u0(0−) = y0, u0(−1) = 0
}
,

with controls q ∈ H−2(0, T ). In this case exact controllability holds at time T > 4
√
γ,

because it is convenient to take controls q of compact support in order to avoid further
singularities in the solutions at t = 0 and t = T .

Proof of Theorem 5.1. In view of the observability results of Lemma 3.1, it is a
direct application of HUM (see [8]).
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Given T ≥ 4
√
γ, for any Φ0 =

(
(ϕ0, ψ0, ξ0), (ϕ1, ψ0, ξ1)

) ∈ Y−1 we solve the
adjoint system

γ∂2ϕtt − ϕtt − ∂4ϕ = 0, −1 < x < 0, 0 < t < T,
γ∂2ϕtt − ϕtt − ∂4ϕ = 0, 0 < x < 1, 0 < t < T,
[ϕ] (0, t) = [∂ϕ] (0, t) = 0, 0 < t < T,
ϕtt(0, t) +

[
∂3ϕ

]
(0, t) = 0, 0 < t < T,

γ∂ϕtt(0, T )− [∂2ϕ
]
(0, t) = 0, 0 < t < T,

ϕ(±1, t) = ∂2ϕ(±1, t) = 0, 0 < t < T,
Φ(0) ≡ ((ϕ(x, 0), ϕ(0, 0), ∂ϕ(0, 0)

)
,
(
ϕt(x, 0), ϕt(0, 0), ∂ϕt(0, 0))

)
=
(
(ϕ0, ψ0, ξ0), (ϕ1, ψ0, ξ1)

)
= Φ0.

(67)

In view of Proposition 2.5, system (67) admits a unique solution Φ ∈ C([0, T ;Y−1).
Moreover, thanks to Lemma 3.1, ∂ϕ(1, t) ∈ L2(0, T ).

We then solve

γ∂2utt − utt − ∂4u = 0, −1 < x < 0, 0 < t < T,
γ∂2utt − utt − ∂4u = 0, 0 < x < 1, 0 < t < T,
[u] (0, t) = [∂u] (0, t) = 0, 0 < t < T,
utt(0, t) +

[
∂3u

]
(0, t) = 0, 0 < t < T,

γ∂utt(0, T )− [∂2u
]
(0, t) = 0, 0 < t < T,

u(±1, t) = 0, ∂2u(−1, t) = 0, ∂2u(1, t) = ∂ϕ(1, t),
(u(x, T ), u(0, T ), ∂u(0, T )) ≡ (ut(x, T ), ut(0, T ), ∂ut(0, T )) ≡ 0.

(68)

In view of Theorem 4.7 and the time reversibility of system (68), we deduce that it
has a unique solution defined by transposition.

We define the linear map

ΛΦ0 = ((u(x, 0), u(0, 0), ∂u(0, 0)) , (ut(x, 0), ut(0, 0), ∂ut(0, 0))) .

Multiplying in (68) by ϕ and integrating by parts (this is a formal computation
that may be done rigorously by the definition of the solution in the sense of transpo-
sition), it follows that

〈LΛΦ0,Φ0〉 =

∫ T

0

|∂ϕ(1, t)|2 dt, ∀ Φ0 ∈ Y−1,(69)

where

LΦ0 =
((

(I − γ∂2)ϕ1(x), ψ1, ξ1
)
,−((I − γ∂2)ϕ0(x), ψ0, ξ0)

))
.

In view of identity (69), it follows that LΛ is an isomorphism from Y−1 into its
dual Y ′−1, and therefore Λ is an isomorphism from Y−1 into L−1Y ′−1.

Now we observe that, as was pointed out in Remark 7, Y−1 = V +
1 × V +

0 and
then Y ′−1 = V −0 × V −1 , where V −0 and V −1 , are the spaces introduced in the proof of
Theorem 4.7.

It is easy to see that L−1(V −0 × V −1 ) ≡ Y − algebraically and topologically.
This implies that Λ : Y−1 → Y − is an isomorphism. Therefore, for any U0 ∈ Y −

there exists a unique Φ0 ∈ Y−1 such that ΛΦ0 = U0. This means that the solution
U of (68) with control q = ∂ϕ(1, t), where ϕ is the solution of (67) with initial data
Φ0 = Λ−1U0, is such that U(0) ≡ U0. Therefore, q is the control we were looking for.
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We also have by construction, and in view of identity (69) and the observability
inequalities of Lemma 3.1, that∫ T

0

|∂ϕ(1, t)|2 dt =
∣∣〈LΛΦ0,Φ0〉∣∣ =

∣∣〈LU0,Φ0〉∣∣
≤ C ‖ Φ0 ‖Y−1‖ U0 ‖Y −≤ C

(∫ T

0

|∂ϕ(1, t)|2 dt
)1/2

‖ U0 ‖Y − .

Therefore, ∫ T

0

|∂ϕ(1, t)|2 dt ≤ C ‖ U0 ‖2Y −

and consequently (66) holds.
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Sér. I, 323 (1996), pp. 365–370.

[4] C. Castro and E. Zuazua, A hybrid system consisting of two flexible beams connected by
a point mass: Spectral analysis and well-posedness in asymmetric spaces, in Elasticité,
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1. Formulation of the problem and some historical comments. Through-
out this paper, we use the Einstein convention for summation over repeated indices.
For a matrix, we use superscripts to indicate (when necessary) the number of its
columns or its rows or the position of its components, and the precise meaning can be
specified from the context; the range of the superscripts will not be explicitly stated
unless there is a danger of confusion. 〈, 〉 denotes the product of two vectors in an
Euclidean space, and | · | denotes the square root of the sum of all the squares of
components of the underlying matrix. ∗ appearing in the superscripts denotes the
transpose of a matrix, and R

n the n-dimensional Euclidean space. For a R
m-valued

vector function f on R
n, we use the notation

fx :=


∂f1

∂x1
∂f1

∂x2 · · · ∂f1

∂xn

∂f2

∂x1
∂f2

∂x2 · · · ∂f2

∂xn

...
...

. . .
...

∂fm

∂x1
∂fm

∂x2 · · · ∂fm

∂xn

 , f ixx :=


∂2fi

∂(x1)2
∂2fi

∂x1∂x2 · · · ∂2fi

∂x1∂xn

∂2fi

∂x2∂x1
∂2fi

∂(x2)2
· · · ∂2fi

∂x2∂xn

...
...

. . .
...

∂2fi

∂xn∂x1
∂2fi

∂xn∂x2 · · · ∂2fi

∂(xn)2

 .

Let (Ω,F , P ) be a probability space on which are defined two independent stan-
dard Brownian motions w(·) and Y (·) valued in R

m and R
d, respectively. Let x0 be

a random variable with the law P0 and independent of (w(·), Y (·)). Let {Fw
t } and

{FY
t } be the P -completed natural filtrations generated by w(·) and Y (·), respectively,

∗Received by the editors December 6, 1996; accepted for publication (in revised form) September
12, 1997; published electronically June 9, 1998. This research was supported in part by the NSF
of China, by the Laboratory of Mathematics for Nonlinear Sciences at Fudan University, by une
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Recherches Avancées franco-chinois, PRA M92-12.

http://www.siam.org/journals/sicon/36-5/31310.html
†Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

(sjtang@fudan.edu.cn).

1596



MAXIMUM PRINCIPLE WITH PARTIAL OBSERVATION 1597

and σ(x0) the σ-algebra generated by x0. Set

Ft := σ(x0) ∨ F w
t ∨ FY

t , F := F1.

Let U be a nonempty Borel subset of some Euclidean space. An admissible control
is defined as a stochastic process u : [0, 1]×Ω → U which is FY

t -adapted and satisfies

sup
0≤t≤1

E|u(t, ·)|i <∞, i = 1, 2, . . .

For simplification of notation, we write u(t) for u(t, ·) in the following. A set Uad of
admissible controls is called an admissible class of controls if Uad has the following
property: ∀ v1(·), v2(·) ∈ Uad, and a Borel subset K of [0, 1], define

v(t) = v1(t)χK(t) + v2(t)χ[0,1]\K(t), t ∈ [0, 1];

then v(·) ∈ Uad.
In the literature, a partially observed optimal control problem has been studied at

least for the following two admissible classes of controls: one is based on the present
observation and defined as

Ũad := {v : v is a U -valued stochastic process such that v(t) is σ(Y (t))-measurable

for almost every t ∈ [0, 1] and sup0≤t≤1 E|v(t)|i <∞, i = 1, 2, . . .};
the other one is based on the past and present observations and defined as

Uad := {v : v is a U -valued FY
t -adapted stochastic process

and satisfies sup0≤t≤1 E|v(t)|i <∞, i = 1, 2, . . .}.
A control is said to be partially observed if the control is a nonanticipative func-

tional of the observation Y (·). A set of controls is said to be partially observed if its
every element is partially observed. Obviously, a set of admissible controls is partially
observed.

We make the following hypothesis.
(A1) Let Uad be a given admissible class of controls. The functions f : [0, 1]×R

n×
U → R

n, g : [0, 1]×R
n×U → R

n×m, g̃ : [0, 1]×R
n×U → R

n×d, h : [0, 1]×R
n×U →

R
d, l : [0, 1] × R

n × U → R, and m : R
n → R are Borel measurable, continuous in v,

and twice continuously differentiable in x, and for some constant C,

(1 + |x|+ |v|)−1|f(t, x, v)|+ |fx(t, x, v)|+ |f i1xx(t, x, v)| ≤ C,

(1 + |x|+ |v|)−1|gi(t, x, v)|+ |gix(t, x, v)|+ |gi1ixx (t, x, v)| ≤ C,

|g̃j(t, x, v)|+ |g̃jx(t, x, v)|+ |g̃ i1jxx (t, x, v)| ≤ C,

|h(t, x, v)|+ |hx(t, x, v)|+ |hjxx(t, x, v)| ≤ C,

(1 + |x|2 + |v|2)−1|l(t, x, v)|+ (1 + |x|+ |u|)−1|lx(t, x, v)|+ |lxx(t, x, v)| ≤ C,

(1 + |x|2)−1|m(x)|+ (1 + |x|)−1|mx(x)|+ |mxx(x)| ≤ C.

x0 has finite moments of arbitrary order.
Our general partially observed optimal control problem is stated as follows.
Consider the system

(1.1)


dx(t) = f(t, x(t), v(t)) dt+ gi(t, x(t), v(t)) dwi(t)

+ g̃j(t, x(t), v(t)) dw̃j(t), t ∈ (0, 1],

x(0) = x0
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and the observation

(1.2)

{
dY (t) = h(t, x(t), v(t)) dt+ dw̃(t), t ∈ (0, 1],

Y (0) = 0.

Putting (1.2) into (1.1), we have

(1.3)


dx(t) = (f − g̃h)(t, x(t), v(t)) dt+ gi(t, x(t), v(t)) dwi(t)

+ g̃j(t, x(t), v(t)) dY j(t), t ∈ (0, 1],

x(0) = x0.

For each v(·) ∈ Uad, (1.3) has a unique strong solution, which will be denoted by
xv(·). From Girsanov’s theorem, it follows that if

(1.4) ρv(t) := exp

{∫ t

0

h∗(s, xv(s), v(s)) dY (s)− 1

2

∫ t

0

|h(s, xv(s), v(s))|2 ds
}
,

(1.5) w̃(t) := Y (t)−
∫ t

0

h(s, xv(s), v(s)) ds,

and if dP v := ρv(1) dP , then (P v, xv, Y, w, w̃) is a weak solution on (Ω,F ,Ft) of (1.1)
and (1.2).

The cost functional is

(1.6) J(v(·)) = Ev

[∫ 1

0

l(t, xv(t), v(t)) dt+m(xv(1))

]
.

Here, Ev denotes the expectation with respect to the probability space (Ω,F , P v).
Our partially observed optimal control problem is to minimize the cost functional
(1.6) over v(·) ∈ Uad, i.e.,

(1.7) min
v∈Uad

J(v).

Here, the words “partially observed” indicates that the admissible class Uad in the
underlying optimal control problem is partially observed. Our aim is to seek the
necessary conditions for the partially observed optimal control û(·).

Such a subject has been discussed by many authors, such as Fleming [4]; Kwak-
ernaak [7] (with an explorative style); Bensoussan [2]; Haussmann [5]; Baras, Elliott,
and Kohlmann [1]; Zhou [13]; and Li and Tang [8]. Usually, they made at least one of
the following five assumptions: 1) The diffusion term σ is nondegenerate (see Fleming
[4], Kwakernaak [7], Bensoussan [2], and Zhou [13]). 2) The coefficients f, g, h, and l
are differentiable in control variable u, and the set U , in which the control takes val-
ues, is convex (see Fleming [4] and Bensoussan [2]). 3) The control does not appear
in the diffusion term g and the observation h (see Bensoussan [2]; Haussmann [5];
and Baras, Elliott, and Kohlmann [1]). 4) g̃ = 0 (see Bensoussan [2]; Haussmann [5];
Baras, Elliott, and Kohlmann [1]; and Li and Tang [8]). 5) The initial state x0 has a
regular density function (see Bensoussan [2] and Zhou [13]).

In this paper, we consider the general case of the partially observed optimal
control problem (1.1), (1.2), (1.6), (1.7), where the control is allowed to enter into
all the coefficients, the diffusion term g is allowed to be degenerate, the correlation
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coefficient g̃ is present, the set U is not necessarily convex, and the initial state does not
necessarily have a regular density function. A general maximum principle is proved for
the partially observed optimal control, and the relations among the adjoint processes
are established. Adjoint vector fields are introduced as the solutions to some BSPDEs,
and their relations are established. Under suitable conditions, the adjoint processes
are characterized in terms of the adjoint vector fields, their differentials and Hessians,
along the optimal state process. Some other formulations of the partially observed
stochastic maximum principle are then obtained, and our results are compared with
those existing in the literature. Our approach does not involve the Zakai equation, and
thus we can get around a lot of complicated stochastic calculus in infinite-dimensional
spaces, in contrast with Bensoussan [2], Haussmann [5], and Zhou [13].

The rest of this paper is organized as follows. In section 2, we derive a general
maximum principle for partially observed optimal controls from the general maximum
principle for optimal controls with full information. In section 3, the relations are
established among the adjoint processes, which are introduced in the general partially
observed maximum principle and which are characterized as the unique Ft-adapted
square-integrable solutions of backward stochastic differential equations (BSDEs). In
section 4, adjoint vector fields are introduced as the solutions to some BSPDEs, and
their relations are established; under suitable conditions, the adjoint processes are
characterized in terms of the adjoint vector fields, their differentials and Hessians,
along the optimal state process. Finally in section 5, some other formulations of
the partially observed stochastic maximum principle are derived, and our results are
compared with the existing ones.

2. A general partially observed maximum principle. Let û(·) be an op-

timal control and (x̂(·), Y (·), w(·), ̂̃w(·), P̂ ) be the corresponding weak solution of

(1.1) − (1.2). We introduce the notation: Ê = Eû, ∆f(t; v) := ∆f(t, x̂(t), û(t); v) :=
f(t, x̂(t), v) − f(t, x̂(t), û(t)), and similar notation will be made for other functions
g, g̃, l, h, and H (see (2.10) below). For each v(·) ∈ Uad, the stochastic process ρv(·)
can be characterized as the solution of the following stochastic differential equation
(SDE):

(2.1)

{
dρv(t) = ρv(t)h∗(t, xv(t), v(t)) dY (t), t ∈ (0, 1],

ρv(0) = 1.

The cost functional (1.6) can be rewritten as

(2.2) J(v(·)) = E

[∫ 1

0

ρv(t)l(t, xv(t), v(t)) dt+ ρv(1)m(xv(1))

]
.

Set

(2.3)

X :=

(
ρ

x

)
, X̂ :=

(
ρ̂

x̂

)
:=

(
ρû

xû

)
, X0 :=

(
1

x0

)
,

F (t,X, v) :=

(
0

f(t, x, v)− g̃(t, x, v)h(t, x, v)

)
,

G(t,X, v) :=

(
0

g(t, x, v)

)
, G̃(t,X, v) :=

(
ρh∗(t, x, v)
g̃(t, x, v)

)
,

L(t,X, v) := ρl(t, x, v), M(X) := ρm(x).
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Equations (1.1), (1.2), and (2.1) can be compressed into the following form:

(2.4)


dX(t) = F (t,X(t), v(t)) dt+Gi(t,X(t), v(t)) dwi(t)

+ G̃j(t,X(t), v(t)) dY j(t), t ∈ (0, 1],

X(0) = X0.

The cost functional (2.2) is rewritten as

(2.5) J(v(·)) = E

[∫ 1

0

L(t,X(t), v(t)) dt+M(X(1))

]
.

Our partially observed optimal control problem becomes the following minimization
problem: to minimize J(v(·)) over v(·) ∈ Uad subject to (2.4). The present formulation
of the partially observed optimal control problem is quite similar to a completely
observed optimal control problem; the only difference lies in the admissible class Uad

of controls. We can follow the same arguments to the case of full information to derive
the following maximum principle. See Peng [11] and Tang and Li [12] for details.

Define the Hamiltonian H : [0, 1]×R
n+1×U ×R

n+1×R
(n+1)×m×R

(n+1)×d → R

as follows:

(2.6)
H(t,X, v, a, b, b̃) := 〈a, F (t,X, v)〉+ 〈bi, Gi(t,X, v)〉

+ 〈̃bj , G̃j(t,X, v)〉+ L(t,X, v)

∀ t ∈ [0, 1], X ∈ R
n+1, v ∈ U, a ∈ R

n+1, b ∈ R
(n+1)×m, b̃ ∈ R

(n+1)×d.

Let (a(·), b(·), b̃(·)) be the unique Ft-adapted square integrable solution of the
first-order adjoint equation

(2.7)


da(t) =−H∗

X(t, X̂(t), û(t), a(t), b(t), b̃(t)) dt

+ b(t) dw(t) + b̃(t) dY (t), t ∈ [0, 1),

a(1) = M∗
X(X̂(1))

and (A(·), B(·), B̃(·)) be the unique Ft-adapted square integrable solution of the
second-order adjoint equation

(2.8)



dA(t) =− {F ∗X(t, X̂(t), û(t))A(t) +A(t)FX(t, X̂(t), û(t))

+Gi∗
X(t, X̂(t), û(t))A(t)Gi

x(t, X̂(t), û(t))

+ G̃i∗
X(t, X̂(t), û(t))A(t)G̃i

X(t, X̂(t), û(t))

+Gi∗
X(t, X̂(t), û(t))Bi(t) +Bi(t)Gi

X(t, X̂(t), û(t))

+ G̃j∗
X (t, X̂(t), û(t))B̃j(t) + B̃j(t)G̃j

X(t, X̂(t), û(t))

+HXX(t, X̂(t), û(t), a(t), b(t), b̃(t))} dt
+Bi(t) dwi(t) + B̃j(t) dY j(t), t ∈ [0, 1),

A(1) =MXX(X̂(1)).
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Then the following maximum condition holds:

(2.9)

E

∫ 1

0

{H(t, X̂(t), v(t), a(t), b(t), b̃(t))−H(t, X̂(t), û(t), a(t), b(t), b̃(t))} dt

+
1

2
E

∫ 1

0

tr[A(t)(∆G(t; v(t))∆G∗(t; v(t)) + ∆G̃(t; v(t))∆G̃∗(t; v(t)))] dt

≥ 0 ∀ v(·) ∈ Uad.

The reader will see later that since the state variable ρ appears in the optimal
control problem in a linear way, some adjoint processes are superfluous in the above
maximum principle. Now we begin to dispense with these adjoint processes and
reformulate the above maximum principle.

We introduce a new HamiltonianH : [0, 1]×R
n×U×R

n×R
n×m×R

d×R
n×d → R

as follows:

(2.10)
H(t, x, v, q, k, R̃, k̃) := 〈q, f(t, x, v)〉+ 〈ki, gi(t, x, v)〉

+ R̃jhj(t, x, v) + 〈k̃j , g̃j(t, x, v)〉+ l(t, x, v)

∀ t ∈ [0, 1], x ∈ R
n, v ∈ U, q ∈ R

n, k ∈ R
n×m, R̃ ∈ R

d, k̃ ∈ R
n×d.

Decompose the matrices a(t); b(t); b̃(t);A(t); Bi(t), i = 1, . . . ,m; and B̃j(t), j =
1, . . . , d, into blocks in the following manner:

(2.11)

a(t) =

(
a1(t)

a2(t)

)}1
}n, b(t) =

(
b1(t)

b2(t)

)}1
}n, b̃(t) =

(
b̃1(t)

b̃2(t)

)}1
}n,

A(t) =


1︷︸︸︷ n︷︸︸︷

1
{

A11(t) A12(t)

n
{

A21(t) A22(t)

,

Bi(t) =


1︷︸︸︷ n︷︸︸︷

1
{

Bi
11(t) Bi

12(t)

n
{

Bi
21(t) Bi

22(t)

, i = 1, . . . ,m,

B̃j(t) =


1︷︸︸︷ n︷︸︸︷

1
{

B̃j
11(t) B̃j

12(t)

n
{

B̃j
21(t) B̃j

22(t)

, j = 1, . . . , d.
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Then, we can check the following

(2.12)

FX(t,X, v) := (Fρ(t,X, v), Fx(t,X, v))

=

(
0 0
0 fx(t, x, v)− g̃jx(t, x, v)h

j(t, x, v)− g̃(t, x, v)hx(t, x, v)

)
,

Gi
X(t,X, v) := (Gi

ρ(t,X, v), G
i
x(t,X, v)) =

(
0 0
0 gix(t, x, v)

)
,

G̃j
X(t,X, v) := (G̃j

ρ(t,X, v), G̃
j
x(t,X, v)) =

(
hj(t, x, v) ρhjx(t, x, v)

0 g̃jx(t, x, v)

)
,

LX(t,X, v) := (Lρ(t,X, v), Lx(t,X, v)) = (l(t, x, v), ρlx(t, x, v)),

MX(X) := (Mρ(X),Mx(X)) = (m(x), ρmx(x)),

(2.13)

H(t,X, v, a, b, b̃)

= 〈a2, f(t, x, v)− g̃h(t, x, v)〉+ 〈bi2, gi(t, x, v)〉
+ 〈̃bj2, g̃j(t, x, v)〉+ 〈̃b∗1, ρh(t, x, v)〉+ ρl(t, x, v),

HX(t,X, v, a, b, b̃) :=
(
Hρ(t,X, v, a, b, b̃), Hx(t,X, v, a, b, b̃)

)
=
(
l(t, x, v) + 〈̃b∗1, h(t, x, v)〉, Hx(t,X, v, a, b, b̃)

)
,

HXX(t,X, v, a, b, b̃) :=

(
Hρρ(t,X, v, a, b, b̃) Hxρ(t,X, v, a, b, b̃)

Hρx(t,X, v, a, b, b̃) Hxx(t,X, v, a, b, b̃)

)
=

(
0 lx(t, x, v) + b̃1hx(t, x, v)

l∗x(t, x, v) + h∗x(t, x, v)̃b
∗
1 Hxx(t,X, v, a, b, b̃)

)
,

Hx(t,X, v, a, b, b̃)

= ρHx(t, x, v, ρ
−1a2, ρ

−1b2, b̃1 − ρ−1a∗2g̃(t, x, v), ρ
−1 [̃b2 − a2h

∗(t, x, v)]),

Hxx(t,X, v, a, b, b̃)

= ρHxx(t, x, v, ρ
−1a2, ρ

−1b2, b̃1 − ρ−1a∗2g̃(t, x, v), ρ
−1 [̃b2 − a2h

∗(t, x, v)])

− g̃j∗x (t, x, v)a2h
j
x(t, x, v)− hj∗x (t, x, v)a∗2g̃

j
x(t, x, v).

In view of the above calculations, equation (2.7) is decomposed into the following two
equations:

(2.14)


da1(t) =− [l(t, x̂(t), û(t)) + 〈̃b∗1(t), h(t, x̂(t), û(t))〉] dt

+ b1(t) dw(t) + b̃1(t) dY (t), t ∈ [0, 1),

a1(1) = m(x̂(1))

and

(2.15)


da2(t) =−H∗

x(t, X̂(t), û(t), a(t), b(t), b̃(t)) dt

+ b2(t) dw(t) + b̃2(t) dY (t), t ∈ [0, 1),

a2(1) = ρ̂(1)m∗
x(x̂(1)),
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while equation (2.8) is decomposed into the following four equations:

(2.16)


dA11(t) =− {h∗h(t, x̂(t), û(t))A11(t) + 2B̃j

11(t)h
j(t, x̂(t), û(t))} dt

+Bi
11(t) dw

i(t) + B̃j
11(t) dY

j(t), t ∈ [0, 1),

A11(1) = 0,

(2.17)

dA21(t) =− [H∗x(t, x̂(t), û(t);A21(t), B21(t), b̃1(t)−A∗21(t)g̃(t, x̂(t), û(t)), B̃21(t))

+ ρ̂(t)h∗x(t, x̂(t), û(t))h(t, x̂(t), û(t))A11(t) + ρ̂(t)hj∗x (t, x̂(t), û(t))B̃j
11(t)

+ B̃j
21(t)h

j(t, x̂(t), û(t))] dt

+Bi
21(t) dw

i(t) + B̃j
21(t) dY

j(t), t ∈ [0, 1),

A21(1) = m∗
x(x̂(1)),

(2.18) A12(t) = A∗21(t), t ∈ [0, 1],

and

(2.19)



dA22(t) =− {f∗x(t, x̂(t), û(t))A22(t) +A22(t)fx(t, x̂(t), û(t))

+ gi∗x (t, x̂(t), û(t))A22(t)g
i
x(t, x̂(t), û(t))

+ ρ̂ 2(t)hi∗x (t, x̂(t), û(t))A11(t)h
i
x(t, x̂(t), û(t))

+ ρ̂(t)g̃j∗x (t, x̂(t), û(t))A21(t)h
j
x(t, x̂(t), û(t))

+ ρ̂(t)hj∗x (t, x̂(t), û(t))A12(t)g̃
j
x(t, x̂(t), û(t))

+ g̃j∗x (t, x̂(t), û(t))A22(t)g̃
j
x(t, x̂(t), û(t))

+Bi
22(t)g

i
x(t, x̂(t), û(t)) + gi∗x (t, x̂(t), û(t))Bi

22(t)

+ (ρ̂(t)B̃21(t)−A22(t)g̃(t, x̂(t), û(t)))hx(t, x̂(t), û(t))

+ (B̃j
22(t)−A22(t)h

j(t, x̂(t), û(t)))g̃jx(t, x̂(t), û(t))

+ h∗x(t, x̂(t), û(t))(ρ̂(t)B̃12(t)− g̃∗(t, x̂(t), û(t))A22(t))

+ g̃j∗x (t, x̂(t), û(t))(B̃j
22(t)− hj(t, x̂(t), û(t))A22(t))

+Hxx(t, X̂(t), û(t), a(t), b(t), b̃(t))} dt
+Bi

22(t) dw
i(t) + B̃j

22(t) dY
j(t), t ∈ [0, 1),

A22(1) = ρ̂(1)mxx(x̂(1)).

We can obtain, from the uniqueness of the Ft-adapted square integrable solution
of the BSDE (2.16) (see Pardoux and Peng [9]),

(2.20) A11 = 0, B11 := (B1
11, . . . , B

m
11) = 0, B̃11 := (B̃1

11, . . . , B̃
d
11) = 0,

and then establish from (2.15), (2.17), via Itô’s formula, the following relations:

(2.21)
A21(t) = ρ̂−1(t)a2(t), Bi

21(t) = ρ̂−1(t)bi2(t),

B̃j
21(t) = ρ̂−1(t)̃bj2(t)− ρ̂−1(t)a2(t)h

j(t, x̂(t), û(t)).
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Moreover, if we set

(2.22)

r(t) := a1(t), R(t) := b1(t), R̃(t) := b̃1(t),

q(t) := ρ̂−1(t)a2(t), k(t) := ρ̂−1(t)b2(t),

k̃(t) := ρ̂−1(t)̃b2(t)− ρ̂−1(t)a2(t)h
∗(t, x̂(t), û(t)),

Q(t) := ρ̂−1(t)A22(t), Ki(t) := ρ̂−1(t)Bi
22(t),

K̃j(t) := ρ̂−1(t)B̃j
22(t)− ρ̂−1(t)A22(t)h

j(t, x̂(t), û(t)),

then (r,Ri, i = 1, . . . ,m; R̃j , j = 1, . . . , d) is characterized as the unique Ft-adapted
solution of the following BSDE:

(2.23)


dr(t) =− {l(t, x̂(t), û(t)) + R̃j(t)hj(t, x̂(t), û(t))} dt

+Ri(t) dwi(t) + R̃j(t) dY j(t), t ∈ [0, 1),

r(1) = m(x̂(1));

(q, ki, i = 1, . . . ,m; k̃j , j = 1, . . . , d) solves
(2.24)

dq(t) =− {H∗x(t, x̂(t), û(t); q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t))

+ k̃j(t)hj(t, x̂(t), û(t))} dt+ ki(t) dwi(t) + k̃j(t) dY j(t), t ∈ [0, 1),

q(1) = m∗
x(x̂(1));

and (Q,Ki, i = 1, . . . ,m; K̃j , j = 1, . . . , d) solves

(2.25)



dQ(t) =− {f∗x(t, x̂(t), û(t))Q(t) +Q(t)fx(t, x̂(t), û(t))

+ gi∗x (t, x̂(t), û(t))Q(t)gix(t, x̂(t), û(t))

+ g̃j∗x (t, x̂(t), û(t))Q(t)g̃jx(t, x̂(t), û(t))

+ gi∗x (t, x̂(t), û(t))Ki(t) +Ki(t)gix(t, x̂(t), û(t))

+ g̃j∗x (t, x̂(t), û(t))K̃j(t) + K̃j(t)g̃jx(t, x̂(t), û(t))

+Hxx(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t))

+ K̃j(t)hj(t, x̂(t), û(t))

+ (k̃(t)−Q(t)g̃(t, x̂(t), û(t)))hx(t, x̂(t), û(t))

+ h∗x(t, x̂(t), û(t))(k̃∗(t)− g̃∗(t, x̂(t), û(t))Q(t))} dt
+Ki(t) dwi(t) + K̃j(t) dY j(t), t ∈ [0, 1),

Q(1) = mxx(x̂(1)).

The rest of this section is to rewrite the maximum condition (2.9). We can verify
the following:

(2.26)

ρ̂−1(t){H(t, X̂(t), v(t), a(t), b(t), b̃(t))−H(t, X̂(t), û(t), a(t), b(t), b̃(t))}
= ∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v(t))

− 〈q(t),∆g̃(t; v(t))∆h(t; v(t))〉,
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(2.27)

A(t) =

(
0 q∗(t)
q(t) ρ̂(t)Q(t)

)
,

∆G(t; v(t)) =

(
0

∆g(t; v(t))

)
,

∆G̃(t; v(t)) =

(
ρ̂(t)∆h∗(t; v(t))

∆g̃(t; v(t))

)
,

∆G(t; v(t))∆G∗(t; v(t)) =

(
0 0
0 ∆g(t; v(t))∆g∗(t; v(t))

)
,

∆G̃(t; v(t))∆G̃∗(t; v(t))

=

(
ρ̂ 2(t)∆h∗(t; v(t))∆h(t; v(t)) ρ̂(t)∆h∗(t; v(t))∆g̃∗(t; v(t))
ρ̂(t)∆g̃(t; v(t))∆h(t; v(t)) ∆g̃(t; v(t))∆g̃∗(t; v(t))

)
,

(2.28)

tr[A(t)(∆G(t; v(t))∆G∗(t; v(t)) + ∆G̃(t; v(t))∆G̃∗(t; v(t)))]
= 2q∗(t)∆g̃(t; v(t))∆h(t; v(t))ρ̂(t)

+ ρ̂(t)tr[Q(t)(∆g(t; v(t))∆g∗(t; v(t)) + ∆g̃(t; v(t))∆g̃∗(t; v(t)))].

Then the maximum condition (2.9) can be rewritten as

(2.29)

Ê

∫ 1

0

∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v(t)) dt

+
1

2
Ê

∫ 1

0

tr [Q(t) (∆g(t; v(t))∆g∗(t; v(t)) + ∆g̃(t; v(t))∆g̃∗(t; v(t)))] dt

≥ 0 ∀ v(·) ∈ Uad.

Theorem 2.1. Assume that the hypothesis (A1) holds. Let û(·) be an optimal

control and (r,Ri, i = 1, . . . ,m; R̃j , j = 1, . . . , d), (q, ki, i = 1, . . . ,m; k̃j , j = 1, . . . , d),

and (Q,Ki, i = 1, . . . ,m; K̃j , j = 1, . . . , d) be the corresponding Ft-adapted square-
integrable solutions of BSDEs (2.23), (2.24), (2.25), respectively. Then the maximum
condition (2.29) holds.

Note that Theorem 2.1 applies to an arbitrary admissible class Uad of controls.
In particular, it contains the following two special cases.

Remark 2.1. When Uad = Uad, the maximum condition (2.29) implies the
following inequality of expectations conditioned on the past and present observations
{Y (s) : 0 ≤ s ≤ t} :

(2.30)

Ê[∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v)|FY
t ]

+
1

2
Ê[tr[Q(t)(∆g(t; v)∆g∗(t; v) + ∆g̃(t; v)∆g̃∗(t; v))]|FY

t ]

≥ 0 ∀ v ∈ U, a.s.a.e. (almost surely, almost everywhere).

Remark 2.2. When Uad = Ũad, the maximum condition (2.29) implies the
following inequality of expectations conditioned on the present observation Y (t) :

(2.31)

Ê[∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v)|Y (t)]

+
1

2
Ê[tr[Q(t)(∆g(t; v)∆g∗(t; v) + ∆g̃(t; v)∆g̃∗(t; v))]|Y (t)]

≥ 0 ∀ v ∈ U, a.s.a.e.
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We have derived a partially observed maximum principle, without involving at all
the well-known Zakai equation, which is a stochastic PDE driven by the observation
Y (·). However, our formulation of the maximum principle seems to be unsatisfactory
since the adjoint equations (2.23)–(2.25) seem not to tell us what kind of functionals
the adjoint processes (as their solutions) are of the initial state x0 and the system
noise ẇ, which is not available in practice. In the next two sections, we shall show
that the adjoint equations do imply how the adjoint processes depend on the initial
state x0 and the system noise ẇ in a special way, which is crucial in the computation
of the conditional expectation appearing in the maximum condition (see (2.30) and
(2.31), for example).

3. Relations among the adjoint processes. Let φt,x be the solution of the
SDE

(3.1)


dφt,x(s) = (f − g̃h)(s, φt,x(s), û(s)) ds+ gi(s, φt,x(s), û(s)) dwi(s)

+ g̃j(s, φt,x(s), û(s)) dY j(s), s ∈ (t, 1],

φt,x(t) = x,

(rt,x, Ri,t,x, i = 1, . . . ,m; R̃j,t,x, j = 1, . . . , d) be the solution of the BSDE

(3.2)


drt,x(s) =− [l(s, φt,x(s), û(s)) + R̃j,t,x(s)hj(s, φt,x(s), û(s))] ds

+Ri,t,x(s) dwi(s) + R̃j,t,x(s) dY j(s), s ∈ [t, 1),

rt,x(1) = m(φt,x(1)),

(qt,x, ki,t,x, i = 1, . . . ,m; k̃j,t,x, j = 1, . . . , d) be the solution of the vector-valued BSDE

(3.3)
dqt,x(s)

=− [H∗x(s, φt,x(s), û(s); qt,x(s), kt,x(s), R̃t,x(s)− qt,x,∗(s)g̃(s, φt,x(s), û(s)), k̃t,x(s))

+ k̃j,t,x(s)hj(s, φt,x(s), û(s))] ds+ ki,t,x(s) dwi(s) + k̃j,t,x(s) dY j(s), s ∈ [t, 1),

qt,x(1) = m∗
x(φ

t,x(1)),
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and (Qt,x,Ki,t,x, i = 1, . . . ,m; K̃j,t,x, j = 1, . . . , d) be the solution of the matrix-valued
BSDE
(3.4)

dQt,x(s)

=− {f∗x(s, φt,x(s), û(s))Qt,x(s) +Qt,x(s)fx(s, φ
t,x(s), û(s))

+ gi∗x (s, φt,x(s), û(s))Qt,x(s)gix(s, φ
t,x(s), û(s))

+ g̃j∗x (s, φt,x(s), û(s))Qt,x(s)g̃jx(s, φ
t,x(s), û(s))

+ gi∗x (s, φt,x(s), û(s))Ki,t,x(s) +Ki,t,x(s)gix(s, φ
t,x(s), û(s))

+ g̃j∗x (s, φt,x(s), û(s))K̃j,t,x(s) + K̃j,t,x(s)g̃jx(s, φ
t,x(s), û(s))

+Hxx(s, φ
t,x(s), û(s), qt,x(s), kt,x(s), R̃t,x(s)− qt,x,∗(s)g̃(s, φt,x(s), û(s)), k̃t,x(s))

+ K̃j,t,x(s)hj(s, φt,x(s), û(s))

+ (k̃t,x(s)−Qt,x(s)g̃(s, φt,x(s), û(s)))hx(s, φ
t,x(s), û(s))

+ h∗x(s, φ
t,x(s), û(s))(k̃t,x,∗(s)− g̃∗(s, φt,x(s), û(s))Qt,x(s))} ds

+Ki,t,x(s) dwi(s) + K̃j,t,x(s) dY j(s), s ∈ [t, 1),

Qt,x(1) = mxx(φ
t,x(1)).

Obviously,

(3.5)

φ0,x0 = x̂,

(r0,x0 , R0,x0 , R̃0,x0) = (r,R, R̃),

(q0,x0 , ki,0,x0 , k̃j,0,x0) = (q, ki, k̃j),

(Q0,x0 ,Ki,0,x0 , K̃j,0,x0) = (Q,Ki, K̃j).

Under the hypothesis (A1), the stochastic flows φt,x, (rt,x, Rt,x, R̃t,x), and (qt,x, ki,t,x,

i = 1, . . . ,m; k̃j,t,x, j = 1, . . . , d) are continuously differentiable with respect to x in
suitable spaces (see Pardoux and Peng [10]). Their differentials φt,xx , (∇rt,x,∇Ri,t,x, i =

1, . . . ,m;∇R̃j,t,x, j = 1, . . . , d), and (qt,xx , ki,t,xx , i = 1, . . . ,m; k̃j,t,xx , j = 1, . . . , d) sat-
isfy, respectively, the following SDE and BSDEs (see Pardoux and Peng [10]):

(3.6)


dφt,xx (s) = (f − g̃h)x(s, φ

t,x(s), û(s))φt,xx (s) ds

+ gix(s, φ
t,x(s), û(s))φt,xx (s) dwi(s)

+ g̃jx(s, φ
t,x(s), û(s))φt,xx (s) dY j(s), s ∈ (t, 1],

φt,xx (t) = In×n : identity matrix of order n× n,

(3.7)



d∇rt,x(s) =− {φt,x,∗x (s)l∗x(s, φ
t,x(s), û(s))

+ φt,x,∗x (s)hj∗x (s, φt,x(s), û(s))R̃j,t,x(s)

+∇R̃j,t,x(s)hj(s, φt,x(s), û(s))} ds
+∇Ri,t,x(s) dwi(s) +∇R̃j,t,x(s) dY j(s), s ∈ [t, 1),

∇rt,x(1) = φt,x,∗x (1)m∗
x(φ

t,x(1)),
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and
(3.8)

dqt,xx (s)

=− {Hxx(s, φ
t,x(s), û(s); qt,x(s), kt,x(s), R̃t,x(s)− qt,x,∗(s)g̃(s, φt,x(s), û(s)), k̃t,x(s))

× φt,xx (s) + f∗x(s, φt,x(s), û(s))qt,xx (s) + gi∗x (s, φt,x(s), û(s))ki,t,xx (s)

+ hj∗x (s, φt,x(s), û(s))[R̃j,t,x
x (s)− qt,x,∗(s)g̃jx(s, φ

t,x(s), û(s))

− g̃j∗(s, φt,x(s), û(s))qt,xx (s)]

+ g̃j∗x (s, φt,x(s), û(s))k̃j,t,xx (s) + k̃j,t,x(s)hjx(s, φ
t,x(s), û(s))φt,xx (s)

+ k̃j,t,xx (s)hj(s, φt,x(s), û(s))} ds+ ki,t,xx (s) dwi(s) + k̃j,t,xx (s) dY j(s), s ∈ [t, 1),

qt,xx (1) = mxx(φ
t,x(1))φt,xx (1).

Here and in the following,∇rt,x := (rt,xx )∗ and similar notations are made forRi,t,x, R̃j,t,x

and other functions W,Z, V .

Using Itô’s formula, we obtain the equation for the stochastic process {[φt,xx (s)]−1; t ≤
s ≤ 1}:

(3.9)



d[φt,xx (s)]−1 =− [φt,xx (s)]−1{(f − g̃h)x(s, φ
t,x(s), û(s))

− gix(s, φ
t,x(s), û(s))2 − g̃jx(s, φ

t,x(s), û(s))2} ds
− [φt,xx (s)]−1gix(s, φ

t,x(s), û(s)) dwi(s)

− [φt,xx (s)]−1g̃jx(s, φ
t,x(s), û(s)) dY j(s), s ∈ (t, 1],

[φt,xx (t)]−1 = In×n.

From the uniqueness of the solutions of (3.3) and (3.4), we can check, using Itô’s
formula, the following theorem.

Theorem 3.1. Let the hypothesis (A1) be satisfied. Then, for s ∈ [t, 1],

(3.10)

qt,x(s) = [φt,x,∗x (s)]−1∇rt,x(s),
ki,t,x(s) = [φt,x,∗x (s)]−1∇Ri,t,x(s)− gi∗x (s, φt,x(s), û(s))qt,x(s),

k̃j,t,x(s) = [φt,x,∗x (s)]−1∇R̃j,t,x(s)− g̃j∗x (s, φt,x(s), û(s))qt,x(s);

Qt,x(s) = qt,xx (s)[φt,xx (s)]−1,

Ki,t,x(s) = ki,t,xx (s)[φt,xx (s)]−1 −Qt,x(s)gix(s, φ
t,x(s), û(s)),

K̃j,t,x(s) = k̃j,t,xx (s)[φt,xx (s)]−1 −Qt,x(s)g̃jx(s, φ
t,x(s), û(s)).

Note that the uncertainty of the solution to a BSDE is introduced by the un-
certainty of the drift and the terminal value, rather than by the terms of stochastic
integrals. There are two different sources of uncertainty in the drifts and the terminal
conditions of BSDEs (3.2)–(3.4): one comes from the initial state x0 and the system
noise ẇ(·), and the other comes from the observation noise Ẏ (·). The former enter
into the drifts and the terminal conditions via φt,x(·). Thus, we have reason to expect
that the corresponding solutions depend on x0 and ẇ(·) in the same manner. In fact,
it is true at least under some reasonable conditions. The following theorem reveals
such an assertion. We use Dx to denote the differential operator along the direction
x, namely, Dx := x∗∇.
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Theorem 3.2. Let the hypothesis (A1) be satisfied. Then

(3.11)

rt,x(s) = W (s, φt,x(s)), Ri,t,x(s) = D
gi(s,φt,x(s),û(s))

W (s, φt,x(s));

qt,x(s) = ∇W (s, φt,x(s)), ki,t,x(s) = D
gi(s,φt,x(s),û(s))

∇W (s, φt,x(s));

Qt,x(s) = ∇2W (s, φt,x(s)) := Wxx(s, φ
t,x(s)).

Here, W (t, x) := rt,x(t) is a stochastic flow which is adapted to the history (including
the present) of the observation Y (·). Let µt,x be the solution of the SDE

(3.12)

{
dµt,x(s) = µt,x(s)h∗(s, φt,x(s), û(s)) dY (s), s ∈ (t, 1],

µt,x(t) = 1.

Then, W (·, ·) has the following probabilistic interpretation:

(3.13) W (t, x) = E

[∫ 1

t

µt,x(s)l(s, φt,x(s), û(s)) ds+ µt,x(1)m(φt,x(1))

∣∣∣∣ FY
t

]
.

Proof of Theorem 3.2. From the uniqueness of the solutions of (3.1) and (3.2), we
derive

(3.14) φt,x(τ) = φs,φ
t,x(s)(τ), rt,x(τ) = rs,φ

t,x(s)(τ), t ≤ s ≤ τ ≤ 1.

The first relation of (3.11) then follows.

It can be verified, via Malliavin’s calculus for the BSDE (3.2), as in Pardoux and
Peng [10], that

(3.15) Ri,t,x(s) = gi∗(s, φt,x(s), û(s))[φt,x,∗x (s)]−1∇rt,x(s).

In view of the first relation of (3.11), we get the second relation of (3.11).

The third relation of (3.11) comes from the second relation of (3.14) and the first
relation of (3.10), while the fourth relation of (3.11) comes from the second relation
of (3.10), and the fifth relation of (3.11) comes from the fourth relation of (3.10).

The probabilistic interpretation (3.13) of W can be obtained from computing the
quantity rt,x(s)µt,x(s) with Itô’s formula.

It is worth noting that, if û(t) = β(t, Y (t)) ∀ t ∈ [0, 1], for some U -valued Borel
function β on [0, 1]× R

d, then W (t, x) = W (t, x, Y (t)) with

(3.16)
W (t, x, y) :=E

∫ 1

t

ζt,x,y(s)l(s,Φt,x,y(s), β(s, y + Y (s)− Y (t))) ds

+ E[ζt,x,y(1)m(Φt,x,y(1))] ∀ t ∈ [0, 1], x ∈ R
n, y ∈ R

d.

Here, Φt,x,y and ζt,x,y are the solutions of the SDEs

(3.17)


dΦt,x,y(s) = (f − g̃h)(s,Φt,x,y(s), β(s, y + Y (s)− Y (t))) ds

+ gi(s,Φt,x,y(s), β(s, y + Y (s)− Y (t))) dwi(s)

+ g̃j(s,Φt,x,y(s), β(s, y + Y (s)− Y (t))) dY j(s), s ∈ (t, 1],

Φt,x,y(t) = x
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and
(3.18){

dζt,x,y(s) = ζt,x,y(s)h∗(s,Φt,x,y(s), β(s, y + Y (s)− Y (t))) dY (s), s ∈ (t, 1],

ζt,x,y(t) = 1,

respectively. It can be checked that W is the unique viscosity solution of the following
Hamilton–Jacobi equation of second order:

(3.19)



1

2
tr[(gg∗ + g̃ g̃∗)(t, x, β(t, y))W xx]

+ tr[g̃(t, x, β(t, y))W xy] +
1

2
tr(W yy)

+ 〈f(t, x, β(t, y)),W
∗
x 〉+ 〈h(t, x, β(t, y)),W

∗
y 〉+ l(t, x, β(t, y))

= 0, t ∈ [0, 1), x ∈ R
n, y ∈ R

d,

W (1, x, y) = m(x), x ∈ R
n, y ∈ R

d,

at least when the function β is bounded and continuous and when the coefficients
f, g, g̃, h, and l are jointly continuous with respect to all their arguments.

4. BSPDEs of adjoint vector fields. In this section, adjoint vector fields
are introduced as the solutions of BSPDEs, and their relations are established. The
adjoint processes are then characterized in terms of the adjoint vector fields, their
differentials and Hessians, along the optimal state process x̂(·).

For all v ∈ U , define the following operators:

(4.1)

Lv(t, x)Z :=
1

2
tr[(gg∗ + g̃ g̃∗)(t, x, v)∇2Z] + 〈f(t, x, v),∇Z〉,

L(t, x)Z :=Lû(t)(t, x)Z ∀Z ∈ C2(Rn,R);

Mj,v(t, x)V := 〈g̃j(t, x, v),∇V 〉+ hj(t, x, v)V,

Mj(t, x)V :=Mj,û(t)(t, x)V ∀V ∈ C1(Rn,R).

For a matrix-valued smooth function of x ∈ R
n, say U := (U ij) ∈ C2(Rn,Rn1×n2),

set L(t, x)U := (L(t, x)U ij) and Mj1(t, x)U := (Mj1(t, x)U ij).
Consider the following BSPDEs:

(4.2)


dZ(t, x) =− [L(t, x)Z(t, x) + l(t, x, û(t)) +Mj(t, x)V j(t, x)] dt

+ V j(t, x) dY j(t), t ∈ (0, 1], x ∈ R
n,

Z(1, x) =m(x), x ∈ R
n,

(4.3)

dλ(t, x)

=− {L(t, x)λ(t, x) +Mj(t, x)θj(t, x)

+H∗x(t, x, û(t), λ(t, x), λx(t, x)g(t, x, û(t)), V (t, x), θ(t, x) + λx(t, x)g̃(t, x, û(t)))} dt
+ θj(t, x) dY j(t), t ∈ (0, 1], x ∈ R

n,

λ(1, x) = m∗
x(x), x ∈ R

n,
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and
(4.4)

dΛ(t, x)

=− [L(t, x)Λ(t, x) +Mj(t, x)Θj(t, x)

+Hxx(t, x, û(t), λ(t, x), λx(t, x)g(t, x, û(t)), V (t, x), θ(t, x) + λx(t, x)g̃(t, x, û(t)))

+ f∗x(t, x, û(t))Λ(t, x) + Λ(t, x)fx(t, x, û(t))

+ gi∗x (t, x, û(t))Λ(t, x)gix(t, x, û(t)) + g̃j∗x (t, x, û(t))Λ(t, x)g̃jx(t, x, û(t))

+ gi∗x (t, x, û(t))Dgi(t,x,û(t))Λ(t, x) +Dgi(t,x,û(t))Λ(t, x)gix(t, x, û(t))

+ g̃i∗x (t, x, û(t))Dg̃i(t,x,û(t))Λ(t, x) +Dg̃i(t,x,û(t))Λ(t, x)g̃ix(t, x, û(t))

+ g̃j∗x (t, x, û(t))(t, x, û(t))Θj(t, x) + Θj(t, x)g̃jx(t, x, û(t))

+ θj(t, x)hjx(t, x, û(t)) + hj∗x (t, x, û(t))θj∗(t, x)] dt

+ Θj(t, x) dY j(t), t ∈ (0, 1], x ∈ R
n,

Λ(1, x) = mxx(x), x ∈ R
n.

There is a close relation between the solutions of (3.2)–(3.4) and the solutions of
(4.2)–(4.4), which is stated in the following theorem:

Theorem 4.1. Assume that the SPDEs (4.2)–(4.4) have unique FY
t -adapted

smooth solutions (Z, V ), (λ, θj , j = 1, . . . , d), and (Λ,Θj , j = 1, . . . , d), respectively,
and their partial derivatives of arbitrary order with respect to x are uniformly bounded.
Then we have the following relations:

(4.5)

rt,x(s) = Z(s, φt,x(s)),

Ri,t,x(s) = Dgi(s,φt,x(s),û(s))Z(s, φt,x(s)), i = 1, . . . ,m,

R̃j,t,x(s) = V j(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))Z(s, φt,x(s)), j = 1, . . . , d;

qt,x(s) = λ(s, φt,x(s)),

ki,t,x(s) = Dgi(s,φt,x(s),û(s))λ(s, φt,x(s)), i = 1, . . . ,m,

k̃j,t,x(s) = θj(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))λ(s, φt,x(s)), j = 1, . . . , d;

Qt,x(s) = Λ(s, φt,x(s)),

Ki,t,x(s) = Dgi(s,φt,x(s),û(s))Λ(s, φt,x(s)), i = 1, . . . ,m,

K̃j,t,x(s) = Θj(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))Λ(s, φt,x(s)), j = 1, . . . , d.

Proof of Theorem 4.1. We use the generalized Itô–Kunita formula (see Kunita [6]
for details) to compute the quantities Z(s, φt,x(s)), λ(s, φt,x(s)),Λ(s, φt,x(s)), and we
observe that the right hand sides of the equalities in (4.5) solve the BSDEs (3.2)–(3.4),
respectively. According to the uniqueness of the solutions of (3.2)–(3.4) (see Pardoux
and Peng [9]), we get the desired results.

Note that if (Z, V ) is a smooth solution of the BSPDE (4.2), then Z = W . Hence,
W can be viewed as a probabilistic interpretation of Z. In a heuristic way, V j(t, x)

should be interpreted as R̃j,t,x(t)−Dg̃j(t,x,û(t))Z(t, x).
From (3.5) and Theorem 4.1, we see that the solutions of BSPDEs (4.2)–(4.4) are

closely related with the adjoint processes: the former, if they exist, help to show how
the latter depend on the initial state x0 and the system noise ẇ(·) in a special way.
For this reason, we call the former the adjoint vector fields. The relations among the
adjoint vector fields are stated in the following theorem.
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Theorem 4.2. Assume that 1) the coefficients f, g, g̃, h, l, and m are smooth
in the variable x, and they are bounded, together with their partial derivatives with
respect to x; 2) gg∗(t, x, û(t)) ≥ δIn×n for some real number δ > 0. Then the
SPDEs (4.2)–(4.4) have unique smooth solutions (Z, V ), (λ, θj , j = 1, . . . , d), and
(Λ,Θj , j = 1, . . . , d). Moreover, the solutions have the following relations:

(4.6)
λ = ∇Z, θj = ∇V j ;

Λ = λx = ∇2Z, Θj = θjx = ∇2V j , j = 1, . . . , d.

Proof of Theorem 4.2. The uniqueness is obtained from Theorem 4.1 and the
uniqueness of the solutions of the BSDEs (3.2)–(3.4).

The existence of a smooth solution of the BSPDE (4.2), under the conditions of
Theorem 4.2, is proved by Zhou [14, Remark 4.1, p. 290].

Let (Z, V ) be a smooth solution of (4.2). Take differentials on both sides of (4.2),
and we see that the differential (∇Z,∇V j , j = 1, . . . , d) satisfies the BSPDE (4.3).
Thus, (∇Z,∇V j , j = 1, . . . , d) is a smooth solution of (4.3).

Since
(4.7)

{L(t, x)λ(t, x)}x
= L(t, x)λx(t, x) + λx(t, x)fx(t, x, û(t))

+Dgi(t,x,û(t))λx(t, x)gix(t, x, û(t)) +Dg̃j(t,x,û(t))λx(t, x)g̃jx(t, x, û(t)),

{Mj(t, x)θj(t, x)}x
= Mj(t, x)θjx(t, x) + θjx(t, x)g̃jx(t, x, û(t)) + θj(t, x)hjx(t, x, û(t)),

{H∗x(t, x, û(t), λ(t, x), λx(t, x)g(t, x, û(t)), V (t, x), θ(t, x) + λx(t, x)g̃(t, x, û(t)))}x
= Hxx(t, x, û(t), λ(t, x), λx(t, x)g(t, x, û(t)), V (t, x), θ(t, x) + λx(t, x)g̃(t, x, û(t)))

+ f∗x(t, x, û(t))λx(t, x) + gi∗x (t, x, û(t))Dgi(t,x,û(t))λx(t, x)

+ hj∗x (t, x, û(t))V j
x (t, x) + g̃j∗x (t, x, û(t))[Dg̃j(t,x,û(t))λx(t, x) + θjx(t, x)]

+ g∗x(t, x, û(t))λx(t, x)gx(t, x, û(t)),

we have that (Q := λx,K
j := θjx, j = 1, . . . , d) satisfies the BSPDE (4.4). Hence, it

is a smooth solution of (4.4). The relation (4.6) is then obtained.
Combining Theorems 4.1 and 4.2, we have the following theorem.
Theorem 4.3. Let the hypotheses of Theorem 4.2 be satisfied, and (Z, V j , j =

1, . . . , d) be the unique solution of the BSPDE (4.2). Then

(4.8)

rt,x(s) = Z(s, φt,x(s)),

Ri,t,x(s) = Dgi(s,φt,x(s),û(s))Z(s, φt,x(s)), i = 1, . . . ,m,

R̃j,t,x(s) = V j(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))Z(s, φt,x(s)), j = 1, . . . , d;

qt,x(s) = ∇Z(s, φt,x(s)),

ki,t,x(s) = Dgi(s,φt,x(s),û(s))∇Z(s, φt,x(s)), i = 1, . . . ,m,

k̃j,t,x(s) = ∇V j(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))∇Z(s, φt,x(s)), j = 1, . . . , d;

Qt,x(s) = ∇2Z(s, φt,x(s)),

Ki,t,x(s) = Dgi(s,φt,x(s),û(s))∇2Z(s, φt,x(s)), i = 1, . . . ,m,

K̃j,t,x(s) = ∇2V j(s, φt,x(s)) +Dg̃j(s,φt,x(s),û(s))∇2Z(s, φt,x(s)), j = 1, . . . , d.
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Before closing this section, we remark that, if the coefficients f, g, g̃, h, l, and
m are smooth with respect to all their arguments, they are bounded together with
their partial derivatives, and û(t) = β(t, Y (t))∀ t ∈ [0, 1], for some smooth function
β : [0, 1]× R

d → U with bounded derivatives of arbitrary order, then the Hamilton–
Jacobi equation (3.19) has a unique bounded smooth solution W and the BSPDE (4.2)
has the following unique bounded smooth solution: Z(t, x) = W (t, x, Y (t)), V j(t, x) =
W yj (t, x, Y (t)), j = 1, . . . , d.

5. Versions of Theorem 2.1 and comparison with the existing results.
Combining Theorems 2.1 and 3.2, we have the following theorem.

Theorem 5.1. Let the hypothesis (A1) be satisfied, and h := h(t, x), g̃ := g̃(t, x).
Assume that û(·) is an optimal control. Let µt,x(·) be the solution of (3.12), and set

(5.1) W (t, x) := E

[∫ 1

t

µt,x(s)l(s, φt,x(s), û(s)) ds+ µt,x(1)m(φt,x(1))

∣∣∣∣ FY
t

]
and

(5.2) L v
(t, x)W (t, x) :=

1

2
tr[(gg∗)(t, x, v)∇2W (t, x)] + 〈f(t, x, v),∇W (t, x)〉.

Then, the following maximum condition holds:

(5.3)

Ê

∫ 1

0

{L v(t)
(t, x̂(t))W (t, x̂(t)) + l(t, x̂(t), v(t))

− L û(t)
(t, x̂(t))W (t, x̂(t))− l(t, x̂(t), û(t))

}
dt

≥ 0 ∀v(·) ∈ Uad.

Proof of Theorem 5.1. Since the observation term h and the correlation term g̃
do not depend on the control variable, we derive from Theorem 3.2 that

(5.4)

∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v(t))

= 〈q(t),∆f(t; v(t))〉+ 〈ki(t),∆gi(t; v(t))〉+ ∆l(t; v(t))

= 〈∇W (t, x̂(t)),∆f(t; v(t))〉+ ∆l(t; v(t))

+ tr[∇2W (t, x̂(t))(g(t, x̂(t), û(t))∆g∗(t; v(t)))],
tr[Q(t)(∆g(t; v(t))∆g∗(t; v(t)) + ∆g̃(t; v(t))∆g̃∗(t; v(t)))]

= tr[Q(t)(∆g(t; v(t))∆g∗(t; v(t)))]

= tr[∇2W (t, x̂(t))(∆g(t; v(t))∆g∗(t; v(t)))].

The maximum condition (5.3) then follows from Theorem 2.1.
Corollary 5.1. Assume that 1) the hypothesis (A1) holds; 2) g̃ := g̃(t, x), h :=

h(t, x); 3) Uad = Ũad. Let û(·) be an optimal control. Then the following maximum
condition holds:

(5.5)

Ê
[
L v

(t, x̂(t))W (t, x̂(t), Y (t)) + l(t, x̂(t), v)

− L û(t)
(t, x̂(t))W (t, x̂(t), Y (t))− l(t, x̂(t), û(t))|Y (t)

]
≥ 0 ∀ v ∈ U, a.s.a.e.,

with W being defined by (3.16)–(3.18).
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The partially observed optimal control with the admissible class Ũad of controls
has been studied by Fleming [4]. His observation model is of the following form:

(5.6)


dY (t) = h(t, x(t), Y (t), v(t)) dt+ σi(t, x(t), Y (t), v(t)) dwi(t)

+ σ̃j(t, x(t), v(t)) dw̃j(t), t ∈ (0, 1],

Y (0) = y0,

and it is more general than (1.2). His terminal time T is the least time of the system
state going beyond a bounded domain, while ours is the fixed time T = 1. He made
the following nondegenerate hypothesis:

(5.7)

(
g g̃
σ σ̃

)(
g∗ σ∗

g̃∗ σ̃∗

)
≥ δI(n+d)×(n+d) for some δ > 0,

which implies, in our situation (i.e., σ = 0, σ̃ = Id×d), the following condition: gg∗ ≥
δIn×n for some δ > 0. Corollary 5.1 allows gg∗ to be degenerate and is new.

Corollary 5.2. Assume that 1) the hypothesis (A1) holds; 2) g̃ := g̃(t, x), h :=
h(t, x); 3) Uad = Uad. Let û(·) be an optimal control. Then the following maximum
condition holds:

(5.8)

Ê
[
L v

(t, x̂(t))W (t, x̂(t)) + l(t, x̂(t), v)

− L û(t)
(t, x̂(t))W (t, x̂(t))− l(t, x̂(t), û(t))| FY

t

]
≥ 0 ∀ v ∈ U, a.s.a.e.

Combining Theorems 2.1 and 4.3, we have the following theorem.
Theorem 5.2. Let the hypotheses of Theorem 4.2 be satisfied. Let û(·) be an

optimal control, and (Z, V ) be the unique solution of the BSPDE

(5.9)


dZ(t, x) =− [L(t, x)Z(t, x) + l(t, x, û(t)) +Mj(t, x)V j(t, x)] dt

+ V j(t, x) dY j(t), t ∈ (0, 1], x ∈ R
n,

Z(1, x) = m(x), x ∈ R
n.

Then the following maximum condition holds:
(5.10)

Ê

∫ 1

0

{Lv(t)(t, x̂(t))Z(t, x̂(t)) + l(t, x̂(t), v(t)) +Mj,v(t)(t, x̂(t))V j(t, x̂(t))

− Lû(t)(t, x̂(t))Z(t, x̂(t))− l(t, x̂(t), û(t))−Mj,û(t)(t, x̂(t))V j(t, x̂(t))} dt
≥ 0 ∀ v(·) ∈ Uad.

Proof of Theorem 5.2. From Theorem 4.3, we derive

(5.11)

∆H(t, x̂(t), û(t), q(t), k(t), R̃(t)− q∗(t)g̃(t, x̂(t), û(t)), k̃(t); v(t))

=〈∇Z(t, x̂(t)),∆f(t; v(t))〉+ 〈∇V j(t, x̂(t)),∆gj(t; v(t))〉
+ V j(t, x̂(t))∆hj(t; v(t)) + ∆l(t; v(t))

+ tr[∇2Z(t, x̂(t))(g(t, x̂(t), û(t))∆g∗(t; v(t)) + g̃(t, x̂(t), û(t))∆g̃∗(t; v(t)))],
tr[Q(t)(∆g(t; v(t))∆g∗(t; v(t)) + ∆g̃(t; v(t))∆g̃∗(t; v(t)))]

=tr[∇2Z(t, x̂(t))(∆g(t; v(t))∆g∗(t; v(t)) + ∆g̃(t; v(t))∆g̃∗(t; v(t)))].
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The maximum condition (5.10) then follows from Theorem 2.1.
Corollary 5.3. Let the hypotheses of Theorem 4.2 be satisfied and Uad = Uad.

Let û(·) be an optimal control and (Z, V ) be the unique solution of the BSPDE (5.9).
Then the following maximum condition holds:
(5.12)

Ê
[
Lv(t, x̂(t))Z(t, x̂(t)) + l(t, x̂(t), v) +Mj,v(t, x̂(t))V j(t, x̂(t))

− Lû(t)(t, x̂(t))Z(t, x̂(t))− l(t, x̂(t), û(t))−Mj,û(t)(t, x̂(t))V j(t, x̂(t))| FY
t

]
≥ 0 ∀ v ∈ U, a.s.a.e.

The partially observed optimal control with the admissible control class Uad,
has been studied by Kwakernaak [7]; Bensoussan [2]; Haussmann [5]; Baras, Elliott,
and Kohlmann [1]; Zhou [13]; and Li and Tang [8]. Corollary 5.2 essentially covers
the partially observed maximum principles of Bensoussan [2]; Haussmann [5]; and
Baras, Elliott, and Kohlmann [1]; and it generalizes them at least in two of the
following respects: 1) gg∗ may be degenerate; 2) the control may appear in the
diffusion coefficient g; 3) correlated noises may be present between the system and
the observation (i.e., the correlation coefficient g̃ is not necessarily zero); 4) the initial
state x0 does not necessarily have a regular density function. Note that Bensoussan [2]
considered the case of g̃ = 0, and characterized his adjoint processes via the BSPDE
(5.9) but in the sense of strong solution; in a heuristic way, the formula (5.1) should
be the probabilistic interpretation of his adjoint processes.

Zhou [13], like Kwakernaak [7] and Bensoussan [2], treated a partially observed
optimal control problem as an optimal control problem with full information, but for
the Zakai equation, which is a stochastic PDE driven by the observation. His result
excludes both the case when the initial state has no regular density function and the
case when gg∗ is degenerate while g̃ 6= 0. Corollaries 5.2 and 5.3 consider both cases
and therefore are new. They partially answer Fleming’s question (see Fleming [4,
p. 209]).

It is worth pointing out that our derivation of Corollary 5.2 does not involve
the Zakai equation at all and avoids the complicated stochastic analysis in infinite-
dimensional spaces of Bensoussan [2], Haussmann [5], and Zhou [13].

Combining Theorem 2.1 and Remark 2.1 with Theorem 3.1, we obtain the fol-
lowing theorem.

Theorem 5.3. Let the hypothesis (A1) be satisfied, Uad = Uad, and û(·) be an

optimal control. Let φt,x(·) solve the SDE (3.1) and (rt,x(·), Rt,x(·), R̃t,x(·)) solve the
BSDE (3.2). Then the maximum condition (2.30) holds with

(5.13)

q(s) = [φ0,x0,∗
x (s)]−1∇r0,x0(s),

ki(s) = [φ0,x0,∗
x (s)]−1∇Ri,0,x0(s)− gi∗x (s, φ0,x0(s), û(s))q(s),

k̃j(s) = [φ0,x0,∗
x (s)]−1∇R̃j,0,x0(s)− g̃j∗x (s, φ0,x0(s), û(s))q(s),

Q(s) = q0,x0
x (s)[φ0,x0

x (s)]−1

= [φ0,x0,∗
x (s)]−1∇2r0,x0(s)[φ0,x0

x (s)]−1

− [φ0,x0,∗
x (s)]−1φi,0,x0

xx (s)[φ0,x0,∗
x (s)]−1,i∇r0,x0(s)[φ0,x0

x (s)]−1.

Note that φi,t,x(s) is the ith component of the column vector φt,x(s) and [φt,x,∗x (s)]−1,i

is the ith row vector of the matrix [φt,x,∗x (s)]−1.
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Elliott and Kohlmann [3] considered an optimal stochastic control problem with
full information, which is the special case of our partially observable optimal stochastic
control problem with

(5.14) g ≡ 0, h ≡ 0, l ≡ 0, Uad = Uad.

In this case, the BSDEs (3.2) and (3.7) reduce to

(5.15)

{
drt,x(s) = Ri,t,x(s) dwi(s) + R̃j,t,x(s) dY j(s), s ∈ [t, 1),

rt,x(1) = m(φt,x(1))

and

(5.16)

{
d∇rt,x(s) = ∇Ri,t,x(s) dwi(s) +∇R̃j,t,x(s) dY j(s), s ∈ [t, 1),

∇rt,x(1) = φt,x,∗x (1)m∗
x(φ

t,x(1))

respectively. Hence, for s ∈ [t, 1],

(5.17)

rt,x(s) = E[m(φt,x(1)| FY
s ],

∇rt,x(s) = E[φt,x,∗x (1)m∗
x(φ

t,x(1))| FY
s ]

= E[φt,x,∗x (1)m∗
x(φ

t,x(1))] +

∫ s

t

∇R̃j,t,x(τ) dY j(τ),

Ri,t,x(s) ≡ 0, ∇Ri,t,x(s) ≡ 0,

∇2rt,x(s) = E[φt,x,∗x (1)∇2m(φt,x(1))| FY
s ]

+ E[φi,t,xxx (1)mxi(φ
t,x(1))| FY

s ].

Putting the relations (5.17) and (5.13) into the maximum condition (2.30), we arrive
at Theorem 4.2 of Elliott and Kohlmann [3, p. 36]. Thus, our Theorem 5.3 contains
Theorem 4.2 of Elliott and Kohlmann [3] as a special case.

Finally, we remark that a version of Theorem 2.1 for the case of g̃ = 0 has been
obtained by Li and Tang [8], but the relations among the adjoint processes in Theorem
2.1 were not discussed there at all.
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Abstract. Nonlinear filtering is one of the classical areas of stochastic control. From the point
of view of practical usefulness, it is important that the filter not be too sensitive to the assumptions
made on the initial distribution, the transition function of the underlying signal process and the
model for the observation. This is particularly acute if the filter is of interest over a very long or
potentially infinite time interval. Then the effects of small errors in the model which is used to
construct the filter might accumulate to make the output useless for large time. The problem of
asymptotic sensitivity to the initial condition has been treated in several papers. We are concerned
with this as well as with the sensitivity to the signal model, uniformly over the infinite time interval.
It is conceivable that the effects of even small errors in the model will accumulate so that the filter
will eventually be useless. The robustness is shown for three classes of problems. For the first two
cases, the signal model is Markov and the observations are taken in discrete time, and the observation
is the usual function of the signal plus noise. The last class treated is a continuous time Markov
process, with a point process observation.

Key words. nonlinear filtering, model robustness, asymptotic stability, Hilbert metric, Birk-
hoff’s contraction coefficient

AMS subject classifications. 93E11, 93E15, 60H10
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1. Introduction. Nonlinear filtering is one of the classical areas of stochastic
control, and a great deal of work has been done on it. Typically, in either discrete
or continuous time, it is assumed that the signal process is Markov and that the ob-
servations are corrupted by white noise, assumptions that we retain. A fundamental
question from the point of view of practical usefulness is the sensitivity of the filter
to the assumptions made on the initial distribution, the transition function of the un-
derlying signal process and the model for the observation. This is particularly acute
if the filter is of interest over a very long or potentially infinite time interval. Then
the effects of small errors in the model used to construct the filter might accumu-
late to make the output useless for large time. Suppose that the assumed transition
function for the signal process is not correct. Direct methods of comparing the dif-
ference between the true optimal filter and the one actually constructed generally use
crude bounds which might be useful over a bounded time interval but get at best
exponentially growing error estimates as time goes to infinity. Clearly a more subtle
analysis is called for. With the classical Kalman–Bucy filter, under observability and
controllability, the effects of the initial condition disappear as time goes to infinity.
But, regrettably, there is no workable analog of global observability for the nonlinear
problem.

The earliest work on the subject of robustness over a long tome interval was that
of Kushner and Huang [8]. They worked in continuous time and assumed only wide
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bandwidth observation and system driving noise. The model for the filter was the
natural one based on the weak convergence limit as the bandwidth went to infinity,
and they were concerned with the average (mean square or other) errors per unit
time for large time. Long term errors for numerical and other approximations to the
signal process were also of interest. They reduced the problem to one concerning
uniqueness of the invariant measure of the joint (signal, filter) process. If the signal
is a Markov process in some locally compact space and one has the standard additive
white noise model for the observations then the work of Kunita [7] and Stettner [12]
showed that the ergodicity of the signal leads to a unique invariant measure for the
filter, but nothing was said about the joint (signal, filter) process. See Stettner [13]
for the existence and uniqueness of the invariant measure for the case where the signal
is a finite state Markov chain.

We will use the term asymptotic stability to mean that the output of the filter
is asymptotically insensitive to the initial condition, assuming that the signal model
is fixed. Ocone and Pardoux [11] used the results and ergodicity assumptions of [12]
to obtain the convergence, in an appropriate sense, of the output of the incorrectly
initialized filter to that of the exact filter as time approaches infinity. In two funda-
mental papers, Delyon and Zeitouni [6] and Atar and Zeitouni [2, 1], studied a variety
of signal–observation pairs with ergodicity hypothesis on the signal where they prove
exponentially fast convergence of the output of an incorrectly initialized filter to that of
the correct one. Another recent work on exponential asymptotic stability is Le Gland
and Mevel [9] who study finite state Markov chains and under appropriate conditions
prove geometric ergodicity of an extended chain, which includes as its states the filter
and its gradient. The approach of [2, 1] is based on Hilbert’s projective metric and
Birkhoff’s contraction inequality and provides some remarkable results on pathwise
convergence. It requires a rather strong ergodicity condition on the signal, and in
most situations it restricts the analysis to signals taking values in a compact state
space. One can obtain asymptotic stability of the filter in the absence of the ergodicity
of the signal. The classical example is the Kalman filter and some related problems,
cf.[11]. Budhiraja and Ocone [5] derive exponential asymptotic stability of the filter
for signals which are given as solutions to one dimensional stochastic difference equa-
tions. The observation noise is taken to be bounded; however, no assumption is made
on the boundedness of the signal. However, in general the question of asymptotic
stability in the absence of ergodicity of the signal process is a challenging problem
and remains open.

All of the works cited (excluding [9]) in the last paragraph assumed that the
correct transition function for the signal process was used in the construction of the
filter. The only variable was the initial condition. In practice, one would rarely know
the correct signal transition function, and it is important to know that small errors
in the signal model do not have serious effects on the filter output, over an arbitrarily
large time interval. Simultaneously, one still would like asymptotic insensitivity to
the initial condition of the filter. This paper is devoted to this double robustness
problem.

We consider three models, and compare the output of the optimal filter to that
for a filter built with an incorrect signal model and initial condition (but with the
same observation sequence). The first class, which we treat in section 3.1, is that of a
discrete time Markov process observed via a nonlinear functional with additive white
noise. The transition function of this Markov chain is assumed to satisfy the one step
mixing condition of [2] (see (7)). The exponential stability for this class had been
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derived in [2]. In the present work we show that for the general robustness problem
the total variation distance between the filter for the misspecified model and the exact
filter converges to zero, uniformly in time, as the misspecifications converge to zero.
The uniformity in time is the key outcome.

The second result, derived in section 3.2, is for the class of nonbounded signals
studied in [5]. Exponential asymptotic stability for this class is known from [5]. For
the general robustness problem we show that the infinite time limit of the expected
total variation distance between the exact filter and the filter for the misspecified
model converges to zero as the misspecifications in the transition kernel and in the
distribution of the observation noise go to zero. The result is not pathwise. The main
difficulty is that we do not have a contraction in the distance between the filters at
every observation update, and when there is a contraction it is random. It turns out
(cf. [5]) that this is sufficient to yield a pathwise asymptotic stability result; however,
for the problem of robustness, with respect to the signal model, we need to do an
analysis of the contractions in the mean.

The final section of the paper is devoted to a continuous time Markov signal
model, but with point process observations. The results are new even if the only
misspecification is in the initial condition. The signal is assumed to satisfy a mixing
type condition analogous to that used for the first case (see 30). Theorem 4.1 proves
the asymptotic stability, and the general robustness problem is treated in Theorem 4.2.
The main additional difficulties are due to the facts that the observations can occur
at any time and the liklihood ratio is discontinuous at the times of the observations.

The central tools in all the arguments in this work are that of Hilbert’s projective
metric and Birkhoff’s contraction inequality; cf. [3]. These were introduced to the
study of asymptotic stability of filters in [1]. For the convenience of the reader we
have included, in section 2, a brief overview of the central ideas concerning Hilbert
metric which are important in filter analysis.

2. Hilbert’s projective metric. In this section we present some preliminary
definitions and results concerning Hilbert’s projective metric which will be used in
later sections. Let S be a Polish space and let M(S) (respectively, M+(S)) denote
the space of finite signed measures (finite nonnegative measures, respectively) on S.
For µ, ν ∈M+(S) the Hilbert projective distance between them is defined as

h(µ, ν) := ln

[
sup

A,A′∈S
µ(A)

ν(A)

ν(A′)
µ(A′)

]
,(1)

where S is the Borel σ−field on S and we employ the convention that α/0 = ∞ for
α 6= 0 and 0/0 = 1.

Observe that a necessary condition for h(µ, ν) to be finite is that µ, ν are mutually
absolutely continuous. In fact it can be shown (cf. [10]) that a necessary and sufficient
condition for h(µ, ν) to be finite for when µ and ν are positive measures is that there
exist positive ci, i = 1, 2, such that

c1ν ≤ µ ≤ c2ν.(2)

Then h(µ, ν) = inf ln(c2/c1), where the infimum is taken over all pairs c1, c2 for which
the above inequalities hold.

One of the important properties of the Hilbert metric from the point of view of
nonlinear filtering problems is that of scale invariance; i.e., for µ, ν ∈ M+(S) and
α and β positive numbers, h(µ, ν) = h(αµ, βν). Thus, if µ and ν are conditional
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distributions arising in a filtering problem, in computing the distance in the Hilbert
projective metric it makes no difference whether they are normalized or unnormalized,
and we will use this fact where convenient without further comment. The following
inequality connects the Hilbert metric with the total variation norm. For µ, ν prob-
ability measures on (S,S)

||µ− ν||TV ≤ 2

ln 3
h(µ, ν),(3)

where ||.||TV denotes the total variation norm on M(S). We refer the reader to [2]
for a proof.

Another important property of Hilbert metric which makes it a very useful tool
in stability analysis is the following contraction relation due to Birkhoff [3]. Let
S1, S2 be Polish spaces and let S1,S2 be the respective Borel σ− fields. Denote
the Hilbert metric on M+(S1) and M+(S2) by the same symbol: namely, h. Let,
K : M(S1) →M(S2) be a linear nonnegative operator. Then for µ, ν ∈M+(S1)

h(Kµ,Kν) ≤ tanh(C(K)/4)h(µ, ν),(4)

where

C(K) := sup{h(Kµ,Kν) : µ, ν ∈M+(S1)}
= sup

µ,ν∈M+(S1)

ln

[
sup

A,A′∈S2

Kµ(A)

Kν(A)

Kν(A′)
Kµ(A′)

]
.(5)

We record one final observation for future use. Suppose that K is defined by

(Kµ)(A) =

∫
A

∫
S1

K(x, y)µ(dy)λ(dx), A ∈ S2,

where λ is a positive σ− finite measure on (S2,S2) and K : S2 × S1 → [0,∞) is a
measurable map. Then

C(K) = ln

[
sup

y,y′∈S1

ess supx,x′∈S2

(K(x, y)K(x′, y′)
K(x, y′)K(x′, y)

)]
,(6)

where same convention as before is employed for α/0;α 6= 0 and 0/0. The essential
supremum in (6) is with respect to the measure λ.

3. Discrete time signals. In this section we will consider the asymptotic errors
when the observations are taken in discrete time. We will study the asymptotic
sensitivity with respect to the incorrect initial condition, incorrect transition function,
and incorrect observation noise distribution function. It will be seen that, under
appropriate mixing-type conditions on the signal process, the effects of errors in the
initial condition eventually disappear, and small errors in the transition or distribution
functions cause only small errors in the filter output, uniformly over all time. We will
work with two specific signal–observation pairs for which the Hilbert projective metric
techniques can be applied. In our first result we consider signals whose transition
kernels satisfy the boundedness condition (7), which was used in [2], which also proved
the stability with respect to the initial condition. The second theorem is for a family
of real valued signals observed in bounded noise, but which is not necessarily bounded.
The stability of the filter for this class with respect to the misspecification of the initial
condition alone had been studied in [5]. The second class of examples, although quite
special, is interesting in that it shows that the boundedness conditions in [2] are not
necessary.
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3.1. The signal satisfies a one step mixing condition. Let (Ω, F, P ) be a
probability space. Let Xn be a Markov chain with a stationary transition probability
distribution and a Polish state space S. Let S denote the Borel σ− field on S. Assume
that the signal admits a transition probability density G(·, ·), with respect to some
σ− finite measure λ on (S,S).

Following the approach taken in [2], we assume that there exists a probability
measure ρ on (S,S) and finite positive constants, c1, c2, such that for all A ∈ S:

c1ρ(A) ≤
∫
A

G(x, y)λ(dy) ≤ c2ρ(A).(7)

Since the left- and right-hand sides do not depend on the initial state x, the above
key condition implies that the signal process has a stong one step mixing property.
It would hold, for example, if the signal were a sampled nondegenerate diffusion on a
compact state space. Let

Yn = H(Xn) + νn(8)

be the observation sequence, where H : S → Rm is a measurable function and νn are
Rm valued mutually independent and identically distributed random variables with
a bounded density which we denote by g. (The condition that the distributions be
independent of n can be weakened, but the assumption simplifies the notation.)

For fixed y ∈ Rm, define the following nonnegative operator K(G, y) on M(S):

(K(G, y)µ)(A) :=

∫
A

∫
S

g(y −H(z))G(x, z)µ(dx)λ(dz).(9)

Here, µ ∈M(S) and A ∈ S.
If K(G, y)µ 6= 0 (i.e., it is not the zero measure), then define the normalized

measure K̃(G, y) := K(G, y)µ/[K(G, y)µ](S). Otherwise set it equal to 0. Denote by
Πn the conditional distribution of Xn given Y1, . . . , Yn. Then it is a simple verification
(for a proof see Lemma 3.1 of [5]) that Πn equals

Πn = K̃(G,Yn)oK̃(G,Yn−1)o · · · oK̃(G,Y1)p0,

where p0 is the distribution of X0.
Let {Gk} be a sequence of transition probability densities and {pk} a sequence of

probability measures on S. Let us write

Π(k)
n = K̃(Gk, Yn)oK̃(Gk, Yn−1)o · · · oK̃(Gk, Y1)pk.

The following theorem contains the main result of this subsection. It says essen-
tially that if the filter is designed with an incorrect initial condition and incorrect
signal transition function, then the pathwise difference between the true optimal filter
and the incorrect one over an arbitrarily large or infinite time interval is bounded
uniformly in the difference (in a suitable scale) between the correct and erroneous
transition function, and initial condition.

Theorem 3.1. Suppose that, ∀x ∈ S and ∀k ≥ 1, Gk(x, ·) and G(x, ·) are positive
and zero on the same sets. Let lnGk converge to lnG uniformly on the (x, y)−set,
where G(x, y) > 0. Then

(a) limk→∞ lim supn→∞ h(Π
(k)
n ,Πn) = 0.
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(b) If in addition, pk converges to po in total variation norm as k →∞, then

lim
k→∞

sup
n
||Π(k)

n −Πn||TV = 0.

Proof. For q ∈M+(S), define

Π[q]
n := K̃(G,Yn)oK̃(G,Yn−1)o · · · oK̃(G,Y1)q.

We begin by noting that

h(Π(k)
n ,Πn) ≤ h(Π(k)

n ,Π[pk]
n ) + h(Π[pk]

n ,Πn).(10)

Let us initially consider the second term on the right side of (10). Using the scale
invariance property of Hilbert’s projective metric, we have

h(Π[pk]
n ,Πn) = h(K(G,Yn)Π

[pk]
n−1,K(G,Yn)Πn−1)

≤ tanh

(
C(K(G,Yn))

4

)
h(Π

[pk]
n−1,Πn−1).

It is clear from (5) and (7) that C(K(G,Yn)) ≤ 2 ln(c2/c1). Using this observation in
the above equality, we get

h(Π[pk]
n ,Πn) ≤ δh(Π

[pk]
n−1,Πn−1),

where δ := tanh(ln(c2/c1)/2).

Iterating the above inequality and observing from (7) and (1) that h(Π
[pk]
1 ,Π1) ≤

2 ln(c2/c1), we have

h(Π[pk]
n ,Πn) ≤ 2δn−1 ln(c2/c1).(11)

Consider now the first term on the right side of (10), namely,

h(Π(k)
n ,Π[pk]

n ) = h(K(Gk, Yn)Π
(k)
n−1,K(G,Yn)Π

[pk]
n−1)

≤ h(K(Gk, Yn)Π
(k)
n−1,K(G,Yn)Π

(k)
n−1)

+h(K(G,Yn)Π
(k)
n−1,K(G,Yn)Π

[pk]
n−1)

≤ h(K(Gk, Yn)Π
(k)
n−1,K(G,Yn)Π

(k)
n−1) + δh(Π

(k)
n−1,Π

[pk]
n−1).

(12)

The first term on the right side of (12) can be bounded as follows. Define εk by

εk = sup
(x,y)∈B

| lnGk(x, y)− lnG(x, y)|,

where B := {(x, y) : G(x, y) 6= 0}. By hypothesis, εk → 0 as k → ∞. Also the
following inequality holds ∀(x, y) ∈ B.

e−εkG(x, y) ≤ Gk(x, y) ≤ eεkG(x, y).

Using the above inequality and (1) it is easy to see that

h(K(Gk, Yn)Π
(k)
n−1,K(G,Yn)Π

(k)
n−1) ≤ 2εk.(13)
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Combining (12) and (13) yields

h(Π(k)
n ,Π[pk]

n ) ≤ 2εk + δh(Π
(k)
n−1,Π

[pk]
n−1).

Iterating the above inequality and using the observation that h(Π
(k)
1 ,Π

[pk]
1 ) is bounded

by 2εk, we have that

h(Π(k)
n ,Π[pk]

n ) ≤ 2εk/(1− δ).

Combining the above inequality with (10) yields that

h(Π(k)
n ,Πn) ≤ 2εk

1− δ
+ δn−1h(Π

(k)
1 ,Π

[pk]
1 ).(14)

This proves (a).

To prove (b) it suffices to show that ||pk − p||TV → 0 implies that h(Π
(k)
1 ,Π

[pk]
1 )

converges to zero. A straightforward inequality shows that

1

1 + c2
c1
||pk − p0||TV ≤

∫
G(x, y)p0(dx)∫
G(x, y)pk(dx)

≤ 1 +
c2
c1
||pk − p0||TV ,

a.e. y. This implies that

h(Π
(k)
1 ,Π

[pk]
1 ) ≤ 2 ln(1 +

c2
c1
||pk − p0||TV ).

The result now follows on combining this observation with (14).
Remark 1. Theorem 3.1(a) can be shown to hold if G satisfies, instead of (7), the

weaker condition

c1ρ(A) ≤
∫
A

Gk(x, y)λ(dy) ≤ c2ρ(A),(15)

for some k ≥ 1, where Gk is the k-step transition kernel and c1, c2, A, ρ are as before.
The proof is more involved mainly because the contraction coefficient(analogus to δ
in the proof of Theorem 3.1) is now a random quantity. However (15) implies that
the signal is ergodic and has a unique invariant measure. Also the observation noise
sequence is ergodic. From this one can show that the contraction coefficients obtained
for successive k-step updates of the filter form an ergodic sequence. One can then
apply Birkhoff’s ergodic theorem to complete the proof.

3.2. A difference equation model. The result in section 3.1 relies heavily on
the mixing and boundedness properties of the signal and the observations played no
role in the analysis. However, observations are a critical ingredient in the problem of
nonlinear filtering, and should play a central role in any asymptotic analysis. Each
time the filter is updated the observations recenter the distribution in an interval of
the observed value and hence, intuitively, if the observations are “good” they should
help the convergence of the output of an incorrectly initialized filter to that of the
correct filter, and aid in stabilizing the effects of model error as well. One such model
was studied in [5], and it was shown that the filter is asymptotically independent of
its initial condition. In this subsection we revisit that example from the perspective
of a more general robustness in the infinite time limit. Although the model is one
dimensional, it is nonlinear and the observations play a crucial role.
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Let (Ω,F , P ) be a probability space on which are defined two sequences, {ξn}∞n=1

and {νn}∞n=1, which are mutually independent, and each has independent and identi-
cally distributed components. We assume that both ξ1 and ν1 have bounded densities
with respect to Lebesgue measure, denoted by f and g, respectively. Furthermore,
following the approach in [5] we assume that there is an M <∞ such that

(A.1) supp g ⊆ [−M,M ].
Let X0 be another real-valued random variable on the above probability space,

independent of both {ξi} and {νi}, with law p0. The signal {Xn}∞n=0 is defined as

Xn+1 = m(Xn) + σ(Xn)ξn+1, n ≥ 0.(16)

We use the assumptions of [5], where m and σ are real-valued and Borel measur-
able and are assumed to satisfy

(A.2) 0 < σ := infx∈R σ(x) ≤ supx∈R σ(x) =: σ <∞.
(A.3) C := sup|z−z′|≤2M |m(z)−m(z′)| <∞.
The observations on the signal are given by

Yn = Xn + νn, n ≥ 1.(17)

Next, in order to get the filter update formula we introduce the following linear
operator. For u, v ∈ R, define the operator K by

K ≡ K(u, v, f, g,m) : M[u−M,u+M ] →M[v −M, v +M ]

by

Kµ(A) =

∫
A

∫
[u−M,u+M ]

g(v − x)f

(
x−m(z)

σ(z)

)
σ−1(z)µ(dz)dx,(18)

A ∈ B[v −M, v + M ]. As before, define the nonlinear operator K̃ to be the normal-
ization of K. Define K̃µ = 0 if Kµ = 0. For n ≥ 2, let Kn denote the operator
K(Yn−1, Yn, f, g,m), and let K̃n denote its normalized form. Finally, for P (R) denot-
ing the family of probability measures on R, define

K1 : P (R) →M[Y1 −M,Y1 +M ]

by

K1µ(A) =

∫
A

∫
R

g(v − x)f(
x−m(z)

σ(z)
)σ−1(z)µ(dz)dx,

and let K̃1 denote the normalized form. Let Πn denote the conditional distribution
of Xn given Y1, . . . , Yn. Then it can be shown that, with probability one,

Πn = K̃noK̃n−1o · · · oK̃1p0.

Now let {gk}, {fk}, {mk} be sequences of maps from R → R, where for every k,
fk is a probability density, and gk is a probability density with support [−M,M ].

Let K
(k)
n denote the operator defined by K(Yn−1, Yn, fk, gk,m) and let K

(k)′
n denote

the operator K(Yn−1, Yn, fk, gk,mk). Let K̃
(k)
n , K̃

(k)′
n denote the respective normal-

izations. Let {pk} be a sequence of probability measures on R and define

Π(k)
n = K̃(k)

n oK̃
(k)
n−1o · · · oK̃(k)

1 pk
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and

Π(k)′
n = K̃(k)′

n oK̃
(k)′
n−1o · · · oK̃(k)′

1 pk.

Define

Π[pk]
n := K̃noK̃n−1o · · · oK̃1pk,

and set S := inf{n : Π
[pk]
n = 0 for some k}.

Define a(x) := [2M + C]/σ + [σ/σ]|x| ≡ c0 + c1|x|.
Then we have the following result. It will be seen that the conditions are not too

restrictive.
Theorem 3.2. Assume that S = ∞ with probability one. Suppose that there is

ε0 > 0 such that f := inf{f(u) : |u| ≤ c0 + ε0} > 0, and

lim
k→∞

sup
x∈[−M,M ]

| ln gk(x)− ln g(x)| = 0,

where | ln(0)− ln(0)| = 0. For all k ∈ [0,∞), define ρk(·) by

sup
x∈[−l,l]

| ln fk(x)− ln f(x)| =: ρk(l),(19)

and suppose that Eρk(a+ b|ξ1|) → 0 as k →∞ for all positive a, b. Then

(i) limk→∞ lim supn→∞E||Πn −Π
(k)
n ||TV = 0.

(ii) Define ρ∗(·) by

sup
x,y∈[−l,l];x6=y

| ln f(x)− ln f(y)|
|x− y| =: ρ∗(l).

Suppose that for all positive a, b, Eρ∗(a+b|ξ1|) <∞. Finally assume that mk converges
to m uniformly on R. Then

lim
k→∞

lim sup
n→∞

E||Πn −Π(k)′
n ||TV = 0.

Remark 2. We note that the condition S = ∞ with probability one is satisfied,
for example, if pk is mutually absolutely continuous with respect to p for every k.
The above stated conditions on f, fk are satisfied, if for example, f ∼ N(µ, σ), fk ∼
N(µk, σk) and µk, σk converge to µ, σ, respectively, as k → ∞. More generally, if
we have the common forms gk(x) = e−φk(x) and g(x) = e−φ(x) (and analogously for
f(·) and fk(·)), then the conditions on the convergence of the logs of the densities
become conditions on the convergence of the φk(·), and we can see that they are not
too stringent.

Proof of Theorem 3.2. By (3) and the triangle inequality for the total variation
norm, we have

||Π(k)
n −Πn||TV ≤ [2/ ln(3)]h(Π(k)

n ,Π[pk]
n ) + ||Π[pk]

n −Πn||TV .

From Corollary 3.3 of [5] we know that for all k, h(Π
[pk]
n ,Πn) converges to zero with

probability one as n → ∞. This immediately yields L1 convergence, of the second
term in the above inequality, for each fixed k. Therefore it suffices to consider the
first term in the above inequality.
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Observe now that (as in Theorem 3.1)

h(Π(k)
n ,Π[pk]

n ) ≤ h(K(k)
n Π

(k)
n−1,KnΠ

(k)
n−1) + h(KnΠ

(k)
n−1,KnΠ

[pk]
n−1).(20)

We will now consider the second term above. From Birkhoff’s contraction inequality,
we know that it can be at most,

tanh

(
C(Kn)

4

)
h(Π

(k)
n−1,Π

[pk]
n−1).

Also, using the definition of C(·) and (18),

C(Kn) = ln


sup
y,y′

ess supx,x′


f(x−m(y)

σ(y) )f(x
′−m(y′)
σ(y′) )

f(x−m(y′)
σ(y′) )f(x

′−m(y)
σ(y) )




 ,(21)

where the first supremum is taken over x, x′ ∈ [Yn−1−M,Yn−1 +M ] and the essential
supremum is with respect to the Lebesgue measure on [Yn−M,Yn+M ]2. A straight-
forward computation using (A.2) and (A.3) shows that for x ∈ [Yn −M,Yn +m] and

y ∈ [Yn−1 −M,Yn−1 +M ], we have x−m(y)
σ(y) < c0 + c1|ξn|. Hence for |ξn| < ε0/c1 and

x, y as above, f(x−m(y)
σ(y) ) ≥ f. In view of (21) it then follows that

C(Kn)I|ξn|<ε0/c1 ≤ ln

(
f

2

f2

)
I|ξn|<ε0/c1 .

This implies that

tanh

(
C(Kn)

4

)
≤ 1−

(
1− tanh

(
1

4
ln

(
f

2

f2

)))
I|ξn|<ε0/c1 := δ(ξn).

Using the above inequality for the second term on the right side of (20) we have that

h(KnΠ
(k)
n−1,KnΠ

[pk]
n−1) ≤ δ(ξn)h(Π

(k)
n−1,Π

[pk]
n−1)(22)

Now we consider the first term on the right side of (20). For an arbitrary positive
finite measure ν on [Yn−1 −M,Yn−1 +M ], and a Borel set A in B[Yn −M,Yn +M ],

the term K
(k)
n ν(A) is equal to∫

A

∫
gk(Yn − x)fk

(
x−m(y)

σ(z)

)
σ−1(y)ν(dy)dx.(23)

Now define

ρk := sup
|x|<M

| ln gk(x)− ln g(x)|.

Then clearly, for x ∈ [Yn −M,Yn +M ],

e−ρkg(Yn − x) ≤ gk(Yn − x) ≤ eρkg(Yn − x).(24)

Next note that in view of the convergence assumption on ln fk (see (19)) and
recalling that for x ∈ [Yn − M,Yn + M ]and y ∈ [Yn−1 − M,Yn−1 + M ], we have
x−m(y)
σ(y) ≤ a(ξn), it follows that for such x, y,

e−ρk(a(ξn))f

(
x−m(y)

σ(y)

)
≤ fk

(
x−m(y)

σ(y)

)
≤ eρk(a(ξn))f

(
x−m(y)

σ(y)

)
.(25)
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Using the inequalities, (24) and (25) in the representation for K
(k)
n ν(A) (see (23)), we

have that

e−ρk(a(ξn))−ρkKnν(A) ≤ K(k)
n ν(A) ≤ eρk(a(ξn))+ρkKnν(A).

The above inequality yields that

h(K(k)
n Π

(k)
n−1,KnΠ

(k)
n−1) ≤ 2ρk(a(ξn)) + 2ρk.(26)

This observation in conjunction with (22) when used on the right side of (20) gives

h(Π(k)
n ,Π[pk]

n ) ≤ 2ρk(a(ξn)) + 2ρk + δ(ξn)h(Π
(k)
n−1,Π

[pk]
n−1).

Iterating the above inequality, we obtain

h(Π(k)
n ,Π[pk]

n ) ≤
n∑

j=1

(2ρk(a(ξj)) + 2ρk)δ(ξj+1) · · · δ(ξn).

Taking expectations we get

E[h(Π(k)
n ,Π[pk]

n )] ≤ 2(Eρk(a(ξ1)) + ρk)/(1− δ),

where δ := Eδ(ξ1) is strictly less than one, since in view of the assumption on the
support of f , P (|ξ1| < ε0/c1) > fε0/c1 > 0. (Note c1 ≥ 1.) This proves (i).

We now prove (ii). As in the proof of (i), we have the inequality:

||Π(k)′
n −Πn||TV ≤ [2/ ln(3)]h(Π(k)′

n ,Π[pk]
n ) + ||Π[pk]

n −Πn||TV .

The second term converges in L1 as n → ∞ for each fixed k. Hence, it suffices to
consider the first term. Again, an application of the triangle inequality as in (i) yields

h(Π(k)′
n ,Π[pk]

n ) ≤ h(K(k)′
n Π

(k)′
n−1,KnΠ

(k)′
n−1) + δ(ξn)h(Π

(k)′
n−1,Π

[pk]
n−1).(27)

Finally, consider the first term in the above inequality. By definition, K
(k)′
n Π

(k)′
n−1

equals ∫
.

∫
gk(Yn − x)fk

(
x−mk(y)

σ(z)

)
σ−1(y)ν(dy)dx.(28)

Let δk := supx∈R |mk(x) − m(x)|. By hypothesis δk → 0 as k → ∞. Now let
Mo > 0 be such that, ∀k ≥ M, δk < σ. Then ∀k > Mo, x ∈ [Yn −M,Yn + M ], z ∈
[Yn−1 −M,Yn−1 +M ],

|x−mk(z)

σ(z)
| ≤ |x−m(z)

σ(z)
|+ |m(z)−mk(z)

σ(z)
| ≤ a(ξn) + 1.(29)

We have by a straightforward application of a triangle inequality that for all k > Mo,

| ln fk(x−mk(z)
σ(z) )− ln f(x−m(z)

σ(z) )| is bounded above by the sum of

∣∣∣∣ln fk
(
x−mk(z)

σ(z)

)
− ln f

(
x−mk(z)

σ(z)

)∣∣∣∣
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and ∣∣∣∣ln f
(
x−mk(z)

σ(z)

)
− ln f

(
x−m(z)

σ(z)

)∣∣∣∣ .
In view of the definition (19), the first of these terms is bounded by ρk(a(ξn) + 1). In
view of the Lipschitz condition on f , the second term is bounded by ρ∗(a(ξn)+1)δk/σ.

Using this observation in the representation of K
(k)′
n Π

(k)′
n−1(i.e., the expression (28)

along with (24), we have that ∀k > Mo

e−ρk(a(ξn)+1)−ρ∗(a(ξn)+1)δk/σ−ρkKn ≤ K(k)′
n ≤ eρk(a(ξn)+1)+ρ∗(a(ξn)+1)δk/σ+ρkKn.

Therefore

h(K(k)′
n Π

(k)′
n−1,KnΠ

(k)′
n−1) ≤ 2 (ρk(a(ξn) + 1) + ρ∗(a(ξn) + 1)δk/σ + ρk) .

Using the above inequality in (27) we have that ∀k > Mo

h(Π(k)′
n ,Π[pk]

n ) ≤ 2 (ρk(a(ξn) + 1) + ρ∗(a(ξn) + 1)δk/σ + ρk) + δ(ξn)h(Π
(k)′
n−1,Π

[pk]
n−1).

Iterating the above inequality and taking expectations, we get

E[h(Π(k)′
n ,Π[pk]

n )] ≤ 2 (E [ρk(a(ξ1) + 1) + ρ∗(a(ξ1) + 1)δk/σ + ρk]) /(1− δ),

The proof now follows on observing that

E [ρk(a(ξ1) + 1) + ρ∗(a(ξ1) + 1)δk/σ + ρk] → 0

as k →∞.

4. Continuous time signals with point process observations. In this sec-
tion we will examine the filter robustness properties for a continuous time signal where
the observations are a point process. The signal satisfies one step mixing type prop-
erties similar to those used in Theorem 3.1. The first result on asymptotic stability
(Theorem 4.1) shows that asymptotically the filter output does not depend on the
initial condition. It is the point process analog of the results in [1], and is new. The
proof uses the Hilbert projective metric and Birkhoff’s contraction coefficient. The
basic convergence result is pathwise. The main difficulty is that the contraction in
the total variation distance between the filters is given from the time of one obser-
vation to the next, but the contraction is not uniform since the observations times
are not equally spaced; the observations can occur at any time. Because of this the
initial analysis is in the mean. Nevertheless, one can recover the almost sure conver-
gence on noting that the distance in the Hilbert projective metric is nonincreasing. In
the second theorem of this section we consider the general robustness problem. The
analysis is more involved since one needs to keep track of the errors caused by the
incorrect transition function, continuously in time, since the observations can occur
at any time.

The precise model is the following. Let (Ω,F , P ) be a probability space and let
{Xt, t ≥ 0} be a cadlag Markov process on this space taking values in a Polish space
S. Let S be the Borel σ-field on S. We assume that {Xt, t ≥ 0} has a stationary
transition density, denoted by Gt(x, y), t ≥ 0, with respect to some σ-finite measure
m on (S,S). The distribution of X0 is denoted by p0. We assume that there exist
maps f1, f2 from (0,∞) to [0,∞) and a, b ∈ (0,∞), a < b such that
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(H) sup
t∈[a,b]

f2(t)

f1(t)
<∞,

and ∀t ∈ (0,∞) and for x, y ∈ S

f1(t) ≤ Gt(x, y) ≤ f2(t),(30)

where 0/0 = 0.
Condition (H) is not very restrictive since a, b are arbitrary. The observation

process {Yt, t ≥ 0} is assumed to be a real-valued (right continuous) Poisson process
with intensity λ(Xt, Yt), where λ(·) is assumed to be bounded from both above and
below, i.e., for all x ∈ S:

0 < λ1 ≤ λ(x, y) ≤ λ2 <∞.

We note that the vector-valued observation case is treated in the same way, and with
the same result, but we wish to keep the notation simple. To obtain a representation
for the filter, we use the usual measure transformation method and introduce another
probability space (Ω1,F1, P1) on which we define a copy of the process Xt, denoted by

X
(0)
t . Let (Ω,F , Q) be the product space: (Ω,F , P )⊗(Ω1,F1, P1). We define processes

{Xt, Yt, t ≥ 0} and {X(0)
t , t ≥ 0} on the extended space in the usual manner. By

construction, the process {X(0)
t , t ≥ 0} is independent of the processes {Xt, Yt, t ≥ 0}.

Let Π
(p0)
t denote the conditional distribution of Xt given σ{Ys, 0 ≤ s ≤ t}. Let q

be a real-valued, measurable, and bounded function on S. It is well known (cf. [4])

that Π
(p0)
t can be written as

Π
(p0)
t q :=

Π̃
(p0)
t q

Π̃
(p0)
t 1

,

where

Π̃
(p0)
t q := EQ

[
Ltq(X

(0)
t )|Ys : s ≤ t

]
,

where

Lt :=


 ∏

0≤s≤t
λ(X(0)

s , Ys−)∆Ys


 exp

(
−
∫ t

0

λ(X(0)
s , Ys)ds

)
,

where ∆Ys = Ys − Ys−. The empty product is defined to be unity.
Now let p1 be an arbitrary probability measure on (S,S) and introduce a Markov

process on (Ω1,F1, P1), denoted by {X(1)
t , t ≥ 0}, with initial distribution p1 and the

same transition function as {X(0)
t , t ≥ 0}. By the construction of the product space,

under Q̄ the process {X(1)
t , t ≥ 0} is independent of {Xt, Yt, t ≥ 0}. Define

Π
(p1)
t q :=

Π̃
(p1)
t q

Π̃
(p1)
t 1

,

where

Π̃
(p1)
t q := EQ

[
L̃tq(X

(1)
t )|Ys : s ≤ t

]
,
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and

L̃t :=


 ∏

0≤s≤t
λ(X(1)

s , Ys−)∆Ys


 exp

(
−
∫ t

0

λ(X(1)
s , Ys)ds

)
.

The following result states that the effects of the initial condition disappear as
time goes to infinity.

Theorem 4.1. (a) h(Π
(p1)
t ,Π

(p0)
t ) converges to 0 with probability one as t→∞.

(b) If h(p0, p1) <∞ then the above convergence is in Lp for every 0 < p <∞.

Proof. We begin by noting that Π
(pi)
t , i = 0, 1, can be recursively obtained as

follows: Let T1, T2, . . . be the jump times of the Poisson process {Yt, t ≥ 0}, and
define T0 = 0. For j ≥ 1, define τj = Tj − Tj−1. Let q be a bounded real-valued
measurable function. For s, t ∈ [Tj , Tj+1), s < t, j ≥ 0, i = 0, 1, we have the following
equality:

Π
(pi)
t q = c

∫
S

EQ

[
q(X

(i)
t−s) exp

{
−
∫ t−s

0

λ(X(i)
u , YTj )du

} ∣∣X(i)
0 = x, YTj , Tj

]
Π(pi)
s (dx),

where c is some normalizing constant. For s ∈ [Tj , Tj+1), t = Tj+1 we have

Π
(pi)
Tj+1

q = c

∫
S

EQ

[
q(X

(i)
Tj+1−s)λ(X

(i)
Tj+1−s, YTj )

× exp

{
−
∫ Tj+1−s

0

λ(X(i)
u , YTj )du

}∣∣∣∣X(i)
0 = x, YTj , Tj , Tj+1

]
Π(pi)
s (dx).

The first equation yields that for any positive-valued and measurable function q and
s, t ∈ [Tj , Tj+1), s < t and j ≥ 0,

exp(−λ1(t− s))

∫
S

Gt−s(x, y)q(y)m(dy)

≥ EQ

[
q(X

(i)
t−s) exp

{
−
∫ t−s

0

λ(X(i)
u , YTj )du

} ∣∣X(i)
0 = x, YTj , Tj

]

≥ exp(−λ2(t− s))

∫
S

Gt−s(x, y)q(y)m(dy).(31)

By (4), (6), and (31) we have the inequality

h(Π
(p1)
t ,Π

(p0)
t ) ≤ tanh


 ln f2(t−s)

f1(t−s) + (λ2 − λ1)(t− s)

2


h(Π(p1)

s ,Π(p0)
s ).

Similar considerations show that for s ∈ [Tj , Tj+1) and t = Tj+1,

h(Π
(p1)
Tj+1

,Π
(p0)
Tj+1

) ≤ tanh


 ln

f2(Tj+1−s)
f1(Tj+1−s) + (λ2 − λ1)(Tj+1 − s) + ln λ2

λ1

2


h(Π(p1)

s ,Π(p0)
s ).

(32)

The above inequalities show in particular that h(Π
(p1)
t ,Π

(p0)
t ) is nonincreasing in t.

This observation and assertion (a) yields assertion (b) via the monotone convergence
theorem.
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Now letting δi denote

tanh


 ln f2(τi)

f1(τi)
+ (λ2 − λ1)τi + ln λ2

λ1

2


 ,

we obtain

h(Π
(p1)
Tn

,Π
(p0)
Tn

) ≤ δnh(Π
(p1)
Tn−1

,Π
(p0)
Tn−1

).(33)

Denoting σ{Xt, t ≥ 0} by FX , we have for every m > 1,

P {∃n : τn > a, n ≤ m} = 1− E

{
E

[
m∏
i=1

I(τj≤a)
∣∣FX

]}
.

Since E[I(τj≤a)|FX , T1, . . . , Tj−1] is at most 1− e−aλ1 , we must have that

P {∃n : τn > a} = 1.

Next observe that τn(ω) > a implies that h(Π
(p1)
Tn

,Π
(p0)
Tn

) is finite, since from (30) and
the proved monotonicity of the Hilbert distance it can be at most 2[ln f2(a)/f1(a) +
(λ2 − λ1)a], which is finite by hypothesis. Hence, it follows that

P
{
∃n : h(Π

(p1)
Tn

,Π
(p0)
Tn

) <∞
}

= 1.

Now let m = inf{n : h(Π
(p1)
Tn

,Π
(p0)
Tn

) < ∞}, then P{m < ∞} = 1. We show

now that E[h(Π
(p1)
Tn

,Π
(p0)
Tn

)|F0] converges to zero with probability one as n → ∞,

where F0 := FX ∨ σ{m,T1, . . . , Tm}. This will imply that h(Π
(p1)
Tn

,Π
(p0)
Tn

) converges

in probability to 0. Then the proved monotonicity property of h(Π
(p1)
Tn

,Π
(p0)
Tn

) implies

that h(Π
(p1)
t ,Π

(p0)
t ) converges with probability one as t→∞.

We begin by observing that for n > m(ω),

E
[
h(Π

(p1)
Tn

,Π
(p0)
Tn

)|F0

]
≤ E

((
n∏

i=m+1

δi

)
|F0

)
h(Π

(p1)
Tm

,Π
(p0)
Tm

).(34)

Observe that

δi = 1− 2


 f1(τi)λ1

f2(τi)λ2
e−(λ2−λ1)τi

1 + f1(τi)λ1

f2(τi)λ2
e−(λ2−λ1)τi


 .

Therefore, for τi ∈ [a, b],

δi ≤ 1− 2
e−(λ2−λ1)b/C

1 + e−(λ2−λ1)b/C
,

where

C :=
λ2

λ1
sup
t∈[a,b]

f2(t)/f1(t),

which is finite by hypothesis.
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Defining γ = 1− 2 e−(λ2−λ1)b/C

1+e−(λ2−λ1)b/C
, we can write

P
{
δi ≤ γ

∣∣F0, Tm+1, . . . , Ti−1

} ≥ P
{
τi ∈ [a, b]

∣∣F0, Tm+1, . . . , Ti−1

}
.

Finally, observe that for every i > m(ω)

P
{
τi ∈ [a, b]

∣∣F0, Tm+1, . . . , Ti−1

} ≥ e−aλ2

(
1− e−λ1(b−a)

)
> 0.

This implies that there exists a constant γ < 1 such that

E[δm+j |F0, Tm+1, . . . , Tm+j−1] ≤ γ

for all j ≥ 0. This and (34) imply that E[h(Π
(p1)
Tn

,Π
(p0)
Tn

)|F0] → 0 a.s., which completes
the proof.

Remark 3. The hypothesis (H) is satisfied if {Xt, t ≥ 0} is a diffusion on a compact
Riemannian manifold with smooth drift and diffusion coefficients and a strictly elliptic
generator, as shown in [2].

In the final part of this section we consider the above filtering problem, where in
addition to an incorrect initial condition, there is a misspecification in the transition
kernel. Let Gt be as before and replace (H) with the following stronger condition
(H1).

There exist maps f1, f2 from (0,∞) to [0,∞) such that

(H1) ∀ a, b ∈ (0,∞) , supt∈[a,b]
f2(t)
f1(t)

<∞,

and ∀t ∈ (0,∞) and for x, y ∈ S

f1(t) ≤ Gt(x, y) ≤ f2(t),(35)

where 0/0 = 0.

Let G
(k)
t , k ≥ 1, be a sequence of transition probability kernels, and let pk, k ≥ 1,

be a sequence of probability measures on (S,S). Let (Ω1,F1, P1) and (Ω,F , Q) be as
before.

For k ≥ 1, define the Markov processes {X(k)
t , t ≥ 0}, on (Ω1,F1, P1) with initial

distribution pk and transition probability kernel G
(k)
t . Under Q, they are independent

of {Xt, Yt, t ≥ 0}. Define

L
(k)
t :=


 ∏

0≤s≤t
λ(X(k)

s , Ys−)∆Ys


 exp

{
−
∫ t

0

λ(X(k)
s , Ys)ds

}
,(36)

and define the probability measure Π
(k)
t as follows: For A ∈ S,

Π
(k)
t (A) :=

EQ[L
(k)
t IA(X

(k)
t )|Ys : s ≤ t]

EQ[L
(k)
t |Ys : s ≤ t]

.(37)

Finally, for later notational convenience, on (Ω1,F1, P1) we define Markov processes

{X [k]
t , t ≥ 0} with initial distribution pk and transition probability kernel Gt. They

are also independent of {Xt, Yt, t ≥ 0}, under Q. Define L
[k]
t and Π

[k]
t as in (36) and

(37) by replacing (k) with [k]. We will assume the following condition on the kernels

G
(k)
t :
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(H2) lim supk→∞ sup0≤t≤δ0 sup(x,y)∈S×S | lnG(k)
t (x, y)− lnGt(x, y)| = 0,

for some δ0 > 0, where | ln(0)− ln(0)| = 0.

Condition (H2) says that the distance (in a log scale) between Gt(·) and G
(k)
t (·) is

small for large k uniformly for t in some interval containing the origin. The theorem
says that the outputs of filters (with the same observation process) but built under
different assumptions on the transition kernel for the signal process, will eventually
be close with a high probability if the two kernels are close in the given metric,
irrespective of the (different) initial conditions.

Theorem 4.2. Assume that (H1) and (H2) hold, then ∀δ, 0 < δ < δ0, there
exists a sequence of stopping times, tn, with respect to the filtration σ{Ys : s ≤ t},
increasing to ∞ and satisfying |tn+1 − tn| < δ, with probability one and such that

lim
k→∞

lim sup
n→∞

P
{
h(Πtn ,Π

(k)
tn ) > ε

}
= 0

for every ε > 0. In fact, given tn, tn+1 equals the time of the next observation if this
occurs no later than δ units of time later; otherwise it is tn + δ.

Proof. For notational simplicity we present the proof for the case where λ(x, y) ≡
λ(x). Let {Tn} continue to denote the jump times of Y . Define tn as in the theorem
statement. More formally, set t1 := T1 ∧ δ and for n > 1, define tn := tn−1 + (T ∗n −
tn−1) ∧ δ, where T ∗n := inf{Tj : Tj > tn−1}. Observe that tn − tn−1 ≤ δ and tn
increases to infinity with probability one. We begin by observing that the triangle
inequality implies that

h(Πtn ,Π
(k)
tn ) ≤ h(Πtn ,Π

[k]
tn ) + h(Π

[k]
tn ,Π

(k)
tn ).(38)

By Theorem 4.1, for each fixed k the first term converges to zero with probability
one as n→∞. Therefore it suffices to consider the second term. For the second term
we will show that

lim
k→∞

sup
n

E
[
h(Π

(k)
tn ,Π

[k]
tn )
]

= 0.(39)

Clearly, this will give the desired result. Let τ∗n := tn − tn−1. Define a sequence of
nonnegative operators, {Kn}n≥1, on M(S) as follows. For a measurable function
q : S → [0,∞) and µ ∈M(S), tn ∈ {Tj ; j ≥ 1}, set

Kn(µ)q :=

∫
S

EQ

[
q(X

(0)
τ∗n

)λ(X
(0)
τ∗n

)

exp

{
−
∫ τ∗n

0

λ(X(0)
u )du

}∣∣X(0)
0 = x, Tj , j ≥ 1

]
µ(dx).(40)

Otherwise, for tn 6∈ {Tj ; j ≥ 1}, set

Kn(µ)q :=

∫
S

EQ

[
q(X

(0)
τ∗n

) exp

{
−
∫ τ∗n

0

λ(X(0)
u )du

}∣∣X(0)
0 = x, Tj , j ≥ 1

]
µ(dx).

(41)

Define the operators K
(k)
n in a similar fashion by replacing X(0) by X(k). Then clearly,

Π
(k)
tn = K

(k)
n Π

(k)
tn−1

and Π
[k]
tn = KnΠ

[k]
tn−1

. By applying the triangle inequality to the
first term on the right side of (38), we have

h(Π
(k)
tn ,Π

[k]
tn ) ≤ h(K(k)

n Π
(k)
tn−1

,KnΠ
(k)
tn−1

) + h(KnΠ
(k)
tn−1

,KnΠ
[k]
tn−1

).(42)
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Now we will obtain an upper bound for the first term on the right side of the
above inequality. Assume initially that tn ∈ {Tj ; j ≥ 1}. Then for x ∈ S and q as

before, and letting δx denote the Dirac measure at x, K
(k)
n (δx)q can be written as

e−λ2τ
∗
nEQ

[
q(X

(k)
τ∗n

)λ(X
(k)
τ∗n

) exp

{∫ τ∗n

0

(λ2 − λ(X(k)
u ))du

}∣∣X(k)
0 = x, Tj , j ≥ 1

]
.

For y ∈ S, define λ∗(y) = λ2 − λ(y). Then we can write

exp

{∫ τ∗n

0

(λ2 − λ(X(k)
u ))du

}
= 1 +

∞∑
j=1

∫ τ∗n

0

∫ sj−1

0

· · ·
∫ s1

0

λ∗(X(k)
sj−1

) · · ·λ∗(X(k)
s0 ) ds0 · · · dsj−1.

The above representation yields that K
(k)
n (δx)q equals

e−λ2τ
∗
n

[
EQ[q(X

(k)
τ∗n

)λ(X
(k)
τ∗n

]

+

∞∑
j=1

∫ τ∗n

0

∫ sj−1

0

∫ s1

0

EQ[q(X
(k)
τ∗n

)λ(X
(k)
τ∗n

)λ∗(X(k)
sj−1

) · · ·λ∗(X(k)
s0 )]ds0 · · · dsj−1

]
,

(43)

where the expectation is over everything but τ∗n.
Next observe that the expectation inside the multiple integral above can be writ-

ten as ∫
Sj+1

λ(xj+1)q(xj+1)λ
∗(xj) · · ·λ∗(x1)G

(k)
τ∗n−sj (xj , xj+1)

· · ·G(k)
s0 (x, x1)dm(x1) · · · dm(xj+1)(44)

Define

ρk := sup
0≤t≤δ0

sup
(x,y)∈S×S

| lnG(k)
t (x, y)− lnGt(x, y)|.

By hypothesis ρk → 0 as k →∞. Moreover, ∀u ∈ [0, δ0] and (x, y) ∈ S × S,

e−ρkGu(x, y) ≤ G(k)
u (x, y) ≤ eρkGu(x, y).

Using this observation in (44) we obtain that K
(k)
n (δx)q is bounded above by

exp {ρk + λ2τ
∗
n(eρk − 1)}EQ

[
q(X

(0)
τ∗n

)λ(X
(0)
τ∗n

)

× exp

{
−eρk

∫ τ∗n

0

λ(X(0)
u )du

}∣∣X(0)
0 = x, Tj , j ≥ 1

]
.

and below by

exp
{−ρk + λ2τ

∗
n(e−ρk − 1)

}
EQ

[
q(X

(0)
τ∗n

)λ(X
(0)
τ∗n

)

× exp

{
−e−ρk

∫ τ∗n

0

λ(X(0)
u )du

}∣∣X(0)
0 = x, Tj , j ≥ 1

]
.
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Furthermore, the upper bound is bounded above by

exp {ρk + λ2τ
∗
n(eρk − 1)}Kn(δx)q,

and the lower bound is bounded below by

exp
{−ρk + λ2τ

∗
n(e−ρk − 1)

}
Kn(δx)q.

On recalling the definition of the Hilbert projective distance, using (2), and noting
that τ∗n ≤ δ, these bounds yield

h(K(k)
n Π

(k)
tn−1

,KnΠ
(k)
tn−1

) ≤ λ2δ[e
ρk − e−ρk ] + 2ρk.

Recall that we have proved the above inequality for tn ∈ {Tj : j ≥ 1}. However, it is
easy to see that the inequality continues to hold for tn 6∈ {Tj : j ≥ 1}. (Compare (40)
and (41).) Define εk = λ2δ[e

ρk − e−ρk ] + 2ρk. Then εk → 0 as k →∞ and

h(K(k)
n Π

(k)
tn−1

,KnΠ
(k)
tn−1

) ≤ εk ∀n ≥ 1.(45)

Now consider the second term on the right side of (42). Using Birkhoff’s contraction
inequality, we have

h(KnΠ
(k)
tn−1

,KnΠ
[k]
tn−1

) ≤ tanh(C(Kn)/4)h(Π
(k)
tn−1

,Π
[k]
tn−1

).(46)

Moreover, the arguments in the proof of Theorem 4.1 show that

C(Kn) ≤ 2

(
ln
f2(τ

∗
n)

f1(τ∗n)
+ λ2τ

∗
n + lnλ2/λ1

)
.(47)

It follows now from (42), (45), (46), (47) that

h(Π
(k)
tn ,Π

[k]
tn ) ≤ εk

n∑
j=1

δj · · · δn,(48)

where

δn := tanh


 ln

f2(τ
∗
n)

f1(τ∗n) + λ2τ
∗
n + lnλ2/λ1

2


 .

Next note that

EQ [δj · · · δn] ≤ EQ

{
δj · · · δn−1EQ

[
δn
∣∣FX , t1, · · · , tn−1

]}
.

Also, as in Theorem 4.1 (see the arguments following inequality (34)),

EQ

[
δn
∣∣FX , t1, . . . , tn−1

] ≤ 1− γ∗P
{
τ∗n ∈ [δ/2, δ]

∣∣FX , t1, . . . , tn−1

}
,

where

γ∗ := 2

[
e−λ2δ/C

1 + e−λ2δ/C

]
,
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and

C := [λ1/λ2] sup
t∈[δ/2,δ]

f2(t)/f1(t).

Also

P
{
τ∗n ∈ [δ/2, δ]

∣∣FX , t1, . . . , tn−1

}
> P

{
Ytn−1+δ − Ytn−1 = 0

∣∣FX , t1, . . . , tn−1

}
.

The last term on the right is obviously greater than e−λ2δ. Therefore,

EQ

[
δn
∣∣ FX , t1, . . . , tn−1

] ≤ 1− γ∗e−λ2δ =: κ.

Using this observation in (48), we get

E[h(Π
(k)
tn ,Π

[k]
tn )] ≤ εk/(1− κ).

This proves (39) and hence the theorem.

Acknowledgments. We would like to thank a careful referee for pointing out
an error in the proof of Theorem 3.1 and suggesting an alternate proof.
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Abstract. This paper is concerned with nonlinear filtering and control of a switching diffusion
coupled by an unknown Markov chain. Two statistical estimation methods are used to track the
unknown Markov chain. Computable approximate filters are obtained based on these methods. The
filters are then used to construct controls for the partially observed system. These controls are shown
to be asymptotically optimal as the observation noise tends to zero. Finally an example is considered
and numerical experiments are reported.

Key words. nonlinear filtering, hybrid system, interacting multiple model, small observation
noise, nearly optimal control
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1. Introduction. Let (α(t), x(t)), t ≥ 0, denote a pair of signal (or state)
processes which is not directly observable. Consider the case that a function of
(α(s), x(s)), s ≤ t, (linear in x(·)) with an additive noise is observable given by
y(t). Let u(t), t ≥ 0, be a control process depending on the observation y(·) up to
time t. Assume both x(·) and y(·) are R

p-valued stochastic processes satisfying the
equations {

dx(t) = b(t, α(t), x(t), u(t))dt+ σ(t, α(t))dw(t), x(0) = x0,
dy(t) = h(t, α(t), x(t))dt+ εdv(t), y(0) = 0,

(1.1)

for 0 ≤ t ≤ T , where T is a finite number, x0 is a given random variable, α(·) is an
unknown Markov process, (w(·), v(·)) is a standard Brownian motion, and ε > 0 is a
small parameter. Here we only consider those u(·) under which the equations in (1.1)
have a (strong) solution.

Let Yt denote the σ-algebra generated by the observation process y(·) up to time
t, i.e., Yt = σ{y(s) : 0 ≤ s ≤ t}. The objective of the problem is to choose a Yt
progressively measurable control u(·) to minimize the cost functional

J(u(·)) = E

∫ T

0

L(t, α(t), x(t), u(t))dt.(1.2)

First of all, let us consider the case when α(t) is a constant over time, say α(t) =
α0. If α0 is known and ε = 0 in (1.1), then the system reduces to a completely
observable system provided that h is one-to-one in x. So for ε small but different
from zero, the problem under consideration is a singular perturbation of a “trivial”
situation. In Haussmann and Zhang [11], such optimal control problems were studied
with the aid of the extended Kalman filter (EKF) and the Picard filter (PF). Controls

∗Received by the editors January 27, 1997; accepted for publication (in revised form) November
11, 1997; published electronically June 9, 1998. This research was supported in part by Office of
Naval Research grant N00014-96-1-0263 and in part by the University of Georgia Faculty Research
Grant.

http://www.siam.org/journals/sicon/36-5/31544.html
†Department of Mathematics, University of Georgia, Athens, GA 30602 (qingz@math.uga.edu).

1638



FILTERING AND CONTROL OF A SWITCHING DIFFUSION 1639

based on the filtering outcomes were obtained, which are shown to be asymptotically
optimal as ε→ 0.

When α0 is not available to the controller of the system, the situation becomes
more complicated. One of the major difficulties lies in the nonlinearility of system
(1.1). If (1.1) is a linear system, the optimal control problem was solved by Hijab [14]
and Caines and Chen [3] assuming an a priori distribution of the unknown parameter.
However, in some practical situations, such a priori knowledge of α0 is not available.
To deal with the problem in this case, Haussmann and Zhang [12] used two statistical
hypothesis tests, the quadratic variation test (QVT) and the likelihood ratio (least-
squares) test (LRT), to estimate the value of α0 and to choose among competing
filters on successive time intervals. Then a control policy is obtained by using the
filtering outcomes which is shown to be asymptotically optimal. The QVT and the
LRT schemes were introduced by Fleming and Pardoux [7] to identify the sign of
the state variable x(t) in a partially observed system; see also Fleming and Zhang
[9, 10] and Fleming et al. [6] for the corresponding discrete-time models and related
numerical results along this line.

In this paper we consider the case when α(·) is an unobservable Markov chain.
Typically, to solve the underlying control problem, one needs to solve the asso-
ciated filtering problem first, i.e., to find a conditional expectation (α̂(t), x̂(t)) =
E[(α(t), x(t))|Yt]. However, owing to the nonlinearity of the system, especially the
presence of α(·), obtaining (α̂(t), x̂(t)) requires solving the associated Zakai equation
(or the nonlinear filtering equation), which is inherently infinite dimensional. Much
effort in the literature was devoted to finite dimensional approximations. In Blom
and Bar-Shalom [2], a discrete-time version of the corresponding filtering problem
was considered. They proposed a numerical algorithm to compute (α̂(·), x̂(·)). The
algorithm seems to perform well numerically. However, there is no theoretical justifi-
cation for the optimality (or the near optimality) of these filters; see Li [18] for further
discussions.

In this paper, in order to design an approximate filter, we use the QVT (or the
LRT) to estimate the value of (α(t), x(t)) over time. We show that the resulting filters
are asymptotically optimal as the observation noise goes to 0. The random jumps of
α(·) create one of the major difficulties when verifying the near optimality of these
filters.

When dealing with a switching diffusion coupled by an unknown Markov chain,
most of the nonlinear filters in the literature require the generator of α(·) to be given.
In practice, it usually takes a certain period of time to estimate the generator matrix.
This creates a major problem if the generator is time dependent. The advantage
of the filtering methods used in this paper is that they do not require knowing the
generator of α(·). In fact, the methods used in this paper can be easily extended to
deal with much more general models in which even the Markovian assumption of α(·)
is unnecessary! In this connection, we refer to Remark 3.4 for discussions.

This paper extends the results on filtering and control in [12] to incorporate the
case when α(·) is an unknown Markov chain. The Markovian property is only required
when dealing with the feedback controls. We design approximate filters and feedback
controls for the problem under consideration. The main contribution of the paper is
the verification of the asymptotic optimality of these filters and controls.

This paper is concerned with nonlinear filtering and control of a partially observed
system. There is substantial literature on many related models and problems. For
classical results on nonlinear filtering, we refer the books by Kallianpur [15] and
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Liptser and Shiryayev [19]. For recent developments and review of the literature on
partially observed systems, we refer the reader to the books by Bensoussan [1], Elliott,
Aggoun, and Moore [5], Kushner [17], and references therein.

The paper is organized as follows. In the next section we formulate the problem
under consideration and make assumptions. In section 3, we study the nonlinear
filtering problem by using the QVT and the LRT methods and prove the asymptotic
optimality of these filters. Then in section 4, we consider control policies based on
the filtering results together with the dynamic programming approach. We show that
the constructed control policies are nearly optimal as ε → 0. In these sections we
use the idea of an EKF to design nonlinear filters. For small ε, an EKF can be
further approximated by a PF. In section 5, we extend these results to a hybrid linear
quadratic system. In section 6, we consider the PF and present further extensions of
these results to the case when the EKF is replaced by the corresponding PF. In section
7, we give a simple example and a set of numerical simulations to demonstrate the
performance of the schemes and to compare with an existing algorithm in filtering.
Finally, we conclude the paper by making some remarks. Technical results used in
the paper are given in the Appendix.

Before moving on to the next section, let us give a list of notation used in the
paper:

A′ the transpose of a matrix A;
Bc the complement of a set B;
I the identity matrix;
ID the indicator function of a set D;
O(x) a function of x such that supx6=0 |O(x)|/|x| <∞;
[a] the integer part of a number a;
tr(A) the trace of a matrix A;
∇xf the partial derivative ∂f/∂x;

|ξ(·)|T := E
∫ T
0
|ξ(t)|dt for a stochastic process ξ(·).

Also, K is used as a generic positive constant throughout. The values of the K
may be different for each appearance, but it should be clear from the context.

2. Problem formulation. Let (Ω,F , P ) denote a probability space and let
(w(·), v(·)) be a standard Brownian motion. Given a positive integer m, let M =
{1, 2, . . . ,m} denote the state space of α(·), i.e., α(t) ∈ M, t ≥ 0. We assume that
α(·) is a finite state Markov chain generated by a Borel measurable and bounded
matrix Q(t) = (qij(t)), t ≥ 0, with qij(t) ≥ 0 for i 6= j and qii(t) = −∑j 6=i qij(t).
The construction of a Markov chain generated by Q(t) can be given as in Davis [4].
A particular case of the generator is when Q(t) = Q, which is independent of t, and
the resulting Markov chain α(·) is stationary.

We make the following assumptions in this paper.
(A1) For each i ∈ M, b(t, i, x, u) is a Borel measurable function of (t, x, u). The

gradients ∇xb(t, i, x, u) and ∇ub(t, i, x, u) exist and are bounded.
(A2) There exist a matrix H(t, i) and a constant c > 0 such that h(t, i, x) =

H(t, i)x with H ′(t, i)H(t, i) ≥ cI > 0 for all t ≥ 0 and i ∈ M. Furthermore, for each
i ∈M, H(t, i) is bounded and continuously differentiable in t.

(A3) σ(t, i) = F (t, i)H ′(t, i) for symmetric matrices F (t, i) ≥ cI > 0. Moreover,
F (t, i) is bounded and continuously differentiable in t.

(A4) The initial value x0 is a Gaussian random variable and E|x0−Ex0|4 = O(ε2).
Moreover, x0, α(·), w(·), and v(·) are independent.

Remark 2.1. For notational simplicity, we use the Gaussian initial conditions
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in (A4). This requirement can be relaxed as in Haussmann and Zhang [11] to non-
Gaussian initial cases. The form assumed for σ(t, i) in (A3) is not as restrictive as it
appears. In fact, in the one-dimensional case, it is equivalent to the condition that
σ(t, i) 6= 0. For higher dimensional cases, we refer the papers Haussmann and Zhang
[11, 12] for related discussions.

3. Nonlinear filtering. In this section we consider the nonlinear filtering of the
problem under consideration. For simplicity in notation, we suppress the variable u
in (1.1) and consider the system given as{

dx(t) = b(t, α(t), x(t))dt+ σ(t, α(t))dw(t), x(0) = x0,
dy(t) = h(t, α(t), x(t))dt+ εdv(t), y(0) = 0.

(3.1)

Remark 3.1. In the context of target tracking and filtering, the model in (3.1)
is rich enough to capture many practical scenarios. To illustrate, let us consider
x(t) = (x1(t), x2(t)) with x1(t) ∈ R

3 representing the position of the target and
x2(t) ∈ R

3 its velocity. If we take α(t) to be the driving force of the target, then α(t)
is proportional to the acceleration rate of the target given by the derivative of x2(t).
Viewing the problem in this way, it is reasonable to consider the observation function
h(t, α, x) is dependent on α.

In practice the observation noise level mainly depends on the sensor measurement
characteristics. The development of new technology (such as the use of infrared
technology) makes it possible for having fairly small disturbances in observation. So it
is not only reasonable but also practical to consider the models with small observation
noise.

LetD[0, T ] denote the space of functions defined on [0, T ] that are right-continuous
and have a left-hand limit. Let

Θ = {θ(·) ∈ D[0, T ] : such that θ(t) ∈M, 0 ≤ t ≤ T}.
For notational convenience, we write θ = θ(·), for each θ(·) ∈ Θ. Let (x̃θ(t), Rθ(t)),

t ≥ 0, denote the output of the EKF under the condition that α(·) = θ. Then

dx̃θ(t) = b(t, θ(t), x̃θ(t))dt

+
1

ε2
Rθ(t)H ′(t, θ(t))

(
dy(t)− h(t, θ(t), x̃θ(t))dt

)
,

dRθ(t)

dt
= ∇xb(t, θ(t), x̃

θ(t))Rθ(t) +Rθ(t)(∇xb(t, θ(t), x̃
θ(t)))′

+F (t, θ(t))H ′(t, θ(t))H(t, θ(t))F (t, θ(t))

− 1

ε2
Rθ(t)H ′(t, θ(t))H(t, θ(t))Rθ(t),

(3.2)

with x̃θ(0) = Ex0 ∈ R
p and Rθ(0) = Cov(x0) ∈ R

p×p.
Given a fixed number 0 < σ < 1, let

Θε
σ =

{
θ(·) ∈ Θ : the number of jumps of θ(·) ≤ [1/εσ]

}
.

Then in view of Lemma A.6 in the Appendix, there exists a constant K such that

P (α(·) 6∈ Θε
σ) = P (α(·) jumps more than [1/εσ] times) ≤ Kε2.(3.3)

Thus, the set Θε
σ can be regarded as an approximation to Ω because P (α(·) ∈ Θε

σ) is
close to 1 due to the fact that

P (α(·) ∈ Θε
σ) = 1− P (α(·) 6∈ Θε

σ) ≥ 1−Kε2.
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Let γ0 > 0 be a constant and define

Θε
σ,γ0

=
{
θ = θ(·) ∈ Θε

σ : the duration between any two jumps of θ(·) ≥ γ0ε
}
.

If we let 0 = t0 < t1 < · · · < tn < T denote the jump times of θ(·), then θ(·) ∈ Θε
σ,γ0

implies that n ≤ [1/εσ] and tj+1 − tj ≥ γ0ε.
Let 0 = τ0 < τ1 < · · · denote the sequence of the random jump times of α(·).

Then, for j = 0, 1, . . ., the distribution of τj+1 − τj is exponential. Thus, for some
constant K, P (τj+1 − τj < t) ≤ Kt for t ≥ 0. It follows that

P (α(·) 6∈ Θε
σ,γ0

) ≤ P

( [1/εσ ]⋃
j=0

{τj+1 − τj < γ0ε}
)

+ P (α(·) 6∈ Θε
σ)

≤
[1/εσ ]∑
j=0

P (τj+1 − τj < γ0ε) +O(ε2) ≤
[1/εσ ]∑
j=0

Kε+O(ε2) = O(ε1−σ).

(3.4)

Therefore, Θε
σ,γ0

can also be considered as an approximation to Ω.
The sets Θε

σ and Θε
σ,γ0

are defined so that their elements meet certain require-
ments on the number of jumps and the duration between consecutive jumps. These
requirements are useful in the subsequent analysis.

Then as can be shown in Lemma A.3 that there exist γ0 > 0 and K such that for
each 0 < σ < 1, 0 < ε < ε0, and for all θ = θ(·) ∈ Θε

σ,γ0
,

Eθ

∫ T

0

∣∣x̂θ(t)− x̃θ(t)
∣∣2 dt ≤ Kε4,

where x̂θ(t) = Eθ[x(t)|Yt] and Eθ is the conditional expectation given α(·) = θ.
It is important to estimate the value of α(·) in the filtering problem under con-

sideration because if an estimate of α(·) is given, one can use such estimate to choose
the corresponding EKF as an estimate for x̂(·) as in Lemma A.3. In this section
we consider two statistical tests, the QVT and the LRT, to identify the value of the
unknown parameter process α(·) at a given time t.

In Haussmann and Zhang [12], they considered the case when α(t) = α0, a con-
stant parameter. So there are only a finite number of parameter values to examine.
In this paper we need to carry out the parameter identification at each time instant
t to incorporate random fluctuations of α(·).

QVT. For k = 0, 1, . . ., let

ζ(k) =
1

ε
(y(ε(k + 2))− 2y(ε(k + 1)) + y(εk)) .

We define a test statistic

Λn0,n =
1

ε(n− n0)

n−1∑
k=n0

|ζ(k)|2.

Let

µn0,n
i =

1

ε(n− n0)

∫ ε(n+1)

εn0

ρn0,n(s)tr(H(s, i)Q(s, i)H ′(s, i))2ds+ 2p,
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where, for n0, n = 0, 1, . . . ,

ρn0,n(s) =

{
φ2(s)I[εn0,εn] + φ2(s− ε)I[ε(n0+1),εn] if (n− n0) even
φ2(s)I[εn0,ε(n+1)] + φ2(s− ε)I[ε(n0+1),ε(n+1)] if (n− n0) odd,

and φ(s) is a “sawtooth” function on [0, T ] such that for any j = 0, 2, 4, . . . even,

φ(s) =


s− jε

ε
if jε ≤ s < (j + 1)ε

(j + 2)ε− s

ε
if (j + 1)ε ≤ s < (j + 2)ε.

(See Haussmann and Zhang [12] for interpretation of these functions.)
Given α(t) = i, εn0 ≤ t < εn, it can be shown as in [12] that for large (n − n0),

Λn0,n/µn0,n
i is close to 1 by the law of large numbers. In order to distinguish the

µn0,n
i ’s, we impose a detectability condition as in Fleming and Pardoux [7].

(A5) There exists a constant c > 0 such that∣∣∣tr (H(t, i)F (t, i)H ′(t, i))2 − tr (H(t, j)F (t, j)H ′(t, j))2
∣∣∣ ≥ c > 0

for i 6= j and all t ≥ 0.
In one-dimensional case, if F (t, i) = 1 and H(t, i) = H(i), which is independent

of t, then (A5) is equivalent to the condition |H(i)| 6= |H(j)|.
The QVT is given as follows: Let αn0,n denote a random variable such that

αn0,n = i0 if ∣∣∣∣Λn0,n

µn0,n
i0

− 1

∣∣∣∣ = min

{∣∣∣∣∣Λn0,n

µn0,n
j

− 1

∣∣∣∣∣ , j ∈M
}
.(3.5)

The next lemma gives the error probability of the QVT, which can be proved
similarly as in [12, Lemma 3.1].

Lemma 3.1. Assume (A1)–(A5). Then for each j = 1, 2, . . ., there exist k0 >
0, K > 0, ε0 > 0 such that for 0 < ε < ε0, n− n0 ≥ l0 := [k0(log ε)2] + 1,

P (αn0,n 6= i0|α(t) = i0, t ∈ [εn0, εn]) ≤ Kε2.(3.6)

It follows that

P ({αn0,n 6= i0} ∩ {α(t) = i0, t ∈ [εn0, εn]}) ≤ Kε2.(3.7)

Remark 3.2. As in Fleming and Pardoux [7], the error bounds in (3.6) and (3.7)
can be improved to an order of εk for any given k by choosing ε0 small enough and
K sufficiently large. In this paper, we need only the estimate up to an order of ε2.

In general, for εn ≤ t < ε(n+ 1), n = 0, 1, . . ., we define

α̃(t) =


1 if t ∈ [0, ε),
α0,n if n ≤ l0,
αn−l0,n if n ≥ l0.

(3.8)

We will show in Theorem 3.3 that α̃(·) is indeed a good approximation to α(·).
Next let us give another method for estimating the unknown process α(·) using

the outputs of several EKFs based on the principle of the well known least squares
algorithm; see [12] for related discussions.
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LRT. In the LRT, the detectability condition (A5) used for the QVT can be
relaxed to the following condition:

(A6) tr
(
H(t, i)F (t, i)H ′(t, i)−H(t, j)F (t, j)H ′(t, j)

)2

≥ c > 0 for i 6= j.

Note that the condition

tr
(
H(t, i)F (t, i)H ′(t, i)−H(t, j)F (t, j)H ′(t, j)

)2

= 0

implies H(t, i)F (t, i)H ′(t, i) = H(t, j)F (t, j)H ′(t, j). Clearly, (A5) implies (A6) be-
cause F (t, i) is a symmetric matrix.

Given 0 < σ < 1, let l1 = [1/εσ]. For each 0 ≤ t ≤ T , we consider the interval of
a moving window I(t) defined as follows:

I(t) = [γ1(t), γ2(t)) =


[
0,

[
t

ε

]
ε

)
if t ≤ l1,[[

t

ε

]
ε− l1ε,

[
t

ε

]
ε

)
if t > l1.

On the interval I(t), we consider the output of the EKF under the condition that
α(·) = i on I(t), i.e., α(s) = i for s ∈ I(t). Then

dx̃(i)(t) = b(t, i, x̃(i)(t))dt+
1

ε2
R(i)(t)H ′(t, i)

(
dy(t)− h(t, i, x̃(i)(t))dt

)
,

dR(i)(t)

dt
= ∇xb(t, i, x̃

(i)(t))R(i)(t) +R(i)(t)(∇xb(t, i, x̃
(i)(t)))′

+F (t, i)H ′(t, i)H(t, i)F (t, i)− 1

ε2
R(i)(t)H ′(t, i)H(t, i)R(i)(t),

with x̃i(γ1(t)) = x̃(γ1(t)), R
(i)(γ1(t)) = R̃(γ1(t)), and x̃(γ1(t)) and R̃(γ1(t)) will be

defined in what follows.
For each i ∈M, let L(i)(I(t)) denote a test statistics on I(t),

L(i)(I(t)) =
1

ε

(∫ γ2(t)

γ1(t)

(H(t, i)x̃(i)(t))′dy(t)− 1

2

∫ γ2(t)

γ1(t)

|H(t, i)x̃(i)(t)|2dt
)
.(3.9)

For each t, define

α̃(t) =

{
1 if t ∈ [0, ε),
i if t ≥ ε and L(i)(I(t)) = max{L(j)(I(t)) : j ∈M}.(3.10)

Using α̃(·), we define the EKF based on the LRT as follows:

dx̃(t) = b(t, α̃(t), x̃(t))dt

+
1

ε2
R̃(t)H ′(t, α̃(t)) (dy(t)− h(t, α̃(t), x̃(t))dt) ,

dR̃(t)

dt
= ∇xb(t, α̃(t), x̃(t))R̃(t) + R̃(t)(∇xb(t, α̃(t), x̃(t)))′

+F (t, α̃(t))H ′(t, α̃(t))H(t, α̃(t))F (t, α̃(t))

− 1

ε2
R̃(t)H ′(t, α̃(t))H(t, α̃(t))R̃(t),

(3.11)

where x̃(0) = Ex0 and R̃(0) = Cov(x0).
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Note that the processes (x̃(·), R̃(·)), (x̃(i)(·), R̃(i)(·)), and α̃(·) are well defined.

In fact, it is easy to see that the processes α̃(·) and (x̃(i)(·), R̃(i)(·)) are defined

on [0, (l1 + 1)ε), so is (x̃(·), R̃(·)) because the lower limit of I(t) equals γ1(t) = 0

and (x̃(0), R̃(0)) = (Ex0,Cov(x0)), which is given. The EKF gives the value of

(x̃(ε), R̃(ε)). Then (x̃(i)(ε), R̃(i)(ε)) is used for computing (x̃(i)(·), R̃(i)(·)) on the next
interval I(t) for t ∈ [(l1 + 1)ε, (l1 + 2)ε) and that leads to α̃(·) on this interval. Then

using α̃(·) on [(l1 + 1)ε, (l1 + 2)ε), we can compute (x̃(·), R̃(·)) on this interval. This
procedure can be repeated on intervals [jε, (j + 1)ε) for all j.

Lemma 3.2. Assume (A1)–(A4) and (A6). Then there exist positive constants
ε0, K such that for 0 < ε < ε0

P
(
α̃(t) 6= i0|α(·) = i0 on I(t)

)
≤ Kε2.

Proof. The proof can be given similarly as in [12, Lemma 3.3].
Remark 3.3. In this paper we use a moving window (fixed sample size) to estimate

the value of α(·). The length of the window is εl0 for the QVT and εl1 for the LRT.
Typically the QVT requires less time than the LRT with a given error probability;
see [6] and [13]. Moreover, a sequential test can be used to estimate the value of α(·),
which usually requires less time when compared with the fixed sample size test.

Approximate filters. Next we study asymptotic filters based on the QVT and
the LRT and estimate the corresponding error bounds.

For any given stochastic process ξ(t), t ≥ 0, we define the norm of ξ(·) as follows:

|ξ(·)|T = E

∫ T

0

|ξ(t)|dt.

The next theorem is concerned with the asymptotic property of α̃(·) and the
associate error bound in terms of the | · |T norm.

Theorem 3.3. Let α̃(·) be a filter based on the QVT, defined in (3.8), and
assume (A1)–(A5) (or based on the LRT, defined in (3.10), and assume (A1)–(A4)
and (A6)). Then for each 0 < δ < 1, there exist positive constants ε0 and K such
that for 0 < ε < ε0,

|α̃(·)− α(·)|T ≤ Kε1−δ.

Proof. Let 0 < τ1 < τ2 < · · · denote the random jump times of α(·). Then, for
j = 1, 2, . . .,

P
(
τj+1 − τj ≤ k0ε(log ε)2

)
= O

(
ε(log ε)2

)
.(3.12)

For notational convenience, let ξ(t) = |α̃(t)− α(t)|. Then, for 0 < σ < δ,

E

∫ T

0

|α̃(t)− α(t)|dt = E

∫ T

0

ξ(t)dt = E

∫ T

0

ξ(t)dtI{α(·)∈Θε
σ} + E

∫ T

0

ξ(t)dtI{α(·) 6∈Θε
σ}.

Recall the inequalities P (α(·) 6∈ Θε
σ) ≤ Kε2 given in (2.3) and |ξ(t)| ≤ m. It follows

that

E

∫ T

0

ξ(t)dtI{α(·) 6∈Θε
σ} ≤ mTEI{α(·) 6∈Θε

σ} = mTP (α(·) 6∈ Θε
σ) ≤ Kε2.
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Moreover, note that the process α(·) jumps at most [1/εσ] times if α(·) ∈ Θε
σ. Thus,

E

∫ T

0

ξ(t)dtI{α(·)∈Θε
σ} ≤

[1/εσ ]∑
j=0

E

∫ τj+1∧T

τj∧T
ξ(t)dt.

If we show that, for each j = 0, 1, . . . , [1/εσ],

E

∫ τj+1∧T

τj∧T
ξ(t)dt = O(ε(log ε)2),(3.13)

then

E

∫ T

0

ξ(t)dtI{α(·)∈Θε
σ} ≤

[1/εσ ]∑
j=0

O(ε(log ε)2) = O(ε1−σ| log ε|2) = O(ε1−δ),

because for 0 < σ < δ, εδ−σ(log ε)2 → 0 as ε→ 0. Hence, it suffices to show (3.13).
We start from j = 0. Note that, for l0 = [k0(log ε)2] + 1 as in Lemma 3.1,

E

∫ τ1∧T

0

ξ(t)dt = E

∫ T

0

ξ(t)I[0,τ1)dt = E

(∫ l0ε

0

+

∫ T

l0ε

)
ξ(t)I[0,τ1)dt.

Moreover, the boundedness of ξ(t) implies that

E

∫ l0ε

0

ξ(t)I[0,τ1)dt = O(l0ε) = O(ε(log ε)2).

Write

E

∫ T

l0ε

ξ(t)I[0,τ1)dt = E

Tε∑
j=l0

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dt,

where Tε = [T/ε]. For all j ≥ l0, we have

E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dt = E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dtI{τ1<jε}

+E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dtI{jε≤τ1<(j+1)ε}

+E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dtI{τ1≥(j+1)ε}.

(3.14)

The first term on the right side equals 0 because [jε, (j+1)ε]∩ [0, τ1) = ∅. The second
term in (3.14) is of order ε2 due to the fact that

E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dtI{jε≤τ1<(j+1)ε}

≤ m

∫ (j+1)ε

jε

EI{jε≤τ1<(j+1)ε}

= m

∫ (j+1)ε

jε

P (jε ≤ τ1 < (j + 1)ε) = O(ε2).

To estimate the third term on the right side of (3.14), note that
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(1) [jε, (j + 1)ε] ⊂ [0, τ1], which implies α(t) = i0 (no jump) on [0, τ1];
(2) For j ≤ t < (j + 1)ε, α̃(t) is defined based on the information given on the

interval [(j − l0 + 1)ε, jε].
These imply the following inequality:

E

∫ (j+1)ε

jε

ξ(t)I[0,τ1)dtI{τ1≥(j+1)ε}

≤ m

m∑
i0=1

∫ (j+1)ε

jε

P ({α(t) = i0, t ∈ [(j − l0 + 1)ε, jε]} ∩ α̃(t) 6= i0)dt.

It follows that

E

∫ τ1∧T

0

ξ(t)dt = O(ε(log ε)2).

Next we estimate E
∫ τ2∧T
τ1∧T ξ(t)dt, which can be written as E

∫ T
0
ξ(t)I[τ1,τ2)dt. Note

that P (τ2 − τ1 ≤ l0ε) = O(ε(log ε)2) and

E

∫ T

0

I[τ1,l0ε+τ1]dt = O(l0ε) = O(ε(log ε)2).

It follows that

E

∫ T

0

ξ(t)I[τ1,τ2)dt = E

∫ T

0

ξ(t)I[τ1,τ2)I{τ2−τ1≥l0ε}dt+O(ε(log ε)2).

Note also that if τ1 > εTε, then E
∫ T
0
ξ(t)I[τ1,τ2)dt = O(ε). Write

E

∫ T

0

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dt

=

Tε∑
i=0

E

∫ T

0

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε}

=

Tε∑
i=0

E

∫ T

(i+l0)ε

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε},

because I[τ1+l0ε,τ2) = 0 for t ≤ (i+ l0)ε given {iε ≤ τ1 < (i+ 1)ε}. Moreover,

E

∫ T

(i+l0)ε

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε}

=

Tε∑
j=i+l0

E

∫ (j+1)ε

jε

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε}

= O(ε2) +

Tε∑
j=i+l0+1

E

∫ (j+1)ε

jε

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε}.

The last equality is due to the fact that P (iε ≤ τ1 < (i+ 1)ε) = O(ε). Let

ζ = E

∫ (j+1)ε

jε

ξ(t)I[τ1+l0ε,τ2)I{τ2−τ1≥l0ε}dtI{iε≤τ1<(i+1)ε}.

Then for j ≥ i+ l0 + 1, we have



1648 Q. ZHANG

(1) If τ2 < jε, then ζ = 0;
(2) If jε ≤ τ2 < (j + 1)ε, then ζ = O(ε2) because P (jε ≤ τ2 < (j + 1)ε) = O(ε);
(3) If τ2 ≥ (j + 1)ε, then

ζ ≤ m
m∑

i0=1

∫ (j+1)ε

jε

P ({α(t) = i0, t ∈ [(j−l0+1)ε, jε]}∩{α̃(t) 6= i0})dt = O(ε3).

Continue this way, we can show (3.13), for all j = 1, 2, . . . , [1/εσ], and thus
complete the proof.

Similar to the proof of Theorem 3.3, one can show the following result.
Corollary 3.4. For each j = 0, 1, . . .,

P (α̃(t) 6= α(t) : for some t ∈ [τj + l0ε, τj+1)) = O(ε).

Using α̃(·), we define an approximate filter x̃(·) satisfying the following equations:

dx̃(t) = b(t, α̃(t), x̃(t))dt

+
1

ε2
R̃(t)H ′(t, α̃(t)) (dy(t)− h(t, α̃(t), x̃(t))dt) ,

dR̃(t)

dt
= ∇xb(t, α̃(t), x̃(t))R̃(t) + R̃(t)(∇xb(t, α̃(t), x̃(t)))′

+F (t, α̃(t))H ′(t, α̃(t))H(t, α̃(t))F (t, α̃(t))

− 1

ε2
R̃(t)H ′(t, α̃(t))H(t, α̃(t))R̃(t),

(3.15)

with x̃(0) = Ex0 and R̃(0) = Cov(x0).
In order to verify the asymptotic optimality of (α̃(·), x̃(·))) and estimate the corre-

sponding error bound, we need to consider an intermediate “filter” (x̌(t), Ř(t)), t ≥ 0,
assuming α(·) is given, defined as follows:

dx̌(t) = b(t, α(t), x̌(t))dt

+
1

ε2
Ř(t)H ′(t, α(t)) (dy(t)− h(t, α(t), x̌(t))dt) ,

dŘ(t)

dt
= ∇xb(t, α(t), x̌(t))Ř(t) + Ř(t)(∇xb(t, α(t), x̌(t)))′

+F (t, α(t))H ′(t, α(t))H(t, α(t))F (t, α(t))

− 1

ε2
Ř(t)H ′(t, α(t))H(t, α(t))Ř(t),

(3.16)

with x̌(0) = Ex0 and Ř(0) = Cov(x0). Clearly, (x̌(·), Ř(·)) can be obtained by
replacing α(·) with α̃(·) in (3.15).

Theorem 3.5. Assume the conditions in Theorem 3.3. Then for a given 0 <
δ < 1, there exists ε0 > 0 such that for 0 < ε < ε0,

|α̂(·)− α̃(·)|T + |x̂(·)− x̃(·)|T = O(ε1−δ),

where (α̂(t), x̂(t)) denotes the conditional mean of (α(t), x(t)) given Yt.
Proof. First of all, note that α̃(t) is Yt measurable. It follows from the Jensen’s

inequality that

|α̂(t)− α̃(t)| = |E[α(t)− α̃(t)|Yt]| ≤ E[ |α(t)− α̃(t)| |Yt].
Taking expectation on both sides of the above inequality yields

E|α̂(t)− α̃(t)| ≤ E|α(t)− α̃(t)|,
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which implies, in view of Theorem 3.3,

|α̂(·)− α̃(·)|T ≤ |α(·)− α̃(·)|T = O(ε1−δ).

We next show that |x̂(·)−x̃(·)|T = O(ε1−δ). The basic idea of the proof is to show
that x̂(·) is close to x̌(·), which can be further approximated by x̃(·). Let 0 < σ < δ
and γ0 be as given in Lemmas A.3 and A.4 in the Appendix. We divide the rest of
the proof into several steps. We only consider the case when α̃(·) is obtained via the
QVT since the proof for the LRT case is similar.

Step 1. We show that∣∣∣(x̂(·)− x̃(·))I{α(·) 6∈Θε
σ,γ0

}
∣∣∣
T

= O(ε1−σ).

In fact, note that for each t ≥ 0,

E
∣∣∣(x̂(t)− x̃(t))I{α(·) 6∈Θε

σ,γ0
}
∣∣∣ =

∫
E(|x̂(t)− x̌(t) | |α(·) = θ)I{θ 6∈Θε

σ,γ0
}P (α(·) ∈ dθ).

It is easy to see that the conditional expectation E[ |x̂(t)− x̃(t)| |α(·) = θ] is uniformly
bounded with respect to θ ∈ Θ and t ≥ 0. Thus, in view of (3.4),

E
∣∣∣(x̂(t)− x̃(t))I{α(·) 6∈Θε

σ,γ0
}
∣∣∣ ≤ KP (α(·) 6∈ Θε

σ,γ0
) = O(ε1−σ).

Step 2. We next show that∣∣∣(x̂(·)− x̌(·))I{α(·)∈Θε
σ,γ0

}
∣∣∣
T

= O(ε2).(3.17)

Note that∣∣∣(x̂(·)− x̌(·))I{α(·)∈Θε
σ,γ0

}
∣∣∣
T

=

∫
E(|x̂(t)− x̌(t)||α(·) = θ)I{θ∈Θε

σ,γ0
}P (α(·) ∈ dθ).

Moreover, under the condition α(·) = θ, we have

x̂(·) = x̂θ(·) and x̌(·) = x̃θ(·).
Thus using Lemma A.3, we obtain (3.17).

Step 3. We show that dy(t) = H(t, α(t))x̌(t)dt + εdv̂(t) + η(t)dt, where v̂(·) is
an innovation process and η(t) = E(H(t, α(t))x(t)|Yt)−H(t, α(t))x̌(t). We also show
that ∫ T

0

E |η(t)| I{α(·)∈Θε
σ,γ0

}dt = O(ε2).(3.18)

To prove these, it suffices to verify (3.18). In fact, we have∫ T
0
E |E(H(t, α(t))x(t)|Yt)−H(t, α(t)x̌(t)| I{α(·)∈Θε

σ,γ0
}dt

=

∫ ∫ T

0

E[|E(H(t, α(t))x(t)|Yt)−H(t, α(t))x̌(t)| |α(·) = θ]I{θ∈Θε
σ,γ0

}dt

×P (α(·) ∈ dθ)

=

∫ ∫ T

0

E[
∣∣H(t, θ(t))x̂θ(t)−H(t, θ(t))x̃θ(t)

∣∣ |α(·) = θ]I{θ∈Θε
σ,γ0

}dtP (α(·) ∈ dθ)

≤ K

∫ ∫ T

0

Eθ
∣∣x̂θ(t)− x̃θ(t)

∣∣ dtI{θ∈Θε
σ,γ0

}P (α(·) ∈ dθ)

= O(ε2).



1650 Q. ZHANG

Step 4. Given θ = θ(·) ∈ Θ and a, b being the multiples of ε such that 0 ≤ a < b,
let

F θ
a,b = {α(·) = θ(·) on [a, b)}, (:= {α(t) = θ(t) for all t ∈ [a, b)}) ,

and let Eθ
a,b denote the conditional expectation given F θ

a,b. We show that

Eθ
a,b|x̃(t)− x̌(t)| = O

(
ε1−σ + exp

(
−κ(t− a− l0ε)

ε

))
uniformly for t ∈ [a + l0ε, b]; here l0 = [k0(log ε)2] + 1 as in Lemma 3.1. (l0 needs to
be replaced by l1 as in Lemma 3.2 when the LRT is used to define α̃(·)).

First of all, by considering the differentials ofH(t, i0)(x̃(t)−x̌(t)) and |H(t, i0)(x̃(t)−
x̌(t))|2, we obtain

d(H(t, i0)(x̃(t)− x̌(t))) = ∂H(t,i0)
∂t (x̃(t)− x̌(t))dt

+H(t, i0)

{
(b(t, α̃(t), x̃(t))− b(t, i0, x̌(t)))dt

− 1

ε2
R̃(t)H ′(t, α̃(t))(H(t, α̃(t))x̃(t)−H(t, i0)x̌(t))dt

+
1

ε2

(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)
η(t)dt

+
1

ε

(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)
dv̂(t)

}
and

d|H(t, i0)(x̃(t)− x̌(t))|2 = 2(x̃(t)− x̌(t))′H ′(t, i0)d(H(t, i0)(x̃(t)− x̌(t)))

+
1

ε2
tr
((
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)′)
=: A(t)dt+B(t)dv̂(t),

where

A(t) = 2(x̃(t)− x̌(t))′H ′(t, i0)
∂H(t, i0)

∂t
(x̃(t)− x̌(t))

+2(x̃(t)− x̌(t))′H ′(t, i0)H(t, i0)

{
(b(t, α̃(t), x̃(t))− b(t, i0, x̌(t)))

− 1

ε2
R̃(t)H ′(t, α̃(t))(H(t, α̃(t))x̃(t)−H(t, i0)x̌(t))

+
1

ε2

(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)
η(t)

}
+

1

ε2
tr
((
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)′)
and

B(t) =
2

ε
(x̃(t)− x̌(t))′H ′(t, i0)

(
R̃(t)H ′(t, α̃(t))− Ř(t)H ′(t, i0)

)
.

Let φ(t) = |H(t, i0)(x̃(t)− x̌(t))|2. Then

φ(t) = φ(a+ l0ε) +

∫ t

a+l0ε

A(s)ds+

∫ t

a+l0ε

B(s)dv̂(s).
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Write

A(t) = A(t)I{α̃(·)=i0 on [a+l0ε,b]} +A(t)I{α̃(·)=i0 on [a+l0ε,b]}c .

As in Lemma A.5, we can show that (Eθ
a,b|A(t)|n)1/n = O(1/ε), for n = 1, 2, . . .. In

view of Lemma 3.1, it follows that

Eθ
a,b

∣∣A(t)I{α̃(·)=i0 on [a+l0ε,b]}c
∣∣

≤ (Eθ
a,b|A(t)|n)

1
n (Eθ

a,bI{α̃(·)=i0 on [a+l0ε,b]}c)
n−1
n

≤ K

ε
(P (α̃(t) 6= i0 for some t ∈ [a+ l0ε, b]|F θ

a,b))
n−1
n

≤ Kε(2(n−1)/n)−1 ≤ Kε1−σ for n large enough.

(3.19)

Given {α̃(·) = i0 on [a+ l0ε, b]}, we have

A(t) = 2(x̃(t)− x̌(t))′H ′(t, i0)
∂H(t, i0)

∂t
(x̃(t)− x̌(t))

+2(x̃(t)− x̌(t))′H ′(t, i0)H(t, i0)

{
(b(t, i0, x̃(t))− b(t, i0, x̌(t)))

− 1

ε2
R̃(t)H ′(t, i0)(H(t, i0)(x̃(t)− x̌(t))

+
1

ε2

(
R̃(t)− Ř(t))H ′(t, i0)

)
η(t)

}
+

1

ε2
tr
(
(R̃(t)− Ř(t))H ′(t, i0)H(t, i0)(R̃(t)− Ř(t))

)
.

Recall that H(t, i0) is invertible and both R̃(t)/ε and Ř(t)/ε are uniformly bounded.
Moreover, in view of Lemma A.4, we have

R̃(t)− Ř(t)

ε
= O

(
ε+ exp

(
−κ(t− a− l0ε)

ε

))
.

Given {α̃(·) = i0 on [a+ l0ε, b]}, it follows that

A(t) ≤ K0φ(t)− κ0

ε
φ(t) +K

(
ε+

|η(t)|2
ε2

+ exp

(
−κ(t− a− l0ε)

ε

))
.

Hence,

Eθ
a,bA(t) ≤

(
K0 − κ

ε

)
Eθ
a,bφ(t)

+K

(
ε1−σ +

Eθ
a,b|η(t)|2
ε2

+ exp

(
−κ(t− a− l0ε)

ε

))
.

(3.20)

Next, we claim that

Eθ
a,b

∫ t

a+l0ε

B(s)dv̂(s) = 0.

In fact, if we let Fα
a,b = σ{α(r) : a ≤ r < b} and ζ(t) =

∫ t
a+l0ε

B(s)dv̂(s), then for

0 ≤ t < b, E[ζ(t)|Fα
0,b] = 0 because v̂(·) is a Brownian motion given α(·). Note that

E[ζ(t)|Fα
a,b] = E[E[ζ(t)|Fα

0,b]|Fα
a,b]. It follows that E[ζ(t)|Fα

a,b] = 0, a.s. Thus,

Eθ
a,b

∫ t

a+l0ε

B(s)dv̂(s) = 0, almost everywhere with respect to P̂ (dθ) = P (α(·) ∈ dθ).
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By virtue of this claim, we have

Eθ
a,bφ(t) = Eθ

a,bφ(a+ l0ε) + Eθ
a,b

∫ t

a+l0ε

A(s)ds.

Thus, in view of (3.20),

dEθ
a,bφ(t)

dt
= Eθ

a,bA(t) ≤
(
K0 − κ

ε

)
Eθ
a,bφ(t)

+K

(
ε1−σ +

Eθ
a,b|η(t)|2
ε2

+ exp

(
−κ(t− a− l0ε)

ε

))
.

Using Gronwall’s inequality and the uniform boundedness of Eθ
a,bφ(a+l0ε), we obtain,

by integration by parts,

Eθ
a,bφ(t) ≤ K

(
ε2−σ + exp

(
−κ(t− a− l0ε)

ε

))
for some κ > 0. Therefore,

(Eθ
a,bφ(t))

1
2 ≤ K

(
ε1−σ/2 + exp

(
−κ(t− a− l0ε)

ε

))
.

Step 5. We show that∫ T

0

E|x̃(t)− x̌(t)|I{α(·)∈Θε
σ,γ0

}dt = O(ε1−δ).(3.21)

Let ξ(t) = |x̃(t)− x̌(t)|I{α(·)∈Θε
σ,γ0

}. Note that

E

∫ T

0

ξ(t)dt ≤
[1/εσ ]∑
j=0

E

∫ T

0

ξ(t)I[τj ,τj+1).

It suffices to show

E

∫ T

0

ξ(t)I[τj ,τj+1) ≤ O(ε1−σ)

because

E

∫ T

0

ξ(t)dt ≤
[1/εσ ]∑
j=0

Kε1−σ ≤ O(ε1−2σ) = O(ε1−δ)

when 2σ < δ.
For j = 0,

E

∫ T

0

ξ(t)I[0,τ1)dt =

∫ ∞

0

E

[∫ s∧T

0

ξ(t)dt

∣∣∣∣τ1 = s

]
p1(s)ds,

where p1(s) is the density function of τ1.



FILTERING AND CONTROL OF A SWITCHING DIFFUSION 1653

It is easy to see that

E

[∫ l0ε

0

ξ(t)dt

∣∣∣∣τ1 = s

]
= O(l0ε) = O(ε(log ε)2).

Moreover, using the result in Step 4, we have

E

[∫ s∧T

l0ε

ξ(t)dt

∣∣∣∣τ1 = s

]
= O

(
ε1−σ + exp

(
−κ(s− l0ε)

ε

))
.

Thus,

E

∫ T

0

ξ(t)I[0,τ1)dt = O(ε1−σ).

For j ≥ 1, we have

E

∫ T

0

ξ(t)I[τj ,τj+1)dt =

∫ ∞

0

E

[∫ T

r

ξ(t)dt

∣∣∣∣τj = r

]
pj(r)dr

=

∫ ∞

0

∫ T

r

E

[
ξ(t)dtI[r,τj+1)

∣∣∣∣τj = r

]
pj(r)dr.

Similarly, as in the case for j = 0, we can show∫ T

r

E

[
ξ(t)dtI[r,τj+1)

∣∣∣∣τj = r

]
= O(ε1−σ).

It follows that

E

∫ T

0

ξ(t)I[τj ,τj+1)dt = O(ε1−σ).

Step 6. Combining Steps 3–5, we have∣∣∣(x̂(·)− x̃(·))I{α(·)∈Θε
σ,γ0

}
∣∣∣
T
≤
∣∣∣(x̂(·)− x̌(·))I{α(·)∈Θε

σ,γ0
}
∣∣∣
T

+
∣∣∣(x̌(·)− x̃(·))I{α(·)∈Θε

σ,γ0
}
∣∣∣
T

= O(ε2) +O(ε1−δ) = O(ε1−δ).

It follows from Step 1 that

|x̂(·)− x̃(·)|T =
∣∣∣(x̂(·)− x̃(·))I{α(·)∈Θε

σ,γ0
}
∣∣∣
T
+
∣∣∣(x̂(·)− x̃(·))I{α(·) 6∈Θε

σ,γ0
}
∣∣∣
T
= O(ε1−δ).

This completes the proof.
Remark 3.4. Note that the proofs of the filtering results in this section do not

require the Markovian property of α(·). In fact, the results hold for any general
stochastic process α(·) provided it satisfies the following conditions:

P (α(·) 6∈ Θε
σ) = O(ε2) and P (τj+1 − τj ≤ t) ≤ Kt, t ≥ 0,

where {τj} denotes the sequence of random jump times of α(·).
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4. Nearly optimal control. Now we turn to the optimal control problems. We
assume the following additional conditions.

(A7) For each i ∈M, L(t, i, x, u) ∈ C1,2,2([0, T ]×R
p×Γ). There exists a constant

K such that

|L(t, i, x, u)|+ |∇xL(t, i, x, u)|+ |∇2
xL(t, i, x, u)| ≤ K.

For some constant c,

∂2L(t, i, x, u)

∂u2
≥ cI > 0.

Moreover, there exist b1(t, i, x), b2(t, i, x) ∈ C1,2([0, T ]×Rp) such that

b(t, i, x, u) = b1(t, i, x) + b2(t, i, x)u.

Furthermore, the generator Q(·) is continuous on [0, T ] and the set of control
points Γ ∈ R

p1 is compact and convex.
Remark 4.1. In order to prove the main results without undue technical com-

plexities, we impose conditions in (A7). These conditions are somewhat conservative.
The conditions on the drift term b are used to obtain the Lipschitz property of the
optimal control policies as in Lemma 4.1. These conditions can be relaxed if we know
a priori the optimal control is Lipschitz. The results to follow can also be extended to
the case when L is independent of u as in Haussmann and Zhang [12]. Moreover, the
terminal cost in the control problem was suppressed because essentially the terminal
cost could be written as an integration of a running cost (e.g., [12]).

Let us temporarily consider the case when the state (α(t), x(t)), t ≥ 0, is com-
pletely observable. Let Uα,x denote a set of controls u(·) which is progressively mea-
surable with respect to σ{(α(r), x(r)) : r ≤ t} and u(t) ∈ Γ, t ≥ 0.

Let 0 ≤ s ≤ T , α(s) = i, and x(s) = x, and define the corresponding value
function

v(s, i, x) = inf
u(·)∈Uα,x

Es,α,x

∫ T

s

L(t, α(t), x(t), u(t))dt,

where Es,α,x is the conditional expectation given α(s) = i and x(s) = x. Then
the optimal control is determined by the value function v(t, i, x), which satisfies the
following Hamilton–Jacobi–Bellman (HJB) equation:

0 =
∂v(t, i, x)

∂t
+ min

u∈Γ
{b(t, i, x, u)∇xv(t, i, x) + L(t, i, x, u)}

+
1

2
tr
(
F (t, i)H ′(t, i)H(t, i)F (t, i)∇2

xv(t, i, x)
)

+Q(t)v(t, ·, x)(i),

v(T, i, x) = 0,

(4.1)

where Q(t)v(t, ·, x)(i) =
∑

j 6=i qij(t)(v(t, j, x)− v(t, i, x)).
Let u∗(t, i, x) denote the feedback control policy minimizing the right-hand side

of the HJB equation. The following results can be obtained similarly as in Fleming
and Rishel [8] (or Krylov [16]).

Lemma 4.1. Assume (A3) and (A7). Then
(a) the value function v(t, i, x) ∈ C1,2([0, T ] × Rp), i ∈ M, and is the unique

solution to the HJB equation (4.1).
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(b) there exist constants κ > 0 and K such that∣∣∣∣∂v(t, i, x)

∂t

∣∣∣∣+ |∇xv(t, i, x)|+ |∇2
xv(t, i, x)| ≤ K(1 + |x|κ).

(c) u∗(t, i, x) is an optimal feedback control and uniformly Lipschitz in x.
We turn to consider the partially observed system. Let Uy denote a class of

controls u(·) that are Yt progressively measurable and u(t) ∈ Γ, t ≥ 0. Given u(·) ∈
Uy, let (x̃(·), R̃(·)) be the corresponding filter given by the equations

dx̃(t) = b(t, α̃(t), x̃(t), u(t))dt

+
1

ε2
R̃(t)H ′(t, α̃(t)) (dy(t)− h(t, α̃(t), x̃(t))dt) ,

dR̃(t)

dt
= ∇xb(t, α̃(t), x̃(t), u(t))R̃(t) + R̃(t)(∇xb(t, α̃(t), x̃(t), u(t)))′

+F (t, α̃(t))H ′(t, α̃(t))H(t, α̃(t))F (t, α̃(t))

− 1

ε2
R̃(t)H ′(t, α̃(t))H(t, α̃(t))R̃(t),

(4.2)

with x̃(0) = Ex0 and R̃(0) = Cov(x0). Then the results in Theorems 3.3 and 3.5 hold
uniformly with respect to u(·) ∈ Uy.

Regarding (α̃(·), x̃(·)) as the “state” and using the feedback control u∗(t, α, x), we
define ũ(t) = u∗(t, α̃(t), x̃(t)).

Note that α̃(·) changes values only at t = jε, j = 1, 2, . . ., and for t ∈ [jε, (j +

1)ε), α̃(t) is Yjε measurable. Therefore, a unique solution (x(·), y(·), x̃(·), R̃(·)) to
the equations (1.1) and (4.2) with u(·) = ũ(·) can be obtained piecewisely over the
intervals [jε, (j+1)ε), j = 0, 1, . . .. In view of these, ũ(·) is admissible, i.e., ũ(·) ∈ Uy.
The next theorem concerns the performance of ũ(·).

Theorem 4.2. Assume the conditions of Theorem 3.3 and (A7). Then for each
0 < δ < 1, there exists ε0 > 0 such that for 0 < ε < ε0,

(a) inf
u(·)∈Uy

J(u(·)) = J(ũ(·)) +O(ε1−δ);

(b) inf
u(·)∈Uy

J(u(·)) = Ev(0, α(0), Ex0) +O(ε1−δ).

Proof. We first show part (a) and divide the proof into several steps.
Step 1. We show that

inf
u(·)∈Uy

J(u(·)) = inf
u(·)∈Uy

E

∫ T

0

L(t, α̃(t), x̃(t), u(t))dt+O(ε1−δ).

For each u(·) ∈ Uy, let x(·) and x̃(·) denote the the corresponding state and
filter processes under u(·). Then, by noticing that I{α̃(t) 6=α(t)} ≤ |α̃(t)− α(t)|/m and
recalling Theorem 3.3, we have

E

∫ T

0

|L(t, α(t), x(t), u(t))− L(t, α̃(t), x(t), u(t))|dt

≤ KE

∫ T

0

I{α̃(t) 6=α(t)}dt

≤ K

m
E

∫ T

0

|α̃(t)− α(t)|dt = O(ε1−δ).

(4.3)
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Moreover, in view of Taylor’s expansion, we write

L(t, α̃(t), x(t), u(t)) = L(t, α̃(t), x̂(t), u(t))
+∇xL(t, α̃(t), x̂(t), u(t))(x(t)− x̂(t)) +O(|x(t)− x̂(t)|2).(4.4)

Since α̃(t) and u(t) are Yt measurable, it follows that

E∇xL(t, α̃(t), x̂(t), u(t))(x(t)− x̂(t))
= E (E[∇xL(t, α̃(t), x̂(t), u(t))(x(t)− x̂(t))|Yt]) = 0.

(4.5)

Combining (4.4) and (4.5) leads to

EL(t, α̃(t), x(t), u(t)) = EL(t, α̃(t), x̂(t), u(t)) +O(E|x(t)− x̂(t)|2)
≤ EL(t, α̃(t), x̂(t), u(t)) +O(E|x(t)− x̃(t)|2) +O(E|x̃(t)− x̂(t)|2).

Hence, in view of Lemmas A.2 and A.3 and (3.4), for 0 < σ < δ, we can show similarly
as in (3.19) that

E

∫ T

0

L(t, α̃(t), x(t), u(t))dt = E

∫ T

0

L(t, α̃(t), x̂(t), u(t))dt+O(ε1−δ).(4.6)

Furthermore, note that

|L(t, α̃(t), x̂(t), u(t))− L(t, α̃(t), x̃(t), u(t))| ≤ K|x̂(t)− x̃(t)|.
Thus, in view of Lemma A.3 and by conditioning on α(·) ∈ Θε

σ,γ0
, we have

E

∫ T

0

L(t, α̃(t), x̂(t), u(t))dt = E

∫ T

0

L(t, α̃(t), x̃(t), u(t))dt+O(ε1−δ).(4.7)

Combining (4.3), (4.6), and (4.7), we obtain

J(u(·)) = E

∫ T

0

L(t, α̃(t), x̃(t), u(t))dt+O(ε1−δ)

uniformly with respect to u(·) ∈ Uy.
Step 2. In this step we show that

inf
u(·)∈Uy

E

∫ T

0

L(t, α̃(t), x̃(t), u(t))dt

= inf
u(·)∈Uy

E

∫ T

0

L(t, α(t), x̌(t), u(t))dt+O(ε1−δ).
(4.8)

Note that (3.21) holds uniformly with respect to u(·) ∈ Uy when x̌(·) is defined
in (3.16) with b = b(t, α(t), x̌(t), u(t)). In view of this, (4.8) follows from

E

∫ T

0

|L(t, α̃(t), x̃(t), u(t))dt− L(t, α(t), x̃(t), u(t))|dt = O(ε1−δ)

and the Lipschitz property of L, which yields

E

∫ T

0

|L(t, α(t), x̃(t), u(t))dt− L(t, α(t), x̌(t), u(t))|dt

≤ KE

∫ T

0

|x̃(t)− x̌(t)|dt = O(ε1−δ).
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Step 3. Let Uy,α = {u(·) : u(t) is σ{y(s), α(s) : 0 ≤ s ≤ t}- progressively measurable }.
Then, noticing the fact that Uy ⊂ Uy,α, we obtain

inf
u(·)∈Uy

E

∫ T

0

L(t, α(t), x̌(t), u(t))dt ≥ inf
u(·)∈Uy,α

E

∫ T

0

L(t, α(t), x̌(t), u(t))dt,

Step 4. We prove the following estimate based on the dynamic programming
approach:

inf
u(·)∈Uy,α

E

∫ T

0

L(t, α(t), x̌(t), u(t))dt

= Ev(0, α(0), x̌(0)) +O(ε1−δ)

= E

∫ T

0

L(t, α(t), x̌(t), u∗(t, α(t), x̌(t)))dt+O(ε1−δ).

For all u(·) ∈ Uy,α, using Dynkin’s formula and noticing that v(T, i, x) = 0, we
have

Ev(0, α(0), x̌(0)) = −E
∫ T

0

{
∂v(t, α(t), x̌(t))

∂t
+∇xv(t, α(t), x̌(t))b(t, α(t), x̌(t), u(t))

+Q(t)v(t, ·, x̌(t))(α(t)) +
1

2ε2
tr
(
Ř(t)H ′(t, α(t))H(t, α(t))Ř(t)∇2

xv(t, α(t), x̌(t))
)}
dt

−E
∫ T

0

∇xv(t, α(t), x̌(t)) (dy(t)−H(t, α(t))x̌(t)dt) .

Similarly as in Step 3 of the proof of Theorem 3.5, by conditioning on α(·) = θ,
we can show that

E

∫ T

0

∇xv(t, α(t), x̌(t)) (E(H(t, α(t))x(t)|Yt)−H(t, α(t))x̌(t)) dt = O(ε1−δ)

and

E

∫ T

0

∇xv(t, α(t), x̌(t))dv̂(t) = 0.

Hence,

E

∫ T

0

∇xv(t, α(t), x̌(t)) (dy(t)−H(t, α(t))x̌(t)dt) = O(ε1−δ).

Moreover, in view of Lemma 4.1, for 0 < σ < δ, we have

E

∫ T

0

tr

[(
Ř(t)H ′(t, α(t))H(t, α(t))Ř(t)

ε2

−F (t, α(t))H ′(t, α(t))H(t, α(t))F (t, α(t))

)
∇2
xv(t, α(t), x̌(t))

]
dt

≤ KE

∫ T

0

∣∣∣∣ Ř(t)

ε
− F (t, α(t))

∣∣∣∣ · |∇2
xv(t, α(t), x̌(t))|dt

= KE

∫ T

0

∣∣∣∣ Ř(t)

ε
− F (t, α(t))

∣∣∣∣ · |∇2
xv(t, α(t), x̌(t))|dtI{α(·)∈Θε

σ,γ0
}

+KE

∫ T

0

∣∣∣∣ Ř(t)

ε
− F (t, α(t))

∣∣∣∣ · |∇2
xv(t, α(t), x̌(t))|dtI{α(·) 6∈Θε

σ,γ0
}

= KE

∫ T

0

∣∣∣∣ Ř(t)

ε
− F (t, α(t))

∣∣∣∣ · |∇2
xv(t, α(t), x̌(t))|dtI{α(·)∈Θε

σ,γ0
} +O(ε1−σ).
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For each θ ∈ Θε
σ,γ0

, let {tk} denote the jump times of θ = θ(·). Then we obtain

[1/εσ ]∑
j=0

Eθ

∫ tj+1

tj

∣∣∣∣ Ř(t)

ε
− F (t, α(t))

∣∣∣∣ · |∇2
xv(t, α(t), x̌(t))|dt

≤ K

[1/εσ ]∑
j=0

Eθ

∫ tj+1

tj

(
ε+ exp

(
−κ(t− tj)

ε

))
· |∇2

xv(t, α(t), x̌(t))|dt

= K

[1/εσ ]∑
j=0

∫ tj+1

tj

(
ε+ exp

(
−κ(t− tj)

ε

))
Eθ|∇2

xv(t, α(t), x̌(t))|dt

≤ K

[1/εσ ]∑
j=0

Kε = O(ε1−σ).

In view of these, we have

Ev(0, α(0), x̌(0)) = −E
∫ T

0

{
∂v(t, α(t), x̌(t))

∂t
+ b(t, α(t), x̌(t), u(t))∇xv(t, α(t), x̌(t))

+Q(t)v(t, ·, x̌(t))(α(t)) + L(t, α(t), x̌(t), u(t))

+
1

2
tr
(
F (t, α(t))H ′(t, α(t))H(t, α(t))F (t, α(t))∇2

xv(t, α(t), x̌(t))
)}

dt+O(ε1−σ)

+E

∫ T

0

L(t, α(t), x̌(t), u(t))dt

≤ E

∫ T

0

L(t, α(t), x̌(t), u(t))dt+O(ε1−σ),

where the last inequality is due to the HJB equation and the equality holds if u(t) =
u∗(t, α(t), x̌(t)).

Step 5. Finally, note that ũ(·) ∈ Uy. Thus,

J(ũ(·)) ≥ inf
u(·)∈Uy

J(u(·)).

Moreover, using the Lipschitz property of u∗(t, i, ·), we have

|L(t, α(t), x̌(t), u∗(t, α(t), x̌(t)))− L(t, α̃(t), x̃(t), u∗(t, α̃(t), x̃(t)))|
≤ K(|α̃(t)− α(t)|+ |x̌(t)− x̃(t)|).

Thus, it follows that by using Theorem 3.3 and Step 5 in the proof of Theorem 3.5,

E

∫ T

0

L(t, α(t), x̌(t), u∗(t, α(t), x̌(t)))dt

= E

∫ T

0

L(t, α̃(t), x̃(t), u∗(t, α̃(t), x̃(t)))dt+O(ε1−σ).

To show (b), recall that x̌(0) = Ex0. Following Steps 1–4, we have

inf
u(·)∈Uy

J(u(·)) ≥ Ev(0, α(0), Ex0) +O(ε1−δ).

Then Steps 4–5 yield

Ev(0, α(0), Ex0) ≥ J(ũ(·)) +O(ε1−δ) ≥ inf
u(·)∈Uy

J(u(·)) +O(ε1−δ).

Combine these two inequalities to obtain the result. The proof is now complete.
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5. Hybrid linear quadratic control. In this section we show that the com-
pactness of Γ and boundedness of L in (A7) are not necessary and can be relaxed.
We study a simple and useful case in which the system is linear in x and u with a
quadratic running cost function. Consider the state x(t) ∈ R

p, observation y(t) ∈ R
p,

and control u(t) ∈ R
p1 satisfying the differential equations

dx(t) = (B1(t, α(t))x(t) +B2(t, α(t))u(t))dt
+σ(t, α(t))dw(t), x(0) = x0

dy(t) = H(t, α(t))x(t)dt+ εdv(t), y(0) = 0,
(5.1)

where B1(t, i), B1(t, i), σ(t, i), and H(t, i) are matrices of appropriate dimensions.
The cost function is given by

J(u(·)) = Eα,x

∫ T

0

(
x′(t)M1(t, α(t))x(t) + u′(t)M2(t, α(t))u(t)

)
dt,

where M1(t, i) and M2(t, i) are positive definite matrices of appropriate dimensions
and Eα,x is the conditional expectation given α(0) = α and x(0) = x.

Assume all the conditions in the previous sections hold except the conditions
on the running cost function L and the control set Γ. In this section we consider
Γ = R

p1 . First of all, consider the completely observable case. Let Uα,x denote
the set of admissible controls u(·), which is σ{(α(r), x(r)) : r ≤ t} progressively

measurable, E
∫ T
0
|u(t)|kdt ≤ Ck, E|x(t)|k ≤ Ck, for each k = 1, 2, . . ., and some

constant Ck. In this case, the value function

v(s, i, x) = inf
u(·)∈Uα,x

Es,α,x

∫ T

s

(
x′(t)M1(t, α(t))x(t) + u′(t)M2(t, α(t))u(t)

)
dt

= x′Φ(s, i)x+ φ(s, i),

where Es,α,x is the conditional expectation given (α(s), x(s)) = (α, x) and the func-
tions Φ(t, i) and φ(t, i) are determined by the following differential equations:

dΦ(t, i)

dt
= −

{
Φ(t, i)B1(t, i) +B′

1(t, i)Φ(t, i)

−Φ(t, i)B2(t, i)M
−1
2 (t, i)B′

2(t, i)Φ(t, i) +M1(t, i) +Q(t)Φ(t, ·)(i)
}

Φ(T, i) = 0, for i ∈M
(5.2)

and 
dφ(t, i)

dt
= −

{
tr
(
σ(t, i)σ′(t, i)Φ(t, i)

)
+Q(t)φ(t, ·)(i)

}
,

φ(T, i) = 0, for i ∈M.

The optimal control for the completely observable case is given by (see Fleming and
Rishel [8])

u∗(t, i, x) = −M−1
2 (t, i)B′

2(t, i)Φ(t, i)x.(5.3)

In the partially observable case, we consider the control

ũ(t) = u∗(t, α̃(t), x̃(t)).(5.4)
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Let Uy denote the set of controls which are σ{y(r) : r ≤ t} progressively mea-

surable and for each k = 1, 2, . . ., there exists Ck such that E
∫ T
s
|u(t)|kdt ≤ Ck and

E|x(t)|k ≤ Ck.
Theorem 5.1. For each 0 < δ < 1, there exists ε0 > 0 such that for 0 < ε < ε0,

(a) inf
u(·)∈Uy

J(u(·)) = J(ũ(·)) +O(ε1−δ);

(b) inf
u(·)∈Uy

J(u(·)) = Ev(0, α(0), Ex0) +O(ε1−δ).

Proof. The proof can be given following Steps 1-5 in the proof of Theorem 4.2 by
using the Holder’s inequality as in (3.19) and the quadratic property of the running
function L(t, i, x).

6. Extensions to Picard filter. Note that in Lemma A.4, Rθ(t)/ε can be ap-
proximated by F (t, θ(t)) for each θ ∈ Θ. If we replace Rθ(t)/ε by F (t, θ(t)) in the
EKF, then we obtain the PF; see Picard [20]. Let α̃(·) be a filter of α(·) obtained
either by the QVT or by the LRT. Let u(·) ∈ Uy and define the PF as follows:

dm(t) = b(t, α̃(t),m(t))dt

+
1

ε
F (t, α̃(t))H ′(t, α̃(t)) (dy(t)− h(t, α̃(t),m(t))dt) ,

(6.1)

with m(0) = Ex0.
Theorem 6.1. Assume the condition of Theorem 4.2. Then for each 0 < δ < 1,

there exists ε0 > 0 such that for 0 < ε < ε0,

(a) |x̂(·)−m(·)|T = O(ε
1
2−δ), uniformly with respect to u(·) ∈ Uy

(b) inf
u(·)∈Uy

J(u(·)) = J(ū(·)) +O(ε
1
2−δ),

where ū(t) = u∗(t, α̃(t),m(t)).
Proof. We define m̌(t), t ≥ 0, as in (6.1) with α̃(·) replaced by α(·). Let 0 < σ < δ.

Then we can show as in [11, Theorem 2.6], Lemma A.2, and Step 1 in Theorem 3.5,
that

E|x̌(t)− m̌(t)|I{α(·)∈Θε
σ,γ0

} = O(ε
3
2−σ).

Then following the proof in Steps 3-5 of Theorem 3.5 we can show

E|m̌(t)−m(t)|I{α(·)∈Θε
σ,γ0

} = O(ε
1
2−σ).

Thus in view of Step 5 in Theorem 3.5, we have

E|x̃(t)− x̌(t)|I{α(·)∈Θε
σ,γ0

} = O(ε1−σ).(6.2)

Combining these estimates, we obtain part (a).
Part (b) follows from the fact that

inf
u(·)∈Uy

J(u(·)) = E

∫ T

0

L(t, α(t), x̌(t), u∗(t, α(t), x̌(t)))dt+O(ε1−δ),

as in Step 4 of Theorem 4.2, the Lipschitz property of the function L(t, α, x, u∗(t, α, x)),
part (a), and (6.2).
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As for the hybrid linear quadratic case, we can obtain similarly that

inf
u(·)∈Uy

J(u(·)) = J(ū(·)) +O(ε
1
2−δ),

where ū(t) = u∗(t, α̃(t),m(t)) with u∗(t, α, x) given by (5.3).
Remark 6.1. In general the EKF provides a better approximation than the PF.

However, since the PF does not require computing R̃(·), which reduces much of the
computation effort, especially when the dimension of the system is large.

In the LRT, we used the EKF to define the test statistics L(i)(I(t)). An alternative
way is to use the outcome of the PF to replace the EKF. The results in Lemma 3.2
follows in a similar way.

7. An example and numerical simulations. In this section we consider a
simple example and report related computational experiments. We consider the fol-
lowing one-dimensional model:{

dx(t) =
(
B1(α(t))x(t) + u(t)

)
dt+ σ(α(t))dw(t), x(0) = x0

dy(t) = H(α(t))x(t)dt+ εdv(t), y(0) = 0,
(7.1)

where α(t) ∈ M = {1, 2}, t ≥ 0, is a Markov chain generated by Q =
(−λ λ
µ −µ

)
with

λ > 0 and µ > 0.
We discretize the equation in (7.1) with step size ε. The time horizons in the

continuous-time model is T = 10 and in the corresponding discrete-time setting is
Tε = 10/ε. All of our results are based on computations with 100 sample paths.

We consider the model with the following specifications:

B1(1) = −0.01, B1(2) = −0.02, H(1) = 1, H(2) = 2, σ(1) = σ(2) = 1,

λ = µ = 0.02, x0 = 0, α(0) = 2.

Note that the detectability condition in (A5) is satisfied because

|H2(1)−H2(2)| = 3 > 0.

We only consider the QVT because it performs better than the LRT; see Remark 3.3.
Filtering. We compare our results with the well-known interactive multiple mod-

els (IMM) algorithm given in Blom and Bar-Shalom [2]. Let |x̃− x|IMM denote the

norm ε
∑Tε

k=0 E|x̃(kε)−x(kε)| with x̃(kε) obtained by using the IMM algorithm. Sim-
ilarly, let |x̃− x|QVT and |α̃− α|QVT denote the corresponding norm when using the
QVT algorithm. We take the control u(t) = 0. Our numerical results are illustrated
by a sample path of x(kε), its estimates x̃(kε) using both the IMM and the QVT,
and the corresponding errors with parameters ε = 0.1 and Tε = 100. Their graphs
are given in Fig. 7.1.

We also vary the value of ε and obtain upper bounds on estimates of x̃(kε) using
the IMM and (α̃(kε), x̃(kε)) using the QVT. These are given in Table 7.1.

Remark 7.1. The major advantages of the QVT algorithm is that it does not
require the process α(·) to be Markovian. So there is no need to require the generator
matrix. Numerically, the QVT works better when ε is small and when the parameter
process α(·) does not jump too rapidly. On the other hand, the IMM algorithm works
as “an average” device because it tends to average out the fluctuation of the signal
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Fig. 7.1. A sample path of x(t), its estimates, and errors.

Table 7.1
Upper error bounds: filtering.

ε Tε |x̃− x|IMM/
√
ε |α̃− α|QVT/

√
ε |x̃− x|QVT/

√
ε

0.1 100 14.17 7.44 9.87
0.05 200 17.71 11.26 13.40
0.033 300 18.93 13.87 15.30
0.025 400 19.15 16.61 16.72
0.02 500 19.16 17.92 18.07

process. So it seems the IMM works better when α(·) fluctuates more frequently. The
QVT is a quite promising filtering device in target tracking. It complements the IMM
in a number of ways. It could also be used in combination with the IMM algorithm
to improve the performance.

Control. We consider the cost function

J(u(·)) = E

∫ T

0

(
x2(t) + u2(t)

)
dt.
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Table 7.2
Upper error bounds: control.

ε Tε J̃ v |J̃/v − 1|/√ε |J̃ − v|/√ε

0.1 100 10.70 9.09 0.56 5.11
0.05 200 9.73 9.11 0.30 2.75
0.033 300 9.28 9.12 0.09 0.87
0.025 400 9.26 9.12 0.09 0.85
0.02 500 8.97 9.13 0.12 1.13

Then the associated Riccati equation is given by

dΦ(t, 1)

dt
= −

{
2B1(1)Φ(t, 1)− Φ2(t, 1) + 1 + λ(Φ(t, 2)− Φ(t, 1))

}
,

dΦ(t, 2)

dt
= −

{
2B1(2)Φ(t, 2)− Φ2(t, 2) + 1 + µ(Φ(t, 1)− Φ(t, 2))

}
,

with Φ(T, 1) = Φ(T, 2) = 0. The control defined in (5.4) becomes

ũ(t) = −Φ(t, α̃(t))x̃(t).

Given x(s) = x0 and α(s) = i, the value function

v(s, i, x) = x2
0Φ(s, i) + φ(s, i),

where φ(t, i) is determined by the equations

dφ(t, 1)

dt
= −

{
σ2(1)Φ(t, 1) + λ(φ(t, 2)− φ(t, 1))

}
,

dφ(t, 2)

dt
= −

{
σ2(2)φ(t, 2) + µ(φ(t, 1)− φ(t, 2))

}
,

with φ(T, 1) = φ(T, 2) = 0.
Let

J̃ = J(ũ(·)) = E

∫ T

0

(x2(t) + ũ2(t))dt

and v = v(0, α(0), x(0)). Then for various ε we have the upper bounds given in Table
7.2.

It can be seen from the numerical simulations that our algorithm gives a quite
good approximation to exact optimal solutions.

8. Conclusions. In this paper, we constructed asymptotic filters (x̃(·), R̃(·))
and m(·). Using these filters, we constructed nearly optimal controls for the partially
observed stochastic system. The information flow is illustrated in Fig. 8.1.

A key assumption in this paper is that the observation noise has to be small. To
apply these results in a practical scenario, it is important to determine if the noise
in a given problem is small enough to fit the requirement in the paper. In fact, as in
general singular perturbation theory, the small parameter ε does not have to be very
small in order to have decent numerical results. Typically, it works well when ε is less
than 0.1 when all other elements in the coefficients of the system are of order 1.

This paper considers the case when the unknown α(·) does not fluctuate too
rapidly. Naturally, it would be interesting to consider the case when α(·) jumps
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Fig. 8.1. System diagram.

rapidly from time to time. Quite often such situation can be formulated as a singular
perturbed Markov chain with weak and strong interactions. In this connection, the
asymptotic results in Yin and Zhang [21] appear to be useful for constructing filters
and the ensuing optimality analysis.

Appendix. In this section we give six technical lemmas used in the paper.

Lemma A.1. Assume (A1)–(A4). Then there exist constants ε0 and K such that
for each 0 < ε < ε0 and θ = θ(·) ∈ Θ,

Eθ

∫ T

0

∣∣x̂θ(t)− x̃θ(t)
∣∣2 dt ≤ Kε2Eθ

∫ T

0

∣∣x(t)− x̃θ(t)
∣∣4 dt,

where x̂θ(t) = Eθ[x(t)|Yt] and Eθ is the conditional expectation given α(·) = θ.

Proof. The proof of this lemma can be the same as that given as in Haussmann
and Zhang [11, Theorem 2.1].

Lemma A.2. Assume (A1)–(A3). Then there exist γ0 and K such that for each
0 < σ < 1 and for all θ = θ(·) ∈ Θε

σ,γ0
,

Eθ

∫ T

0

∣∣x(t)− x̃θ(t)
∣∣4 dt ≤ Kε2.

Proof. Let {tj} denote the set of jump times of θ. For each tj , let

φj = Eθ|x(tj)− x̃θ(tj)|2,
ψj = Eθ|x(tj)− x̃θ(tj)|4.

Note that on interval [tj , tj+1), θ(·) is a constant and therefore the function H(t, θ(t))
is differentiable on this interval.

By considering the differential d|H(t, θ(t))x(t)−H(t, θ(t))x̃θ(t)|2 on [tj , tj+1), we
can show, by using Gronwall’s inequality (as in [11, Lemma 2.3]), that

Eθ|x(t)− x̃θ(t)|2 ≤ K1φj exp

(
−κ(t− tj)

2ε

)
+O(ε),(A.1)

where κ > 0, K1 > 0, and O(·) are independent of {tj} and σ.
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Similarly, considering d|H(t, θ(t))x(t)−H(t, θ(t))x̃θ(t)|4, we obtain

Eθ|x(t)− x̃θ(t)|4 ≤ K1ψj exp

(
−κ(t− tj)

2ε

)
+K1φj(t− tj) exp

(
−κ(t− tj)

2ε

)
+O(ε2).

(A.2)

Setting t = tj+1 in (9.1) and (9.2), respectively, we have

φj+1 ≤ K1φj exp

(
−κ(tj+1 − tj)

2ε

)
+O(ε),

ψj+1 ≤ K1ψj exp

(
−κ(tj+1 − tj)

2ε

)
+K1φj(tj+1 − tj) exp

(
−κ(tj+1 − tj)

2ε

)
+O(ε2),

(A.3)

with φ0 = O(ε) and ψ0 = O(ε2).
Choose γ0 large enough such that K1e

−γ0/2 < 1/2. Then for κ(tj+1 − tj) ≥ γ0ε,

φj+1 ≤ 1

2
φj +O(ε),

ψj+1 ≤ 1

2
ψj +K2εφj +O(ε2).

It follows by iteration that, for j = 0, 1, . . .,

φj ≤ O(ε),
ψj ≤ O(ε),

with O(·) independent of {tj} and σ. In view of (9.3), we obtain

Eθ|x(t)− x̃θ(t)|2 ≤ (K1 + 1)O(ε) = O(ε),
Eθ|x(t)− x̃θ(t)|4 ≤ (K1 + 1)O(ε2) = O(ε2),

with O(·) independent of {tj} and σ.
Combining Lemmas A.1 and A.2, we have the following lemma.
Lemma A.3. Assume (A1)–(A4). Then there exist ε0, γ0, and K such that for

each 0 < σ < 1, 0 < ε < ε0, and for all θ = θ(·) ∈ Θε
σ,γ0

,

Eθ

∫ T

0

∣∣x̂θ(t)− x̃θ(t)
∣∣2 dt ≤ Kε4.

The next lemma is concerned with the bounds and asymptotic estimate of Rθ(·).
Lemma A.4. Assume (A1)–(A4). Then the following hold:
(a) There exist positive constants c1 and c2, independent of 0 < σ < 1, θ ∈ Θ,

and t ∈ [0, T ], such that

c1I ≤ Rθ(t)

ε
≤ c2I.

(b) There exist γ0, K, and κ > 0 such that, for each 0 < σ < 1 and θ ∈ Θε
σ,γ0

,
we have ∣∣∣∣Rθ(t)

ε
− F (t, θ(t))

∣∣∣∣ ≤ K

(
exp

(
−κ(t− tj)

ε

)
+ ε

)
,(A.4)

for t ∈ [tj , tj+1), where {tj} is the set of jump times of θ.
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Proof. Part (a) can be shown as in [11, Lemma 2.5]. To show (b), note that on a
given interval [tj , tj+1), θ(t) is a constant. Let

η(t) := tr

(
Rθ(t)

ε
− F (t, θ(t))

)2

.

Recall that both Rθ(t) and F (t, θ(t)) are symmetric matrices. To estimate (9.4), it
suffices to obtain a similar upper bound for η(·).

Using the conditions in (A1) and (A3), the second equation in (3.2), and the
inequality a1a2 ≤ a2

1/ε + εa2
2 for any numbers a1 and a2, we obtain, by considering

the derivative of (Rθ(t)/ε− F (t, θ(t)))2,

dη(t)

dt
≤ −κ1

ε
η(t) +O(ε),

where κ1 > 0 and O(·) are independent of the choice of {tj} and σ.
Using Gronwall’s inequality, we obtain

η(t) ≤ η(tj) exp

(
−κ1(t− tj)

ε

)
+O(ε2).

As in Lemma A.2, choose γ0 large enough such that

exp

(
−κ1(tj+1 − tj)

ε

)
≤ exp (−κ1γ0) ≤ 1

2
.

Then

η(tj+1) ≤ η(tj)

2
+O(ε).

Note that η(t0) = η(0) is bounded. It follows that η(tj) is bounded for j = 0, 1, . . ..
Hence there exists a constant K1 such that

η(t) ≤ K1 exp

(
−κ1(t− tj)

ε

)
+O(ε2).

Thus, taking square roots on both sides, we obtain (9.4) for some positive constants
κ and K.

Lemma A.5. Given u(·) ∈ Uy, let x(t), x̃(t), x̌(t), and x̂(t), t ≥ 0, denote the
state, filter, intermediate filter, and conditional mean, respectively. Then, for each
n = 1, 2, . . ., there exists a constant K such that

E (|x(t)|n + |x̃(t)|n + |x̌(t)|n + |x̂(t)|n) ≤ K,

uniformly with respect to u(·) ∈ Uy.
Proof. The proof can be given similarly as in [12, Theorem 4.1].
Lemma A.6. Let N(T ) denote the number of jumps of α(·) in [0, T ]. Then, for

each σ > 0 and j = 1, 2, . . ., there exist positive constants ε0 and K such that for
0 < ε < ε0,

P

(
N(T ) ≥ 1

εσ

)
≤ Kεj .
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Proof. First of all, note that in view of the construction of Markov chains as in
Davis [4], there exists a Poisson process N0(·) with parameter a/ε for some a > 0
such that N(t) ≤ N0(t), t ≥ 0. We may assume a = 1 for simplicity. Let nε denotes
the integer part of [1/εσ]. By using the Poisson distribution of N0(·), it follows

P

(
N(T ) ≥ 1

εσ

)
≤ P

(
N0(T ) ≥ 1

εσ

)
≤ e−T

(
Tnε

nε!
+

Tnε+1

(nε + 1)!
+ · · ·

)
≤ e−T

(
Tnε

nε!

)
eT =

Tnε

nε!
.

Using Stirling’s formula, we have

Tnε

nε!
∼ (Te)nε

nnεε
√

2πnε
≤
(
Te

ne

)nε

.

Now choose ε0 such that Te/nε0 ≤ 1/2. Then, for 0 < ε < ε0, we have(
Te

nε

)nε

≤ Kεj .

The result follows.

Acknowledgments. Comments and suggestions from the referees that lead to
improvement of the paper are greatly appreciated.

REFERENCES

[1] A. Bensoussan, Stochastic Control of Partially Observed Systems, Cambridge University Press,
Cambridge, 1992.

[2] H. A. P. Blom and Y. Bar-Shalom, The interacting multiple model algorithm for systems with
Markovian switching coefficients, IEEE Trans. Automat. Control, AC-33 (1988), pp. 780–
783.

[3] P. E. Caines and H. F. Chen, Optimal adaptive LQG control for systems with finite state
process parameters, IEEE Trans. Automat. Control, AC-30 (1985), pp 185–189.

[4] M. H. A. Davis, Markov Models and Optimization, Chapman & Hall, New York, 1993.
[5] R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov Models: Estimation and

Control, Springer-Verlag, New York, 1995.
[6] W. H. Fleming, D. Ji, P. Salame, and Q. Zhang, Piecewise monotone filtering in discrete

time with small observation noise, IEEE Trans. Automat. Control, AC-36 (1991), pp. 1181–
1186.

[7] W. H. Fleming and E. Pardoux, Piecewise monotone filtering with small observation noise,
SIAM J. Control Optim., 27 (1989), pp. 1156–1181.

[8] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-
Verlag, New York, 1975.

[9] W. H. Fleming and Q. Zhang, Nonlinear filtering with small observation noise: Piece-
wise monotone observations, Stochastic Analysis: Liber Amicorum for Moshe Zakai, E.
Merzbach, A. Shwartz, and E. Mayer-Wolf, eds., Academic Press, Boston, 1991, pp. 153–
168.

[10] W. H. Fleming and Q. Zhang, Piecewise filtering with small observation noise: Numerical
simulations, in Applied Stochastic Analysis Lecture Notes in Control and Inform. Sci. 177,
I. Karatzas and D. L. Ocone, eds., Springer-Verlag, New York, 1992, pp. 108–120.

[11] U. G. Haussmann and Q. Zhang, Optimal control of diffusions with small observation noise, in
Proc. Imperial College Workshop on Applied Stochastic Analysis, Stochastics Monographs,
M. H. Davis and R. J. Elliott, eds., Gordon and Breach, Yverdon, Switzerland, 1989,
pp. 237–263.



1668 Q. ZHANG

[12] U. G. Haussmann and Q. Zhang, Stochastic adaptive control with small observation noise,
Stochastics Stochastics Rep., 32, (1990), pp. 109–144.

[13] U. G. Haussmann and Q. Zhang, Discrete time stochastic adaptive control with small obser-
vation noise, Appl. Math. Optim., 25 (1992), pp. 303–330.

[14] O. Hijab, The adaptive LQG problem - Part I, IEEE Trans. Automat. Control, AC-28 (1983),
pp. 171–178.

[15] G. Kallianpur, Stochastic Filtering Theory, Springer-Verlag, New York, 1980.
[16] N. V. Krylov, Controlled Diffusion Processes, Springer-Verlag, New York, 1980.
[17] H. J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and

Filtering Problems, Birkhäuser, Boston, 1990.
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Abstract. In this paper, we study the region in which a bilinear control system is feedback
stabilizable. In particular, we find a necessary and sufficient condition for feedback stabilization in
terms of the Lyapunov spectrum.
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1. Introduction. In this paper, we consider the following bilinear control sys-
tems:

ẋ(t) =

(
A0 +

m∑
i=1

ui(t)Ai

)
x(t), in R

d

u := (u1, . . . , um) ∈ U := {u : R → R
m|u(·) locally integrable, and u(t) ∈ U almost

everywhere (a.e.)}. Here A0, A1, . . . , Am are d× d matrices and U ⊂ R
m is compact

and convex with 0 ∈ int(U), the interior of U .
These kinds of systems are obtained, for example, by linearizing nonlinear systems

at a common fixed point with respect to the state x only. The purpose of this paper
is to characterize the region in which the systems are asymptotically stabilizable
using measurable or piecewise analytic feedback laws, which are defined in this paper.
The methods used here are based on the Lyapunov spectrum of families of time
varying matrices [CK6], in other words, on the collection of Lyapunov exponents
of a class of linear differential equations, and on the construction of feedback rank
controllers in [Li] which originates from [Su]. Under the accessibility rank condition
in the projective space P

d−1 (which is weaker than the accessibility rank condition
in R

d), the methods allow us not only to find a necessary and sufficient condition
for asymptotic feedback stabilization, but also to characterize the region in which the
systems are exponentially stabilizable. In particular, we prove the following result: For
bilinear control systems with the control ranges satisfying the conditions stated above,
exponential stabilization is equivalent to asymptotic stabilization using measurable
feedbacks and also to (open loop) asymptotic null controllability.

Our paper is organized as follows: In section 2 we describe the general setup of
this paper, in particular, we define the concepts used here, such as piecewise analytic
feedback. We also mention some known results on projective systems of the bilinear
control systems in P

d−1, the projective space. In section 3 we state and prove our main
results on the existence of stabilizing feedbacks for cones in the state space R

d. In
section 4 we give an example which exhibits the basic idea in this paper. The example
can be understood without knowing the construction of the feedback in the proof of
our main result. In the appendix, an outline of the proof of Lemma 2.8 is given.
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published electronically June 22, 1998. This research was partially supported by ONR grants N00014-
93-1-0868 and N00014-96-1-0279.
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A paper by Clarke et al. [CLSS] shows the equivalence of asymptotic controlla-
bility and feedback stabilization. This paper deals with nonlinear systems and their
global stabilization. The feedback employed by them is discretized (in time) and their
concept of stability is that of “practical stability,” i.e., stabilization into arbitrarily
small neighborhoods of the fixed point. In contrast, we deal with bilinear systems.
Our feedback concept is the classical one (measurable functions on the state space
that are not discretized) and stability is global asymptotic (or exponential) stability
of the fixed point. Using spectral methods, Gruene constructs discretized controls
for nonlinear systems that yield classical asymptotic stability. For semilinear control
systems the result can be found in [Gr].

2. Setup and preliminaries. Let U , the control range, be compact, convex
with 0 ∈ intU ⊂ R

m and U be the space consisting of locally integrable open loop
control functions taking values in U . Consider

ẋ =

(
A0 +

m∑
i=1

ui(t)Ai

)
x, x ∈ R

d,(B)

where u(·) := (u1(·), . . . , um(·)) ∈ U and Ai are d× d matrices for i = 0, 1, . . . ,m. By
A(x, u) we denote the right-hand side of (B).

There are many papers devoted to feedback stabilization of (B) (cf., e.g., [AG]
and the references listed therein). For two-dimensional systems, a Lyapunov function
approach for systems with unconstrained control range is presented in [CSV], while
the properties of the Lyapunov spectrum for d = 2 are exploited in [CK5] to yield
characterizations of feedback stabilizability. Equation (B) can be studied via the
associated (angular) system on the projective space P

d−1 obtained by identifying
opposite points on the sphere in R

d [CK2]:

ṡ = h0(s) +
m∑
i=1

ui(t)hi(s), s ∈ P
d−1,(PB)

where s = x
|x| ∈ P

d−1 and hi(s) = [Ai − sTAis · I]s, i = 0, 1, . . .m. Here | · | is the

2-norm on R
d, I is the d× d identity matrix, and T denotes transposition. By h(s, u)

we denote the right-hand side of (PB).
Assume the accessibility rank condition for (PB), i.e.,

dimLie [h(·, u), u ∈ U ](s) = d− 1(H)

for all s ∈ P
d−1. (Here dimLie (X)(s) denotes for a set X of vector fields, the

dimension of the distribution generated by the Lie algebra Lie (X) in the tangent
space at the point s.) In order to study the system (PB) we introduce some notations
and concepts.

For any point p ∈ P
d−1 and u ∈ U , let s(t, p, u) denote the solution of (PB) with

s(0, p, u) = p. For example,

d

dt
(s(t, p, u)) = h0(s(t, p, u)) +

m∑
i=1

ui(t)hi(s(t, p, u))

holds for all t ∈ R except on a set of Lebesque measure zero, where u = (u1(·), . . . , um(·)) ∈
U .
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Define

O+(p) = {q ∈ P
d−1|s(t, p, u) = q for some u ∈ U and t ≥ 0}

and

O−(p) = {q ∈ P
d−1|s(t, q, u) = p for some u ∈ U and t ≥ 0}.

Definition 2.1. A set D ⊂ P
d−1 is called a control set of the control system

(PB) if
1) D ⊂ c`O+(p) for every p ∈ D where c`O+(p) denotes the closure of O+(p);
2) for every p ∈ D there is u ∈ U such that the corresponding solution, s(t, p, u),

of (PB) satisfies s(t, p, u) ∈ D for all t ∈ R;
3) D is maximal (with respect to set inclusion) with the properties 1) and 2).

A main control set is a control set with nonempty interior.
In [CK4] it is proved that under assumption (H) the control system (PB) has

k(1 ≤ k ≤ d) main control sets which are linearly ordered, say, D1 ≺ D2 ≺ · · · ≺ Dk,
where the order is defined by

Di ≺ Dj if and only if there exist p ∈ Di, q ∈ Dj , and u ∈ U
such that s(t, p, u) = q for some t ≥ 0.

Our results will be closely related to various spectral concepts for the bilinear
system (B). Here we include the following definition.

Definition 2.2. Let u ∈ U , and let ψ(t, x, u) solve (B) for all t ≥ 0 except on a
set of Lebesgue measure zero with ψ(0, x, u) = x 6= 0. Let

λ(u, x) := lim sup
t→∞

1

t
log |ψ(t, x, u)|.

Let D be a main control set of (PB), and let c`(D) denote the closure of D. The
following set is called the Lyapunov spectrum over D:

ΣLY (D) :=

{
λ(u, x)|(u, x) ∈ U × R

d s.t.

ψ(t, x, u)

|ψ(t, x, u)| ∈ c`(D) for all t ≥ 0

}
.

The following set is called the Floquet spectrum over D:

ΣFL(D) :=

{
λ(u, x)|(u, x) ∈ U × R

d, u piecewise

constant periodic with period T s.t.

s

(
t,

x

|x| , u
)

:=
ψ(t, x, u)

|ψ(t, x, u)| ∈ int(D) for all t ≥ 0 and

s

(
T,

x

|x| , u
)

=
x

|x|
}
.

Proposition 2.3 (see [CK6]). Under assumption (H) we have the following:
1) c` (ΣFL(Di)) =: Ii are bounded intervals for i = 1, . . . , k.
2) If Di ≺ Dj, then inf Ii ≤ inf Ij and sup Ii ≤ sup Ij.
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An outline of the proof is included here. (The detailed proof is given in [CK6],
the proof of Theorem 4.4.)

Proof.
1) Abbreviate D := Di and let for j = 1, 2 λj ∈ ΣFL(D) with corresponding

points (uj , pj) ∈ U × int(D) and periods Tj ≥ 0. Since {s(t, pj , uj)|t ≥ 0} are
compact subsets of int(D), there exist T > 0 and vj ∈ U , with s(t1, p1, v1) = p2

and s(t2, p2, v2) = p1 for some t1, t2 ≤ T . For m,n ∈ N define a control um,n via
concatenation on the time interval [0, tm,n) with tm,n = mT1 + t1 + nT2 + t2 as

um,n = v2 · n -times︸ ︷︷ ︸→ u2 · · · · · u2 · v1 ·m -times︸ ︷︷ ︸→ u1 · · · · · u1,

and on R+ as the tm,n-periodic continuation. By this construction and by virtue of
assumption (H), it can be shown that ΣFL is dense in the interval between λ1 and
λ2.

2) The inequalities follow directly from the construction of the main control sets
in the proof of Theorem 3.10 (ii) in [CK4].

Based on the following assumption we are going to investigate the region in which
the system (B) is stabilizable with state feedback laws. There exists the index i0 ∈
{1, . . . , k} such that

i0 = max{i| inf Ii < 0}.(A)

Only under some specific circumstances can the whole space or a whole neighbor-
hood of the origin be stabilized. In other words, in general, only part of the space
is feedback stabilizable with respect to a given equilibrium of a given control system.
We introduce the following definition which allows us to study feedback stabilization
in part of the space, specifically, in some directions from the equilibrium (the origin in
our paper). So typically, the set of all directions in which (B) is feedback stabilizable
is a cone.

Definition 2.4. For the control system (B), we say that the system is feedback
stabilizable in a cone K with the vertex at the origin, if there is a measurable function
u(x) defined on K such that

1) for any x ∈ K there is a unique function ϕ(t, x)(t ≥ 0) such that

dϕ(t, x)

dt
= A(ϕ(t, x), u(ϕ(t, x))) and ϕ(0, x) = x

for all t ≥ 0 except on a set of Lebesgue measure zero;
2) all solutions starting at any point in K remain in K for all t ≥ 0;
3) any solution starting at any point in K approaches 0 as t→∞;

4) for any cone K̃ ⊂ K such that K̃ ∩ S
d−1 is compact, (Sd−1 is the d − 1

dimensional unit sphere in R
d), and the following holds: For all ε > 0 ∃δ > 0 s.t. all

solutions stay in K ∩B(ε) for all t ≥ 0 whenever they start in K̃ ∩B(δ), where B(r)
denotes the open ball in R

d centered at the origin, with radius r.
The system is said to be exponentially feedback stabilizable if 1), 2), 4), and the

following condition are satisfied:
3′) There is γ > 0 s.t. any solution ϕ(t, x) with x ∈ K satisfies limt→∞ ϕ(t, x)eγt

= 0.
If K is maximal with respect to set inclusion, then we call K the asymptotically

(exponentially, respectively) stabilizable region. In the first case we may simply say

the stabilizable region. The reason for introducing the cone K̃ in Definition 2.4.4 is
explained in section 4.
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Remark 2.5. Notice that if sup Ik < 0, then λ(u, x) < 0 for all (u, x) ∈ U × R
d

(cf. [CK2]); hence any constant u will stabilize (B) in R
d. And if inf I1 > 0, then

λ(u, x) > 0 for all (u, x) ∈ U × R
d (cf. [CK2]); hence, no (measurable) u(x) defined

on any subset of R
d will stabilize (B).

So we would like to know what happens if i0 ≥ 1 and sup Ik ≥ 0. For this we
introduce the following definitions.

Definition 2.6. Let F be a subset of P
d−1. The domain of attraction of F is

defined as

A(F ) := {q ∈ P
d−1|s(t, q, u) ∈ F for some u(·) ∈ U and for some t ≥ 0},

where s(·, q, u) denotes the solution of (PB) with control u(·) ∈ U and s(0, q, u) = q.
In particular, if F = {p} for p ∈ P

d−1, we simply write A(F ) as A(p), which is
O−(p). If F = D a main control set contained in P

d−1, then A(D) = A(p) for any
p ∈ int(D) : A(p) ⊂ A(D) is trivial. For the other direction, let q ∈ A(D). Then there
exist u1 ∈ U and t ≥ 0 such that z := s(t, q, u1) ∈ D. Since p ∈ int(D) ⊂ O+(z), p
can be reached from z by some u ∈ U within finite time. Therefore, A(D) ⊂ A(p).
Briefly, we have A(D) = A(p) = O−(p) for any p ∈ int(D).

Definition 2.7 (see [Su]). A piecewise analytic vectorfield on a real analytic
manifold M is a quadruple (L, (L1,L2), {VS}S∈L1 , E) where

1) L is an analytic stratification of M ;
2) (L1,L2) is a partition of L into two classes, i.e., L = L1 ∪ L2,L1 ∩ L2 = ∅;
3) for each S ∈ L1, VS is an analytic vectorfield on S;
4) E is a map which assigns to each point p in a stratum S ∈ L2, a stratum

E(p) ∈ L1;
5) for each p ∈ S ∈ L1, if we let γ denote the integral curve of VS through p,

then either γ(t) is defined for all t ≥ 0, or else, if γ is defined up to a time T > 0, and
if γ(t), 0 ≤ t < T , remains in a compact subset of M , then limt→T,t<T γ(t) exists;

6) for each p ∈ S ∈ L2, there is a unique integral curve γ of VE(p) such that
limt→0,t>0 γ(t) = p.

In our situation we have M = R
d \ {0} or M = P

d−1, and V is called (piecewise
analytic) feedback controller if for every p ∈ S ∈ L1, there is u ∈ U such that VS(x) =
A(x, u), x ∈ R

d for the system (B) or VS(p) = h(p, u), p ∈ P
d−1 for system (PB).

The basic idea of this definition is to partition M into two classes of connected
real analytic submanifolds (called the strata). On each stratum in one class (i.e., in
L1) an analytic vector field is well defined; hence, the integral curve of the vector
field through each point in the stratum is uniquely defined, and in each point of a
stratum in the other class an exit rule E is specified in such a way that there is a
unique trajectory of VE(p) that starts at p.

The following lemma is one of the basic ingredients of our feedback construction.
It extends the results of Sussmann [Su] on the existence of piecewise analytic feedback
controllers to the case of systems that are not completely controllable. An outline of
the proof is given in the Appendix.

Lemma 2.8 (see [Li]). Let p ∈ int(Dj), where Dj is a main control set. Then
there exists a piecewise analytic feedback controller Vp for the system (PB) in P

d−1

such that p can be reached from any point of A(p) in finite time.
For any subset E of P

d−1 let E be the largest subset of S
d−1 whose identification

in P
d−1 is E, and let KE be the corresponding cone in R

d, i.e., KE = {x ∈ R
d|x =

r · e, r ∈ R \ {0}, e ∈ E}.
Before giving the next definition, let us recall what piecewise analytic feedback
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controller means. Sussmann’s definition of (piecewise analytic) feedback controller
guarantees two things:

1) The vector field is almost surely (a.s.) analytic;
2) There is a unique trajectory of the vector field through any point.
In the next definition we maintain these two aspects with uniquely defined tra-

jectories for all t ≥ 0. Nevertheless, we relax the exit rule in the following sense: If a
trajectory reaches a stratum S ∈ L2, it leaves immediately according to a rule (which
will be clear from the construction), or it never gets back into any stratum S ∈ L1.

Definition 2.9. For the control system (B), let K be a cone in R
d, u : K → R

m

with u(x) ∈ U for all x ∈ K. The function u is called a piecewise analytic feedback
on K if

1) K has an analytic stratification L such that L is partitioned into two disjoint
classes, say, (L1,L2) with dimS = d for any S ∈ L1 and dimS < d for any S ∈ L2;

2) a (x, u(x)) is analytic on any S ∈ L2;
3) there is a rule so that, if a trajectory reaches a stratum S ∈ L2 in finite time,

then it either leaves S immediately (i.e., for p ∈ S we have the existence of an open
time interval (0, τ) with ϕ(t, p) ∈ S1 ∈ L1 for all t ∈ (0, τ) and some S1 ∈ L1), or
it stays in a lower dimensional submanifold such that for any x0 ∈ K the equation
ẋ = A(x, u(x)) has a unique solution ϕ(t, x0) with ϕ(0, x0) = x0 and ϕ(t, x0) ∈ K for
t ≥ 0.

Thus we may have different rules for different strata S ∈ L2, but for each point
p ∈ S ∈ L2 we either assign a stratum E(p) ∈ L1 (see Definition 2.7), or E(p) ∈ L2 is
the stratum S of which p is an element. In the latter case we require that ϕ(t, p) ∈ S
for all t ≥ 0. Therefore, a piecewise analytic feedback u in the sense of Definition 2.9
guarantees global (in K) existence and uniqueness of solutions of ẋ = A(x, u(x)) for
t ≥ 0.

3. The existence of stabilizing feedbacks. In this section we prove the ex-
istence of stabilizing feedbacks under assumption (H), the accessibility condition on
P
d−1. Recall the definition of the index i0 = max{i| inf ΣFL(Di) < 0}, and assume

that i0 ∈ {1, . . . , k}.
Theorem 3.1. Under assumptions (H) and (A) there exists a piecewise analytic

feedback u(x) defined in KA(Di0
) such that

ẋ = A(x, u(x))(FB)

is exponentially stable with respect to the origin in KA(Di0
).

Proof. Under assumption (A) we have inf ΣFL(Di) < 0 for 1 ≤ i ≤ i0 and
inf ΣFL(Di) ≥ 0 for i0 < i ≤ k. By the definition of ΣFL(Dio), there exist a piecewise
constant and periodic control u0 ∈ U and p ∈ int(Di0) such that the solution of
ṡ = h(s, u0), say, sp(t, p, u0) ∈ int(Di0) for all t ≥ 0 and λ(u0, x0) < 0 where x0

|x0| = p

(or we can simply write λ(u0, p) < 0 since λ(u0, x) = λ(u0, y) if x/|x| = y/|y|). Let T
be the period of both u0(·) and sp(·, p, u0). So we have sp(0, p, u0) = sp(T, p, u0) = p.
Let ψ0(t, x, u0) be the solution of ẋ = A(x, u0) with ψ0(0, x0, u0) = x0. So sp(t, p, u0)
is the projection of ψ0(t, x0, u0) onto the projective space P

d−1. Since λ(u0, x0) <
0, ψ0(t, x0, u0) → 0 exponentially as t → ∞. From now on, p, x0, sp, and ψ0 all are
fixed throughout the proof.

By Lemma 2.8 there exists a piecewise analytic feedback controller Vp which is
well defined on A(Dio) = A(p). This implies the following:
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1) There is an analytic stratification of A(p), say, L;
2) L is partitioned into two disjoint classes of strata, say, (L1,L2) with dimS =

d− 1 for any S ∈ L1 and dimS < d− 1 for any S ∈ L2;
3) Vp(q) = h(q, uq) for some uq ∈ U ;
4) Vp(·) is analytic in S ∈ L1;
5) Instruction for motion for any point in S ∈ L2 is given so that p can be

reached from any point of A(p) in finite time via a unique trajectory.
Now we can define u(x) for any x ∈ KA(p) (briefly written as K) as follows:

u(x) =


u0(t), t = min

{
τ |sp(τ, p, u0) =

x

|x|
}
,

uq, if sp(t, p, u0) 6= x

|x| for all t ≥ 0,

where q = x
|x| and uq ∈ U is specified by (3) above, i.e., by Vp(q) = h(q, uq). It is clear

that u(x) is well defined in the cone K. Note that u0(·) ∈ U is piecewise constant and
for any constant c the vector field h(s, c) is analytic in x; hence,

N := {sp(t, p, u0)|0 ≤ t ≤ T}

is a closed analytic subset. Therefore it is a subanalytic set. Let L be the (sub-)
analytic stratification specified in 1) above. Let B the set of all strata belonging to
L, i.e.,

B := {S|S ∈ L1 or S ∈ L2}.

Now we are in the situation that N intersects some strata in B, which may partition
some strata in B into subanalytic sets. Specifically, if S ∈ B and S ∩ N 6= ∅, then
S∩N = the union of some subanalytic sets, say, S∩N =

⋃IS
i=1 Si. Let T be the family

of subanalytic subsets such that T contains S ∈ B if S∩N = ∅ and all Si(i = 1, . . . , IS)

if S ∩ N =
⋃IS
i=1 Si 6= ∅. Thus T is a locally finite family of subanalytic subsets of

A(p). By Theorem 4.2 in [Ha] there exists a subanalytic stratification, say, L∗ of
A(p), compatible with T , i.e., every S ∈ T is a union of strata of L∗.

Let Ã be the largest subset of S
d−1 whose identification in P

d−1 is A(p). Since
{x = (x1, . . . , xd) ∈ Rd| |x| = 1, xd = 0} is subanalytic in S

d−1,N ,B,L, T , and L∗ in
P
d−1 all have their counterparts in S

d−1. (Recall P
d−1 is obtained by identifying the

opposite points in S
d−1). In particular, let L∗ be the subanalytic stratification of Ã.

Notice K is the cone in R
d containing all x with x

|x| ∈ Ã. Hence, K has a subanalytic

stratification whose strata are of the form: {r · S|r > 0, S ∈ L∗}.
We need to prove that the feedback function u(x) defined above does exponentially

stabilize the system (B) in K (in the sense of Definitions 2.4 and 2.9).
Note that u(x) is constant on each ray from the origin so it makes sense to consider

the equation ṡ = h(s, u(s)) in A(p) ⊂ P
d−1. First, let us look at how trajectories

evolve in A(p). For any q ∈ A(p) the trajectory of h(s, u(s)) from q first follows
the vectorfield Vp(s). In finite time it hits N = {sp(t, p, u0)|0 ≤ t ≤ T}, and then
it follows the periodic solution sp(t, p, u0) forever. Since Vp(s) guarantees a unique
trajectory from any point q ∈ A(p), there is a unique trajectory of h(s, u(s)) from q
for positive time. Earlier we obtained the subanalytic stratification L∗ of A(p). Let
L∗ = (L∗1,L∗2). If the trajectory from q reaches any stratum in L∗2 at r, then the exit
rule is given in Lemma 2.8 if r /∈ N , or the trajectory follows N forever if r ∈ N .
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Since Vp(s) steers all points in A(p) into p in finite time, any trajectory of h(s, u(s))
will reach N in finite time (since p ∈ N ). Since u(r · x) = u(x) for r ∈ R \ {0}, (FB)
can be projected into the projective space P

d−1. The projection yields

ṡ = h(s, u(s)), u(s) = u

(
x

|x|
)
, s =

x

|x| ∈ P
d−1(FP)

in A(p). Let ϕ(t, x)(t ≥ 0) be a solution of (FB) with ϕ(0, x) = x, i.e., dϕ/dt =
A(ϕ, u(ϕ)) a.e. For any r 6= 0 d(r · ϕ)/dt = A(r · ϕ, u(r · ϕ)) a.e. Hence, r · ϕ(t, x)
is also a solution of (FB) with r · ϕ(0, x) = r · x. From this and the fact that (FP)
has a unique solution for any initial point q ∈ A(p), it follows that (FB) has a unique
solution for any initial point x ∈ K for t ≥ 0. Since sp(t, p, u0) is the solution
of ṡ = h(s, u0(t)), the projection of r · ψ0(t, x0, u0) for r ∈ R \ {0} is sp(t, p, u0).
Thus any solution in K will reach one of r · ψ0(·, x0, u0) for r ∈ R in finite time
and then follow it. Since r · ψ0(t, x0, u0) → 0 as t → ∞ (with the same rate),

conditions 1), 2), and 3) in Definition 2.4 are satisfied. To prove 4) let K̃ be a subset
of K considered in the definition. For α > 0 all solutions starting at any points in
K̃ ∩B(α) can be uniformly bounded by a constant M(α, K̃). This can be proved as

follows: Consider BK := K̃ ∩ {x ∈ R
d||x| = α}, which is compact. BK intersects

only a finite number of strata of L∗. Let S be a stratum of the first kind and assume
S ∩BK 6= ∅. Since A(x, u(x)) is analytic in S, all solutions starting in S ∩BK leave S
in times bounded by some constant T (S), and the solutions are uniformly bounded by
a constant M(S). From the construction of the feedback controller in Theorem 9 [Su]
or Lemma 2.8, any trajectory passes through only a finite number of strata before it
hits {r ·ψ0(t, x0, u0)|r 6= 0}. Hence all solutions starting in BK are uniformly bounded

by a constant, say, M(α, K̃), and they hit {r · ψ0|(t, x0, u0)|r 6= 0} in times bounded
by a constant. Since all solutions of ẋ = A(x, u(x)) satisfy rϕ(t, x) = ϕ(t, rx), all

solutions starting in K̃ ∩ B(α) are also uniformly bounded by M(α, K̃). Again in

virtue of rϕ(t, x) = ϕ(t, rx) for r ∈ R and x ∈ K,M(α, K̃) can be chosen so that

M(rα, K̃) = rM(α, K̃). This completes the proof of 4).
In Theorem 3.1 we used assumption (A) which is related to the Floquet spectrum.

An assumption related to the Lyapunov spectrum can be similarly stated as: There
exists i0 ∈ {1, . . . , k} s.t.

i0 = max{i| inf ΣLY (Di) < 0}.(A′)

There is a similar result using this assumption. Before we state the result, let us recall
the following definition.

Definition 3.2. Let D be a main control set of (PB). Define the following subsets
of the boundary ∂D:

Γ(D) = {p ∈ ∂D| there exist q ∈ int(D) and u ∈ U with

p = s(t, q, u) for some t > 0},
Γ∗(D) = {p ∈ ∂D| there exist q ∈ int(D) and u ∈ U with

q = s(t, p, u) for some t > 0},
Γ̃(D) = {p ∈ ∂D|O+(p) ∩ int(D) = ∅ and O−(p) ∩ int(D) = ∅}.

Γ(D),Γ∗(D), and Γ̃(D) are called exit, entrance, and tangential boundary, respec-
tively.
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In other words, the boundary of a main control set can be classified into three
disjoint classes. From an exit boundary point at least one trajectory leaves c`(D) im-
mediately; from an entrance boundary point at least one trajectory enters into int(D)
immediately and the rest of the boundary is the tangential boundary.

There is the following fact about these concepts.
Proposition 3.3. 1) The sets Γ(D) and Γ∗(D) are open in ∂D and Γ̃(D) is

closed in ∂D.
2) Under (H), Γ̃(D) ⊂ c`(Γ∗(D)) ∩ c`(Γ(D)), in particular, int∂D(Γ̃(D)) = ∅.
3) For the main control set D1 (the minimal one in the linear ordering), it holds

that ∂D1 = Γ(D1), and for the main control set Dk (the maximal one in the linear
ordering), it holds that ∂Dk = Γ∗(Dk).

The proof is given in [CK4].
Theorem 3.4. Under assumptions (H) and (A′), there exists a measurable feed-

back law defined in a cone K, which exponentially stabilizes (B) in K if at least one
negative Lyapunov exponent can be obtained from a point p ∈ int(Dio) ∪ Γ(Di0), in
particular, if i0 = 1 or sup ΣLY (Di0) < 0. In this case K = KA(p).

Proof. The proof is similar to that of Theorem 3.1 except that the periodic
solution sp(t, p, u0) is replaced by a solution, say, sp(t) ⊂ int(Dio) ∪ Γ(Di0) whose
corresponding solution of (B) exponentially approaches 0 as t→∞. This is because
if there exists p ∈ int(Dio) ∪ Γ(Di0) with λ(u0, x0) < 0 for some u0 ∈ U and x0

|x0| = p,

then the solution of ẋ = A(x, u0), say, ψx0(t) → 0 as t → ∞. The projection of
ψx0(t), sp(t), is a solution of ṡ = h(s, u0). By the definition of λ(u0, x0) we know
sp(t) ∈ c`(Di0) for t ≥ 0. Notice that Γ(Di0) is the exit boundary. Hence there
exist p ∈ int(Di0) and u1 ∈ U which steers p into p in finite time τ . Let u0 be the
concatenation of u1(t) for 0 ≤ t ≤ τ and u0(t + τ) for t ≥ 0. Then the solution
of ṡ = h(s, u0), say, sp(t) ∈ c`(Di0) and sp(0) = p. Let ψ(t) be the solution of
ẋ = A(x, u0), whose projection into P

d−1 is sp(t). So ψ(t) → 0 exponentially as
t → ∞ since λ(u0, x0) = λ(u0, x0) < 0, where x0/|x0| = p and ψ(0) = x0. Once we
have these two solutions, sp(t) and ψ(t), the rest of the proof follows the same lines
in the proof of Theorem 3.1. Since sp(t) for t ≥ 0 may not be piecewise analytic, the
resulting vectorfield A(x, u(x)) may not be piecewise analytic. But u(x) is measurable,
so is A(x, u(x)).

Remark 3.5. The assumptions (A) and (A′) agree if c`ΣFL(Di0) = ΣLY (Di0).
Conditions for equality of the Floquet and the Lyapunov spectrum can be found in
[CK6].

The following corollary leads to the main result (stated in Corollary 3.8). It gives
a necessary and sufficient criterion for exponential feedback stabilization of bilinear
control systems in R

d.
Corollary 3.6. Under assumption (H), there exists a measurable feedback law

which exponentially stabilizes the system (B) in R
d if and only if at least one negative

Lyapunov exponent can be obtained form int(Dk), here Dk is the maximal main control
set.

Proof. Let p ∈ int(Dk) and λ(u, p) < 0 for some u ∈ U . Since Dk is the maximal
main control set, A(Dk) = A(p) = P

d−1. So K = R
d \ {0} in Theorem 3.3 and u(x)

is well defined in K. Thus u(0) = 0 completes the definition of u(x) in R
d.

Conversely, assume λ(u, p) ≥ 0 for all p ∈ int(Dk) and u ∈ U . By 3) of Proposition
3.3, ∂(Dk) = Γ∗(Dk). That is to say that any trajectory starting in Dk never leaves
Dk. Furthermore, any trajectory starting in int(Dk) never reaches ∂(Dk) because, if
u steered p ∈ int(Dk) into q ∈ ∂(Dk), then u would steer a point near p into a point
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not contained in Dk by continuous dependence of solution ṡ = h(s, u) on the initial
value. Hence int(Dk) is positively invariant. From this together with λ(u, p) ≥ 0 for
any u ∈ U and p ∈ int(Dk), we see that it is impossible to exponentially stabilize the
system in any region containing int(Dk).

The next result explains why exponential feedback stability is appropriate stabi-
lization concept for bilinear control systems with compact control ranges.

Theorem 3.7. Under (H), (B) is asymptotically feedback stabilizable in R
d if

and only if it is exponentially feedback stabilizable in R
d (with measurable feedback

laws).
Proof. One direction is obvious. Now assume (B) is not exponentially feedback

stabilizable. By Corollary 3.6 λ(u, p) ≥ 0 for all p ∈ int(Dk) and u ∈ U . If (B)
were asymptotically feedback stabilizable in R

d then there would exist a measurable
u : R

d → R
m with u(x) ∈ U for any x ∈ R

d, such that ẋ = A(x, u(x)) is asymptotically
stable with respect to the origin.

Choose any point 0 6= x0 ∈ R
d with x0

|x0| ∈ int(Dk) and look at the trajectory

of ẋ = A(x, u(x)) from the point x0. Since ẋ = A(x, u(x)) is asymptotically stable,
we can choose T > 0 such that |ϕ(T, x0)| < |x0|, here ϕ(t, x0) is the solution of
ẋ = A(x, u(x)) with ϕ(0, x0) = x0.

If ϕ(T, x0) = rx0 with r ∈ (−1, 1) \ {0}, let v(t) = u(ϕ(t, x0)) for t ∈ [0, T ],
and extend v(t) periodically with T for t ∈ R. Consider ẋ = A(x, v(t)) in R

d. Since
ϕ(t, x0) satisfies ẋ = A(x, u(x)) for t ∈ [0, T ], ϕ(t, x0) is a solution of ẋ = A(x, v(t))
with ϕ(0, x0) = x0 for t ∈ [0, T ]. Notice that A(x, v(t)) = [A0 +

∑m
i=1 vi(t)Ai]x

and ϕ(T, x0) = rx0 = rϕ(0, x0); hence rϕ(t − T, x0) also satisfies ẋ = A(x, v(t))
with rϕ(2T − T, x0) = r2x0 for t ∈ [T, 2T ] (since v(t) is periodic). So, in general,
rnϕ(t−nT, x0) for t ∈ [nT, (n+1)T ], n = 0, 1, . . . is a solution of ẋ = A(x, v(t)). Since
for t ∈ [0, T ] 0 < m ≤ |ϕ(t, x0)| ≤M <∞ for some m and M , limt→∞ 1

t log |rnϕ(t−
nT, x0)| = 1

T log |r| < 0 is a Lyapunov exponent. But by assumption all Lyapunov
exponents λ(u, p) obtained from int(Dk) are not less than 0.

Thus we have shown that if (B) is not exponentially feedback stabilizable and
ϕ(T, x0) = rx0 for some x0 ∈ int(Dk) with r ∈ (−1, 1) \ {0}, then (B) is not asymp-
totically feedback stabilizable.

Now pick any point p0 ∈ int(Dk) in P
d−1. Let

T := max
p∈Dk

min
u∈U

{t|s(t, p, u) = p0 and u ∈ U},

where s(·, p, u) is a solution of (PB) with s(0, p, u) = p. Since Dk is a closed subset
of the compact space P

d−1, Dk is compact. Hence, T is finite [CK1].
For any δ > 0, define

L(δ) := max{|ψ(t, x, u)| | 0 ≤ t ≤ T, x ∈ c`(B(δ)) and u ∈ U},
where B(δ) is the open ball in R

d with radius δ, and ψ(t, x, u) is the solution of
ẋ = A(x, u) with ψ(0, x, u) = x.

Consider the set U , consisting of the open loop control functions. In [CK3] it
is proved that U is compact and metrizable in the week*-topology of L∞(R,Rm) =
(L1(R,Rm))∗. The metric for u and v ∈ U is given by

d(u, v) =

∞∑
n=1

1

2n

∣∣∣∣∫
R

< u(t)− v(t), xn(t) > dt

∣∣∣∣
1 +

∣∣∣∣∫
R

< u(t)− v(t), xn(t) > dt

∣∣∣∣ ,
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where {xn|n ∈ N} is a countable dense subset of L1(R,Rm), and 〈·, ·〉 denotes an inner
product in R

m.
Since {x ∈ R

d| |x| = δ} and (U , d) are compact,

N(δ) := max{|ψ(t, x, u)| | 0 ≤ t ≤ T, |x| = δ and u ∈ U}

is finite. Since A(x, u(t)) = (A0 +
∑m

i=1 ui(t)Ai)x,N(rδ) = rN(δ) for any r > 0.
Hence, L(rδ) = rL(δ) and limδ→0 L(δ) = 0. Fix δ0 > 0 so that L(δ0) < 1.

Pick x0 ∈ R
d with |x0| = 1 and x0

|x0| = x0 ∈ int(Dk). Let ϕ(·, x0) be the solution

of ẋ = A(x, u(x)) with ϕ(0, x0) = x0. By assumption ϕ(t, x0) → 0 as t → ∞ and
ϕ(t, x0)/|ϕ(t, x0)| ∈ int(Dk) for t ≥ 0 since int(Dk) is positively invariant.

Let T0 > 0 such that |ϕ(T0, x0)| < δ0. Since (PB) is completely controllable in
int(Dk), there is u1 ∈ U such that

s

(
τ,

ϕ(T0, x0)

|ϕ(T0, x0)| , u1

)
=

x0

|x0|(1)

for some τ ∈ [0, T ] (by the definition of T ). Let ψ be the corresponding solution of ẋ =
A(x, u1) with ψ(0, ϕ(T0, x0), u1) = ϕ(T0, x0) for t ∈ [0, τ ]. So |ψ(τ, ϕ(T0, x0), u1)| ≤
L(δ0) < 1. Define

v(t) =

{
u(ϕ(t, x0)), 0 ≤ t ≤ T0,

u1(t− T0), T0 < t ≤ T0 + τ.

Let T̃ = T0 + τ . Then

ψ̃(t, x0, v(t)) :=

{
ϕ(t, x0), 0 ≤ t ≤ T0,

ψ(t− T0, ϕ(T0, x0), v), T0 < t ≤ T̃

is a solution of ẋ = A(x, v) with ψ̃(T̃ , x0, v) = rx0 for some r ∈ (−1, 1) \ {0} (since

0 < |ψ(τ, ϕ(T0, x0), u1)| < 1 and (1) holds). Thus we have constructed a solution ψ̃

in R
d which satisfies ψ̃(T̃ , x0, v) = rx0. This is the case we discussed before. So, if

(B) is not exponentially feedback stabilizable in R
d using measurable feedback laws,

then (B) is not asymptotically feedback stabilizable in R
d using measurable feedback

laws.
Combining Corollary 3.6 and Theorem 3.7 we get the following.
Corollary 3.8. Under assumption (H), the following are equivalent:
1) (B) is asymptotically feedback stabilizable in R

d;
2) (B) is exponentially feedback stabilizable in R

d;
3) λ(u, x) < 0 for some u ∈ U and x ∈ R

d with x
|x| ∈ int(Dk).

Remark 3.9. Statement 3) of Corollary 3.8 can also be expressed in the following
equivalent ways, involving the open loop system (B):

4) For all x ∈ R
d \ {0} there exists u ∈ U with λ(u, x) < 0;

5) The system (B) is asymptotically null-controllable for all x ∈ R
d \ {0};

6) The system (B) is exponentially null-controllable for all x ∈ R
d \ {0}.

The proof of 3) ⇔ 4) follows directly from the construction of the main control
sets, for 4) ⇔ 6) see [CK5], and 5) ⇔ 6) follows along the same lines as the proof of
Theorem 3.7.
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4. Example. Consider the controlled linear oscillator ÿ + 2bẏ + (1 + u)y = 0.
With x = (x1, x2)

T = (y, ẏ)T , the equation becomes

ẋ(t) =

(
0 1

−1 −2b

)
x(t) + u(t)

(
0 0

−1 0

)
x(t) =: A(u)x,(E1)

where u(t) ∈ U = [A,B]. This equation is studied in [CK2].
Projection of the equation onto the projective space P

1 yields with p = (cos θ, sin θ), θ ∈
[0, π)

θ = − sin2 θ(t)− (1 + u(t)) cos2 θ(t)− b sin(2θ(t)).(E2)

Now we consider the case: b = −2, U = [−2, 2]. Since the state space of (E2)
is one-dimensional, the control sets of (E2) can be calculated simply by checking the
monotonicity of f(·, u) where u is constant. The control sets are

D1 = πP1

{(
x1

x2

)
∈ R

2 \ {0}|x2 = αx1, α ∈ (2−
√

5, 1)

}
and

D2 = πp1

{(
x1

x2

)
∈ R

2 \ {0}|x2 = βx1, β ∈ [3, 2 +
√

5]

}
,

where πP1 denotes the projection onto P
1. If P

1 = [0, π), then D1 and D2 can also be
written as

D1 =
[
0,
π

4

)
∪
(
π + arctan(2−

√
5), π

)
and

D2 = [arctan 3, arctan(2 +
√

5)],

where D1 is open and D2 is closed in P
1. By the method provided in [CK2], we can

calculate the spectral intervals which are

c`ΣFL(D1) = [2−
√

5, 1] and

c`ΣFL(D2) = [3, 2 +
√

5].

(For this specific case we just need to compute all eigenvalues of A(u) for constant
u ∈ U .) It is easy to see that A(D1), the domain of attraction of D1, is D1 itself
(notice that D1 is the minimal main control set). Hence, the cone generated by A(D1)
is K := KA(D1), which is equal to{(

x1

x2

)
∈ R

2 \ {0}|x2 = αx1, α ∈ (2−
√

5, 1)

}
.

Now we want to find a piecewise analytic feedback law u(x) defined in K to stabilize
(E1) in K. First of all we define u(θ) in A(D1) = D1 such that u(θ) steers any point in
D1 into a specific point p in finite time. Choose p = π + arctan(−0.05) ∈ [0, π) = P

1.
Now u(θ) can be defined as

u(θ) =


2, θ ∈

[
0,
π

4

)
∪ (π + arctan(−0.05), π) ,

−1.2025, θ = arctan(−0.05),

−2, θ ∈ (π + arctan(−0.05), π + arctan(2−√
5)
)
.
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By checking the monotonicity of f(θ, u(θ)), we see that all trajectories starting in
A(D1) = D1 reach p in finite time. Now we can define u(x) in K as

u(x) =



2, x ∈
{(

x1

x2

)
∈ R

2 \ {0}| x2 = αx1, α ∈ (−0.05, 1)

}
,

−1.2025, x2 = −0.05x1,

−2, x ∈
{(

x1

x2

)
∈ R

2 \ {0}| x2 = βx, β ∈ (2−√
5, −0.05)

}
.

The proof of stability of ẋ = A(u(x))x is easy if we notice the following facts. When
u = −1.2025, A(u) = A(−1.2025) has one eigenvector (x1,−0.05x1)

T associated with
the eigenvalue λ1 = −0.05. Let L := {(x1,−0.05x1)

T ∈ R
2|x1 ∈ R}. If u = 2, A(2)

has eigenvalues λ1 = 1 and λ2 = 3 whose corresponding eigenvectors are (x1, x1)
T

and (x1, 3x1)
T , respectively. So any trajectory starting in {(x1, x2)

T ∈ R
2 \ {0}|x2 =

αx1, α ∈ (−0.05, 1)} will reach the line L in finite time. If u = −2, A(−2) has
eigenvalues λ1 = 2 − √

5 and λ2 = 2 +
√

5, whose corresponding eigenvectors are
(x1, (2 −

√
5)x1)

T and (x1, (2 +
√

5)x1)
T , respectively. The line x2 = (2 − √

5)x1 is
in the boundary of K, and the line x2 = (2 +

√
5)x1 is outside of c`(K). Hence, any

trajectory starting in {(x1, x2)
T ∈ R

2 \ {0}|x2 = βx1, β ∈ (2−√5,−0.05)} will reach
the line L in finite time. So with this feedback law, all trajectories of ẋ = A(u(x))x
will reach the line L in finite time, and then follow it and exponentially approach to
zero. The exponential rate for this feedback is 0.05. (It is easy to see that we can
construct feedbacks so that the rates belong to (2−√

5, 0).)
This example also shows the following two facts. One is that the set

{tx|tx is the time that the trajectory of ẋ = A(u(x))x first reaches L from x ∈ K}
is unbounded on K, but it is bounded on any closed K̃ ⊂ K. This is the reason
why we formulated Definition 2.4.4) using subcones K̃ ⊂ K such that K̃ ∩ S

d−1 is
compact. The other observation is that K may not be maximal. For this example,
(E1) is exponentially stabilizable in K ∪ {(x1, x2)

T ∈ R
2 \ {0}|x2 = (2−√5)x1} (i.e.,

the union of K and part of its boundary).
Since P

1 is one dimensional and the system (E2) has two control sets on P
1, the

periodic solution sp(t, p, u0) constructed in the proof of Theorem 3.1 is a single point
in this example, i.e., the point p = π + arctan(−0.05). If d > 2, or if the projected
system has only one control set for d = 2, then the periodic solution sp(t, p, u0) may
not be a constant on P

d−1.

Appendix. With the consent of Shan Lin, the author extracts part of the results
from his Ph.D. dissertation [Li], from which Lemma 2.8 follows. Most of the notations
follow [Su] and results extend those of [Su] to the not completely controllable case.

Consider an affine control system

ẋ = X0(x) +
m∑
i=1

uiXi(x)(C)

on a paracompact, connected, and real analytic manifold M of dimension n. The
vector fields X0 and Xi, i = 1, . . . ,m are assumed to be real analytic. All ad-
missible controls u := (u1, . . . , um) are in U = {u : R → U locally integrable},
where U ⊂ R

m is compact. Let U0 = {all piecewise constant controls in U}, F =
{X0 +

∑m
i=1 uiXi(x)|u = (u1, . . . , um) constant in U}.
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We assume that the control system (C) satisfies the Lie algebra rank condition

dimLie

[
X0 +

m∑
i=1

uiXi, u := (u1, . . . , um) ∈ U

]
(x) = n(H)

for all x ∈M .
If X is a smooth vector field on M,ΦX denotes the flow of X. Let ξ = (Y1, . . . , Yk)

be a finite sequence of smooth vector fields, and let τ = (t1, . . . , tk) ∈ R
k, where k is

a positive integer. Set |ξ| = k and ‖τ‖ = t1 + · · ·+ tk. Denote

Φξ
τ := ΦY1

t1 ΦY2
t2 . . .Φ

YK
tk

,

where ΦX
t (·) = ΦX(t, ·). Also write Φξ(τ, x) = Φξ

τ (x) for τ ∈ R
|ξ|. Define

R
k,T
+ := {τ ∈ R

k
t |‖τ‖ ≤ T} and

for a given τ ∈ R
k C

|ξ|
ε (τ) := {(t′1, . . . , t′k) ∈ R

k| |t′i − ti| ≤ ε for i = 1, . . . , k}.
For τ = (t1, . . . , tk) ∈ R

k, define a map ητ : [0, ‖τ‖] → R
k by

ητ (t) = (0, 0, . . . , 0, t), for 0 ≤ t ≤ tk

= (0, 0, . . . , t− tk, t), for tk ≤ t ≤ tk + tk−1

...
...

= (t− t2 − · · · − tk, t2, . . . , tk), for t2 + t3 + · · ·+ tk ≤ t ≤ ‖τ‖.

Lemma A.1. Assume (H), the accessibility condition for the control system (C),
and let x ∈M and y ∈ int(D) where D is a main control set of control system (C). If
there is a u ∈ U such that y = ψ(t, x, u) for some t ∈ R+, then there is v ∈ U0 such
that y = ψ(t′, x, v) for some t′ ∈ R+, where ψ(t, x, u) is the trajectory of (C) with
control u and ψ(0, x, u) = x.

With this lemma, together with a similar argument as in [Su], we can prove the
following.

Lemma A.2. Let p ∈ int(D) and q ∈ A(p), where A(p) is the domain of attraction
of p. Then there exist (1) a finite subset Fp of −F , (2) a finite sequence ξ of elements

of Fp, (3) a τ ∈ R
|ξ|
+ , and (4) an ε > 0 such that

1) Φξ(τ, p) = q; 2) C|ξ|ε (τ) ⊂ R
|ξ|
+ ;

3) Φξ(·, p)(C|ξ|ε (τ)) is a neighborhood of q.

Theorem A.3. Assume (H) and let p ∈ int(D). Then there exists a piecewise
analytic feedback controller V for system (C) such that p can be reached from any
point of A(p) in finite time for the system ẋ = X0(x) +

∑m
i=1 ui(x)Xi(x).

Proof. For each q ∈ A(p), pick ξq, τq and εq so that they satisfy all the three
properties in Lemma A.2. Let us use Fq to denote the map Φξq (·, p). Let Aq be

the set of all points of R
|ξq|
+ that are of the form ητ (t) for some τ ∈ C

|ξ1|
ξq

(τq) and

some t ∈ [0, ‖τ‖]. For i = 1, . . . , |ξq|, put aiq = τq,i − εq and biq = τq,i + εq, where
τq = (τq,1 . . . , τq,|ξq|).
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Let Ai
q be the set of all points (t1, . . . , t|ξq|) that satisfy (i) tj = 0 for j ≤ |ξq| − i;

(ii) 0 ≤ tj ≤ bjq for j = |ξq| + 1 − i; and (iii) ajq ≤ tj ≤ bjq for j > |ξq| + 1 − i. Then

Aq = A′q ∪ · · · ∪A
|ξq|
q and Ai

q ∩Aj
q = ∅ if i 6= j.

Put Bq = Fq(Aq), B
i
q = Fq(A

i
q) for i = 1, . . . , |ξq|. Because Aq and Ai

q are

compact semianalytic sets, and the map Fq is analytic, it follows that Bq are Bi
q

are compact subanalytic subsets of M . Moreover, since Fq(C
|ξq|
εq ) ⊂ Bq, the set Bq

contains a neighborhood of q.
Let {Kj |j ∈ N} be a sequence of compact sets such that Kj ⊂ int(Kj+1) and that

A(p) =
⋃∞
j=1 Kj . For each j, pick a finite set Qj of points in A(p) in such a way that

Kj \ int(Kj−1) ⊂
⋃
q∈Qj

Bq.

Let q1, q2, q3, . . . be a sequence consisting of the points of Q1, followed by the points of
Q2, followed by the points of Q3, etc. Form a sequence of sets Dj = Bi

qk
, where j ∈ N

and i, k are the unique numbers such that |ξq1 | + · · · + |ξqk−1
| + i = j, 1 ≤ i ≤ |ξqk |.

Let D0 = {p}. For j ≥ 0, put Ej = D0 ∪ · · · ∪Dj . Then the Ej ’s form an increasing
sequence of compact subanalytic sets. Moreover, for every i there is j such that
Ki ⊂ Ej . Hence, if we let Hj = Ej \ Ej−1, we find that the Hj ’s constitute a locally
finite partition of A(p) into relatively compact subanalytic sets. Let T be the family
of sets consisting of Hj for j ∈ N.

For each set Hj , we have by construction that j = |ξq1 | + · · · + |ξqk−1
| + i, with

1 ≤ i ≤ |ξqk |. Let l = |ξqk |, ξqk = (Y1, . . . , Yl). Then define an analytic vector
field Zj on Hj as Zj = −Yl+1−i. From Theorem 3 and Corollary 7 in [Su] (by
letting F (Hj) = {Zj} in the notation of [Su]), we conclude that there is a subanalytic
stratification L compatible with T such that every S ∈ L is a subset of some Hj , and
that, if S ∈ L, S ⊂ Hj , then eitherZj is everywhere tangent to S, or it is nowhere
tangent to S.

Now we can define a piecewise analytic vector field

V = (L, (L1,L2), {VS}S∈L1
, E)

as follows. We take the stratification to be L. A stratum S ∈ L is in L1 if S ⊂ Hj

and Zj is tangent to S for some j. Otherwise, S is in L2. If S ∈ L1 and S ⊂ Hj , then
define VS = Zj .

If S ∈ L2 and q ∈ S, there is a unique j such that S ⊂ Hj . It is shown in Theorem
9 in [Su] that there is a unique E(q) ∈ L1 such that the integral curve γ of Zj through
q satisfies γ(s) ∈ E(q) for small positive s.

Finally, it remains to prove that any point q ∈ A(q) can be steered into p in finite
time by the feedback controller V defined above. Let q ∈ Hj . The integral curve γ1 of
Zj through q is such that γ1(s) ∈ Hj for 0 ≤ s < T1 and γ1(T1) ∈ Hi for some i < j.
Let γ2 be the integral curve of Zi through γ1(T1). Then γ2(s) ∈ Hi for 0 ≤ s < T2

and γ2(T2) ∈ Hk for some k < i. Define γ3 to be the integral curve of Zk through
γ(T2), etc. Then the curve γ obtained by following γ1, then γ2, then γ3, and so on,

reaches p in time T ≤∑jq
i=1 Ti for some integer jq ≤ j, which means at most j < ∞

integral curves are needed. So T is finite because each of the Ti’s is finite from the
construction of Zi and Hi.
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STOCHASTIC LINEAR QUADRATIC REGULATORS WITH
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Abstract. This paper considers optimal (minimizing) control of stochastic linear quadratic
regulators (LQRs). The assumption that the control weight costs must be positive definite, inherited
from the deterministic case, has been taken for granted in the literature. It is, however, shown
in this paper that some stochastic LQR problems with indefinite (in particular, negative) control
weight costs may still be sensible and well-posed due to the deep nature of stochastic systems.
New stochastic Riccati equations, which are backward stochastic differential equations involving
complicated nonlinear terms, are presented and their solvability is proved to be sufficient for the well-
posedness and the solutions of the optimal LQR problems. Existence and uniqueness of solutions to
the Riccati equation for a special case are obtained. Finally, it is argued that, quite contrary to the
deterministic systems, the stochastic maximum principle cannot fully characterize the optimality of
the stochastic LQR problems.

Key words. stochastic linear quadratic regulator, well-posedness, stochastic Riccati equation,
backward stochastic differential equation, maximum principle
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1. Introduction. Consider the following stochastic linear quadratic regulator
(LQR) problem:

Minimize J = E{∫ T
0

1
2 [x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt+ 1

2x
′(T )Hx(T )}

Subject to

{
dx(t) = [A(t)x(t) +B(t)u(t)]dt+ [C(t)x(t) +D(t)u(t)]dW (t),

x(0) = y.

Here W (t) is a Brownian motion and the control variable u(t) takes value in some
Euclidean space. In the deterministic case (i.e., C = D = 0), it is well known that
the matrix R(t), the so-called control weight, must be positive definite (for almost
all t); otherwise the optimization problem would not be well-posed (or would become
trivial) [8, 1]. To be precise, if R(t) is negative (which means a benefit rather than a
cost), then the optimal control u can be shown to be such that |u(t)| = +∞, namely,
“the larger the better.” Stochastic LQR problems have been first studied by Wonham
[13] and by many researchers later (cf., e.g., [2, 5]), but the assumption that R(t) > 0
has been taken for granted in all of these works. Recently, we observed that some
stochastic LQR problems with D 6= 0 are nontrivial even when R(t) < 0, i.e., the

∗Received by the editors October 14, 1996; accepted for publication (in revised form) January 8,
1998; published electronically June 22, 1998.

http://www.siam.org/journals/sicon/36-5/31047.html
†Center for Mathematical Sciences, Zhejiang University, Hangzhou, China (amaschen@dial.zju.

edu.ch). The research of this author was partially supported by the National Natural Science Foun-
dation of China and the State Education Commission of China.

‡Laboratory of Mathematics for Nonlinear Sciences and Department of Mathematics, Fudan Uni-
versity, Shanghai 200433, China (xjli@ms.fudan.edu.ch). The research of this author was partially
supported by the Climbing Project of China and the Chinese State Education Commission Science
Foundation.

§Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, Hong Kong (xyzhou@se.cuhk.edu.hk). The research of this author was supported
by RGC earmarked grants CUHK 4125/97E and CUHK 249/94E.

1685



1686 S. CHEN, X. LI, AND X. ZHOU

“the-larger-the-better” policy no longer applies. Let us look at a very simple example
in one dimension. The following deterministic LQR problem

Minimize J =
∫ 1

0
1
2 [x2(t) + r(t)u2(t)]dt+ 1

2x
2(1)

Subject to

{
dx(t) = 0,

x(0) = 0,

(1.1)

where r(t) < 0, is not well-posed. In fact, J =
∫ 1

0
1
2r(t)u

2(t)dt→ −∞ as |u(t)| → +∞.
Now, consider a stochastic version of (1.1):

Minimize J = E
{∫ 1

0
1
2 [x2(t) + r(t)u2(t)]dt+ 1

2x
2(1)

}
Subject to

{
dx(t) = u(t)dW (t),

x(0) = 0.

(1.2)

Substituting x(t) =
∫ t
0
u(s)dW (s) into the cost function, we obtain, via a simple

calculation

J =
1

2
E

∫ 1

0

[r(t) + (2− t)]u2(t)dt.(1.3)

Hence, when r(t) is a deterministic function with r(t) > t−2, the optimization problem
is sensible (with the optimal control u∗(t) = 0). In this case, the control weight cost,
r(t), could be negative as long as, say, r(t) > −1. Certainly, r(t) cannot be too
negative. For example, the problem would obviously become ill-posed if r(t) < −2.

The above seemingly surprising observation indeed makes perfect sense when we
think a little deeper: the gain due to a larger control size may not outweigh the loss
due to a greater uncertainty (because D 6= 0). It is emphasized that D 6= 0, which
means that the controller can control the uncertainty or the decision made is going to
affect the scale of the uncertainty in the system, plays a key role here. This kind of
situation happens in real-world systems. In a stock market, for example, the trading
made by the so-called “large investors” is going to influence the fluctuations of the
stock prices. If D = 0, which is assumed in most of the previous work (see [5] and the
references therein), then the control weight R must be positive definite for the well-
posedness and the stochastic LQR problem can be treated almost completely parallel
to the deterministic case. However, if D 6= 0, then R, even being negative, could be
compensated by a quadratic term (which is related to D) by taking advantage of the
underlying uncertainty. This observation reveals a fundamental difference between
deterministic and stochastic systems.

Let us take a more concrete example to illustrate the above idea. Suppose an oil
company is investing in an oil prospecting project. This project will cause a certain
degree of pollution and suppose the pollution level x(t) during a period of time [0, T ]
is described by {

dx(t) = (αx(t) + βu(t))dt+ δu(t)dW (t),

x(0) = x0,
(1.4)

where u(t) represents the investment level of the company at time t, x0 is the initial
pollution level, and α, β, and δ are given constants. Suppose that the investment is
expected to be very profitable and the return in the time period [t, t+∆t] is r|u(t)|2∆t
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with a constant r > 0, and the company has sufficient funds to make the investment
so that u(t) ∈ (0,+∞). On the other hand, the environmental impact of the project is
supervised and monitored by the government so that the pollution level x(t) cannot
deviate too much from an allowable level x̄(t) at any time. The objective of the

company is on one hand to maximize the total expected return, E
∫ T
0
r|u(t)|2dt, and

on the other hand to minimize the expected negative environmental impact, which in

this case is measured by E
∫ T
0
|x(t)− x̄(t)|2dt. This is a multi-objective optimization

problem and it may be converted into a single-objective problem by putting weights
on the different objectives. Thus the following function is to be minimized:

J = E

∫ T

0

(λ1|x(t)− x̄(t)|2 − λ2r|u(t)|2)dt,(1.5)

where λ1, λ2 ∈ (0, 1) with λ1 + λ2 = 1 represent the weights. Note that this is a
stochastic minimizing LQR problem with a negative control cost. If the problem
were deterministic (i.e., there was no risk), where a positive return is guaranteed,
then by the deterministic LQR theory that the control cost −λ2r|u(t)|2 would be
overwhelming in the overall cost, when λ1 is small enough. In this case, the optimal
policy would be u(t) = +∞ (i.e., the larger the investment size the better) and the
problem would become trivial. However, the problem is actually stochastic where
the diffusion coefficient depends on the control (i.e., the risk of pollution increases as
the investment level increases); then there is a trade-off (no matter how small λ1 is)
between the return (or the investment size) and the risk which makes the optimization
problem sensible.

More generally, such a phenomenon can happen in the following situation. Sup-
pose, in a deterministic (minimizing) optimization problem, that the cost decreases
as the level of activity the decision maker carries out increases (a typical example of
such situations is an investment that would be “guaranteed” to be profitable if the
risk were to be excluded from consideration). Then it is not really an optimization
problem because there is no trade-off in it, and the optimal decision is simply to take
the maximum possible activity level. So the problem is trivial or ill-posed. However,
in a stochastic environment, suppose that the uncertainty increases with increasing
magnitude of the activity level and that the uncertainty results in certain additional
cost (called risk adjustment in the terminology of economics); then there is a trade-off
between the activity level and the uncertainty, and the decision maker has to care-
fully balance the two to achieve an optimal solution. The problem therefore becomes
meaningful. Needless to say, such phenomena may occur in a much wider class of op-
timization problems that can go beyond linear systems and optimal control problems.

For LQR problems, it is natural to study an associated Riccati equation. The
Riccati equation presented in this paper for the stochastic LQR problem with an
indefinite control weight cost is a backward stochastic differential equation of the
Pardoux and Peng type [11] and involves a term (R + D′PD)−1 (P is the unknown
of the Riccati equation). In the present paper, we show that the stochastic LQR
problem is well-posed if there are solutions to the Riccati equation, and an optimal
feedback control can then be obtained. However, the existence and uniqueness of
the solutions to the Riccati equation, in general, seem to be very difficult problems
due to the presence of the complicated nonlinear term. In this paper, we shall solve
the existence and uniqueness for a special case where C = 0 and all of the matrices
A,B,D,Q,R,H are deterministic functions.

For the deterministic LQR problems (with R > 0), the Pontryagin maximum prin-
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ciple can completely characterize the optimality [1]. More precisely, the solvability
of the so-called Hamiltonian system, which consists of the original state equation,
the adjoint equation, and the maximum condition, is equivalent to the well-posedness
of the LQR problem, and the solution to the Hamiltonian systems gives rise to an
optimal feedback control. The stochastic maximum principle has been investigated
since the 1960s [6, 9, 2, 7]. However, almost all of the results assume that the diffusion
term does not depend on the control variable. Under this assumption, the statements
of maximum principle (i.e., an optimal control should maximize pointwisely the usual
Hamiltonian, which is linear in the drift term and independent of the diffusion term)
and their proofs are very similar to those of the deterministic case. One does not
see much difference between stochastic and deterministic systems from those results.
The stochastic maximum principle for systems with control-dependent diffusion coef-
ficients had long been an outstanding open problem until 1988 when Peng [12] first
solved it (the proof of Peng was simplified by Zhou [15]). It is observed in [12, 15]
that, in addition to the usual (first-order) adjoint equation, one has to introduce an
additional adjoint equation—called the second-order adjoint equation—to represent
the risk factor due to the underlying uncertainty. The maximum principle is to max-
imize an extended Hamiltonian, which includes an additional term that is quadratic
in the diffusion coefficient, to reflect the risk-averse or risk-seeking attitudes of the
decision makers. Moreover, it is shown by Zhou [16] that Peng’s maximum principle is
sufficient under certain convex conditions. However, while Peng’s maximum principle
has been widely recognized as a significant new result as well as the best result so far,
it cannot, as will be shown via an example in this paper, lead to an optimal solution
for some stochastic LQR problems that are well-posed but with R < 0. This is quite
different to the deterministic case, which suggests that Peng’s maximum principle
could be further improved to give tighter necessary conditions of optimality which in
particular would be sufficient for the stochastic LQR model.

The rest of the paper is organized as follows. In section 2 the optimal control
problem of stochastic LQR models with indefinite control weight costs is formulated.
In section 3 the corresponding stochastic Riccati equation is introduced and the exis-
tence of its solutions is shown to be sufficient for the LQR problem to be well-posed.
Section 4 is devoted to the study of the Riccati equation for a special case. In section
5, the gap between Peng’s maximum principle and the stochastic LQR problems is
demonstrated. Finally, section 6 gives some concluding remarks.

2. Problem formulation and preliminaries. We consider in this paper a
stochastic optimal control problem. The system is governed by the following linear
Ito’s stochastic differential equation (SDE){

dx(t) = [A(t)x(t) +B(t)u(t)]dt+ [C(t)x(t) +D(t)u(t)]dW (t),

x(s) = y,
(2.1)

where (s, y) ∈ [0, T )×Rn are the initial time and initial state, respectively, W (t) is a
given one-dimensional Brownian motion on [0, T ], and u(·), the control, is a U -valued
Ft-adapted measurable process with

Ft = σ{W (r) : 0 ≤ r ≤ t}.(2.2)

Here U = Rm. The set of all such admissible controls is denoted by Uad. Note that
we assumed the Brownian motion to be one-dimensional just for simplicity. There is
no essential difficulty in the analysis below for the multidimensional case.
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For each (s, y) and u(·) ∈ Uad, the associated cost is

J(s, y;u(·)) = Es
{∫ T

s

1

2
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt+

1

2
x′(T )Hx(T )

}
,(2.3)

where Es ≡ E(·|Fs). The solution x(·) of the SDE (2.1) is called the response of
the control u(·) ∈ Uad, and (x(·), u(·)) is called an admissible pair. The objective of
the optimal control problem is to minimize the cost function J(s, y;u(·)), for a given
(s, y) ∈ [0, T ) × Rn, over all u(·) ∈ Uad. We denote the above problem by Cs,y to
recall the dependence on the initial time s and the initial state y. The value function
is defined as

V (s, y) = inf
u(·)∈Uad

J(s, y;u(·)).(2.4)

Note that V is an Fs-adapted process for each fixed y. An admissible pair (x∗(·), u∗(·))
is called optimal for Cs,y if u∗(·) achieves the infimum of J(s, y;u(·)). The optimization
problem (2.1)–(2.3) is called well-posed if V (s, y) > −∞, P − a.s., for all (s, y) ∈
[0, T )×Rn.

Notation. We make use of the following notation in this paper:

M ′ : the transpose of any vector or matrix M ;

M j : the jth entry of any vector M ;

|M | : =
√∑

i,jm
2
ij for any matrix or vector M = (mij);

Sn : the space of all n× n symmetric matrices;

Sn+ : the subspace of all nonnegative definite matrices of Sn;

Ŝn+ : the subspace of all positive definite matrices of Sn;

C(0, T ;X) : the Banach space of X-valued continuous functions on [0, T ]

endowed with the maximum norm ‖ · ‖ for a given Hilbert space X;

ρx : the gradient or Jacobian of a function ρ with respect to the variable x;

ρxx : the Hessian of a scalar function ρ with respect to the variable x .

Given a probability space (Ω,F , P ) with a filtration {Ft : a ≤ t ≤ b} (−∞ ≤ a <
b ≤ +∞), a Hilbert space X with the norm ‖ · ‖X , and p (1 ≤ p ≤ +∞), define the
Banach space

LpF (a, b;X) =
{
φ(·) = {φ(t, ω) : a ≤ t ≤ b}| φ(·) is an Ft − adapted, X-valued

measurable process on [a, b], and E
∫ b
a
‖ φ(t, ω) ‖pX dt < +∞

}
,

with the norm

‖ φ(·) ‖F,p=
(
E

∫ b

a

‖ φ(t, ω) ‖pX dt

) 1
p

.

In the rest of this paper, we shall employ the usual convention of suppressing the
ω-dependence of all random functions. Sometimes we even write A for a (deterministic
or stochastic) process A(t), omitting the variable t, whenever no confusion arises.
Under this convention, when A ∈ C(0, T ;Sn), A ≥ (>)0 means A(t) ≥ (>)0, ∀t ∈
[0, T ].

The following basic assumption will be in force throughout this paper:
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(A) The data appearing in the LQR problem satisfy

A,C ∈ L∞F (0, T ;Rn×n) ∩ L2(Ω;C(0, T ;Rn×n)),

B,D ∈ L∞F (0, T ;Rn×m) ∩ L2(Ω;C(0, T ;Rn×m)),

Q ∈ L2
F (0, T ;Sn+) ∩ L2(Ω;C(0, T ;Sn+)),

R ∈ L2
F (0, T ;Sm) ∩ L2(Ω;C(0, T ;Sm)),

H ∈ L2(Ω,FT ;Sn+).

3. Stochastic Riccati equation. We introduce the following stochastic Riccati
equation:

(3.1)


dP (t) =
{
−
(
P (t)A(t) +A′(t)P (t) + C ′(t)P (t)C(t) + Λ(t)C(t) + C ′(t)Λ(t) +Q(t)

)
+
(
P (t)B(t) + C ′(t)P (t)D(t) + Λ(t)D(t)

)(
R(t) +D′(t)P (t)D(t)

)−1(
B′(t)P (t)

+D′(t)P (t)C(t) +D′(t)Λ(t)
)}

dt+ Λ(t)dW (t),

P (T ) = H,

K(t) ≡ R(t) +D′(t)P (t)D(t) > 0, P − a.s., ∀t ∈ [0, T ].

An Ft-adapted pair (P,Λ) ∈ [L2
F (0, T ;Sn)∩L2(Ω;C(0, T ;Sn))]×L2

F (0, T ;Sn) is
called a solution of the Riccati equation (3.1) if it satisfies all the constraints in (3.1).
Note that it is a backward stochastic differential equation (BSDE). This type of equa-
tion was originally proposed by Bismut [3, 4] for the linear case, then extended to the
nonlinear case by Pardoux and Peng [11], and has been further developed extensively
in recent years. A distinctive feature of this type of equations is that their solutions
are pairs (P,Λ), and the presence of Λ, which is derived by the martingale represen-
tation theorem, is necessary to reflect the uncertainty during the period between now
and the given terminal time. Note that Λ itself may not satisfy any SDE. For details
see [3, 4, 2, 12, 15, 11]. The Riccati equation (3.1) is nonlinear, and the nonlinearity
does not satisfy the Lipschitz condition usually imposed in the literature due to the
presence of the term (R+D′PD)−1.

Theorem 3.1. If the stochastic Riccati equation (3.1) admits a solution, then
the stochastic LQR problem (2.1)–(2.3) is well-posed.

Proof. Let P ∈ L2
F (0, T ;Sn)∩L2(Ω;C(0, T ;Sn)) be any semimartingale with the

following decomposition:

dP (t) = Γ(t)dt+ Λ(t)dW (t), t ∈ [0, T ],(3.2)

and let (x(·), u(·)) be any admissible pair. Applying Ito’s formula, we obtain

d(x′Px) =
{
x′(Γ + PA+A′P + C ′PC + ΛC + C ′Λ)x

+2u′(B′P +D′PC +D′Λ)x+ u′D′PDu
}
dt

+{...}dW (t).

(3.3)

Integrating from s to T , taking expectations Es on both sides, and dividing by 2, one
gets

1
2E

s[x′(T )P (T )x(T )]− 1
2y
′P (s)y

= 1
2E

s
∫ T
s

{
x′(Γ + PA+A′P + C ′PC + ΛC + C ′Λ)x

+2u′(B′P +D′PC +D′Λ)x+ u′D′PDu
}
dt.
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Adding this to (2.3) and, provided K ≡ R+D′PD > 0, using the square completion
technique, we have

J(s, y;u(·))
= 1

2E
s
∫ T
s

{
x′(Γ + PA+A′P + C ′PC + ΛC + C ′Λ +Q)x

+ 2u′(B′P +D′PC +D′Λ)x

+ u′(R+D′PD)u
}
dt+ 1

2E
s[x′(T )(H − P (T ))x(T )] + 1

2y
′P (s)y

= 1
2E

s
∫ T
s

{
x′(Γ + PA+A′P + C ′PC + ΛC + C ′Λ +Q− L′K−1L)x

+ (u+K−1Lx)′K(u+K−1Lx)
}
dt

+ 1
2E

s[x′(T )(H − P (T ))x(T )] + 1
2y
′P (s)y,

(3.4)

where L = B′P + D′PC + D′Λ. Now, if (P,Λ) satisfies the Riccati equation (see
(3.2)), i.e.,

Γ = −(PA+A′P + C ′PC + ΛC + C ′Λ +Q− L′K−1L),(3.5)

with K = R+D′PD > 0 and P (T ) = H, then

J(s, y;u(·))
= 1

2E
s
∫ T
s

(u+K−1Lx)′K(u+K−1Lx)dt+ 1
2y
′P (s)y

≥ 1
2y
′P (s)y > −∞, P − a.s.

(3.6)

Therefore, the stochastic LQR problem is well-posed.
Remark 3.1. We see from the above proof that if the Riccati equation (3.1) admits

a solution (P,Λ), then the optimal feedback control would be

u(t) = −K−1(t)L(t)x(t)

= −
(
R(t) +D′(t)P (t)D(t)

)−1(
B′(t)P (t) +D′(t)P (t)C(t) +D′(t)Λ(t)

)
x(t)

(3.7)
if the corresponding solutions to the system equation exist. In this case, the value
function is V (t, x) = 1

2x
′P (t)x. Note that under (3.7), the system (2.1) reduces to{

dx(t) = [A(t)−B(t)K−1(t)L(t)]x(t)dt+ [C(t)−D(t)K−1(t)L(t)]x(t)dW (t),

x(s) = y.
(3.8)

This is a linear stochastic differential equation. The existence and uniqueness of
its solutions depend on some moment estimates of the coefficients A − BK−1L and
C−DK−1L and, in particular, K−1. While existence and uniqueness results are hard
to obtain in general, they are indeed available in some special cases; see Theorem 3.2
below.

We see that the solutions to the Riccati equation are pairs (P,Λ). As mentioned,
the presence of Λ is necessary when the coefficients A,B,C,D,Q,R,H of the equation
are random so as to get an Ft-adapted solution. However, if all the coefficients are
deterministic, then we may have a deterministic Riccati equation as follows:

(3.9)


Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R+D′PD)−1(B′P +D′PC) +Q = 0,

P (T ) = H,

K = R+D′PD > 0.
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Theorem 3.2. Assume that all the coefficients A,B,C,D,Q,R,H are determin-
istic. Then the statement of Theorem 3.1 remains valid with the Riccati equation (3.1)
replaced by (3.9). Moreover, the following feedback control

u(t) = −
(
R(t) +D′(t)P (t)D(t)

)−1(
B′(t)P (t) +D′(t)P (t)C(t)

)
x(t),(3.10)

which results in a unique solution of the state equation (3.8), is optimal.
Proof. The first assertion comes directly from Theorem 3.1 since, if there exists

a solution to (3.9), then there exists a solution to (3.1) with Λ = 0. As for the
second assertion, note that by the conventional Riccati equation theory we have P ∈
C(0, T ;Sn+). Moreover, K−1 ∈ C(0, T ;Sn+). Hence, all the coefficients in (3.8) are
uniformly bounded, which implies the existence and uniqueness of its solutions. This
completes the proof.

By virtue of the newly introduced Riccati equation (3.1) or (3.9), one may now
understand why the control weight cost R may be allowed to be indefinite. Indeed,
even when R < 0, the presence of the term D′PD may offer compensation if it
is positive enough so that R + D′PD > 0. This is possible, as we will see from the
examples below. Note that D 6= 0 (namely, the diffusion term depends on the control)
is vital for such phenomena to occur, which intuitively means that the controller must
be able to control the variance of the uncertainty in dynamics. If D = 0, then R must
be positive definite in order for the problem to be sensible.

Example 3.1. Consider the example (1.2) presented in the introduction. The
corresponding Riccati equation (3.9) is

Ṗ (t) = −1, P (1) = 1.

Hence, P (t) = 2 − t. The problem is then well-posed if and only if r(t) + 2 − t > 0,
which is consistent with the conclusion obtained from the direct computation.

Example 3.2. Consider the following:

Minimize J = Es
{∫ 1

0
1
2ru

2(t)dt+ 1
2x

2(1)
}

Subject to

{
dx(t) = u(t)dt+ u(t)dW (t),

x(s) = y.

(3.11)

Here r is a given (deterministic) constant. We are going to show that the problem is
well-posed if

−1 ≤ r < 0, ln(−r) + 2 + r < 0 (or −0.1586 < r < 0 approximately).(3.12)

To this end, we first see that the corresponding Riccati equation (3.9) reads


Ṗ (t) = P 2(t)
r+P (t) ,

P (1) = 1,

r + P (t) > 0.

(3.13)

It should be noted that if r < −1, then the above equation is not solvable. Indeed, in
this case, P (t) > −r > 1, so the terminal condition of (3.13) is violated.

The equation (3.13) is equivalent to{
lnP (t)− r

P (t) = t− 1− r,

r + P (t) > 0.
(3.14)
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Define f t(p) = ln p− r
p − t+ 1 + r, p ∈ (0,+∞). Since

f t(−r) = ln(−r) + 2− t+ r < 0,

f t(1) = 1− t > 0, ∀t ∈ [0, 1),
(3.15)

we conclude that there is P (t) ∈ (−r, 1) (i.e., r + P (t) > 0) such that f t(P (t)) = 0
for t ∈ [0, 1). Moreover,

ḟ t(p) =
p+ r

p2




< 0, if p < −r,
> 0, if p > −r,
= 0, if p = −r.

(3.16)

Thus the P (t) satisfying f t(P (t)) = 0 and r + P (t) > 0 is unique. Finally, f1(1) = 0
implies P (1) = 1. Hence, (3.14) or (3.13) does admit a solution. In this case, the
optimal feedback control is (noting (3.7))

u(t) = − P (t)

r + P (t)
x(t).

4. Existence and uniqueness: A special case. We conclude from the pre-
vious section that the study of the stochastic LQR problem may be reduced to that
of the Riccati equation (3.1). However, (3.1) is so complicated that we are not able
to prove the existence and uniqueness of its solutions at this moment. We can only
prove the existence and uniqueness for a special case, where C(t) ≡ 0 and all the
other coefficients A,B,D,Q,R,H are deterministic functions, which is the objective
of this section.

First of all, when C(t) ≡ 0 and all the other coefficients are deterministic, the
Riccati equation (3.9) is further reduced to


Ṗ + PA+A′P − PB(R+D′PD)−1B′P +Q = 0,

P (T ) = H,

K = R+D′PD > 0.

(4.1)

Theorem 4.1. If P is a solution to the Riccati equation (4.1), then P ∈
C(0, T ;Sn+) and it is the only solution.

Proof. That P ∈ C(0, T ;Sn+) is clear from the conventional Riccati equation

theory. Now suppose P̃ is another solution of (4.1). Set P̂ = P − P̃ . Then P̂ satisfies{
˙̂
P + P̂A+A′P̂ − P̂BK̃−1B′P̃ + PBK−1D′P̂DK̃−1B′P̃ − PBK−1B′P̂ = 0,

P̂ (T ) = 0,

where K = R+D′PD > 0 and K̃ = R+D′P̃D > 0. Since |K−1(t)| and |K̃−1(t)| are
uniformly bounded due to their continuity, we can apply Gronwall’s inequality to get
P̂ (t) ≡ 0. This proves the uniqueness.

Now let us turn to the existence. We consider the conventional Riccati equation{
Ṗ + PA+A′P − PBK−1B′P +Q = 0,

P (T ) = H.
(4.2)
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Denote K = {K ∈ L∞(0, T ; Ŝm+ ) | K−1 ∈ L∞(0, T ; Ŝm+ )}. It can be checked that

C(0, T ; Ŝm+ ) ⊂ K. Fix Q ∈ C(0, T ;Sn+). For each K ∈ K, we know from the classical
Riccati theory that (4.2) admits a unique solution P ∈ C(0, T ;Sn+). Thus we can
define a mapping Ψ : K → C(0, T ;Sn) as P = Ψ(K).

Lemma 4.2. The operator Ψ is monotonely increasing and continuous.
Proof. Let K, K̃ ∈ K, P = Ψ(K) and P̃ = Ψ(K̃). Denote P̂ = P − P̃ . Then P̂

satisfies {
˙̂
P + P̂ Â+ Â′P̂ − P̂BK̃−1B′P̂ + Q̂ = 0,

P̂ (T ) = 0,
(4.3)

with Â = A−BK̃−1B′P̃ and Q̂ = PB(K̃−1 −K−1)B′P . Now if K ≥ K̃(> 0), then
K̃−1 ≥ K−1 > 0 which results in Q̂ ≥ 0. Hence, the solution of the conventional
Riccati equation (4.3) is nonnegative definite, namely, P̂ ≥ 0. This proves the mono-
tonicity. On the other hand, if K̃ → K, then by (4.3) and Gronwall’s inequality it is
easily seen that P − P̃ = P̂ → 0. This yields the desired continuity, and the proof is
complete.

Lemma 4.3. The Riccati equation (4.1) admits a solution if and only if there is
a K ∈ C(0, T ; Ŝm+ ) such that

R = K −D′Ψ(K)D.(4.4)

Proof. The proof is obvious.
Lemma 4.4. The Riccati equation (4.1) admits a solution if and only if there

exist K+,K− ∈ C(0, T ; Ŝm+ ) such that

K+ ≥ R+D′Ψ(K+)D ≥ R+D′Ψ(K−)D ≥ K−.(4.5)

Proof. Necessity. If (4.1) admits a solution P , then (4.5) trivially holds by letting
K+ = K− = R+D′PD.

Sufficiency. Let K+,K− be given with (4.5) satisfied. Define sequences {K+
i }∞0 ,

{K−
i }∞0 , {P+

i }∞0 , and {P−i }∞0 iteratively as follows:


K+
0 = K+, K−

0 = K−, P+
0 = Ψ(K+

0 ), P−0 = Ψ(K−
0 );

K+
i+1 = R+D′P+

i D, K
−
i+1 = R+D′P−i D,

P+
i+1 = Ψ(K+

i+1), P
−
i+1 = Ψ(K−

i+1), i = 0, 1, 2, · · ·
(4.6)

By (4.5), we have

K+
0 ≥ K+

1 ≥ K−
1 ≥ K−

0 > 0.

Since Ψ is increasing (Lemma 4.2), we also have

P+
0 ≥ P+

1 ≥ P−1 ≥ P−0 ≥ 0.

By induction, we obtain{
P+

0 ≥ P+
i ≥ P+

i+1 ≥ P−i+1 ≥ P−i ≥ P−0 ≥ 0,

K+
0 ≥ K+

i ≥ K+
i+1 ≥ K−

i+1 ≥ K−
i ≥ K−

0 > 0,
(4.7)

for i = 1, 2, · · ·.
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From (4.10), we see that K+
i ∈ K and there exist K+ ∈ K and P+ such that

lim
i→∞

K+
i = K+, lim

i→∞
P+
i = P+.(4.8)

By Lemma 4.2, we have

P+ = lim
i→∞

P+
i = lim

i→∞
Ψ(K+

i ) = Ψ( lim
i→∞

K+
i ) = Ψ(K+).(4.9)

From (4.9) we see P+ ∈ C(0, T ;Sn), since it is a solution of Riccati equation (4.2)
corresponding to K = K+. This in turn yields K+ = R+D′P+D ∈ C(0, T ; Ŝm+ ). By
Lemma 4.3, we conclude that P+ is a solution to (4.1).

Remark 4.1. By the same argument, the following limits exist

P− = lim
i→∞

P−i , K− = lim
i→∞

K−
i

and P− is also a solution of (4.1). In view of the uniqueness of the solutions, P− = P+.
Remark 4.2. If (4.5) holds, then we have the following algorithms to compute the

solution of the stochastic Riccati equation:

K0 = K+, Pi = Ψ(Ki), Ki+1 = R+D′PiD, i = 0, 1, 2, · · · ,(4.10)

or

K0 = K−, Pi = Ψ(Ki), Ki+1 = R+D′PiD, i = 0, 1, 2, · · · .(4.11)

The following proposition gives an estimate for the convergence speed of the
algorithms (4.10) and (4.11).

Proposition 4.5. Suppose (4.5) holds. Let the sequence {Pi} ⊂ C(0, T ;Sn) be
constructed by either algorithm (4.10) or (4.11) and let P be the solution to the Riccati
equation (4.1). Then

|Pi(t)− P (t)| ≤ C
∞∑
j=i

cj−2

(j − 2)!
(T − t)j−2, i = 2, 3, · · · ,(4.12)

where C is a constant that depends only on the coefficients of (4.1).
Proof. We only prove the estimate (4.12) for the algorithm (4.10). The other one

is the same. By definition,

Pi(t) = H −
∫ T

t

[PiA+A′Pi − PiBK
−1
i B′Pi +Q](s)ds.

Set P̂i = Pi+1 − Pi. Then

P̂i(t) = − ∫ T
t

[P̂i(A−BK−1
i+1B

′Pi+1) + (A−BK−1
i B′Pi)′P̂i

+PiBK
−1
i+1D

′P̂i−1DK
−1
i B′Pi+1](s)ds.

(4.13)

In view of (4.7), the sequences {|Pi|}, {|Ki|}, and {|K−1
i |} are bounded. Hence,

|P̂i(t)| ≤ C

∫ T

t

[|P̂i−1(s)|+ |P̂i(s)|]ds.(4.14)
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Denote vi(t) =
∫ T
t
|P̂i(s)|ds. Then (4.14) reads

v̇i(t) + Cvi(t) + Cvi−1(t) ≥ 0,

which implies

vi(t) ≤ CeCT
∫ T

t

vi−1(s)ds ≡ c

∫ T

t

vi−1(s)ds.

By induction, we deduce that

vi+1(t) ≤ ci

i!
(T − t)iv1(0).

It then follows from (4.14) that

|P̂i(t)| ≤ C
{ ci−1

(i− 1)!
(T − t)i−1 +

ci−2

(i− 2)!
(T − t)i−2

}
v1(0).(4.15)

This easily yields (4.12).
Let us examine the condition (4.5) again. Indeed, the existence of K+ is guaran-

teed. To see this, put K+ = zI with z > 0. Since Ψ(K) is bounded uniformly for all
K ∈ C(0, T ; Ŝm+ ), we see that

K+ ≥ R+D′Ψ(K+)D

for z sufficiently large. Hence, we have the following result.
Theorem 4.6. The Riccati equation (4.1) admits a solution if and only if there

exist K ∈ C(0, T ; Ŝm+ ) such that

R+D′Ψ(K)D ≥ K.(4.16)

This theorem says that while R can be indefinite (or negative definite) for the
Riccati equation to have solutions, it cannot be too negative. Indeed, in any case, R
cannot be smaller than infK∈C(0,T ;Ŝm

+
)

[
K −D′Ψ(K)D

]
!

In particular, the condition (4.16) is satisfied automatically ifR is positive definite,
i.e., R ∈ C(0, T ; Ŝm+ ), so we have the following corollary.

Corollary 4.7. If R ∈ C(0, T ; Ŝm+ ), then the stochastic Riccati equation admits
a unique solution P ∈ C(0, T ;Sn+).

Theorem 4.6 is very useful in estimating intervals where the Riccati equation
(4.1) is solvable without directly dealing with (4.1) itself. Let us use an example to
demonstrate.

Example 4.1. Consider the stochastic LQR problem in Example 3.2, where −1 <
r < 0. By Theorem 4.6, the Riccati equation (3.13) admits a solution on some interval
[τ, 1] (0 ≤ τ ≤ 1) if and only if there is a positive continuous function K(·) such that

r + Ψ(K)(t) ≥ K(t), ∀t ∈ [τ, 1],(4.17)

where Ψ(K) is the solution of the conventional Riccati equation

ẋ(t) =
x2(t)

K(t)
, x(1) = 1.
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So Ψ(K)(t) = (1 +
∫ 1

t
1

K(s)ds)
−1. Setting f(t) = 1

K(1−t) , one can rewrite (4.17) as

1 +

∫ 1−t

0

f(s)ds ≤ f(1− t)

1− rf(1− t)
, ∀t ∈ [τ, 1],

or ∫ t

0

f(s)ds ≤ (1 + r)f(t)− 1

1− rf(t)
, ∀t ∈ [0, 1− τ ].(4.18)

Since f(t) > 0, it is then necessary that f(t) > 1
1+r for t ∈ [0, 1− τ ]. Putting

f(t) =
1

1 + r
+ f1(t) with f1(t) > 0, ∀t ∈ [0, 1− τ ],

and substituting into (4.18), we obtain

∫ t

0

f1(s)ds ≤ (1 + r)2f1(t)

1− r(1 + r)f1(t)
− t

1 + r
, ∀t ∈ [0, 1− τ ].(4.19)

Hence, f1 must satisfy

(1 + r)[(1 + r)2 + rt]f1(t) > t, ∀t ∈ [0, 1− τ ].(4.20)

It follows that

(1 + r)2 + rt > 0, ∀t ∈ [0, 1− τ ].(4.21)

The above inequality gives an estimate on the interval where the Riccati equation
(3.13) admits a solution, namely,

1− τ <

(
1√−r −

√−r
)2

.

In particular, in order for (3.13) to be solvable on the whole interval [0,1], it must
hold that

1 <

(
1√−r −

√−r
)2

, or r >

√
5− 3

2
.

Therefore, while r is allowed to be negative, it cannot be too negative.

5. The gap between stochastic maximum principle and LQR problem.
This section is going to reveal a gap between Peng’s stochastic maximum principle
[12, 15], which is regarded as the best result so far in terms of necessary conditions
for stochastic optimality, and the solvability of the stochastic LQR problem.

For the reader’s convenience, let us state here Peng’s maximum principle for
general nonlinear systems, and then specialize to the LQR model.

Given (s, y) ∈ [0, T )×Rn, we are to

Minimize J(s, y;u(·)) = E

[∫ T

s

l(t, x(t), u(t))dt+ h(x(1))

]
,(5.1)
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Subject to

{
dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t),

x(s) = y.
(5.2)

The set of admissible controls Uad is defined similarly with U being a given closed
set in Rm. Peng’s maximum principle asserts that if (x∗(·), u∗(·)) is optimal, then it
must satisfy

1
2 tr
{

[σ(t, x∗(t), u)− σ(t, x∗(t), u∗(t))]′P0(t)[σ(t, x∗(t), u)− σ(t, x∗(t), u∗(t))]
}

+p′(t)[f(t, x∗(t), u)− f(t, x∗(t), u∗(t))] + q′(t)[σ(t, x∗(t), u)− σ(t, x∗(t), u∗(t))]
+l(t, x∗(t), u)− l(t, x∗(t), u∗(t)) ≥ 0, ∀u ∈ U, P − a.s., a.e. t ∈ [s, T ],

(5.3)

where (p(·), q(·)) is the Ft-adapted solution to the first-order adjoint equation{
dp(t) = −[f∗x(t)′p(t) + σ∗x(t)

′q(t) + l∗x(t)]dt+ q(t)dB(t),

p(T ) = hx(x
∗(T )),

(5.4)

and (P0(t),Λ0(t)) is the Ft-adapted solution to the second-order adjoint equation


dP0(t) = −[f∗x(t)′P0(t) + P0(t)f
∗
x(t) + σ∗x(t)

′P0(t)σ
∗
x(t)

+σ∗x(t)
′Λ0(t) + Λ0(t)σ

∗
x(t) + Φ(t)]dt+ Λ0(t)dW (t),

P0(T ) = hxx(x
∗(T )),

(5.5)

with Φ(t) = l∗xx(t) +
∑n

i=1{pi(t)f i∗xx(t) + qi(t)σi∗xx(t)}. In the above, we used the
notation f∗(t) = f(t, x∗(t), u∗(t)), etc. for simplicity.

Define the generalized Hamiltonian

G(t, x, u, p, S) = −1

2
tr
(
σ(t, x, u)′Sσ(t, x, u)

)
− p′f(t, x, u)− l(t, x, u),(5.6)

for (t, x, u, p, S) ∈ [0, T ] × Rn × Rm × Rn × Sn, and an H-function corresponding to
the optimal pair (x∗(·), u∗(·)) as follows:

H(t, x, u) = G(t, x, u, p(t), P0(t))− σ(t, x, u)′[q(t)− P0(t)σ(t, x∗(t), u∗(t))],(5.7)

for (t, x, u) ∈ [s, T ] × Rn × Rm, where p(t), q(t), and P0(t) are determined by ad-
joint equations (5.4) and (5.5). Then (5.3) is equivalent to the following maximum
condition:

H(t, x∗(t), u∗(t)) = max
u∈U

H(t, x∗(t), u), P − a.s.; a.e. t ∈ [s, T ].(5.8)

In stochastic optimal control theory, the system consisting of the state equation
(5.2), adjoint equations (5.4), (5.5), and the maximum condition (5.8) is called a
Hamiltonian system [14].

Applying the above maximum principle to the LQR model (2.1)–(2.3), we obtain
the following result.

Theorem 5.1. Let (x∗(·), u∗(·)) be an optimal pair for Cs,y. Then there exist
Ft-adapted (p, q) and (P0,Λ0) satisfying{

dp(t) = −(A′(t)p(t) +Q(t)x∗(t) + C ′(t)q(t))dt+ q(t)dW (t),

p(T ) = Hx∗(T )
(5.9)
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and

(5.10)


dP0(t) = −(A′(t)P0(t) + P0(t)A(t) + C ′(t)P0(t)C(t) + Λ0(t)C(t) + C ′(t)Λ0(t) +Q(t))dt

+Λ0(t)dW (t),

P0(T ) = H

such that

R(t)u∗(t) +B′(t)p(t) +D′(t)q(t) = 0,(5.11)

R(t) +D′(t)P0(t)D(t) ≥ 0, P − a.s., a.e. t ∈ [s, T ].(5.12)

Proof. First of all, it is clear that the first- and second-order adjoint equations
in the present LQR case are (5.9) and (5.10), respectively. Moreover, H(t, x∗(t), u)
is a quadratic function in u, which attains its maximum at u∗(t) by the maximum
condition (5.8). Therefore, it is easily verified that (5.11) and (5.12) are nothing but
the first- and second-order conditions, respectively, of the maximum point u∗(t) for
the quadratic function H(t, x∗(t), ·).

We note that the second-order adjoint equation (together with (5.12)) is similar in
form to the stochastic Riccati equation (3.1), except that the latter has an additional
nonlinear term in its drift coefficient. The relationship between P0(t) and P (t) is
stated in the following proposition.

Proposition 5.2. If the LQR problem (2.1)–(2.3) is well-posed, then

P0(t) ≥ P (t), P − a.s., ∀t ∈ [0, T ].(5.13)

Proof. Let (x∗(·), u∗(·)) be an optimal pair for the problem C0,y. Then by [15,
Theorem 3.1],

P0(t) ≥ Vxx(t, x
∗(t)), P − a.s., ∀t ∈ [0, T ],(5.14)

provided V ∈ C1,2([0, T ]×Rn). Now that the LQR problem is well-posed, V (s, y) =
1
2x
′P (t)x, which is smooth enough with Vxx(t, x

∗(t)) = P (t). The desired result
follows.

The inequality in (5.14) (and, therefore, (5.13) for the LQR problem) could be
strict. An example is given in [15, p. 159], where the terminal cost is nonlinear.
Another example is the LQR problem studied in Example 3.2. For that problem,
it has been shown that P (t) < 1 for t ∈ [0, 1). However, The solution to (5.10) is
P0(t) ≡ 1.

For deterministic LQR problems, it is well known that the Hamiltonian system
completely characterizes the optimal control, namely, a solution of the Hamiltonian
system is an optimal pair of the LQR problem and vice versa. In this sense, the
maximum principle and the well-posedness of the LQR problem are actually equivalent
to each other. It is then natural to expect that in the stochastic case, the solvability
of the Hamiltonian system (5.9)–(5.12) would yield the well-posedness of the LQR
problem. Unfortunately, it is not true. Indeed, due to Proposition 5.2 and the fact
that the inequality therein could be strict, the condition (5.12) is weaker than the
inequality involved in the Riccati equation (3.1). Now let us look at an example to
make it precise.
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Example 5.1. Consider the following

Minimize J = Es
{∫ 1

s
− 1

2u
2(t)dt+ 1

2x
2(1)

}
Subject to

{
dx(t) = (C(t)x(t) +D(t)u(t))dW (t),

x(s) = y,

(5.15)

where C and D are bounded deterministic functions satisfying

exp

[
−
∫ 1

0

C2(r)dr

]
< 1, D(t) = exp

[
−1

2

∫ 1

t

C2(r)dr

]
.(5.16)

The system (5.2), (5.9)–(5.12) in this case is


dx∗(t) = (C(t)x∗(t) +D(t)u∗(t))dW (t), x(s) = y,

dp(t) = −C(t)q(t)dt+ q(t)dW (t), p(1) = x∗(1),

dP0(t) = −C2(t)P0(t)dt, P0(1) = 1,

−u∗(t) +D(t)q(t) = 0,

−1 +D2(t)P0(t) ≥ 0.

(5.17)

Since P0(t) = exp[
∫ 1

t
C2(r)dr], the last inequality in the above system is satisfied by

virtue of (5.16). Hence (5.17) reduces to{
dx∗(t) = (C(t)x∗(t) +D2(t)q(t))dW (t), x∗(s) = y,

dp(t) = −C(t)q(t)dt+ q(t)dW (t), p(1) = x∗(1).
(5.18)

This is a forward-backward stochastic differential equation, and it can be shown
by using a standard contraction mapping theorem that it admits a unique solution
(x∗(·), p(·), q(·)) if 1− s > 0 is small enough (cf. Ma and Yong [10, Theorem 1.5.1]).
Now we are going to show that the original LQR problem is not well-posed. Fix s
and y 6= 0. Using the Ito formula, we have

dx2(t) = 2x(t)(C(t)x(t) +D(t)u(t))dW (t) + (C(t)x(t) +D(t)u(t))2dt.(5.19)

Thus

J(s, y;u(·)) =
1

2
Es

∫ 1

s

[−u2(t) + (C(t)x(t) +D(t)u(t))2]dt+
1

2
y2.(5.20)

By (5.16), for a sufficiently small ε0 > 0, one can find a δ0 > 0 such that

1−D2(t) ≥ ε0, ∀t ∈ [s, 1− δ0].(5.21)

For an integer k > 0, define a feedback control

uk(t) =

{
kC(t)x(t), s ≤ t < 1− δ0,

−D−1(t)C(t)x(t), 1− δ0 ≤ t ≤ 1.
(5.22)

It follows from (5.20) that

J(s, y;uk(·)) =
1

2
Es

∫ 1−δ0

s

[−k2 + (1 + kD(t))2]|C(t)x(t)|2dt− 1

2
Es

∫ 1

1−δ0
u2
kdt+

1

2
y2

= −1

2
Es

∫ 1−δ0

s

[
(1−D2(t))(k − D(t)

1−D2(t)
)2 − 1

1−D2(t)

]
|C(t)x(t)|2dt

−1

2
Es

∫ 1

1−δ0
u2
k(t)dt+

1

2
y2.
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Noting that

Esx2(t) = exp

∫ t

s

(1 +D(t)k)2C2(t)dt · y2 > 0,

we conclude

J(s, y;uk(·)) → −∞
as k → +∞. So the LQR problem is not well-posed.

6. Concluding remarks. In this paper, we have studied a general class of
stochastic linear quadratic regulators with the diffusion coefficients dependent on the
control variables. It is observed that the optimal control problem may be well-posed
even when the control weight costs are indefinite by virtue of the uncertainty involved.
A new stochastic Riccati equation is introduced, and the existence of solutions to it
is shown to be sufficient for the well-posedness of the LQR problem. It is also found
that the stochastic maximum principle cannot fully characterize the optimality. These
distinctive features reveal some fundamental differences between the deterministic and
stochastic situations.

Many interesting and challenging problems remain open. The first problem is
the existence and uniqueness of solutions to the stochastic Riccati equation in a gen-
eral situation. The resolution of this problem might have to involve some delicate
analysis on the nonlinear backward SDEs. Second, how do we numerically solve the
stochastic Riccati equation? For the special case (4.1), this paper gives an algorithm
(Remark 4.2) along with its convergence speed (Proposition 4.5). Note that the algo-
rithm involves computing the operator Ψ (i.e., the solution to the conventional Riccati
equation), and numerical schemes have been widely available for solving Ψ. However,
numerical solutions to the general Riccati equation (3.1) remain an interesting but
perhaps difficult problem; to the best of our knowledge there has been few works on
numerically solving nonlinear backward stochastic differential equations. Last but not
least, what is a “better” stochastic maximum principle that can fully solve the LQR
problem as in the deterministic case? These topics will be studied in forthcoming
papers.
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Abstract. This paper develops a theory around the notion of quadratic differential forms in
the context of linear differential systems. In many applications, we need to not only understand
the behavior of the system variables but also the behavior of certain functionals of these variables.
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1. Introduction. In the theory of models for dynamical systems, it has been
customary to consider both external input/output as well as state space models. Also,
there is a well developed theory for passing from one type of model to another. Thus,
there are efficient algorithms for passing from a convolution, to a transfer function,
to a state model, and back. Even for stochastic and nonlinear systems, there are
methods for associating a first order state representation to a high order model.

However, in addition to understanding the interaction between system variables,
we need in many applications to understand also the behavior of certain functionals of
these variables. The obvious cases where such functionals are crucial are in Lyapunov
theory, in the theory of dissipative systems, and in optimal control. In these contexts
it is remarkable to observe that the theory of dynamics has almost invariably con-
centrated on first order models and state representations. Thus, in studying system
stability using Lyapunov methods, we are constrained to consider state representa-
tions, and optimal control problems invariably assume that the cost is an integral
of a function of the state and the input. The question thus occurs of whether it is
possible to develop an external theory—for example, Lyapunov theory—for systems
and functionals so that analysis of stability and passivity, for instance, could proceed
on the basis of a first principles model instead of first having to find a state repre-
sentation. In this paper, we consider models that are not in state form (even though
some proofs use state representations). Our models are externally specified yet they
are not completely general first principles models in that we concentrate on models
in kernel or in image representation.

It is the purpose of this paper to develop such a theory. We do not, however,
set our aims too high and start with a very well-understood class of systems and
functionals: linear time-invariant differential systems and quadratic functionals in the
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system variables and their derivatives. We shall see that one-variable polynomials
are the appropriate tool in which to parametrize the model (see also, among others,
[16], [17]) and two-variable polynomials are the appropriate tool for parametrizing
the functionals. Thus, the paper presents an interesting interplay between one- and
two-variable polynomial matrices. Two-variable polynomials turn out to be a very
effective tool for analyzing linear systems with quadratic functionals.

This paper consists of a series of general concepts and questions, combined with
some specific results concerned with Lyapunov stability and with dissipativity, i.e.,
with positivity of (integrals of) quadratic differential forms. As such, the paper aims
at making a contribution to the development of the very useful and subtle notions of
dissipative and lossless (conservative) systems.

In companion papers, these ideas will be applied to LQ and H∞ problems. The
main achievement of this paper—the interaction of one- and two-variable polynomial
matrices for the analysis of functionals and application in higher order Lyapunov
functions—appears to be new. However, seeds of this have appeared previously in the
literature. We mention especially Brockett’s early work on path integrals [7], [8] in
addition to classical work on Routh–Hurwitz-type conditions (see, for example, [6]),
and early work by Kalman [13], [14].

2. Review. In order to make this paper reasonably self-contained, we first in-
troduce some notation and some basic facts from the behavioral approach to linear
dynamical systems. References in which more details can be found include [31], [32],
and [33].

We will deal exclusively with continuous-time real linear time-invariant differential
dynamical systems. Thus, the time axis is R, the signal space is R

q (the number of
variables q, of course, depends on the case at hand), and the behavior B is the solution
set of a system of linear constant coefficient differential equations

R

(
d

dt

)
w = 0(2.1)

in the real variables w1, w2, · · · , wq, arranged as the column vector w; R is a real
polynomial matrix with, of course, q columns. The number of rows of R depends,
as do its coefficients, on the particular dynamical system described by (2.1). Hence
we denote this as R ∈ R

•×q[ξ], where ξ denotes the indeterminate. Thus, if R(ξ) =
R0 +R1ξ + · · ·+RNξ

N , then (2.1) denotes the system of differential equations

R0w +R1
dw

dt
+ · · ·+RN

dNw

dtN
= 0.(2.2)

For the behavior, i.e., for the solution set of (2.1) or (2.2), it is usually advisable to
consider locally integrable w’s as candidate solutions and to interpret the differential
equation in the sense of distributions. However, it is our explicit intention to avoid
mathematical technicalities as much as possible in this paper. In keeping with this,
we assume that the solution set consists of infinitely differentiable functions, even
though many of the results are valid without this assumption. Hence the behavior of
(2.1) is defined as

B =

{
w ∈ C∞(R,Rq) | R

(
d

dt

)
w = 0

}
.(2.3)

We denote the family of dynamical systems obtained this way by Lq. Hence elements
of Lq are dynamical systems Σ = (R,Rq,B) with time axis R, signal space R

q, and
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behavior B described through some R ∈ R
•×q[ξ] by (2.3). Note that instead of writing

Σ ∈ Lq we may as well write B ∈ Lq, and we prefer to use this notation in this paper.
As explained in the previous paragraphs, each R ∈ R

•×q[ξ] unambiguously defines
a system B ∈ Lq. However, there are always many R’s defining the same B ∈ Lq. For
example, if U is any unimodular polynomial matrix such that the product UR makes
sense, then R and UR induce the same element of Lq. Also, there are many other
ways of specifying a given B ∈ Lq. Note that (2.1) describes B as B = ker(R( d

dt ))

with R( d
dt ) viewed as a map from C∞(R,Rq) into C∞(R,Rrowdim(R)). For obvious

reasons we hence refer to (2.1) as a kernel representation of B ∈ Lq. We will meet
other representations, in particular image, latent variable, input/output, state, and
input/state/output representations. These are now briefly introduced.

A system B ∈ Lq is said to be controllable if for each w1, w2 ∈ B there exists
a w ∈ B and a t′ ≥ 0 such that w(t) = w1(t) for t < 0 and w(t) = w2(t − t′) for
t ≥ t′. It can be shown that B is controllable iff its kernel representation satisfies
rank(R(λ)) = rank(R) for all λ ∈ C. Here, rank(R) is defined as the rank of R
considered as a matrix with elements in the field R(ξ) of real rational functions. On
the other hand, for a given λ ∈ C, R(λ) is a matrix with elements in C. Accordingly,
rank(R(λ)) denotes the rank of the complex matrix R(λ). It is easy to see that
rank(R) = maxλ∈C rank(R(λ)).

Controllable systems are exactly those that admit image representations. More
concretely, B ∈ Lq is controllable iff there exists an M ∈ R

q×•[ξ] such that B =
im(M( d

dt )), with M( d
dt ) viewed as a mapping from C∞(R,Rcoldim(M)) into C∞(R,Rq).

The resulting representation

w = M

(
d

dt

)
`(2.4)

is called an image representation of B.
An image representation is a special case of what we call a latent variable repre-

sentation of B. The system of differential equations

R

(
d

dt

)
w = M

(
d

dt

)
`(2.5)

is said to be a latent variable representation of B ∈ Lq if

B = {w ∈ C∞(R,Rq) | ∃ ` ∈ C∞(R,R•) such that (2.5) holds}.
A latent variable representation is said to be observable if (R( d

dt )w = M( d
dt )`1 and

R( d
dt )w = M( d

dt )`2) implies (`1 = `2). Observability is equivalent to the condition
that M(λ) is of full column rank for all λ ∈ C. A controllable system, it turns out,
always allows an observable image representation.

Of special interest in section 4 will be the observability of the system

A

(
d

dt

)
` = 0, w = C

(
d

dt

)
`.(2.6)

Of course, the definition of observability applies to (2.6). If this is the case, then
we call the pair of polynomial matrices (A,C) with the same number of columns an
observable pair. Hence (A,C) is an observable pair iff[

A(λ)
C(λ)

]
(2.7)
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is of full column rank for all λ ∈ C.
Systems in Lq admit many other useful representations. We already encoun-

tered kernel and image representations. Next, we introduce state and input/output
representations.

In [22] the notion of state models and their construction has been discussed in
detail. Here we limit ourselves to the bare essentials. Let B ∈ Lq. A latent variable
representation (with the latent variable denoted by x this time) of the form (2.5) is
said to be a state model if, whenever (w1, x1) and (w2, x2) are C∞-solutions of (2.5)
with x1(0) = x2(0), then the concatenation (w1, x1)∧(w2, x2) also satisfies (2.5). Since
this concatenation need not be in C∞, it need only be a weak solution of (2.5), that
is, a solution in the sense of distributions. State models are governed by equations
of the form (2.5) with special structure. In fact, (2.5) is a state model iff there exist
matrices E, F , and G such that

Gw + Fx+ E
dx

dt
= 0(2.8)

is equivalent to (2.5) in the case of state models. Thus (2.8) is called a state repre-
sentation of the behavior B if

B = {w ∈ C∞(R,Rq) | ∃ x ∈ C∞(R,Rn) such that (2.8) is satisfied}.
Here n denotes the dimension of the vector x. The important feature of (2.8) is
that it is an (implicit) differential equation containing derivatives of order at most
one in x and zero in w. We call a state representation state minimal if among all
state representations of B, n is as small as possible. It is possible to prove that
(2.8) is state minimal iff it is state trim (meaning that for all a ∈ R

n there exists
(w, x) ∈ C∞(R,Rq+n) such that x(0) = a) and observable. The dimension of the state
space of a state minimal representation of B ∈ Lq is called the McMillan degree of B.
The notion of McMillan degree usually refers to properties of polynomial matrices.
Actually, for the case at hand this correspondence holds in terms of full row rank
kernel representation matrices R or observable image representation matrices M , but
we do not need this correspondence in this paper.

Every system B ∈ Lq also admits an input/output representation. By reordering
the components of the vector w, if need be, we can decompose w into

w =

[
u
y

]
(2.9)

with, in terms of R, rank(R) components for y and q − rank(R) components for u,
such that B ∈ Lq admits the special kernel representation

P

(
d

dt

)
y = Q

(
d

dt

)
u,(2.10)

with P square, det P 6= 0, and P−1Q a matrix of proper rational functions. Thus, in
(2.10) u has the usual properties of input and y those of output. Therefore (2.10) is
called an input/output representation.

Actually, for controllable systems, we can also recover the input/output structure
in terms of the image representation. Thus the image representation[

u
y

]
=

[
U( d

dt )
Y ( d

dt )

]
`(2.11)
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is an input/output representation if U is square, det U 6= 0, and Y U−1 is a matrix
of proper rational functions. The number of input components of a system in image
representation (2.4) equals rank(M).

It is possible to combine the above, leading to the familiar input/state/output
representation

dx

dt
= Ax+Bu, y = Cx+Du.(2.12)

This representation is state minimal iff it is observable, i.e., iff (A,C) is an observable
pair of matrices (not to be confused with an observable pair of polynomial matrices).

Summarizing, given any w ∈ B, we may partition the components of w into
inputs and outputs. Also, there exists an X ∈ R

•×q[ξ] such that

x = X

(
d

dt

)
w(2.13)

is a (minimal) state map for B. For a system in image representation (2.4) this leads
to a state representation of the form

x = X ′
(
d

dt

)
`.(2.14)

The resulting relation between u and y is as in (2.10); that between w and x is as in
(2.8); and that between u, y, and x is as in (2.12).

We need a few more details about the state construction for systems in image
representation (2.4). Assume that M is of full column rank. Then after permutation
of the components of w (i.e., of the rows of M), if need be, M is of the form

M =

[
U
Y

]
,

with U square, det(U) 6= 0, and Y U−1 a matrix of proper rational functions. The
resulting system [

u
y

]
=

[
U( d

dt )
Y ( d

dt )

]
`

is then an input/output representation. Consider all polynomial row vectors F ∈
R

1×•[ξ] such that FU−1 is strictly proper. It can be shown (see [22]) that this set is
a vector space. Now

x = X

(
d

dt

)
`(2.15)

is a state map for (2.4) iff the rows of X span this vector space. It is a minimal state
map iff the rows of X form a basis for this vector space.

Next, consider associated with (2.4) the variable v governed by

v = L

(
d

dt

)
`.

Then it follows from the above that there exist matrices P and Q such that

v = Px+Qu

iff LU−1 is proper. Moreover, Q is zero iff LU−1 is strictly proper, and Q is invertible
iff LU−1 is biproper.
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3. Quadratic differential forms. Differential equations and one-variable poly-
nomial matrices play an essential role in describing the dynamics of systems, as we
have seen in section 2 and the references given therein. When studying functions of
the dynamical variables, as in Lyapunov theory, studying dissipation and passivity, or
specifying performance criteria in optimal control, we invariably encounter quadratic
expressions in the variables and their derivatives. As we shall see, two-variable poly-
nomial matrices are the proper mathematical tool to express these quadratic func-
tionals. We aim to illustrate throughout this paper that linear dynamical equations
expressed through one-variable polynomial matrices, and quadratic functionals ex-
pressed through two-variable polynomial matrices fit as a glove fits a hand.

Let R
q1×q2 [ζ, η] denote the set of real polynomial matrices in the (commuting)

indeterminates ζ and η. Explicitly, an element Φ ∈ R
q1×q2 [ζ, η] is thus given by

Φ(ζ, η) =
∑
k,`

Φk`ζ
kη`.(3.1)

The sum in (3.1) ranges over the nonnegative integers and is assumed to be finite,
and Φk` ∈ R

q1×q2 . Such a Φ induces a bilinear differential form (BLDF), that is, the
map

LΦ : C∞(R,Rq1)× C∞(R,Rq2) → C∞(R,R)(3.2)

defined by

(LΦ(v, w))(t) :=
∑
k,`

(
dkv

dtk
(t)

)T
Φk`

(
d`w

dt`
(t)

)
.(3.3)

If q1 = q2 (=: q), then Φ induces a quadratic differential form (QDF)

QΦ : C∞(R,Rq) → C∞(R,R)(3.4)

defined by

QΦ(w) := LΦ(w,w).(3.5)

Define the asterisk operator ∗ by

∗ : R
q1×q2 [ζ, η] → R

q2×q1 [ζ, η]; Φ∗(ζ, η) := ΦT (η, ζ),(3.6)

where T denotes transposition. Obviously LΦ(v, w) = LΦ∗(w, v). If Φ ∈ R
q×q[ζ, η]

satisfies Φ = Φ∗, then Φ is called symmetric. The symmetric elements of R
q×q[ζ, η]

are denoted by R
q×q
s [ζ, η]. Clearly

QΦ = QΦ∗ = Q 1
2 (Φ+Φ∗)(3.7)

This shows that when considering quadratic differential forms, we can hence in prin-
ciple restrict our attention to Φ’s in R

q×q
s [ζ, η]. However, both bilinear and quadratic

forms are of interest to us.
Associated with Φ ∈ R

q1×q2 [ζ, η], we can form the matrix

Φ̃ =




Φ00 Φ01 · · · · · · ·
Φ10 Φ11 · · · · · · ·
...

...
...

· · · · · Φk` · · ·
...

...
...



.(3.8)
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Note that, although Φ̃ is an infinite matrix, all but a finite number of its elements are
zero. We can factor Φ̃ as Φ̃ = ÑT M̃ , with Ñ and M̃ infinite matrices having a finite
number of rows and all but a finite number of elements equal to zero. This decompo-
sition leads, after premultiplication by [Iq1 Iq1ζ Iq1ζ

2 · · ·] and postmultiplication by
col[Iq2 Iq2η Iq2η

2 · · ·], to the following factorization of Φ:

Φ(ζ, η) = NT (ζ)M(η).(3.9)

This decomposition is not unique, but if we take Ñ and M̃ surjective, then their
number of rows is equal to the rank of Φ̃. The factorization (3.9) is then called a
canonical factorization of Φ. Associated with (3.9), we obtain the following expression
for the BLDF LΦ:

LΦ(w1, w2) =

(
N

(
d

dt

)
w1

)T
M

(
d

dt

)
w2.(3.10)

Next we discuss the case that Φ is symmetric. Clearly Φ = Φ∗ iff Φ̃ is symmetric. In
that case, it can be factored as Φ̃ = M̃TΣMM̃ with M̃ an infinite matrix having a
finite number of rows and all but a finite number of elements equal to zero, and ΣM

a signature matrix, i.e., a matrix of the form[
Ir+ 0
0 −Ir−

]
.

This decomposition leads to the following decomposition of Φ:

Φ(ζ, η) = MT (ζ)ΣMM(η).(3.11)

Also, this decomposition is not unique but if we take M̃ surjective, then ΣM is unique.
We denote this ΣM as ΣΦ and the resulting pair (r−, r+) by (φ−, φ+). This pair is
called the inertia of Φ. The resulting factorization

Φ(ζ, η) = MT (ζ)ΣΦM(η)(3.12)

is called a symmetric canonical factorization of Φ. Of course, a symmetric canonical
factorization is not unique. However, they can all be obtained from one by replacing

M(ξ) by UM(ξ) with U ∈ R
rank(Φ̃)×rank(Φ̃) such that UTΣΦU = ΣΦ.

Associated with (3.11), we obtain the following decomposition of QΦ into a sum
of positive and negative squares:

QΦ(w) = ‖P
(
d

dt

)
w‖2 − ‖N

(
d

dt

)
w‖2,(3.13)

where N,P ∈ R
•×q[ξ] are obtained by partitioning M̃ conform ΣM as:

M̃ =

[
P̃

Ñ

]
.(3.14)

For a given symmetric Φ(ζ, η) we are also interested in the symmetric two-variable
polynomial matrix |Φ|(ζ, η), the absolute value of Φ, which we define as follows. For
a given real symmetric matrix A ∈ R

n×n define its absolute value, |A| ∈ R
n×n, as the

unique symmetric nonnegative definite matrix X ∈ R
n×n such that X2 = A2. This
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matrix |A| can be computed as follows. Factor A = ŨTΛŨ , where Λ is the diagonal
matrix with, on its diagonal, the nonzero eigenvalues of A in decreasing order, and
where Ũ ŨT = I, and define |A| := ŨT |Λ|Ũ with |Λ| defined in the obvious way. Let
Φ̃ be the symmetric matrix associated with Φ(ζ, η). Let |Φ̃| be the absolute value of
Φ̃. Next, define |Φ|(ζ, η) as the symmetric two-variable polynomial matrix associated
with |Φ̃|:

|Φ|(ζ, η) :=




I
ζI
ζ2I
...



T

|Φ̃|




I
ηI
η2I
...


 .

Note that a factorization Φ̃ = ŨTΛŨ immediately yields a symmetric canonical fac-
torization of Φ(ζ, η). Indeed, define M̃c :=

√|Λ|Ũ . We then have

Φ̃ = ŨT
√
|Λ|ΣΦ

√
|Λ|Ũ = M̃T

c ΣΦM̃c,(3.15)

with M̃c surjective. The corresponding Mc(ξ) := M̃c col [I ξI ξ2I . . .] then
yields a canonical factorization Φ(ζ, η) = MT

c (ζ)ΣΦMc(η). This particular canonical
factorization has the property that

|Φ|(ζ, η) = MT
c (ζ)Mc(η).(3.16)

In general, if M(ξ) is any canonical factor of Φ, then we have UM(ξ) = Mc(ξ) with
U satisfying UTΣΦU = ΣΦ, and hence |Φ|(ζ, η) = MT (ζ)UTUM(η).

One of the conveniences of identifying BLDFs and QDFs with two-variable poly-
nomial matrices is that they allow a very convenient calculus. One instance of this
is differentiation. Obviously if LΦ is a BLDF, so is d

dtLΦ, and if QΦ is a QDF, so

is d
dtQΦ. The result of differentiation is easily expressed in terms of the two-variable

polynomial matrices and leads to the dot operator • defined as

• : R
q1×q2 [ζ, η] → R

q1×q2 [ζ, η];
•
Φ (ζ, η) := (ζ + η)Φ(ζ, η).(3.17)

It is easily calculated that

d

dt
LΦ = L•

Φ
and

d

dt
QΦ = Q•

Φ
(3.18)

In the following, an important role is played by certain one-variable polynomial ma-
trices obtained from two-variable polynomial matrices by means of the delta operator
∂, defined as

∂ : R
q1×q2 [ζ, η] → R

q1×q2 [ξ]; ∂Φ(ξ) := Φ(−ξ, ξ).
Note that, among other things, this allows one to associate a differential operator
Φ(− d

dt ,
d
dt ) with a QDF—this is one of the key ingredients in LQ—and variational

problems.
Introduce the star operator ? acting on matrix polynomials by

? : R
q1×q2 [ξ] → R

q2×q1 [ξ]; R?(ξ) := RT (−ξ).
The importance of this operation stems from the fact that M( d

dt ) and M?( d
dt ) are

formal adjoints as differential operators. A polynomial matrix M ∈ R
q×q[ξ] is called
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para-Hermitian if M = M?. Note that (∂Φ)? = ∂(Φ∗). Hence if Φ ∈ R
q×q
s [ζ, η], then

∂Φ is para-Hermitian.
In addition to studying BLDFs and QDFs as maps to C∞(R,R), we are interested

in their integrals. In order to make sure that those integrals exist, we assume in
this case that the arguments have compact support. As is common, we denote by
D(R,Rq) := {w ∈ C∞(R,Rq) | w has compact support}. Let Φ ∈ R

q1×q2 [ζ, η]. Then
obviously LΦ : D(R,Rq1)×D(R,Rq2) → D(R,R). Consider the integral∫

LΦ : D(R,Rq1)×D(R,Rq2) → R(3.19)

defined as ∫
LΦ(v, w) :=

∫ +∞

−∞
LΦ(v, w)dt.(3.20)

The notation
∫
QΦ follows readily from this. Furthermore, consider the same integral

over a finite interval [t1, t2] ∫ t2

t1

LΦ(v, w)dt(3.21)

denoted as
∫ t2
t1
LΦ. We call this integral independent of path if for any t1 and t2

the result of the integral (3.21) depends only on the values of v and w and (a finite
number of) their derivatives at t = t1 and t = t2 but not on the intermediate path
used to connect these endpoints, assuming, of course that v ∈ C∞(R,Rq1) and w ∈
C∞(R,Rq2).

The questions of when the map
∫
LΦ is zero and when path independence holds

are studied next.
Theorem 3.1. Let Φ ∈ R

q1×q2 [ζ, η]. Then the following statements are equiva-
lent:

1.
∫
LΦ = 0, equivalently

∫ t2
t1
LΦ is independent of path.

2. There exists a Ψ ∈ R
q1×q2 [ζ, η] such that Φ =

•
Ψ, equivalently, such that

LΦ = d
dtLΨ. Obviously Ψ is given by

Ψ(ζ, η) =
Φ(ζ, η)

ζ + η
.(3.22)

3. ∂Φ = 0, i.e., Φ(−ξ, ξ) = 0.
The same equivalence holds for QDFs. Simply assume Φ ∈ R

q×q
s [ζ, η] and replace

the L’s by Q’s in 1 and 2.
Proof. For the proof, see the appendix.
The importance of this theorem is that condition (3) gives a very convenient way

of checking (1) or (2). Path integrals and path independence featured prominently in
Brockett’s work in the sixties (see [7], [8]), and indeed some of our results can be viewed
as streamlined versions of this work. Another potentially interesting connection of
the above theorem and our paper with the existing literature is [3] where, in our
notation, Φ(ζ, η) = R(ζ)M(−η) is studied, with R and M associated with a kernel
representation (2.1) and an image representation (2.4) of a controllable system. This
Φ defines an intriguing path independent BLDF that can be associated with any
controllable B.
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In this paper we also study the behavior of QDFs evaluated along a differential
behavior B ∈ Lq. In order to do so, it is convenient to introduce an equivalence
relation on both the one- and two-variable polynomial matrices modulo a given B ∈
Lq.

Let D1, D2 ∈ R
•×q[ξ]. Define (D1

B
= D2) :⇔ (D1(

d
dt ) − D2(

d
dt ))B = 0. Let

Φ1,Φ2 ∈ R
q×q
s [ζ, η]. Define (Φ1

B
= Φ2) :⇔ (QΦ1

(w) = QΦ2
(w) for all w ∈ B). These

equivalencies are easily expressed in terms of a kernel or an image representation of
B.

Proposition 3.2. Let R ∈ R
•×q[ξ] define a kernel representation of B ∈ Lq.

Then D1
B
= D2 iff

D1 −D2 = FR(3.23)

for some F ∈ R
•×•[ξ] and Φ1

B
= Φ2 iff

Φ2(ζ, η) = Φ1(ζ, η) +RT (ζ)F (ζ, η) + F ∗(ζ, η)R(η)(3.24)

for some F ∈ R
•×q[ζ, η]. Let M ∈ R

q×•[ζ, η] define an image representation of

B ∈ Lq. Then D1
B
= D2 iff

D1M = D2M

and Φ1
B
= Φ2 iff

MT (ζ)Φ1(ζ, η)M(η) = MT (ζ)Φ2(ζ, η)M(η)

Proof. For the proof, see the appendix.
The first equivalence in the above proposition was already proven in [23], with an

account of the history of the result, which goes back to 1895. We will return to the
second equivalence at the end of section 4.

We now briefly discuss positivity of QDFs. This will be a major issue in the
following; here we restrict our attention to the basic definitions.

Definition 3.3. Let Φ ∈ R
q×q
s [ζ, η]. We call the QDF QΦ nonnegative, denoted

Φ ≥ 0, if QΦ(w) ≥ 0 for all w ∈ C∞(R,Rq), and positive, denoted Φ > 0, if Φ ≥ 0
and if the only w ∈ C∞(R,Rq) for which QΦ(w) = 0 is w = 0.

Using the matrix representation of Φ, it is easy to see that Φ ≥ 0 iff there exists
D ∈ R

•×q[ξ] such that Φ(ζ, η) = DT (ζ)D(η). Simply factor Φ̃ as Φ̃ = D̃T D̃ and take
D(ξ) = D̃ col [Iq Iqξ Iqξ

2 · · ·]. Moreover Φ > 0 iff this D has the property that D(λ)
is of rank q for all λ ∈ C; in other words, iff the image representation w = D( d

dt )`
defined by D is observable. Note that, for Φ ∈ R

q×q
s [ζ, η], we always have |Φ| ≥ 0.

We are also interested in QDFs which are zero or positive along a behavior B ∈ Lq.

Definition 3.4. We call Φ zero along B, denoted Φ
B
= 0, if QΦ(w) = 0 for all

w ∈ B. The notions of nonnegative (
B≥) and positive (

B
>) along B follow readily.

Note that it immediately follows from Proposition 3.2 that, if R( d
dt )w = 0 is a

kernel representation of B, then Φ
B
= 0 iff it can be written as Φ(ζ, η) = F ∗(ζ, η)R(η)+

RT (ζ)F (ζ, η). A similar result holds for positivity as follows.
Proposition 3.5. Let Φ ∈ R

q×q
s [ζ, η], B ∈ Lq, and R ∈ R

•×q[ξ] induce a kernel
representation of B. Then

(i) Φ
B≥ 0 iff there exists Φ′ ∈ R

q×q
s [ζ, η] with Φ

B
= Φ′ and Φ′ ≥ 0;
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(ii) Φ
B
> 0 iff there exists Φ′ ∈ R

q×q
s [ζ, η] with Φ

B
= Φ′ and Φ′(ζ, η) = DT (ζ)D(η),

with (R,D) an observable pair.

Proof. For the proof, see the appendix.

4. Lyapunov theory. Lyapunov theory is a firmly established and very use-
ful technique for establishing stability. It pertains to systems described by explicit
first order differential equations. However, as argued in [33], models obtained from
first principles are seldomly in first order form, will contain latent variables, and
may contain high order derivatives. Writing them in explicit first order form without
introducing spurious solutions may not be an easy matter. Moreover, stability con-
siderations do not require systems to be in first order form. In fact, historically the
very first stability questions and results, as Maxwell’s statement of the stability prob-
lem and the Routh–Hurwitz conditions, pertain to high order differential equations.
Oddly enough, to our knowledge, no attempts seem to have been made to establish
Lyapunov theory for high order differential equations. This is the purpose of this
section. We limit our attention, however, to linear differential systems and to Lya-
punov functions that are quadratic differential forms, but we recognize the urgency of
generalizing this work to nonlinear systems. We should remark that in this section for
stability, we only consider systems in which the latent variables have been eliminated,
although latent variables do not cause essential difficulties in the context of stability.

First, we introduce the notion of stability. We say that a system B ∈ Lq is
asymptotically stable if (w ∈ B) ⇒ (w(t) −→

t→∞ 0) and stable if (w ∈ B) ⇒ (w is

bounded on the half-line [0,∞)). For a system B ∈ Lq to be (asymptotically) stable
it has to be autonomous. A system B ∈ Lq is said to be autonomous if (w1, w2 ∈ B)
and (w1(t) = w2(t) for t < 0) imply (w1 = w2). It is easy to see that the system with
kernel representation R( d

dt )w = 0 is autonomous iff rank(R) = q; in particular, if R
is square and det(R) 6= 0.

Definition 4.1. Let R ∈ R
•×q[ξ]. The complex number λ ∈ C is said to be a

singularity of R if rank(R(λ)) < rank(R); R is said to be Hurwitz if rank(R) = q and
if R has all its singularities in the open left half of the complex plane.

Thus a square R ∈ R
q×q[ξ] is Hurwitz iff det(R) is a Hurwitz polynomial, i.e., a

nonzero polynomial with its roots in the open left half-plane. We record the following
classical result for easy reference.

Proposition 4.2. The system with kernel representation (2.1) is asymptotically
stable iff R is Hurwitz.

Our most basic Lyapunov theorem regarding high order systems is the following.

Theorem 4.3. Let B ∈ Lq. Then B is asymptotically stable iff there exists

Ψ ∈ R
q×q
s [ζ, η] such that Ψ

B≥ 0 and
•
Ψ

B
< 0.

Proof. For the proof, see the appendix.

Example 4.4. Consider the scalar system described by w+ dw
dt + d2w

dt2 = 0. Consider

the QDF w2 +(dwdt )2. Its derivative QDF is 2(w+ d2w
dt2 )dwdt . Since w ∈ B iff w+ d2w

dt2 =

−dw
dt , we see that this QDF is B-equivalent to the QDF −2(dwdt )2. Finally observe that

(1 + ξ + ξ2,
√

2ξ) is an observable pair. Hence −2(dwdt )2 is negative on B. Theorem
4.3 establishes asymptotic stability (a rather trivial matter for the case at hand).
Our aim was to show the use of Lyapunov theory without getting involved with state
representations (admittedly also a trivial matter).
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Example 4.5. Consider the multivariable system

Kw +D
dw

dt
+M

d2w

dt2
= 0,(4.1)

with K,D,M ∈ R
q×q, K = KT ≥ 0, D + DT ≥ 0, and M = MT ≥ 0. Such second

order equations occur frequently as models of (visco-)elastic mechanical systems. Take

Ψ(ζ, η) = K + Mζη. Then
•
Ψ (ζ, η) = K(ζ + η) + M(ζ2η + ζη2) which is obviously

B-equivalent to −(D +DT )ζη. Thus, asymptotic stability follows if(
K +Dξ +Mξ2,

√
(D +DT )ξ

)
(4.2)

is an observable pair. This is the case, for example, if {0} = ker(K) ⊂ ker(D+DT ) ⊂
ker(M). Indeed, under this condition[

K +Dλ+Mλ2√
(D +DT )λ

]

has full column rank for all λ ∈ C.
State representations of autonomous systems take a very special form. Indeed, it

is easy to see that B ∈ Lq is autonomous iff it admits a state representation of the
form dx

dt = Ax, w = Cx. Such state representations are automatically state trim.
If (A,C) is observable, then they are state minimal. It also follows that for every

D ∈ R
•×q[ξ] there exists a matrix H ∈ R

•×n such that D( d
dt )w

B
= Hx, i.e., every

linear differential operator acting on an autonomous B ∈ Lq is B-equivalent to an
instantaneous function of the state. An analogous statement holds, of course, for
QDFs.

Viewed from this perspective, one can regard Theorem 4.3 as being about state
systems and in this sense not very different from classical Lyapunov theorems. The
point of Theorem 4.3 is twofold:

1. It avoids the state construction which algorithmically (and conceptually) is
not always easy in the multivariable case; and

2. It has the usual Lyapunov theory as a special case by applying it to systems
in first order form and using memoryless QDFs. For the sake of completeness,
we record this as a corollary.

Corollary 4.6. Let B be the behavior of dw
dt = Aw. Let Ψ(ζ, η) = Ψ0 with

Ψ0 ∈ R
q×q, Ψ0 = ΨT

0 ≥ 0. Then
•
Ψ (ζ, η)

B
= AΨ0 + Ψ0A

T =: ∆0. Whence, if
∆0 = ∆T

0 ≤ 0 and if (A,∆0) is an observable pair of matrices, B is asymptotically
stable.

Proof. For the proof, see the appendix.
In section 3, we discussed B-positive QDFs. When B is autonomous, it is useful

to consider also a stronger concept. Let B ∈ Lq and Φ ∈ R
q×q
s [ζ, η]; we call Φ strongly

B-positive (denoted Φ
B� 0) if Φ

B≥ 0 and if (w ∈ B and QΦ(w)(0) = 0) imply (w = 0).

It is easy to see that Φ
B� 0 implies Φ

B
> 0 and that in order for Φ

B� 0, B must be

autonomous. In fact, ((Qφ(w)(0) = 0) ⇒ (w = 0)) by itself already implies (Φ
B� 0

or Φ
B� 0). Using this notion we arrive at the following refinement of theorem 4.3.

Proposition 4.7. If Ψ
B≥ 0 and

•
Ψ

B
< 0, then B is asymptotically stable and

Ψ
B� 0.
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Proof. For the proof, see the appendix.
We now formulate a stronger version of the “only if” part of Theorem 4.3.
Theorem 4.8. Assume that B ∈ Lq is asymptotically stable. Then for any

Φ ∈ R
q×q
s [ζ, η] there exists a Ψ ∈ R

q×q
s [ζ, η] such that

•
Ψ

B
= Φ; Ψ is unique up to

B-equivalence in the sense that, if
•
Ψ1

B
= Φ and

•
Ψ2

B
= Φ, then Ψ1

B
= Ψ2. If Φ

B≤ 0,

then Ψ
B≥ 0, and if Φ

B
< 0, then Ψ

B� 0.
In order to compute Ψ from Φ, the following algorithm may be used. Let R ∈

R
•×q[ξ] induce a kernel representation of B. Consider the polynomial matrix equation

XT (−ξ)R(ξ) +RT (−ξ)X(ξ) = Φ(−ξ, ξ)(4.3)

in the unknown X ∈ R
•×q[ξ]. Then (4.3) has a solution. Let X0 be a solution. If R

is square, then all its solutions can be obtained from this one as

X(ξ) = X0(ξ) + F (ξ)R(ξ),(4.4)

where F ranges over all polynomial matrices of appropriate size satisfying

FT (−ξ) = −F (ξ).(4.5)

Consider any Y ∈ R
•×q[ζ, η] such that

Y (−ξ, ξ) = X(ξ)(4.6)

and compute

Ψ(ζ, η) =
Φ(ζ, η)− Y ∗(ζ, η)R(η)−RT (ζ)Y (ζ, η)

ζ + η
.(4.7)

Then
•
Ψ

B
= Φ. Since any two Ψ1,Ψ2 such that

•
Ψ1

B
= Φ and

•
Ψ2

B
= Φ satisfy Ψ1

B
= Ψ2,

any other solutions of (4.3) and/or (4.6) yield Ψ’s in (4.7) that are B-equivalent.
Proof. For the proof, see the appendix.
Theorem 4.8 is more than a mouthful and so we illustrate it for ordinary state

space systems dw
dt = Aw. Let Φ = ΦT ∈ R

n×n. Then (4.3) becomes

XT (−ξ)(A− Iξ) + (AT + Iξ)X(ξ) = Φ.(4.8)

This equation has a constant solution which must be symmetric, X0 = XT
0 , the

solution of the ordinary Lyapunov equation

X0A+AT
0 X = Φ.(4.9)

Choose Y = X0 and verify that (4.7) reduces to Ψ = X0, whence the Lyapunov
function is QΨ(w) = wTX0w and for w ∈ B its derivative is QΦ(w) = wTΦw. Because
of this analogy, we refer to (4.3) as the polynomial matrix Lyapunov equation.

The above shows that it seems to suffice to consider Lyapunov functions Ψ and
their derivatives Φ that are of lower degree than that of R. That is, in fact, a general
feature of the equations in Theorem 4.8. However, in order to formalize this, we
return first to the notion of B-equivalence of differential operators in the case that
B ∈ Lq is autonomous.
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Let B ∈ Lq be autonomous. Then there always exists a square kernel repre-
sentation for it. Let R ∈ R

q×q[ξ] be such that B = ker(R( d
dt )). We assume in the

remainder of this section that R is square.
Let D ∈ R

•×q[ξ]. We call D R-canonical if DR−1 is a matrix of strictly proper
rational functions. Let Φ ∈ R

q×q
s [ζ, η]. We call Φ R-canonical if (RT (ζ))−1Φ(ζ, η)

(R(η))−1 is a matrix of strictly proper two-variable rational functions. (Note that
there is no ambiguity about what “strictly proper” means for these two-variable ra-
tional functions.) Since for autonomous systems all differential operators can be seen
as instantaneous functions of the state, it is clear that for any D there exists a canon-
ical D′ that is R-equivalent to D′. The aim of the next result is to derive this also for
QDFs.

Proposition 4.9. Let D ∈ R
•×q[ξ]. Among all differential operators B-equiva-

lent to D, there is exactly one, D′, which is R-canonical. This D′ can be computed
as follows. Compute DR−1 ∈ R

•×q(ξ) and write it as DR−1 = P + S, with P
the polynomial part and S the strictly proper rational part of DR−1 . Then D′ =
D − PR. Let Φ ∈ R

q×q
s [ζ, η]. Among all QDFs B-equivalent to Φ there is exactly

one, Φ′, which is R-canonical. This Φ′ can be computed as follows. Write Φ as
Φ(ζ, η) = MT (ζ)N(η). Compute the R-canonical representatives M ′ of M and N ′ of
N . Then Φ′(ζ, η) = M ′T (ζ)N ′(η).

Proof. For the proof, see the appendix.
The following proposition shows that B-positivity reduces to positivity of the

B-canonical representative.
Proposition 4.10. If Ψ is R-canonical, then we have

(i) (Ψ
B
= 0) ⇔ (Ψ = 0),

(ii) (Ψ
B≥ 0) ⇔ (Ψ ≥ 0) ⇔ (Ψ(ζ, η) = DT (ζ)D(η) with D R-canonical),

(iii) (Ψ
B
> 0) ⇔ (Ψ > 0 and Ψ(ζ, η) = DT (ζ)D(η) with (R,D) observable) ⇔

(Ψ(ζ, η) = DT (ζ)D(η) with (R,D) observable and D R-canonical).
Proof. For the proof, see the appendix.
We immediately obtain the following consequence of Theorem 4.3.
Corollary 4.11. B ∈ Lq is asymptotically stable iff there exists a Ψ ∈ R

q×q
s [ζ, η],

Ψ ≥ 0, such that the R-canonical representative of (ζ + η)Ψ(ζ, η), computed as in
Proposition 4.9, is ≤ 0 and factors as −DT (ζ)D(η) with (R,D) observable.

Our next result is perhaps the most useful of all. It shows how to walk through
the algorithm of Theorem 4.8 and preserve canonicity.

Theorem 4.12. Assume that B ∈ Lq is asymptotically stable and has kernel rep-
resentation (2.1) with R square. Assume that Φ is R-canonical. Then the polynomial
matrix Lyapunov equation (4.3) has a unique R-canonical solution. Denote it by X ′.
Then

Ψ(ζ, η) =
Φ(ζ, η)−X ′ T (ζ)R(η)−RT (ζ)X ′(η)

ζ + η
(4.10)

is the unique R-canonical Ψ such that
•
Ψ

B
= Φ. Hence if Φ ≤ 0, then Ψ ≥ 0, and if, in

addition, Φ(ζ, η) = −DT (ζ)D(η) with (R,D) observable, then Ψ
B� 0.

Proof. For the proof, see the appendix.
We make a short comment relating these results to state representations. The

state maps (2.13) associating a minimal state to B are uniquely defined up to B-
equivalence. There is, consequently, a minimal state map (unique up to premultipli-
cation by a nonsingular matrix that is R-canonical, say, x = X( d

dt )w). An R-canonical
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Φ ∈ R
q×q
s [ζ, η] is of the form QΦ(w) = xTΓx, i.e., Φ(ζ, η) = XT (ζ)ΓX(η), with Γ =

ΓT an (n×n) matrix. Of course for this Φ there holds (Φ
B≥ 0) ⇔ (Φ ≥ 0) ⇔ (Γ ≥ 0);

furthermore, (Φ
B
> 0) ⇔ (Γ ≥ 0 and observability of the pair of matrices (A,Γ) (with

A associated with the state x)), and finally (Φ
B� 0) ⇔ (Γ > 0).

The above results allow generalizations to unstable systems. Let us briefly men-

tion a few. We have seen that (B asymptotically stable)⇔ (∃Ψ(ζ, η) such that (Ψ
B≥ 0

and
•
Ψ

B
< 0)). There also holds (B stable) ⇔ (∃Ψ(ζ, η) such that (Ψ

B
> 0 and

•
Ψ

B≤ 0))

and (an autonomous B is not stable) ⇔ (∃Ψ(ζ, η) such that (Ψ
B

6≥ 0 and
•
Ψ

B
< 0)).

Furthermore, the result that a Lyapunov function Ψ can be constructed so that it
has a given derivative Φ (Theorem 4.8) can be generalized to autonomous systems,
as long as they have the property that if λ is a singularity of R then −λ will not
be a singularity of R. As such this theorem extends in this sense to a large class of
unstable systems.

We close this section with two extensive examples.
Example 4.13. In this first example we use Theorem 4.8 in order to give a Lya-

punov proof of the Routh–Hurwitz test for stability of scalar systems. Let R ∈ R[ξ]
be a Hurwitz polynomial. Hence R( d

dt )w = 0 defines an asymptotically stable scalar
system. Take, for the derivative of the Lyapunov function,

Φ(ζ, η) = −1

2
R(−ζ)R(−η) = −1

2
R?(ζ)R?(η).(4.11)

Then obviously, since R has no imaginary axis roots, (R,R?) is an observable (i.e., a
coprime) pair. The polynomial matrix Lyapunov equation (4.3) yieldsX(ξ) = −1

4R(ξ)
as a solution. Take Y (ζ, η) = X(η). Then (4.7) yields

B(ζ, η) =
1

2

R(ζ)R(η)−R(−ζ)R(−η)
ζ + η

(4.12)

as a Lyapunov function. Note that this Lyapunov function can be written directly
from the system parameters, without having to solve linear equations! This fact is
actually well known, even though it is not presented in the vein of providing a higher
order Lyapunov function ([6], [13], [14]).

The two-variable polynomial B defined by (4.12) is called the Bezoutian of R.

Note that
•
B (ζ, η)

B
= − 1

2R(−ζ)R(−η); B is R-canonical, but
•
B is not. However,

•
B

is B-equivalent to − 1
2R(−ζ)R(−η) + 1

2R(ζ)R(η), which is. If we take this for the
Φ in Theorem 4.8, then the Lyapunov equation yields X = 0. Taking Y = 0 then
also yields the Bezoutian (4.12) as the corresponding (hence R-canonical) Lyapunov
function B.

A close examination of the arguments involved yields the equivalence of the follow-
ing three conditions on a polynomial R of degree n and the corresponding B ∈ R[ζ, η]
given by (4.12):

1. R is Hurwitz,
2. B ≥ 0 and (R,R?) is coprime,
3. B̃ (the constant matrix associated with B) has rank n and is ≥ 0.

The Lyapunov function (4.12), the Bezoutian, is a very useful one for deriving
various stability tests. It is a classical concept in stability (see [11] for a recent
reference). Let us illustrate its usefulness by deriving the Routh stability test from it.
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Let R ∈ R[ξ] be a polynomial of degree n. Decompose R in its even and odd parts as

R(ξ) = E0(ξ
2) + ξE1(ξ

2).

Form the Routh table by computing the polynomials E2, E3, . . . , En as

Ek(ξ) = ξ−1(Ek−1(0)Ek−2(ξ)− Ek−2(0)Ek−1(ξ)).

Assume for simplicity that R(0) = E0(0) ≥ 0. Routh’s stability criterion states that
R is Hurwitz iff all elements of the Routh array E0(0), E1(0), . . . , En(0) are positive.
Define Rk(ξ) = Ek−1(ξ

2) + ξEk(ξ
2) for k = 1, . . . , n, and let Bk be the Bezoutian

associated with Rk. Examining expression (4.12) yields, after a simple calculation

Ek(0)Bk(ζ, η) = ζηBk+1(ζ, η) + Ek−1(0)Ek(ζ
2)Ek(η

2)(4.13)

for k = 1, . . . , n (define Bn+1 = 0). Assume that E0(0), E1(0), . . . , En(0) are all
positive. Then we obtain (note that B = B1)

B(ζ, η) =
n∑

k=1

αkζ
k−1ηk−1Ek(ζ

2)Ek(η
2),

where αk = Ek−1(0)/E1(0)E2(0) . . . Ek(0). Obviously B̃ ≥ 0 and has rank n. There-
fore R is Hurwitz. To show the converse, assume that R is Hurwitz. Then E0(0) > 0.
Also, B̃ ≥ 0 and has rank n. Therefore, by (4.13), B̃2 ≥ 0 and has rank n− 1. Hence
R2 is Hurwitz, and E1(0) > 0. Now proceed by induction.

The key point thus is that

n∑
k=1

αk

(
Ek

(
d2

dt2

)
dk−1

dtk−1
w

)2

is a QDF which is well defined and nonnegative definite when the Routh conditions
are satisfied. It has derivative

1

2

((
R

(
− d

dt

)
w

)2

−
(
R

(
d

dt

)
w

)2
)
,

which is obviously nonnegative definite along solutions of R( d
dt )w = 0.

Example 4.14. Let E1, E2, . . . , EN and O1, O2, . . . , ON ′ be two sets of real polyno-
mials, and assume that Rk,`(ξ) := Ek(ξ

2) + ξO`(ξ
2) is Hurwitz for all k = 1, 2, . . . , N

and ` = 1, 2, . . . , N ′. Then any combination

R(ξ) =
N∑
k=1

αkEk(ξ
2) +

N ′∑
`=1

β`ξO`(ξ
2)

is also Hurwitz whenever all the αk’s and β`’s are positive. In order to see this, simply
observe that, in the obvious notation, (4.12) yields

B(ζ, η) =

N∑
k=1

N ′∑
`=1

αkβ`Bk,`(ζ, η)

and the conclusion follows.
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This may be applied to interval polynomials. Assume that R ∈ R[ξ] is given by
R(ξ) = R0 + R1ξ + · · · + Rnξ

n, with Rk ∈ [ak, Ak]. The question arises under what
conditions all these polynomials are Hurwitz. The weak Kharitonov test states that
this is the case iff the 2n extreme polynomials, that is, those obtained by replacing
each Rk by ak or Ak, are all Hurwitz. This result is an immediate consequence of the
above. With a little bit of extra work, we can also obtain the strong Kharitonov test
[15] which states that the interval polynomials are Hurwitz iff the four Kharitonov
polynomials obtained by taking the initial sequences a0, a1, A2, . . ., or a0, A1, A2, . . .,
or A0, A1, a2, . . ., or A0, a1, a2, . . ., and continuing by alternating between two con-
secutive maxima and minima, are all Hurwitz. Indeed (see [20]), observe that for all
ω,R(iω) lies in the rectangle in the complex plane spanned by the four points ob-
tained by taking for R the Kharitonov polynomials. This rectangle does not contain
the origin since, by the above, the convex hull of the Kharitonov polynomials contains
only Hurwitz polynomials if the Kharitonov polynomials are themselves Hurwitz.

5. Average positivity. Up to now, we have considered positivity of QDFs and
its use in establishing stability through Lyapunov functions. However, in many appli-
cations, especially in control theory, we are interested in an average type of positivity.
In section 3, we already discussed when

∫
QΦ is zero. We now study when it is posi-

tive. With an eye towards applications in LQ and H∞ control we have to distinguish
several (unfortunately not less than three) types of average positivity. All of them
have quite logical definitions.

Definition 5.1. Let Φ ∈ R
q×q
s [ζ, η]. The QDF QΦ (or simply Φ) is said to be

1. average nonnegative, denoted
∫
QΦ ≥ 0, if

∫ +∞
−∞ QΦ(w)dt ≥ 0 for all w ∈

D(R,Rq),

2. average positive, denoted by
∫
QΦ > 0, if

∫
QΦ ≥ 0 and if

∫ +∞
−∞ QΦ(w)dt = 0

implies w = 0,

3. strongly average positive, denoted
∫
QΦ

per
> 0, if for all nonzero periodic w ∈

C∞(R,Rq) there holds 1
T

∫ T
0
QΦ(w)dt > 0, where T denotes the period of w.

Note that (3) looks somewhat different from the other definitions in this paper
since, for the first time, periodic functions are involved. Actually, wherever in the
paper definitions refer to compact support functions, they could have been written
just as well in terms of periodic functions. However, strong average positivity is the
only instance where the converse is not true.

Proposition 5.2. Let Φ ∈ R
q×q
s [ζ, η]. Then

(i) (
∫
QΦ ≥ 0) ⇐⇒ (∂Φ(iω) ≥ 0 ∀ω ∈ R).

(ii) (
∫
QΦ > 0) ⇐⇒ (∂Φ(iω) ≥ 0 ∀ω ∈ R and det(∂Φ) 6= 0).

(iii) (
∫
QΦ

per
> 0) ⇐⇒ (∂Φ(iω) > 0 ∀ω ∈ R).

Proof. For the proof, see the appendix.
Concerning the equivalence (ii), note that ∂Φ(iω) ≥ 0 ∀ω ∈ R and det(∂Φ) 6= 0

is equivalent to: ∂Φ(iω) > 0 for all but finitely many ω ∈ R.
Intuitively, we think of QΦ(w) as the power going into a physical system. In

many applications, the power is indeed a quadratic differential form of some system
variables. For example, in mechanical systems, it is

∑
k Fk

dqk
dt with Fk the external

force acting on the system, and qk the position of the kth pointmass; in electrical
circuits it is

∑
k VkIk, with Vk the potential and Ik the current going into the circuit

at the kth terminal. Note that in these examples the variables are themselves also
related. When this relation is expressed as an image representation, then we obtain
a general QDF in terms of latent variables for the power delivered to a system.
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Average nonnegativity states that the net flow of energy going into the system
is nonnegative: the system dissipates energy. Of course, sometimes energy flows into
the system, while at other times it flows out of it. This outflow is due to the fact
that energy is stored. However, because of dissipation, the rate of increase of storage
cannot exceed the supply. This interaction between supply, storage, and dissipation
is now formalized.

Definition 5.3. Let Φ ∈ R
q×q
s [ζ, η] induce the QDF QΦ. The QDF QΨ induced

by Ψ ∈ R
q×q
s [ζ, η] is said to be a storage function for Φ if

d

dt
QΨ ≤ QΦ.(5.1)

A QDF Q∆ induced by ∆ ∈ R
q×q
s [ζ, η] is said to be a dissipation function for Φ if

∆ ≥ 0 and

∫
QΦ =

∫
Q∆.(5.2)

The next proposition shows that one can always interpret average positivity by an
instantaneous positivity condition involving the difference between the rate of change
of storage function and the supply rate.

Proposition 5.4. The following conditions are equivalent:
1.
∫
QΦ ≥ 0,

2. Φ admits a storage function,
3. Φ admits a dissipation function.

Moreover, there is a one-one relation between storage and dissipation functions, Ψ
and ∆, respectively, defined by

d

dt
QΨ(w) = QΦ(w)−Q∆(w)

equivalently,
•
Ψ = Φ−∆, i.e.,

Ψ(ζ, η) =
Φ(ζ, η)−∆(ζ, η)

ζ + η
.(5.3)

Proof. For the proof, see the appendix.
Of course, we should expect that a storage function is related to memory, to state.

The question, however, is: the state of which system? After all, we are considering a
QDF, not a dynamical system. However, the factorization of Φ as

Φ(ζ, η) = MT (ζ)ΣMM(η)(5.4)

discussed earlier in section 3 allows us to introduce a state for the QDF QΦ. Indeed,
(5.4) induces the dynamical system in image representation

v = M

(
d

dt

)
w.(5.5)

Note that in (5.5) we are considering w as the latent variable and v as the manifest
one. This is in keeping with the idea that vTΣMv, the supply rate, is the variable
of interest and that w is a latent variable that explains it. We are hence considering
the behavior of the possible trajectories v. Assume that M has r rows, i.e., that
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M ∈ R
r×q[ξ]. Thus, (5.5) defines a system B ∈ Lr with B = im(M( d

dt )) and

M( d
dt ) viewed as a map from C∞(R,Rq) to C∞(R,Rr). Hence this system has a state

representation. Assume that

x = X

(
d

dt

)
w(5.6)

induces such a state representation. Thus X ∈ R
•×q[ξ] is a polynomial matrix defining

a state map for B = im(M( d
dt )). Let Ψ ∈ R

q×q
s [ζ, η]. Then the QDF QΨ is said to be

a state function (relative to the state of Φ) if there exists a real (symmetric) matrix
P such that

QΨ(w) = ‖X
(
d

dt

)
w‖2P .(5.7)

It is said to be a state/supply function if there exists a real (symmetric) matrix E
such that

QΨ(w) = ‖
[
M( d

dt )
X( d

dt )

]
w‖2E(5.8)

where, as always, ‖a‖2A denotes aTAa. Note that the factorization (5.4) is not unique.
However, any such factorization is related in a simple way to a canonical one, say, to

Φ(ζ, η) = M̂T (ζ)ΣΦM̂(η)(5.9)

by the existence of a matrix F ∈ R
•×• such that M̂(ξ) = FM(ξ). This relation has as

a consequence that any (possibly nonminimal) state map X for the system in image
representation (5.5) is related in a static way to a minimal state map X̂ associated
with the system in image representation

v̂ = M̂

(
d

dt

)
w(5.10)

based on a canonical factorization. Indeed, there exists a matrix L ∈ R
•×• such that

X̂(ξ) = LX(ξ).(5.11)

Thus, considering arbitrary (i.e., not necessarily canonical) factorizations and arbi-
trary (i.e., not necessarily minimal) state representations yields a (rather than the)
state of QΦ. Thus, the situation with the state is similar to the situation with the
state of a system B ∈ Lq.

We have the following important result.
Theorem 5.5. Let

∫
QΦ ≥ 0, and let Ψ ∈ R

q×q
s [ζ, η] be a storage function for Φ,

i.e.,
•
Ψ ≤ Φ. Then Ψ is a state function. Let ∆ ∈ R

q×q
s [ζ, η] be a dissipation function

for Φ. Then ∆ is a state/supply function. In fact, if X ∈ R
•×q[ξ] is a state map for

Φ, then there exist real symmetric matrices P and E such that

Ψ(ζ, η) = XT (ζ)PX(η),(5.12)

∆(ζ, η) =

[
M(ζ)
X(ζ)

]T
E

[
M(η)
X(η)

]
.(5.13)
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Equivalently

LΨ(w1, w2) =

(
X

(
d

dt

)
w1

)T
PX

(
d

dt

)
w2,

L∆(w1, w2) =

[
M( d

dt )w1

X( d
dt )w1

]T
E

[
M( d

dt )w2

X( d
dt )w2

]

for all w1, w2 ∈ C∞(R,Rq).
Proof. For the proof, see the appendix.
Let Γ ∈ R

q×q[ξ] be para-Hermitian: Γ? = Γ. An F ∈ R
q×q[ξ] is said to induce

a symmetric factorization of Γ if Γ(ξ) = FT (−ξ)F (ξ). It is said to be a symmetric
Hurwitz factorization if F is square and Hurwitz and a symmetric anti-Hurwitz factor-
ization if F ? is square and Hurwitz. It is easy to see that for a symmetric factorization
to exist we need to have Γ(iω) ≥ 0 ∀ω ∈ R and for an (anti-)Hurwitz one to exist we
must have Γ(iω) > 0 ∀ω ∈ R. The converses are also true but not at all trivial in the
matrix case. This result is well known (see, e.g., [9], [10], [18], [21]), and we state it
for easy reference.

Proposition 5.6. Let Γ ∈ R
q×q[ξ] be para-Hermitian. Then

(i) Γ allows a symmetric factorization iff Γ(iω) ≥ 0 for all ω ∈ R.
(ii) Γ allows a symmetric Hurwitz factorization iff Γ(iω) > 0 for all ω ∈ R. Such

a factorization Γ(ξ) = FT (−ξ)F (ξ) is unique up to premultiplication of F (ξ)
by an orthogonal matrix.

(iii) Γ allows a symmetric anti-Hurwitz factorization iff Γ(iω) > 0 for all ω ∈ R.
Such a factorization Γ(ξ) = FT (−ξ)F (ξ) is unique up to premultiplication of
F (ξ) by an orthogonal matrix.

An important issue of concern is the uniqueness of the storage function, and
therefore of the dissipation function, because of the one-to-one relation between the

two. When
∫
QΦ = 0, then the associated storage function is unique (Ψ(ζ, η) = Φ(ζ,η)

ζ+η )
and the dissipation function is zero. However, in general there are many possibilities.

Theorem 5.7. Let
∫
QΦ ≥ 0. Then there exist storage functions Ψ− and Ψ+ for

Φ such that any other storage function Ψ for Φ satisfies

Ψ− ≤ Ψ ≤ Ψ+.(5.14)

If
∫
QΦ

per
> 0 then Ψ− and Ψ+ may be constructed as follows. Let ∂Φ(ξ)=HT (−ξ)H(ξ)

and ∂Φ(ξ) = AT (−ξ)A(ξ) be, respectively, Hurwitz and anti-Hurwitz factorizations of
∂Φ. Then

Ψ+(ζ, η) =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η
(5.15)

and

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.(5.16)

Proof. For the proof, see the appendix.
We close this section with a few remarks.
Remark 5.8. In this section we have studied average positivity with, in QΦ(w),

w ∈ C∞(R,Rq) or D(R,Rq), but otherwise free. It is of interest to generalize these
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concepts to the case that w ∈ B with B a given element of Lq. Of course, in section
4 we have considered precisely such situations for B’s that are autonomous. Actually,
it turns out that the theory of section 5 is immediately applicable to systems B ∈ Lq

that are controllable. Indeed, let B ∈ Lq be controllable and assume that we want to
study when ∫ +∞

−∞
QΦ(w)dt ≥ 0 or

∫ +∞

−∞
QΦ(w)dt = 0(5.17)

holds for all w ∈ B∩D(R,Rq). Simply construct an image representation for B, say,

w = M

(
d

dt

)
`.(5.18)

Upon substituting (5.18) in (5.17), we see that the issue then becomes one of studying
when ∫ +∞

−∞
QΦ

(
M

(
d

dt

)
`

)
dt ≥ 0 or

∫ +∞

−∞
QΦ

(
M

(
d

dt

)
`

)
dt = 0

for all ` ∈ D(R,R•). Since obviously QΦ(M( d
dt )`) = QΦ′(`) with

Φ′(ζ, η) := MT (ζ)Φ(ζ, η)M(η),

the problem reduces to studying Φ′. For example, the existence of a storage function is
established as follows. Without loss of generality, take (5.18) to be an observable image
representation. Then M has a polynomial left inverse M†. By Proposition 5.4, there
exists Ψ′ such that d

dtQΨ′(`) ≤ QΦ′(`) for all ` ∈ D(R,R•). Now define Ψ(ζ, η) :=

M†T (ζ)Ψ′(ζ, η)M†(η). Then for w = M( d
dt )` we have QΨ(w) = QΨ′(M†( d

dt )w) =

QΨ′(`) and QΦ(w) = QΦ′(`), so we obtain d
dtQΨ(w) ≤ QΦ(w).

The case that B ∈ Lq is neither controllable nor autonomous will be studied
in a later publication. The next comment is relevant to the question of what the
appropriate definition of dissipativity is in that case.

Remark 5.9. Finding an appropriate definition of a dissipative system is an issue
that has attracted considerable attention (see [29], [12], [24], [27]). Of course, this is
at the root of the issues discussed in the present article. Let B ∈ Lq. There are many
examples where the instantaneous rate of supply (say, of energy) into the system is
given, not by a static function of the external variables, but by a QDF, QΦ(w). The
study of supply rates that are themselves dynamic is one of the novel aspects of the
present paper. When would one want to call B dissipative with respect to QΦ(w)?
Lossless? Conservative? When would one want to say that B absorbs some of the
supply? The definitions of average nonnegativity for dissipativeness, and

∫
QΦ = 0

for losslessness (= conservativeness), are fully adequate provided that B is controllable
(see Remark 5.8). However, Proposition 5.4 points to another definition which does
not need controllability and which, in the controllable case, reduces to it. Thus, we
arrive at the following definition as the most general: B ∈ Lq is said to be dissipative
with respect to the supply rateQΦ if there exists aQΨ such that d

dtQΨ(w) ≤ QΦ(w) for
all w ∈ B, and lossless, or conservative, if this holds with equality. The unfortunate
aspect of this definition is its existential nature — it shares this notorious feature with
the first and second law of thermodynamics. It does not seem an easy matter in the
noncontrollable case to reduce this to a statement involving only QΦ, and without
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invoking a to-be-constructed QΨ. In Theorem 5.5 we have unraveled this existence
question a bit by proving that this QΨ will be a state function.

Note that the proposed definition of dissipativity and losslessness is an interesting
generalization of the notion of a Lyapunov function since, for autonomous systems, it is
natural to take the external supply Φ = 0. Also note that this definition holds for any
B and Φ and does not require the introduction of the notion of state. In other words,
dynamical systems with free variables that allow interaction with the environment
relate to flows on manifolds, just as dissipative systems relate to Lyapunov functions.

Remark 5.10. Let B be controllable and assume that it is dissipative with respect
to the supply rate QΦ(w) (see Remark 5.9). Also in this general case every storage
function is a state function, and every dissipation function is a state/supply function.
However, this time, not simply the state of Φ is involved, but the state of a system
obtained by combining the dynamics of Φ and B. This is elaborated in [26].

Remark 5.11. Let Φ(ζ, η) = MT (ζ)ΣMM(η). Consider the system in image
representation (5.5). Then it can be shown that for Φ to be average nonnegative, there
must be an input/output partition for this system so that all the input components
correspond to +1’s in ΣΦ. In other words, the supply rate vTΣMv is always of the
form ‖u‖2 + ‖y1‖2 − ‖y2‖2, with u an input, and y1, y2 outputs.

Remark 5.12. It follows from Theorem 5.5 that a factorization of the polynomial
matrix Φ(−ξ, ξ) = MT (−ξ)ΣMM(ξ) into FT (−ξ)F (ξ) always leads to a situation
in which the McMillan degree of M is equal to that of col(M,F ). This means that
the factorization is a regular factorization (as this property is called). In the H∞-
problem factorization, questions are encountered in which the existence of a regular
factorization poses a serious problem.

Remark 5.13. It is easy to see that the set of storage functions corresponding to a
given supply rate is convex. Moreover, in the case of average positivity, Ψ− 6= Ψ+ and
hence, in this case, there are an infinite number of possible storage functions. Actually,
in this respect it is worth mentioning the following refinement of Theorem 5.7, which
follows immediately from our proof of this theorem. If Φ(−ξ, ξ) satisfies Φ(−iω, iω) ≥
0 (but not Φ(−iω, iω) > 0) for all ω ∈ R, then a symmetric Hurwitz factorization does
not exist. In this case, there are two possibilities: either det(∂Φ) 6= 0 or det(∂Φ) = 0.
In the former case, Φ(−ξ, ξ) allows a factorization Φ(−ξ, ξ) = HT (−ξ)H(ξ) with H
“almost Hurwitz” (i.e., H has all its singularities in <e(λ) ≤ 0). In the latter case,
there exists a unimodular matrix U such that

Φ(ζ, η) = UT (ζ)Φ′(ζ, η)U(η),

with Φ′ of the form

Φ′ =

[
Φ1 Φ2

Φ∗2 Φ3

]
,

with det(∂Φ1) 6= 0 and ∂Φ2 = 0, ∂Φ3 = 0. Factor Φ1(−ξ, ξ) as before as HT
1 (−ξ)H1(ξ).

Then

H =

[
H1 0
0 0

]
U1

yields an almost Hurwitz-like factorization of ∂Φ. Similarly, we can define an almost
anti-Hurwitz-like factorization ∂Φ = A?A of any Φ satisfying Φ(−iω, iω) ≥ 0 for all
ω ∈ R. The computation of Ψ+ and Ψ− given in Theorem 5.7 holds unaltered with
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this A and H. Note that in the lossless case (∂Φ = 0) this yields Ψ+ = Ψ−, whence
the uniqueness of Ψ.

Remark 5.14. It is easy to deduce from the proof of Theorem 5.7 that Ψ− and Ψ+

have the following interpretations. Let x = X( d
dt )w be the state (see 5.6). Let a ∈ R

n.

Consider all w ∈ D(R,Rq) such that (X( d
dt )w)(0) = a. Denote this set by Ba. By

Theorem 5.5 we know that QΨ− is a state function, say, QΨ−(w) = ‖X( d
dt )w‖K− ,

for some symmetric matrix K− ∈ R
n×n. Hence for w ∈ Ba we have QΨ−(w)(0) =

aTK−a. Similarly QΨ+(w)(0) = aTK+a for some symmetric matrix K+. Then it can
be shown that

aTK−a = sup
w∈Ba

(
−
∫ +∞

0

QΦ(w)dt

)
(5.19)

and

aTK+a = inf
w∈Ba

(∫ 0

−∞
QΦ(w)dt

)
.(5.20)

For this reason, QΨ−(w)(0) is called the available storage and QΨ+(w)(0) the required
supply at t = 0 due to w. In this inf and sup, one keeps the past, respectively, the
future of w fixed.

6. Half-line positivity. In section 5, we studied QDFs for which
∫ +∞
−∞ QΦ(w)dt

≥ 0. The intuitive idea was that this expresses that the net supply (of “energy”)
is directed into the system: energy is being absorbed and dissipated in the system.
There are, however, situations where at any moment in time the system has absorbed
energy, i.e.,

∫ t
−∞QΦ(w)(τ)dτ ≥ 0 for all t ∈ R. For example, electrical circuits and

mechanical devices at rest are in a state of minimum energy, and therefore the energy
delivered up to any time is nonnegative. This type of positivity is studied in this
section. It plays a crucial role in H∞ problems.

Definition 6.1. Let Φ ∈ R
q×q
s [ζ, η]. The QDF QΦ (or simply Φ) is said to

be half-line nonnegative, denoted by
∫ t

QΦ ≥ 0, if
∫ 0

−∞QΦ(w)dt ≥ 0 for all w ∈
D(R,Rq), and half-line positive, denoted

∫ t
QΦ > 0, if in addition

∫ 0

−∞QΦ(w)dt = 0
implies w(t) = 0 for t ≤ 0.

Note that half-line nonnegativity implies average nonnegativity, and that half-line
positivity implies average positivity.

Write Φ(ζ, η) = MT (ζ)ΣMM(η) and partition M conform ΣM as

M =

[
P
N

]
(6.1)

so that Φ(ζ, η)=PT (ζ)P (η)−NT (ζ)N(η) and henceQΦ(w)=‖P ( d
dt )w‖2−‖N( d

dt )w‖2.
In the following, for λ ∈ C, let λ̄ denote its complex conjugate.

Proposition 6.2. Let Φ ∈ R
q×q
s [ζ, η]. Then

(i) (
∫ t

QΦ ≥ 0) ⇒ (Φ(λ̄, λ) ≥ 0 ∀λ ∈ C,<e(λ) ≥ 0)

(ii) (
∫ t

QΦ > 0) ⇒ (Φ(λ̄, λ) ≥ 0 ∀λ ∈ C,<e(λ) ≥ 0 and det(∂Φ) 6= 0).
Proof. For the proof, see the appendix.
As noted before, it immediately follows from the definitions that half-line nonneg-

ativity implies average nonnegativity, etc. Thus, Proposition 5.4 implies the existence
of a storage function. It is the nonnegativity of the storage function that allows us to
conclude the half-line positivity.

Theorem 6.3. Let Φ ∈ R
q×q
s [ζ, η]. Then the following statements are equivalent.
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1.
∫ t
QΦ ≥ 0,

2. there exists a storage function Ψ ≥ 0 for Φ,
3. Φ admits a storage function, and the storage function Ψ+ defined in Theorem

5.7 satisfies Ψ+ ≥ 0.
Proof. For the proof, see the appendix.
In order to check half-line nonnegativity, one could thus in principle proceed as

follows. Verify that Φ(−iω, iω) ≥ 0 for all ω ∈ R, compute Ψ+, and check whether
Ψ+ ≥ 0. In some situations, it is actually possible to verify this condition in a more
immediate fashion; for example, when Φ(ζ, η) = Φ0, a constant matrix, with Φ0 ≥ 0
(trivial, but that is the case that occurs in standard LQ theory!), or when in (6.1)
P is square and det(P ) 6= 0. Then, under the assumption that a storage function
exists (equivalently: NT (−iω)N(iω) ≤ PT (−iω)P (iω) for all ω ∈ R), all storage
functions are actually nonnegative if one of them is nonnegative. In fact, in this case
the following theorem holds.

Theorem 6.4. Let Φ ∈ R
q×q
s [ζ, η]. Assume it is factored as Φ(ζ, η) = PT (ζ)P (η)

−NT (ζ)N(η) with P square and det(P ) 6= 0. Let X ∈ R
•×q[ξ] be a minimal state

map for the B given in image representation by (6.1). The following statements are
equivalent:

1.
∫ t

QΦ ≥ 0,
2. Φ(λ̄, λ) ≥ 0 for all λ ∈ C, <e(λ) ≥ 0,
3. NP−1 has no poles in <e(λ) ≥ 0 and Φ(−iω, iω) ≥ 0 for all ω ∈ R,
4. there exists a storage function Ψ ≥ 0 for Φ,
5. there exists a storage function for Φ and every storage function Ψ for Φ

satisfies Ψ ≥ 0,
6. there exists a real symmetric matrix K > 0 such that QK(w) := ‖X( d

dt )w‖2K
is a storage function for Φ,

7. there exists a storage function for Φ and every real symmetric matrix K such
that QK(w) := ‖X( d

dt )w‖2K is a storage function for Φ satisfies K > 0.

Furthermore, if [ PN ] is observable, then any of the above statements is equivalent with
3′. P is Hurwitz and Φ(−iω, iω) ≥ 0 for all ω ∈ R.
Proof. For the proof, see the appendix.

7. Observability. One of the noticeable features of QDFs is that a number of
interesting systems theory concepts generalize very nicely to QDFs. We have already
seen that the state of a symmetric canonical factorization of Φ functions as the state
of the QDF QΦ. In this section we introduce observability of a QDF. In a later section
we will discuss duality of QDFs.

For Φ ∈ R
q1×q2 [ζ, η] and w1 ∈ C∞(R,Rq1) fixed, the linear map w2 7→ LΦ(w1, w2)

is denoted by LΦ(w1, •). For w2 ∈ C∞(R,Rq2) fixed, the linear map w1 7→ LΦ(w1, w2)
is denoted by LΦ(•, w2). The BLDF Φ is called observable if LΦ(w1, •) and LΦ(•, w2)
determine w1 and w2 uniquely. Equivalently we have the following.

Definition 7.1. Let Φ ∈ R
q1×q2 [ζ, η]. We call Φ observable if, for all w1 ∈

C∞(R,Rq1) and for all w2 ∈ C∞(R,Rq2), we have

LΦ(w1, •) = 0 ⇔ w1 = 0

and

LΦ(•, w2) = 0 ⇔ w2 = 0.

The following theorem gives necessary and sufficient conditions for observability
purely in terms of the two-variable polynomial matrix Φ and in terms of the (one-
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variable) polynomial matrices N and M occurring in any canonical factorization of
Φ.

Theorem 7.2. Let Φ(ζ, η) = NT (ζ)M(η) be a canonical factorization. The
following statements are equivalent:

1. Φ is observable,
2. for every λ ∈ C, the rows of Φ(λ, ξ) ∈ R

q1×q2 [ξ], and the columns of Φ(ξ, λ) ∈
R
q1×q2 [ξ] are linearly independent over C,

3. N(λ) and M(λ) have full column rank for all λ ∈ C; equivalently, the image
representations v1 = N( d

dt )w1 and v2 = M( d
dt )w2 are observable,

Proof. For the proof, see the appendix.
If Φ is symmetric, then we have ΦT (λ, ξ) = Φ(ξ, λ), so condition (ii) above can

be replaced by a single statement on the independence of the rows of Φ(λ, ξ). Also,
in this case the maps LΦ(w, •) and LΦ(•, w) coincide. Furthermore, for the particular
symmetric canonical factorization Φ(ζ, η) = MT

c (ζ)ΣΦMc(η) obtained from (3.15),
we have |Φ|(ζ, η) = MT

c (ζ)Mc(η). Hence observability of Φ is also equivalent with
|Φ| > 0 and with the condition |Φ|(λ̄, λ) > 0 for all λ ∈ C. This immediately yields
the following.

Corollary 7.3. Let Φ ∈ R
q×q
s [ζ, η] and let Φ(ζ, η) = MT (ζ)ΣΦM(η) be a

symmetric canonical factorization. Then the following statements are equivalent:
1. Φ is observable,
2. LΦ(w, •) = 0 ⇔ w = 0,
3. for every λ ∈ C, the rows of Φ(λ, ξ) ∈ R

q1×q2 [ξ] are linearly independent over
C,

4. M(λ) has full column rank for all λ ∈ C, equivalently, the image representa-
tion v = M( d

dt )w is observable,
5. |Φ| > 0,
6. |Φ|(λ̄, λ) > 0 for all λ ∈ C.

8. Strict positivity. Throughout this section we assume that Φ ∈ R
q×q
s [ζ, η] is

observable. We now introduce and develop the notion of strict positivity. The concept
of strict half-line positivity given here is very analogous to that used by Meinsma [19].

Definition 8.1. Let Φ ∈ R
q×q
s [ζ, η] be observable. We call the QDF QΦ strictly

positive, denoted Φ � 0, if there exists ε > 0 such that Φ − ε|Φ| ≥ 0. We call it
strictly average positive, denoted by

∫
QΦ � 0, if there exists ε > 0 such that

∫ +∞

−∞
QΦ(w)dt ≥ ε

∫ +∞

−∞
Q|Φ|(w)dt(8.1)

for all w ∈ D(R,Rq). We call it strictly half-line positive, denoted
∫ t
QΦ � 0, if

there exists an ε > 0 such that∫ 0

−∞
QΦ(w)dt ≥ ε

∫ 0

−∞
Q|Φ|(w)dt(8.2)

for all w ∈ D(R,Rq). Note that (because of observability) strict positivity implies
positivity, and similarly for the other cases.

These notions of strict positivity involve |Φ| which may be difficult to evaluate.
However, it is possible to relate it to any canonical factorization of Φ. This is stated in
the next proposition. For simplicity we state only the case of strict average positivity.
However, completely analogous statements hold for simple strict positivity or for strict
half-line positivity.
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Proposition 8.2. Let Φ ∈ R
q×q
s [ζ, η] be observable and let Φ(ζ, η)=PT (ζ)P (η)−

NT (ζ)N(η) be a symmetric canonical factorization of Φ (see (3.12)). Denote M = [ PN ]
The following are equivalent:

1. Φ is strictly average positive.
2. There exists an ε > 0 such that∫ +∞

−∞
‖M

(
d

dt

)
w‖2ΣΦ

dt ≥ ε

∫ +∞

−∞
‖M

(
d

dt

)
w‖2dt(8.3)

for all w ∈ D(R,Rq). Here ‖a‖2ΣΦ
denotes aTΣΦa.

3. There exists an α < 1 such that∫ +∞

−∞
‖N

(
d

dt

)
w‖2dt ≤ α

∫ +∞

−∞
‖P
(
d

dt

)
w‖dt(8.4)

for all w ∈ D(R,Rq).
Moreover, also for a noncanonical factorization (3.11), (2) and (3) (with ΣΦ replaced
by ΣM ) are equivalent and imply (1).

Proof. For the proof, see the appendix.

9. A Pick matrix condition for half-line positivity. It is surprisingly dif-
ficult to establish some type of analogue of Proposition 5.2 for half-line positivity,
and earlier attempts [28], [30], [1]) turned out to be flawed. In Proposition 6.4
such an analogue of Proposition 5.2 was given but only in the special case where
Φ(ζ, η) = PT (ζ)P (η)−NT (ζ)N(η) with det(P ) 6= 0. In this section we give a neces-
sary and sufficient condition for strict half-line positivity in terms of Φ.

As is well known, the Pick matrix plays an important role in system and circuit
theory, in particular in connection with passivity properties of linear dynamical sys-
tems; see [34], [4], [5]. We derive a Pick-matrix-type test for nonnegativity of Ψ+.
This test is perhaps the most original specific result of this paper. For simplicity we
consider only the case of strict half-line positivity. First, however, we need to define
the Pick-type matrix which may be computed effectively from a Φ ∈ R

q×q
s [ζ, η]. Let

F ∈ R
q×q[ξ], and assume that det(F ) 6= 0. We call F semisimple if for all λ ∈ C the

dimension of the kernel of F (λ) is equal to the multiplicity of λ as a root of det(F ).
Note that F is certainly semisimple if det(F ) has distinct roots. We now define the
matrix TΦ. Since the expression is much simpler in the semisimple case, we explain
that case first.

Definition 9.1 (semisimple case). Let Φ ∈ R
q×q
s [ζ, η] be observable, and assume

that det(∂Φ) has no roots on the imaginary axis. Let λ1, λ2, . . . , λn ∈ C be the roots of
det(∂Φ) with positive real part and let a1, a2, . . . , an ∈ C

q be such that ∂Φ(λi)ai = 0,
and such that the ak’s associated with the same λi form a basis of ker(∂Φ(λi)). Then
the Pick matrix of Φ is defined as

TΦ :=

[
āTi Φ(λ̄i, λj)aj

λ̄i + λj

]
i,j=1,...,n

.(9.1)

In order to define the matrix TΦ in the general case, we need to take into account
the algebraic multiplicities of the roots λi.

Definition 9.2 (general case). Let Φ ∈ R
q×q
s [ζ, η] be observable, det(∂Φ) 6= 0,

and assume that det(∂Φ) has no roots on the imaginary axis. Let λ1, λ2, . . . , λk ∈ C be
the distinct roots of det(∂Φ) with positive real part, and denote by ni the multiplicity
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of λi as a root of det(∂Φ). For i = 1, 2, . . . , k, there are ni linearly independent vectors
ai,0, ai,1, . . . , ai,ni−1 determined by the (ni) linear equations

ni−1∑
j=`

(
j
`

)
(∂Φ)(j−`)(λi)ai,j = 0, (` = 0, 1, . . . , ni − 1).

Here, (∂Φ)(k)(ξ) denotes the kth derivative of the polynomial matrix ∂Φ.
For i = 1, 2, . . . , k, define

Ai :=



ai,0 0 · · · 0

ai,0 ai,1
. . .

...
...

...
. . . 0

ai,0 ai,1 . . . ai,ni−1


 ∈ C

niq×ni

Also, define Φi,j ∈ C
niq×njq by defining its (r, s)th block to be the q × q matrix

(Φi,j)r,s := Φ(r,s)(λ̄i, λj), r = 1, 2, . . . , ni ; s = 1, 2, . . . , nj ,

where Φ(k,`) means taking the kth partial derivative with respect to ζ and the `th with
respect to η.

Then we define the Pick matrix of Φ as the matrix TΦ whose (i, j)th block is given
by Ti,j ∈ C

ni×nj , with

Ti,j :=
1

λ̄i + λj
ĀT
i Φi,jAj .

Note that the sum
∑k

i=1 ni of the multiplicities is equal to n := 1
2 deg det(∂Φ),

and that TΦ is a complex Hermitian matrix of size n× n.
The next theorem is the most refined result of this paper. It shows, on the

one hand, the relation between strict half-line positivity and positivity of a storage
function, and, on the other hand, the relation with the positivity of the Pick matrix
TΦ.

We have seen in Theorem 5.5 that a storage function is a quadratic state function,
i.e., QΦ(w) is of the form xTKx, K = KT , with x = X( d

dt )w a minimal state map
for Φ. We call this state function positive definite if K > 0.

Theorem 9.3. Let Φ ∈ R
q×q
s [ζ, η] be observable. The following are equivalent:

1.
∫ t

QΦ � 0,
2. (a)

∫
QΦ � 0,

(b) there exists a storage function that is a positive definite state function,
3. (a) ∃ε > 0 such that Φ(−iω, iω) ≥ ε|Φ|(−iω, iω) for all ω ∈ R,

(b) TΦ > 0.
Proof. For the proof, see the appendix.
Remark 9.4. It follows from the proof of Theorem 9.3 that half-line nonnegativity

implies that the Pick-type matrix TΦ (see (9.1)) is ≥ 0 whenever any set of λi’s in
the right half of the complex plane and any set of ai’s are chosen. It is possible to
prove that if TΦ is nonnegative definite for any such choice for the λi’s and ai’s, then
we have half-line nonnegativity. The remarkable thing about Theorem 9.3 is that it
suffices to evaluate TΦ at the set of special λi’s and ai’s obtained from the singularities
of ∂Φ.
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Remark 9.5. It is well known that solvability of a certain Nevanlinna–Pick in-
terpolation problem is equivalent to positive definiteness of a given Pick matrix. In
fact, in [34] the necessity of the positive definite Pick matrix is shown using a half-line
positivity argument. Theorem 9.3 states that positive definiteness of a given Pick
matrix is also sufficient for half-line positivity.

Remark 9.6. It can be shown that if Φ is observable, then
∫
QΦ � 0 implies that

Ψ+−Ψ− is a positive definite state function, with Ψ+ and Ψ− as defined in Theorem
5.7.

Remark 9.7. It is possible to generalize the TΦ-test of Theorem 9.3 to half-line
positive (instead of strictly half-line positive QDFs) by including “infinite zeros” of
det(∂Φ). However, the notation gets very involved, and therefore we will not do this
here.

10. Duality. In the present section we discuss some remarkable relations be-
tween positivity of QDFs and their duals. These relations are of interest in their own
right and will be of crucial importance in our treatment of the H∞-problem [25].

Let B1 and B2 ∈ Lq. We call B1 and B2 complementary if B1⊕B2 = C∞(R,Rq).
It is easy to see that this implies that both B1 and B2 must be controllable: uncon-
trollable B’s in Lq have no complement in Lq. We call them dual if they are com-
plementary and if 〈w1, w2〉 = 0 for all w1 ∈ B1 ∩D(R,Rq) and w2 ∈ B2 ∩D(R,Rq),

where 〈w1, w2〉 denotes the usual inner product
∫ +∞
−∞ wT

1 w2dt. If this is the case,

then we denote B2 as B⊥
1 , since B1 defines B⊥

1 uniquely. Obviously we also have
(B⊥

1 )⊥ = B1.
It is easy to see that R( d

dt )w = 0 is a minimal kernel representation of the con-

trollable B iff v = RT (− d
dt )` is an observable image representation of B⊥ (a kernel

representation R( d
dt )w = 0 of B is called minimal if R has full row rank). Conse-

quently, w = M( d
dt )` is an observable image representation of B iff MT (− d

dt )v = 0
is a minimal kernel representation of B⊥. This duality can also be extended to state
representations, in the following sense. If

E
dx

dt
+ Fx+Gw = 0,(10.1)

is an n-dimensional minimal state representation of B, then B⊥ admits an also n-
dimensional minimal state representation (thus the dimensions of the minimal state
representations are the same), say,

E′
dz

dt
+ F ′z +G′v = 0,(10.2)

having the property that for all (w, x) ∈ C∞(R,Rq+n) satisfying (10.1), and for all
(v, z) ∈ C∞(R,Rq+n) satisfying (10.2) there holds the following kind of duality in-
volving the state

d

dt
zTx = vTw.(10.3)

In fact, this is an immediate consequence of the following.
Proposition 10.1. Let R( d

dt )w = 0 and w = M( d
dt )` be a minimal kernel

representation and an observable image representation, respectively, of the controllable
system B ∈ Lq. Assume that X ∈ R

n×•[ξ] defines a minimal state map for B, i.e.,
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x = X( d
dt )` defines a minimal state of B. Then there exists a Z ∈ R

n×•[ξ] defining

a minimal state map Z( d
dt ) for B⊥, such that for all `, `′ ∈ C∞(R,R•), we have

d

dt

(
Z

(
d

dt

)
`′
)T

X

(
d

dt

)
` =

(
RT

(
− d

dt

)
`′
)T

M

(
d

dt

)
`.(10.4)

If we define Ψ(ζ, η) := ZT (ζ)X(η) and Φ(ζ, η) := R(−ζ)M(η), then (10.4) is equiva-

lent to
•
Ψ = Φ.

Proof. For the proof, see the appendix.
If a pair of minimal state maps (X,Z) of B and B⊥ satisfies (10.4), then we call

it a matched pair of state maps.
We now associate with a QDF a dual one and relate their average nonnegativity

and average positivity. Let Φ ∈ R
q×q
s [ζ, η] and let Φ(ζ, η) = MT (ζ)ΣΦM(η) be a

symmetric canonical factorization, with

ΣΦ =

[
Ir+ 0
0 −Ir−

]
.

Let us assume that M ∈ R
r×q[ξ]. Partition M conformably to ΣΦ as

M =

[
P
N

]

so that Φ is written as

Φ(ζ, η) = PT (ζ)P (η)−NT (ζ)N(η).(10.5)

Consider the dynamical system B ∈ Lr with image representation

w = M

(
d

dt

)
`.(10.6)

There are a number of integers associated with M that are of interest to us:

r+ = rowdim(P ),(10.7)

r− = rowdim(N),(10.8)

m = rank(M) .(10.9)

The number r+ corresponds to the number of positive squares in QΦ, r− to the num-
ber of negative squares, while m equals the number of inputs in any input/output
or input/state/output representation of B. Since it is defined by an image repre-
sentation, B is a controllable system and, as such, it admits a dual, B⊥ ∈ Lr. Let
R( d

dt )w = 0 be a minimal kernel representation of B. Then

v = RT

(
− d

dt

)
`′(10.10)

is an observable image representation for B⊥. Let Φ′(ζ, η) := R(−ζ)ΣΦR
T (−η). Note

that the QDFs QΦ(`) = (M( d
dt )`)

TΣΦM( d
dt )` and

QΦ′(`′) =

(
RT

(
− d

dt

)
`′
)T

ΣΦR
T

(
− d

dt

)
`′

are in a sense also dual. Their positivity properties are very much related, as shown
in the following theorem.

Theorem 10.2. Assume that r+ = m. Then
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(i)
∫
QΦ ≥ 0 ⇔ ∫

QΦ′ ≤ 0,
(ii)

∫
QΦ > 0 ⇔ ∫

QΦ′ < 0,
(iii) (assume Φ is observable)

∫
QΦ � 0 ⇔ ∫

QΦ′ � 0,
(iv) Let (X,Z) be a matched pair of minimal state maps for B and B⊥. Assume

that
∫
QΦ ≥ 0, and let Ψ define a storage function for Φ. By Theorem 5.5,

Ψ is a state function, i.e., there exists a real symmetric matrix K such that

QΨ(`) =

(
X

(
d

dt

)
`

)T
KX

(
d

dt

)
`.(10.11)

Assume that K is nonsingular. Then

QΨ′(`′) = −
(
Z

(
d

dt

)
`′
)T

K−1Z

(
d

dt

)
`′(10.12)

is a storage function for −QΦ′ .
(v) (assume Φ is observable)

∫
t
QΦ � 0 ⇔ ∫

t
QΦ′ � 0. Here

∫
t
QΦ′ � 0 is

defined as the property that there exists ε > 0 such that
∫∞
0

QΦ′(w)dt ≤
−ε ∫∞

0
QΦ′|(w)dt for all w ∈ D(R,Rq) (i.e., half-line positivity over the posi-

tive half-line).

Proof. For the proof, see the appendix.

We close this section by pointing out that it is of interest to generalize the notion
of duality by using, instead of the usual inner product, an inner product that is itself
induced by a QDF. These ramifications are a matter of future research.

11. Conclusions. In this paper we studied two-variable polynomial matrices
and their role in a number of problems in linear system theory. The basic premise set
forward is the following. Dynamic models lead naturally to the study of one-variable
polynomial matrices. By substituting the time derivative for the indeterminate, and
by letting the resulting differential operator act on a variable, one arrives at a dynam-
ical system, which may then be in kernel or in image representation. The study of
quadratic functionals in a variable and its derivative, on the other hand, leads to two-
variable polynomial matrices. Important instances where dynamical systems occur in
conjunction with functionals are, for example, Lyapunov theory, the theory of dissi-
pative systems, and LQ and H∞ control. We developed the former two applications
in the present paper. The latter two will be discussed elsewhere.

Appendix.

Proof of Theorem 3.1. We prove the equivalence of the two statements in (1) at
the end of the proof and proceed with the first statement by running the circle (1) ⇒
(3) ⇒ (2) ⇒ (1). Assume that

∫
LΦ = 0. Then obviously

∫∞
−∞ LΦ(v, w)dt = 0 for all

v ∈ D(R,Cq1) and w ∈ D(R,Cq2), with LΦ(v, w) in this case (for complex functions)

defined by
∑

k,`(
dkv̄
dtk

)TΦk,`(
d`w
dt`

). Then

∫ ∞

−∞
v̂T (−iω)Φ(−iω, iω)ŵ(iω)dω = 0

for all v̂ ∈ L2(C,C
q1), ŵ ∈ L2(C,C

q2) that are Fourier transforms of v ∈ D(R,Cq1),
and w ∈ D(R,Cq2). This implies that ∂Φ = 0. Assume to the contrary that there
exist ω0 ∈ R, a ∈ C

q1 , b ∈ C
q2 such that āTΦ(−iω0, iω0)b 6= 0. Define vN ∈ D(R,Cq1)
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for N = 1, 2, . . . , by

vN (t) =




eiω0ta |t| ≤ 2πN
ω0

,

ṽ(t+ 2πN
ω0

) t < − 2πN
ω0

,

ṽ(t− 2πN
ω0

) t > 2πN
ω0

.

(A.1)

Define wN ∈ D(R,Cq2) analogously by replacing a by b. Note that ṽ and w̃ can be
chosen independent of N , and obtain smoothness for all N : indeed, if v1 is smooth,
then by the periodic nature of vN for |t| ≤ 2πN

ω0
, vN will also be smooth.

Next evaluate
∫∞
−∞ LΦ(vN , wN )dt and observe that this integral equals

4πN

ω0
āTΦ(−iω0, iω0)b+ E

with E independent of N . It follows that
∫∞
−∞ LΦ(vN , wN )dt 6= 0 for N sufficiently

large. In order to obtain this for real-valued functions, consider the real and imaginary
parts of vN , wN and the integrals. This establishes the contradiction. Hence (1)
implies (3).

To prove (3) ⇒ (2), view Φ(ζ, η) as a one-variable polynomial in ζ and carry out
the division by ζ + η. This yields Φ(ζ, η) = (ζ + η)d(ζ, η) + r(ζ, η). Hence ∂Φ = 0
implies r = 0. This yields (2).

To show that (2) ⇒ (1), observe that
∫∞
−∞ LΦ(v, w)dt =

∫∞
−∞

d
dtLΨ(v, w)dt. The

last term obviously vanishes since v and w have compact support.
To show the equivalence of the two statements in (1), observe that it follows

trivially that
∫
LΦ = 0 implies path independence. Conversely, if ∂Φ = 0 then,

according to (3), there exists Ψ ∈ R
q1×q2 [ζ, η] such that LΦ = d

dtLΨ. Thus, for any
pair of functions v ∈ C∞(R,Rq1) and w ∈ C∞(R,Rq2), and for any t1 and t2, we have∫ t2

t1

LΦ(v, w)dt =

∫ t2

t1

d

dt
LΨ(v, w)dt = LΨ(v, w)(t2)− LΨ(v, w)(t1).

Hence the integral depends only on the values taken on by v and w and their deriva-
tives at the endpoints t1 and t2.

Proof of Proposition 3.2. This proposition is proven following the standard proofs
used in behavioral theory: reduce the problem to the scalar case using the Smith
form. Let R = U∆V with U, V unimodular and ∆ diagonal. Define B′ = V ( d

dt )B.

Then B′ has ∆( d
dt )w = 0 as kernel representation. To prove the proposition, note

that the “if” parts are immediate.
To show the first “only if” part, we show that D( d

dt )B = 0 implies that there

exists F such that D = FR or equivalently, with D = D′V , that D′( d
dt )B

′ = 0
implies that there exists F ′ such that D′ = F ′∆. Let ∆ = diag(d,∆′), let d′ be the
first column of D′, and let w1 be a solution of d( d

dt )w1 = 0. Since col[w1, 0, . . . , 0] ∈ B′

and D′( d
dt )B

′ = 0, it follows that d′( d
dt )w1 = 0. It is easily seen that d( d

dt )w1 = 0

implies d′( d
dt )w1 = 0 iff each element of the polynomial vector d′ is a factor of d.

Proceeding this way column by column yields D′ = F ′∆.
To show the second “only if” part, we prove first the analogous result for BLDFs.

This states that with Φ ∈ R
q1×q2 [ζ, η], the BLDF LΦ(w1, w2) = 0 for all w1 ∈ B1 and

w2 ∈ B2 iff there exists F1, F2 such that

Φ(ζ, η) = RT
1 (ζ)F2(ζ, η) + F1(ζ, η)R2(η),(A.2)
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where R1 and R2 induce kernel representations of B1 and B2. The “if” part is once
again obvious. To prove the “only if” part, consider first the following lemma, which
proves the scalar case q1 = q2 = 1.

Lemma A.1. Let r1, r2 ∈ R[ξ] and Φ ∈ R[ζ, η]. Let Bm ∈ L1, m = 1, 2 be given
in kernel representation by rm( d

dt )wm = 0. Then QΦ(w1, w2) = 0 for all wm ∈ Bm

iff there exists fm ∈ R[ζ, η] such that

Φ(ζ, η) = r1(ζ)f2(ζ, η) + f1(ζ, η)r2(η).(A.3)

Proof. The “if” part is obvious. To show the “only if” part, let r1 have degree n1

and r2 have degree n2, and assume that they are monic. Consider the term Φk,`ζ
kη` of

Φ(ζ, η). In the quadratic form QΦ(w1, w2) this term contributes Φk,`
dkw1

dttk
d`w2

dt`
. If w1

satisfies r1(
d
dt )w1 = 0, and if k ≥ n1, then the contribution in QΦ(w1, w2) of Φk,`ζ

kη`

is equivalent to that of Φk,`(ζ
k − ζk−n1r1(ζ))η

`. Proceeding analogously with the `’s
and the other terms shows that there exists Φ′(ζ, η) =

∑
k,` Φ′k,`ζ

kη` with Φ′k,` = 0
for k ≥ n1 or ` ≥ n2 such that

Φ(ζ, η) = r1(ζ)f2(ζ, η) + f1(ζ, η)r2(η) + Φ′(ζ, η).(A.4)

Obviously QΦ′(w1, w2) = QΦ(w1, w2) for wm ∈ Bm. Therefore QΦ′(w1, w2) = 0 for
wm ∈ Bm. Consider QΦ′(w1, w2)(0) and observe that this is a quadratic form in

w1(0), dw1

dt (0), . . . , dn1−1w1

dtn1−1 (0) and w2(0), dw2

dt (0), . . . , d
n2−1w2

dtn2−1 (0). These initial con-

ditions can be chosen arbitrarily in the sense that for any values of wm(0), dwm

dt (0),

. . . , d
nm−1wm

dtnm−1 (0) there exist wm ∈ Bm having these initial values. It follows that
Φ′ = 0.

Now return to the proof of the case for general q1, q2. Bring R1 and R2 in Smith
form, showing that it suffices to prove (A.2) for R = ∆1 and R2 = ∆2 with ∆1 and ∆2

in Smith form. Let d1 be the (k1, k1)th element of ∆1 and d2 the (k2, k2)th element
of ∆2. Examine (A.2) and observe that we need to show that the (k1, k2)th element
of Φ, Φk1k2

, can be written as

Φk1,k2
(ζ, η) = d1(ζ)f2(ζ, η) + f1(ζ, η)d2(η)(A.5)

whenever it holds that d1(
d
dt )v1 = 0 and d2(

d
dt )v2 = 0 implies that LΦk1k2

(v1, v2) = 0.
Now use the previous lemma.

In order to prove Proposition 3.2 for Φ ∈ R
n1×n2
s [ζ, η], use the ∗-operator on

(A.2), and add.

The image representation part of Proposition 3.2 is proven analogously.

Proof of Proposition 3.5. The proof follows exactly along the same lines as the
proof of Proposition 3.2, and we can therefore be very brief. The Smith form once
again implies that it suffices to prove the case q1 = q2 = 1. Denote a kernel repre-
sentation of B by r( d

dt )w = 0. Using (A.4) with r1 = r2 = r shows that QΦ ≥ 0 on
B iff QΦ′ ≥ 0 on B. However, again by the arbitrariness of the initial conditions,
(QΦ ≥ 0 on B) iff the matrix Φ̃′ associated with Φ′ is nonnegative definite. Part (i)
of the proposition follows.

To show part (ii), factor Φ′ (using Φ̃′) as Φ′(ζ, η) = DT (ζ)D(η) with D ∈ R
•×1[ξ]

having elements whose degree is less than that of r. It thus suffices to find conditions
for r( d

dt )w = 0 and D( d
dt )w = 0 to imply w = 0. That, however, is exactly equivalent

to the observability of the pair (r,D).
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Proof of Theorem 4.3. The “if” part is shown as follows. By Proposition 3.5 we

know that
•
Ψ

B
< 0 implies that

•
Ψ (ζ, η)

B
= −DT (ζ)D(η) with D ∈ R

•×q[ξ] such that
(R,D) is observable, with R ∈ R

•×q[ξ] a kernel representation of B. It also holds that

d

dt
QΨ(w) = Q •

Ψ
(w).(A.6)

Integrate this from 0 to T along a w ∈ B and obtain

QΨ(w)(T )−QΨ(w)(0) =

∫ T

0

Q •
Ψ
(w)dt = −

∫ T

0

‖D
(
d

dt

)
(w)‖2dt.(A.7)

Using Ψ
B≥ 0, this yields ∫ T

0

‖D
(
d

dt

)
(w)‖2dt ≤ QΨ(w)(0).(A.8)

Therefore ∫ ∞

0

‖D
(
d

dt

)
(w)‖2dt <∞.(A.9)

This implies the asymptotic stability of B. Assume that aeλt ∈ B, a 6= 0. Then
R(λ)a = 0 and by (A.8) there must hold that either D(λ)a = 0 or <e(λ) < 0. (Note
that we silently use the obvious fact that (A.8) also holds for the complexification of
B.) However, by observability of (R,D), R(λ)a = 0 and D(λ)a = 0 imply a = 0.
Hence all exponential solutions aeλt of R( d

dt )w = 0 must have <e(λ) < 0. It is well
known from the theory of differential equations that this implies that all solutions
approach zero as t → ∞. The “only if” follows from the stronger Theorem 4.8 and
will be proven then.

Proof of Corollary 4.6.
•
Ψ (ζ, η) = (ζ + η)Ψ0. In the case at hand, R(ξ) = A− ξI.

Using Proposition 3.2, (ζ + η)Ψ
B
= AΨ0 + Ψ0A

T . Finally, observe that observability
of (A− ξI,

√
∆0) (as a pair of polynomial matrices) is equivalent to that of (A,

√
∆0)

(as a pair of matrices) which is equivalent to that of (A,∆0).
Proof of Proposition 4.7. Examine formula (A.8) in the proof of Theorem 4.3. It

implies QΨ(w)(0) ≥ ∫∞
0
‖D( d

dt )w‖2dt. Therefore QΨ(w)(0) = 0 implies D( d
dt )w = 0.

However, by observability of D, D( d
dt )w = 0 in turn implies w = 0.

Proof of Theorem 4.8. The proof is organized as follows. First, we prove that
(4.3) is solvable; second, that if R is square (4.4), (4.5) gives all Sits solutions; third,

that (4.7) yields
•
Ψ

B
= Φ; fourth, that

•
Ψ1

B
=

•
Ψ2 implies Ψ1

B
= Ψ2; fifth, that Φ

B≤ 0

yields Ψ
B≥ 0; and sixth, that Φ

B
< 0 yields Ψ

B� 0.

(i) First put R in Smith form: let

R = U

[
D
0

]
V,

with D diagonal and U, V unimodular. Observe that it suffices to prove (4.3) with
R = D. The (k, `)th component of the matrix equation (4.3) in the obvious notation
takes the form

x`k(−ξ)d`(ξ) + dk(−ξ)xk`(ξ) = Φk`(−ξ, ξ).(A.10)
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Since dk and d` are Hurwitz, d`(ξ) and dk(−ξ) are coprime and hence, by Bezout,
(A.10) has a solution. This then yields a solution of the matrix version.

(ii) Again use the Smith form. Obtain that the difference of two solutions must
satisfy

x`k(−ξ)d`(ξ) + dk(−ξ)xk`(ξ) = 0.(A.11)

Hence again using coprimeness of d`(ξ) and dk(−ξ), there exists a polynomial fk` such
that xk`(ξ) = fk`(ξ)d`(ξ). This yields (4.4). To show (4.5), obtain

RT (−ξ)(F (ξ) + FT (−ξ))R(ξ) = 0.(A.12)

If R is square and det(R) 6=0, (4.5) follows by pre- and postmultiplying by (RT (−ξ))−1

and (R(ξ))−1.
(iii) This proof is obvious.

(iv) Let w ∈ B and assume that
•
Ψ1

B
=

•
Ψ2, i.e.,

•
∆

B
= 0, where ∆ = Ψ1−Ψ2. Then

∫ t

0

Q •
∆

(w)dt =

∫ t

0

d

dt
Q∆(w)dt = Q∆(w)(t)−Q∆(w)(0).(A.13)

Since Q •
∆

(w) = 0, asymptotic stability of B implies Q∆(w)(t) → 0 as t → ∞ and

hence that Q∆(w)(0) = 0. Therefore ∆
B
= 0.

(v) This follows immediately from (A.7), and Proposition 4.7 yields (vi).
Proof of Proposition 4.9. Existence of both D′ and Ψ′ follows from the algorithm

given in the statement of the proposition. To show uniqueness of D′ observe that

D′ B
= D′′, i.e., D′′−D′ = FR, and D′R−1, D′′R−1 strictly proper, implies F = 0, i.e.,

D′ = D′′. In the two-variable case assume Ψ′ B
= Ψ′′, i.e.,

Ψ′(ζ, η) = Ψ′′(ζ, η) + FT (η, ζ)R(η) +RT (ζ)F (ζ, η).

Thus,

(RT (−ζ))−1(Ψ′ −Ψ′′)(ζ, η)(R(η))−1 = (RT (ζ))−1FT (η, ζ) + F (ζ, η)(R(η))−1

Strict properness again implies F = 0.

Proof of Proposition 4.10. Let Ψ
B
=0. Then Ψ(ζ, η)=FT (η, ζ)R(η)+RT (ζ)F (ζ, η).

Pre- and postmultiply by (RT (ζ))−1 and (R(η))−1, respectively, and conclude that

F = 0. The result follows. If Ψ
B≥ 0, use the same reasoning and Proposition 3.5 on

Ψ(ζ, η)
B
= DT (ζ)D(η) with D R-canonical. The case Ψ

B
> 0 is similar.

Proof of Theorem 4.12. We first show that (4.4) has an R-canonical solution. Let
X be any solution. Factor XR−1 as XR−1 = P +S with P polynomial and S strictly
proper. First observe that it follows from (4.3) that P (ξ) + PT (−ξ) = 0. Next, show
that X − PR is a canonical solution. Uniqueness of this R-canonical solution follows
from (4.4).

Next, we show that (4.10) yields an R-canonical Ψ. Simply pre- and postmultiply

by (RT (ζ))−1 and R−1(η) and observe properness. Uniqueness follows from (
•
Ψ1

B
= Φ

and
•
Ψ2

B
= Φ) =⇒ (

•
Ψ1

B
=

•
Ψ2). Now apply Proposition 4.9.

The remaining statements follow from Proposition 4.10.
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Proof of Proposition 5.2. The proof of all three statements is analogous. Therefore
we only give the proof of (i). To prove (⇐), let w ∈ D(R,Rq) and let ŵ be its Fourier
transform. Observe, using Parseval’s Theorem, that∫ +∞

−∞
QΦ(w)dt =

1

2π

∫ +∞

−∞
ŵ(−iω)TΦ(−iω, iω)ŵ(iω)dω,(A.14)

whence (⇐). To show the converse, as in the proof of Theorem 3.1, we silently switch
from R

q as signal space to C
q. Assume that there exists a ∈ C

q and ω0 ∈ R such that
āTΦ(−iω0, iω0)a < 0. Consider the function wN ∈ D(R,Cq) for N = 1, 2, . . ., defined

exactly as vN was in the proof of Theorem 3.1. Next evaluate
∫ +∞
−∞ QΦ(wN )dt and

observe (using the idea in the proof of Theorem 3.1) that this integral can be made
negative by taking N sufficiently large.

Proof of Proposition 5.4. We will run the circle (3) ⇒ (2) ⇒ (1) ⇒ (3). To see
that (3) ⇒ (2), assume that ∆ is a dissipation function. Then Φ(−ξ, ξ) = ∆(−ξ, ξ),
by Theorem 3.1. Define

Ψ(ζ, η) =
Φ(ζ, η)−∆(ζ, η)

ζ + η
.(A.15)

Hence
•
Ψ = Φ − ∆. Use ∆ ≥ 0 to conclude that Ψ is a storage function. To see

that (2) ⇒ (1), use
•
Ψ ≤ Φ and Theorem 3.1 to conclude (1). To see that (1) ⇒ (3),

use Propositions 5.2 and 5.6 to construct a D such that Φ(−ξ, ξ) = DT (−ξ)D(ξ).
Observe that ∆(ζ, η) := DT (ζ)D(η) defines a dissipation function. The one-one
relation between Ψ and ∆ is given by (A.15).

Proof of Theorem 5.5. By (5.11) it suffices to consider minimal state representa-
tions obtained from a canonical factorization of Φ. Let

v = M =

(
d

dt

)
w

be obtained from such a factorization, and let x = X( d
dt )w be a minimal state. There

exists a permutation matrix P such that

PM =

[
U
Y

]
,

with det(U) 6= 0 and such that Y U−1 is a matrix of proper rational functions. Denote
u = U( d

dt )w. Consider f = F ( d
dt )w, where F is an arbitrary polynomial matrix. Then

(see section 2) f is a state function, (i.e., there exists a matrix K such that f = Kx)
iff FU−1 is strictly proper and a state/input function (i.e., there exists matrices L, J
such that f = Kx+ Ju) iff FU−1 is proper.

We first prove the second part of the theorem, i.e., that every dissipation function
is a state/supply function. Let ∆(ζ, η) = DT (ζ)D(η) be a dissipation function. Then

MT (−ξ)ΣΦM(ξ) = DT (−ξ)D(ξ).(A.16)

Pre- and postmultiply by U−1, to obtain

(M(−ξ)U−1(−ξ))TΣΦM(ξ)U−1(ξ) = (D(−ξ)U−1(−ξ))TD(ξ)U−1(ξ).(A.17)

Since the left-hand side is proper, so is the right-hand side. This obviously implies
that D(ξ)U−1(ξ) is proper. Hence D( d

dt )w is a state/input function and equivalently,
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D(ξ) = KX(ξ) + JU(ξ) for suitable constant matrices K,J . From this it is readily
seen that there exists a matrix E such that (5.13) holds.

We now prove the first part of the theorem, i.e., that every storage function is a
state function. Let Ψ(ζ, η) define a storage function for Φ. Let D(ξ) be such that

(ζ + η)Ψ(ζ, η) = MT (ζ)ΣΦM(η)−DT (ζ)D(η).

By redefining

M̃T (ζ)Σ̃ΦM̃(η) =

[
M(ζ)
D(ζ)

]T [
ΣΦ 0
0 −I

] [
M(η)
D(η)

]
,

and observing that a minimal state for the system with image representation v =
M( d

dt )w is also a minimal state for the system with image representation

v =

[
M( d

dt )
D( d

dt )

]
w,

it suffices to prove the claim in the lossless case, i.e., when
•
Ψ= Φ.

Assume that Φ(ζ, η) = MT (ζ)ΣΦM(η) is a symmetric canonical factorization of
Φ and that Ψ(ζ, η) = NT (ζ)ΣΨN(η) is a symmetric canonical factorization of Ψ.

Postmultiply the identity
•
Ψ= Φ by U−1(η) to obtain

(ζ + η)NT (ζ)ΣΨN(η)U−1(η) = MT (ζ)ΣΦM(η)U−1(η).(A.18)

Assume that Lkη
k is the term of degree k in the polynomial part of the matrix of

rational functions N(η)U−1(η). Using that the right-hand side of (A.18) is proper in
η, by equating powers of η yields NT (ζ)ΣΨLk = 0. Express N(ζ) as

N(ζ) =
[
N0 N1 . . . NL

]



I
Iζ
...

IζL




and use (A.18) to obtain
[
N0 N1 . . . NL

]T
ΣΨLk = 0. Since the factorization

Ψ(ζ, η) = NT (ζ)ΣΨN(η) is canonical,
[
N0 N1 . . . NL

]
is surjective. Hence

(A.18) yields Lk = 0. This shows that N(ξ)U−1(ξ) is strictly proper and hence that
N( d

dt )w is a state function as desired. Thus there exists a constant matrix K such
that N(ξ) = KX(ξ). This shows that there exists a matrix P such that (5.12) holds.
This completes the proof of the theorem.

Proof of Theorem 5.7. We first prove the second part, the part regarding strong
average positivity. In this case it follows from Proposition 5.3 that Φ(−iω, iω) > 0
for all ω. Hence by Proposition 5.6, Φ(−ξ, ξ) has a Hurwitz and an anti-Hurwitz
factorization. The associated storage functions, Ψ+ and Ψ−, satisfy

d

dt
(QΨ+

(w)−QΨ−(w)) = ‖H
(
d

dt

)
w‖2 − ‖A

(
d

dt

)
w‖2.(A.19)

Let x = X( d
dt )w be a minimal state associated with a canonical factorization of Φ.

By Theorem 5.5, there exist real symmetric matrices, say K+ and K−, such that for
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all w ∈ C∞(R,Rq), we have

QΨ+
(w) = X

(
d

dt
w

)T
K+X

(
d

dt

)
w,

QΨ−(w) = X

(
d

dt
w

)T
K−X

(
d

dt

)
w.

Then if for all a there exists a solution w of A( d
dt )w = 0 such that (X( d

dt )w)(0) = a,
we obtain, by integrating along this solution,

aTK+a− aTK−a = QΨ+
(w)(0)−QΨ−(w)(0) =

∫ 0

−∞
‖H

(
d

dt

)
w‖2dt,(A.20)

whence K+ ≥ K−, so Ψ+ ≥ Ψ−.
The problem is that there may not be a solution of A( d

dt )w = 0 for all a such that

(X( d
dt )w)(0) = a. In order to circumvent this difficulty we first prove the statements

of the second part under the additional assumption that Φ ≥ ε|Φ| for some ε > 0, in
addition to the assumption that Φ(−iω, iω) > 0 for all ω. Next, we modify Φ to Φε

such that these conditions hold for ε > 0, and, finally, take the limit for ε ↓ 0.
Assume that Φ(−iω, iω) > 0 for all ω ∈ R and Φ ≥ ε|Φ| for some ε > 0. The

system (5.5) allows an I/O representation, in the sense that there exists a permutation
matrix P such that

Pv =

[
U( d

dt )
Y ( d

dt )

]
w,(A.21)

with det(U) 6= 0 and G := Y U−1 proper. Let u = U( d
dt )w, y = Y ( d

dt )w. There

exist constant matrices A, B, C, and D such that u, x, and y are related by dx
dt =

Ax+Bu, y = Cx+Du. Since AU−1 is biproper, A( d
dt )w is of the form Fx+Lu with

L nonsingular. Using u = −L−1Fx and x(0) = a in these equations then results in a
solution of A( d

dt )w = 0. To show that AU−1 is indeed biproper, use Proposition 5.2
to obtain [

U(−iω)
Y (−iω)

]T
PΣΦP

T

[
U(iω)
Y (iω)

]
=

AT (−iω)A(iω) ≥ ε

[
U(−iω)
Y (−iω)

]T [
U(iω)
Y (iω)

]
.

After pre- and postmultiplying by (U−1(−iω))T and U−1(iω), respectively, we obtain
that [

I
G(−iω)

]T
PΣΦP

T

[
I

G(iω)

]
= ((AU−1)(−iω))T (AU−1)(iω) ≥ εI.(A.22)

Since G is proper, AU−1 is proper, by the equality on the left. The inequality on the
right gives biproperness.

Consider a general Φ and define Φε by Φε = Φ + ε|Φ|+ εI. Then Φε satisfies the
above conditions and hence there exists (in the obvious notation) Ψ−

ε and Ψ+
ε such

that Ψ−
ε ≤ Ψε ≤ Ψ+

ε . Observe that for 0 < ε1 ≤ ε2 there holds Φε1 ≤ Φε2 and deduce
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from
•

Ψ+
ε1≤ Φε1 ≤ Φε2 that Ψ+

ε2 ≥ Ψ+
ε1 . Similarly, Ψ−

ε2 ≤ Ψ−
ε1 . Consequently Ψ−

ε2 ≤
Ψ−
ε1 ≤ Ψ+

ε1 ≤ Ψ+
ε2 . Prove (using for example the associated matrix representations)

that this monotonicity implies the existence of limε↓0 Ψ−
ε =: Ψ−

0 and limε↓0 Ψ+
ε =: Ψ+

0 .

We now prove that Ψ−
0 and Ψ+

0 satisfy
•

Ψ−
0 ≤ Φ and

•
Ψ+

0 ≤ Φ, and subsequently
that any storage function Ψ of Φ satisfies Ψ−

0 ≤ Ψ ≤ Ψ+
0 . To prove the first part,

observe that
•

Ψ−
ε ≤ Φε and

•
Ψ+
ε ≤ Φε for ε > 0 and take the limit for ε ↓ 0. To prove

the second part, assume that
•
Ψ≤ Φ. Then

•
Ψ≤ Φ ≤ Φε. Therefore Ψ−

ε ≤ Ψ ≤ Ψ+
ε .

Now take the limit for ε ↓ 0.
We still have to prove the formulas (5.15) and (5.16) for the computation of

Ψ− and Ψ+ for the case that we only have Φ(iω,−iω) > 0 for all ω ∈ R and not
necessarily Φ ≥ ε|Φ| for some ε > 0. Let Hε be a symmetric Hurwitz factor of
Φε(−ξ, ξ): Φε(−ξ, ξ) = HT

ε (−ξ)Hε(ξ), as discussed in Proposition 5.6. In order to
make it unique, normalize Hε to

√
Φε(0). It holds that

HT
ε (ζ)Hε(η) = Φε(ζ, η)− (ζ + η)Ψ−

ε (ζ, η).

Since Φε → Φ as ε ↓ 0 and Ψ−
ε → Ψ−

0 as ε ↓ 0, we also have that Hε converges. Clearly
the limit H0 satisfies Φ(−ξ, ξ) = HT

0 (−ξ)H0(ξ) and must be Hurwitz. The formula
for Ψ−

0 (= Ψ−) follows. The situation for Ψ+ is treated analogously.

Proof of Proposition 6.2: (i) Compute
∫ 0

−∞QΦ(w) for w(t) = eλta with <e(λ) > 0

and a ∈ C
m. This integral equals āTΦ(λ̄,λ)a

λ̄+λ
. This w is not of compact support, but

an approximation argument can be used to complete the proof of (i). For <e(λ) = 0
the result follows from Proposition 5.2. (ii) is proven similarly.

Proof of Theorem 6.3 : We prove that (3) ⇒ (2) ⇒ (1) ⇒ (3). That (3) ⇒ (2)
is trivial. In order to see that (2) ⇒ (1), integrate d

dtQΨ(w) ≤ QΦ(w) from −∞
to 0. We now prove that (1) ⇒ (3). Assume first that Φ satisfies the assumptions
Φ(−iω, iω) > 0 for all ω and Φ ≥ ε|Φ| for some ε > 0. By Theorem 5.7 we then have

Ψ+(ζ, η) =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η
.(A.23)

This yields d
dtQΨ+(w) = QΦ(w)−‖A( d

dt )w‖2 for all w. Let x = X( d
dt )w be a minimal

state map of Φ. By Theorem 5.5, QΨ+
(w) = ‖X( d

dt )w‖2K+
for some real symmetric

matrix K+. Using this expression in (A.23) and integrating from −∞ to 0 yields that,

for all a such that X( d
dt )w(0) = a and A( d

dt )w = 0, we have aTK+a =
∫ 0

−∞QΦ(w)dt.

This integral is ≥ 0, so we must have aTK+a ≥ 0 (actually, such w does not have
compact support but, by an approximation argument, the integral cannot be < 0).
As in the proof of Theorem 5.7, it can be shown that for any initial condition a such
w exists. This proves that Ψ+ ≥ 0. Take a general Φ. As in the proof of Theorem 5.7,
first replace Φ by Φε. By applying the previous to Φε, we can conclude that (in the
obvious notation) Ψε

+ ≥ 0. Then take the limit for ε ↓ 0.
Proof of Theorem 6.4. We will first run the circle (1) ⇒ (2) ⇒ (3) ⇒ (7) ⇒ (4)

⇒ (1).
(1) ⇒(2). This was proven in Proposition 6.2.
(2) ⇒(3). We have PT (λ̄)P (λ) ≥ NT (λ̄)N(λ) for λ ∈ C, <e(λ) ≥ 0. Assume

that NP−1 has a pole λ such that <e(λ) ≥ 0. Then there exists a vector v 6= 0 such
that P (λ)v = 0 while N(λ)v 6= 0. This, however, contradicts the above inequality.
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(3) ⇒(7). Let QK(w) = ‖X( d
dt )w‖2K be a storage function. We want to show

that K > 0. First we show that NP−1 is a proper rational matrix. We have
PT (−iω)P (iω) −NT (−iω)N(iω) ≥ 0. Define G := NP−1. Then for all ω such that
P (iω) is nonsingular, we have GT (−iω)G(iω) ≤ I, which shows that G is proper.

There exist matrices A, B, C, and D such that all smooth x, w1 and w2 satisfying
ẋ = Ax + Bw2, w1 = Cx + Dw2 can be written as x = X( d

dt )w, w1 = N( d
dt )w, and

w2 = P ( d
dt )w for some w ∈ C∞(R,R•). Since NP−1 has no poles in <e(λ) ≥ 0, the

matrix A can be chosen such that its eigenvalues are in the open left half of the complex
plane. Moreover, we may assume that the pair (C,A) is observable. Let a ∈ R

n.
Choose w2 = 0, let x satisfy d

dtx = Ax, x(0) = a, and let w1 = Cx. This shows that

there exists w ∈ C∞(R,R•) such that (X( d
dt )w)(0) = a and w2 = P ( d

dt )w = 0. Also,

X( d
dt )w ∈ L2[0,∞) since A is a Hurwitz matrix. Since w1 = N( d

dt )w = CX( d
dt )w, we

also have that N( d
dt )w ∈ L2[0,∞). Thus we can integrate the dissipation inequality

from 0 to ∞ to obtain

−
∥∥∥∥
(
X

(
d

dt

)
w

)
(0)

∥∥∥∥
2

K

≤ −
∫ ∞

0

‖N(
d

dt
)w‖2dt.(A.24)

This shows that aTKa ≥ 0. Assume that aTKa = 0. Then we must have w1 =
N( d

dt )w = 0. By observability of the pair (C,A) this implies that a = 0.
(7) ⇒(4). Let QΨ be any storage function. Since X is a state map, by Theorem

5.5 there exists a real symmetric matrix K such that QΨ(w) = ‖X( d
dt )w‖2K for all w.

By assumption, K is positive definite.
(4) ⇒(1). This was proven in Theorem 6.3.
The implications (7) ⇒(5), (5) ⇒(4), (7) ⇒(6), and (6) ⇒(4) are obvious.
Finally, if we assume observability, then the poles of NP−1 coincide with the

singularities of the polynomial matrix P . This shows that, under this assumption, (3)
and (3′) are equivalent. This completes the proof.

Proof of Theorem 7.2. Consider the representation (3.10) of LΦ. From the
fact that the factorization is canonical, it is easily seen that the mappings w1 7→
(N( d

dt )w1)(0) and w2 7→ (M( d
dt )w2)(0) are surjective. Thus we have

LΦ(w1, •) = 0 ⇔
(
N

(
d

dt

)
w1

)T
M

(
d

dt

)
w2 = 0 for all w2 ⇔ N

(
d

dt

)
w1 = 0.

Similarly, LΦ(•, w2) = 0 iff M( d
dt )w2 = 0. From this, the equivalence of (1) and (3)

is immediate.
To prove (1) ⇒ (2), assume that, for some λ ∈ C, aTΦ(λ, ξ) = 0, where a is a

complex vector. Define w1(t) := eλ̄tā. For any w2 and for all t, we then have

LΦ(w1, w2)(t) = eλt
(
aTΦ

(
λ,

d

dt

)
w2

)
(t) = 0.

This implies w1 = 0, so a = 0, which proves that the rows of Φ(λ, ξ) are linearly
independent over C. Similarly, we can prove that the columns of Φ(ξ, λ) are linearly
independent.

Finally, we prove that (2) implies (3). Let λ ∈ C and put M(λ)a = 0 for some
complex vector a. We want to prove that a = 0. We clearly get NT (ξ)M(λ)a = 0
so Φ(ξ, λ)a = 0. Since the columns of Φ(ξ, λ) are linearly independent over C, this
yields a = 0. Likewise we can prove that N(λ) has full column rank for all λ.
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Proof of Proposition 8.2. Write (8.3) as

(1 + ε)

∫ +∞

−∞
‖N

(
d

dt

)
w‖2dt ≤ (1− ε)

∫ +∞

−∞
‖P
(
d

dt

)
w‖2dt.(A.25)

Put α = 1−ε
1+ε and conclude that (2) and (3) are equivalent (also in the noncanonical

case). To show that (1) ⇐⇒ (2), observe that |Φ|(ζ, η) = MT
c (ζ)Mc(η) for the special

symmetric canonical factorization of Φ(ζ, η) corresponding to (3.15). Hence statement
(1) of the theorem is actually statement (2) for this special canonical factorization of
Φ. It thus suffices to prove that if (2) holds for one canonical factorization, then it
holds for any. From matrix theory, it follows that two canonical factorizations

MT
1 (ζ)ΣΦM1(η) = MT

2 (ζ)ΣΦM2(η)(A.26)

are related by M1(ξ) = SM2(ξ), with S a nonsingular matrix. Hence (2) for M2

implies ∫ +∞

−∞
‖M1

(
d

dt

)
w‖2ΣΦ

dt =

∫ +∞

−∞
‖M2

(
d

dt

)
w‖2ΣΦ

dt

≥ ε2

∫ +∞

−∞
‖M2

(
d

dt

)
w‖2dt

≥ ε2
‖S‖2

∫ +∞

−∞
‖M1

(
d

dt

)
w‖2dt

and (2) for M1 follows. Obviously this proof can be reversed with M1 playing the role
of M2. If M2 comes from a noncanonical factorization, then S may not be nonsingular
and the proof goes through (but cannot be reversed).

Proof of Theorem 9.3. The proof is structured as follows. We first prove that (1)
⇔ (2). Subsequently, we show that (1) ⇒(3) and finally that (3) ⇒(1).

(1) ⇒(2). That
∫ t
QΦ � 0 implies (2a) is obvious. In order to prove (2b) we

need the following lemma. Recall that a quadratic state function QΨ (or simply Ψ),
QΨ(w) = ‖X( d

dt )w‖2K , is called positive definite if K > 0.
Lemma A.2. Let M ∈ R

•×q[ξ] be observable. Then there exists a positive definite
state function Ψ such that

d

dt
QΨ(w) ≤ ‖M

(
d

dt

)
w‖2.(A.27)

Proof. We show that Ψ+, the supremal storage function associated with MT (ζ)
M(η), fits the bill. By Theorem 5.5, Ψ+ is a state function, say, QΨ+ = ‖X( d

dt )w‖2K+
.

Here we take X to be any minimal state map of M . Obviously Ψ+ ≥ 0, since Ψ = 0
satisfies (A.27) and Ψ+ ≥ Ψ = 0. In order to show that K+ > 0, let a 6= 0 be
arbitrary. We show that aTK+a > 0. Factor MT (−ξ)M(ξ) = AT (−ξ)A(ξ), with
A(ξ) anti-Hurwitz. Then

d

dt
QΨ+

(w) = ‖M
(
d

dt

)
w‖2 − ‖A

(
d

dt

)
w‖2(A.28)

for all w ∈ C∞(R,Rq). As in the proof of Theorem 5.7, it is easily seen that there
exists w 6= 0 such that A( d

dt )w = 0 and X( d
dt )w(0) = a (show that AU−1 is biproper,
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with M = col(U, Y ) an I/O partitioning). For this w in (A.28) we obtain aTK+a =∫ 0

−∞ ‖M( d
dt )w‖2dt > 0, where the strict inequality follows from the observability of

M .
We now return to the proof of (1)⇒(2b) of Theorem 9.3. Let Φ(ζ, η) = MT (ζ)ΣΦ

M(η) be the symmetric canonical factorization such that |Φ|(ζ, η) = MT (ζ)M(η) (i.e.,
the one obtained by factoring Φ̃ = ŨTΛŨ , with Λ the diagonal matrix consisting of
the nonzero eigenvalues of Φ̃, and putting M̃ :=

√|Λ|Ũ). By the above lemma there

exists a positive definite state function Ψ̃ such that d
dtQΨ̃(w) ≤ ‖M( d

dt )w‖2. Now,∫ t
QΨ � 0 implies that there exists ε > 0 such that

∫ t
QΦε

≥ 0, where Φε := Φ−ε|Φ|.
Let Ψε

+ be the supremal storage function associated with Φε. Clearly
•

Ψε
+≤ Φε ≤ Φ,

so Ψε
+ is also a storage function for Φ. This immediately yields Ψε

+ ≤ Ψ+. Consider

the two-variable polynomial matrix Ψε
+ + εΨ̃. Clearly this defines a storage function

for Φ as well, so Ψε
+ ≤ Ψε

+ + εΨ̃ ≤ Ψ+. According to Theorem 6.3, Ψε
+ ≥ 0. Since

Ψ̃ is a positive definite state function, this implies that Ψ+ is a positive definite state
function.

We show that (2) ⇒(1). Let X ∈ R
n×q[ξ] define a minimal state map for the

system v = M( d
dt )w. By (2b) Ψ+ is a positive definite state function. Hence there

exists K+ = KT
+ > 0 such that QΨ+(w) = ‖X( d

dt )w‖2K+
. Factor MT (−ξ)ΣMM(ξ) =

AT (−ξ)A(ξ) with A anti-Hurwitz. Then we have∫ 0

−∞
‖M

(
d

dt

)
‖2ΣΦ

dt = ‖X
(
d

dt

)
w(0)‖2K+

+

∫ 0

−∞
‖A
(
d

dt

)
w‖2dt(A.29)

for all w ∈ D(R,Rq). There exists a permutation matrix P such that PM = col(U, Y ),
with det(U) 6= 0 and Y U−1 proper. Write u = U( d

dt )w, y = Y ( d
dt )w, and x =

X( d
dt )w, with w ranging over C∞(R,Rq). Write the associated input/state/output

representation. Hence there are constant matrices A1, B1, C1, and D1 such that
these u, y, and x are exactly those that are related by the equations

ẋ = A1x+B1u, y = C1x+D1u.(A.30)

As in the proof of Theorem 5.7, by strict positivity we have that AU−1 is biproper.
Thus there exist constant matrices F and L, det(L) 6= 0 such that A( d

dt )w = Fx+Lu.
Solving this equation for u and substituting the result in (A.30) yields that the relation
between a := A( d

dt )w, v = P col(u, y), and x = X( d
dt )w is given by linear equations of

the form

ẋ = A2x+B2a v = C2x+D2a(A.31)

with (C2, A2) observable and where the eigenvalues of A2 coincide with the singular-
ities of the spectral factor A(ξ). This shows that for given a ∈ L2((−∞, 0],R•) and
final condition x(0) = x0, the corresponding v is in L2((−∞, 0],R•). In other words
(A.31) defines a bounded operator from L2((−∞, 0],R•) × R

n to L2((−∞, 0],R•),
mapping (a, x0) to v. Hence there exists a constants C1 and C2 such that∫ 0

−∞
‖v‖2dt ≤ C1

∫ 0

−∞
‖a‖2dt+ C2‖x0‖2.

Since K+ > 0, there exists ε > 0 such that 1
εK+ > C2I and 1

ε > C1. For this ε we
have ∫ 0

−∞
‖v‖2dt ≤ 1

ε

(∫ 0

−∞
‖a‖2dt+ xT0 K+x0

)
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which, by (A.29), is equivalent to

∫ 0

−∞
‖M

(
d

dt

)
‖2dt ≤ 1

ε

∫ 0

−∞
‖M

(
d

dt

)
‖2ΣΦ

dt.

This shows that Φ is strictly half-line positive. Whence, (2) ⇒(1).
Next we show that (1) ⇒(3). We will only consider the semisimple case. That

(1) ⇒ (3a) follows from Proposition 5.2. To prove (3b), calculate
∫ 0

−∞QΦ(a)dt for

a(t) =

n∑
k=1

αke
λktak

and obtain the result

∫ 0

−∞
QΦ(a)dt =




ᾱ1

ᾱ2

...
ᾱn



T

TΦ




α1

α2

...
αn


 .(A.32)

We know that, for some ε > 0,
∫ 0

−∞QΦ(w)dt ≥ ε
∫ 0

−∞Q|Φ|(w)dt for all w of compact

support. An approximation argument yields that this implies
∫ 0

−∞QΦ(a)dt > 0 for
a 6= 0, equivalently for col (α1, α2, . . . , αn) 6= 0. Hence, TΦ > 0.

Finally, we turn to (3) ⇒(2). The implication (3) ⇒(2a) follows from Proposition
5.2. To show that (3) ⇒(2b), we show that TΦ > 0 implies that the supremal storage
function Ψ+ defines a positive definite state function. Let ∂Φ(ξ) = AT (−ξ)A(ξ) be an
anti-Hurwitz factorization. We claim that λ1, λ2, . . . , λn are exactly the singularities
of A(ξ), with associated vectors a1, a2, . . . , an in the kernel of A(λk), k = 1, 2, . . . , n.
Indeed, if λ has <e(λ) > 0, then AT (−λ) is nonsingular. Hence Φ(−λk, λk)ak = 0
and <e(λk) > 0 implies A(λk)ak = 0.

According to Theorem 5.7, it holds that

d

dt
QΨ+(w) = QΦ(w)− ‖A

(
d

dt

)
w‖2.(A.33)

For any solution w =
∑r

k=1 αke
λktak of A( d

dt )w = 0, we thus have

QΨ+(w)(0) =

∫ 0

−∞
QΦ(w)dt =




ᾱ1

ᾱ2

...
ᾱn



T

TΦ




α1

α2

...
αn


 .(A.34)

Also, there exists a real symmetric matrix K+ such that

QΨ+
(w) = ‖X

(
d

dt

)
w‖2K+

,

where X( d
dt ) is a minimal state map. Since TΦ > 0, (A.34) implies that K+ > 0.

Indeed, let a 6= 0 be arbitrary. Let w ∈ C∞(R,Rq) be such that A( d
dt )w = 0, say,
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w =
∑r

k=1 ake
λktαk, and X( d

dt )w(0) = a. Such w exists by strict positivity (see the
proof of Theorem 5.7). Thus we have

aTK+a =

∥∥∥∥X
(
d

dt

)
w(0)

∥∥∥∥
2

K+

=




ᾱ1

ᾱ2

...
ᾱn



T

TΦ




α1

α2

...
αn


 > 0.

This completes the proof of Theorem 9.3.
Proof of Proposition 10.1. Let R( d

dt )w = 0 and w = M( d
dt )` be, respectively,

a kernel and an observable image representation of B. Then we have R(ξ)M(ξ) =
0. Furthermore, v = RT (− d

dt )`
′is an image representation of B⊥. Consider the

BLDF (RT (− d
dt )`

′)TM( d
dt )`. Note that this is the BLDF associated with the two-

variable polynomial matrix R(−ζ)M(η). By Theorem 3.1, there exists Ψ(ζ, η) such
that d

dtQΨ(`′, `) = (RT (− d
dt )`

′)TM( d
dt )`, and by Theorem 5.5 QΨ(`′, `) is a state

function; in other words, if X( d
dt ) and Z̃( d

dt ) are minimal state maps of B and B⊥,

then QΨ(`, `′) = (Z̃( d
dt )`

′)TKX( d
dt )` for some matrix K. The proposition follows by

taking Z := KT Z̃ if we can show that K is nonsingular. To show this, assume to the
contrary that Ka = 0. Let w̃ ∈ B∩D(R,Rq) be a trajectory emanating at t = 0 from
x(0) = a. It follows that ∫ ∞

0

vT w̃dt = 0

for all v ∈ B⊥ ∩D(R,Rq). Consider the function ŵ : R → R
q such that w(0) = 0 for

t ≤ 0 and ŵ(t) = w̃(t) for t ≥ 0. Obviously it holds that∫ +∞

−∞
vT ŵdt = 0

for all v ∈ B⊥ ∩D(R,Rq). Therefore ŵ belongs to the L2(R,R
q) closure of B (this

is the one point in this paper where C∞ solutions are inadequate). Since ŵ(t) = 0
for t ≤ 0, it must hold that x(0) = 0. Hence Ka = 0 implies a = 0, yielding the
result.

In order to prove Theorem 10.2 we use the following lemma. Recall that the inertia
of an n×n complex Hermitian matrix H is the triple (π−, π0, π+), with π− the number
of negative eigenvalues, π+ the number of positive eigenvalues, and π0(= n−π−−π+)
the multiplicity of the zero eigenvalue.

Lemma A.3. Let L be a linear subspace of R
n. Consider the quadratic form

xTQx on R
n with Q = QT nonsingular. Let the inertia of Q be (π−, 0, π+) and

assume that π+ = dim(L). Then aTQa > 0 for all 0 6= a ∈ L iff aTQ−1a < 0 for
0 6= a ∈ L⊥, and aTQa ≥ 0 for all a ∈ L iff aTQ−1a ≤ 0 for a ∈ L⊥.

Proof. Let L = ker(R) = im(M) with R surjective and M injective. Then
L⊥ = im(RT ) = ker(MT ). Furthermore, aTQa > 0 for 0 6= a ∈ Lmeans MTQM > 0.
Consider the relations[

MT

RQ−1

]
Q
[
M Q−1RT

]
=

[
MTQM 0

0 RQ−1RT

]
,[

MT

R

]
Q
[
M Q−1RT

]
=

[
MTQM 0
RQM RRT

]
.
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The second relation shows that [M Q−1RT ] is nonsingular. The first shows that

in(MTQM) + in(RQ−1RT ) = in(Q).

Hence MTQM > 0 implies RQ−1RT < 0. To get the ≥ case, replace Q by Q + εI
and let ε ↓ 0.

Proof of Theorem 10.2. To prove (i) and (ii), combine Proposition 5.2 and Lemma
A.3 in the following way. For ω ∈ R fixed, define L := im(M(iω)) = ker(R(iω)).
Define Q := ΣΦ. Note that Q−1 = ΣΦ as well. Using that M(iω) and RT (−iω) are
injective, we get the equivalence

MT (iω)ΣΦM(iω) > 0 ⇔ R(iω)ΣΦR
T (−iω) < 0

which yields statement (ii). Statement (i) follows from the second assertion of Lemma
A.3, which yields the same equivalence with nonstrict inequalities.

We now prove (iii). Again this can be proven using Lemma A.3, this time with
Q = ΣΦ − εI. We then get

MT (iω)(ΣΦ − εI)M(iω) ≥ 0 ⇔ R(iω)(ΣΦ − εI)−1RT (−iω) ≤ 0.

Using the formula ΣΦ + εI = (1− ε2)(ΣΦ − εI)−1, the latter is equivalent with

R(iω)ΣΦR
T (−iω) ≤ −εR(iω)RT (−iω).

This shows (iii).
In order to prove (iv), we need the following lemma.
Lemma A.4. Let (X,Z) be a matched pair of minimal state maps for B and B⊥.

Define subspaces L ⊂ R
r+2n, M⊂ R

r+2n by

L :=




 w

x
a


 ∈ R

r+2n | ∃` ∈ C∞(R,R•)


 w

x
a


 =


 M( d

dt )`
X( d

dt )`
d
dtX( d

dt )`


 (0)


 ,(A.35)

M :=




 v

b
z


 ∈ R

r+2n | ∃`′ ∈ C∞(R,R•)


 v

b
z


 =


 RT (− d

dt )`
′

− d
dtZ( d

dt )`
′

−Z( d
dt )`

′


 (0)


 .(A.36)

Then dim(L) = n+m and L⊥ = M.
Proof. There exists a permutation matrix P such that

PM =

[
U
Y

]

with U ∈ R
m×m[ξ] and Y U−1 a proper rational matrix. If we define u = U( d

dt )` and

y = Y ( d
dt )`, then u has the usual properties of input and y has the usual properties of

output of B. There exist matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m

(with p = r − m, the number of outputs) such that x = X( d
dt )`, u = U( d

dt )`, and

y = Y ( d
dt )` are exactly related by dx

dt = Ax + Bu, y = Cx + Du. Thus for all
` ∈ C∞(R,R•) we have:


 P 0 0

0 I 0
0 0 I




 M( d

dt )`
X( d

dt )`
d
dtX( d

dt )`


 (0) =




0 Im
C D
In 0
A B


 .
[
X( d

dt )`
U( d

dt )`

]
(0).
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This implies


 P 0 0

0 I 0
0 0 I


L ⊂ im




0 Im
C D
In 0
A B


 .

Here, in fact, equality holds. Indeed, given col (x0, u0), take any x ∈ C∞(R,Rn) and
u ∈ C∞(R,Rm) such that x(0) = x0 and u(0) = u0, and such that dx

dt = Ax + Bu,

y = Cx + Du. There exists ` ∈ C∞(R,R•) such that x = X( d
dt )`, u = U( d

dt )`. This
shows that equality holds and that dim(L) = n+m.

We now prove that L⊥ = M. For all ` ∈ C∞(R,R•) and `′ ∈ C∞(R,R•) we
have that (10.4) holds. By evaluating this for t = 0, we immediately obtain that
L ⊥ M. Thus it suffices to show that dimL = n + (r − m). This is, however, an
immediate consequence of the fact that the number of inputs of B⊥, m(B⊥) is equal to
r −m.

We now return to the proof of (iv) of Theorem 10.2. Assume that
∫
QΦ ≥ 0 and

let Ψ(ζ, η) = XT (ζ)KX(η), with K = KT a storage function for Φ, i.e.,
•
Ψ ≤ Φ. In

terms of w = M( d
dt )`, x = X( d

dt )`,
dx
dt = d

dtX( d
dt )` this inequality yields, in particular,


 w(0)

x(0)
dx
dt (0)



T 
 ΣΦ 0 0

0 0 −K
0 −K 0




 w(0)

x(0)
dx
dt (0)


 ≥ 0.(A.37)

Denote the symmetric matrix in (3.16) by Q. Note that (A.37) says that aTQa ≥ 0
for all a ∈ L, with L defined by (A.35). Since dim(L) = n + m = n + r+, which
is exactly the number of positive eigenvalues of Q, it follows from Lemma A.3 that
aTQ−1a ≤ 0 for all a ∈ L⊥ = M. More explicitly,

aT


 ΣΦ 0 0

0 0 −K−1

0 −K−1 0


 a ≤ 0(A.38)

for a ∈ L⊥. A typical element of M has the form

a =


 RT (− d

dt )`
′

− d
dtZ( d

dt )`
′

−Z( d
dt )`

′


 (t),

where `′ ∈ C∞(R,R•). By letting t ∈ R be arbitrary, the inequality (A.38) yields
exactly the dissipation inequality

d

dt
‖Z
(
d

dt

)
`′‖2−K−1 ≤ ‖RT

(
− d

dt

)
`′‖2−ΣΦ

which is the content of (4). To show (v), use (iv) and Theorem 9.3.
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SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1750–1794, September 1998 011

Abstract. In this paper, a family of trust-region interior-point sequential quadratic program-
ming (SQP) algorithms for the solution of a class of minimization problems with nonlinear equality
constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear
programs arise, e.g., from the discretization of optimal control problems. The algorithms treat states
and controls as independent variables. They are designed to take advantage of the structure of the
problem. In particular they do not rely on matrix factorizations of the linearized constraints but use
solutions of the linearized state equation and the adjoint equation. They are well suited for large
scale problems arising from optimal control problems governed by partial differential equations.

The algorithms keep strict feasibility with respect to the bound constraints by using an affine
scaling method proposed, for a different class of problems, by Coleman and Li [SIAM J. Optim., 6
(1996), pp. 418–445] and they exploit trust-region techniques for equality-constrained optimization.
Thus, they allow the computation of the steps using a variety of methods, including many iterative
techniques.

Global convergence of these algorithms to a first-order Karush–Kuhn–Tucker (KKT) limit point
is proved under very mild conditions on the trial steps. Under reasonable, but more stringent,
conditions on the quadratic model and on the trial steps, the sequence of iterates generated by the
algorithms is shown to have a limit point satisfying the second-order necessary KKT conditions.
The local rate of convergence to a nondegenerate strict local minimizer is q-quadratic. The results
given here include, as special cases, current results for only equality constraints and for only simple
bounds.

Numerical results for the solution of an optimal control problem governed by a nonlinear heat
equation are reported.

Key words. nonlinear programming, SQP methods, trust-region methods, interior-point al-
gorithms, Dikin–Karmarkar ellipsoid, Coleman–Li affine scaling, simple bounds, optimal control
problems

AMS subject classifications. 49M37, 90C06, 90C30
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1. Introduction. In this paper we introduce and analyze a family of algorithms
for the solution of an important class of minimization problems which often arise
from the discretization of optimal control problems. These problems are specially
structured nonlinear programming problems of the following form:

minimize f(y, u)

subject to C(y, u) = 0,(1)

u ∈ B = {u : a ≤ u ≤ b},
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where y ∈ Rm, u ∈ Rn−m, a ∈ (R ∪ {−∞})n−m, and b ∈ (R ∪ {+∞})n−m. The
functions f : Rn −→ R and C : Rn −→ Rm, m < n, are assumed to be at least
continuously differentiable. As indicated above, minimization problems of the form
(1) often arise from the discretization of optimal control problems. In this case y is
the vector of state variables, u is the vector of control variables, and C(y, u) = 0 is
the discretized state equation. Other applications, which might be viewed as spe-
cial optimal control problems, include optimal design and parameter identification
problems. Minimization problems (1) originating from optimal control problems gov-
erned by large systems of ordinary differential equations (ODEs) or partial differential
equations (PDEs) are the targets of the algorithms in this paper.

Although there are algorithms available for the solution of nonlinear programming
problems that are more general than (1), the family of algorithms presented in this
paper is unique in the consequent use of structure inherent in many optimal control
problems, the use of optimization techniques successfully applied in other contexts of
nonlinear programming, and the rigorous theoretical justification.

Our algorithms are based on sequential quadratic programming (SQP) methods
and use trust-region interior-point techniques to guarantee global convergence and
to handle the bound constraints on the controls. SQP methods find a solution of
the nonlinear programming problem (1) by solving a sequence of quadratic program-
ming problems. It is known, see, e.g., [37], [38], that the structure of optimal control
problems can be used to implement and analyze SQP methods. In particular, to im-
plement SQP methods, it is sufficient to compute quantities of the form Cy(y, u)vy,
Cy(y, u)T vy, Cu(y, u)vu, Cu(y, u)T vy and to compute solutions of the linearized state
equation Cy(y, u)vy = r and of the “adjoint equation” Cy(y, u)T vy = r. Here Cy
and Cu denote the derivatives of C with respect to y and u. This is an important
observation, because these are tasks that arise naturally in the context of optimal
control problems. All of the early SQP algorithms, and many of the recent ones, rely
on matrix factorizations, such as sparse LU decompositions, of the Jacobian J(x) of
C(x). For the applications we have in mind this is not feasible. Often, the involved
matrices are too large to perform such computations and very often these matrices are
not even available in explicit form. On the other hand, matrix-vector multiplications
Cy(x)vy, Cy(x)T vy, Cu(x)vu, Cu(x)T vy can be performed, and efficient solvers for the
linearized state equation Cy(x)vy = r, and the adjoint equation Cy(x)T vy = r, are
often available. For example, the partial Jacobian Cy(x) in the application treated
in section 11 has a block bidiagonal structure with diagonal matrices being tridiag-
onal. Thus, while the Jacobian is large, the solution of the linearized state equation
or the adjoint equation can be done by block forward substitution or block backward
substitution, respectively. In each substitution step, only a relatively small system
with a tridiagonal system has to be solved. This is typical for many applications, in
particular those in dynamical systems. Many SQP-based codes for optimal control
problems governed by ODEs or DAEs (differential algebraic equations) exploit this
structure efficiently in their numerical linear algebra. See, e.g., [1], [2], [42], [58], [62],
and the references therein. For many applications, in particular those governed by
PDEs, such factorizations of the Jacobian J(x) of C(x) are not feasible from a prac-
tical point of view, but solution techniques for Cy(y, u)vy = r and Cy(y, u)T vy = r
are available. This has motivated us to require only this information and to design a
practicable algorithm that disjoins the particular equation solver from the optimiza-
tion algorithm. In the presence of bound constraints, this task goes well beyond the
mere replacement of matrix factorizations by black-box solvers. The implementation
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of our algorithm is given in [16].
A purely local analysis for the case with no bound constraints has been given

in [34], [36], [37], and [39]. However, we consider here the much more difficult issue
of incorporating this entire structure into an algorithm that converges globally and
handles bound constraints on the control variables u.

The global convergence of our algorithms is guaranteed by a trust-region strat-
egy. In our framework the trust region serves a dual purpose. Besides ensuring global
convergence, trust regions also introduce a regularization of the subproblems which
is related to the Tikhonov regularization. For the solution of optimal control prob-
lems, the partitioning of the variables into states y and controls u motivates a partial
decoupling of step components that leads to interesting alternatives for the choice
of the trust region. In Sections 5.2.1 and 5.2.2 we will introduce a decoupled and a
coupled trust-region approach. As indicated by the names, in the decoupled approach
the trust region will act on step components separately. This allows a more efficient
implementation of algorithms for the computation of these steps. However, for prob-
lems with ill-conditioned state equations, this decoupling does not give an accurate
estimate of the size of the steps and might lead to poor performance. In this situation
the coupled approach is better, and so we include both.

For the treatment of the bound constraints on u we use an affine scaling interior-
point method introduced by Coleman and Li [13] for problems with simple bounds.
Interior-point approaches are attractive for many optimization problems with a large
number of bounds, including the structured problem (1). In our context, the affine
scaling interior-point method is also of interest, because it does not interfere with the
structure of the problem (1). To apply this method, no information in addition to
that needed for the case without bound constraints is required from the user. This or
similar interior-point approaches have recently also been used, e.g., in [6], [14], [43],
[44], and [50]. The advantage of the approach in [13] is that the scaling matrix is
determined by the distance of the iterates to the bounds and by the direction of the
gradient. This dependence on the direction of the gradient is important for global
convergence and its good effect can be seen in numerical examples; see, e.g., Figures 1
and 2.

Another important issue that is addressed in the implementations of the algo-
rithms presented in this paper is the problem scaling inherent in optimal control
problems. As we have pointed out, the problems we are primarily interested in are
discretizations of optimal control problems governed by partial differential equations.
The infinite-dimensional problem structure greatly influences the finite-dimensional
problem. In our implementation, we take this into account by choosing scalar products
for the states y, the controls u, and the duality pairing needed to represent λTC(y, u),
products that are discretizations of proper infinite-dimensional ones. It is beyond the
scope of this paper to give a comprehensive theoretical study of these issues, but it is
important to notice that the formulation of the algorithms discussed here fully sup-
ports the use of such scalar products without any changes. This is a great advantage.
In some of our numerical experiments [11], [30] this improved the performance of our
algorithms significantly, avoided artificial ill conditioning, and enhanced the quality
of the solution computed for a given stopping tolerance. Moreover, our numerical
experiments also indicate the mesh-independent behavior of our algorithms when this
type of scaling is used.

We believe that the features and strong theoretical properties of these algorithms
make them very attractive and powerful tools for the solution of optimal control
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problems. They have been successfully applied to a boundary control problem (see
section 11), a distributed nonlinear elliptic control problem [31], and optimal control
problems arising in fluid flow [11], [30]. The software that produced these results is
currently being beta-tested with the intent of electronic distribution [16].

Before we give an outline of this paper, it is worth discussing the relationship
between the constrained minimization problem (1) and an equivalent reduced problem.
Under the assumptions of the implicit function theorem it is possible to solve C(y, u) =
0 for y. This defines a smooth function y(u) and allows us to reduce the minimization
problem (1). The reduced problem is given by

minimize f̂(u) ≡ f(y(u), u)

subject to u ∈ B = {u : a ≤ u ≤ b}.(2)

This leads to the so-called black-box approach in which the nonlinear constraint
C(y, u) = 0 is not visible to the optimizer. Its solution is part of the evaluation

of the objective function f̂(u). The reduced problem can be solved by a gradient or
a Newton-like method. For optimal control problems, many algorithms follow this
approach. Often, projection techniques are used to handle the box constraints; see,
e.g., [28], [51].

Recently, so-called all-at-once approaches that treat both y and u as independent
variables have been proposed to solve optimal control problems; see, e.g., [1], [2], [4],
[29], [32], [33], [34], [35], [36], [37], [39], [41], [42], [57], [58], [62].

Since all-at-once approaches move towards optimality and feasibility at the same
time, they offer significant advantages. SQP methods are of particular interest. They
do not require the possibly very expensive solution of the nonlinear state equation
in every step, but as indicated above allow use of the structure of optimal control
problems. In addition, SQP methods have proven to be very successful for the solution
of other nonlinear programming problems. See, e.g., [5], [9], [23], [24], [40], [47], [48],
[50], [56].

As outlined before, we use SQP-based methods for the solution of (1), i.e., the
all-at-once approach. However, the reduced problem (2) is important to us for two
reasons. Firstly, the relation between the full problem (1) and the reduced problem (2)
gives important insight into the structure of (1) and allows us to extend techniques
successfully applied to problems of the form (2). Secondly, black-box approaches
are used very often to solve the problems we have in mind. We want to use this
expertise in designing more efficient codes. Specifically, our consequent use of the
structure of the optimal control problems leads to our family of trust-region interior-
point SQP algorithms. These algorithms only require information that the user has to
provide if a black-box approach is used with a Newton-like method for the solution of
the nonlinear state equation and adjoint equation techniques for the computation of
gradients. Thus, we combine the possible implementational advantages of a black-box
approach with the generally more efficient all-at-once approach. It will be seen that
in our algorithms the step s is decomposed into two components: s = sn + st, where
sn is called the quasi-normal component and st is called the tangential component.
The role of quasi-normal component sn is to move towards feasibility. It is of the
form sn = ((sn

y)T 0T )T , where sn
y is essentially a Newton step for the solution of

the nonlinear state equation C(y, u) = 0 for given u. For most problems of interest
here, the computation of a “true” normal component is not practical. The tangential
component st moves towards optimality. This component is in the null space of the
linearized constraints and it is of the form st = ((−Cy(y, u)−1Cu(y, u)su)T sTu )T ,
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where su is essentially a Newton-like step for the reduced problem (2).
This paper is organized as follows: In section 2 we discuss the structure of the

problem and motivate our SQP approach. We study the relationship between the all-
at-once approach based on (1) and the black-box approach for (2) and the relationship
between SQP methods for (1) and Newton methods for (2). For problems without box
constraints, these connections are known, but for problems with box constraints, this
will reveal useful new information. The first- and second-order Karush–Kuhn–Tucker
(KKT) conditions for (1) are stated in section 3. We will state them in a nonstandard
form that will lead to the scaling matrix used in the affine scaling interior-point
approach. In section 4 we will discuss the application of Newton’s method to the
system of nonlinear equations arising from the first-order KKT conditions. This will
be important for the derivation of our SQP method. In section 5 we describe our
trust-region interior-point SQP algorithms. Sections 5.1 and 5.2 contain descriptions
of the quasi-normal component and the tangential component. Using the derivations
in sections 2 and 4, the connections between the quasi-normal component sn and the
Newton step for the solution of the nonlinear state equation C(y, u) = 0 for given
u, and the relations between the tangential component st and Newton-like steps for
the reduced problem (2), will be made precise. As noticed previously, the partial
decoupling of the step components motivated by the partitioning of the variables
into states y and controls u, and the roles of the decoupled and coupled trust-region
approaches, will be exposed in sections 5.2.1 and 5.2.2. A complete statement of the
trust-region interior-point SQP algorithms is given in section 5.4.

The convergence theory for these algorithms is given in sections 6, 7, 8, and 9.
Section 6 contains some technical results. In section 7 we establish the existence of
an accumulation point of the iterates which satisfies the first-order KKT conditions
(Corollary 7.6). This result is established under very mild assumptions on the steps
and on the Lagrange multipliers. It simultaneously extends the results presented
recently by Coleman and Li [13] for simple bounds and those by Dennis, El-Alem,
and Maciel [15] for equality constraints. Under additional conditions on the steps and
the quadratic model, we show that the accumulation point satisfying the first-order
necessary KKT conditions also solves the second-order necessary KKT conditions
(Theorem 8.2). This latter result simultaneously extends those by Coleman and Li [13]
for simple bounds and those by Dennis and Vicente [19] for equality constraints (see
also [65]). Finally, we prove that if the sequence converges to a nondegenerate point
satisfying the sufficient second-order KKT conditions, then the rate of convergence
is q-quadratic (Corollary 9.4). Our analysis allows the application of a variety of
methods for the computation of the step components sn and st. In section 10 we
discuss practical algorithms for the computation of trial steps and the multiplier
estimates that are currently used in our implementation. Numerical results obtained
with our implementation of these algorithms, called TRICE (trust-region interior-
point SQP algorithms for optimal control and engineering design problems) [16], are
reported in section 11. Section 12 contains conclusions and a discussion of future
work.

We review the notation used in this paper. The vector x is given by

x =

(
y
u

)
.

The Jacobian matrix of C(x) is denoted by J(x). We use subscripted indices to
represent the evaluation of a function at a particular point of the sequences {xk} and
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{λk}. For instance, fk represents f(xk), and `k is the same as `(xk, λk). The vector
and matrix norms used are the `2 norms, and Il represents the identity matrix of
order l. Also, (z)y and (z)u represent the subvectors of z ∈ Rn corresponding to the
y and u components, respectively.

2. The structure of the minimization problem. The purpose of this section
is to discuss some of the basic relationships between the problem (1) and its reduction
(2). This will introduce fundamental quantities that are subsequently needed, and
it will support our claim that the basic quantities needed to implement our SQP
approach are already available if one uses a gradient or Newton-like method for the
solution of the reduced problem (2).

The Lagrange function ` : Rn+m −→ Rn associated with the objective function
f(x) and the equality constraint C(x) = (c1(x), . . . , cm(x))

T
= 0 is given by

`(x, λ) = f(x) + λTC(x),

where λ ∈ Rm are the Lagrange multipliers.
The linearized constraints are given by J(x)s = −C(x) or, equivalently, by(

Cy(x) Cu(x)
)( sy

su

)
= −C(x).(3)

We say that

s =

(
sy
su

)
, sy ∈ Rm, su ∈ Rn−m

satisfies the linearized state equation if it is a solution to (3). If Cy(x) is invertible,
the solutions of the linearized state equation are of the form

s = sn +W (x)su,(4)

where

sn =

( −Cy(x)−1C(x)
0

)
(5)

is a particular solution and

W (x) =

( −Cy(x)−1Cu(x)
In−m

)
is a matrix whose columns form a basis for the null space N (J(x)) of J(x). One can
see that matrix-vector multiplications of the form W (x)T s and W (x)su involve only
the solution of linear systems with the matrices Cy(x) and Cy(x)T . Moreover, the y
component of the particular solution sn is just the step that one would compute if one
would apply Newton’s method for the solution of the nonlinear equation C(y, u) = 0
for given u.

The point we want to convey in this section has nothing to do with the presence
or absence of the bound constraints a ≤ u ≤ b. Therefore, for the remainder of this
section, we consider the simpler case where there are no bound constraints, i.e., where
B = Rn−m. If we solve (1) with B = Rn−m by an SQP method, then the quadratic
programming subproblem we have to solve at every iteration is of the form

minimize ∇f(x)T s+ 1
2s
T∇2

xx`(x, λ) s

subject to Cy(x)sy + Cu(x)su + C(x) = 0.
(6)
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If the reduced Hessian W (x)T∇2
xx`(x, λ)W (x) is nonsingular, the solution of (6) is

given by (4) with

su = −
(
W (x)T∇2

xx`(x, λ)W (x)
)−1

W (x)T
(
∇f(x) +∇2

xx`(x, λ)sn
)
.(7)

In practice the Hessian ∇2
xx`(x, λ) or the reduced Hessian W (x)T∇2

xx`(x, λ)W (x) are
often approximated using quasi-Newton updates. In the latter case, when an approx-
imation to ∇2

xx`(x, λ) is not available, then the “cross term” W (x)T∇2
xx`(x, λ)sn has

also to be approximated. This term can be approximated by zero, by finite differences,
or by other quasi-Newton approximations; see, e.g., [3]. In the case where this cross
term is approximated by zero, the right-hand side of the linear system (7) defining su
can be written as

W (x)T∇f(x) = −Cu(x)TCy(x)−T∇yf(x) +∇uf(x).

Thus, if the Lagrange multiplier is computed by the adjoint formula

λ = −Cy(x)−T∇yf(x),(8)

then

W (x)T∇f(x) = Cu(x)Tλ+∇uf(x) = ∇u`(x, λ).

Now we turn to the reduced problem with B = Rn−m. Suppose there exists an
open set U such that for all u ∈ U there exists a solution y of C(y, u) = 0 and such
that the matrix Cy(x) is invertible for all x = (y, u) with u ∈ U and C(y, u) = 0. Then
the implicit function theorem guarantees the existence of a differentiable function

y : U → Rm

defined by

C(y(u), u) = 0,

and the problem (1) can be reduced to (2). Since y(·) is differentiable, the function f̂
is differentiable and its gradient is given by

∇f̂(u) = W (y(u), u)T∇f(y(u), u),

cf. [29]. Moreover, it can be shown that the Hessian of f̂ is equal to the reduced
Hessian

∇2f̂(u) = W (y(u), u)T∇2
xx`(y(u), u, λ) W (y(u), u),

provided that the Lagrange multiplier is computed from (8).
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One can see that the gradient and the Hessian information in the SQP method
for (1) and in the Newton method for (2) are the same if (y, u) solves C(y, u) = 0.
Thus, if Newton-like methods are applied for the solution of (2), then one has all the
available ingredients necessary to implement an SQP method for the solution of (1).
The important difference, of course, is that in the SQP method we do not have to
solve the nonlinear constraints C(y, u) = 0 at every iteration.

In these considerations we neglected the bound constraints a ≤ u ≤ b. These will
be analyzed in the following sections. We already point out that these relationships
between (1) and (2) are basically the same with or without the bound constraints.

3. Optimality conditions. A point x∗ satisfies the first-order KKT conditions
if there exist λ∗ ∈ Rm and µa∗, µ

b
∗ ∈ Rn−m such that

C(x∗) = 0,

a ≤ u∗ ≤ b,( ∇yf(x∗)
∇uf(x∗)

)
+

(
Cy(x∗)Tλ∗
Cu(x∗)Tλ∗

)
−
(

0
µa∗

)
+

(
0
µb∗

)
= 0,

((u∗)i − ai) (µa∗)i = (bi − (u∗)i) (µb∗)i = 0, i = 1, . . . , n−m, and

µa∗ ≥ 0, µb∗ ≥ 0.

These KKT conditions are necessary conditions for x∗ to be a local solution of (1).
Note that the constraint qualifications are satisfied, since the invertibility of Cy(x∗)
and the form of the bound constraints imply the linear independence of the active
constraints. Under the assumption of the invertibility of Cy(x∗), we can rewrite the
first-order KKT conditions:

C(x∗) = 0,

a ≤ u∗ ≤ b,
λ∗ = −Cy(x∗)−T∇yf(x∗),

ai < (u∗)i < bi =⇒ (∇u`(x∗, λ∗))i = 0,
(u∗)i = ai =⇒ (∇u`(x∗, λ∗))i ≥ 0, and
(u∗)i = bi =⇒ (∇u`(x∗, λ∗))i ≤ 0.

One can obtain a useful form of the first-order KKT conditions by noting that

∇u`(x∗, λ∗) = ∇uf(x∗) + Cu(x∗)Tλ∗
= ∇uf(x∗)− Cu(x∗)TCy(x∗)−T∇yf(x∗)

= W (x∗)T∇f(x∗).

In other words, ∇u`(x∗, λ∗) is just the reduced gradient corresponding to the u vari-
ables. Hence x∗ is a first-order KKT point if

C(x∗) = 0,

a ≤ u∗ ≤ b,
ai < (u∗)i < bi =⇒ (

W (x∗)T∇f(x∗)
)
i

= 0,
(u∗)i = ai =⇒ (

W (x∗)T∇f(x∗)
)
i
≥ 0, and

(u∗)i = bi =⇒ (
W (x∗)T∇f(x∗)

)
i
≤ 0.
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Furthermore, x∗ satisfies the second-order necessary KKT conditions if it satisfies the
first-order KKT conditions and if the principal submatrix of the reduced Hessian

W (x∗)T∇2
xx`(x∗, λ∗)W (x∗)

corresponding to indices i such that ai < (u∗)i < bi is positive semidefinite, where
the multipliers λ∗ are given by λ∗ = −Cy(x∗)−T∇yf(x∗).

Now we adapt the idea of Coleman and Li [12] to this context and define D(x) ∈
R(n−m)×(n−m) to be the diagonal matrix with diagonal elements given by

(
D(x)

)
ii

=



(b− u)
1
2
i if

(
W (x)T∇f(x)

)
i
< 0 and bi < +∞,

1 if
(
W (x)T∇f(x)

)
i
< 0 and bi = +∞,

(u− a)
1
2
i if

(
W (x)T∇f(x)

)
i
≥ 0 and ai > −∞,

1 if
(
W (x)T∇f(x)

)
i
≥ 0 and ai = −∞,

(9)

for i = 1, . . . , n −m. In the following proposition we give the form of the first- and
second-order necessary KKT conditions that we use in this paper. To us, they indicate
the suitability of (9) as a scaling for (1). See also [13], [18], [64], and the remark below
for further discussions on the choice of D as a scaling matrix.

Proposition 3.1. The point x∗ satisfies the first-order KKT conditions if and
only if

C(x∗) = 0, a ≤ u∗ ≤ b, and

D(x∗)W (x∗)T∇f(x∗) = 0.

The point x∗ satisfies the second-order necessary KKT conditions if and only if it
satisfies the first-order KKT conditions and

D(x∗)W (x∗)T∇2
xx`(x∗, λ∗)W (x∗)D(x∗)

is positive semidefinite. The corresponding multiplier is given by

λ∗ = −Cy(x∗)−T∇yf(x∗).

Remark 3.1. Proposition 3.1 remains valid for a larger class of diagonal matrices
D(x). The scalar 1 in the definition (9) of D can be replaced by any other positive
scalar, and Proposition 3.1 also remains valid with D(x) replaced by D(x)p, p > 0.
Most of our convergence results still hold true if D(x) is replaced by D(x)p, p ≥ 1.
See also Remark 8.1 and, for the case of simple bound constraints, see [18], [64].
However, the square roots in the definition of D(x) will be necessary for the proof of
local q-quadratic convergence of our algorithms.

The form of the sufficient optimality conditions used in this paper requires the
definition of nondegeneracy or strict complementarity.

Definition 3.2. A point x in B is said to be nondegenerate if (W (x)T∇f(x))i =
0 implies ai < ui < bi for all i ∈ {1, . . . , n−m}.



TRUST-REGION INTERIOR-POINT SQP ALGORITHMS 1759

We now define a diagonal (n−m)× (n−m) matrix E(x) with diagonal elements
given by

(
E(x)

)
ii

=


∣∣(W (x)T∇f(x)

)
i

∣∣ if
(
W (x)T∇f(x)

)
i
< 0 and bi < +∞, or

if
(
W (x)T∇f(x)

)
i
> 0 and ai > −∞,

0 in all other cases,

for i = 1, . . . , n − m. The significance of this matrix will become clear in the next
section when we apply Newton’s method to the system of nonlinear equations arising
from the first-order KKT conditions. From the definitions of D(x) and E(x) we have
the following property.

Proposition 3.3. A nondegenerate point x∗ satisfies the second-order sufficient
KKT conditions if and only if it is a first-order KKT point and

D(x∗)W (x∗)T∇2
xx`(x∗, λ∗)W (x∗)D(x∗) + E(x∗)

is positive definite, where λ∗ = −Cy(x∗)−T∇yf(x∗).

4. Newton’s method. One way to motivate the algorithms described in this
paper is to apply Newton’s method to the system of nonlinear equations

C(x) = 0,

D(x)2W (x)T∇f(x) = 0,
(10)

where x is strictly feasible with respect to the bounds on the variables u, i.e., a <
u < b. This is related to Goodman’s approach [27] for an orthogonal null-space
basis and equality constraints. Although D(x)2 is usually discontinuous at points
where (W (x)T∇f(x))i = 0, the function D(x)2W (x)T∇f(x) is continuous (but not
differentiable) at such points. The application of Newton’s method to this type of
nonlinear systems has first been suggested by Coleman and Li [12] in the context
of nonlinear minimization problems with simple bounds. They have shown that this
type of nondifferentiability still allows the Newton process to achieve local q-quadratic
convergence. In order to apply Newton’s method we first need to compute some
derivatives.

To calculate the Jacobian of the reduced gradient W (x)T∇f(x), we write

W (x)T∇f(x) = ∇uf(x) + Cu(x)Tλ,

where λ is given by Cy(x)Tλ = −∇yf(x) and has derivatives

∂λ
∂y = −Cy(x)−T

(∑m
i=1∇2

yyci(x)λi +∇2
yyf(x)

)
= −Cy(x)−T∇2

yy`(x, λ),

∂λ
∂u = −Cy(x)−T

(∑m
i=1∇2

yuci(x)λi +∇2
yuf(x)

)
= −Cy(x)−T∇2

yu`(x, λ).
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This implies the equalities

∂
∂y

(
W (x)T∇f(x)

)
= Cu(x)T ∂λ∂y +∇2

uyf(x) +
∑m
i=1∇2

uyci(x)λi

= W (x)T
( ∇2

yy`(x, λ)
∇2
uy`(x, λ)

)
,

∂
∂u

(
W (x)T∇f(x)

)
= Cu(x)T ∂λ∂u +∇2

uuf(x) +
∑m
i=1∇2

uuci(x)λi

= W (x)T
( ∇2

yu`(x, λ)
∇2
uu`(x, λ)

)
,

and we can conclude that

∂

∂x

(
W (x)T∇f(x)

)
= W (x)T∇2

xx`(x, λ),

where λ = −Cy(x)−T∇yf(x).
A linearization of (10) gives

Cy(x)sy + Cu(x)su = −C(x),(11) (
D(x)2W (x)T∇2

xx`(x, λ) +
[
0 | E(x)

]) ( sy
su

)
= −D(x)2W (x)T∇f(x),(12)

where 0 denotes the (n − m) × m matrix with zero entries. Equation (11) is the
linearized state equation. The diagonal elements of E(x) are the product of the
derivative of the diagonal elements of D(x)2 and the components of the reduced
gradient W (x)T∇f(x). The derivative of (D(x)2)ii does not exist if (W (x)T∇f(x))i =
0. In this case we set the corresponding quantities in the Jacobian to zero (see
references [12], [13]). This gives the equation (12).

By using (4) we can rewrite the linear system (11)–(12) as

s = sn +W (x)su,(
D(x)2W (x)T∇2

xx`(x, λ)W (x) + E(x)
)
su(13)

= −D(x)2W (x)T
(
∇2
xx`(x, λ)sn +∇f(x)

)
.

We define our Newton-like step as the solution of

s = sn +W (x)su,(
D̄(x)2W (x)T∇2

xx`(x, λ)W (x) + E(x)
)
su(14)

= −D̄(x)2W (x)T
(
∇2
xx`(x, λ)sn +∇f(x)

)
,(15)

where D̄(x) ∈ R(n−m)×(n−m) is the diagonal matrix defined by

(16)

(
D̄(x)

)
ii

=



(b− u)
1
2
i if

(
W (x)T

(∇2
xx`(x, λ)sn +∇f(x)

))
i
< 0 and bi < +∞,

1 if
(
W (x)T

(∇2
xx`(x, λ)sn +∇f(x)

))
i
< 0 and bi = +∞,

(u− a)
1
2
i if

(
W (x)T

(∇2
xx`(x, λ)sn +∇f(x)

))
i
≥ 0 and ai > −∞,

1 if
(
W (x)T

(∇2
xx`(x, λ)sn +∇f(x)

))
i
≥ 0 and ai = −∞,
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for i = 1, . . . , n−m. This change of the diagonal scaling matrix is based on the form
of the right-hand side of (14). Unlike D, the scaling matrix D̄ includes information
from the cross term ∇2

xx`(x, λ)sn and is therefore used as the scaling matrix for the
computation of su in our algorithm, cf. (23). In the subsequent sections we will allow
the replacement of the Hessian ∇2

xx`(x, λ) to be a suitable matrix H.
If x is close to a nondegenerate point x∗ satisfying the second-order sufficient

KKT conditions, and if W (x)T∇2
xx`(x, λ)sn is sufficiently small, a step s defined in

this way is a Newton step on the following system of nonlinear equations:

C(x) = 0,

D(x)2
uW (x)T∇f(x) = 0,

(17)

where D(x)u depends on x∗ as follows:

(D(x)u)ii =



1 or (b− u)
1
2
i or (u− a)

1
2
i if

(
W (x∗)T∇f(x∗)

)
i

= 0,

(b− u)
1
2
i if

(
W (x∗)T∇f(x∗)

)
i
< 0,

(u− a)
1
2
i if

(
W (x∗)T∇f(x∗)

)
i
> 0,

for i = 1, . . . , n − m. If (W (x∗)T∇f(x∗))i = 0, the ith diagonal element of D(x)u
has to be chosen so that D̄(x) and D(x)u are the same matrix. Of course, this
depends on the sign of (W (x)T (∇2

xx`(x, λ)sn + ∇f(x)))i. As Coleman and Li [12]
pointed out, D(x)u is just for theoretical use since x∗ is unknown. One can see that
D(x)2

uW (x)T∇f(x) is continuously differentiable with Lipschitz continuous deriva-
tives in an open neighborhood of x∗, that D(x∗)2

uW (x∗)T∇f(x∗) = 0, and that the
Jacobian of D(x)2

uW (x)T∇f(x) at x∗ is nonsingular, for all choices of D(x)u. These
conditions are those typically required to get q-quadratic convergence for the New-
ton iteration (see [17, Thm. 5.2.1]). Thus the sequence of iterates generated by the
Newton step (14)–(15) will converge q-quadratically to a nondegenerate point that
satisfies the sufficient KKT conditions. The interior-point process damps the Newton
step so that it stays strictly feasible, but this does not affect the rate of convergence.
The details are provided in Corollary 9.4.

5. Trust-region interior-point SQP algorithms. The algorithms that we
propose generate a sequence of iterates {xk} where

xk =

(
yk
uk

)
and uk is strictly feasible with respect to the bounds, i.e., a < uk < b. At iteration
k we are given xk, and we need to compute a trial step sk. If sk is accepted, we set
xk+1 = xk + sk. Otherwise we set xk+1 to xk, reduce the trust-region radius, and
compute a new trial step.

Following the application of Newton’s method (14), each trial step sk is decom-
posed as

sk = sn
k + st

k = sn
k +Wk(sk)u,

where sn
k is called the quasi-normal component and st

k is the tangential component.
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The role of sn
k is to move towards feasibility. It will be seen that sn

k is related
to the Newton step for the solution of C(y, uk) = 0 for fixed uk. The role of st

k is
to move towards optimality. The u component of st

k is related to the Newton step
for the reduced problem (2). However, as made clear previously, we do not require
feasibility with respect to the nonlinear equality constraints.

The global convergence is guaranteed by imposing an appropriate trust region on
the step and monitoring the progress by a suitable merit function. The definition of
the quasi-normal component, the tangential component, and the merit function, as
well as the complete formulation of our algorithms, is the content of this section.

5.1. The quasi-normal component. Let δk be the trust radius at iteration
k. The quasi-normal component sn

k is related to the trust-region subproblem for the
linearized constraints

minimize
1

2
‖Jksn + Ck‖2

subject to ‖sn‖ ≤ δk,

and it is required to have the form

sn
k =

(
(sn
k)y
0

)
.(18)

Thus, the displacement along sn
k is made only in the y variables, and as a consequence,

xk and xk + sn
k have the same u components. Since (sn

k)u = 0, the trust-region
subproblem introduced above can be rewritten as

minimize
1

2
‖Cy(xk)(sn)y + Ck‖2(19)

subject to ‖(sn)y‖ ≤ δk.(20)

Thus, the quasi-normal component sn
k is a trust-region globalization of the component

sn given in (5) of the Newton step (14). We do not have to solve (19)–(20) exactly;
we only have to assume that the quasi-normal component satisfies the conditions

‖sn
k‖ ≤ κ1‖Ck‖(21)

and

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 ≥ κ2‖Ck‖min{κ3‖Ck‖, δk},(22)

where κ1, κ2, and κ3 are positive constants independent of k. In section 10.1, we de-
scribe several ways of computing a quasi-normal component that satisfies the require-
ments (18), (21), and (22). Condition (21) tell us that the quasi-normal component is
small close to feasible points. Condition (22) is just a weaker form of Cauchy decrease
or simple decrease for the trust-region subproblem (19), (20).

5.2. The tangential component. The computation of the tangential compo-
nent (sk)u follows a trust-region globalization of the Newton step (15). Following
Coleman and Li [13] we symmetrize (15) and get(

D̄kW
T
k HkWkD̄k + Ek

)
D̄−1
k su = −D̄kW

T
k

(
Hks

n
k +∇fk

)
,
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where Ek = E(xk) and Hk denotes a symmetric approximation to the Hessian matrix
∇2
xx`k. The scaling matrix D̄k is equal to D̄(xk) defined by (16) with ∇2

xx`k replaced
by Hk. This suggests the change of variables ŝu = D̄−1

k su and the consideration in
the scaled space ŝu of the trust-region subproblem

minimize
(
D̄kW

T
k (Hks

n
k +∇fk)

)T
ŝu +

1

2
ŝTu
(
D̄kW

T
k HkWkD̄k + Ek

)
ŝu

subject to ‖ŝu‖ ≤ δk.
Now we can rewrite the previous subproblem in the unscaled space su as

minimize
(
WT
k (Hks

n
k +∇fk)

)T
su + 1

2s
T
u

(
WT
k HkWk + EkD̄

−2
k

)
su

subject to ‖D̄−1
k su‖ ≤ δk.

(23)

Of course, we also have to require that the new iterate is in the interior of the
box constraints. To ensure that uk + sk is strictly feasible with respect to the box
constraints, we choose σk ∈ [σ, 1), σ ∈ (0, 1) and compute su with σk(a − uk) ≤
su ≤ σk(b − uk). However, one of the strengths of this trust-region approach is
that we can allow for approximate solutions of this subproblem. In particular, it is
not necessary to solve the full trust-region subproblem including the box constraints.
For example, one can compute the solution of the trust-region subproblem without
the box constraints and then scale the computed solution back so that the resulting
damped su obeys σk(a− uk) ≤ su ≤ σk(b− uk); see, e.g., section 5.2.4. We will show
that under suitable assumptions this strategy guarantees global convergence and local
q-quadratic convergence. Another way to compute an approximate u component
of the step is to use a modified conjugate-gradient algorithm applied to the trust-
region subproblem, without the box constraints, that is truncated if one of the bounds
σk(a − uk) ≤ su ≤ σk(b − uk) is violated. See section 10.2. More ways to compute
the tangential component are possible. The conditions on the tangential component
necessary to guarantee global convergence are stated in section 5.2.3.

We now introduce a quadratic model

qk(s) = `k +∇x`kT s+
1

2
sTHks

of `(xk + s, λk) about (xk, λk). A trivial manipulation shows that

qk(sn
k +Wksu) = qk(sn

k) + ḡTk su +
1

2
su
TWT

k HkWksu,(24)

with

ḡk = WT
k ∇qk(sn

k) = WT
k

(
Hks

n
k +∇fk

)
.

For convenience we define

Ψk(su) = qk(sn
k +Wksu) +

1

2
sTu
(
EkD̄

−2
k

)
su.(25)

5.2.1. The decoupled trust-region approach. We can restate the trust-
region subproblem (23) as

minimize Ψk(su)(26)

subject to ‖D̄−1
k su‖ ≤ δk.(27)
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We refer to the approach based on this subproblem as the decoupled approach. In
this decoupled approach, the trust-region constraint is of the form ‖D̄−1

k su‖ ≤ δk
corresponding to the constraint ‖ŝu‖ ≤ δk in the scaled space. One can see from
(20) and (27) that we are imposing the trust region separately on the y part of the
quasi-normal component and on the u part of the tangential component. Moreover,
if the cross term WT

k Hks
n
k is set to zero, then the trust-region subproblems for the

quasi-normal component and for the tangential component are completely separated.

5.2.2. The coupled trust-region approach. The approach we present now
forces the y and u parts of the tangential component st

k = Wk(sk)u to lie inside the
trust region of radius δk. The reference trust-region subproblem is given by

minimize Ψk(su)(28)

subject to

∥∥∥∥( −Cy(xk)−1Cu(xk)su
D̄−1
k su

)∥∥∥∥ ≤ δk.(29)

In the case where there are no bounds on u, this trust-region constraint is of the form∥∥∥∥( −Cy(xk)−1Cu(xk)su
su

)∥∥∥∥ = ‖Wksu‖ ≤ δk.

As opposed to the decoupled case, one can see that the term Cy(xk)−1Cu(xk)su
is present in the trust-region constraint (29). If W+

k denotes the Moore–Penrose
pseudoinverse of Wk (see [25, sec. 5.5.4]), then

1

‖W+
k ‖
‖su‖ ≤ ‖Wksu‖ ≤ ‖Wk‖‖su‖.

Thus, if the condition number κ(Wk) = ‖W+
k ‖ ‖Wk‖ is small, then the decoupled

and the coupled approach will generate similar iterates. In this case, the decoupled
approach will be more efficient since it uses fewer linear system solvers with the
system matrix Cy(xk). See section 10.2. However, if κ(Wk) is large, e.g., if Cy(xk)
is ill conditioned, then the coupled approach will use the true size of the tangential
component, whereas the decoupled approach may vastly underestimate the size of
this step component. This can lead to poor performance of the decoupled approach
when steps are rejected and the trust-region radius is reduced based on the incorrect
estimate ‖su‖ of the norm of st = Wksu. This indicates that when Cy(x) is ill
conditioned the coupled approach offers a better regularization of the step.

5.2.3. Cauchy decrease for the tangential component. To assure global
convergence to a first-order KKT point, we consider analogues for the subproblems
(26)–(27) and (28)–(29) of the fraction of Cauchy decrease or simple decrease condi-
tions for the unconstrained minimization problem.

First we consider the decoupled trust-region subproblem (26)–(27). The Cauchy
step cd

k is defined for this case as the solution of

minimize Ψk(su)

subject to ‖D̄−1
k su‖ ≤ δk, su ∈ span{−D̄2

kḡk},
σk(a− uk) ≤ su ≤ σk(b− uk),

where −D̄2
kḡk is the steepest-descent direction for Ψk(su) at su = 0 in the norm

‖D̄−1
k · ‖. Here σk ∈ [σ, 1) ensures that the Cauchy step cd

k remains strictly feasible
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with respect to the box constraints. The parameter σ ∈ (0, 1) is fixed for all k.
As in many trust-region algorithms, we require the tangential component (sk)u with
σk(a− uk) ≤ (sk)u ≤ σk(b− uk) to give a decrease on Ψk(su) smaller than a uniform
fraction of the decrease given by cd

k for the same function Ψk(su). This condition is
often called fraction of Cauchy decrease, and in this case is

Ψk(0)−Ψk((sk)u) ≥ βd
1

(
Ψk(0)−Ψk(cd

k)
)
,(30)

where βd
1 is positive and fixed across all iterations. It is not difficult to see that dogleg

or conjugate-gradient algorithms can conveniently compute components (sk)u that
satisfy condition (30) with βd

1 = 1. We leave these issues to section 10.2.
In a similar way, the component (sk)u with σk(a − uk) ≤ (sk)u ≤ σk(b − uk)

satisfies a fraction of Cauchy decrease for the coupled trust-region subproblem (28)–
(29) if

Ψk(0)−Ψk((sk)u) ≥ βc
1

(
Ψk(0)−Ψk(cc

k)
)
,(31)

for some βc
1 independent of k, where the Cauchy step cc

k is the solution of

minimize Ψk(su)

subject to

∥∥∥∥( −Cy(xk)−1Cu(xk)su
D̄−1
k su

)∥∥∥∥ ≤ δk, su ∈ span{−D̄2
kḡk},

σk(a− uk) ≤ su ≤ σk(b− uk).

In section 10.2 we show how to use conjugate gradients to compute components (sk)u
satisfying the condition (31).

One final comment is in order. In the coupled approach, the Cauchy step cc
k

was defined along the direction −D̄2
kḡk. To simplify this discussion, suppose that

there are no bounds on u. In this case the trust-region constraint is of the form
‖Wksu‖ ≤ δk. The presence of Wk gives the trust region an ellipsoidal shape. The
steepest-descent direction for the quadratic (25) in the norm ‖Wk · ‖ at su = 0 is given
by −(WT

k Wk)−1ḡk. Our analysis still holds for this case since {‖(WT
k Wk)−1‖} is a

bounded sequence. The reason why we avoid the term (WT
k Wk)−1 is that in many

applications there is no reasonable way to solve systems with WT
k Wk. We will show in

section 10.2 how this affects the use of conjugate gradients (see Remark 10.2). Finally,
we point out that this problem does not arise if the decoupled approach is used.

5.2.4. Optimal decrease for the tangential component. The conditions
in the previous subsection are sufficient to guarantee global convergence to a point
satisfying first-order necessary KKT conditions, but they are too weak to guarantee
global convergence to a point satisfying second-order necessary KKT conditions. To
accomplish this, just as in the unconstrained case [46], [59], in the box-constrained
case [13] and the equality-constrained case [19], we need to make sure that su satisfies
an appropriate fraction of optimal decrease condition.

First we consider the decoupled approach and let od
k be an optimal solution of

the trust-region subproblem (26)–(27). It follows from the KKT conditions for this
trust-region subproblem that there exists γk ≥ 0 such that

WT
k HkWk + EkD̄

−2
k + γkD̄

−2
k is positive semidefinite,(32) (

WT
k HkWk + EkD̄

−2
k + γkD̄

−2
k

)
od
k = −ḡk, and(33)

γk(δk − ‖D̄−1
k od

k‖) = 0.
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(For practical algorithms to compute od
k see references [46], [53], [55], and [60]. These

conditions are also sufficient for od
k to be an optimal solution [22], [59].) Since uk + od

k

might not be strictly feasible, we consider τko
d
k, where τk is given by

τk = σk min
i=1,...,n−m

{
1, max

{
bi − (uk)i

(od
k)i

,
ai − (uk)i

(od
k)i

} }
.(34)

The tangential component (sk)u is then required to satisfy the following fraction
of optimal decrease condition

Ψk(0)−Ψk((sk)u) ≥ βd
2

(
Ψk(0)−Ψk(τko

d
k)
)

and

‖D̄−1
k (sk)u‖ ≤ βd

3δk,
(35)

where βd
2 , β

d
3 are positive parameters.

From conditions (32), (33), and (35), and τk < 1, we can write

Ψk(0)−Ψk((sk)u) ≥ βd
2

(
−τkḡTk od

k −
1

2
τ2
k (od

k)T
(
WT
k HkWk + EkD̄

−2
k

)
(od
k)

)
≥ βd

2τk

(
−ḡTk od

k −
1

2
(od
k)T

(
WT
k HkWk + EkD̄

−2
k + γkD̄

−2
k

)
(od
k)

)
+

1

2
βd

2τ
2
kγk(od

k)T D̄−2
k (od

k)

≥ 1

2
βd

2τk‖Rkod
k‖2 +

1

2
βd

2τ
2
kγkδ

2
k

≥ 1

2
βd

2τ
2
kγkδ

2
k,(36)

where WT
k HkWk + EkD̄

−2
k + γkD̄

−2
k = RTkRk.

Now let us focus on the coupled approach and let oc
k be the optimal solution of

the trust-region subproblem (28)–(29). It follows from the KKT conditions for this
trust-region subproblem, and the equality(

Cy(xk)−1Cu(xk)
)T
Cy(xk)−1Cu(xk) = WT

k Wk − In−m,
that there exists γk ≥ 0 such that

WT
k HkWk + EkD̄

−2
k + γk

(
D̄−2
k +WT

k Wk − In−m
)

is positive semidefinite,(37) (
WT
k HkWk + EkD̄

−2
k + γk

(
D̄−2
k +WT

k Wk − In−m
))
oc
k = −ḡk, and(38)

γk

(
δk −

∥∥∥∥( −Cy(xk)−1Cu(xk)oc
k

D̄−1
k oc

k

)∥∥∥∥) = 0.

Now we damp oc
k with τk given as in (34) but with od

k replaced by oc
k. Thus, the

resulting step uk + τko
c
k is strictly feasible. We impose the following fraction of

optimal decrease condition on the tangential component (sk)u:

Ψk(0)−Ψk((sk)u) ≥ βc
2

(
Ψk(0)−Ψk(τko

c
k)
)

and

∥∥∥∥( −Cy(xk)−1Cu(xk)(sk)u
D̄−1
k (sk)u

)∥∥∥∥ ≤ βc
3δk.

(39)
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In this case it can be shown in a way similar to (36) that

Ψk(0)−Ψ((sk)u) ≥ 1

2
βc

2τ
2
kγkδ

2
k.(40)

5.3. Reduced and full Hessians. In the previous section we considered an ap-
proximation Hk to the full Hessian. The algorithms and theory presented in this paper
are also valid if we use an approximation Ĥk to the reduced Hessian WT

k ∇2
xx`kWk.

In this case we set

Hk =

(
0 0

0 Ĥk

)
.(41)

Due to the form of Wk, we have

WT
k HkWk = Ĥk.

This allows us to obtain the expansion (24) in the context of a reduced Hessian
approximation.

For the algorithms with reduced Hessian approximation, the following observa-
tions are useful:

Hkd =

(
0

Ĥkdu

)
,

dTHkd = dTu Ĥkdu,(42)

WT
k Hkd = Ĥkdu.

5.4. Outline of the algorithms. We need to introduce a merit function and
the corresponding actual and predicted reductions. The merit function used is the
augmented Lagrangian

L(x, λ; ρ) = f(x) + λTC(x) + ρC(x)TC(x).

We follow [15] and define the actual decrease at iteration k as

ared(sk; ρk) = L(xk, λk; ρk)− L(xk + sk, λk+1; ρk),

and the predicted decrease as

pred(sk; ρk) = L(xk, λk; ρk)− (qk(sk) + ∆λTk (Jksk + Ck) + ρk‖Jksk + Ck‖2
)
,

with ∆λk = λk+1 − λk.
Remark 5.1. A possible redefining of the actual and predicted decreases is ob-

tained by subtracting the term 1
2 (sk)Tu

(
EkD̄

−2
k

)
(sk)u from both ared(sk; ρk) and

pred(sk; ρk). This type of modification has been suggested in [13] for minimization
with simple bounds, and it does not affect the global and local results given in this
paper.

To decide whether to accept or reject a trial step sk, we evaluate the ratio

ared(sk; ρk)

pred(sk; ρk)
.

To update the penalty parameter ρk we use the scheme proposed by El-Alem [20].
Other schemes to update the penalty parameter have been suggested in [21] and [40].

We can now outline the main procedures of the trust-region interior-point SQP
algorithms and leave the practical computation of sn

k, (sk)u, and λk to section 10.
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Algorithms 5.1 (trust-region interior-point SQP algorithms).
1. Choose x0 such that a < u0 < b, pick δ0 > 0, and calculate λ0. Choose α1,
η1, σ, δmin, δmax, ρ̄, and ρ−1 such that 0 < α1, η1, σ < 1, 0 < δmin ≤ δmax,
ρ̄ > 0, and ρ−1 ≥ 1.

2. For k = 0, 1, 2, . . . do
2.1. Compute sn

k such that ‖sn
k‖ ≤ δk.

Compute (sk)u based on the subproblem (26)–(27) (or (28)–(29) for the
coupled approach) satisfying

σk(a− uk) ≤ (sk)u ≤ σk(b− uk),

with σk ∈ [σ, 1). Set sk = sn
k + st

k = sn
k +Wk(sk)u.

2.2. Compute λk+1 and set ∆λk = λk+1 − λk.
2.3. Compute pred(sk; ρk−1):

pred(sk; ρk−1) = qk(0)− qk(sk)−∆λTk (Jksk + Ck)
+ ρk−1

(‖Ck‖2 − ‖Jksk + Ck‖2
)
.

If pred(sk; ρk−1) ≥ ρk−1

2

(
‖Ck‖2 − ‖Jksk + Ck‖2

)
, then set ρk = ρk−1.

Otherwise set

ρk =
2
(
qk(sk)− qk(0) + ∆λTk (Jksk + Ck)

)
‖Ck‖2 − ‖Jksk + Ck‖2 + ρ̄.

2.4. If ared(sk;ρk)
pred(sk;ρk) < η1, set

δk+1 = α1 max
{‖sn

k‖, ‖D̄−1
k (sk)u‖

}
in the decoupled case or

δk+1 = α1 max

{
‖sn
k‖,
∥∥∥∥( −Cy(xk)−1Cu(xk)(sk)u

D̄−1
k (sk)u

)∥∥∥∥} in the

coupled case, and reject sk.
Otherwise accept sk and choose δk+1 such that

max{δmin, δk} ≤ δk+1 ≤ δmax.

2.5. If sk was rejected set xk+1 = xk and λk+1 = λk. Otherwise set xk+1 =
xk + sk and λk+1 = λk + ∆λk.

Of course the rules to update the trust radius in the previous algorithm can
be much more involved, but the above suffices to prove convergence results and to
understand the trust-region mechanism.

5.5. Assumptions. In order to establish local and global convergence results
we need some general assumptions. We list these assumptions below. Let Ω be an
open subset of Rn such that for all iterations k, xk and xk + sk are in Ω.

A.1. The functions f(x), ci(x), i = 1, . . . ,m, are twice continuously differentiable
in Ω.

A.2. The partial Jacobian Cy(x) is nonsingular for all x ∈ Ω.
A.3. The functions f(x), ∇f(x), ∇2f(x), C(x), J(x), ∇2ci(x), i = 1, . . . ,m are

bounded in Ω.
A.4. The sequences {Wk}, {Hk}, and {λk} are bounded.
A.5. The matrix C−1

y (x) is uniformly bounded in Ω.
A.6. The sequence {uk} is bounded.
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It is equivalent to Assumptions A.3–A.6 that there exist positive constants ν0, . . . , ν9

independent of k such that

|f(x)| ≤ ν0, ‖∇f(x)‖ ≤ ν1, ‖∇2f(x)‖ ≤ ν2, ‖C(x)‖ ≤ ν3, ‖J(x)‖ ≤ ν4,

‖∇2ci(x)‖ ≤ ν5, i = 1, . . . ,m, and ‖Cy(x)−1‖ ≤ ν6

for all x ∈ Ω, and

‖Wk‖ ≤ ν6, ‖Hk‖ ≤ ν7, ‖λk‖ ≤ ν8, and ‖D̄k‖ ≤ ν9

for all k.
For the rest of this paper we suppose that Assumptions A.1–A.6 are always

satisfied.
As we have pointed out earlier, our approach is related to the Newton method

presented in section 4. The u component (sN
k )u of the Newton step sN

k = sn
k+Wk(sN

k )u,
whenever it is defined, is given by

(sN
k )u = − (D̄2

kW
T
k HkWk + Ek

)−1
D̄2
kḡk

= −D̄k

(
D̄kW

T
k HkWkD̄k + Ek

)−1
D̄kḡk,

(43)

where

sn
k =

( −Cy(xk)−1Ck
0

)
,(44)

and ḡk = WT
k (Hks

n
k+∇fk). From (43) we see that the Newton step is well defined in a

neighborhood of a nondegenerate point that satisfies the second-order sufficient KKT
conditions and for which WT

k Hks
n
k is sufficiently small. To guarantee strict feasibility

of this step we consider a damped Newton step given by

sn
k +Wkτ

N
k (sN

k )u,(45)

where (sN
k )u and sn

k are given by (43) and (44), and

τN
k = σk min

i=1,...,n−m

{
1, max

{
bi − (uk)i
((sN

k )u)i
,
ai − (uk)i
((sN

k )u)i

} }
.(46)

If Algorithms 5.1 are particularized to satisfy the following conditions on the
steps, on the quadratic model, and on the Lagrange multipliers, then we can prove
global and local convergence.

C.1. The quasi-normal component sn
k satisfies conditions (18), (21), and (22).

The tangential component (sk)u satisfies the fraction of Cauchy decrease con-
dition (30) ((31) for the coupled approach).
The parameter σk is chosen in [σ, 1), where σ ∈ (0, 1) is fixed for all k.

C.2. The tangential component (sk)u satisfies the fraction of optimal decrease
condition (35) ((39) for the coupled approach).

C.3. The second derivatives of f and ci, i = 1, . . . ,m are Lipschitz continuous in
Ω.
The approximation to the Hessian matrix is exact, i.e., Hk = ∇2

xx`(xk, λk)
with Lagrange multiplier λk = −Cy(xk)−T∇yf(xk).
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C.4. The step sk is given by (45) provided (sN
k )u exists, (sn

k)y lies inside the trust
region (20), and τN

k (sN
k )u lies inside the trust region (27) ((29) for the coupled

approach).
The parameter σk is chosen such that σk ≥ σ and |σk − 1| is O(‖D̄kḡk‖).

Condition C.1 assures global convergence to a first-order KKT point. Global con-
vergence to a point that satisfies the second-order necessary KKT conditions requires
Conditions C.1–C.3. To prove local q-quadratic convergence, we need Conditions C.1,
C.3, and C.4. It should be pointed out that the satisfaction of C.2 or C.4 does not
necessarily imply the satisfaction of C.1.

6. Intermediate results. We start by pointing out that (22), together with the
fact that the tangential component lies in the null space of Jk, imply

‖Ck‖2 − ‖Jksk + Ck‖2 ≥ κ2‖Ck‖min{κ3‖Ck‖, δk}.(47)

We calculated the first derivatives of λ(x) = −Cy(x)−T∇yf(x) in section 4. It is
clear that under Assumptions A.3 and A.5 these derivatives are bounded in Ω. Thus,
if λk is computed as stated in Condition C.3, then there exists a positive constant ν10

independent of k such that

‖∆λk‖ ≤ ν10‖sk‖.(48)

From ‖sq
k‖ ≤ δmax and Assumptions A.3–A.4 we also have

‖ḡk‖ =
∥∥WT

k (Hks
q
k +∇fk)

∥∥ ≤ ν11,(49)

where ν11 = ν6(ν7δmax + ν1).
The following lemma is required for the convergence theory.
Lemma 6.1. Every trial step satisfies

‖sk‖ ≤ κ4δk(50)

and, if sk is rejected in step 2.4 of Algorithms 5.1, then

δk+1 ≥ κ5‖sk‖,(51)

where κ4 and κ5 are positive constants independent of k.
Proof. In the coupled trust-region approach we bound st

k as follows:∥∥∥∥( −Cy(xk)−1Cu(xk)su
su

)∥∥∥∥ ≤
∥∥∥∥( Im 0

0 D̄k

)∥∥∥∥ ∥∥∥∥( −Cy(xk)−1Cu(xk)su
D̄−1
k su

)∥∥∥∥
≤ (1 + ν9) δk ,

where ν9 is a uniform bound for ‖D̄k‖, see Assumption A.6. Since ‖sn
k‖ ≤ δk, we

obtain ‖sk‖ ≤ (2 + ν9) δk. It is not difficult to see now that in step 2.4 we have
δk+1 ≥ α1

2 min{1, 1
1+ν9
}‖sk‖.

In the decoupled approach, ‖sk‖ = ‖sn
k +Wk(sk)u‖ ≤ (1 + ν6ν9)δk and similarly

δk+1 ≥ α1

2 min{1, 1
ν6ν9
}‖sk‖, where ν6 is a uniform bound for ‖Wk‖; see Assumption

A.4.
We can combine these bounds to obtain

‖sk‖ ≤ max{2 + ν9, 1 + ν6ν9} δk,
δk+1 ≥ α1

2 min
{

1, 1
1+ν9

, 1
ν6ν9

}
‖sk‖.



TRUST-REGION INTERIOR-POINT SQP ALGORITHMS 1771

In the case where fraction of optimal decrease (35) or (39) is imposed on (sk)u, the
constants κ4 and κ5 depend also on βd

3 and βc
3.

In the following lemma we rewrite the fraction of Cauchy decrease conditions (30)
and (31) in a more useful form for the analysis.

Lemma 6.2. If (sk)u satisfies Condition C.1, then

qk(sn
k)− qk(sn

k +Wk(sk)u) ≥ κ6‖D̄kḡk‖min
{
κ7‖D̄kḡk‖, κ8δk

}
,(52)

where κ6, κ7, and κ8 are positive constants independent of the iteration k.
Proof. From the definition (25) of Ψk we find

qk(sn
k)− qk(sn

k +Wk(sk)u) ≥ qk(sn
k)− qk(sn

k +Wk(sk)u)− 1

2
(sk)Tu

(
EkD̄

−2
k

)
(sk)u

= Ψk(0)−Ψk((sk)u).(53)

Let δ̃k be the maximum ‖D̄−1
k · ‖ norm of a step, say (s̃k)u, along −D̄k

g̃k
‖g̃k‖

allowed inside the trust region. Here g̃k = D̄kḡk.
If the trust region is given by (27), then

δk = δ̃k.(54)

If the trust region is given by (29), then we can use Assumptions A.4–A.6 to
deduce the inequality

δ2
k =

∥∥∥∥( −Cy(xk)−1Cu(xk)(s̃k)u
D̄−1
k (s̃k)u

)∥∥∥∥2

= ‖ − Cy(xk)−1Cu(xk)D̄kD̄
−1
k (s̃k)u‖2 + ‖D̄−1

k (s̃k)u‖2

≤ (ν2
6ν

2
9 + 1)‖D̄−1

k (s̃k)u‖2

= (ν2
6ν

2
9 + 1) δ̃2

k

or, equivalently,

δ̃k ≥ 1√
ν2

6ν
2
9 + 1

δk.(55)

Define ψ : R+ −→ R as ψ(t) = Ψk(−tD̄k
g̃k
‖g̃k‖ ) − Ψk(0). Then ψ(t) = −‖g̃k‖t +

rk
2 t

2, where rk =
g̃Tk H̃kg̃k
‖g̃k‖2 and H̃k = D̄k(WT

k HkWk + EkD̄
−2
k )D̄k. Now we need to

minimize ψ in [0, Tk], where Tk is given by

Tk = min

{
δ̃k, σk min

{‖D̄kḡk‖
(ḡk)i

: (ḡk)i > 0

}
, σk min

{
−‖D̄kḡk‖

(ḡk)i
: (ḡk)i < 0

}}
.

Let t∗k be the minimizer of ψ in [0, Tk]. If t∗k ∈ (0, Tk), then

ψ(t∗k) = −1

2

‖g̃k‖2
rk

≤ −1

2

‖g̃k‖2
‖H̃k‖

.(56)
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If t∗k = Tk, then either rk > 0, in which case ‖g̃k‖rk ≥ Tk, or rk ≤ 0, in which case

rkTk ≤ ‖g̃k‖. In either event,

ψ(t∗k) = ψ(Tk) = −Tk‖g̃k‖+
rk
2
T 2
k ≤ −

Tk
2
‖g̃k‖.(57)

We can combine (53), (56), and (57) with

Ψk(0)−Ψk((sk)u) ≥ βd
1

(
Ψk(0)−Ψk(cd

k)
)

= −βd
1ψ(t∗k)

to get

qk(sn
k)− qk(sn

k +Wk(sk)u) ≥ 1

2
βd

1‖g̃k‖min

{ ‖g̃k‖
‖H̃k‖

, Tk

}
.

The facts that σk ≥ σ and ‖ḡk‖ ≤ ν11 (see (49)) imply that

Ψk(0)−Ψk((sk)u)

≥ 1

2
βd

1‖D̄kḡk‖min

{
‖D̄kḡk‖

‖D̄T
k

(
WT
k HkWk + EkD̄

−2
k

)
D̄k‖

,min

{
δ̃k,

σ

ν11
‖D̄kḡk‖

}}
.

To complete the proof, we use (54), (55), the Assumptions A.1–A.6, and the fact
that δk ≤ δmax to establish (52) with κ6 = 1

2 min{βd
1 , β

c
1}, κ7 = min{ 1

ν7ν2
6ν

2
9+ν1ν6

, σ
ν11
},

and κ8 = min{1, 1√
ν2
6ν

2
9+1
}.

Now we state the convenient form of the fraction of optimal decrease conditions
(35) and (39).

Lemma 6.3. If (sk)u satisfies Condition C.2, then

qk(sn
k)− qk(sn

k +Wk(sk)u) ≥ κ9τ
2
kγkδ

2
k,(58)

where κ9 is a positive constant independent of the iteration k.
Proof. The proof follows immediately from observation (53) and conditions (36)

and (40).
We also need the following two inequalities.
Lemma 6.4. Under Condition C.1 there exists a positive constant κ10 such that

qk(0)− qk(sn
k)−∆λTk (Jksk + Ck) ≥ −κ10‖Ck‖.(59)

Moreover, if we assume Condition C.3, then

qk(0)− qk(sn
k)−∆λTk (Jksk + Ck) ≥ −κ11‖Ck‖ (‖sn

k‖+ ‖sk‖) .(60)

Proof. The term qk(0)− qk(sn
k) can be bounded using (21) and ‖sn

k‖ ≤ δk in the
following way:

qk(0)− qk(sn
k) = −∇x`Tk sn

k − 1
2 (sn

k)THk(sn
k)

≥ −κ1

(‖∇x`k‖+ 1
2δk‖Hk‖

) ‖Ck‖.
On the other hand, it follows from ‖Jksk + Ck‖ ≤ ‖Ck‖ that

−∆λTk (Jksk + Ck) ≥ −‖∆λk‖ ‖Ck‖.(61)

Combining these two bounds with Assumptions A.3 and A.4 we get (59).
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To prove (60) we first observe that, due to the definition of λk in Condition C.3
and to the form (18) of the quasi-normal component sn

k,

∇x`Tk sn
k =

(
0

∇ufk + Cu(xk)Tλk

)T (
(sn
k)y
0

)
= 0.(62)

Thus,

qk(0)− qk(sn
k) ≥ −1

2
κ1‖Hk‖ ‖Ck‖ ‖sn

k‖ ≥ −
1

2
κ1ν7 ‖Ck‖ ‖sn

k‖.(63)

Also, by appealing to (48) and (61),

−∆λTk (Jksk + Ck) ≥ −ν10‖sk‖ ‖Ck‖.(64)

The proof of (60) is complete by combining (63) and (64).
The convergence theory for trust regions traditionally requires consistency of ac-

tual and predicted decreases. This is given in the following lemma.
Lemma 6.5. Under Condition C.1 there exists a positive constant κ12 such that

|ared(sk; ρk)− pred(sk; ρk)| ≤ κ12

(‖sk‖2 + ρk
(‖sk‖3 + ‖Ck‖ ‖sk‖2

))
.(65)

Moreover, if Condition C.3 is also valid, then

|ared(sk; ρk)− pred(sk; ρk)| ≤ κ13ρk
(‖sk‖3 + ‖Ck‖ ‖sk‖2

)
.(66)

Proof. Adding and subtracting `(xk+1, λk) to ared(sk; ρk) − pred(sk; ρk), and
using Taylor expansion, we obtain

ared(sk; ρk)− pred(sk; ρk) = 1
2s
T
k

(
Hk −∇2

xx`(xk + t1ksk, λk)
)
sk

− 1
2

∑m
i=1(∆λk)is

T
k∇2ci(xk + t2ksk)sk

−ρk
(∑m

i=1 ci(xk + t3ksk)(sk)T∇2ci(xk + t3ksk)(sk)

+(sk)TJ(xk + t3ksk)TJ(xk + t3ksk)(sk)

−(sk)TJ(xk)TJ(xk)(sk)
)
,

where t1k, t2k, and t3k are in (0, 1). By expanding ci(xk + t3ksk) around ci(xk) and using
Assumptions A.3 and A.4 we get (65).

The estimate (66) follows from (48), ρk ≥ 1, and the Lipschitz continuity of the
second derivatives.

The last result in this section is a direct consequence of the scheme that updates
ρk in step 2.3 of Algorithms 5.1.

Lemma 6.6. The sequence {ρk} satisfies

ρk ≥ ρk−1 ≥ 1 and

pred(sk; ρk) ≥ ρk
2

(
‖Ck‖2 − ‖Jksk + Ck‖2

)
.(67)
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7. Global convergence to a first-order KKT point. The proof of the global
convergence to a first-order KKT point (Theorem 7.5) established in this section
follows the structure of the convergence theory presented in [15] for the equality-
constrained optimization problem. This proof is by contradiction and is based on
Condition C.1. We show that the supposition

‖D̄kḡk‖+ ‖Ck‖ > εtol,

for all k, leads to a contradiction.
The following three lemmas are necessary to bound the predicted decrease.
Lemma 7.1. Under Condition C.1, the predicted decrease in the merit function

satisfies

pred(sk; ρ) ≥ κ6‖D̄kḡk‖min
{
κ7‖D̄kḡk‖, κ8δk

}
−κ10‖Ck‖+ ρ

(
‖Ck‖2 − ‖Jksk + Ck‖2

)(68)

for every ρ > 0.
Proof. The inequality (68) follows from a direct application of (59) and from the

lower bound (52).
Lemma 7.2. Assume that Condition C.1 and ‖D̄kḡk‖+ ‖Ck‖ > εtol are satisfied.

If ‖Ck‖ ≤ αδk, where α is a positive constant satisfying

α ≤ min

{
εtol

3δmax
,
κ6εtol
3κ10

min

{
2κ7εtol
3δmax

, κ8

}}
,(69)

then

pred(sk; ρ) ≥ κ6

2
‖D̄kḡk‖min

{
κ7‖D̄kḡk‖, κ8δk

}
+ ρ

(‖Ck‖2 − ‖Jksk + Ck‖2
)
,(70)

for every ρ > 0.
Proof. From ‖D̄kḡk‖+‖Ck‖ > εtol and the first bound on α given by (69), we get

‖D̄kḡk‖ > 2

3
εtol.(71)

If we use this, (68), and the second bound on α given by (69), we obtain

pred(sk; ρ) ≥ κ6

2 ‖D̄kḡk‖min
{
κ7‖D̄kḡk‖, κ8δk

}
+ κ6εtol

3 min
{

2κ7εtol
3 , κ8δk

}
− κ10‖Ck‖+ ρ

(
‖Ck‖2 − ‖Jksk + Ck‖2

)
≥ κ6

2 ‖D̄kḡk‖min
{
κ7‖D̄kḡk‖, κ8δk

}
+ ρ
(
‖Ck‖2 − ‖Jksk + Ck‖2

)
.

We can use Lemma 7.2 with ρ = ρk−1 and conclude that if ‖D̄kḡk‖+ ‖Ck‖ > εtol
and ‖Ck‖ ≤ αδk, then the penalty parameter at the current iteration does not need
to be increased. See step 2.3 of Algorithms 5.1. This is equivalent to Lemma 7.7 in
[15]. The next lemma states the same result as Lemma 7.8 in [15] but with a different
choice of α.
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Lemma 7.3. Assume Condition C.1 and ‖D̄kḡk‖ + ‖Ck‖ > εtol. If ‖Ck‖ ≤ αδk,
where α satisfies (69), then there exists a positive constant κ14 > 0 such that

pred(sk; ρk) ≥ κ14δk.(72)

Proof. From (70), with ρ = ρk and ‖D̄kḡk‖ ≥ 2
3εtol, cf. (71), we obtain

pred(sk; ρk) ≥ κ6εtol
3 min{ 2κ7εtol

3 , κ8δk}

≥ κ6εtol
3 min{ 2κ7εtol

3δmax
, κ8}δk.

Hence (72) holds with

κ14 =
κ6εtol

3
min

{
2κ7εtol
3δmax

, κ8

}
.

The following lemma is also required.
Lemma 7.4. Under Condition C.1, if ‖D̄kḡk‖ + ‖Ck‖ > εtol for all k, then the

sequences {ρk} and {Lk} are bounded and δk is uniformly bounded away from zero.
Proof. See Lemmas 7.9–7.13 and 8.2 in [15].
Our first global convergence result follows.
Theorem 7.5. Under Condition C.1, the sequences of iterates generated by the

trust-region interior-point SQP Algorithms 5.1 satisfy

lim inf
k

(
‖DkW

T
k ∇fk‖+ ‖Ck‖

)
= 0.(73)

Proof. The proof is by contradiction. Suppose that for all k,

‖D̄kḡk‖+ ‖Ck‖ > εtol.(74)

At each iteration k, either ‖Ck‖ ≤ αδk or ‖Ck‖ > αδk, where α satisfies (69). In the
first case we appeal to Lemmas 7.3 and 7.4 and obtain

pred(sk; ρk) ≥ κ14δ∗,

where δ∗ is the lower bound on δk given by Lemma 7.4. If ‖Ck‖ > αδk, we have from
ρk ≥ 1, (47), (67), and Lemma 7.4, that

pred(sk; ρk) ≥ κ2

2
αmin{κ3α, 1}δ∗.

Hence pred(sk; ρk) ≥ κ15 for all k, where the positive constant κ15 does not depend
on k. From this and (65) we establish∣∣∣∣ared(sk; ρk)− pred(sk; ρk)

pred(sk; ρk)

∣∣∣∣ ≤ κ12

κ15

(‖sk‖2 + ρ∗
(‖sk‖3 + ‖Ck‖ ‖sk‖2

)) ≤ κ16δ
2
k,

where ρ∗ is the upper bound on ρk guaranteed by Lemma 7.4. From the rules that
update δk in step 2.4 of Algorithms 5.1, this inequality tells us that an acceptable
step is always found after a finite number of unsuccessful iterations. Using this fact,
we can ignore the rejected steps and work only with successful iterates. So, without
loss of generality, we have

Lk − Lk+1 = ared(sk; ρk) ≥ η1pred(sk; ρk) ≥ η1κ15.
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Now, if we let k go to infinity, this contradicts the boundedness of {Lk} guaranteed
by Lemma 7.4. Hence the supposition (74) is false, and we must have that

lim inf
k

(
‖D̄kḡk‖+ ‖Ck‖

)
= 0.(75)

Let {kj} be a subsequence with limj(‖D̄kj ḡkj‖ + ‖Ckj‖) = 0. Together with
(21) and the boundedness of {Hk}, this implies limj(‖D̄kjW

T
kj
∇fkj‖ + ‖Ckj‖) = 0.

To establish (73), it remains to show that D̄kj , which is the scaling matrix defined
with the reduced gradient WT

kj
(Hkjs

n
kj

+∇fkj ), can be replaced by Dkj . This can be

shown by standard arguments. Let i ∈ {1, . . . , n − m} be arbitrary. Assume there
exists ε1 > 0 and a subsequence of {kj}, for simplicity again denoted by {kj}, such
that ∣∣((D̄kj −Dkj )W

T
kj∇fkj

)
i

∣∣ > ε1.(76)

If (WT
kj
∇fkj )i → 0, then the boundedness of D̄kj and Dkj yields a contradiction to

(76). Thus, there must exist ε2 > 0 and a subsequence of {kj}, again denoted by {kj},
such that |(WT

kj
∇fkj )i| > ε2. Since limj Hkjs

n
kj

= 0, the definitions of D̄ and D imply

that |(D̄kj −Dkj )i| → 0, which again leads to a contradiction of (76). Consequently,
the previous assumption cannot be satisfied and (73) is proven.

Using the continuity of C(x), D(x)W (x)T∇f(x), and Theorem 7.5, we can deduce
the following result.

Corollary 7.6. Let the conditions of Theorem 7.5 be valid. If {xk} is a bounded
sequence, then {xk} has a limit point satisfying the first-order KKT conditions.

8. Global convergence to a second-order KKT point. In this section we
establish global convergence to a point that satisfies the second-order necessary KKT
conditions.

Theorem 8.1. Under Conditions C.1–C.3, the sequences of iterates generated
by the trust-region interior-point SQP Algorithms 5.1 satisfy

lim inf
k

(
‖D̄kḡk‖+ ‖Ck‖+ τ2

kγk

)
= 0,(77)

where γk is the Lagrange multiplier corresponding to the trust-region constraint; see
(32), (37), and τk is the damping parameter defined in (34).

Proof. The proof is again by contradiction. Suppose that for all k,

‖D̄kḡk‖+ ‖Ck‖+ τ2
kγk >

5

3
εtol.(78)

(i) Suppose that ‖Ck‖ ≤ α′δk, where

α′ = min

{
α,

κ9εtol
3κ11(1 + κ4)

}
(79)

and α satisfies (69). From the first bound on α in (69), we get

‖D̄kḡk‖+ τ2
kγk >

4

3
εtol.

Thus, either ‖D̄kḡk‖ > 2
3εtol or τ2

kγk >
2
3εtol. In the first case we proceed exactly as

in Lemmas 7.2, 7.3 and obtain

pred(sk; ρ) ≥ κ6

2
‖D̄kḡk‖min

{
κ7‖D̄kḡk‖, κ8δk

}
+ ρ

(‖Ck‖2 − ‖Jksk + Ck‖2
)

(80)

≥ κ14

δmax
δ2
k
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for every ρ > 0. If τ2
kγk >

2
3εtol, then from (50), (58), (60), ‖sn

k‖ ≤ δk, and the second
bound on α′ given in (79), we can write

pred(sk; ρ) = qk(sn
k)− qk(sn

k +Wk(sk)u) + qk(0)− qk(sn
k)−∆λTk (Jksk + Ck)

+ ρ
(‖Ck‖2 − ‖Jksk + Ck‖2

)
≥ 1

2
κ9τ

2
kγkδ

2
k +

(
1

3
κ9εtolδk − κ11‖Ck‖(1 + κ4)

)
δk

+ ρ
(‖Ck‖2 − ‖Jksk + Ck‖2

)
(81)

≥ 1

2
κ9τ

2
kγkδ

2
k + ρ

(‖Ck‖2 − ‖Jksk + Ck‖2
)

≥ κ9εtol
3

δ2
k

for every ρ > 0. From the two bounds (80), (81), we conclude that if ‖Ck‖ ≤
α′δk then the penalty parameter does not increase. See step 2.3 of Algorithms 5.1.
Moreover, these two bounds on pred(sk; ρk) show the existence of a positive constant
κ17 independent of k such that

pred(sk; ρk) ≥ κ17δ
2
k,(82)

provided ‖Ck‖ ≤ α′δk.
(ii) Now we prove that {ρk} is bounded. If ρk is increased at iteration k, then it

is updated according to the rule

ρk = 2

(
qk(sk)− qk(0) + ∆λTk (Jksk + Ck)

‖Ck‖2 − ‖Jksk + Ck‖2
)

+ ρ̄.

We can write

ρk
2

(
‖Ck‖2 − ‖Jksk + Ck‖2

)
= qk(sk)− qk(sn

k)

−
(
qk(0)− qk(sn

k)
)

+ ∆λTk (Jksk + Ck)

+ ρ̄
2

(
‖Ck‖2 − ‖Jksk + Ck‖2

)
.

By applying (47) to the left-hand side and applying (50), (58), (60), and ‖sn
k‖ ≤ δk

to the right-hand side, we obtain

ρk
2
κ2‖Ck‖min{κ3‖Ck‖, δk} ≤ κ11(1 + κ4)δk‖Ck‖+

ρ̄

2

(−2(JTk Ck)T sk − ‖Jksk‖2
)

≤ (κ11(1 + κ4) + ρ̄ν4κ4)δk‖Ck‖.(83)

If ρk is increased at iteration k, then, because of part (i), ‖Ck‖ > α′δk. Now we use
this fact to establish that(κ2

2
min{κ3α

′, 1}
)
ρk ≤ κ11(1 + κ4) + ρ̄ν4κ4.

This proves that {ρk} and {Lk} are bounded sequences.
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(iii) The next step is to prove that δk is bounded away from zero.
If sk−1 was an acceptable step, then δk ≥ δmin; see step 2.4 in Algorithms 5.1.
If sk−1 was rejected, then δk ≥ κ5‖sk−1‖; see (51). We consider two cases. In

both cases we will use the fact that

1− η1 ≤
∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ .
In the first case we will assume that ‖Ck−1‖ ≤ α′δk−1. From (82) we have

pred(sk−1; ρk−1) ≥ κ17δ
2
k−1. Thus, we can use ‖sk−1‖ ≤ κ4δk−1 (see (50)) and (66)

with k replaced by k − 1 to obtain∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ ≤ κ13ρ∗
(
κ2

4δ
2
k−1 + κ4α

′δ2
k−1

)
κ17δ2

k−1

‖sk−1‖.

This gives δk ≥ κ5‖sk−1‖ ≥ κ5(1−η1)κ17

κ13ρ∗(κ2
4+α′κ4)

≡ κ18.

The other case is ‖Ck−1‖ > α′δk−1. In this case we get, from (47) and (67) with
k replaced by k − 1, that

pred(sk−1; ρk−1) ≥ ρk−1

2 κ2‖Ck−1‖min{κ3‖Ck−1‖, δk−1}

≥ ρk−1κ19δk−1‖Ck−1‖

≥ ρk−1α
′κ19δ

2
k−1,

where κ19 = κ2

2 min{κ3α
′, 1}. Again we use ρk−1 ≥ 1 and (66) with k replaced by

k − 1, this time with the last two lower bounds on pred(sk−1; ρk−1), and we write∣∣∣∣ared(sk−1; ρk−1)

pred(sk−1; ρk−1)
− 1

∣∣∣∣ ≤ κ13ρk−1‖sk−1‖3
|pred(sk−1; ρk−1)| +

κ13ρk−1‖Ck−1‖ ‖sk−1‖2
|pred(sk−1; ρk−1)|

≤
(
κ13ρk−1κ

2
4δ

2
k−1

ρk−1α′κ19δ2
k−1

+
κ13ρk−1κ4δk−1‖Ck−1‖
ρk−1κ19δk−1‖Ck−1‖

)
‖sk−1‖.

Hence δk ≥ κ5‖sk−1‖ ≥ κ5(1−η1)α′κ19

κ13(κ2
4+α′κ4)

≡ κ20.

Combining the two cases yields

δk ≥ δ∗ = min{δmin, κ18, κ20}
for all k.

(iv) The rest of the proof consists of proving that an acceptable trial step is
always found after a finite number of iterations and then concluding from this that
the supposition (78) is false. The proof of these facts is exactly the proof of Theorem
7.5, where α is now α′ and κ14δ∗ is replaced by κ17δ

2
∗.

The following result finally establishes global convergence to a point satisfying the
second-order necessary KKT conditions. The proof uses ideas applied in [13, Lem.
3.8]. However, we show that convergence to a limit point satisfies the second-order
necessary conditions even in the degenerate case.

Theorem 8.2. Let {xk} be a bounded sequence of iterates generated by the trust-
region interior-point SQP Algorithms 5.1 under Conditions C.1–C.3. Then {xk} has
a limit point x∗ satisfying the first-order KKT conditions. Furthermore, x∗ satisfies
the second-order necessary KKT conditions.
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Proof. Consider the subsequence of {xk} for which the limit in (77) is zero.
Since this subsequence is bounded, we can use the same arguments as in the proof of
Theorem 7.5 to show that it has a convergent subsequence indexed by {kj} such that

lim
j

(
‖D̄kj ḡkj‖+ ‖Ckj‖

)
= lim

j

(
‖DkjW

T
kj∇fkj‖+ ‖Ckj‖

)
= 0.(84)

Moreover,

lim
j
τ2
kjγkj = 0,(85)

where τkj is given by (34). Let x∗ denote the limit of {xkj}. It follows from (84) and
the continuity of C(x) and D(x)W (x)T∇f(x) that x∗ satisfies the first-order KKT
conditions.

Next, we will prove that limj γkj = 0. First we consider the decoupled approach.
Define the vector-valued function h as follows:

h(x)i =

{
1 if

(
W (x)T∇f(x)

)
i

= 0 and
(
D(x)ii

)
= 0,(

W (x)T∇f(x)
)
i

otherwise,

for all i = 1, . . . , n − m. The function h is used to identify the active indices. By
definition of h and since x∗ satisfies the first-order KKT conditions, the implications

D(x∗)ii = 0 ⇐⇒ h(x∗)i 6= 0, i = 1, . . . , n−m(86)

are valid. (If x∗ is nondegenerate, then h(x∗) = W (x∗)T∇f(x∗).) Moreover,

lim
x→x∗

D(x)h(x) = 0.(87)

Since limj xkj = x∗, (86) implies the existence of ε0 ∈ (0, 1) such that

min
{

(ukj )i − ai, bi − (ukj )i

}
+
∣∣(hkj)i∣∣ > 2ε0, i = 1, . . . , n−m(88)

for large enough j, and

2ε0 < min{bi − ai, i = 1, . . . , n−m}.
Without loss of generality, we will only consider the cases where τkj ≤ σkj < 1.

In the following the index i will be the index defining τkj in (34). (The index i is
really ij but we drop the j from ij to alleviate the notation.) We also assume that j
is large enough such that ∣∣∣(D̄2

kjhkj

)
i

∣∣∣ < ε20;(89)

cf. (87).
Multiplying both sides of (33) by D̄2

kj
gives(

Ekj + γkjIn−m
)
od
kj = D̄2

kj

(
−ḡkj −WT

kjHkjWkjo
d
kj

)
,

which in turn implies

γkj |(od
kj )i| ≤ (D̄2

kj )ii

∣∣∣(−ḡkj −WT
kjHkjWkjo

d
kj

)
i

∣∣∣ .(90)
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Also, Assumption A.6 implies ‖od
kj
‖ ≤ ν9δkj ≤ ν9δmax. From this, (49), and Assump-

tions A.3–A.4, we can write

1

(od
kj

)i
≥ γkj
κ21(D̄kj )

2
ii

(91)

for some κ21 independent of k. Now we distinguish between two cases.
In the first case we consider |(hkj )i| ≤ ε0 and appeal to (88) to get min{(ukj )i −

ai, bi − (ukj )i} > ε0. Thus, from (91) and the definition (34) of τkj we obtain

τkj ≥
σkjγkj ε0

κ21(D̄kj )
2
ii

.(92)

Now we analyze the case |(hkj )i| > ε0. Two possibilities can occur.
(i) The first possibility is that the value of the numerator defining τkj is equal to

(D̄kj )
2
ii. In this situation, (91) immediately implies

τkj ≥
σkjγkj
κ21

.(93)

(ii) The other possibility is that the value of the numerator defining τkj is not equal
to (D̄kj )

2
ii. In this case we have from (89) that (D̄kj )

2
ii < ε0 and, since bi − ai > 2ε0,

the numerator in the definition (34) of τkj is bigger than ε0. Thus,

τkj ≥
σkjγkj ε0

κ21(D̄kj )
2
ii

.(94)

Using (85), (92), (93), (94), σkj ≥ σ, and the boundedness of D̄kj this proves that

lim
j
γkj = 0.

By (32) we know that

D̄kjW
T
kjHkjWkj D̄kj + Ekj + γkjIn−m

is positive semidefinite. Hence condition (84), the continuity ofW (x)T∇2
xx`(x, λ)W (x),

and the limits limj ‖WT
kj
Hkjs

n
kj
‖ = 0 and limj γkj = 0 imply that the limit of the prin-

cipal submatrix of WT
kj
HkjWkj corresponding to indices l such that al < (u∗)l < bl is

positive semidefinite. Hence the second-order necessary KKT conditions are satisfied
at x∗. This completes the proof for the decoupled approach.

The proof for the coupled trust-region approach differs only from the proof for the
decoupled approach in the use of equations (37) and (38) and in the use of ‖Wkjo

c
kj
‖ ≤

(1 + ν9)δmax to bound the right-hand side of inequality (90).
Remark 8.1. The global convergence results of sections 7 and 8 hold true if the

quadratic Ψk(su) is redefined as Ψk(su) = qk(sn
k +Wksu) (see (24) and (25)) without

the Newton augmentation term 1
2s
T
u (EkD̄

−2
k )su. They are valid also if the matrices

Dk and D̄k are redefined, respectively, as Dp
k and D̄p

k with p ≥ 1.

9. Local rate of convergence. We will now analyze the local behavior of Algo-
rithms 5.1 under Conditions C.1, C.3, and C.4. We start by looking at the behavior of
the trust radius close to a nondegenerate point that satisfies the second-order sufficient
KKT conditions. For this purpose we require the following lemma.
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Lemma 9.1. Under Condition C.1, the quasi-normal component satisfies

‖sn
k‖ ≤ κ22‖sk‖,(95)

where κ22 is positive and independent of the iteration counter k.
Proof. From sk = sn

k +Wk(sk)u, we obtain

‖sn
k‖ ≤ ‖sk‖+ ‖Wk‖ ‖(sk)u‖.

But since ‖sk‖2 = ‖(sk)y‖2 + ‖(sk)u‖2, we use Assumption A.4 to obtain

‖sn
k‖ ≤ (1 + ν6) ‖sk‖ ,

and (95) holds with κ22 = 1 + ν6.
Theorem 9.2. Let {xk} be a sequence of iterates generated by the trust-region

interior-point SQP Algorithms 5.1 under Conditions C.1 and C.3. If xk converges
to a nondegenerate point x∗ satisfying the second-order sufficient KKT conditions,
then δk is uniformly bounded away from zero and eventually all the iterations will be
successful.

Proof. It follows from limk xk = x∗ and C(x∗) = 0 that limk ‖Ck‖ = 0. This fact,
condition (21), and Assumptions A.3–A.4, together imply

lim
k
‖WT

k Hks
n
k‖ = 0.

Since xk converges to a nondegenerate point that satisfies the second-order sufficient
KKT conditions and limk ‖WT

k Hks
n
k‖ = 0, there exists a γ̄ > 0 such that the smallest

eigenvalue of D̄kW
T
k HkWkD̄k + Ek is greater than γ̄ for k sufficiently large.

First we will proof that {ρk} is a bounded sequence. Since Ψk(0)−Ψk((sk)u) ≥ 0,
we obtain

1
2 (D̄−1

k (sk)u)T
(
D̄kW

T
k HkWkD̄k + Ek

)
(D̄−1

k (sk)u) ≤ −(D̄−1
k (sk)u)T (D̄kḡk)

≤ ‖D̄−1
k (sk)u‖ ‖D̄kḡk‖,

which, by using the upper bounds on Wk and D̄k given by Assumptions A.4 and A.6,
implies

‖st
k‖ = ‖Wk(sk)u‖ ≤ 2ν6ν9

γ̄
‖D̄kḡk‖.(96)

Using (52) and (96), we find that

qk(sn
k)− qk(sn

k +Wk(sk)u) ≥ κ6‖D̄kḡk‖min{κ7‖D̄kḡk‖, κ8δk}
≥ κ23‖st

k‖2,
(97)

where κ23 = κ6γ̄
2ν6ν9

min{ κ7γ̄
2ν6ν9

, κ8

ν6ν9
, κ8

1+ν9
} accounts for the decoupled and coupled

cases.
Next, we prove that if ‖Ck‖ ≤ α′′‖sk‖, where α′′ will be defined later, then the

penalty parameter does not need to be increased. From (21) and ‖Ck‖ ≤ α′′‖sk‖, we
get

‖sk‖2 ≤ (‖sn
k‖+ ‖st

k‖)2 ≤ 2‖sn
k‖2 + 2‖st

k‖2

≤ 2α′′κ2
1‖Ck‖ ‖sk‖+ 2‖st

k‖2.
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This estimate, (21), (60), (97), and ‖Ck‖ ≤ α′′‖sk‖ yield

pred(sk; ρ) = qk(sn
k)− qk(sn

k +Wk(sk)u) + qk(0)− qk(sn
k)−∆λTk (Jksk + Ck)

+ ρ
(‖Ck‖2 − ‖Jksk + Ck‖2

)
≥ 1

4
κ23‖sk‖2 +

(
1

4
κ23‖sk‖ − (α′′κ2

1κ23 + κ11(α′′κ1 + 1))‖Ck‖
)
‖sk‖(98)

+ ρ
(‖Ck‖2 − ‖Jksk + Ck‖2

)
,

for every ρ > 0. If ‖Ck‖ ≤ α′′‖sk‖, where α′′ satisfies

(4κ11) α′′ +
(
4κ2

1κ23 + 4κ1κ11

)
(α′′)2 ≤ κ23 ,(99)

then we set ρ = ρk−1 in (98) and deduce that the penalty parameter does not need
to be increased. See step 2.3 of Algorithms 5.1. Hence if ρk is increased, then the
inequality ‖Ck‖ > α′′‖sk‖ must hold, and we can proceed as in Theorem 8.1, equation
(83), and write

ρk
2
κ2‖Ck‖min

{
κ3‖Ck‖, 1

κ4
‖sk‖

}
≤ (κ11(κ22 + 1) + ρ̄ν4)‖sk‖ ‖Ck‖

(here we used inequality (95)), which in turn implies(
κ2

2
min

{
κ3α

′′,
1

κ4

})
ρk ≤ κ11(κ22 + 1) + ρ̄ν4.

This gives the uniform boundedness of the penalty parameter

ρk ≤ ρ∗
for all k.

Given the boundedness of {ρk} we can complete the proof of the theorem. If
‖Ck‖ > α′′‖sk‖, where α′′ satisfies (99), then from (47) and (67) we find that

pred(sk; ρk) ≥ ρk κ2

2
‖Ck‖min{κ3‖Ck‖, δk} ≥ ρkκ24‖sk‖2,(100)

where κ24 = κ2α
′′

2 min{κ3α
′′, 1

κ4
}. In this case it follows from (66) and (100) that∣∣∣∣ared(sk; ρk)

pred(sk; ρk)
− 1

∣∣∣∣ ≤ κ13

κ24
(‖sk‖+ ‖Ck‖) .(101)

Now, suppose that ‖Ck‖ ≤ α′′‖sk‖. From (98) with ρ = ρk we obtain pred(sk; ρk) ≥
κ23

4 ‖sk‖2. Now we use (66) and ρk ≤ ρ∗ to get∣∣∣∣ared(sk; ρk)

pred(sk; ρk)
− 1

∣∣∣∣ ≤ 4κ13ρ∗
κ23

(‖sk‖+ ‖Ck‖) .(102)

Finally from (101), (102), limk xk = x∗, and limk ‖Ck‖ = 0, we get

lim
k

ared(sk; ρk)

pred(sk; ρk)
= 1,

which by the rules for updating the trust radius given in step 2.4 of Algorithms 5.1,
shows that δk is uniformly bounded away from zero.
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We use the following straightforward globalization of the quasi-normal component
sn
k of the Newton step given in (44). The new quasi-normal component is given by

sn
k =

( −ξkCy(xk)−1Ck
0

)
,(103)

where

ξk =

{
1 if ‖Cy(xk)−1Ck‖ ≤ δk,
δk

‖Cy(xk)−1Ck‖ otherwise.
(104)

Before we state the q-quadratic rate of convergence, we prove the following im-
portant result.

Lemma 9.3. The quasi–normal component (103) satisfies conditions (18), (21),
and (22) for some positive κ1, κ2, and κ3 independent of k.

Proof. It is obvious that (18) holds. Condition (21) is a direct consequence of
the condition (22). In fact, using ‖Cy(xk)(sn

k)y + Ck‖ ≤ ‖Ck‖ and the boundedness
of {Cy(xk)−1}, we find that

‖sn
k‖ = ‖sn

k + Cy(xk)−1Ck − Cy(xk)−1Ck‖
≤ ‖Cy(xk)−1‖

(
‖Cy(xk)(sn

k)y + Ck‖+ ‖Ck‖
)
≤ 2ν6 ‖Ck‖ .

(105)

So, let us prove (22). A simple manipulation shows that

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 = ‖Ck‖2 − ‖ − ξkCy(xk)Cy(xk)−1Ck + Ck‖2

= ‖Ck‖2 −
(

(1− ξk)‖Ck‖
)2

= ξk(2− ξk)‖Ck‖2 ≥ ξk ‖Ck‖2.
We need to consider two cases. If ξk = 1, then

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 ≥ ‖Ck‖min{‖Ck‖, δk}.

Otherwise ξk = δk
‖Cy(xk)−1Ck‖ . In this case we get

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 ≥ 1

ν6
‖Ck‖ δk ≥ 1

ν6
‖Ck‖min{‖Ck‖, δk}.

Thus, the result holds with κ2 = min{1, 1
ν6
} and κ3 = 1.

Corollary 9.4. Let {xk} be a sequence of iterates generated by the trust-region
interior-point SQP Algorithms 5.1 under Conditions C.1, C.3, and C.4. If xk con-
verges to a nondegenerate point x∗ satisfying the second-order sufficient KKT condi-
tions, then xk converges q-quadratically.

Proof. We start by showing that |τN
k − 1| is O (‖xk − x∗‖), where τN

k is given by

(46). Since limk ‖WT
k Hks

n
k‖ = 0, we have that | τN

k

σk
− 1| is O(‖(sN

k )u‖) (see [12, Eq.

(6.4) and Lem. 12]). Also since by Condition C.4 |σk − 1| is O(‖D̄kḡk‖) and D̄kḡk is
O(‖(sN

k )u‖) (see (43)), we can see that |σk − 1| is also O(‖(sN
k )u‖). Furthermore,

|τN
k − 1| ≤ σk

∣∣∣∣τN
k

σk
− 1

∣∣∣∣+ |σk − 1| .
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Hence |τN
k −1| is O(‖(sN

k )u‖). But (sN
k )u is O (‖xk + sn

k − x∗‖) and sn
k is O (‖xk − x∗‖)

and this shows that |τN
k − 1| is O (‖xk − x∗‖).

We need to prove that Condition C.4 does not conflict with Condition C.1 so
that Theorem 9.2 can be applied. In other words, we need to show that the decrease
conditions given in Condition C.1 hold for the Newton damped step (45) whenever it
is taken. In Lemma 9.3 we showed that the quasi-normal component sn

k given in (103)
satisfies (18), (21), and (22). From Condition C.4, sn

k given by (44) is used when it
coincides with the sn

k given by (103). Thus sn
k given by (44) satisfies also (18), (21),

and (22). It remains to prove that τN
k (sN

k )u satisfies the Cauchy decrease condition
(30) ((31) for the coupled approach). This is indeed the case, since

Ψk(0)−Ψk(τN
k (sN

k )u)

≥ −τN
k ḡ

T
k (sN

k )u − 1

2
(τN
k )2((sN

k )u)T
(
WT
k HkWk + EkD̄

−2
k

)
((sN

k )u)

≥ τN
k

(
−ḡTk (sN

k )u − 1

2
((sN

k )u)T
(
WT
k HkWk + EkD̄

−2
k

)
((sN

k )u)

)
≥ τN

k

(
Ψk(0)−Ψk(cd

k)
)
,

and |τN
k − 1| is O (‖xk − x∗‖).

Now we need to show that eventually sk is given by (45). Since {xk} converges
to a nondegenerate point satisfying the second-order sufficient KKT conditions, (sN

k )u
exists for k sufficiently large. Furthermore, (sn

k)y = −Cy(xk)−1Ck for k large enough
because limk ‖Cy(xk)−1Ck‖ = 0, and from Theorem 9.2, δk is eventually bounded
away from zero. Using a similar argument we see that τN

k (sN
k )u is inside the trust

region (27) for the decoupled approach or (29) for the coupled approach. So, from
Condition C.4 we conclude that there exists a positive integer k̄ such that sk is given
by (45) for k ≥ k̄.

Using the fact that (sN
k )u is O (‖xk − x∗‖), we conclude that τN

k (sN
k )u − (sN

k )u is

O (‖xk − x∗‖2). Thus,

sk − sN
k =

(
sn
k − Cy(xk)−1Cu(xk)τN

k (sN
k )u

τN
k (sN

k )u

)
−
(
sn
k − Cy(xk)−1Cu(xk)(sN

k )u
(sN
k )u

)
is O (‖xk − x∗‖2). This completes the proof since sN

k can be seen as a Newton step
on a given vector function of the type (17). This function vanishes at x∗ and is
continuously differentiable with Lipschitz continuous derivatives and a nonsingular
Jacobian matrix in an open neighborhood of x∗. See the discussion at the end of
section 4. Thus, the q-quadratic rate of convergence follows from [17, Thm. 5.2.1]

and from the fact that sk − sN
k is O (‖xk − x∗‖2).

10. Trial steps and multiplier estimates. When we described the trust-
region interior-point SQP algorithms, we deferred the practical computation of the
quasi-normal and tangential components and of the multiplier estimates. In the fol-
lowing sections we address these issues.

10.1. Computation of the quasi-normal component. The quasi-normal
component sn

k is an approximate solution of the trust-region subproblem

minimize
1

2
‖Cy(xk)(sn)y + Ck‖2(106)

subject to ‖(sn)y‖ ≤ δk,
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and it is required for global convergence to a point that satisfies the necessary KKT
conditions to satisfy conditions (18), (21), and (22). As we saw in equation (105) of
the proof of Lemma 9.3, property (21) is a consequence of (22). Whether property
(22) holds depends on the way in which the quasi-normal component is computed.
We will show below that (22) is satisfied by many reasonable ways to compute sn

k.
There are various ways to compute the quasi-normal component sn

k for large scale
problems. For example, one can use the conjugate-gradient method as suggested
in [61] and [63], or one can use the Lanczos bidiagonalization as described in [26].
Both methods compute an approximate minimizer to the least squares functional in
(106) from a subspace which contains its negative gradient −Cy(xk)TCk. Thus, the
components sn

k generated by these methods satisfy ||sn
k|| ≤ δk and

1

2
‖Cy(xk)(sn

k)y+Ck‖2 ≤ min

{
1

2
‖Cy(xk)s+ Ck‖2 : s ∈ span{−Cy(xk)TCk}, ‖s‖ ≤ δk

}
.

We can appeal to a classical result due to Powell (see [52, Thm. 4], [45, Lem. 4.8])
to show that

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 ≥ 1

2
‖Cy(xk)TCk‖min

{ ‖Cy(xk)TCk‖
‖Cy(xk)TCy(xk)‖ , δk

}
.

Now one can use the fact that {Cy(xk)} and {Cy(xk)−T } are bounded and can write

‖Ck‖2 − ‖Cy(xk)(sn
k)y + Ck‖2 ≥ κ2‖Ck‖min{κ3‖Ck‖, δk},

where κ2 and κ3 are positive and do not depend on k.
An alternative to the previous procedures is to compute the solution of Cy(xk)s =

−C(xk) and to scale this solution back into the trust region (see (103)). In Lemma
9.3, we proved that (103) satisfies conditions (18), (21), and (22).

10.2. Computation of the tangential component. In this section we show
how to derive conjugate-gradient algorithms to compute (sk)u. Other practical al-
gorithms to compute trial steps for box-constrained minimization trust-region sub-
problems are introduced in [7] using three-dimensional subspace approximations and
conjugate gradients.

Let us consider first the decoupled trust-region approach given in section 5.2.1. If
we ignore the bound constraints for the moment, we can apply the conjugate-gradient
algorithm proposed by Steihaug [61] and Toint [63] to solve the problem

minimize Ψk(su)

subject to ‖D̄−1
k su‖ ≤ δk.

However, we also need to incorporate the constraints

σk(a− uk) ≤ su ≤ σk(b− uk).

This leads to the following algorithm:
Algorithm 10.1 (computation of sk = sn

k +Wk(sk)u (decoupled approach)).
1. Set s0

u = 0, r0 = −ḡk = −WT
k ∇qk(sn

k), q0 = D̄2
kr0, d0 = q0, and ε > 0.

2. For i = 0, 1, 2, . . . do

2.1. Compute γi =
rTi qi

dT
i

(WT
k
HkWk+EkD̄

−2
k

)di
.
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2.2. Compute
τi = max{τ > 0 : ‖D̄−1

k (siu + τdi)‖ ≤ δk,
σk(a− uk) ≤ siu + τdi ≤ σk(b− uk)}.

2.3. If γi ≤ 0, or if γi > τi, then set (sk)u = siu + τidi, where τi is given as in
2.2 and go to 3; otherwise set si+1

u = siu + γidi.
2.4. Update the residuals: ri+1 = ri − γi(WT

k HkWk +EkD̄
−2
k )di and qi+1 =

D̄2
kri+1.

2.5. Check truncation criteria: if

√
rT
i+1

qi+1

rT0 q0
≤ ε, set (sk)u = si+1

u and go

to 3.

2.6. Compute αi =
rTi+1qi+1

rT
i
qi

and set di+1 = qi+1 + αidi.

3. Compute sk = sn
k +Wk(sk)u and stop.

Step 2 iterates entirely in the vector space of the u variables. After the u com-
ponent of the step sk has been computed, step 3 finds its y component. The decou-
pled approach allows an efficient use of an approximation Ĥk to the reduced Hessian
WT
k ∇2

xx`kWk. In this case, only two linear systems are required, one with Cy(xk)T

in step 1 to compute ḡk and the other with Cy(xk) in step 3 to compute Wk(sk)u. If
the Hessian ∇2

xx`k is being approximated, then the total number of linear systems is
2I(k) + 2, where I(k) is the number of conjugate-gradient iterations.

One can transform this algorithm to work in the whole space rather than in the
reduced space by considering the coupled trust-region approach given in section 5.2.2.
This alternative is presented below.

Algorithm 10.2 (computation of sk = sn
k +Wk(sk)u (coupled approach)).

1. Set s0 = 0, r0 = −ḡk = −WT
k ∇qk(sn

k), q0 = D̄2
kr0, d0 = Wkq0, and ε > 0.

2. For i = 0, 1, 2, . . . do

2.1. Compute γi =
rTi qi

dT
i
Hkdi+(di)TuEkD̄

−2
k

(di)u
.

2.2. Compute

τi = max

{
τ > 0 :

∥∥∥∥( −Cy(xk)−1Cu(xk)τ(di)u
D̄−1
k τ(di)u

)∥∥∥∥ ≤ δk,
σk(a− uk) ≤ siu + τ(di)u ≤ σk(b− uk)

}
.

2.3. If γi ≤ 0, or if γi > τi, then st
k = si + τidi, where τi is given as in 2.2,

and go to 3; otherwise set si+1 = si + γidi.
2.4. Update the residuals: ri+1 = ri − γi

(
WT
k Hkdi + EkD̄

−2
k (di)u

)
and

qi+1 = D̄2
kri+1.

2.5. Check truncation criteria: if

√
rT
i+1

qi+1

rT0 q0
≤ ε, set st

k = si+1 and go to 3.

2.6. Compute αi =
rTi+1qi+1

rT
i
qi

and set di+1 = Wk(qi+1 + αidi).

3. Compute sk = sn
k + st

k and stop.
Note that in step 2 both the y and the u components of the tangential compo-

nent are being computed. The coupled approach is suitable particularly when an
approximation Hk to the full Hessian ∇2

xx`k is used. The coupled approach can be

used also with an approximation Ĥk to the reduced Hessian WT
k ∇2

xx`kWk. In this
case, we consider Hk that is given by (41) and use the equalities (42) to compute
the terms involving Hk in Algorithm 10.2. If the Hessian ∇2

xx`k is approximated, the
total number of linear systems is 2I(k) + 2, where I(k) is the number of conjugate-
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gradient iterations. If the reduced Hessian WT
k ∇2

xx`kWk is approximated, this number
is I(k) + 2.

Two final important remarks are in order.
Remark 10.1. If WT

k Wk was included as a preconditioner in Algorithm 10.2, then
the conjugate-gradient iterates would monotonically increase in the norm ‖Wk · ‖.
Dropping this preconditioner means that the conjugate-gradient iterates do not nec-
essarily increase in this norm (see [61]). As a result, if the quasi-Newton step is
inside the trust region, Algorithm 10.2 can terminate prematurely by stopping at the
boundary of the trust region.

Remark 10.2. Since the conjugate-gradient Algorithms 10.1 and 10.2 start by
minimizing the quadratic function Ψk(su) along the direction −D̄2

kḡk, it is quite clear
that they produce reduced tangential components (sk)u that satisfy (30) and (31),
respectively, with βd

1 = βc
1 = 1.

10.3. Multiplier estimates. A convenient estimate for the Lagrange multipli-
ers is the adjoint update

λk = −Cy(xk)−T∇yfk,(107)

which we use after each successful step. However, we also consider the following
update:

λk+1 = −Cy(xk)−T∇yqk(sn
k) = −Cy(xk)−T ((Hks

n
k)y +∇yfk) .(108)

Here the use of (108) instead of

λk+1 = −Cy(xk + sk)−T∇yf(xk + sk),(109)

might be justified, since we obtain (108) without any further cost from the first it-
eration of any of the conjugate-gradient algorithms described above. The updates
(107), (108), and (109) satisfy the requirement given by A.4 needed to prove global
convergence to a first-order KKT point.

11. Numerical example. A typical application that has the structure de-
scribed in this paper is the control of a heating process. In this section we introduce a
simplified model discussed in [8] for the heating of a probe in a kiln. The temperature
y(x, t) inside the probe is governed by a nonlinear partial differential equation. The
spatial domain is given by (0, 1). The boundary x = 1 is the inside of the probe and
x = 0 is the boundary of the probe.

The goal is to control the heating process in such a way that the temperature
inside the probe follows a certain desired temperature profile yd(t). The control u(t)
acts on the boundary x = 0. The problem can be formulated as follows.

minimize
1

2

∫ T

0

[(y(1, t)− yd(t))2 + γu2(t)]dt(110)

subject to

τ(y(x, t))∂y∂t (x, t)− ∂x(κ(y(x, t))∂xy(x, t)) = q(x, t), (x, t) ∈ (0, 1)× (0, T ),

κ(y(0, t))∂xy(0, t) = g[y(0, t)− u(t)], t ∈ (0, T ),

κ(y(1, t))∂xy(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1),

ulow ≤ u ≤ uupp,
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where y ∈ L2(0, T ;H1(0, 1)) and u ∈ L2(0, T ). The functions τ : R → R and
κ : R→ R denote the specific heat capacity and the heat conduction, respectively, y0

is the initial temperature distribution, q is the source term, g is a given scalar, and γ
is a regularization parameter. Here ulow, uupp ∈ L∞(0, T ) are given functions.

If the partial differential equation and the integral are discretized, we obtain an
optimization problem of the form (1). The discretization uses finite elements and
was introduced in [8] (see also [29] and [39]). The spatial domain (0, 1) is divided
into Nx subintervals of equidistant length, and the spatial discretization is done using
piecewise linear finite elements. The time discretization is performed by partitioning
the interval [0, T ] into Nt equidistant subintervals. Then the backward Euler method
is used to approximate the state space in time, and piecewise constant functions are
used to approximate the control space. This leads to a discretized problem with
dimension n = Nt(Nx + 1) + Nt and m = Nt(Nx + 1). Under the assumptions
on the coefficient functions κ and τ stated in [8] and [39] which guarantee the well
posedness of the infinite-dimensional problem, it is shown in [39] that the constraints
C(y, u) of the discretized problem satisfy the assumptions A.3 and A.5, provided the
discretization parameters Nx and Nt are chosen appropriately. For more details we
refer to the comprehensive treatments in [8] and [39].

The algorithms studied in this paper have been implemented in FORTRAN 77.
The resulting software package TRICE (trust-region interior-point SQP algorithms
for optimal control and engineering design problems) is available via the internet [16].

We use the formula (103) to compute the quasi-normal component, and use Al-
gorithms 10.1 and 10.2 to calculate the tangential component. The numerical test
computations were done on a Sun Sparcstation 10 in double precision. These results
demonstrate the effectiveness of the algorithms.

With this discretization scheme, Cy(x) is a block bidiagonal matrix with tridiag-
onal blocks. Hence linear systems with Cy(x) and Cy(x)T can be solved efficiently
by block forward substitution or block backward substitution, respectively. In each
substitution step, only a small system with tridiagonal system has to be solved. In the
implementation we use the linpack subroutine dgtsl to solve the tridiagonal sys-
tems. Notice that direct factorizations are only applied to the small (Nx+1)×(Nx+1)
tridiagonal subblocks of Cy(x) but not to the entire Jacobian matrix (Cy(x) Cu(x)).
See also [39].

As we pointed out in section 1, the inner products and norms used in the trust-
region interior-point SQP algorithms are not necessarily the Euclidean ones. In our
implementation [16], we call subroutines to calculate the inner products 〈y1, y2〉 and
〈u1, u2〉 with y1, y2 ∈ Rm and u1, u2 ∈ Rn−m. The user may supply these subroutines
to incorporate a specific scaling. If the inner product 〈x1, x2〉 is required, then it is
calculated as 〈y1, y2〉+〈u1, u2〉. In this example, we used discretizations of the L2(0, T )
and L2(0, T ;H1(0, 1)) norms for the control and the state spaces, respectively. This
is important for the correct computation of the adjoint and the appropriate scaling
of the problem.

In our numerical example we use the functions

τ(y) = q1 + q2y, y ∈ R, κ(y) = r1 + r2y, y ∈ R,

with parameters r1 = q1 = 4, r2 = −1, and q2 = 1. The desired and initial tempera-
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tures, and the right-hand side, are given by

yd(t) = 2− eηt,
y0(x) = 2 + cosπx, and

q(x, t) = [η(q1 + 2q2) + π2(r1 + 2r2)]eηt cosπx

−r2π
2e2ηt + (2r2π

2 + ηq2)e2ηt cos2 πx,

with η = −1. The final temperature is chosen to be T = 0.5 and the scalar g = 1 is
used in the boundary condition. The functions in this example are those used in [39,
Ex. 4.1]. The size of the problem tested is n = 2200, m = 2100 corresponding to the
values Nt = 100, Nx = 20.

The scheme used to update the trust radius is the following fairly standard one:
• If ratio(sk; ρk) < 10−4, reject sk and set δk+1 = 0.5 norm(sk);
• if 10−4 ≤ ratio(sk; ρk) < 0.1, reject sk and set δk+1 = 0.5 norm(sk);
• if 0.1 ≤ ratio(sk; ρk) < 0.75, accept sk and set δk+1 = δk;
• if ratio(sk; ρk) ≥ 0.75, accept sk and set δk+1 = min

{
2δk, 1010

}
;

where ratio(sk; ρk) = ared(sk;ρk)
pred(sk;ρk) ,

norm(sk) = max
{‖sn

k‖, ‖D̄−1
k (sk)u‖

}
in the decoupled approach, and

norm(sk) = max

{
‖sn
k‖,
∥∥∥∥( −Cy(xk)−1Cu(xk)(sk)u

D̄−1
k (sk)u

)∥∥∥∥}
in the coupled approach. The algorithms are stopped if the trust radius gets below
10−8.

We have used σk = σ = 0.99995 for all k; δ0 = 1 as initial trust radius; ρ−1 = 1
and ρ̄ = 10−2 in the penalty scheme. The tolerance used in the conjugate-gradient
iteration was ε = 10−4. The upper and lower bounds were bi = 10−2, ai = −1000,
i = 1, . . . , n−m. The starting vector was x0 = 0.

For both the decoupled and the coupled approaches, we did tests using approx-
imations to reduced and to full Hessians. We approximate these matrices with the
limited memory BFGS representations given in [10] with a memory size of five pairs
of vectors. For the reduced Hessian we use a null-space secant update (see [49], [67]).
The initial approximation chosen was γIn−m for the reduced Hessian and γIn for the
full Hessian, where γ is the user specified regularization parameter in the objective
function (110).

In our implementation we use the following form of the diagonal matrix D̄k:

(
D̄k

)
ii

=

 min{1, (b− uk)i} if (ḡk)i < 0,

min{1, (uk − a)i} if (ḡk)i ≥ 0,
(111)

for i = 1, . . . , n −m. This form of D̄k gives a better transition between the infinite
and finite bound and is less sensitive to the introduction of meaningless bounds. See
also Remark 3.1.

The algorithms were stopped when

‖DkW
T
k ∇fk‖+ ‖Ck‖ < 10−8.
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Table 1
Numerical results for γ = 10−2.

Decoupled Coupled

Reduced Ĥk Full Hk Reduced Ĥk Full Hk
number of iterations k∗ 14 20 17 18

‖Ck∗‖ .5082E − 11 .1370E − 10 .7122E − 12 .8804E − 11

‖Dk∗WT
k∗∇fk∗‖ .4033E − 08 .1389E − 08 .6365E − 10 .2641E − 08

‖sk∗−1‖ .1230E − 04 .1461E − 04 .3546E − 05 .1445E − 04
δk∗−1 .1638E + 05 .1049E + 07 .1311E + 06 .2621E + 06
ρk∗−1 .1000E + 01 .1000E + 01 .1000E + 01 .1000E + 01

Table 2
Numerical results for γ = 10−3.

Decoupled Coupled

Reduced Ĥk Full Hk Reduced Ĥk Full Hk
number of iterations k∗ 16 18 17 19

‖Ck∗‖ .6233E − 11 .1115E − 10 .6487E − 11 .1246E − 09

‖Dk∗WT
k∗∇fk∗‖ .5161E − 08 .2539E − 08 .7282E − 09 .4696E − 08

‖sk∗−1‖ .1626E − 04 .1703E − 04 .1530E − 04 .4659E − 04
δk∗−1 .6554E + 05 .2621E + 06 .1311E + 06 .5243E + 06
ρk∗−1 .1000E + 01 .1000E + 01 .1000E + 01 .1000E + 01

The results are shown in Tables 1 and 2 corresponding to the values γ = 10−2 and
γ = 10−3, respectively. There were no rejected steps. The different alternatives tested
performed quite similarly. The decoupled approach with reduced Hessian approxima-
tion seems to be the best for this example. Note that in this case the computation of
each trial step costs only three linear system solvers with Cy(xk) and Cy(xk)T—one to
compute the quasi-normal component and two for the computation of the tangential
component.

We performed an experiment to compare the use of the Coleman–Li affine scaling
with the Dikin–Karmarkar affine scaling. When applied to our class of problems,
the Coleman–Li affine scaling is given by the matrices Dk and D̄k. A study of the
Dikin–Karmarkar affine scaling for steepest descent is given in [54]. For our class of
problems, this scaling is given by(

Kk

)
ii

= min{1, (uk − a)i, (b− uk)i}, i = 1, . . . , n−m,(112)

and has no dual information built in. We ran the trust-region interior-point SQP
algorithm with the decoupled and reduced Hessian approximation and with (111)
replaced by (112). The algorithm took only 11 iterations to reduce ‖KkW

T
k ∇fk‖ +

‖Ck‖ to 10−8. However, as we can see from the plots of the controls in Figures 1 and
2, the algorithm did not find the correct solution when it used the Dikin–Karmarkar
affine scaling (112). Some of the variables are at the wrong bound corresponding to
negative multipliers.

12. Conclusions. In this paper we have introduced and analyzed some trust-
region interior-point SQP algorithms for an important class of nonlinear program-
ming problems that appear in many engineering applications. These algorithms use
the structure of the problem, and they combine trust-region techniques for equality-
constrained optimization with an affine scaling interior-point approach for simple
bounds. We have proved global and local convergence results for these algorithms
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Fig. 1. Coleman–Li affine scaling.
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Fig. 2. Dikin–Karmarkar affine scaling.

that includes as special cases both the results established for equality constraints [15],
[19] and those for simple bounds [13].

We have implemented the trust-region interior-point SQP algorithms covering
several trial step computations and second-order approximations. In this paper we
have reported numerical results for the solution of a specific optimal control problem
governed by a nonlinear heat equation. In [11], [30], and [31], these algorithms have
been applied to other optimal control problems. The numerical results have been
quite satisfactory.

We are investigating extensions of these algorithms to handle bounds on the state
variables y. See [66]. We are also developing an inexact analysis to deal with trial
step computations that allow for inexact linear system solvers and inexact direc-
tional derivatives [31]. The formulation and analysis of these methods in an infinite-
dimensional framework is also part of our current studies.
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Abstract. We introduce a penalized Neumann boundary control approach for solving an opti-
mal Dirichlet boundary control problem associated with the two- or three-dimensional steady-state
Navier–Stokes equations. We prove the convergence of the solutions of the penalized Neumann con-
trol problem, the suboptimality of the limit, and the optimality of the limit under further restrictions
on the data. We describe the numerical algorithm for solving the penalized Neumann control problem
and report some numerical results.
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1. Introduction. Optimal control for the Navier–Stokes equations has been the
subject of extensive study in recent years and much progress has been made both
mathematically and computationally; see, e.g., [AT], [FS1], [FS2], [FS3], [Fu1], [Fu2],
[Fu3], [Gun], [GHS1], [GHS2], [GHS3], [HS], [HY1], [HY2], [HYR], [Li], [S1], and [S2].
In this work we confine ourselves to optimal Dirichlet control problems for the steady-
state Navier–Stokes equations. Dirichlet controls, i.e., boundary velocity controls or
boundary mass flux controls, are common in applications. For instance, one often
attempts, through the suction and injection of fluid through orifices on the boundary
to reduce the drag on a body moving through a fluid. Optimal Dirichlet control prob-
lems for time-dependent Navier–Stokes equations were studied in [FGH] for general
Dirichlet controls and in [FS1], [FS2], [FS3] and [S1], [S2] for Dirichlet controls in a
special case, namely, when the control is of the separation-of-variable type. Optimal
Dirichlet control problems for steady-state Navier–Stokes equations were studied in
[GHS2], [GHS3], and [HS]. In [GHS3], optimal Dirichlet controls of finite dimensions
were analyzed and some numerical results presented. In [GHS2], the existence and
regularity of optimal solutions for optimal Dirichlet control problems were proved; an
optimality system of equations was derived; and finite element approximations were
defined and optimal error estimates established. In [HS], optimal control problems
with smooth Dirichlet controls were studied; in particular, an optimality system of
equations was derived. The optimality systems in [GHS2] and [HS] involve a boundary
Laplacian or a boundary biharmonic equation that complicates the numerical reso-
lution of the optimality systems. In finite element approximations of (uncontrolled)
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boundary value problems for partial differential equations, Neumann boundary con-
ditions are generally easier to handle than the Dirichlet ones; and the same is true
of optimal boundary control problems. Inspired by the penalty method for solving
Dirichlet problems for (uncontrolled) elliptic partial differential equations (see [Ba]),
we propose in this article a penalty method for solving the optimal Dirichlet control
problem. The proposed penalty approach avoids the boundary Laplacian or bound-
ary biharmonic equations that appeared in [GHS2] and [HS]. The advantages (as well
as disadvantages) of the penalty method in solving uncontrolled Dirichlet boundary
value problems essentially hold true in solving optimal Dirichlet boundary control
problems.

The optimal Dirichlet control problem we consider is to minimize the vorticity of
viscous, incompressible flow by choosing an appropriate boundary velocity. Precisely,
we will study the following optimal control problem: find a triplet (u, p,g) such that
the functional

J (u,g) =
α

2

∫
Ω

|curl u|2 dx +
β

2

∫
Γ

|g|2 ds(1.1)

is minimized subject to the steady-state Navier–Stokes equations

−ν∆u + (u · ∇)u +∇p = f in Ω ,(1.2)

div u = 0 in Ω,(1.3)

and

u = g on Γ .(1.4)

Here, Ω is a two- or three-dimensional bounded and simply connected flow domain
(Ω is assumed to be of class C1,1 or convex in R2 and of class C1,1 in R3); Γ denotes
the boundary of Ω; ν > 0 denotes the constant viscosity; u and p denote the velocity
field and the pressure field, respectively; f is a prescribed forcing term; and g is the
boundary velocity—the control field. Because of the divergence-free condition on u,
g must necessarily satisfy

∫
Γ

g · n ds = 0. The constants α and β appearing in the
functional (1.1) are two positive parameters that adjust the relative weights of the
two terms in the functional. Note that we use the same notation curl to denote the
curl operators in two dimensions and three dimensions, although they are defined
differently. The choice of the functional is motivated by the fact that irrotational
flows have no local flow recirculations. We hope that minimizing the L2-norm of the
vorticity will lead to reduction in flow recirculations.

The plan of the paper is as follows. In section 2, we review mathematical back-
ground materials related to the steady-state Navier–Stokes equations and give a pre-
cise description of the optimal control problem we consider. In section 3, we introduce
the penalized Neumann control approach and prove the existence of an optimal so-
lution for the penalized Neumann control problem. In section 4, we demonstrate the
convergence of the penalized optimal boundary control solutions and show that the
limit is suboptimal. In section 5, we show that the limit found in section 4 is indeed
an optimal solution for the optimal Dirichlet control problem. Finally in section 6, we
describe the formal procedures for computing an approximate optimal solution and
present some numerical results.
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2. Preliminaries. Throughout, C or Ci (where i is any subscript) denotes a
constant depending only on the domain Ω. We denote by L2(Ω) the collection of
Lebesgue square-integrable functions defined on Ω. Let H1(Ω) =

{
v ∈ L2(Ω) :

∂v
∂xi
∈ L2(Ω) for i = 1, . . . , d

}
, where d = 2 or 3; H1

0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0};
L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω
q dx = 0}; and Hm(Ω) =

{
v ∈ L2(Ω) : ∂|α|v

∂x
α1
1 ···∂x

αd
d

∈
L2(Ω) for all α = (α1, . . . , αd) with |α| ≤ m

}
, where d = 2 or 3. Here m > 0 is an

integer. For the definition of fractional ordered Sobolev spaces Hs(Ω) (s noninteger),
see [Ad]. Negative ordered Sobolev spaces H−s(Ω) (s > 0) are defined as the dual
space, i.e., H−s(Ω) =

{
Hs

0(Ω)
}∗

. Vector-valued counterparts of these spaces are
denoted by boldface symbols, e.g., H1(Ω) = [H1(Ω)]d, where d = 2 or 3. The trace
spaces Hr(Γ) are the restriction to the boundary of Hr+1/2(Ω). We denote the norms
and inner products for Hs(Ω) or Hs(Ω) by ‖ · ‖s and (·, ·)s, respectively. The L2(Ω)
or L2(Ω) inner product is denoted by (·, ·). We denote the norms and inner products
for Hr(Γ) or Hr(Γ) by ‖ · ‖r,Γ and (·, ·)r,Γ, respectively. The L2(Γ) or L2(Γ) inner
product is denoted by (·, ·)Γ. The duality pairing between a Sobolev space Hs(Ω)
(s > 0) and its dual space is denoted by 〈·, ·〉. The duality pairing between a trace
space Hr(Γ) (r > 0) and its dual space is denoted by 〈·, ·〉Γ.

We define the following standard bilinear, trilinear forms associated with the
Navier–Stokes equations

a(u,v) =

∫
Ω

(∇u) : (∇v) dx ∀u,v ∈ H1(Ω) ,

b(u, q) = −
∫

Ω

q div u dx ∀u ∈ H1(Ω),∀ q ∈ L2(Ω),

and

c(u,v,w) =

∫
Ω

(u · ∇)v ·w dx ∀u,v,w ∈ H1(Ω) .

We now summarize some properties of these linear forms. We have the coercivity
relations associated with a(·, ·):

a(u,u) = ‖∇u‖20 ≥ C0 ‖u‖21 ∀u ∈ H1
0(Ω)(2.1)

(which is a direct consequence of Poincaré inequality) and∫
Γ

|v|2 ds+

∫
Ω

∣∣∇v
∣∣2 dx ≥ C1‖v‖21 ∀v ∈ H1(Ω)(2.2)

(whose proof can be found in [Ne]). The forms a(·, ·), b(·, ·), and c(·, ·, ·) are all
continuous; in particular, we have∣∣c(u,v,w)

∣∣ ≤ C2 ‖u‖1 ‖v‖1 ‖w‖1 .(2.3)

The bilinear form b(·, ·) satisfies the following inf-sup conditions:

inf
q∈L2(Ω)

sup
v∈H1(Ω)

∫
Ω
q div v dx

‖q‖0 ‖v‖1 ≥ C3(2.4)
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and

inf
q∈L2

0(Ω)

sup
v∈H1

0(Ω)

∫
Ω
q div v dx

‖q‖0 ‖v‖1 ≥ C3 .(2.5)

The proof of (2.5) can be found in [GR], and that of (2.4) in [Ma]. Using integration-
by-parts techniques we may deduce∫

Ω

(v · ∇)v · v dx =
1

2

∫
Γ

(v · n)|v|2 ds ∀v ∈ H1(Ω) with div v = 0 .(2.6)

We now give the definition of a solution for the Navier–Stokes equations with a
Dirichlet boundary condition. Throughout, we assume f ∈ L2(Ω).

Definition 2.1. Let g ∈ H1/2(Γ). A pair (u, p) ∈ H1(Ω) × L2
0(Ω) is said to be

a solution of the Navier–Stokes equations (1.2)–(1.4) iff

ν a(u,v) + c(u,u,v) + b(v, p) =

∫
Ω

f · v dx ∀v ∈ H1
0(Ω) ,(2.7)

b(u, q) = 0 ∀ q ∈ L2
0(Ω),(2.8)

and

u
∣∣
Γ

= g .(2.9)

A proof of the existence of a solution in the sense of Definition 2.1 can be found
in [GR] and [Te].

The optimal Dirichlet control problem we consider can be stated as:

(P)
seek a (u, p,g) ∈ H1(Ω)× L2

0(Ω)× L2(Γ) such
that (1.1) is minimized subject to (2.7)–(2.9) .

We define the admissible set Uad for (P) by

Uad =
{

(u, p,g) ∈ H1(Ω)× L2
0(Ω)× L2(Γ) : (u, p,g) satisfies (2.7)–(2.9)

}
.

3. Penalized optimal Neumann control problems. For each ε ∈ (0, 1/ν),
we consider the following Neumann control problem: find a (uε, pε,gε) ∈ H1(Ω) ×
L2(Ω)× L2(Γ) such that the functional

J (u,g) =
α

2

∫
Ω

|curl u|2 dx +
β

2

∫
Γ

|g|2 ds(3.1)

is minimized subject to the steady-state Navier–Stokes equations (1.2)–(1.3) with the
nonlinear Neumann (or Robin)-type boundary condition

−pn + ν
∂u

∂n
− 1

2
(u · n)u +

1

ε
u =

1

ε
g on Γ .(3.2)

Formally, we see that as ε→ 0, the Neumann boundary condition (3.2) reduces to the
Dirichlet boundary condition (1.4), and therefore we expect that optimal solutions
for the Neumann boundary control problems approach an optimal solution for the
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Dirichlet boundary control problem. Here, ε acts as a penalty constant. By formally
multiplying (1.2) by a test function v and integrating by parts, we obtain

ν

∫
Ω

(∇u) : (∇v) dx− ν
∫

Γ

∂u

∂n
· v ds+

∫
Ω

(u · ∇)u · v dx

−
∫

Ω

pdiv v dx +

∫
Γ

pn · v ds =

∫
Ω

f · v dx ∀v ∈ H1(Ω) .

Eliminating −pn + ν ∂u
∂n in the boundary integrals using (3.2), we are led to the

following definition of a (weak) solution for the Navier–Stokes equations with the
Neumann boundary condition (3.2).

Definition 3.1. Let g ∈ L2(Γ). A pair (u, p) ∈ H1(Ω) × L2(Ω) is said to be a
solution of (1.2)–(1.3) with the Neumann condition (3.2) iff (u, p) satisfies

ν

∫
Ω

(∇u) : (∇v) dx +
1

ε

∫
Γ

u · v ds− 1

2

∫
Γ

(u · n)u · v ds+

∫
Ω

(u · ∇)u · v dx

−
∫

Ω

pdiv v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

g · v ds ∀v ∈ H1(Ω)

(3.3)

and

−
∫

Ω

q div u dx = 0 ∀ q ∈ L2(Ω) .(3.4)

For each ε > 0, the penalized optimal Neumann control problems we consider can
be stated as follows:

(P)ε
seek a (uε, pε,gε) ∈ H1(Ω)× L2(Ω)× L2(Γ) such

that (3.1) is minimized subject to (3.3)–(3.4) .

In this section we will derive an estimate for solutions of the constraint equations
(3.3)–(3.4) and then prove the existence of a solution for the optimal control problem
(P)ε.

Lemma 3.2. Assume ε ∈ (0, 1/ν) and g ∈ L2(Γ). Then there exists a (u, p) ∈
H1(Ω)× L2(Ω) satisfying (3.3)–(3.4); furthermore,

ν

2

∫
Ω

|∇u|2 dx +
1

4ε

∫
Γ

|u|2 ds ≤ 1

2νC1

∫
Ω

|f |2 dx +
1

ε

∫
Γ

|g|2 ds(3.5)

and

‖p‖0 ≤ 1

C3

(
ν ‖u‖1 + C2‖u‖21 + ‖f‖0

)
,(3.6)

where p = p− (1/|Ω|)∫
Ω
p dx.

Proof. Since ε ∈ (0, 1/ν), we may use (2.2) to obtain

ν

∫
Ω

|∇v| dx +
1

ε

∫
Γ

|v|2 ds ≥ ν
(∫

Ω

|∇v| dx +

∫
Γ

|v|2 ds
)
≥ νC1‖v‖21(3.7)

for every v ∈ H1(Ω). This coercivity relation together with the inf-sup condition
(2.4) allow us to prove the existence of a solution for (3.3)–(3.4) by using standard
techniques for proving the existence of a solution for the Navier–Stokes equations with
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homogeneous Dirichlet conditions (see [Te] or [GR]). Here we also used the fact that
H1(Ω)

∣∣
Γ

= H1/2(Γ) and H1/2(Γ) is continuously embedded into L3(Γ) so that we

have the continuity of the trilinear term
∫

Γ
(u · n)w · v ds on H1(Ω)×H1(Ω)×H1(Ω).

It remains to show that estimates (3.5)–(3.6) hold. Setting v = u in (3.3) and using
(3.4) we obtain

ν

∫
Ω

|∇u|2 dx +
1

ε

∫
Γ

|u|2 ds

≤ 1

2νC1

∫
Ω

|f |2 dx +
νC1

2

∫
Ω

|u|2 dx +
1

ε

∫
Γ

|g|2 ds+
1

4ε

∫
Γ

|u|2 ds,

so that using (3.7) we are led to

ν

2

∫
Ω

|∇u|2 dx +
1

4ε

∫
Γ

|u|2 ds ≤ 1

2νC1

∫
Ω

|f |2 dx +
1

ε

∫
Γ

|g|2 ds ;

i.e., (3.5) is proved. For test functions v ∈ H1
0(Ω), equation (3.3) reduces to

ν a(u,v) + c(u,u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0(Ω) .

Note that p ∈ L2
0(Ω), where p = p− (1/|Ω|)∫

Ω
p dx, and

b(v, p) = −
∫

Ω

(
p− 1

|Ω|
∫

Ω

p dx
)

div v dx = −
∫

Ω

pdiv v dx +
1

|Ω|
∫

Ω

p dx

∫
Ω

div v dx

= b(v, p) +
1

|Ω|
∫

Ω

p dx

∫
Γ

v · n ds = b(v, p) ∀v ∈ H1
0(Ω) .

Using the last two relations and the second inf-sup condition (2.5) we easily obtain
the estimate for p:

‖p‖0 ≤ 1

C3

(
ν ‖u‖1 + C2‖u‖21 + ‖f‖0

)
.

We will make use of the following two lemmas to prove the existence of a solution
for (P)ε.

Lemma 3.3. There exists a positive constant C4 such that

‖w‖21 ≤ C4

(∫
Ω

|div w|2 dx +

∫
Ω

|curl w|2 dx +

∫
Γ

|w|2 ds
)

∀w ∈ H1(Ω) .

Proof. The proof follows standard techniques dealing with norm equivalence on
Sobolev spaces (see, e.g., [Ne]). It proceeds as follows. Assume Lemma 3.3 is false.
Then we may choose a sequence {w(n)}∞n=1 ⊂ H1(Ω) such that ‖w(n)‖1 = 1 for all n
and ∫

Ω

|curl w(n)|2 dx +

∫
Ω

|div w(n)|2 dx +

∫
Γ

|w(n)|2 ds < 1

n
.(3.8)

The boundedness of {w(n)} in H1(Ω) implies that there exists a w ∈ H1(Ω) and a
subsequence of {w(n)}, still denoted by {w(n)}, such that as n→∞,

w(n) ⇀ w in H1(Ω) , w(n) → w in L2(Ω) ,
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curl w(n) ⇀ curl w in L2(Ω) and div w(n) ⇀ div w(n) in L2(Ω) .

Also, since the trace of H1(Ω) equals H1/2(Γ) and the space H1/2(Γ) is continuously
imbedded into L2(Γ), we have that

w(n) ⇀ w in L2(Γ) .

From (3.8) we deduce that

curl w(n) → 0 in L2(Ω) , div w(n) → 0 in L2(Ω) ,

and

w(n)|Γ → 0 in L2(Γ) .

By uniqueness of weak limits we have that

curl w = 0 , div w = 0, and w
∣∣
Γ

= 0 .

Since the boundary value problem curl w = 0, div w = 0, and (w · n)|Γ = 0 admits
a unique trivial solution (see [GR, Theorem I.3.6, p. 48]), we conclude w = 0. This,
of course, contradicts ‖w‖1 ≥ lim infn→∞ ‖w(n)‖1 = 1. Thus the lemma is proved.

Lemma 3.4. Assume u ∈ V ≡ {v ∈ H1(Ω) : div v = 0} is a solution of

ν

∫
Ω

(∇u) : (∇v) dx +
1

ε

∫
Γ

u · v ds− 1

2

∫
Γ

(u · n)u · v ds+

∫
Ω

(u · ∇)u · v dx

=

∫
Ω

f · v dx +
1

ε

∫
Γ

g · v ds ∀v ∈ V.

Then, there exists a p ∈ L2(Ω) such that (3.3)–(3.4) hold.
Proof. The result follows directly from the first inf-sup condition (2.4) and [GR,

Theorem IV.1.4, p. 283].
We are now in a position to prove the existence of a solution to (P)ε.
Theorem 3.5. Assume ε ∈ (0, 1/ν). Then there exists a solution (uε, pε,gε) ∈

H1(Ω)× L2(Ω)× L2(Γ) for the optimal control problem (P)ε.
Proof. From Lemma 3.2 it is obvious that there exists a (u, p,g) ∈ H1(Ω) ×

L2(Ω) × L2(Γ) such that (3.3)–(3.4) holds. Hence we may choose a minimizing se-
quence {(um, pm,gm)} ⊂ H1(Ω)× L2(Ω)× L2(Γ) such that

ν

∫
Ω

∇um : ∇v dx +
1

ε

∫
Γ

um · v ds− 1

2

∫
Γ

(um · n)um · v ds−
∫

Ω

pm div v dx

+

∫
Ω

(um · ∇)um · v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

gm · v ds ∀v ∈ H1(Ω) ,
(3.9)

−
∫

Ω

q div um dx = 0 ∀ q ∈ L2(Ω) ,(3.10)

and

lim
m→∞J (um,gm) = inf

{J (u,g) : (u, p,g) ∈ H1(Ω)× L2(Ω)× L2(Γ)

and (u, p,g) satisfies (3.3)–(3.4)
}
.
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The boundedness of
{J (um,gm)

}
implies the boundedness of

{∥∥gm‖0,Γ}. Then using
(3.5) we see that the set {‖um‖1} is also bounded independent of m (although the
bound depends on ε, which is fixed). Hence we may extract subsequences (still denoted
by um and gm, respectively) such that

um ⇀ uε in H1(Ω) , and gm ⇀ gε in L2(Γ)

for some (uε,gε) ∈ H1(Ω) × L2(Γ), as m → ∞. Compact imbedding results imply
the strong convergence um → uε in L4(Ω) as m→∞. Using standard techniques in
proving the existence of a solution to the steady-state Navier–Stokes equations, we
may pass to the limit in (3.9)–(3.10) as m→∞ to conclude that uε ∈ V and (uε,gε)
satisfies

ν

∫
Ω

(∇uε) : (∇v) dx +
1

ε

∫
Γ

uε · v ds− 1

2

∫
Γ

(uε · n)uε · v ds

+

∫
Ω

(uε · ∇)uε · v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

gε · v ds ∀v ∈ V .

The last equations and Lemma 3.4 imply that there exists a pε ∈ L2(Ω) such that

ν

∫
Ω

(∇uε) : (∇v) dx +
1

ε

∫
Γ

uε · v ds− 1

2

∫
Γ

(uε · n)uε · v ds−
∫

Ω

pε div v dx

+

∫
Ω

(uε · ∇)uε · v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

gε · v ds ∀v ∈ H1(Ω)
(3.11)

and ∫
Ω

q div uε dx = 0 ∀ q ∈ L2(Ω) ;(3.12)

i.e., (uε, pε,gε) ∈ H1(Ω) × L2(Ω) × L2(Γ) satisfies the constraint equations (3.3)–
(3.4). Finally, using the sequential weak lower semicontinuity of the functional J (·, ·)
we obtain

J (uε,gε) ≤ lim inf
m→∞ J (um,gm)

= inf
{J (u,g) : (u, p,g) ∈ H1(Ω)× L2(Ω)× L2(Γ)

and (u, p,g) satisfies (3.3)–(3.4)
}
.

Hence, we have shown that (uε, pε,gε) is a solution for problem (P)ε.

4. Convergence of solutions of Neumann control problems and subop-
timality of the limit. Having shown the existence of a solution for (P)ε for each ε,
we now examine the convergence of (uε, pε,gε) as ε→ 0.

Theorem 4.1. For each ε ∈ (0, 1/ν), let (uε, pε,gε) ∈ H1(Ω) × L2(Ω) × L2(Γ)
be a solution of the optimal Neumann control problem (P)ε. Then there exists a
(û, p̂, ĝ) ∈ Uad and a subsequence {εk}∞k=1 such that as k →∞,

uεk ⇀ û in H1(Ω) , pεk ⇀ p̂ in L2
0(Ω) and gεk ⇀ ĝ in L2(Γ) ,

where pεk = pεk − (1/|Ω|)∫
Ω
pεk dx. Moreover,

uεk → û in L2(Ω) .
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Proof. We first prove that the sets {‖uε‖1}, {‖pε‖0}, and {‖gε‖0,Γ} are all
bounded independent of ε. Let (ũε, p̃ε) be the solution of (3.3)–(3.4) with g = 0,
i.e.,

ν

∫
Ω

(∇ũε) : (∇v) dx +
1

ε

∫
Γ

ũε · v ds− 1

2

∫
Γ

(ũε · n)ũε · v ds

+

∫
Ω

(ũε · ∇)ũε · v dx−
∫

Ω

p̃ε div v dx =

∫
Ω

f · v dx ∀v ∈ H1(Ω)

and

−
∫

Ω

q div ũε dx = 0 ∀ q ∈ L2(Ω) .

Lemma 3.2 gives us the estimate

ν

2

∫
Ω

|∇ũε|2 dx +
1

4ε

∫
Γ

|ũε|2 ds ≤ 1

2νC1

∫
Ω

|f |2 dx .

Since (ũε, p̃ε,0) is an admissible element for (P)ε, we have that

J (uε,gε) ≤ J (ũε,0) ,

so that

α

2

∫
Ω

|curl uε|2 dx +
β

2

∫
Γ

|gε|2 ds ≤ α

2

∫
Ω

|curl ũε|2 dx

≤ α

2

∫
Ω

|∇ũε|2 dx ≤ α

2ν2C1

∫
Ω

|f |2 dx ,

which implies ∫
Ω

|curl uε|2 dx ≤ 1

ν2C1

∫
Ω

|f |2 dx

and ∫
Γ

|gε|2 ds ≤ α

βν2C1

∫
Ω

|f |2 dx .

Since (uε, pε,gε) satisfies (3.3)–(3.4), we have the estimate (from Lemma 3.2)

ν

2

∫
Ω

|∇uε|2 dx +
1

4ε

∫
Γ

|uε|2 ds ≤ 1

2νC1

∫
Ω

|f |2 dx +
1

ε

∫
Γ

|gε|2 ds

so that ∫
Γ

|uε|2 ds ≤ 2ε

νC1

∫
Ω

|f |2 dx + 4

∫
Γ

|gε|2 ds ≤ 2 + 4α/β

ν2C1

∫
Ω

|f |2 dx .

Using Lemma 3.3 and the divergence-free condition of uε we easily deduce that

‖uε‖21 ≤ C4

(∫
Ω

|curl uε|2 dx +

∫
Γ

|uε|2 ds
)
≤ C4

(
3 + 4α/β

)
ν2C1

∫
Ω

|f |2 dx .
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Combining this last estimate with (3.6) we easily see that

‖pε‖0 ≤ C3

(√
C4(3 + 4α/β)

νC1
‖f‖0 +

C2C4(3 + 4α/β)

ν2C1
‖f‖20 + ‖f‖0

)
,

where pε = pε − (1/|Ω|)∫
Ω
pε dx. Thus we may extract a subsequence {uεk}, {pεk},

and {gεk} such that as k →∞,

εk → 0 , uεk ⇀ û in H1(Ω) , pεk ⇀ p̂ in L2
0(Ω) , and gεk ⇀ ĝ in L2(Γ)

for some (û, p̂, ĝ) ∈ H1(Ω) × L2
0(Ω) × L2(Γ). Compact imbedding implies uεk → û

in L4(Ω). We recall that (uε, pε,gε) satisfies equations (3.11)–(3.12). For each v ∈
H1

0(Ω) and when ε = εk, equation (3.11) reduces to

ν

∫
Ω

∇uεk : ∇v dx +

∫
Ω

(uεk · ∇)uεk · v dx−
∫

Ω

pεk div v dx =

∫
Ω

f · v dx .

Letting k →∞ yields

ν

∫
Ω

∇û : ∇v dx +

∫
Ω

(û · ∇)û · v dx−
∫

Ω

p̂div v dx =

∫
Ω

f · v dx ∀v ∈ H1
0(Ω) .

Letting k →∞ in (3.12) yields

−
∫

Ω

q div û dx = 0 ∀ q ∈ L2
0(Ω) .

Multiplying (3.11) (where we set ε = εk) by εk and letting k →∞ we obtain∫
Γ

û · v ds =

∫
Γ

ĝ · v ds ∀v ∈ H1(Ω) ,

which implies û
∣∣
Γ

= ĝ. This last relation and trace theorems imply ĝ ∈ H1/2(Γ).
Hence we have shown that (û, p̂, ĝ) satisfies (2.7)–(2.9), i.e., that (û, p̂, ĝ) is an admis-
sible element for the optimal control problem (P). The strong convergence uεk → û
in L2(Ω) follows from the compact imbedding H1(Ω) ↪→↪→ L2(Ω).

Remark. In the Neumann control problem (P)ε we do not require
∫

Γ
gε · n ds = 0.

However, the limit ĝ automatically satisfies
∫

Γ
ĝ · n ds = 0 from the fact that div û = 0

and û
∣∣
Γ

= ĝ. The fact that û
∣∣
Γ

= ĝ also implies g ∈ H1/2(Γ), although each gε is

merely in L2(Γ).
We wish to show that the limit (û, p̂, ĝ) is indeed a solution of the optimal Dirichlet

control problem (P); namely, we will verify that

J (û, ĝ) ≤ J (w, z) ∀ (w, r, z) ∈ Uad.(4.1)

In the remainder of this section we will prove that (û, p̂, ĝ) is suboptimal in the sense
that (4.1) is satisfied if (w, r) satisfies the additional condition

−rn + ν
∂w

∂n
∈ L2(Γ) .(4.2)

The optimality of (û, p̂, ĝ) will be studied in the next section.
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We will need the following lemma on integration by parts for functions in the
space H(div ,Ω) ≡ {v ∈ L2(Ω) : div v ∈ L2(Ω)

}
.

Lemma 4.2. Let w ∈ H(div ,Ω). Then (w · n)
∣∣
Γ
∈ H−1/2(Γ) and

〈w · n, v〉Γ =

∫
Ω

v div w dx +

∫
Ω

w · ∇v dx ∀ v ∈ H1(Ω) ,

where 〈·, ·〉Γ is the duality pairing between H−1/2(Γ) and H1/2(Γ).
Proof. See [GR, equation (I.2.17), p. 28].
Theorem 4.3. Assume that (û, p̂, ĝ) ∈ Uad is the limit defined in Theorem 4.1.

Then

J (û, ĝ) ≤ J (w, z) ∀ (w, r, z) ∈ Uad satisfying (4.2).

Proof. Let (w, r, z) be an arbitrary element in Uad satisfying (4.2). By the
definition of Uad, (w, r, z) is a solution of

−ν∆w + (w · ∇)w +∇r = f in Ω ,(4.3)

div w = 0 in Ω,(4.4)

and

w
∣∣
Γ

= z .(4.5)

From (4.2) and the regularity results for the Navier–Stokes equations we obtain
(w, r) ∈ H3/2(Ω)×H1/2(Ω) and −rn + ν ∂w

∂n ∈ L2(Γ). Using (4.3) and the imbedding
results for Sobolev spaces we obtain

div
(−rI + ν∇w

)
= ν∆w −∇r = −f + (w · ∇)w ∈ L2(Ω) .

By the integration-by-parts formula (Lemma 4.2) we have∫
Γ

[(−rI + ν∇w) · n] · v ds =

∫
Ω

[−∇r + ν∆w] · v dx +

∫
Ω

[−rI + ν∇w] : ∇v dx

=

∫
Ω

[−f + (w · ∇)w] · v dx−
∫

Ω

r div v dx + ν

∫
Ω

∇w : ∇v dx,

so that using (4.5) and adding/subtracting terms, we are led to

ν

∫
Ω

∇w : ∇v dx +
1

ε

∫
Γ

w · v ds− 1

2

∫
Γ

(w · n)w · v ds+

∫
Ω

(w · ∇)w · v dx

−
∫

Ω

r div v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

zε · v ds ∀v ∈ H1(Ω)

where

zε ≡ z + ε
(
−rn + ν

∂w

∂n

)
− ε

2
(w · n)w ∈ L2(Γ) .

Thus, (w, r, zε) is an admissible element for (P)ε, so that

J (w, zε) ≥ J (uε,gε) .
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Combining the last inequality with

J (w, zε) ≡ α

2

∫
Ω

|curl w|2 dx +
β

2

∫
Γ

∣∣∣z− εrn + εν
∂w

∂n
− ε

2
(w · n)w

∣∣∣2 ds
= J (w, z) +

ε2β

2

∫
Γ

∣∣∣−rn + ν
∂w

∂n
− 1

2
(w · n)w

∣∣∣2 ds
+ εβ

∫
Γ

z ·
(
−rn + ν

∂w

∂n
− 1

2
(w · n)w

)
ds,

we obtain

J (w, z) ≥ J (uε,gε)− ε2β

2

∫
Γ

∣∣∣−rn + ν
∂w

∂n
− 1

2
(w · n)w

∣∣∣2 ds
− εβ

∫
Γ

z ·
(
−rn + ν

∂v

∂n
− 1

2
(w · n)w

)
ds .

Setting ε = εk in the above relation (where εk is as defined in Theorem 4.1) and letting
k →∞ we obtain

J (w, z) ≥ lim inf
k→∞

J (uεk ,gεk) ≥ J (û, ĝ) .

5. Optimality of the limit. In this section we will show that under certain
restrictions on the data ν, f , etc., the limit (û, p̂, ĝ) defined in Theorem 4.1 is indeed
a solution of the optimal Dirichlet control problem (P).

Lemma 5.1. Assume that (û, p̂, ĝ) is the limit defined in Theorem 4.1. Then

J (û, ĝ) ≤ α

2ν2C1

∫
Ω

|f |2 dx

Proof. Let (u0, p0) ∈ H1(Ω) × L2(Ω) be the solution of the Navier–Stokes equa-
tions (2.7)–(2.9) with the zero Dirichlet condition. Then (u0, p0,0) ∈ Uad. Lemma
3.2 gives us the estimate

ν

2

∫
Ω

|∇u0|2 dx ≤ 1

2νC1

∫
Ω

|f |2 dx .

The regularity theory for the Navier–Stokes equations implies (u0, p0) ∈ H2(Ω) ×
H1(Ω) so that −p0n + ν ∂u0

∂n ∈ L2(Γ). Hence by Theorem 4.3,

J (û, ĝ) ≤ J (u0,0) =
α

2

∫
Ω

|curl u0|2 dx ≤ α

2

∫
Ω

|∇u0|2 dx ≤ α

2ν2C1

∫
Ω

|f |2 dx .

Lemma 5.2. Define H
1/2
n (Γ) ≡ {z ∈ H1/2(Γ) :

∫
Γ

z · n ds = 0
}

. Then there exist

a constant C5 > 0 (depending on Ω only) and an extension operator E : H
1/2
n (Γ)→ V

such that ‖Ez‖1 ≤ C5‖z‖1/2,Γ for every z ∈ H
1/2
n (Γ).

Proof. For each z ∈ H
1/2
n (Γ) we define w = Ez ∈ V as the unique solution of the

Stokes problem

−∆w +∇r = 0 in Ω ,

div w = 0 in Ω,
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and

w
∣∣
Γ

= z .

Clearly E maps H
1/2
n (Γ) into V linearly. The estimate ‖Ez‖1 = ‖w‖1 ≤ C5‖z‖1/2,Γ

follows from the estimates for Dirichlet boundary value problems for the steady-state
Stokes equations (see [Te]).

Lemma 5.3. Assume that (w, r, z) ∈ H1(Ω) × L2
0(Ω) ×H

1/2
n (Γ) and (w̃, r̃, z̃) ∈

H1(Ω)× L2
0(Ω)×H

1/2
n (Γ) satisfy, respectively,−ν∆w + (w · ∇)w +∇r = f in Ω ,

div w = 0 in Ω,
w = z on Γ,

and −ν∆w̃ + (w̃ · ∇)w̃ +∇r̃ = f in Ω
div w̃ = 0 in Ω,
w̃ = z̃ on Γ .

Assume further that ‖w‖1 < νC0

4C2
and ‖z− z̃‖1/2,Γ ≤ νC0

4C2C5
. Then

‖w̃ −w‖1 ≤
(4C5

C0
+
√

2C5 + C5

)
‖z̃− z‖1/2,Γ +

4C2C
2
5

νC0
‖z̃− z‖21/2,Γ .

Proof. Set ξ = w̃−w and σ = r̃− r. Then, by subtracting the relevant equations
for (w̃, r̃) and (w, r), we see that (ξ, σ) ∈ H1(Ω)× L2

0(Ω) satisfies

−ν∆ξ + (ξ · ∇)w + (w · ∇)ξ + (ξ · ∇)ξ +∇σ = 0 in Ω ,

div ξ = 0 in Ω,

and

ξ = z̃− z on Γ .

Put η = E(z̃ − z), where E is the extension operator defined in Lemma 5.2. Then
η ∈ H1(Ω), η

∣∣
Γ

= z̃− z, and ‖η‖1 ≤ C5‖z̃− z‖1/2,Γ. Setting ζ = ξ − η we see that

−ν∆ζ + (ζ · ∇)w + (η · ∇)w + (w · ∇)ζ + (w · ∇)η + (η · ∇)ζ

+ (ζ · ∇)η + (η · ∇)η + (ζ · ∇)ζ +∇σ = ν∆η in Ω ,

div ζ = 0 in Ω,

and

ζ = 0 on Γ .

Using the weak form of these equations (see Definition 2.1) and the fact that c(u,v,v) =
0 for all v ∈ H1

0(Ω) and all u ∈ V, we obtain

ν‖∇ζ‖20+c(ζ,w, ζ)+c(η,w, ζ)+c(w,η, ζ)+c(ζ,η, ζ)+c(η,η, ζ) = −ν
∫

Ω

(∇η) : (∇ζ) dx
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so that using inequalities (2.1), (2.3), and rs ≤ δr2 + 1
4δ s

2, we are led to (for any
δ > 0)(
νC0−C2‖w‖1−C2‖η‖1− 3δ

)‖ζ‖21− C2
2

4δ

(
2‖η‖21 ‖w‖21 + ‖η‖41

) ≤ ν2

4δ
‖∇η‖20 + δ‖ζ‖21 .

Choosing δ = νC0

16 and noting that C2‖η‖1 ≤ C2C5‖z̃− z‖1/2,Γ ≤ νC0

4 , we obtain

νC0

4
‖ζ‖21 ≤

ν2C2
5

4δ
‖z̃− z‖21/2,Γ +

2C2
2C

2
5

4δ

(νC0

4C2

)2

‖z̃− z‖21/2,Γ +
C2

2C
4
5

4δ
‖z̃− z‖41/2,Γ ,

so that

‖ζ‖21 ≤
(16C2

5

C2
0

+ 2C2
5

)
‖z̃− z‖21/2,Γ +

16C2
2C

4
5

ν2C2
0

‖z̃− z‖41/2,Γ .

Hence, using the inequality (r2 + s2) ≤ (r + s)2 we are led to

‖ζ‖1 ≤
(4C5

C0
+
√

2C5

)
‖z̃− z‖1/2,Γ +

4C2C
2
5

νC0
‖z̃− z‖21/2,Γ .

Finally, we use the triangle inequality to derive the estimate for ξ:

‖ξ‖1 ≤ ‖η‖1 + ‖ζ‖1 ≤
(4C5

C0
+
√

2C5 + C5

)
‖z̃− z‖1/2,Γ +

4C2C
2
5

νC0
‖z̃− z‖21/2,Γ .

Theorem 5.4. Assume that

‖f‖0
ν2

√
α

min{α, β} <
1

4

C0

C2

√
C1

C4
(5.1)

and let (û, p̂, ĝ) be the limit defined in Theorem 4.1. Then (û, p̂, ĝ) is a solution of
the optimal Dirichlet control problem (P).

Proof. Let (w, r, z) ∈ Uad be given. We need to prove that J (û, ĝ) ≤ J (w, z).
Using Lemma 3.3 and the facts that div w = 0 and w

∣∣
Γ

= z, we obtain

J (w, z) ≥ 1

2C4
min{α, β}‖w‖21 .

Hence, if 1
2C4

min{α, β}‖w‖21 > J (û, ĝ), then J (w, z) > J (û, ĝ). So we only need to
consider the case where

1

2C4
min{α, β}‖w‖21 ≤ J (û, ĝ) .(5.2)

We assume (5.2) holds. Then using (5.1)–(5.2) and Lemma 5.1 we obtain

‖w‖1 ≤
{ 2C4

min{α, β}J (û, ĝ)
}1/2

≤
{ 2C4

min{α, β}
α

2ν2C1

∫
Ω

|f |2 dx
}1/2

≤
{ 2αC4

ν2C1 min{α, β}
}1/2

‖f‖0 ≤ νC0

4C2
.

Using the denseness of C∞(Γ)∩H
1/2
n (Γ) in H

1/2
n (Γ) we may choose a sequence {zm} ⊂

C∞(Γ) ∩H
1/2
n (Γ) such that ‖zm − z‖1/2,Γ → 0 as m → ∞. For sufficiently large m,

we have

‖zm − z‖1/2,Γ < νC0

4C2C5
.
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Let (wm, rm) ∈ H1(Ω) × L2
0(Ω) be the solution of (2.7)–(2.8) with the Dirichlet

condition wm

∣∣
Γ

= zm. Using Lemma 5.3 we obtain ‖wm − w‖1 → 0 as m → ∞.

The regularity theories for the Navier–Stokes equations imply (wm, rm) ∈ H3/2(Ω)×
H1/2(Ω) and −rmn + ν ∂wm

∂n ∈ L2(Γ). From Theorem 4.3 we obtain J (wm, zm) ≥
J (û, ĝ). Upon letting m→∞ we conclude that

J (w, z) = lim
m→∞J (wm, zm) ≥ J (û, ĝ) .

Remark. Combining Theorems 4.1 and 5.4 we see that if the solution for (P)
is unique, then we have the convergence as ε → 0 (instead of merely a subsequence
convergence):

uε ⇀ û , pε ⇀ p̂ , and gε ⇀ ĝ .

Remark. The small data requirement (5.1) is due to the small data requirements
in Lemma 5.3. On the other hand, the small data requirements in Lemma 5.3 are
those that are needed in order to show the continuous dependence of solutions on
Dirichlet data for the Navier–Stokes equations. It is well known that the Navier–
Stokes equations do not always have a unique solution; thus it seems hopeless to
prove, without the small data requirement, the continuous dependence on Dirichlet
data of solutions of the Navier–Stokes equations. This in turn suggests that it seems
hopeless to prove Theorem 5.4 for arbitrary data. But for most practical purposes, one
should be content with the suboptimal result of Theorem 4.3 (which does not require
the smallness of data).

6. Finite element approximations and numerical results. We have shown
that the optimal solutions of Neumann control problems (P)ε converge to an optimal
solution of the Dirichlet control problem (P). Thus, we may choose a sufficiently small
ε and solve (P)ε to obtain an approximate solution for (P). In this section we briefly
describe the solution procedures for (P)ε with a fixed ε and present some numerical
results. The purpose of this section is merely to confirm numerically the convergence
of the optimal Neumann boundary control solutions which we have proven rigorously.
Thus the presentation of this section is mostly formal.

The solution procedures for (P)ε are as follows. First, by introducing the La-
grangian for (P)ε,

L(u, p,g,µ, ρ) = J (u,g)−
(
ν a(u,µ) +

1

ε

∫
Γ

u · µ ds− 1

2

∫
Γ

(u · n)u · µ ds

+ c(u,u,µ) + b(µ, p) + b(u, ρ)−
∫

Ω

f · µ dx− 1

ε

∫
Γ

g · µ ds
)
,

and differentiating the Lagrangian with respect to each of its arguments we obtain
the following optimality system of equations that the optimal solution for (P)ε must
satisfy:

ν

∫
Ω

(∇u) : (∇v) dx +
1

ε

∫
Γ

u · v ds− 1

2

∫
Γ

(u · n)u · v ds+

∫
Ω

(u · ∇)u · v dx

−
∫

Ω

pdiv v dx =

∫
Ω

f · v dx +
1

ε

∫
Γ

g · v ds ∀v ∈ H1(Ω) ,

(6.1)

−
∫

Ω

q div u dx = 0 ∀ q ∈ L2(Ω) ,(6.2)
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ν

∫
Ω

(∇µ) : (∇w) dx +
1

ε

∫
Γ

µ ·w ds− 1

2

∫
Γ

(w · n)u · µ ds

−1

2

∫
Γ

(u · n)w · µ ds+

∫
Ω

(u · ∇)w · µ dx +

∫
Ω

(w · ∇)u · µ dx

−
∫

Ω

ρdiv w dx =

∫
Ω

(curl u) · (curl w) dx ∀w ∈ H1(Ω) ,

(6.3)

−
∫

Ω

r divµ dx = 0 ∀ r ∈ L2(Ω),(6.4)

and ∫
Γ

(
βg +

1

ε
µ
)
· z ds = 0 ∀ z ∈ L2(Γ) .

Note that we may use the last relation to eliminate g in (6.1) to obtain

ν

∫
Ω

∇u : ∇v dx +
1

ε

∫
Γ

u · v ds− 1

2

∫
Γ

(u · n)u · v ds+

∫
Ω

(u · ∇)u · v dx

−
∫

Ω

pdiv v dx =

∫
Ω

f · v dx− 1

ε2β

∫
Γ

µ · v ds ∀v ∈ H1(Ω).
(6.5)

The system formed by (6.2)–(6.5) will be called an optimality system of equations.
Next we choose finite element subspaces and define finite element approximations

of the optimality system. The finite element spaces Xh ⊂ H1(Ω) and Sh ⊂ L2(Ω) are
chosen such that

inf
vh∈Xh

‖vh − v‖1 ≤ Chm‖v‖m+1 ∀v ∈ Hm+1(Ω) ,

inf
qh∈Sh

‖qh − q‖1 ≤ Chm‖q‖m ∀ q ∈ Hm(Ω) ,

and

inf
qh∈Sh

sup
vh∈Xh

b(vh, qh)

‖vh‖1‖qh‖0 ≥ C6 .

The last discrete inf-sup condition is needed in finite element approximations of the
Navier–Stokes equations (see, e.g., [GR]) and naturally is also needed in the approx-
imations of the optimality system of equations. We define finite element approxima-
tions of the optimality system (6.2)–(6.5) as follows:

ν

∫
Ω

∇uh : ∇vh dx +
1

ε

∫
Γ

uh · vh ds− 1

2

∫
Γ

(uh · n)uh · vh ds−
∫

Ω

ph div vh dx

+

∫
Ω

(uh · ∇)uh · vh dx =

∫
Ω

f · vh dx− 1

ε2β

∫
Γ

µh · vh ds ∀vh ∈ Xh ,
(6.6)

−
∫

Ω

qh div uh dx = 0 ∀ qh ∈ Sh ,(6.7)

ν

∫
Ω

(∇µh) : (∇wh) dx +
1

ε

∫
Γ

µh ·wh ds− 1

2

∫
Γ

(wh · n)uh · µh ds

−1

2

∫
Γ

(uh · n)wh · µh ds+

∫
Ω

(uh · ∇)wh · µh dx−
∫

Ω

ρh div wh dx

+

∫
Ω

(wh · ∇)uh · µh dx =

∫
Ω

(curl uh) · (curl wh) dx ∀wh ∈ Xh,

(6.8)
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Table 1
L2(Ω) errors of each two consecutive optimal solutions.

i 1 2 3 4 5 6 7 8

εi 10 1 10−1 10−2 10−3 10−4 10−5 10−6∥∥ui − ui+1

∥∥2

2
.3553 .04725 .01763 .002506 .0002618 .00002627 .000009

and

−
∫

Ω

rh divµh dx = 0 ∀ rh ∈ Sh .(6.9)

We solve the discrete, nonlinear system of equations (6.6)–(6.9) by Newton’s method
with the initial guess obtained from solving the corresponding linear system of equa-
tions (simply dropping all nonlinear terms in the optimality system).

It is possible to use the techniques of [GHS1] to mathematically justify these
solution procedures, e.g., to prove the existence of a solution (u, p,µ, ρ) for (6.2)–
(6.5) such that (u, p,−µ/(βε)) gives a solution of (P)ε; to prove that for each solution
of (6.2)–(6.5) and for each sufficiently small h, there exists a solution (uh, ph,µh, ρh)
such that as h→ 0,

uh → u, ph → p, µh → µ, and ρh → ρ ;

and to prove that if (uh, ph,µh, ρh) ∈ Hm+1(Ω)×Hm(Ω)×Hm+1(Ω)×Hm(Ω), then

‖uh − u‖1 + ‖ph − p‖0 + ‖µh − µ‖1 + ‖ρh − ρ‖0
≤ Chm(‖u‖m+1 + ‖p‖m + ‖µ‖m+1 + ‖ρ‖m

)
.

However, the detailed justification of these results are beyond the scope of this paper.
We conclude this paper by presenting some numerical results for two test prob-

lems. These results confirm numerically the convergence results we established, i.e.,
Theorem 4.1. Further computational studies of the proposed method will be reported
elsewhere.

In the first example we consider a Dirichlet optimal control problem for the
Navier–Stokes equations (1.2)–(1.4) with the following data: Ω is the unit square; ν =
0.1; and the prescribed body force f = (f1, f2)T , where f1 = 0.8π2 sin(2πx) cos(2πy)+
2π sin(2πx) cos(2πx) and f2 = −0.8π2 cos(2πx) sin(2πy)+2π sin(2πy) cos(2πy). The
functional is given by (1.1), wherein we choose α = β = 1. For each sufficiently small
ε, we can compute an optimal solution for (P)ε by solving the discrete optimality sys-
tem (6.6)–(6.9). We used a uniform mesh in Ω with 162 triangles and chose the finite
element spaces to be continuous piecewise quadratics for the velocity/adjoint velocity
and continuous piecewise linear functions for the pressure/adjoint pressure. We com-
puted the optimal solutions for a sequence of ε values: ε1 = 10, ε2 = 1, ε3 = 10−1,
ε4 = 10−2, ε5 = 10−3, ε6 = 10−4, ε7 = 10−5, and ε8 = 10−6. We also computed the
L2(Ω) norms of ûεi+1

− ûεi , and these are summarized in Table 1.
The computational results in Table 1 are consistent with the convergence re-

sults of Theorem 4.1. The solution (u0, p0) of the equations with g = 0 is given by

u0 =
(

sin(2πx) cos(2πy),− cos(2πx) sin(2πy)
)T

and p0 = 0, and
∫

Ω
|curl u0|2 dx =

38.8605. The values of
∫

Ω
|curl uε|2 dx for ε ≤ 10−5 are around 18.

In the second example we consider a Dirichlet optimal control problem for the
Navier–Stokes equations (1.2)–(1.4) with the following data: Ω is the unit square;
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Fig. 1. Uncontrolled velocity field. Fig. 2. Optimal velocity field (ε = 1).

Fig. 3. Optimal velocity field (ε = 10−1). Fig. 4. Optimal velocity field (ε = 10−3).

Fig. 5. Optimal velocity field (ε = 10−5). Fig. 6. Optimal velocity field (ε = 10−7).
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Table 2
The L2(Ω)-norm of the vorticity of optimal solutions.

εi 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7∥∥curl uε
∥∥2

2
12.20 11.81 11.64 11.63 11.62 11.62 11.62 11.62

ν = 0.1; and the prescribed body force f = (f1, f2)T , where

f =

(−50νπ cos((x− 0.25)π/0.4) sin((y − 0.25)π/0.4)− 20
π sin((x− 0.25)π/0.2)

50νπ sin((x− 0.25)π/0.4) cos((y − 0.25)π/0.4)− 20
π sin((y − 0.25)π/0.2)

)
in the region {(x, y) : |x − 0.25| ≤ 0.2, |y − 0.25| ≤ 0.2} and f = (−0.25x,−0.25y)T

elsewhere on the unit square. The functional is given by (1.1), wherein we choose
α = 100 and β = 1. We used the same mesh as in the first example. We computed
the optimal solutions for a sequence of ε values by solving the discrete optimality
system (6.6)–(6.9): ε1 = 1, ε2 = 10−1, ε3 = 10−2, ε4 = 10−3, ε5 = 10−4, ε6 = 10−5,
ε7 = 10−6, and ε8 = 10−7. We also computed the L2(Ω)-norms of curl ûεi as shown
in Table 2. The L2(Ω)-norm of the the vorticity of the uncontrolled velocity field is
39.77.

Figure 1 shows the uncontrolled flow field. Figures 2–6 depict the optimal velocity
fields for various ε values we tested. We could easily visualize from these figures the
convergence of the optimal solutions as ε → 0. Also, by comparing the uncontrolled
flow field with the optimal flow fields (for small ε), we clearly see the reduction in
recirculation in the optimal control solutions.
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Abstract. The notion of approximate Jacobian matrices is introduced for a continuous vector-
valued map. It is shown, for instance, that the Clarke generalized Jacobian is an approximate
Jacobian for a locally Lipschitz map. The approach is based on the idea of convexificators of real-
valued functions. Mean value conditions for continuous vector-valued maps and Taylor’s expansions
for continuously Gâteaux differentiable functions (i.e., C1-functions) are presented in terms of ap-
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Key words. generalized Jacobians, nonsmooth analysis, mean value conditions, optimality
conditions

AMS subject classifications. 49A52, 90C30, 26A24

PII. S0363012996311745

1. Introduction. Over the past two decades, a great deal of research has focused
on the study of first- and second-order analysis of real-valued nonsmooth functions
[2, 3, 4, 5, 11, 12, 14, 15, 21, 23, 24, 20, 25, 27, 28, 29, 30, 34, 35]. The results of
nonsmooth analysis of real-valued functions now provide basic tools of modern analysis
in many branches of mathematics, such as mathematical programming, control, and
mechanics. Indeed, the range of applications of nonsmooth calculus demonstrates its
basic nature of nonsmooth phenomena in the mathematical and engineering sciences.

On the other hand, research in the area of nonsmooth analysis of vector-valued
maps has been of substantial interest in recent years [2, 6, 7, 8, 9, 10, 18, 21, 22, 23,
24, 29, 31]. In particular, it is known that the development and analysis of generalized
Jacobian matrices for nonsmooth vector-valued maps are crucial from the viewpoint
of control problems and numerical methods of optimization. For instance, the Clarke
generalized Jacobian matrices [2] of a locally Lipschitz map play an important role in
the Newton-based numerical methods for solving nonsmooth equations and optimiza-
tion problems (see [26] and other references therein, and see also [17, 18, 19] for other
applications). Warga [32, 33] examined derivative (unbounded derivative) containers
in the context of local and global inverse function theorems as set-valued derivatives
for locally Lipschitz (continuous) vector-valued maps. Mordukhovich [21, 22] devel-
oped generalized differential calculus for general nonsmooth vector-valued maps using
the set-valued derivatives, called coderivatives [9, 21].

Our aim in this paper is to introduce a new concept of approximate Jacobian
matrices for continuous vector-valued maps that are not necessarily locally Lipschitz,
develop certain calculus rules for approximate Jacobians, and apply the concept to
optimization problems involving continuously Gâteaux differentiable functions. This
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concept is a generalization of the idea of convexificators of real-valued functions,
studied recently in [4, 5, 13], to vector-valued maps. Convexificators provide two-
sided convex approximations [30] for real-valued functions. Unlike the set-valued
generalized derivatives [9, 21, 22, 32, 33], mentioned above for vector-valued maps,
the approximate Jacobian is defined as a closed subset of the space of (n×m) matrices
for a vector-valued map from Rn into Rm.

Approximate Jacobians not only extend the nonsmooth analysis of locally Lip-
schitz maps to continuous maps but also unify and strengthen various results of
nonsmooth analysis. They also enjoy useful calculus, such as the generalized mean
value property and chain rules. Moreover, approximate Jacobians allow us to present
second-order optimality conditions in easily verifiable forms in terms of approximate
Hessian matrices for C1-optimization problems, extending the corresponding results
for C1,1-problems [7].

The outline of the paper is as follows. In section 2, approximate Jacobian ma-
trices are introduced, and it is shown that for a locally Lipschitz map the Clarke
generalized Jacobian is an approximate Jacobian. Various examples of approximate
Jacobians are also given. Section 3 establishes mean value conditions for continuous
vector-valued maps and provides necessary and sufficient conditions in terms of ap-
proximate Jacobians for a continuous map to be locally Lipschitz. Various calculus
rules for approximate Jacobians are given in section 4. Approximate Hessian matri-
ces are introduced in section 5, and their connections to C1,1-functions are discussed.
Section 6 presents generalizations of Taylor’s expansions for C1-functions. In section
7, second-order necessary and sufficient conditions for optimality and convexity of
C1-functions are given.

2. Approximate Jacobians for continuous maps. This section contains no-
tation, definitions, and preliminaries that will be used throughout the paper. Let
F : Rn → Rm be a continuous function which has components (f1, . . . , fm). For each
v ∈ Rm, the composite function, (vF ) : Rn → R, is defined by

(vF )(x) = 〈v, F (x)〉 =
m∑
i=1

vifi(x).

The lower Dini directional derivative and the upper Dini directional derivative of vF
at x in the direction u ∈ Rn are defined by

(vF )−(x, u) := lim inf
t↓0

(vF )(x+ tu)− (vF )(x)

t
,

(vF )+(x, u) := lim sup
t↓0

(vF )(x+ tu)− (vF )(x)

t
.

We denote by L(Rn,Rm) the space of all (n×m) matrices. The convex hull and the
closed convex hull of a set A in a topological vector space are denoted by co(A) and
co(A), respectively.

Definition 2.1. The map F : Rn → Rm admits an approximate Jacobian
∂∗F (x) at x ∈ Rn if ∂∗F (x) ⊆ L(Rn,Rm) is closed, and for each v ∈ Rm,

(2.1) (vF )−(x, u) ≤ sup
M∈∂∗F (x)

〈Mv, u〉 ∀u ∈ Rn.
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A matrix M of ∂∗F (x) is called an approximate Jacobian matrix of F at x. Note
that condition (2.1) is equivalent to the condition

(2.2) (vF )+(x, u) ≥ inf
M∈∂∗F (x)

〈Mv, u〉 ∀u ∈ Rn.

It is worth noting that the inequality (2.1) means that the set ∂∗F (x)v is an upper
convexificator [13, 16] of the function vF at x. Similarly, the inequality (2.2) states
that ∂∗F (x)v is a lower convexificator of vF at x. In the case m = 1, the inequality
(2.1) (or (2.2)) is equivalent to the condition

(2.3) F−(x, u) ≤ sup
x∗∈∂∗F (x)

〈x∗, u〉 and F+(x, u) ≥ inf
x∗∈∂∗F (x)

〈x∗, u〉;

thus, the set ∂∗F (x) is a convexificator of F at x. Also note that in the case m = 1,
condition (2.3) is also equivalent to the condition that for each α ∈ R,

(2.4) (αF )−(x, u) ≤ sup
x∗∈∂∗F (x)

〈αx∗, u〉 ∀u ∈ Rn.

Similarly, the condition (2.3) is also equivalent to the condition that for each α ∈ R,

(2.5) (αF )+(x, u) ≥ inf
x∗∈∂∗F (x)

〈αx∗, u〉 ∀u ∈ Rn.

For applications of convexificators, see [5, 13, 16]. To clarify the definition, let us
consider some examples.

Example 2.2. If F : Rn → Rm is continuously differentiable at x, then any closed
subset Φ(x) of L(Rn,Rm) containing the Jacobian ∇F (x) is an approximate Jacobian
of F at x. In this case, for each v ∈ Rm,

(vF )−(x, u) = 〈∇F (x)v, u〉 ≤ sup
M∈Φ(x)

〈Mv, u〉 ∀u ∈ Rn.

Observe from the definition of the approximate Jacobian that for any map F : Rn →
Rm, the whole space L(Rn,Rm) serves as a trivial approximate Jacobian for F at any
point in Rn. Let us now examine approximate Jacobians for locally Lipschitz maps.

Example 2.3. Suppose that F : Rn → Rm is locally Lipschitz at x. Then the
Clarke generalized Jacobian ∂CF (x) is an approximate Jacobian of F at x. Indeed,
for each v ∈ Rm,

(2.6) ∂◦(vF )(x) = ∂CF (x)v.

Consequently, for each u ∈ Rn,

(vF )◦(x, u) = max
ξ∈∂◦(vF )(x)

〈ξ, u〉 = max
M∈∂CF (x)

〈Mv, u〉,

where

∂CF (x) = co{ lim
n→∞∇F (xn)T : xn ∈ Ω, xn → x},

Ω is the set of points in Rn where F is differentiable, and the Clarke directional
derivative of vF is given by

(vF )◦(x, u) = lim sup
x′→x
t↓0

〈v, F (x′ + tu)− F (x′)〉
t

.
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Since for each u ∈ Rn,

(vF )−(x, u) ≤ (vF )◦(x, u) ∀u ∈ Rn,

the set ∂CF (x) is an approximate Jacobian of F at x.
For the locally Lipschitz map F : Rn → Rm, the set

∂BF (x) := { lim
n→∞∇F (xn)T : xn ∈ Ω, xn → x}

is also an approximate Jacobian of F at x. The set ∂BF (x) is known as the B-
subdifferential of F at x, which plays a significant role in the development of nons-
mooth Newton methods (see [26]). In passing, note that for each v ∈ Rm,

∂◦(vF )(x) = co(∂M (vF )(x)) = co(D∗F (x)(v)),

where the set-valued mapping D∗F (x) from Rm into Rn is the coderivative of F at
x and ∂M (vF )(x) is the first-order subdifferential of vF at x in the sense of Mor-
dukhovich [22]. However, for locally Lipschitz maps, the coderivative does not appear
to have a representation of the form (2.6), which allowed us above to compare ap-
proximate Jacobians with the Clarke generalized Jacobian. The reader is referred to
[9, 21, 22, 29] for a more general definition and associated properties of coderivatives.
A second-order analogue of the coderivative for vector-valued maps is given recently
in [10].

Let us look at a numerical example of a locally Lipschitz map where the Clarke
generalized Jacobian strictly contains an approximate Jacobian.

Example 2.4. Consider the function F : R2 → R2

F (x, y) = (|x|, |y|).

Then

∂∗F (0) =

{(
1 0
0 1

)
,

(
1 0
0 −1

)
,

( −1 0
0 1

)
,

( −1 0
0 −1

)}
is an approximate Jacobian of F at 0. On the other hand, the Clarke generalized
Jacobian

∂CF (0) =

{(
α 0
0 β

)
: α, β ∈ [−1, 1]

}
,

which is also an approximate Jacobian of F at 0 and contains ∂∗F (0).
Observe in this example that ∂CF (0) is the convex hull of ∂∗F (0). However, this

is not always the case. The following example illustrates that even for the case where
m = 1, the convex hull of an approximate Jacobian of a locally Lipschitz map may
be strictly contained in the Clarke generalized Jacobian.

Example 2.5. Define F : R2 → R by

F (x, y) = |x| − |y|.

Then it can easily be verified that

∂∗1F (0) = {(1, 1), (−1,−1)} and ∂∗2F (0) = {(1,−1), (−1, 1)}
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are approximate Jacobians of F at 0, whereas

∂BF (0) = {(1, 1), (−1, 1), (1,−1), (−1,−1)}
and

∂CF (0) = co({(1, 1), (−1, 1), (1,−1), (−1,−1)}).
It is also worth noting that

co(∂∗1F (0)) ⊂ co(∂MF (0)) = ∂CF (0).

Clearly, this example shows that certain results, such as mean value conditions and
necessary optimality conditions that are expressed in terms of ∂∗F (x), may provide
sharp conditions even for locally Lipschitz maps (see section 3).

Let us now present an example of a continuous map where the Clarke generalized
Jacobian does not exist, whereas approximate Jacobians are quite easy to calculate.

Example 2.6. Define F : R2 → R2 by

F (x, y) = (
√
|x| sgn(x) + |y|,

√
|y| sgn(y) + |y|),

where sgn(x) = 1 for x > 0, 0 for x = 0, and −1 for x < 0. Then F is not locally
Lipschitz at (0, 0), and so the Clarke generalized Jacobian does not exist. However,
for each c ∈ R, the set

∂∗F (0, 0) =

{(
α 1
0 β

)
,

(
α −1
0 β

)
: α, β ≥ c

}
is an approximate Jacobian of F at (0, 0).

3. Generalized mean value theorems. In this section we derive mean value
theorems for continuous maps in terms of approximate Jacobians and show how locally
Lipschitz vector-valued maps can be characterized using approximate Jacobians.

Theorem 3.1. Let a, b ∈ Rn and F : Rn → Rm be continuous. Assume that for
each x ∈ [a, b], ∂∗F (x) is an approximate Jacobian of F at x. Then

F (b)− F (a) ∈ co(∂∗F ([a, b])(b− a)).

Proof. Let us first note that the right-hand side above is the closed convex hull of
all points of the form M(b− a), where M ∈ ∂∗F (ζ) for some ζ ∈ [a, b]. Let v ∈ Rmbe
arbitrary and fixed. Consider the real-valued function g : [0, 1]→ IR

g(t) = 〈v, F (a+ t(b− a))− F (a) + t(F (a)− F (b))〉.
Then g is continuous on [0, 1] with g(0) = g(1). So g attains a minimum or a maximum
at some t0 ∈ (0, 1). Suppose that t0 is a minimum point. Then, for each α ∈ R,
g−(t0, α) ≥ 0. It now follows from direct calculations that

g−(t0, α) = (vF )−(a+ t0(b− a), α(b− a)) + α〈v, F (a)− F (b)〉.
Hence, for each α ∈ R,

(vF )−(a+ t0(b− a), α(b− a)) ≥ α〈v, F (b)− F (a)〉.
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Now, by taking α = 1 and α = −1, we obtain that

−(vF )−(a+ t0(b− a), a− b) ≤ 〈v, F (b)− F (a)〉 ≤ (vF )−(a+ t0(b− a), b− a)〉.

By (2.1), we get

inf
M∈∂∗F (a+t0(b−a))

〈Mv, b− a〉 ≤ 〈v, F (b)− F (a)〉 ≤ sup
M∈∂∗F (a+t0(b−a))

〈Mv, b− a〉.

Consequently,

〈v, F (b)− F (a)〉 ∈ co(∂∗F (a+ t0(b− a))v)(b− a),

and so

(3.1) 〈v, F (b)− F (a)〉 ∈ co(∂∗F ([a, b])v)(b− a).

Since this inclusion holds for each v ∈ Rm, we claim that

F (b)− F (a) ∈ co(∂∗F ([a, b])(b− a)).

If this is not so, then it follows from the separation theorem

〈p, F (b)− F (a)〉 − ε > sup
u∈co(∂∗F ([a,b])(b−a))

〈p, u〉

for some p ∈ Rm since co(∂∗F ([a, b])(b − a)) is a closed convex subset of Rm. This
implies

〈p, F (b)− F (a)〉 > sup{α : α ∈ co(∂∗F ([a, b])p)(b− a)},

which contradicts (3.1).
Similarly, if t0 is a maximum point, then g+(t0, α) ≤ 0 for each α ∈ R. Using the

same line of arguments as above, we arrive at the same conclusion, and so the proof
is complete.

Corollary 3.2. Let a, b ∈ Rn and F : Rn → Rm be continuous. Assume that
∂∗F (x) is a bounded approximate Jacobian of F at x for each x ∈ [a, b]. Then

(3.2) F (b)− F (a) ∈ co(∂∗F ([a, b])(b− a)).

Proof. Since for each x ∈ [a, b], ∂∗F (x) is compact, the set

co(∂∗F ([a, b])(b− a) = co{∂∗F ([a, b])(b− a)}

is closed, and so the conclusion follows from Theorem 3.1.
In the following corollary we deduce the mean value theorem for locally Lipschitz

maps (see [1, 6]) as a special case of Theorem 3.1.
Corollary 3.3. Let a, b ∈ Rn and F : Rn → Rm be locally Lipschitz on Rn.

Then

(3.3) F (b)− F (a) ∈ co(∂CF ([a, b])(b− a)).
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Proof. In this case the Clarke generalized Jacobian ∂CF (x) is a convex and com-
pact approximate Jacobian of F at x. Hence, the conclusion follows from Corollary
3.2.

Note that even for the case where F is locally Lipschitz, Corollary 3.2 provides a
stronger mean value condition than condition (3.3) of Corollary 3.3. To see this, let
n = 2, m = 1, F (x, y) = |x| − |y|, a = (−1,−1), and b = (1, 1). Then condition (3.2)
of Corollary 3.2 is verified by

∂∗F (0) = {(1,−1), (−1, 1)}.

However, condition (3.3) holds for ∂CF (0), where

∂CF (0) = co({(1, 1), (−1,−1), (1,−1), (−1, 1)}) ⊃ ∂∗F (0).

As a special case of the above theorem, we see that if F is real-valued, then an
asymptotic mean value equality is obtained. This was shown in [13].

Corollary 3.4. Let a, b ∈ X and F : Rn → R be continuous. Assume that,
for each x ∈ [a, b], ∂∗F (x) is a convexificator of F . Then there exist c ∈ (a, b) and a
sequence {x∗k} ⊂ co(∂∗F (c)) such that

F (b)− F (a) = lim
k→∞

〈x∗k, b− a〉.

Proof. The conclusion follows from the proof of Theorem 3.1 by noting that a
convexificator ∂∗F (x) is an approximate Jacobian of F at x.

We now see how locally Lipschitz functions can be characterized using the above
mean value theorem. We say that a set-valued mapping G : Rn → L(Rn,Rm) is locally
bounded at x if there exist a neighborhood U of x and a positive α such that ||A|| ≤ α
for each A ∈ G(U). Recall that the map G is said to be upper semicontinuous at
x if for each open set V containing G(x) there is a neighborhood U of x such that
G(U) ⊂ V . Clearly, if G is upper semicontinuous at x and if G(x) is bounded, then G
is locally bounded at x.

Theorem 3.5. Let F : Rn → Rm be continuous. Then F has a locally bounded
approximate Jacobian map ∂∗F at x if and only if F is locally Lipschitz at x.

Proof. Assume that ∂∗F (y) is the approximate Jacobian of F for each y in a
neighborhood U of x and that ∂∗F is locally bounded on U . Without loss of generality,
we may assume that U is convex. Then there exists α > 0 such that ||A|| ≤ α for
each A ∈ ∂∗F (U). Let x, y ∈ U . Then [x, y] ⊂ U , and by the mean value theorem,

F (x)− F (y) ∈ co(∂∗F ([x, y])(x− y)) ⊂ co(∂∗F (U)(x− y)).

Hence,

‖F (x)− F (y)‖ ≤ ‖x− y‖max{‖A‖ : A ∈ ∂∗F (U)}.

This gives us that

‖F (x)− F (y)‖ ≤ α‖x− y‖,

and so F is locally Lipschitz at x.
Conversely, if F is locally Lipschitz at x, then the Clarke generalized Jacobian

can be chosen as an approximate Jacobian for F , which is locally bounded at x.
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4. Calculus rules for approximate Jacobians. In this section, we present
some basic calculus rules for approximate Jacobians. We begin by introducing the
notion of regular approximate Jacobians which are useful in some applications.

Definition 4.1. The map F : Rn → Rm admits a regular approximate Jacobian,
∂∗F (x) at x ∈ Rn if ∂∗F (x) ⊆ L(Rn,Rm) is closed, and for each v ∈ Rm,

(4.1) (vF )+(x, u) = sup
M∈∂∗F (x)

〈Mv, u〉 ∀u ∈ Rn,

or equivalently,

(4.2) (vF )−(x, u) = inf
M∈∂∗F (x)

〈Mv, u〉 ∀u ∈ Rn.

Note that in the case m = 1, this definition collapses to the notion of the regular
convexificator studied in [13]. Thus, a closed set ∂∗h(x) ⊂ Rn is a regular convexifi-
cator of the real-valued function h at x if for each u ∈ Rn,

h−(x, u) = inf
ξ∈∂∗h(x)

〈ξ, u〉 and h+(x, u) = sup
ξ∈∂∗h(x)

〈ξ, u〉.

It is evident that these equalities follow from (4.1) by taking F = h and v = −1 and
v = 1, respectively.

It is immediate from the definition that if F is differentiable at x, then {∇f(x)}
is a regular approximate Jacobian of F at x. However, if F is locally Lipschitz at x,
then the Clarke generalized Jacobian ∂CF (x) is not necessarily a regular approximate
Jacobian of F at x. It is also worth noting that if ∂∗1F (x) and ∂∗2F (x) are two regular
approximate Jacobians of F at x, then co(∂∗1F (x)) = co(∂∗2F (x)).

In passing, we note that if F is locally Lipschitz on a neighborhood U of x, then
there exists a dense set K ⊂ U such that F admits a regular approximate Jacobian
at each point of K. By Rademacher’s theorem, the dense subset can be chosen as the
set where F is differentiable.

Theorem 4.2 (Rule 1). Let F and H be continuous maps from Rn to Rm.
Assume that ∂∗F (x) is an approximate Jacobian of F at x and ∂∗H(x) is a regular
approximate Jacobian of H at x. Then the set ∂∗F (x) + ∂∗H(x) is an approximate
Jacobian of F +H at x.

Proof. Let v ∈ Rm, u ∈ Rn be arbitrary. By definition,

〈v, F +H〉−(x, u) = lim inf
t↓0

〈v, F (x+ tu)− F (x) +H(x+ tu)−H(x)〉
t

.

Let {tn} be a sequence of positive numbers converging to 0 such that

〈v, F +H〉−(x, u) = lim
n→∞

〈v, F (x+ tnu)− F (x) +H(x+ tnu)−H(x)〉
tn

.

Further, let {sn} be another sequence of positive numbers converging to 0 such that

〈v, F 〉−(x, u) = lim inf
t↓0

〈v, F (x+ tu)− F (x)〉
t

= lim
n→∞

〈v, F (x+ snu)− F (x)〉
sn

.

Then we have

lim
n→∞

〈v, F (x+ snu)− F (x)〉
sn

≤ sup
M∈∂∗F (x)

〈Mv, u〉
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and

lim sup
n→∞

〈v,H(x+ snu)−H(x)〉
sn

≤ 〈v,H〉+(x, u) = sup
M∈∂∗H(x)

〈Mv, u〉.

Consequently,

〈v, F +H〉−(x, u) ≤ lim
n→∞

〈v, F (x+ snu)− F (x)〉
sn

+
〈v,H(x+ snu)−H(x)〉

sn
≤ sup
M∈∂∗F (x)

〈Mv, u〉+ sup
N∈∂∗H(x)

〈Nv, u〉

= sup
P∈∂∗F (x)+∂∗H(x)

〈Pv, u〉.

Since u and v are arbitrary, we conclude that ∂∗F (x) + ∂∗H(x) is an approximate
Jacobian of F +H at x.

Note that as in the case of convexificators of real-valued functions [18], the set
∂∗F (x) + ∂∗H(x) is not necessarily regular at x.

Theorem 4.3 (Rule 2). Let F : Rn → Rm and H : IRm → Rl be continuous
maps. Assume that ∂∗F (x) is a bounded approximate Jacobian of F at x and ∂∗H(x)
is a bounded approximate Jacobian of H at F (x). If the maps ∂∗F and ∂∗H are upper
semicontinuous at x and F (x), respectively, then ∂∗H(F (x))∂∗F (x) is an approximate
Jacobian of H ◦ F at x.

Proof. Let w ∈ Rl and u ∈ Rm be arbitrary. Consider the lower Dini directional
derivative of 〈w, H ◦ F 〉 at x:

〈w, H ◦ F 〉−(x, u) = lim inf
t↓0

〈w, H(F (x+ tu))−H(F (x))〉
t

.

By applying the mean value theorem (see Theorem 3.1) to H and F , we obtain

F (x+ tu)− F (x) ∈ tco(∂∗F ([x, x+ tu])u),

H(F (x+ tu))−H(F (x)) ∈ co(∂∗H([F (x, ), F (x+ tu)])(F (x+ tu)− F (x)))

It now follows from the upper semicontinuity of ∂∗F and ∂∗H that for an arbitrary
small positive ε we can find t0 > 0 such that for t ∈ (0, t0) we have

∂∗F ([x, x+ tu]) ⊆ ∂∗F (x) + εB1,

∂∗H([F (x), F (x+ tu)]) ⊆ ∂∗H(F (x)) + εB2,

where B1 and B2 are the unit balls in L(Rn,Rm) and L(Rm,Rl), respectively. Using
these inclusions, we obtain

〈w, H(F (x+ tu))−H(F (x))〉
t

∈ 〈w,A〉,
where

A := co((∂∗H(F (x))∂∗F (x) + ε(∂∗H(F (x))B1 +B2∂
∗F (x)) + ε2B2B1)u).

Since ∂∗H(F (x)) and ∂∗F (x) are bounded, we can find α > 0 such that ‖M‖ ≤ α for
all M ∈ ∂∗H(F (x)) or M ∈ ∂∗F (x). Consequently,

〈w,H ◦ F 〉−(x, u) ≤ sup
M∈∂∗H(F (x))∂∗F (x)

〈Mw,u〉+ 2ε‖u‖+ ε2‖u|.

As ε is arbitrary, we conclude that ∂∗H(F (x))∂∗F (x) is an approximate Jacobian of
H ◦ F at x.
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5. Approximate Hessian matrices. In this section, unless stated otherwise,
we assume that f : Rn → R is a C1- function, that is, a continuously Gâteaux
differentiable function, and introduce the notion of approximate Hessian for such
functions. Note that the derivative of f , which is denoted by ∇f , is a map from Rn
to Rn.

Definition 5.1. The function f admits an approximate Hessian ∂2
∗f(x) at x if

this set is an approximate Jacobian to ∇f at x.
Note that ∂2

∗f(x) = ∂∗∇f(x) and the matrix M ∈ ∂2
∗f(x) is an approximate

Hessian matrix of F at x. Clearly, if f is twice differentiable at x, then ∇2f(x) is a
symmetric approximate Hessian matrix of f at x.

Let us now examine the relationships between the approximate Hessians and
the generalized Hessians, studied for C1,1-functions, that is, Gâteaux differentiable
functions with locally Lipschitz derivatives. Recall that if f : Rn → R is C1,1, then
the generalized Hessian in the sense of Hiriart-Urruty, Strodiot, and Hien Nguyen [7]
is given by

∂2
Hf(x) = co{M : M = lim

n→∞∇
2f(xn), xn ∈ ∆, xn → x},

where ∆ is the set of points in Rn where f is twice differentiable. Clearly, ∂2
Hf(x) is

a nonempty convex compact set of symmetric matrices. The second-order directional
derivative of f at x in the directions (u, v) ∈ Rn × Rn is defined by

f◦◦(x;u, v) = lim sup
y→x
s→0

〈∇f(y + su), v〉 − 〈∇f(y), v〉
s

.

Since (v∇f)−(x, u) ≤ f◦◦(x;u, v), for each (u, v) ∈ Rn and

f◦◦(x;u, v) = max
M∈∂2

H
f(x)
〈Mu, v〉 = max

M∈∂2
H
f(x)
〈Mv, u〉,

∂2
Hf(x) is an approximate Hessian of f at x.

The generalized Hessian of f at x as a set-valued map, ∂◦◦f(x) : Rn → Rn, which
was given in Cominetti and Correa [3], is defined by

∂◦◦f(x)(u) = {x∗ ∈ Rn : f◦◦(x;u, v) ≥ 〈x∗, v〉∀v ∈ Rn}.
It is known that the mapping (u, v) −→ f◦◦(x;u, v) is finite and sublinear and

that ∂◦◦f(x)(u) is a nonempty, convex, and compact subset of Rn, and for each
x, u, v ∈ Rn,

f◦◦(x;u, v) = max{〈x∗, v〉 : x∗ ∈ ∂◦◦f(x)(u)}.
Moreover, for each u ∈ Rn,

∂◦◦f(x)(u) = ∂2
Hf(x)u.

If f is twice continuously differentiable at x, then the generalized Hessian ∂◦◦f(x)(u)
is a singleton for every u ∈ IRn.

In [34, 35], another generalized second-order directional derivative and a general-
ized Hessian set-valued map for a C1,1 function f at x were given as follows:

f��(x;u, v) = sup
z∈Rn

lim sup
s↓0

〈∇f(x+ sz + su), v〉 − 〈∇f(x+ sz), v〉
s

,
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∂��f(x)(u) = {x∗ ∈ X∗ : f��(x;u, v) ≥ 〈x∗, v〉 ∀v ∈ X}.
It was shown that the mapping (u, v) −→ f��(x;u, v) is finite and sublinear;

∂��f(x)(u) is a nonempty, convex, and compact subset of Rn; and ∂��f(x)(u) is
singled-valued for each u ∈ IRn if and only if f is twice Gâteaux differentiable at x.
Further, for each u ∈ Rn, ∂��f(x)(u) ⊂ ∂◦◦f(x)(u) = ∂2

Hf(x)u. If for each (u, v) ∈ Rn
the function y −→ f��(y;u, v) is upper semicontinuous at x, then

∂��f(x)(u) = ∂2
Hf(x)u.

The following proposition gives us necessary and sufficient conditions in terms of
approximate Hessians for a C1-function to be C1,1.

Proposition 5.2. Let f : Rn → R be a C1-function. Then f has a locally
bounded approximate Hessian map ∂2

∗f at x if and only if f is C1,1 at x.
Proof. This follows from Theorem 3.5 by taking F as ∇f .
We complete this section with an example showing that for a C1,1 function the

approximate Hessian may be a singleton which is contained in the generalized Hessian
of Hiriart-Urruty, Strodiot, and Hien Nguyen [7].

Example 5.3. Let g be an odd, linear piecewise continuous function on R as
follows. g(x) = x for x ≥ 1 and g(0) = 0; g(x) = 2x−1 for x ∈ [ 1

2 , 1]; g(x) = − 1
2x+ 1

4
for x ∈ [ 1

6 ,
1
2 ]; g(x) = 2x− 1

6 for x ∈ [ 1
12 ,

1
6 ]; g(x) = − 1

4x+ 1
48 for x ∈ [ 1

60 ,
1
12 ], etc. Let

G(x) =

∫ |x|
0

g(t)dt, x ∈ R.

Define

f(x, y) = G(x) +
y2

2
.

Then the function f is a C1,1 function, and the generalized Hessian of f at (0, 0) is

∂2
Hf(0) =

{(
α 0
0 1

)
: α ∈ [0, 2]

}
.

However, the approximate Hessian of f at (0, 0) is the singleton

∂2
∗f(0) =

{(
0 0
0 1

)}
.

6. Generalized Taylor’s expansions for C1-functions. In this section, we
see how Taylor’s expansions can be obtained for C1- functions using approximate
Hessians.

Theorem 6.1. Let f : Rn → R be continuously Gâteaux differentiable on Rn; let
x, y ∈ Rn. Suppose that for each z ∈ [x, y], ∂2

∗f(z) is an approximate Hessian of f at
z. Then there exists ζ ∈ (x, y) such that

f(y) ∈ f(x) + 〈∇f(x), y − x〉+
1

2
co〈∂2

∗f(ζ)(y − x), (y − x)〉.

Proof. Let h(t) = f(y + t(x − y)) + t〈∇f(y + t(x − y)), y − x〉 + 1
2at

2 − f(y),
where a = −2(f(x) − f(y) + 〈∇f(x), y − x〉). Then h(0) = 0, h(1) = f(x) − f(y) +
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〈∇f(x), y − x〉 + 1
2a = 0, and h is continuous. So h attains its extremum at some

γ ∈ (0, 1). Suppose that γ is a minimum point of h. Now, by necessary conditions,
we have for all v ∈ R

h−(γ; v) ≥ 0.

Then

0 ≤ h−(γ; v)

= lim inf
λ→0+

h(γ + λv)− h(γ)

λ

= lim
λ→0+

f(y + (γ + λv)(x− y))− f(y + γ(x− y))

λ

+
1

2
lim
λ→0+

a(γ + λv)2 − aγ2

λ

+ lim inf
λ→0+

(γ + λv)〈∇f(y + (γ + λv)(x− y)), y − x〉 − γ〈∇f(y + γ(x− y)), y − x〉
λ

= v〈∇f(y + γ(x− y)), x− y〉+ aγv + v〈∇f(y + γ(x− y)), y − x〉
+γ lim inf

λ→0+

〈∇f(y + (γ + λv)(x− y)), y − x〉 − 〈∇f(y + γ(x− y)), y − x〉
λ

= aγv + γ lim inf
λ→0+

〈∇f(y + (γ + λv)(x− y)), y − x〉 − 〈∇f(y + γ(x− y)), y − x〉
λ

.

Let ζ = y + γ(x− y). Then ζ ∈ (x, y), and for v = 1 we get

0 ≤ aγ + γ lim inf
λ→0+

〈∇f(y + γ(x− y) + λ(x− y)), y − x〉 − 〈∇f(y + γ(x− y)), y − x〉
λ

≤ a+ sup
M∈∂2∗f(ζ)

〈M(y − x), x− y〉.

This gives us that

a ≥ inf
M∈∂2∗f(ζ)

〈M(y − x), y − x〉.

Similarly, for v = −1, we obtain

0 ≤ −aγ + γ lim inf
λ→0+

〈∇f(y + γ(x− y) + λ(y − x)), y − x〉 − 〈∇f(y + γ(x− y)), y − x〉
λ

≤ −a+ sup
M∈∂2∗f(ζ)

〈M(y − x), y − x〉;

thus,

a ≤ sup
M∈∂2∗f(ζ)

〈M(y − x), y − x〉.

Hence, it follows that

inf
M∈∂2∗f(ζ)

〈M(y − x), y − x〉 ≤ a ≤ sup
M∈∂2∗f(ζ)

〈M(y − x), y − x〉,

and so

a ∈ co〈∂2
∗f(ζ)(y − x), (y − x)〉;
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thus,

(6.1) f(y)− f(x)− 〈∇f(x), y − x〉 =
a

2
∈ 1

2
co〈∂2

∗f(ζ)(y − x), (y − x)〉.

The case where γ is a maximum point of h also yields the same condition (6.1). The
details are left to the reader.

Corollary 6.2. Let f : Rn → R be continuously Gâteaux differentiable on Rn
and x, y ∈ Rn. Suppose that for each z ∈ [x, y], ∂2

∗f(z) is a convex and compact
approximate Hessian of f at z. Then there exist ζ ∈ (x, y) and Mζ ∈ ∂2

∗f(ζ) such
that

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
〈Mζ(y − x), y − x〉.

Proof. It follows from the hypothesis that for each z ∈ [x, y], ∂2
∗f(z) is convex

and compact, and so the co in the conclusion of the previous theorem is superfluous.
Thus, the inequalities

inf
M∈∂2∗f(ζ)

〈M(y − x), y − x〉 ≤ a ≤ sup
M∈∂2∗f(ζ)

〈M(y − x), y − x〉

give us that

a ∈ 〈∂2
∗f(ζ)(y − x), (y − x)〉.

Corollary 6.3 (see [7]). Let f : Rn → R be C1,1 and x, y ∈ Rn. Then there
exist ζ ∈ (x, y) and Mζ ∈ ∂2

Hf(ζ) such that

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
〈Mζ(y − x), y − x〉.

Proof. In this case, the conclusion follows from the above corollary by choosing
the generalized Hessian ∂2

Hf(x) as an approximate Hessian of f for each x.

7. Second-order conditions for optimality and convexity of C1-functions.
In this section, we present second-order necessary and sufficient conditions for opti-
mality and convexity of C1-functions using approximate Hessian matrices. Consider
the optimization problem

(P) minimize f(x)

subject to x ∈ Rn,

where f : Rn −→ R is a continuously Gâteaux differentiable function on Rn. We
say that a map F : Rn → Rm admits a semiregular approximate Jacobian ∂∗F (x) at
x ∈ Rn if ∂∗F (x) ⊆ L(Rn,Rm) is closed, and for each v ∈ Rm,

(vF )+(x, u) ≤ sup
M∈∂∗F (x)

〈Mv, u〉 ∀u ∈ Rn.

Similarly, the C1-function f : Rn → R admits a semiregular approximate Hessian
∂2
∗f(x) at x if this set is a semiregular approximate Jacobian to ∇f at x.
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Of course, every semiregular approximate Hessian to f at x is an approximate
Hessian at x. For a C1,1 function f : Rn → R, the generalized Hessian, ∂2

Hf(x), of f
at x is a bounded semiregular approximate Hessian of f at x since

(v∇f)+(x, u) ≤ f◦◦(x;u, v) = max
M∈∂2

H
f(x)
〈Mu, v〉 = max

M∈∂2
H
f(x)
〈Mv, u〉.

Theorem 7.1. For the problem (P), let x̄ ∈ Rn. Assume that ∂2
∗f(x̄) is a

semiregular approximate Hessian of f at x̄.
(i) If x̄ is a local minimum of (P), then ∇f(x̄) = 0, and for each u ∈ IRn,

sup
M∈∂2∗f(x̄)

〈Mu, u〉 ≥ 0.

(ii) If x̄ is a local maximum of (P), then ∇f(x̄) = 0, and for each u ∈ Rn,

inf
M∈∂2∗f(x̄)

〈Mu, u〉 ≤ 0.

Proof. Let u ∈ Rn. Since x̄ is a local minimum of (P), there exists δ > 0 such
that for each s ∈ [0, δ],

f(x̄+ su) ≥ f(x̄).

Then, by the mean value theorem, for each s ∈ (0, δ], there exists 0 < t < s such that

〈∇f(x̄+ tu), u〉 ≥ 0.

So, there exists a positive sequence {tn} ↓ 0 such that 〈∇f(x̄+ tnu), u〉 ≥ 0. Now, as
∇f(x̄) = 0, it follows that

(u∇f)+(x̄;u) = lim sup
s↓0

〈∇f(x̄+ su), u〉 − 〈∇f(x̄), u〉
s

≥ 0.

Since ∂2
∗f(x) is a semiregular approximate Hessian of f at x, we have

(u∇f)+(x̄;u) ≤ sup
M∈∂2∗f(x̄)

〈Mu, u〉,

and hence,

sup
M∈∂2∗f(x̄)

〈Mu, u〉 ≥ 0.

On the other hand, if f attains a local maximum at x̄, then it follows by the
similar arguments as above that for each u ∈ Rn,

inf
M∈∂2∗f(x̄)

〈Mu, u〉 ≤ 0.

Note in this case that it is convenient to use the inequality

(u∇f)−(x̄, u) ≥ inf
M∈∂2∗f(x̄)

〈Mu, u〉.
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Let us look at a numerical example to illustrate the significance of the optimality
conditions obtained in the previous theorem.

Example 7.2. Define f : R2 → R by

f(x, y) =
2

3
|x| 32 +

1

2
y2.

Then f is C1 but is not C1,1 since the gradient

∇f(x, y) =
(√
|x| sgn(x), y

)
is not locally Lipschitz at (0, 0). Evidently, (0, 0) is a minimum point of f , ∇f(0, 0) =
(0, 0), and

∂2
∗f(0) =

{(
α 0
0 1

)
: α ≥ 0

}
is a semiregular approximate Hessian of f at (0, 0). And for each u = (u1, u2) ∈ R2,

sup
M∈∂2∗f(0)

〈Mu, u〉 = sup{αu2
1 + u2

2 : α ≥ 0} ≥ 0.

Hence, the statement (i) of Theorem 7.1 is verified. However, the generalized Hessians
[7] do not apply to this function.

Corollary 7.3. For the problem (P), let x̄ ∈ Rn. Suppose that ∂2
∗f(x̄) is a

bounded semiregular approximate Hessian of f at x̄.
(i) If x̄ is a local minimum of (P), then ∇f(x̄) = 0, and for each u ∈ Rn there

exists a matrix M ∈ ∂2
∗f(x̄) such that 〈Mu, u〉 ≥ 0.

(ii) If x̄ is a local maximum of (P), then ∇f(x̄) = 0, and for each u ∈ Rn there
exists a matrix M ∈ ∂2

∗f(x̄) such that 〈Mu, u〉 ≤ 0.
Proof. Since ∂2

∗f(x̄) is closed and bounded, it follows from Theorem 7.1 that
∇f(x̄) = 0, and for each u ∈ IRn,

max
M∈∂2∗f(x̄)

〈Mu, u〉 ≥ 0,

and so the first conclusion holds. The second conclusion similarly follows from Theo-
rem 7.1.

We now see how optimality conditions for the problem (P ) where f is C1,1 follows
from Corollary 7.3 (cf. [7]).

Corollary 7.4. For the problem (P), assume that the function f is C1,1 and
x̄ ∈ Rn.

(i) If x̄ is a local minimum of (P), then ∇f(x̄) = 0, and for each u ∈ Rn there
exists a matrix M ∈ ∂2

Hf(x̄) such that 〈Mu, u〉 ≥ 0.
(ii) If x̄ is a local maximum of (P), then ∇f(x̄) = 0, and for each u ∈ Rn there

exists a matrix M ∈ ∂2
Hf(x̄) such that 〈Mu, u〉 ≤ 0.

Proof. The conclusion follows from Corollary 7.3 by choosing ∂2
Hf(x̄) as the

semiregular bounded approximate Hessian ∂2
∗f(x̄) of f at x̄.

Clearly, the conditions of Theorem 7.1 are not sufficient for a local minimum,
even for a C2-function f . The generalized Taylor’s expansion is now applied to obtain
a version of second-order sufficient condition for a local minimum. For related results,
see [34, 16].
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Theorem 7.5. For the problem (P), let x̄ ∈ Rn. Assume that for each x in a
neighborhood of x̄, ∂2

∗f(x) is a bounded approximate Hessian of f at x. If ∇f(x̄) = 0
and for 0 < α < 1, each u ∈ Rn satisfies u 6= 0; then the following holds:

(7.1) (∀M ∈ co(∂2
∗f(x̄+ αu))), 〈Mu, u〉 ≥ 0.

Then x̄ is a local minimum of (P).
Proof. Suppose that x̄ is not a local minimum of (P ). Then there exists a sequence

{xn} such that xn 6= x̄, xn −→ x̄ as n −→ +∞, and f(xn) < f(x̄) for each n. Let
xn = x̄ + un, where un 6= 0. From the generalized Taylor expansion, Theorem 6.1,
there exists 0 < αn < 1 such that

f(xn) ∈ f(x̄) + 〈∇f(x̄), xn − x̄〉+
1

2
co〈∂2

∗f(x̄+ αnun)(un), un〉.

Thus, there exists Mn ∈ co(∂2
∗f(x̄ + αnun)) such that f(xn) = f(x̄) + 〈Mnun, un〉,

and so 〈Mnun, un〉 < 0. This contradicts (7.1). Hence, x̄ is a local minimum of
(P).

The following theorem gives us second-order sufficient optimality conditions for a
strict local minimum.

Theorem 7.6. For the problem (P), let x̄ ∈ Rn. Assume that, for each x in a
neighborhood of x̄, ∂2

∗f(x) is a bounded approximate Hessian of f at x. If ∇f(x̄) = 0
and for 0 < α < 1, each u ∈ Rn satisfies u 6= 0, then the following holds:

(7.2) (∀M ∈ co(∂2
∗f(x̄+ αu))), 〈Mu, u〉 > 0.

Then x̄ is a strict local minimum of (P).
Proof. The method of proof is similar to the one given above for Theorem 7.5

and so it is omitted.
We now see how the mean value theorem of section 3 and approximate Hessians

can be used to characterize convexity of C1- functions.
Theorem 7.7. Let f : Rn → R be a continuously Gâteaux differentiable function.

Assume that ∂2
∗f(x) is an approximate Hessian of f for each point x ∈ Rn. If the

matrices M ∈ ∂2
∗f(x) are positive semidefinite for each x ∈ Rn, then f is convex.

Proof. Let x, u ∈ Rn. Then, by the mean value theorem,

∇f(x+ u)−∇f(x) ∈ co(∂2
∗f([x, x+ u])u),

and so,

〈∇f(x+ u)−∇f(x), u〉 ∈ 〈co(∂2
∗f([x, x+ u])u), u〉.

Thus, there exist z ∈ [x, x+ u] and M ∈ co(∂2
∗f(z)) such that

〈∇f(x+ u)−∇f(x), u〉 = 〈Mu, u〉.
It follows by the assumption that

〈∇f(x+ u)−∇f(x), u〉 ≥ 0.

Since x, u ∈ Rn are arbitrary, we get that ∇f is monotone in the sense that for each
x, u ∈ Rn,

〈∇f(x+ u)−∇f(x), u〉 ≥ 0.
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The conclusion now follows from the standard result of convex analysis that f is
convex if and only if ∇f is monotone.

Corollary 7.8. Let f : Rn → R be C1,1. Then f is convex if and only if for
each x ∈ Rn, the matrices M ∈ ∂2

Hf(x) are positive semidefinite.
Proof. Since f is C1,1 for each x ∈ Rn, ∂2

Hf(x) is an approximate Hessian of f at
x. Hence, it follows from Theorem 7.7 that f is convex.

Conversely, assume that f is convex. Let ∆ be a set of points in Rn on which f
is twice differentiable. Then, each matrix M of

{ lim
n→∞∇

2f(xn) : {xn} ⊂ ∆, xn → x}

is positive semidefinite as it is a limit of a sequence of positive semidefinite matrices.
Hence, each matrix M of

∂2
Hf(x) = co{ lim

n→∞∇
2f(xn) : {xn} ⊂ ∆, xn → x}

is also positive semidefinite.
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Abstract. An L2-local optimality sufficiency theorem is proved for a class of structured infinite-
dimensional nonconvex programs with constraints of the form u ∈ Ω and h(u) = 0, where Ω is
a set of Lebesgue measurable essentially bounded vector-valued functions u(·) : [0, 1] → Rm with
range in a polyhedron U , and h is a smooth map of the space of essentially bounded functions u(·)
into Rk. The sufficiency theorem is based on formal counterparts of the finite-dimensional Karush–
Kuhn–Tucker sufficient conditions in a Cartesian product of polyhedra, a strengthened variant of
Pontryagin’s necessary condition, and structure and continuity conditions on the first and second
differentials of the objective function and equality constraint functions. The new sufficient conditions
are directly applicable to nonconvex continuous-time Bolza optimal control problems with control-
quadratic Hamiltonians, unqualified affine inequality constraints on vector-valued control inputs, and
equality constraints on the terminal state vector or equivalent isoperimetric constraints on integrals
of functions depending on the state and control variables.
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1. Introduction. In finite-dimensional spaces, all norms are equivalent and local
optimality is a norm-invariant property. On the other hand, in infinite-dimensional
spaces, norm-equivalence is lost and local optimality in one norm need not imply
local optimality in another. This fact has computational and theoretical implications
for refined finite-dimensional approximations to constrained minimization problems
in infinite-dimensional function spaces [13], [15].

The distinction between strong and weak minimizing curves in the calculus of
variations provides a classic illustration of norm-dependent local optimality in func-
tion spaces. For variational problems, strict versions of the necessary conditions of
Legendre and Jacobi are sufficient for weak local optimality but not strong local op-
timality; however, strong local optimality can be deduced when a strict version of
the Weierstrass necessary condition is added to the weak local optimality sufficient
conditions. This classical development has a natural extension to Bolza optimal con-
trol problems for ordinary differential equations [3], [4], [21], [22], [23], [24], [28], [29],
[30]. In the optimal control setting, some strict form of the Pontryagin necessary
condition replaces the Weierstrass condition since pointwise constraints on control or
state variables are generally present. Variants of the Pontryagin minimum principle
are also invoked in the global optimality sufficient conditions of [5], [6], [7], and [8] for
time-optimal control of state-constrained ordinary differential inclusions.

Alternative local optimality sufficient conditions for optimal control problems
have been established with modifications of a basic proof strategy for finite-dimensional

∗Received by the editors July 5, 1995; accepted for publication (in revised form) May 6, 1997;
published electronically July 9, 1998. This research was supported by NSF grant DMS-9500908.

http://www.siam.org/journals/sicon/36-5/28851.html
†Mathematics Department, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

(dunn@eos.ncsu.edu).

1833



1834 J. C. DUNN

nonlinear programs. As one might expect, these sufficient conditions are closely re-
lated to the strict complementarity and coercivity hypotheses in the Karush–Kuhn–
Tucker (KKT) theory. Initially, the KKT approach produced sufficient conditions for
weak local optimality in the control context, i.e., local optimality in the L∞ norm on
control functions [9], [20], [21]; however, recent investigations have deduced both weak
(L∞) and strong (L2) local optimality from strict complementarity and coercivity hy-
potheses, and an additional condition of the Pontryagin type for specially structured
infinite-dimensional nonlinear programs and related optimal control problems [11],
[14], [15], [27].

The strong L2-local optimality sufficient conditions established in [14], [15], [27]
apply to infinite-dimensional nonlinear programs,

minJ(u),(1.1a)

subject to

u ∈ Ω = {u ∈ L∞m [0, 1] : u(t)
a.e.∈ U},(1.1b)

where L∞m [0, 1] is the vector space of Lebesgue measurable essentially bounded func-
tions u(·) : [0, 1]→ Rm, U is a polyhedral convex set in Rm, and the first and second
Gâteaux differentials of J satisfy certain structure conditions and L2 continuity condi-
tions described in section 2. The latter conditions have been shown to hold for Bolza
optimal control problems with control-quadratic Hamiltonians and, more specifically,
for nonconvex nonquadratic regulator optimal control problems [27]. In the present
article, the L2-local optimality sufficiency proof strategy in [15] is extended to a larger
class of smooth structured nonconvex constrained minimization problems,

minJ(u),(1.2a)

subject to

u ∈ Ωh = {u ∈ Ω : h(u) = 0},(1.2b)

where Ω is defined in (1.1b), h maps L∞m [0, 1] to Rk, and J and h1, . . . , hk satisfy the
structure and continuity conditions in section 2. The results obtained for (1.2) are
immediately applicable to an important class of Bolza optimal control problems with
nonconvex objective functions and end-constraint functions defined by

J(u) = P (x(u)(1)) +

∫ 1

0

f0 (t, x(u)(t), u(t)) dt,(1.3a)

and

hi(u) = πi (x(u)(1)) +

∫ 1

0

φ0
i (t, x(u)(t), u(t)) dt, i = 1, . . . , k,(1.3b)

where x(u) : [0, 1] → Rn is the unique (absolutely continuous) solution of an initial
value problem

dx

dt
(t)

a.e.
= f (t, x(t), u(t)) ,(1.3c)

x(0) = x0.(1.3d)
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As in [27], the structure and continuity conditions of section 2 will hold for these
problems when the Hamiltonians,

H(t, ψ, x, u) = f0(t, x, u) + 〈ψ, f(t, x, u)〉,(1.4)

and

H(t, ψ, x, u) = φ0
i (t, x, u) + 〈ψ, f(t, x, u)〉,(1.5)

are quadratic in the control input vector u ∈ Rm and when P , πi, f
0, φ0

i , and f satisfy
suitable smoothness and growth conditions. Note that (1.3b) admits both terminal
state constraints (φ0

i = 0) and isoperimetric constraints (πi = 0).
In finite-dimensional nonconvex programming, second-order sufficient conditions

are natural starting points in the development of sensitivity analyses and local conver-
gence theories for gradient-related methods, multiplier methods, sequential quadratic
programming methods, and other iterative computational schemes. Analogous the-
ories rest on function space local optimality sufficient conditions and related growth
estimates for J in the feasible set near an optimal u∗ [3], [9], [15], [17], [18], [19],
[26], [27]. In particular, a strengthened corollary of the L2-local optimality sufficient
conditions in [11], [14], and [15] supports well-developed local convergence and active
constraint identification theorems for gradient projection methods in the setting of
problem (1.1) [15], [26], [27]. It seems likely that an analogous corollary of the L2-
local optimality sufficient conditions established in section 4 will find similar uses in
local convergence theories for augmented gradient projection methods and sequential
quadratic programming methods applicable to problem (1.2).

2. Structure and continuity conditions. As in [15], problem (1.2) is set in
the pre-Hilbert space {L∞m [0, 1], 〈·, ·〉2}, with the standard L2 inner product,

〈u, v〉2 =

∫ 1

0

〈u(t), v(t)〉dt,

associated norm,

‖u‖2 =
√
〈u, u〉2 =

(∫ 1

0

‖u(t)‖2dt
) 1

2

,

and open balls,

B2(u, δ) = {v ∈ L∞m [0, 1] : ‖v − u‖2 < δ},
where 〈·, ·〉 and ‖·‖ are the Euclidean inner product and norm on Rm. The analysis in
section 4 requires that the structure conditions and L2 continuity conditions imposed
on J in [15] hold here for J and the constraint components hi, i = 1, . . . , k. For a
generic real functional F , these conditions specify that for all u in L∞m [0, 1], there exist
∇F (u) ∈ L∞m [0, 1], SF (u) ∈ L∞m×m[0, 1], and KF (u) ∈ L2

m×m([0, 1]× [0, 1]) such that

d1F (u ; v) = 〈∇F (u), v〉2 =

∫ 1

0

〈∇F (u)(t), v(t)〉dt,(2.6)

d2F (u ; v, w) = 〈v,∇2F (u)w〉2 =

∫ 1

0

〈v(t), (∇2F (u)w)(t)〉dt,(2.7a)
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(∇2F (u)w)(t) = SF (u)(t)w(t) +

∫ 1

0

KF (u)(t, s)w(s)ds(2.7b)

for all v and w in L∞m [0, 1] and almost all t in [0, 1] and (s, t) in [0, 1]× [0, 1], with

lim
‖v−u‖2→0

‖SF (v)− SF (u)‖∞ = 0,(2.8a)

lim
‖v−u‖2→0

‖KF (v)−KF (u)‖2 = 0,(2.8b)

where

‖SF (v)− SF (u)‖∞ def
= ess sup

t∈[0,1]

‖SF (v)(t)− SF (u)(t)‖

and

‖KF (v)−KF (u)‖2 def
=

(∫ 1

0

∫ 1

0

‖KF (v)(t, s)−KF (u)(t, s)‖2dtds
) 1

2

.

It is also assumed that the m×m matrices SF (u)(t) and KF (u)(t, s) are symmetric,
with KF (u)(t, s) = KF (u)(s, t), and that the vector and matrix norms on Rm and
Rm×m in (2.6)–(2.8) are induced by the standard Euclidean inner product on Rm.
These conditions imply that F is twice continuously Fréchet differentiable on the
pre-Hilbert space {L∞m [0, 1], ‖ · ‖2}, and therefore establish the Taylor formula,

F (u)− F (u∗) = 〈∇F (u∗), u− u∗〉2(2.9a)

+
1

2
〈u− u∗,∇2F (u∗)(u− u∗)〉2 + rF (u∗ ; u− u∗),

with

lim
‖u−u∗‖2→0

rF (u∗ ; u− u∗)
‖u− u∗‖22

= 0.(2.9b)

Note 2.1. In the Bolza optimal control formulation (1.3), the vectors ∇J(u)(t)
and matrices SJ(u)(t) are formally derived from the u-gradient and u-Hessian of the
Hamiltonian (1.4) evaluated on the state and co-state trajectories x(u)(·) and ψ(u)(·)
corresponding to u(·). More precisely,

∇J(u)(t) = ∇uH(t, ψ(u)(t), x(u)(t), u(t))

and

SJ(u)(t) = ∇2
uuH(t, ψ(u)(t), x(u)(t), u(t)),

where x(u)(·) solves the initial value problem, (1.3c) and (1.3d), and ψ(u)(·) solves
the adjoint backward initial value problem,

dψ

dt
(t)

a.e.
= −∇xH(t, ψ, x(u)(t), u(t)),

ψ(1) = ∇P (x(u)(1)).
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In the same way, ∇hi(u)(t) and Shi(u)(t) are formally obtained by an analogous
construction, with H defined by (1.5) instead of (1.4) and P replaced by πi. If
conditions (2.6)–(2.8) are to hold for J and hi, then the corresponding Hamiltonians
must be u-quadratic, and the functions P , πi, f

0, φ0
i , and f must satisfy additional

differentiability and growth hypotheses to ensure existence, uniqueness, and smooth
dependence on u in the L2 norm for the state and costate trajectories x(u)(·) and
ψ(u)(·). The global hypotheses in [15] and [27] admit nontrivial nonconvex optimal
control problems, including certain nonquadratic regulator problems with u-quadratic
integrands f0 and φ0

i , and nonlinear state equations with u-linear right sides f .

3. Preliminary results. By definition [25], the cone of exterior normals at a
point u in the convex set Ω is

NΩ(u) = {w ∈ L∞m [0, 1] : ∀v ∈ Ω 〈w, v − u〉2 ≤ 0}.(3.10)

This cone, the associated complementary orthogonal closed subspaces,

NΩ(u) = cl spanNΩ(u),(3.11a)

TΩ(u) = NΩ(u)⊥,(3.11b)

the constraint derivative null space,

Th(u∗) = ker h′(u∗) = {w ∈ L∞m [0, 1] : 〈∇hi(u∗), w〉2 = 0, i = 1, . . . , k},(3.12)

and the subspace,

T(u) = TΩ(u) ∩ Th(u),(3.13)

are fundamental objects in the sufficiency theorem and proof of section 4. Basic
properties of the orthogonal projection maps PNΩ(u) and PTΩ(u) established in [14]
and [15] are reviewed in this section, and an elementary right inverse lemma is proved
for the restriction of the linear map h′(u) to the subspace TΩ(u). Note that the
existence portion of the Hilbert space projection theorem and the standard Banach
space right inverse lemma [1, pp. 79–80], [16, p. 155] can’t be invoked here since the
inner product space {L∞m [0, 1], 〈·, ·〉2} is incomplete. Our arguments rely instead on
the orthogonality characterization of projector maps and the finite codimensionality
of Th(u). This approach is straightforward enough and works equally well for the
counterpart of problem (1.2) in the Hilbert space {L2

m[0, 1], 〈·, ·〉2} (However, see Note
4.5).

References [14] and [15] supply the following key representations for the cone and
subspaces in (3.10) and (3.11) and related projection decomposition formulas:

NΩ(u) = {w ∈ L∞m [0, 1] : w(t)
a.e∈ NU (u(t))}(3.14)

and

NΩ(u) = {w ∈ L∞m [0, 1] : w(t)
a.e∈ NU (u(t))},(3.15a)

TΩ(u) = {w ∈ L∞m [0, 1] : w(t)
a.e∈ TU (u(t))},(3.15b)
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where

NU (ξ) = {ζ ∈ Rm : ∀η ∈ U 〈ζ, η − ξ〉 ≤ 0},

NU (ξ) = span NU (ξ),

and

TU (ξ) = NU (ξ)⊥

for ξ in U . Note that the polyhedron U is the union of the relative interiors of its
polyhedral faces {F1, . . . ,Fd}, with ri Fi ∩ ri Fj = ∅ for i 6= j, and NU (·) constant
on each set ri Fi. Hence, the set-valued functions NU (u(·)), NU (u(·)), and TU (u(·))
are constant on the sets

αi(u) = u−1 [ri Fi], i = 1, . . . , d,(3.16a)

with

αi(u) ∩ αj(u) = ∅ for i 6= j(3.16b)

and

µ
(
[0, 1] \ ∪di=1 αi(u)

)
= 0,(3.16c)

where µ denotes Lebesgue measure. From this it follows easily that for each measur-
able essentially bounded z, the pointwise projection decomposition formulas,(

PNΩ(u)z
)

(t) = PNU (u(t)) z(t),(3.17a)

(
PTΩ(u)z

)
(t) = PTU (u(t)) z(t),(3.17b)

produce measurable essentially bounded functions PNΩ(u)z in NΩ(u) and PTΩ(u)z in
TΩ(u) such that z − PNΩ(u)z and z − PTΩ(u)z are orthogonal to NΩ(u) and TΩ(u),
respectively. Thus, (3.17) defines orthogonal projection maps, PNΩ(u) and PTΩ(u),
from L∞m [0, 1] into the complementary orthogonal closed subspaces NΩ(u) and TΩ(u).
In fact, NΩ(u) and TΩ(u) are actually pointwise orthogonal in the sense that

∀v ∈ NΩ(u), ∀w ∈ TΩ(u), 〈v(t), w(t)〉 a.e.= 0.(3.18)

A pre-Hilbert space variant of the Banach space right inverse lemma in [1, pp. 79–
80] and [16, p. 155] is also needed in the sufficiency proof of section 4. The following
simple lemmas lead directly to the required result in Corollary 3.3.

Lemma 3.1. Let {a1, . . . , al} be a linearly independent set in a real inner product
space {U, 〈·, ·〉U}, let V = {a1, . . . , al}⊥, and let U/V denote the corresponding quotient
space of cosets [u] = u+ V with u in U. Then {[a1], . . . , [al]} is a basis for U/V, and
consequently dimU/V = l.

Proof. Fix u in U. Since {a1, . . . , al} is linearly independent, the corresponding
Gramian matrix is invertible and there is a unique α ∈ Rl such that〈

ai, u−
l∑

j=1

αjaj

〉
U

= 0, i = 1, . . . , l,
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or equivalently

u−
l∑

j=1

αjaj ∈ V.

It follows that for each [u] in U/V, there is a unique α ∈ Rl such that

[u] =

 l∑
j=1

αjaj

 =
l∑

j=1

αj [aj ]

with α = 0 iff [u] = 0.
Lemma 3.2. Let {a1, . . . , ak} be a finite set in a real inner product space {U, 〈·, ·〉U},

and define A : U→ Rk by the rule

∀w ∈ U, ∀i = 1, . . . , k, (Aw)i = 〈ai, w〉U.

Then there is a real number b > 0 and a map B : A(U)→ U such that

∀ξ ∈ A(U), AB(ξ) = ξ, and ‖B(ξ)‖U ≤ b‖ξ‖.(3.19)

Proof. If ai = 0 for i = 1, . . . , k, then A(U) = {0} and condition (3.19) holds
trivially with B(0) = 0 and any b ≥ 0. Suppose that ai 6= 0 for some i, and relabel the
ai’s if necessary so that {a1, . . . , al} is a basis for span{a1, . . . , ak}. By construction,
the null space of A is V = {a1, . . . , al}⊥. By Lemma 3.1, dimU/V = l. Hence the rule

∀[u] ∈ U/V, Â[u] = Au

defines a one-to-one linear map from the finite-dimensional space U/V onto the finite-
dimensional space A(U) ⊂ Rk, and the corresponding inverse map Â−1 : A(U)→ U/V
is therefore automatically bounded, i.e.,

∃b̂ ∀ξ ∈ A(U), ‖Â−1ξ‖U/V ≤ b̂‖ξ‖,

where

‖Â−1ξ‖U/V def
= inf

u∈Â−1ξ
‖u‖U.

Put b = b̂+ 1. Then for each ξ ∈ A(U), there is a B(ξ) ∈ Â−1ξ ⊂ U such that

AB(ξ) = Â[B(ξ)] = ÂÂ−1ξ = ξ

and

‖B(ξ)‖U ≤ inf
u∈Â−1ξ

‖u‖U + ‖ξ‖.

Corollary 3.3. Let h be Gâteaux differentiable at a point u∗ in Ω, with

(h′(u∗)w)i = d1hi(u∗ ; w) = 〈∇hi(u∗), w〉2, i = 1, . . . , k,
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for some ∇hi(u∗) ∈ L∞m [0, 1] and all w ∈ L∞m [0, 1]. Then there is a real number b∗ ≥ 0
and a map B∗ : h′(u∗)(TΩ(u∗))→ TΩ(u∗) such that for all w ∈ TΩ(u∗),

h′(u∗)B∗(h′(u∗)w) = h′(u∗)w

and

‖B∗(h′(u∗)w)‖2 ≤ b∗‖h′(u∗)w‖.

Proof. Apply the lemma with U = TΩ(u∗), 〈·, ·〉U = 〈·, ·〉2, and ai = PTΩ(u∗)∇hi(u∗)
for i = 1, . . . , k.

4. L2-local optimality sufficient conditions. L2-local optimality sufficiency
theorems are proved in [11], [14], and [15] for problem (1.1), where U is a polyhedral
convex set in Rm and J satisfies the structure and continuity conditions of section 2.
The developments in [14] and [15] are guided by an analogy between (1.1) and its
finite-dimensional counterpart in Cartesian products Ωk = U × · · · × U ⊂ Rk×m.
This analogy suggests that sufficiency theorems for (1.1) may rest on the following
pointwise strict complementarity condition and L2 coercivity condition at a point
u∗ ∈ Ω:

−∇J(u∗)(t)
a.e.∈ ri NU (u∗(t)),(4.20a)

∀w ∈ TΩ(u∗), 〈w,∇2J(u∗)w〉2 ≥ cT ‖w‖22,(4.20b)

where NU (ξ) is the cone of outer normals to the polyhedron U at ξ ∈ U , TΩ(u∗) is
the orthogonal complement of the normal cone NΩ(u∗) in the inner product space
{L∞m [0, 1], 〈·, ·〉2} (section 3), and cT is a positive real number. These conditions are
indeed central hypotheses in the sufficiency theorems of [11], [14], and [15]; however,
(4.20a) is so much weaker than its finite-dimensional componentwise counterpart in
the sets Ωk that (4.20a) and (4.20b) alone are not sufficient for local optimality, even
in the L∞ norm. More precisely, since (4.20a) does not imply that the gradient values
−∇J(u∗)(t) are essentially bounded away from the relative boundary rb NU (u∗(t)) for
t ∈ [0, 1], and since the essential sup norm ‖u− u∗‖∞ can increase without bound as
‖u − u∗‖2 approaches zero, it follows that (4.20a) does not ensure adequate growth
of the first-order term 〈∇J(u∗), u − u∗〉2 for u ∈ Ω, ‖u − u∗‖2 small, and u − u∗
bounded away from TΩ(u∗) in direction [14]. Additional hypotheses and modified
proof techniques are therefore required to compensate for the deficiency in (4.20a)
in the infinite-dimensional setting of (1.1). For the L∞-local optimality sufficiency
theorems in [11], [14], and [15], the hypotheses take the form of restrictions on the
behavior of the operators SJ(u∗)(t) in section 2 and the subspaces span NU (u∗(t))
near frontier points of the sets αi ⊂ [0, 1] in (3.16a), where u∗(t) passes from the
relative interior of one polyhedral face in U to another. On the other hand, in the
L2-local optimality theorems of [11], [14], and [15], conditions (4.20a) and (4.20b) are
supplemented by a strengthened variant of an L2-local optimality necessary condition
akin to Pontryagin’s minimum principle, namely,

∀ξ ∈ U, HJ(u∗ ; ξ, t)−HJ(u∗ ; u∗(t), t) ≥ 1

2
cP ‖ξ − u∗(t)‖2(4.20c)
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a.e. in [0, 1], where cP is a positive number and

HJ(u∗ ; ξ, t) = 〈∇J(u∗)(t), ξ − u∗(t)〉+
1

2
〈ξ − u∗(t), SJ(u∗)(t) (ξ − u∗(t))〉.

Conditions (4.20) appear once again in the present analysis for problem (1.2) with
J replaced everywhere by a Lagrangian function,

L(λ∗, ·) = J(·) + 〈λ∗, h(·)〉,
and TΩ(u∗) replaced by the subspace T(u∗) = TΩ(u∗) ∩ Th(u∗) in (3.13). An L2-
local optimality sufficiency theorem based on these conditions will now be proved
with suitable modifications of the proof strategy developed in [15], and the following
technical lemma.

Lemma 4.1. Suppose that h satisfies the hypotheses of Corollary 3.3 at some
point u∗ in Ω and that b∗ is the nonnegative real number in Corollary 3.3. Assume
that β is a Lebesgue measurable set in [0, 1] and u ∈ L∞m [0, 1], and put

w = (1− χβ)(u− u∗)
and

wTΩ
= PTΩ(u∗)w,

where χβ is the characteristic function of β. Then for some ŵ in the subspace T(u∗),

‖w − ŵ‖2 ≤ (1 + b∗‖h′(u∗)‖)‖w − wTΩ
‖2(4.21)

+b∗

(∫
β

k∑
i=1

‖∇hi(u∗)(t)‖2dt
) 1

2

‖u− u∗‖2(4.22)

+b∗‖h′(u∗)(u− u∗)‖.

Proof. Let B∗ : h′(u∗)(TΩ(u∗)) → TΩ(u∗) be the right inverse map in Corollary
3.3. For u in L∞m [0, 1], put

ŵ = wTΩ
−B∗(h′(u∗)wTΩ

).

By construction, ŵ ∈ TΩ(u∗) and h′(u∗)ŵ = 0, and therefore ŵ ∈ T(u∗). By the
triangle inequality and Corollary 3.3,

‖w − ŵ‖2 ≤ ‖w − wTΩ‖2 + ‖wTΩ − ŵ‖2
≤ ‖w − wTΩ‖2 + b∗‖h′(u∗)wTΩ‖2
≤ (1 + b∗‖h′(u∗)‖)‖w − wTΩ

‖2
+b∗(‖h′(u∗)(u− u∗ − w)‖+ ‖h′(u∗)(u− u∗)‖)

with

‖h′(u∗)(u− u∗ − w)‖ =

(
k∑
i=1

〈∇hi(u∗), χβ(u− u∗)〉22
) 1

2

≤
(∫

β

k∑
i=1

‖∇hi(u∗)(t)‖2dt
) 1

2

‖u− u∗‖2.
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Theorem 4.2. Suppose that the structure and continuity conditions (2.6)–(2.8b)
are met by the objective function J , the constraint functions, h1, . . . , hk, and hence the
Lagrangians L(λ, ·) for problem (1.2). Let S(λ, u) denote the corresponding matrix-
valued function SL(λ,·)(u) in conditions (2.6)–(2.8) for L(λ, ·). Let u∗ ∈ Ωh and

assume that for some λ∗ ∈ Rk, cT > 0, and cP > 0, the following conditions hold at
u∗:

−∇L(λ∗, u∗)(t)
a.e.∈ ri NU (u∗(t)),(4.23a)

∀w ∈ T(u∗), 〈w,∇2L(λ∗, u∗)w〉2 ≥ cT ‖w‖22,(4.23b)

and

∀ξ ∈ U, H(λ∗, u∗ ; ξ, t)−H(λ∗, u∗ ; u∗(t), t) ≥ 1

2
cP ‖ξ − u∗(t)‖2(4.23c)

a.e. in [0, 1], with H(λ∗, u∗ ; ξ, t) = HL(λ∗,·)(u∗ ; ξ, t), i.e.,

H(λ∗, u∗ ; ξ, t) = 〈∇L(λ∗, u∗)(t), ξ − u∗(t)〉+
1

2
〈ξ − u∗(t), S(λ∗, u∗)(t) (ξ − u∗(t))〉.

Then u∗ is an L2-local minimizer for problem (1.2); more specifically, for each c2 in
the interval 0 < c2 < min {cT , cP }, there is a corresponding δ2 > 0 such that

J(u)− J(u∗) ≥ 1

2
c2‖u− u∗‖22(4.24)

for all u ∈ Ωh ∩B2(u∗, δ2).

Proof. Conditions (2.6)–(2.8) are satisfied by J and h1, . . . , hk, and hence by
the Lagrangian L(λ∗, ·). Thus, Taylor’s formula (2.9) is valid for L(λ∗, ·) and the
components of h, and it follows that for all u in Ωh,

J(u)− J(u∗) = 〈∇L(λ∗, u∗), u− u∗〉2(4.25a)

+
1

2
〈u− u∗,∇2L(λ∗, u∗)(u− u∗)〉2 + rL(λ∗, u∗ ; u− u∗),

rL(λ∗, u∗ ; u− u∗) = o(‖u− u∗‖22),(4.25b)

and

‖h′(u∗)(u− u∗)‖ =

(
k∑
i=1

〈∇hi(u∗), u− u∗〉22
) 1

2

= o(‖u− u∗‖2).(4.26)

The desired estimate (4.24) will now be obtained from (4.23), (4.25), (4.26), and the
decomposition,

u− u∗ = (1− χϕ(u))(u− u∗) + χϕ(u)(u− u∗),(4.27)

where ϕ(u) is a suitably constructed measurable set in [0, 1] corresponding to u.
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Let K(λ∗, u∗) denote the matrix-valued function KL(λ∗,·)(u∗) in conditions (2.6)–
(2.8) for L(λ∗, ·). Then (2.6)–(2.8), (4.23c), (4.25), and (4.27) immediately produce

J(u)− J(u∗) ≥ 〈∇L(λ∗, u∗), w(u)〉2
+

1

2
〈w(u),∇2L(λ∗, u∗)w(u)〉2 +

1

2
cP ‖χϕ(u)(u− u∗)‖22

− 1

2

(∫ ∫
(ϕ(u)c×ϕ(u)c)c

‖K(λ∗, u∗)(t, s)‖2 dtds
) 1

2

‖u− u∗‖22
+ rL(λ∗, u∗ ; u− u∗),

with

w(u) = (1− χϕ(u))(u− u∗),

where ϕc = [0, 1] \ϕ and (ϕc×ϕc)c = ([0, 1]× [0, 1]) \ (ϕc×ϕc). Hence (4.24) follows
at once if the sets ϕ(u) are constructed so that

−1

2

(∫ ∫
(ϕ(u)c×ϕ(u)c)c

‖K(λ∗, u∗)(t, s)‖2 dtds
) 1

2

‖u− u∗‖22(4.28)

+rL(λ∗, u∗ ; u− u∗) ≥ −1

4
(min{cT , cP } − c2)‖u− u∗‖22

and

〈∇L(λ∗, u∗), w(u)〉2 +
1

2
〈w(u),∇2L(λ∗, u∗)w(u)〉2(4.29)

≥ 1

2
cT ‖w(u)‖22 −

1

4
(min{cT , cP } − c2)‖u− u∗‖22

for all u ∈ Ωh ∩ B2(u∗, δ2) with δ2 sufficiently small. Condition (4.28) holds if δ2
and the Lebesgue measure µ(ϕ(u)) are merely sufficiently small; however, (4.29) also
requires that supt∈ϕ(u)c ‖u(t) − u∗(t)‖ is sufficiently small, and that −∇L(λ∗, u∗)(t)
is bounded away from the relative boundary of NU (u∗(t)) in NU (u∗(t)) for t in ϕ(u)c.
Suitable sets ϕ(u) are described fully below, along with the estimates that establish
(4.28) and (4.29). As in [14] and [15], the cone

Cε(u∗) = {u ∈ L∞m [0, 1] : ‖w(u)− w(u)TΩ
‖2 ≤ ε‖w(u)‖2}

is at the center of this development. More specifically, (4.29) is proved by first applying
(4.23a), (4.23b), and Lemma 4.1 for w(u) in Cε(u∗) with ε sufficiently small, and then
invoking (4.23a) and the above-mentioned properties of ϕ(u) for w(u) in Cε(u∗)c.

Fix c2 in the interval 0 < c2 < min{cT , cP }, and let b∗ be the nonnegative real
number in Lemma 4.1. Put

M = 1 + 3b∗‖h′(u∗)‖,(4.30a)

and choose ε > 0 so that

(2 + 3Mε)(cT + ‖∇2L(λ∗, u∗)‖)Mε ≤ 1

2
(min{cT , cP } − c2).(4.30b)
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Note that µ((ϕc × ϕc)c) ≤ 2µ(ϕ), and that Lebesgue integrals are absolutely contin-
uous functions of their domain sets. Hence, there is a ν ∈ (0, 1] such that(∫ ∫

(ϕc×ϕc)c
‖K(λ∗, u∗)(t, s)‖2 dtds

) 1
2

≤ 1

4
(min{cT , cP } − c2)(4.31)

and (∫
ϕ

k∑
i=1

‖∇hi(u∗)(t)‖2dt
) 1

2

≤ ε‖h′(u∗)‖(4.32)

for all measurable sets ϕ ⊂ [0, 1] with µ(ϕ) ≤ ν. Furthermore, by (4.25) and (4.26),
there is a δ′ > 0 such that

|rL(λ∗, u∗ ; u− u∗)| ≤ 1

8
(min{cT , cP } − c2)‖u− u∗‖22(4.33)

and

‖h′(u∗)(u− u∗)‖ ≤ ε‖h′(u∗)‖‖u− u∗‖2(4.34)

for all u in Ωh ∩ B2(u∗, δ′). Recall that the set-valued map NU (·) is constant on
each of the sets αi(u∗) in (3.16a), and that for each nonempty set S in Rm, the real
function, dist(·,S) : Rm → R1, is continuous. Hence, if S is the relative boundary of
NU (u∗(t)), then the formula,

∆(u∗)(t) = dist[−∇L(λ∗, u∗)(t), rbNU (u∗(t))],

defines a measurable extended real-valued function on [0, 1]1; moreover, ∆(u∗)(t) > 0
almost everywhere, in view of (4.23a). It follows that for some measurable set β in
[0, 1],

µ(βc) ≤ 1

2
ν(4.35a)

and

cβ
def
= inf

t∈β
∆(u∗)(t) > 0.(4.35b)

Now choose δ ∈ (0, δ′] so that

ε2cβ
δ
− 1

2
‖∇2L(λ∗, u∗)‖ ≥ 1

2
cT ,(4.36a)

and let

δ2 =

√
ν

2
δ.(4.36b)

Finally, for u in Ωh, put

ϕ(u) = (β ∩ θ(u))c = βc ∪ θ(u)c,(4.37a)

1With ∆(u∗)(t) = +∞ when the relative boundary rbNU (u∗(t)) is empty.
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with

θ(u) = {t ∈ [0, 1] : ‖u(t)− u∗(t)‖ ≤ δ}.(4.37b)

By construction, δ2 ≤ δ′ and

µ(ϕ(u)) ≤ µ(βc) + µ(θ(u)c) ≤ ν

2
+
ν

2

for all u in Ωh∩B2(u∗, δ2). Hence, (4.31) and (4.33) immediately yield (4.28) for all u
in Ωh∩B2(u∗, δ2). To see that (4.29) also holds, suppose that u ∈ Ωh∩B2(u∗, δ2) and
w(u) ∈ Cε(u∗). Note that w(u) = v(u)− u∗, with v(u) = (1−χϕ(u))u+χϕ(u)u∗ ∈ Ω.
Hence, (4.23a) implies that

〈∇L(λ∗, u∗), w(u)〉2 ≥ 0.(4.38)

Furthermore, by Lemma 4.1 and the estimates (4.32) and (4.34), there is a ŵ(u) in
the subspace T(u∗) such that

‖w(u)− ŵ(u)‖2 ≤Mε‖u− u∗‖2
and therefore

‖ŵ(u)‖2 ≤ (1 +Mε)‖u− u∗‖2
and

‖ŵ(u)‖22 = ‖w(u)‖22 − 〈w(u) + ŵ(u), w(u)− ŵ(u)〉2
≥ ‖w(u)‖22 − (‖w(u)‖2 + ‖ŵ(u)‖2)‖w(u)− ŵ(u)‖2
≥ ‖w(u)‖22 − (2 +Mε)Mε‖u− u∗‖22.

Conditions (4.23b) and (4.30) now yield

〈w(u),∇2L(λ∗, u∗)w(u)〉2 ≥ cT ‖ŵ(u)‖22
− ‖∇2L(λ∗, u∗)‖(2‖ŵ(u)‖2‖w(u)− ŵ(u)‖2

+‖w(u)− ŵ(u)‖22)

≥ cT ‖ŵ(u)‖22 −
1

2
(min{cT , cP } − c2)‖u− u∗‖22.

This estimate and (4.38) establish (4.29) for u ∈ Ωh ∩B2(u∗, δ2) and w(u) ∈ Cε(u∗).
On the other hand, suppose that u ∈ Ωh∩B2(u∗, δ2) and w(u) ∈ Cε(u∗)c = L∞m [0, 1]\
Cε(u∗). As in [15], put z = cβδ

−1(w(u) − w(u)TΩ
) and note that z(t)

a.e.∈ NU (u∗(t))
and ess supt∈[0,1] ‖z(t)‖ ≤ cβ , in view of (3.17) and (4.37). Conditions (4.35) and
(4.37) then yield

−∇L(λ∗, u∗)(t) + z(t)
a.e.∈ NU (u∗(t)),

in which case

〈∇L(λ∗, u∗)(t), w(u)(t)〉 a.e.≥ cβ
δ
‖w(u)(t)− w(u)TΩ

(t)‖2,

and therefore

〈∇L(λ∗, u∗), w(u)〉2 ≥ cβ
δ
‖w(u)− w(u)TΩ‖22 ≥

ε2cβ
δ
‖w(u)‖22.
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This estimate and (4.36) establish (4.29) for u ∈ Ωh ∩ B2(u∗, δ2) and w(u)
∈ Cε(u∗)c.

Corollary 4.3. Assume that the hypotheses of Theorem 4.2 hold, with the Pon-
tryagin condition (4.23c) replaced by a stronger coercivity condition of the Legendre–
Clebsch type, i.e., for some cP > 0,

∀ξ ∈ Rm, 〈ξ, S(λ∗, u∗)(t)ξ〉 ≥ cP ‖ξ‖2(4.39)

a.e. in [0, 1]. Then u∗ is an L2-local minimizer of J in Ωh, and the growth condition
(4.24) holds in B2(u∗, δ2) for some δ2 > 0.

The sufficient conditions in Theorem 4.2 imply the L2-quadratic growth property
(4.24), which is clearly stronger than L2-local optimality, per se. Condition (4.24)
and similar uniform local growth properties are needed in Liapunov-like local asymp-
totic stability analyses for iterative constrained minimization algorithms in infinite-
dimensional spaces, where local minimizers (or even strict local minimizers) need not
be stable local attractors for the standard iterative maps [10], [12], [13], [15], [26],
[27], [9]. Examples 1 and 2 in [13] demonstrate the gap between (4.24) and L2-local
optimality for (1.1); each of these problems has a convex objective function J and a
unique global minimizer u∗ that does not have property (4.24). The following simple
examples accomplish the same purpose for (1.2).

Example 4.1. Let J(u) =
∫ 1

0
u dt, U = [0,∞), and h(u) =

∫ 1

0
(1 − 2t)u dt

in (1.2). Then u∗ = 0 is the unique global (and hence L2-local) minimizer for the
linear functional J in Ωh. To see that (4.24) does not hold at u∗, let ε ∈ (0, 1/2),

uε = ε−
1
3χ[ 1

2−ε, 12 +ε], and note that uε ∈ Ωh and

J(uε)− J(u∗) =

∫ 1
2 +ε

1
2−ε

ε−
1
3 dt = 2ε

2
3 =

1

2
‖uε‖4,

with

lim
ε→0+

‖uε − u∗‖2 = 0.

Now let L(λ, u) =
∫ 1

0
u dt + λ

∫ 1

0
(1 − 2t)u dt, and consider that ri NU (u∗(t)) =

(−∞, 0), TU (u∗(t)) = {0}, and ∇L(λ, u)(t) = 1 + λ(1 − 2t) for t ∈ [0, 1]. Moreover,
(2.6)–(2.8) hold trivially with S(λ, u) = 0 and K(λ, u) = 0. Thus, (4.23a) holds at u∗
for any λ∗ ∈ [−1, 1], and (4.23b) is satisfied trivially since T(u∗) = {0}. In addition,
the Pontryagin condition,

∀ξ ∈ [0,∞), (1 + λ∗(1− 2t))ξ ≥ 0,

is satisfied almost everywhere in [0, 1] for any λ∗ ∈ [−1, 1]. On the other hand, the
strengthened Pontryagin condition (4.23c) requires that

∀ξ ∈ [0,∞), (1 + λ∗(1− 2t))ξ ≥ 1

2
cP ξ

2

almost everywhere in [0, 1], and this is impossible for cP > 0 and λ∗ ∈ [−1, 1].

Example 4.2. Let J(u) =
∫ 1

0
u2 dt − (

∫ 1

0
u dt)2, U = [0, 1], and h(u) =∫ 1

0
(1− 2t)u dt in (1.2). By Cauchy’s inequality, J has a global (and hence L2-local)
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minimizer in Ωh at u∗ = 0. To see that (4.24) does not hold at u∗, let ε ∈ [0, 1],
uε(t) = ε for t ∈ [0, 1], and note that uε ∈ Ωh and

J(uε)− J(u∗) =

∫ 1

0

ε2 dt−
(∫ 1

0

ε dt

)2

= 0,

with

lim
ε→0+

‖uε − u∗‖2 = 0.

Now let L(λ, u) =
∫ 1

0
u2 dt − (

∫ 1

0
u dt)2 + λ

∫ 1

0
(1 − 2t)u dt, and observe that

NU (u∗(t)) = (−∞, 0], ri NU (u∗(t)) = (−∞, 0), TU (u∗(t)) = {0}, ∇L(λ, u)(t) =

2u(t)−2
∫ 1

0
u dt+λ(1−2t), and (∇2L(λ, u)w)(t) = (∇2J(u)w)(t) = 2w(t)−2

∫ 1

0
w dt.

By Cauchy’s inequality, ∇2J(u) is positive semidefinite and hence J and L(λ, ·) are
convex. Furthermore (2.6)–(2.8) hold for L with S(λ, u)(t) = 2 and K(λ, u)(t, s) =
−2. Since 1− 2t changes sign at t = 1/2, it is clear that (4.23a) can’t hold at u∗ for
any λ∗. On the other hand, the weaker first-order necessary condition,

−∇L(λ∗, u∗)(t)
a.e.∈ NU (u∗(t)),(4.40)

is satisfied iff λ∗ = 0, and condition (4.23b) holds trivially since T(u∗) = {0}. Finally,
if λ∗ = 0, then ∇L(λ∗, u∗) = 0 and the strengthened Pontryagin condition (4.23c) is
satisfied, since S(λ∗, u∗)(t) = 2 > 0.

The simple convex programs in Examples 4.1 and 4.2 show that the L2-quadratic
growth property (4.24) may be lost if either of the conditions (4.23a) or (4.23c) is
weakened appreciably. For nonconvex programs, similar relaxations in the hypotheses
of Theorem 4.2 may admit functions u∗ that not only fail to have property (4.24) but
also are not locally optimal even in the weak L∞ sense (cf. Example 1 in [11]). On
the other hand, the sufficient conditions in Theorem 4.2 are certainly not necessary
for the L2-quadratic growth property (4.24). In particular, suppose that h is affine
and continuous in the L2 norm and that J is twice continuously Fréchet differentiable
in the L2 norm and strongly convex with coercive Hessians, i.e.,

∀u∃cu∀w, 〈w,∇2J(u)w〉2 ≥ cu‖w‖22.
Then for all λ ∈ Rk, the Lagrangian L(λ, ·) is also twice continuously Fréchet differ-
entiable in the L2 norm and strongly convex, with ∇2L(λ, u) = ∇2J(u) and therefore

J(u)− J(u∗) ≥ 〈∇L(λ∗, u∗), u− u∗〉2 +
1

2
cu∗‖u− u∗‖22 + o(‖u− u∗‖22)

for all u, u∗ ∈ Ωh and λ∗ ∈ Rk. The growth property (4.24) now follows at once
if the first-order necessary condition (4.40) holds for some λ∗ ∈ Rk. Thus, when
h is affine, the strong coercivity condition on ∇2J yields (4.24) directly, without
(2.6)–(2.8), (4.23a), and (4.23c). However, if (2.6)–(2.8) happen to hold, then the
L2 coercivity condition on J implies that the operators S(λ∗, u∗)(t) are essentially
uniformly coercive (cf. the proof of Theorem 6.4 in [14]), and this immediately yields
(4.23c).

Hypotheses (2.6)–(2.8), (4.23a), (4.23c) are also superfluous in Theorem 4.2 when

u∗(t)
a.e.∈ int U (or more generally, when u∗(t)

a.e.∈ ri U). In this exceptional case,
it is possible to establish (4.24) with a variant of the classic sufficiency proof for
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equality-constrained problems with feasible sets h−1(0) (cf. [1]). More specifically,

if u∗(t)
a.e.∈ int U , then ri NU (u∗(t))

a.e
= NU (u∗(t))

a.e
= {0}, rb NU (u∗(t))

a.e
= ∅,

dist (−∇L(λ∗, u∗)(t), rb NU (u∗(t)))
a.e
= +∞, TU (u∗(t)

a.e.
= Rm, TΩ(u∗) = L∞m [0, 1],

and therefore T(u∗) = Th(u∗) = ker h′(u∗). If J and h are twice continuously
Fréchet differentiable and the first-order necessary condition (4.40) holds at u∗, then
Taylor’s formula (2.9) reduces to

J(u)− J(u∗) =
1

2
〈u− u∗,∇2L(λ∗, u∗)(u− u∗)〉2 + o(‖u− u∗‖22)

for u ∈ Ωh = h−1(0). An application of Lemma 4.1 with β = ∅ now produces the
L2-quadratic growth estimate (4.24) directly from the coercivity condition (4.23b).

Note that the hypothesis u∗(t)
a.e.∈ int U does not imply that u∗ ∈ int Ω in either the

L2 or the L∞ sense; in fact, the L2 interior of Ω is empty whenever U is a proper
subset of Rm. Note also that if the structure and continuity conditions (2.6)–(2.8) are
satisfied, then (4.40) and (4.23b) once again imply (4.23c).

Finally, if (2.6)–(2.8) hold with K(λ∗, u∗) = 0, then the proof of Theorem 4.2
can be drastically simplified. In this rare and essentially trivial case, Taylor’s formula
(2.9) reduces to

J(u)− J(u∗) =

∫ 1

0

[〈∇L(λ∗, u∗)(t), u(t)− u∗(t)〉

+〈u(t)− u∗(t), S(λ∗, u∗)(t)(u(t)− u∗(t))〉] dt+ o(‖u− u∗‖22),

for u ∈ Ωh. The L2-quadratic growth condition (4.24) now follows at once from
(4.23c), and the remaining hypotheses (4.23a) and (4.23b) in Theorem 4.2 are super-
fluous. However, it can be shown that (4.23c) implies (4.23b) in the present special
circumstances.

Note 4.3. For the Bolza optimal control scheme (1.3), our earlier observations in
Note 2.1 establish that ∇L(λ, u)(t) and S(λ, u)(t) are formally obtained from

∇L(λ, u)(t) = ∇uH(λ, t, ψ(λ, u)(t), x(u)(t), u(t))

and

S(λ, u)(t) = ∇2
uuH(λ, t, ψ(λ, u)(t), x(u)(t), u(t)),

where x(u)(·) solves the initial value problem, (1.3c) and (1.3d), and ψ(λ, u)(·) solves
the adjoint backward initial value problem,

dψ

dt
(t)

a.e.
= −∇xH(λ, t, ψ, x(u)(t), u(t)),

ψ(1) = ∇P (x(u)(1)) +

k∑
i=1

λi∇πi(x(u)(1)),

with

H(λ, t, ψ, x, u) = f0(t, x, u) +
k∑
i=1

λiφ
0
i (t, x, u) + 〈ψ, f(t, x, u)〉.
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When H(λ, t, ψ, x, u) is quadratic in u, it can now be seen that H(λ∗, u∗ ; ξ, t) coin-
cides with the increment,

H(λ∗, t, ψ(λ∗, u∗)(t), x(u∗)(t), ξ)−H(λ∗, t, ψ(λ∗, u∗)(t), x(u∗)(t), u∗(t)).

Hence, condition (4.23c) amounts to a strengthening of the Pontryagin Minimum
Principle for problem (1.3), i.e.,

H(λ∗, t, ψ(λ∗, u∗)(t), x(u∗)(t), u∗(t))(4.41)

= min
ξ∈U

H(λ∗, t, ψ(λ∗, u∗)(t), x(u∗)(t), ξ)

a.e. in [0, 1]. Under minimal smoothness requirements on P , πi, f
0, φ0

i , and f in the
Bolza formulation, condition (4.41) will hold at normal L2-local minimizers that sat-
isfy additional end-constraint regularity and controllability conditions. Similarly, the
pointwise strict complementarity condition (4.23a) is a strengthening of the Lagrange
stationarity condition,

−∇L(λ∗, u∗)(t)
a.e.∈ NU (u∗(t)),

which also follows as a corollary of the stronger Pontryagin condition (4.41) in the
convex set U . Finally, the analysis in [15] for problem (1.1) suggests that the L2

coercivity condition (4.23b) may be viewed as a stronger version of a second-order
necessary condition,

∀w ∈ T(u∗), 〈w,∇2L(λ∗, u∗)w〉2 ≥ 0;(4.42)

however, while the necessity of (4.42) is certainly plausible, it remains to be proved in
the context of problem (1.2), since the set Ω is not a polyhedron, and standard second-
order necessary conditions in nonpolyhedral feasible sets require representation-depen-
dent constraint qualifications for Ω that are not invoked in the present geometric
development.

Note 4.4. For Bolza optimal control problems, L2 coercivity conditions like (4.23b)
are implied by second-order necessary conditions, Legendre–Clebsch conditions, and
disconjugacy conditions of the Jacobi type [21], [28], [29]. The Legendre–Clebsch con-
dition (4.39) and Corollary 4.3 are also important in L2-local convergence theories
for gradient projection methods [15], [27] and other familiar constrained minimiza-
tion schemes whose iteration maps have fixed points at L∞-local minimizers [13],
[15]. Condition (4.39) is a natural requirement for nonconvex nonquadratic regulator
Bolza problems with u-linear state equations, and integrands f0 and φ0

i of the form
q(t, x) + 〈r(t, x), u〉 + 〈u, s(t, x)u〉, with uniformly positive-definite m × m matrices
s(t, x).

Note 4.5. As noted earlier, the proof techniques and results in this section are
equally valid in the Hilbert space {L2

m[0, 1], ‖ · ‖2}; however, in this complete in-
ner product space, it is possible to treat equality constraint functions h with range
in an infinite-dimensional Banach space Y by invoking the Banach space right in-
verse lemma in place of Lemma 3.2. In this setting, the Lagrangian is defined by
L(λ∗, ·) = J(u) + λ∗(h(·)) with λ∗ a bounded linear functional on Y, the structure
and continuity hypotheses (2.6)–(2.8) are imposed directly on L(λ, ·), h is assumed
to be twice continuously Fréchet differentiable, the range of h′(u∗) is assumed to be
closed in Y, and h′(u∗) is required to satisfy the absolute continuity condition,

lim
µ(β)→0

sup
‖w‖2=1

‖h′(u∗)χβw‖ = 0.
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Under these circumstances, counterparts of Lemma 4.1 and Theorem 4.2 can be proved
exactly as before.

Acknowledgments. The author gratefully acknowledges several valuable expo-
sition-related comments offered by one of the referees. These observations are incor-
porated in Examples 4.1 and 4.2 and the accompanying discussion between Corollary
4.3 and Note 4.3.
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Abstract. This paper deals with optimal control problems governed by semilinear parabolic
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1. Introduction. This article concerns optimal control problems for the follow-
ing parabolic system:

∂y

∂t
+Ay + f(x, t, y) = 0 in Q,

∂y

∂nA
+ g(s, t, y, v) = 0 on Σ, y(0) = w in Ω,(1.1)

where Ω ⊂ RN , Q = Ω×]0, T [, Σ = Γ×]0, T [, Γ is the boundary of Ω, T > 0, v is
a boundary control, w is a control of the initial condition, and A is a second order
elliptic operator. Constraints of the form

v ∈ Vad ⊂ Lσ(Σ), w ∈Wad ⊂ C(Ω),

φ(y) ∈ C(1.2)

are imposed on the control variables v, w, and the state variable y (here φ is a
continuous mapping from C(Q) into C(D), C ⊂ C(D) is a closed convex subset with
nonempty interior in C(D), and D is a nonempty compact subset of Q). The control
problem is

(P ) inf
{
J(y, v, w) | (y, v, w) ∈ C(Q)× Vad ×Wad, (y, v, w) satisfies (1.1), (1.2)

}
,

where the cost functional is defined by

J(y, v, w) =

∫
Q

F (x, t, y) dx dt+

∫
Σ

G(s, t, y, v) ds dt+

∫
Ω

L(x, y(T ), w)dx.(1.3)

We are mainly interested in optimality conditions for such problems, in the form of
Pontryagin’s principles. The existence of optimal solutions for (P ) is a priori assumed.

In recent years there has been growing interest in optimality conditions for state-
constrained control problems governed by partial differential equations (or variational

∗Received by the editors April 22, 1996; accepted for publication (in revised form) July 7, 1997;
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inequalities). This is reflected by an important number of papers on this subject.
For convex control problems we refer to [1], [4], [5], [7], and [33]. In the case of
nonconvex control problems, the method of Lagrange multipliers provides optimality
conditions for both bounded and unbounded controls [3], [11], [39], [34], [35]. When no
qualification condition is assumed, optimality conditions are obtained in nonqualified
form (optimality conditions of Fritz John type). To get optimality conditions in
qualified form with a Lagrange multiplier theorem, a qualification condition such as
the Zowe–Kurcyusz regularity condition is needed. (In many problems, this regularity
condition corresponds to a Slater type qualification condition; see [39] and [34].)

Another method proceeds by penalizing the state constraints and then character-
izing optimal solutions of the original problem as ε-solutions of the penalized problems.
The characterization of ε-solutions is carried out thanks to the Ekeland variational
principle. By this method optimality conditions are obtained in the form of Pontrya-
gin principles, which are in general more precise than optimality conditions deduced
from Lagrange multiplier theorems. Moreover, assumptions on the data of the prob-
lems (differentiability assumptions, convexity requirement, etc.) are less restrictive
than those necessary for Lagrange multiplier theorems. To the best of our knowledge,
except in [25], this method has so far been used only for problems with bounded
controls (bounded in time [30], [31], [32] or in space and time [12], [23], [24], [26]).

There is a fundamental reason for this limitation. When we apply Ekeland’s
principle to obtain Pontryagin’s principle, we need a complete metric space, let us say
(Vad, dE) (the space of controls Vad, endowed with the so-called Ekeland’s metric dE , in
order to recover a Pontryagin principle), and a penalized functional Fε(v) = Jε(yv, v)
(v is the control variable, yv is the solution of the state equation corresponding to v)
which must be lower semicontinuous on (Vad, dE). To prove this lower semicontinuity
property we need some assumptions on Jε and we have to prove that the mapping
T : v 7−→ yv is continuous from (Vad, dE) into a Banach space Z (which depends
on the considered problem). The continuity of T depends on regularity results for
the state equation. In the problems studied in the articles mentioned above, Vad is a
subset of some Lebesgue space Lσ with 1 ≤ σ ≤ ∞, and (thanks to regularity results
for partial differential equations) it can be proved that the mapping T is continuous
from Lσ into Z for every σ > σ̄, where σ̄ depends on the state equation.

If Vad is bounded in L∞ and if a sequence of controls converges for the Ekeland
metric, it can easily be proved that this sequence still converges for the topology of
Lσ for any σ > σ̄. Therefore in this case, the mapping T is continuous and Ekeland’s
principle can be applied.

If Vad is not bounded in L∞, convergence in the Ekeland metric does not imply
convergence in the Lebesgue space norm; moreover, (Vad, dE) is not necessarily com-
plete. This is the reason why, up to now, in the presence of pointwise state constraints,
Pontryagin’s principles have only been proved for bounded controls (at least for non-
convex problems; indeed for convex problems the optimality conditions deduced from
Lagrange multiplier theorems correspond to Pontryagin principles).

Let us stress that the growth conditions on the integrands and the nonlinear
terms in the state equations, postulated in ([32, Chapter 4, Hypothesis 2, p. 130])
correspond to bounded controls. The same remark is valid for [12].

In [25], Fattorini and Sritharan prove a Pontryagin principle in nonqualified form
for control problems of Navier–Stokes equations in which the controls are not neces-
sarily bounded. Their idea is to work with bounded perturbations (see [25, p. 227]).
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Here we consider a control set of the form

Vad = {v ∈ Lσ(Σ) | v(s, t) ∈ KV (s, t) a.e. in, Σ},

where KV is a measurable multimapping with nonempty and closed values in P(R)
(see section 2). We do not think that the method developed in [25] can be applied
to such a control set. Moreover, the method developed in [25] deals with Pontryagin
principles in nonqualified form and requires some convexity condition on the cost
functional (see Hypothesis 2.9 in [25]).

The purpose of this paper is to extend the method based on Ekeland’s principle
to problems with unbounded controls. In order to explain the main ideas of this
extension let us recall the starting point of the method described above. If v̄ is an
ε2-solution of the problem

(Pε) inf{Fε(v) | v ∈ Vad},

where Fε and (Vad, dE) satisfy the assumptions of Ekeland’s principle, then there
exists another ε2-solution vε such that

dE(vε, v̄) ≤ ε and Fε(vε)− Fε(v) ≤ εd(v, vε) for every v ∈ Vad.

In order to exploit this optimality condition, v is replaced by some perturbation of
vε. The methods developed in [8], [12], [21], [24], [26], [31], and [32] differ both in
their choices of Fε and in their choices of the perturbations. Pontryagin principles in
qualified form are only obtained in [8] and [12] by choosing for Fε a regularization
of an exact penalized functional. A Pontryagin principle is then obtained under a
strong stability condition. Pontryagin principles in nonqualified form are obtained
in [8] under a weak stability condition by a method of spike perturbations. With
another choice for the penalized functional and other kinds of perturbations, Pon-
tryagin principles in nonqualified form are obtained in [24], [26], [31], and [32]. In [24]
Fattorini and Murphy use a method of multispike perturbations. The type of pertur-
bations used in [31], [40], [26], [12], [13], and [32] can be viewed as a generalization of
multispike perturbations, which we call diffuse perturbations.

In contrast to spike or multispike perturbations, which are precisely localized, a
diffuse perturbation is not localized around some points but is implicitly defined by
some relations (see [12], [31], [40], [42], and [26]). The existence of diffuse perturba-
tions satisfying relations a priori defined is proved in [29], [30], [26], and in [12] in a
constructive manner. To our knowledge this kind of perturbation has been introduced
for the first time by Yao [40] and Li [28]. We prove here that all the relations needed
to define a diffuse perturbation can be obtained as a consequence of the Lyapunov
convexity theorem. Connections with Lyapunov’s convexity theorem or with Uhl’s
theorem are clarified in [42, p. 1315], and [30]. (See also [22] for another process.)

Preliminary results related to this topic were announced in [36]. The metric space
used in [36] is different from the one defined in section 3.2. This is the reason why a
convexity condition (assumption (A7)) is needed in [36] to ensure some semicontinuity
property. Thus, the methods of the present paper improve upon those of [36].

The paper is organized as follows. In the next section we formulate the control
problem governed by a semilinear parabolic equation and state the main results: the
weak and strong Pontryagin’s principles. In section 3 we give some regularity results
for solutions of the state and adjoint equations. In section 4, we derive some technical
results used in section 5 to prove the main result stated in section 2.
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2. Assumptions and main results. Throughout the paper Ω is a bounded
open subset of RN (N ≥ 2) of class C2,β for some 0 < β ≤ 1 (that is, the boundary
Γ of Ω is an (N − 1)-dimensional manifold of class C2,β such that Ω lies locally on
one side of Γ. A function is of class C2,β if it is of class C2 and if its second order
derivatives are Hölder continuous of exponent β). We denote by q, σ positive numbers
satisfying

q > N/2 + 1, σ > N + 1 and qσ + q > qN + 2σ.

The differential operator A in equation (1.1) is defined by

Ay(x) = −
N∑

i,j=1

Di(aij(x)Djy(x)),

with coefficients aij belonging to C1,β(Ω) and satisfying the conditions

aij(x) = aji(x) for every i, j ∈ {1, ..., N}, m0|ξ|2 ≤
N∑

i,j=1

aij(x)ξjξi(2.1)

for all x ∈ Ω and all ξ ∈ RN , with 0 < m0 (Di denotes the partial derivative with
respect to xi). In (1.1), ∂y

∂nA
is the conormal derivative of y with respect to A, that

is,

∂y

∂nA
(s, t) =

∑
i,j

aij(s)Djy(s, t)ni(s),

where n = (n1, . . . , nN ) is the unit normal to Γ outward Ω.
For all 1 ≤ τ ≤ ∞, the norms in the spaces Lτ (Ω), Lτ (Γ), Lτ (Q), Lτ (Σ) will be de-

noted by ‖·‖τ,Ω, ‖·‖τ,Γ, ‖·‖τ,Q, ‖·‖τ,Σ. The Hilbert space W (0, T ;H1(Ω), (H1(Ω))′) =

{y ∈ L2(0, T ;H1(Ω)) | dy
dt ∈ L2(0, T ; (H1(Ω))′)}, endowed with its usual norm, will

be denoted by W (0, T ). Also set Ω0 = Ω× {0} and ΩT = Ω× {T}.
2.1. Assumptions.
(A1) For every y ∈ R, f(·, y) is measurable on Q. For almost every (x, t) ∈ Q,

f(x, t, ·) is of class C1 on R. The following estimates hold:

|f(x, t, 0)| ≤M1(x, t), C0 ≤ f ′y(x, t, y) ≤M1(x, t)η(|y|),
where M1 belongs to Lq(Q), η is a nondecreasing function from R+ to R+, and
C0 ∈ R. (We have denoted by f ′y the partial derivative of f with respect to y, and in
the following we adopt the same kind of notation for other functions.)

(A2) For every (y, v) ∈ R2, g(·, y, v) is measurable on Σ. For almost every
(s, t) ∈ Σ and every v ∈ R, g(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ,
g(s, t, ·) and g′y(s, t, ·) are continuous on R× R. The following estimates hold:

|g(s, t, 0, v)| ≤M2(s, t) +m1|v|, C0 ≤ g′y(s, t, y, v) ≤ (M2(s, t) +m1|v|)η(|y|),
where M2 belongs to Lσ(Σ), m1 > 0, and C0 and η are as in (A1).

(A3) For every (y, w) ∈ R2, L(·, y, w) is measurable on Ω. For almost every
x ∈ Ω, L(x, ·) is of class C1 on R× R. The following estimate holds:

|L(x, y, w)|+ |L′w(x, y, w)|+ |L′y(x, y, w)| ≤M3(x)η(|w|)η(|y|),
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where M3 ∈ L1(Ω), and η is as in (A1).
(A4) For every y ∈ R, F (·, y) is measurable on Q. For almost every (x, t) ∈ Q,

F (x, t, ·) is of class C1 on R. The following estimate holds:

|F (x, t, y)|+ |F ′y(x, t, y)| ≤M4(x, t)η(|y|),
where M4 ∈ L1(Q), and η is as in (A1).

(A5) For every (y, v) ∈ R2, G(·, y, v) is measurable on Σ. For almost every
(s, t) ∈ Σ and every v ∈ R, G(s, t, ·, v) is of class C1 on R. For almost every (s, t) ∈ Σ,
G(s, t, ·) and G′y(s, t, ·) are continuous on R× R. The following estimate holds:

|G(s, t, y, v)|+ |G′y(s, t, y, v)| ≤ (M5(s, t) +m1|v|σ)η(|y|),
where M5 ∈ L1(Σ), and m1 and η are as in (A2).

(A6) The set of constraints on v is defined by

Vad = {v ∈ Lσ(Σ) | v(s, t) ∈ KV (s, t) for a.e. (s, t) ∈ Σ},
where KV is a measurable multimapping with nonempty and closed values in P(R)
(that is, the set of all subsets of R). The constraint on the initial condition is w ∈Wad,
where Wad is a closed convex subset of C(Ω).

(A7) In the state constraint (1.2), φ is a mapping of class C1 from C(Q) into
C(D), D is a nonempty compact subset of Q, and C ⊂ C(D) is a closed convex subset
with nonempty interior in C(D).

The assumption “C has a nonempty interior in C(D)” is used, in nonqualified
form of the Pontryagin’s principle, to prove that the pair of multipliers is nonzero (see
section 5.3). In section 3.1 we recall an existence and uniqueness result in W (0, T ) ∩
C(Q) for (1.1), already proved in [37]. Therefore, the state constraint (1.2) makes
sense because the weak solution of (1.1) is continuous on Q. Let us give some examples
of state constraints described by (1.2).

Example 2.1. If we choose D = Ω × {T}, we have a problem with a terminal
state constraint. We may consider φ(y) = y|D (y|D is the restriction of y to D ) and

C = {z ∈ C(D) | ||z − yT ||C(D) ≤ ε}, where ε > 0 and yT ∈ C(D) are given.

Example 2.2. We consider φ(y) = ψ(·, y(·))|D, where ψ ∈ C(Q × R) is such that

ψ′y (the partial derivative of ψ with respect to y) belongs to C(Q × R), C = {z ∈
C(D) | z ≤ 0}, and D is any nonempty compact subset of Q.

2.2. Strong stability assumption. For γ ≥ 0, set

Cγ =

{
ϕ ∈ C(D) | inf

z∈C
‖ϕ− z‖C(D) ≤ γ

}
,

and consider the perturbed state constraint

φ(y) ∈ Cγ .(2.2)

We denote by (Pγ) the problem

(Pγ) inf
{
J(y, v, w) | (y, v, w) ∈ C(Q)× Vad ×Wad, (y, v, w) satisfies (1.1), (2.2)

}
.

Observe that (P ) is identical to (P0). Following [8], [12], and [13], we say that (Pγ)
is strongly stable on the right if there exist ε̃ > 0 and r̃ > 0 such that, for every
γ′ ∈ [γ, γ + ε̃], we have

inf(Pγ)− inf(Pγ′) ≤ r̃(γ − γ′).
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With the additional assumption (A8), a Pontryagin principle for (P ) may be obtained
in qualified form. Some remarks on (A8) are made after Theorem 2.1.

(A8) (P ) is strongly stable on the right.

2.3. Statement of the main result. We define the boundary Hamiltonian
function by

HΣ(s, t, y, v, p, ν) = νG(s, t, y, v)− pg(s, t, y, v)

for every (s, t, y, v, p, ν) ∈ Γ × [0, T ] × R4. The main result of this paper is the
Pontryagin principle for (P ), stated in the following theorem.

Theorem 2.1. If (A1)–(A7) are fulfilled and if (ȳ, v̄, w̄) is a solution of (P ), then
there exist p̄ ∈ L1(0, T ;W 1,1(Ω)), ν̄ ∈ R, µ̄ ∈ M(D) (the space of Radon measures

on D) and a measurable subset Σ̃ ⊂ Σ such that

(ν̄, µ̄) 6= 0, ν̄ ≥ 0, 〈µ̄, z − φ(ȳ)〉M(D)×C(D) ≤ 0 for all z ∈ C,(2.3)


−∂p̄
∂t

+Ap̄+ f ′y(x, t, ȳ)p̄ = ν̄F ′y(x, t, ȳ) + [φ′(ȳ)∗µ̄]|Q in Q,

∂p̄

∂nA
+ g′y(s, t, ȳ, v̄)p̄ = ν̄G′y(s, t, ȳ, v̄) + [φ′(ȳ)∗µ̄]|Σ on Σ,

p̄(T ) = ν̄L′y(x, ȳ(T ), w̄) + [φ′(ȳ)∗µ̄]|ΩT in Ω,

(2.4)

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t), ν̄) = min
v∈KV (s,t)

HΣ(s, t, ȳ(s, t), v, p̄(s, t), ν̄)(2.5)

for all (s, t) ∈ Σ̃, with LN (Σ̃) = LN (Σ),

∫
Ω

ν̄L′w(x, ȳ(T ), w̄)(w̄ − w) dx+ 〈p̄(0) + [φ′(ȳ)∗µ̄]|Ω0
, w̄ − w〉M(Ω)×C(Ω) ≤ 0(2.6)

for all w ∈ Wad, where [φ′(ȳ)∗µ̄]|Q is the restriction of [φ′(ȳ)∗µ̄] to Q, [φ′(ȳ)∗µ̄]|Σ
is the restriction of [φ′(ȳ)∗µ̄] to Σ, [φ′(ȳ)∗µ̄]|ΩT is the restriction of [φ′(ȳ)∗µ̄] to ΩT ,

and [φ′(ȳ)∗µ̄]|Ω0
is the restriction of [φ′(ȳ)∗µ̄] to Ω0, ([φ′(ȳ)∗µ̄] is the Radon measure

on Q defined by z 7−→ 〈µ̄, φ′(ȳ)z〉M(D)×C(D) for z ∈ C(Q) and LN denotes the N -

dimensional Lebesgue measure). Moreover, if (A8) is satisfied, we can take ν̄ = 1 in
(2.4), (2.5), and (2.6).

The meaning of weak solutions for (2.4), regularity results for p̄, and the definition
of p̄(0) are given in section 3.

The notion of stability considered in (A8) is closely related to the notion of calm-
ness introduced by Clarke [16]. In the above setting this notion is due to Burke [9].
It has been used in control problems by Bonnans and Casas [8]. We do not know
sufficient conditions ensuring that a state-constrained control problem is strongly sta-
ble on the right. However, even if (P ) is not strongly stable on the right, (Pγ) will
be strongly stable for all γ > 0, except on a subset of R+ of zero Lebesgue measure
[8], [12]. In some situations, Pontryagin’s principles in qualified form may be derived
from a nonqualified form. Consider the example described below.
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Example 2.3. Suppose that Ω is connected and consider the state equation

∂y

∂t
−∆y = 0 in Q,

∂y

∂n
+ y4 = v on Σ, y(0) = y0 on Ω,(2.7)

where y0 is a given function in C(Ω). We set Vad = {v ∈ Lσ(Σ) | v(s, t) ≥ 0 a.e. on Σ}.
The state constraints are defined by

0 ≤ y(x, t) ≤ γd on Q,

for some given γd > 0. (We suppose that 0 ≤ y0(x) < γd on Ω.) Since for v ∈ Vad,
the solution y of (2.7) is nonnegative, then we can restrict the state constraints to
y(x, t) ≤ γd. We denote by J a cost functional defined as in (1.3), with w ≡ y0, for
which assumptions (A3)–(A5) are satisfied. We suppose that the control problem

(Pex) inf{J(y, v) | y ∈ C(Q), v ∈ Vad, (y, v) satisfies (2.7), y(x, t) ≤ γd on Q}

admits solutions. We wish to prove that every solution of (Pex) satisfies the Pontryagin
principle in qualified form. For this we suppose that (ȳ, v̄) is a solution which satisfies
the Pontryagin principle in nonqualified form. For (Pex), the adjoint equation (2.4)
corresponding to (ȳ, v̄) and ν̄ = 0 is

−∂p̄
∂t
−∆p̄ = µ̄Q in Q,

∂p̄

∂n
+ 4ȳ3p̄ = µ̄Σ on Σ, p̄(T ) = µ̄ΩT

on Ω,

where the measure µ̄ = µ̄Q + µ̄Σ + µ̄ΩT
satisfies

µ̄ ≥ 0, µ̄ 6= 0, 〈µ̄, ȳ − γd〉M(Q)×C(Q) = 0.(2.8)

(Observe that, for (Pex), (2.8) corresponds to (2.3) with ν̄ = 0.) The Pontryagin
principle in nonqualified form is expressed as

p̄(s, t)(v − v̄(s, t)) ≥ 0 for all v ≥ 0 and for almost all (s, t) ∈ Σ.(2.9)

We set t̄ = inf{t ∈ [0, T ] | µ̄(Ω×]t, T ]) = 0}. Following [34, Theorems 4.2, 4.3, and
Remark 4.7], we can define p̄Ω(t+) as the function in L1(Ω) which satisfies the Green
formula ∫

Ω×]t,T [

p̄

(
∂y

∂t
−∆y

)
dx dt+

∫
Γ×]t,T [

p̄

(
∂y

∂n
+ 4ȳ3y

)
ds dt

= 〈µ̄Ω×]t,T [, y〉Mb(Ω×]t,T [)×Cb(Ω×]t,T [) + 〈µ̄Γ×]t,T [, y〉Mb(Γ×]t,T [)×Cb(Γ×]t,T [)

+〈p(T ), y(T )〉M(Ω)×C(Ω) − 〈pΩ(t+), y(t)〉M(Ω)×C(Ω),

for all y ∈ C2(Q) (for A ⊂ Q, µ̄A denotes the restriction of µ̄ to A). With such a
definition for p̄Ω(t+), the restriction of p̄ to Ω×]0, t[ is the unique solution of

−∂p
∂t
−∆p = µ̄Ω×]0,t[ in Ω×]0, t[,

∂p

∂n
+ 4ȳ3p = µ̄Γ×]0,t[ on Γ×]0, t[,

p(t) = p̄Ω(t+) + µ̄Ω×{t} on Ω.
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We can easily prove that if p̄Ω(t+) = 0, then µ̄Ω×]t,T ] = 0. From the definition of t̄

we see that, for every ε > 0, p̄Ω((t̄ − ε)+) ≥ 0 and p̄Ω((t̄ − ε)+) 6= 0. Let p̂ be the
solution of

−∂p
∂t
−∆p = 0 in Ω×]0, t̄−ε[, ∂p

∂n
+kp = 0 on Γ×]0, t̄−ε[, p(t) = p̄Ω((t̄−ε)+) on Ω,

where k = max{4ȳ3(x, t) | (x, t) ∈ Q}. By a comparison principle, we can verify
that p̄ ≥ p̂ on Ω×]0, t̄ − ε[ and in particular on Γ×]0, t̄ − ε[. Moreover, p̂ belongs to
C2(Q × [0, t̄ − ε[), and the function p̂(t̄ − 2ε) belongs to C2(Ω), is nonnegative, and
not identically zero. Therefore, from the maximum principle for classical solutions
of parabolic equations, we deduce that p̂ > 0 on Ω × [0, t̄ − 2ε[. Thus, p̄(s, t) > 0
a.e. on Γ×]0, t̄[. With (2.9), this implies v̄ ≡ 0 on Γ×]0, t̄[. Thus, 0 ≤ ȳ(x, t) ≤
maxΩy0 < γd on Ω × [0, t̄]. From (2.8), it follows µ̄Ω×[0,t̄] = 0. Thus, µ̄ ≡ 0 and we

get a contradiction.
In this simple example we see that the Pontryagin principle in qualified form

follows from the Pontryagin principle in nonqualified form.

3. State equation and adjoint equation.

3.1. Existence, uniqueness and regularity of the state variable.
Theorem 3.1. Under assumptions (A1) and (A2), if v ∈ Lσ(Σ) and w ∈ C(Ω),

then (1.1) admits a unique weak solution yvw in W (0, T )∩C(Q). This solution satisfies

‖yvw‖∞,Q ≤ C1(‖v‖σ,Σ + ‖w‖∞,Ω + 1),

where C1 = C1(T,Ω, N, q, σ, C0). Moreover, the mapping (v, w) 7−→ yvw is continuous
from Lσ(Σ)× C(Ω) into C(Q).

Proof. The existence of a unique weak solution yvw in W (0, T )∩C(Q) for equation
(1.1), is proved in ([37, Theorem 3.1]). The last part of the theorem can be proved as
in ([37], Proposition 4.3).

Corollary 3.2. For every k > 0 and every ε > 0, there exist C2 = C2(T,Ω, N, q,
σ, C0, k), C3 = C3(T,Ω, N, q, σ, C0, k, ε), and α > 0 such that, for every (v, w) ∈
Vad ×Wad satisfying ‖v‖Lσ(Σ) + ‖w‖∞,Ω ≤ k, the weak solution yvw of (1.1) corre-

sponding to (v, w) is Hölder continuous on [ε, T ]× Ω and obeys

‖yvw‖C(Q) ≤ C2, ‖yvw‖Cα, α2 (Ω×[ε,T ])
≤ C3.

Moreover, if w is Hölder continuous on Ω, then yvw is Hölder continuous on Q.
Proof. Since yvw belongs to C(Q), thanks to (A1)–(A2), we see that yvw is also

the unique weak solution of

∂y

∂t
+Ay = f̃ in Q,

∂y

∂nA
= g̃ on Σ, y(0) = w in Ω,

where

f̃(·) = −f(·, yvw(·)) ∈ Lq(Q), g̃(·) = −g(·, yvw(·), v(·)) ∈ Lσ(Σ).

We denote by γ0 the trace operator from Lσ
′
(0, T ;W 1,ν(Ω)) into Lσ

′
(0, T ;W 1− 1

ν ,ν(Γ))

(with ν = N/(σN −N + 1)), and by i the embedding from Lσ
′
(0, T ;W 1− 1

ν ,ν(Γ)) into
Lσ
′
(0, T ;Lσ

′
(Γ)), we can write

〈g̃, (i ◦ γ0)z〉Lσ(Σ)×Lσ′ (Σ) = 〈(γt0 ◦ it)g̃, z〉Lσ(0,T ;(W 1,ν(Ω))′)×Lσ′ (0,T ;W 1,ν(Ω))
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for every z ∈ Lσ′(0, T ;W 1,ν(Ω)). We can identify (γt0 ◦ it)g̃ with (f0, f1, . . . , fN ) ∈
(Lσ(0, T ;Lν

′
(Ω)))N+1 (ν′ = Nσ

N−1 ) in the following manner:

〈(γt0 ◦ it)g̃, z〉Lσ(0,T ;(W 1,ν(Ω))′)×Lσ′ (0,T ;W 1,ν(Ω)) =

∫
Q

(f0z + ΣifiDiz) dxdt

for every z ∈ Lσ′(0, T ;W 1,ν(Ω)). Therefore, yvw is the weak solution (in the sense of
[17]) of the initial boundary value problem

∂y

∂t
−div(a(x, t,∇y)) = f̃+f0 in Q, a(x, t,∇y).n = 0 on Σ, y(0) = w in Ω,(3.1)

where

a(x, t,∇y) =

 N∑
j=1

aijDjy − fi

i=1,..,N

.

Now we can easily verify that assumptions of ([17, Chapter 3, Theorem 1.3]) are
satisfied by system (3.1), and the Hölder continuity results of corollary 3.2 follow from
this theorem.

3.2. Metric space of controls. To apply the Ekeland variational principle, we
have to define a metric space of controls in order that the mapping (v, w) 7−→ yvw
be continuous from this metric space to C(Q). Thanks to Theorem 3.1, this conti-
nuity condition will be realized if convergence in the metric space of controls implies
convergence in Lσ(Σ)×C(Ω). In the case where boundary controls are bounded, con-
vergence in (Vad, dE) (where dE is the so-called Ekeland distance) implies convergence
in Lσ(Σ). This condition is no longer true for unbounded controls (see [25, p. 227]).
To overcome this difficulty, we define a new metric space in the following way.

Let ṽ be in Vad (in section 5, ṽ will be an optimal boundary control that we want
to characterize). For 0 < k <∞, we define the set

Vad(ṽ, k) = {v ∈ Vad | |v(s, t)− ṽ(s, t)| ≤ k for a.e. (s, t) ∈ Σ}.

We endow the set Vad(ṽ, k)×Wad with the following metric:

d((v1, w1), (v2, w2)) = LN ({(s, t) | v1(s, t) 6= v2(s, t)}) + ‖w1 − w2‖∞,Ω.

Remark 3.1. From [19], we know that the mapping

dE : (v1, v2) 7−→ LN ({(s, t) | v1(s, t) 6= v2(s, t)})

is a distance on Vad(ṽ, k). Moreover, if (vn)n ⊂ Vad(ṽ, k), if v ∈ Vad(ṽ, k), and if
limn dE(vn, v) = 0, then (vn)n converges to v in Lσ(Σ). This is no longer true for any
sequence (vn)n included in Vad.

Lemma 3.3. (Vad(ṽ, k) ×Wad, d) is a complete metric space, and the mapping
which associates (yvw, J(yvw, v, w)) with (v, w) is continuous from (Vad(ṽ, k)×Wad, d)
into C(Q)× R.

Proof. (i) To prove that (Vad(ṽ, k) ×Wad, d) is a complete metric space, it re-
mains to prove that (Vad(ṽ, k), dE) is complete. Let (vn)n be a Cauchy sequence in
(Vad(ṽ, k), dE). Following [19], we can prove that (vn)n converges for dE to some
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measurable function v such that v(s, t) ∈ KV (s, t) and |v(s, t)− ṽ(s, t)| ≤ k for almost
all (s, t) ∈ Σ. Therefore, v ∈ Lσ(Σ) and v ∈ Vad(ṽ, k).

(ii) Now, we consider (vn, wn)n≥1 ⊂ Vad(ṽ, k)×Wad and (v, w) ∈ Vad(ṽ, k)×Wad

such that (vn, wn)n converges to (v, w) for the metric d. We denote by y and yn
(n ≥ 1) the solution of (1.1) corresponding, respectively, to (v, w) and to (vn, wn). To
prove the continuity result, it remains to prove that the sequence (yn, J(yn, vn, wn))n
converges to (y, J(y, v, w)) in C(Q)× R.

For this, we observe that (wn)n converges to w in C(Ω) and (vn)n converges to
v in Lσ(Σ). We complete the proof thanks to the continuity assumptions on F,G,L
and to the continuity results stated in Theorem 3.1.

3.3. Adjoint equation. Let (a, b) be in Lq(Q)×Lσ(Σ) with a ≥ C0 and b ≥ C0.
We consider the following terminal boundary value problem:

−∂p
∂t

+Ap+ ap = µQ in Q,
∂p

∂nA
+ bp = µΣ on Σ, p(T ) = µΩT

on Ω,(3.2)

where µ = µQ+µΣ +µΩT
is a bounded Radon measure on Q\Ω0, µQ is the restriction

of µ to Q, µΣ is the restriction of µ to Σ, and µΩT
is the restriction of µ to ΩT .

Definition 3.4. We shall say that p is a weak solution of (3.2) in L1(0, T ;W 1,1(Ω))
if and only if the two following conditions are fulfilled:

(i) ap ∈ L1(Q) and bp ∈ L1(Σ),
(ii) For every ϕ ∈ C1(Q) satisfying ϕ(x, 0) = 0 on Ω, we have∫

Q

{
p
∂ϕ

∂t
+ Σi,jaijDjϕDip+ aϕp

}
dxdt+

∫
Σ

bϕp dsdt = 〈ϕ, µ〉Cb(Q\Ω0)×Mb(Q\Ω0).

(Cb(Q\Ω0) denotes the space of bounded continuous functions on Q\Ω0, whileMb(Q\
Ω0) denotes the space of bounded Radon measures on Q \ Ω0, that is, the topological
dual of C0(Q \ Ω0).)

In the following, we shall say that a pair (δ, d) ∈ R2 fulfills the condition (Cqσ) if
and only if

(Cqσ)



Nσ
σ−2 < d ≤ Nσ

N−1 and 2d
d−N < δ ≤ σ if σ ≤ q,

Nq
q−2 < d ≤ Nσ

N−1 and 2d
d−N < δ ≤ q if N ≤ q < σ,

Nq
q−2 < d ≤ inf( Nσ

N−1 ,
Nq
N−q ) and 2d

d−N < δ ≤ q if q < N.

Since q > N
2 + 1, σ > N + 1, and qσ + q > qN + 2σ, we notice that the set of pairs

(δ, d) satisfying (Cqσ) is nonempty. These conditions appear in a natural manner
when we study equation (3.2) (see Remark 3.3). We now recall an existence theorem
for parabolic equations with measures as data stated in [34].

Theorem 3.5. Let (a, b) be in Lq(Q)×Lσ(Σ) satisfying a ≥ C0, b ≥ C0 and let µ
be inMb(Q\Ω0). Equation (3.2) admits a unique weak solution p ∈ L1(0, T ;W 1,1(Ω)).
For every (δ, d) satisfying (Cqσ), p belongs to Lδ

′
(0, T ;W 1,d′(Ω)) and we have

‖p‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4‖µ‖Mb(Q\Ω0),

where C4 = C4(T,Ω, N, δ, d, C0) is independent of a and b. Moreover, there exists a
Radon measure on Ω, denoted by p(0) such that
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∫
Q

p

{
∂y

∂t
+Ay + ay

}
dxdt+

∫
Σ

p

{
∂y

∂nA
+ by

}
dsdt

= 〈y, µ〉Cb(Q\Ω0)×Mb(Q\Ω0) − 〈y(0), p(0)〉C(Ω)×M(Ω)

for every y ∈ Y = {y ∈W (0, T ) ∩ C(Q) | ∂y∂t +Ay ∈ Lq(Q), ∂y
∂nA
∈ Lσ(Σ)}.

Remark 3.2. If p ∈ Lδ′(0, T ;W 1,d′(Ω)) (where (δ, d) satisfies (Cqσ)), and if

divxt ((ΣjaijDjp)1≤i≤N , p) =
∂p

∂t
−Ap belongs to Mb(Q),

then we can define the normal trace of the vector field ((
∑
j aijDjp)1≤i≤N , p) in the

space W
−1
m ,m(∂Q) (for some 1 < m < N+1

N ). If we denote by γn((
∑
j aijDjp)1≤i≤N , p)

this normal trace, we can prove (see Theorem 4.2 in [34]) that this normal trace
belongs to M(∂Q) and the restriction of γn((

∑
j aijDjp)1≤i≤N , p) to ΩT is equal to

µΩT
, the restriction of γn((

∑
j aijDjp)1≤i≤N , p) to Σ is equal to µΣ − bp, and if p(0)

is the measure on Ω which satisfies the Green formula of Theorem 3.4, then −p(0) is
the restriction of γn((

∑
j aijDjp)1≤i≤N , p) to Ω0. In fact it can be proved that p(0)

belongs to L1(Ω) (see Theorem 4.3 in [34]).
Remark 3.3. Let us explain the origin of the condition (Cqσ). In [34], the existence

of a weak solution in L1(0, T ;W 1,1(Ω)) for equation (3.2) is proved by duality argu-
ments and an approximation process. The condition δ > 2d/(d−N) appears to get C0-
regularity results for some adjoint equation associated with (3.2) (see ([34, Theorem
4.1])). Condition δ > 2d/(d − N), together with conditions p ∈ Lδ′(0, T,W 1,d′(Ω)),
a ∈ Lq(Q), b ∈ Lσ(Σ), ap ∈ L1(Q), and bp ∈ L1(Σ) are equivalent to the condition
“(δ, d) satisfies (Cqσ).” In the case where a ∈ L∞(Q) and b ∈ L∞(Σ), condition (Cqσ)
can be replaced by the only condition δ > 2d/(d−N).

4. Existence of diffuse perturbations. In section 5, we consider control prob-
lems in which the state constraints are penalized. The penalization is chosen in such a
way that the solution of (P ) that we want to characterize will be an ε-solution of the
penalized problem. In order to exploit optimality conditions deduced from Ekeland’s
variational principle, we need to construct admissible perturbations of approximate
optimal solutions. For this we use a kind of perturbation that we call ”diffuse per-
turbation” and which goes back to Yao [40] and Li [28]. A diffuse perturbation of a
control v̄ ∈ Vad is a function vρ defined by

vρ(s, t) =

{
v̄(s, t) on Σ \ Eρ,
v(s, t) on Eρ,

where v ∈ Vad and Eρ is some measurable subset of Σ. It is clear that vρ ∈ Vad.
Contrary to spike or multispike perturbations, where Eρ is precisely defined, here
Eρ must satisfy some relations such as (4.9), (4.10), and (4.11). As explained in
Lemma 4.2, the existence of Eρ follows from the Lyapunov convexity theorem. To
get optimality conditions, we need some differential calculus rules for this type of
perturbation, stated in the following theorem.

Theorem 4.1. Let ρ be positive constant such that 0 < ρ < 1. For every
v1, v2 ∈ Vad and for every w1, w2 ∈ C(Ω), there exists a measurable subset Eρ ⊂ Σ
such that

LN (Eρ) = ρLN (Σ),(4.1)
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(G(·, y1, v2)−G(·, y1, v1)) dsdt = ρ

∫
Σ

(G(·, y1, v2)−G(·, y1, v1)) dsdt,(4.2)

yρ = y1 + ρz + rρ, with lim
ρ→0

1

ρ
‖rρ‖C(Q) = 0,(4.3)

J(yρ, vρ, wρ) = J(y1, v1, w1) + ρ∆J + o(ρ),(4.4)

where vρ, wρ are the controls defined by

vρ(s, t) =

{
v1(s, t) on Σ \ Eρ,
v2(s, t) on Eρ,

(4.5)

wρ = w1 + ρw2,(4.6)

yρ, y1 are the solutions of (1.1) corresponding, respectively, to (vρ, wρ) and to (v1, w1),
z is the weak solution of

∂z

∂t
+Az + f ′y(x, t, y1)z = 0 in Q,

∂z

∂nA
+ g′y(s, t, y1, v1)z = g(s, t, y1, v1)− g(s, t, y1, v2) on Σ,

z(0) = w2 in Ω,

(4.7)

and

∆J = J ′y(y1, v1, w1)z+J(y1, v2, w1)−J(y1, v1, w1)+

∫
Ω

L′w(x, y1(T ), w1)w2 dx.(4.8)

The proof relies on the following lemma.
Lemma 4.2. Let v1, v2 be in Vad and let y be in C(Q). For every ρ ∈]0, 1[, there

exists a sequence of measurable subsets (Enρ )n in Σ such that

LN (Enρ ) = ρLN (Σ),(4.9)

∫
Enρ

(G(s, t, y, v1)−G(s, t, y, v2)) dsdt = ρ

∫
Σ

(G(s, t, y, v1)−G(s, t, y, v2)) dsdt,(4.10)

1

ρ
χEnρ ⇀ 1 weak star in L∞(Σ), when n→∞,(4.11)

where χEnρ is the characteristic of Enρ .
Remark 4.1. A statement similar to (4.1), (4.3), (4.4) is given in [30], [31], [26],

and [12] (conditions (4.9), (4.11) are also stated in [12]). In [30] the proof relies on
an extension of Uhl’s theorem. The proofs in [26] and [12] are constructive. Since
the existence of Enρ , satisfying together conditions (4.9), (4.10), (4.11), is not proved,
neither in [12] nor in [30], we here give a short proof of Lemma 4.2 based on the
Lyapunov convexity theorem (see, for example, [14, Theorem 16.1.ii]).
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Proof of Lemma 4.2. We consider a family (ϕn)n dense in L1(Σ). For n ≥ 0, we
set

fn = (1, G(·, y, v1)−G(·, y, v2), ϕ0, ϕ1, . . . , ϕn) ∈ (L1(Σ))n+3.

Thanks to Lyapunov’s convexity theorem, for every n ≥ 0 and every ρ ∈]0, 1[,
there exists a measurable subset Enρ ⊂ Σ satisfying∫

Enρ

fn dsdt = ρ

∫
Σ

fn dsdt.

Thus, for every n ≥ 0, Enρ satisfies (4.9), (4.10) and∫
Enρ

ϕm dsdt = ρ

∫
Σ

ϕm dsdt,(4.12)

for every m ∈ {0, . . . , n}. Now, for any fixed ϕ in L1(Σ), we have

|
∫

Σ

(
1

ρ
χEnρ − 1

)
ϕdsdt| ≤ |

∫
Σ

(
1

ρ
χEnρ − 1

)
(ϕ−ϕm) dsdt|+|

∫
Σ

(
1

ρ
χEnρ − 1

)
ϕm dsdt|

≤
(

1

ρ
+ 1

)
‖ϕ− ϕm‖1,Σ + |

∫
Σ

(
1

ρ
χEnρ − 1

)
ϕm dsdt|.

Since (ϕm)m is dense in L1(Σ), for ε > 0 there exists m̄ > 0 such that ‖ϕ−ϕm̄‖1,Σ ≤
ε

1
ρ+1

.

Thanks to (4.12), for every n ≥ m̄, we have
∫

Σ

(
1
ρχEnρ − 1

)
ϕm̄ dsdt = 0. Thus,

it follows that

lim
n
|
∫

Σ

(
1

ρ
χEnρ − 1

)
ϕdsdt| = 0,

and the proof is complete.
Proof of Theorem 4.1. The existence of Eρ satisfying (4.1), (4.2) is an easy

consequence of Lemma 4.2. The only delicate point is the proof of (4.3). This kind
of result is already given in ([12, Theorem 5.2]) and in ([26, Theorem 3.3]). Since
we deal with unbounded controls and nonmonotone operators, our assumptions are
different from those in [12] and [26]. However, the proof of (4.3) can be adapted from
the proofs given in [12] and [26].

Let ρ be in ]0, 1[ and let (Enρ )n be the sequence of measurable subsets defined in
Lemma 4.2. We set

vnρ (s, t) =

{
v1(s, t) on Σ \ Enρ ,
v2(s, t) on Enρ ,

wρ = w1 + ρw2.

Let ynρ be the solution of (1.1) corresponding to (vnρ , wρ) and let z be the weak solution

of (4.7). It is clear that ξnρ = (ynρ − y1)/ρ− z is the weak solution in C(Q) ∩W (0, T )
of

∂ξ

∂t
+Aξ + anρξ = fnρ in Q,

∂ξ

∂nA
+ bnρξ = gnρ + hnρ on Σ, ξ(0) = 0 in Ω,

where
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anρ (x, t) =

∫ 1

0

f ′y(x, t, (y1 + θ(ynρ − y1))(x, t)) dθ,

bnρ (s, t) =

∫ 1

0

g′y(s, t, (y1 + θ(ynρ − y1))(s, t), vnρ (s, t)) dθ,

fnρ = (f ′y(x, t, y1)− anρ )z,

gnρ = (g′y(s, t, y1, v1)− bnρ )z,

hnρ =

(
1− 1

ρ
χEnρ

)
(g(s, t, y1, v2)− g(s, t, y1, v1)),

and χEnρ is the characteristic function of Enρ . We denote by ξn,1ρ the solution in

C(Q) ∩W (0, T ) of

∂ξ

∂t
+Aξ + anρξ = fnρ in Q,

∂ξ

∂nA
+ bnρξ = gnρ on Σ, ξ(·, 0) = 0 in Ω,

by ξn,2ρ the solution in C(Q) ∩W (0, T ) of

∂ξ

∂t
+Aξ + anρξ = 0 in Q,

∂ξ

∂nA
+ bnρξ = hnρ on Σ, ξ(·, 0) = 0 in Ω,

and by ζnρ the solution in C(Q) ∩W (0, T ) of

∂ζ

∂t
+Aζ + aζ = 0 in Q,

∂ζ

∂nA
+ bζ = hnρ on Σ, ζ(·, 0) = 0 in Ω,

where a(x, t) = f ′y(x, t, y1(x, t)), b(s, t) = g′y(s, t, y1(s, t), v1(s, t)). We also have

∂(ξn,2ρ − ζnρ )

∂t
+A(ξn,2ρ − ζnρ ) + anρ (ξn,2ρ − ζnρ ) = (a− anρ )ζnρ in Q,

∂(ξn,2ρ − ζnρ )

∂nA
+ bnρ (ξn,2ρ − ζnρ ) = (b− bnρ )ζnρ on Σ,

(ξn,2ρ − ζnρ )(·, 0) = 0 in Ω.

Due to ([37, Proposition 3.3]), there exists C = C(T,Ω, N, q, σ, C0) > 0 (independent
of n and ρ) such that

‖ξn,2ρ − ζnρ ‖C(Q) ≤ C(‖a− anρ‖q,Q + ‖b− bnρ‖σ,Σ)‖ζnρ ‖C(Q),(4.13)

‖ξn,1ρ ‖C(Q) ≤ C(‖fnρ ‖q,Q + ‖gnρ ‖σ,Σ).(4.14)

The operator T which associates ζ, the solution in C(Q) ∩W (0, T ) of

∂ζ

∂t
+Aζ + aζ = ϕ in Q,

∂ζ

∂nA
+ bζ = ψ on Σ, ζ(0) = 0 in Ω,

with (ϕ,ψ), is continuous from Lq(Q)× Lσ(Σ) into Cα,
α
2 (Q) for some 0 < α < 1 (as

for Corollary 3.2, this continuity result can be deduced from Chapter 3, Theorem 1.3,
in [17]). Since the embedding from Cα,

α
2 (Q) into C(Q) is compact, T may also be

considered as a compact operator from Lq(Q)× Lσ(Σ) into C(Q).
Because of (4.11), for every 0 < ρ < 1 the sequence (hnρ )n converges to zero for

the weak topology of Lσ(Σ). Therefore, since T is compact from Lq(Q)×Lσ(Σ) into
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C(Q), the sequence (ζnρ )n converges to zero in C(Q). There then exists an integer
depending on ρ, denoted by n(ρ), such that

‖ζn(ρ)
ρ ‖C(Q) ≤ ρ.(4.15)

Notice that (v
n(ρ)
ρ )ρ converges to v1 in Lσ(Σ) and (wρ)ρ converges to w in C(Ω) as

ρ tends to zero. From Theorem 3.1 it follows that (y
n(ρ)
ρ )ρ uniformly converges to y1

on Q as ρ tends to zero. Therefore, due to (A1) and (A2), f
n(ρ)
ρ and (a− an(ρ)

ρ ) both

converge to zero in Lq(Q) when ρ tends to zero and g
n(ρ)
ρ , (b − bn(ρ)

ρ ) both converge
to zero in Lσ(Σ) when ρ tends to zero. Thus, thanks to (4.13)–(4.15), we obtain

lim
ρ→0
‖ξn(ρ)
ρ ‖C(Q) ≤ lim

ρ→0
‖ξn(ρ),1
ρ ‖C(Q) + lim

ρ→0
‖ξn(ρ),2
ρ −ζn(ρ)

ρ ‖C(Q) + lim
ρ→0
‖ζn(ρ)
ρ ‖C(Q) = 0.

Now we set Eρ = E
n(ρ)
ρ , vρ = v

n(ρ)
ρ , and 1

ρrρ = ξ
n(ρ)
ρ . Conditions (4.1) to (4.3)

are clearly satisfied; moreover, taking (4.2), (4.3), and the definition of (vρ, wρ) into
account, we easily verify (4.4).

5. Proof of Pontryagin’s principle.

5.1. Penalized problem. We first give the proof of optimality conditions in
qualified form (the case ν̄ = 1 in Theorem 2.1). The proof of the nonqualified form
can be obtained with slight modifications that we give in section 5.3. For notational
simplicity, throughout what follows we set

HΣ(s, t, y, v, p, 1) = HΣ(s, t, y, v, p)

for every (s, t, y, v, p) ∈ Γ× [0, T ]×R×R×R. Following [30] and [31], since C(D) is
separable, there exists a norm | · |C(D), which is equivalent to the norm ‖ · ‖C(D) such

that (C(D), | · |C(D)) is strictly convex, and M(D), endowed with the dual norm of

| · |C(D) (denoted by | · |M(D)), is also strictly convex (see [18, Corollary 2, p. 148 or

Corollary 2, p. 167]). We define the distance function to C (for the new norm | · |C(D))

by

dC(ϕ) = inf
z∈C
|ϕ− z|C(D).

Since C is convex, then dC is convex and Lipschitz of rank 1, and we have

lim sup
ρ↘0,

ϕ′→ϕ

dC(ϕ′ + ρz)− dC(ϕ′)
ρ

= max{〈ξ, z〉M(D)×C(D) | ξ ∈ ∂dC(ϕ)}(5.1)

for every ϕ, z ∈ C(D), where ∂dC is the subdifferential in the sense of convex analysis
(see [16]). Therefore, for a given ϕ ∈ C(D) we have

〈ξ, z −ϕ〉M(D)×C(D) + dC(ϕ) ≤ dC(z) for all ξ ∈ ∂dC(ϕ) and all z ∈ C(D),(5.2)

|ξ|M(D) ≤ 1 for all ξ ∈ ∂dC(ϕ).

Moreover, it is proved in ([31, Lemma 3.4]) that, since C is a closed convex subset of
C(D), for every ϕ 6∈ C, and every ξ ∈ ∂dC(ϕ), we have |ξ|M(D) = 1. Since ∂dC(ϕ) is
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convex in M(D) and (M(D), | · |M(D)) is strictly convex, then if ϕ 6∈ C, ∂dC(ϕ) is a

singleton and dC is Gâteaux differentiable at ϕ.
Let (ȳ, v̄, w̄) be a solution of problem (P ). Thanks to (A8), we prove in the

proposition below that (ȳ, v̄, w̄) is also a local solution of some related penalized
problems.

Proposition 5.1. For every k > 0, there exists λ = λ(k) such that (ȳ, v̄, w̄) is a
solution of the following problem:

(P r,k) inf{Jr(y, v, w) | y ∈W (0, T )∩C(Q), (v, w) ∈ (Vad(v̄, k)×Wad)∩Bdλ(k)(v̄, w̄)

and (y, v, w) satisfies (1.1)},
where Jr(y, v, w) = J(y, v, w) + rdC(φ(y)), Bdλ(k)(v̄, w̄) ⊂ Vad ×Wad is the closed ball

centered on (v̄, w̄) and with radius λ(k) (for the distance d), r only depends on the
constant r̃ given in (A8) and on D.

Proof. From (A8), there exist ε̃ > 0 and r̃ > 0 such that

inf(P ) = inf {J(yvw, v, w) + r̃γ | (v, w) ∈ Vad ×Wad, φ(yvw) ∈ Cγ , γ ∈ [0, ε̃]} .
Now by writing

inf(P ) = inf {inf{J(yvw, v, w) + r̃γ | φ(yvw) ∈ Cγ , γ ∈ [0, ε̃]} | (v, w) ∈ Vad ×Wad} ,
we have

inf(P )

= inf

{
J(yvw, v, w) + r̃ inf

z∈C
‖φ(yvw)− z‖C(D) | (v, w) ∈ Vad ×Wad, φ(yvw) ∈ Cε̃

}
.

Since the norms | · |C(D) and ‖ · ‖C(D) are equivalent, there exist r ≥ r̃ and 0 < ε ≤ ε̃
such that

inf

{
J(yvw, v, w) + r̃ inf

z∈C
‖φ(yvw)− z‖C(D) | (v, w) ∈ Vad ×Wad, φ(yvw) ∈ Cε̃

}
≤ inf {J(yvw, v, w) + rdC(φ(yvw)) | (v, w) ∈ Vad ×Wad, dC(φ(yvw)) ≤ ε} .

Moreover, taking (A6) and Lemma 3.3 into account, there exists λ(k) > 0 such
that

dC(φ(yvw)) ≤ ε for every (v, w) ∈ (Vad(v̄, k)×Wad) ∩ Bdλ(k)(v̄, w̄).

Thus,

inf(P ) ≤ inf
{
J(yvw, v, w) + rdC(φ(yvw)) | (v, w) ∈ (Vad(v̄, k)×Wad) ∩ Bdλ(k)(v̄, w̄)

}

= inf(P r,k) ≤ J(ȳ, v̄, w̄) = inf(P ).

Now we set Jr,n(y, v, w) = J(y, v, w)+r[(dC(φ(y)))2 +n−2]
1
2 , and we denote by (P r,kn )

the problem

inf{Jr,n(y, v, w) | y ∈W (0, T ) ∩ C(Q), (v, w) ∈ (Vad(v̄, k)×Wad) ∩ Bdλ(k)(v̄, w̄)

and (y, v, w) satisfies (1.1)}.
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Proposition 5.2. For every k > 0,

inf(P r,k) = lim
n→∞ inf(P r,kn ) and lim

n→∞Jr,n(y, v, w) = Jr(y, v, w)

for every y ∈ C(Q) and every (v, w) ∈ Lσ(Σ) × C(Ω). Moreover, (ȳ, v̄, w̄) is a ε2-
solution of (P r,kn ) with ε2 = rn−1.

Proof. The first part of the proof is immediate if we observe that

Jr(y, v, w) ≤ Jr,n(y, v, w) ≤ Jr(y, v, w) + rn−1

for every (y, v, w) ∈ C(Q) × Lσ(Σ) × C(Ω). Moreover, since (ȳ, v̄, w̄) is solution of
(P r,k), with the previous inequalities, we obtain

Jr,n(ȳ, v̄, w̄) ≤ Jr(ȳ, v̄, w̄) + rn−1

≤ Jr(y, v, w) + rn−1 ≤ Jr,n(y, v, w) + rn−1,

for every y ∈ C(Q) and every (v, w) ∈ (Vad(v̄, k) × Wad) ∩ Bdλ(k)(v̄, w̄) such that

(y, v, w) obeys (1.1).

5.2. Proof of Theorem 2.1 (Pontryagin principle in qualified form). Let
k be a positive constant. Thanks to Proposition 5.2, for every n ≥ 1, (ȳ, v̄, w̄) is an
ε2
n-solution of (P r,kn ), with ε2

n = rn−1. For every k > 0, we choose n(k) such that

εn(k) =

(
r

n(k)

) 1
2

≤ min

(
1

k2σ
,
λ(k)

2

)
.

The metric space ((Vad(v̄, k) ×Wad) ∩ Bdλ(k)(v̄, w̄), d) is complete and the functional

(v, w) 7−→ Jr,n(k)(yvw, v, w) is continuous on this metric space. Thanks to Ekeland’s
variational principle, for every k ≥ 1, there exists (vk, wk) ∈ (Vad(v̄, k) × Wad) ∩
Bdλ(k)(v̄, w̄) such that

d((vk, wk), (v̄, w̄)) ≤ εn(k),(5.3)

Jr,n(k)(yk, vk, wk) ≤ Jr,n(k)(yvw, v, w) + εn(k)d((vk, wk), (v, w))(5.4)

for every (v, w) ∈ (Vad(v̄, k)×Wad) ∩ Bdλ(k)(v̄, w̄) (yk and yvw being the states corre-

sponding, respectively, to (vk, wk) and to (v, w)).
The proof is split into five steps.
Step 1. Approximate optimality conditions for the boundary control vk satisfying

(5.3) and (5.4). For fixed v0 in Vad, we denote by v0k (k > 0) the function in Vad(v̄, k)
defined by

v0k(s, t) =

{
v0(s, t) if |v0(s, t)− v̄(s, t)| ≤ k,
v̄(s, t) if not.

(5.5)

Applying Theorem 4.1, we deduce the existence of measurable sets Ekρ , such that

LN (Ekρ ) = ρLN (Σ),

yk1,ρ = yk + ρz1
k + rkρ , lim

ρ→0

1

ρ
‖rkρ‖C(Q) = 0,(5.6)
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J(yk1,ρ, v
k
1,ρ, w

k
1,ρ) = J(yk, vk, wk) + ρ∆J1

k + o(ρ),(5.7)

where vk1,ρ and wk1,ρ are defined by

vk1,ρ(s, t) =

{
vk(s, t) on Σ \ Ekρ ,
v0k(s, t) on Ekρ ,

wk1,ρ = wk,(5.8)

yk1,ρ is the state corresponding to (vk1,ρ, w
k
1,ρ), z

1
k is the weak solution of

∂z1
k

∂t
+Az1

k + f ′y(x, t, yk)z1
k = 0 in Q,

∂z1
k

∂nA
+ g′y(s, t, yk, vk)z1

k = g(s, t, yk, vk)− g(s, t, yk, v0k) on Σ,

z1
k(·, 0) = 0 in Ω,

and

∆J1
k =

∫
Q

F ′y(x, t, yk(x, t))z1
k(x, t) dxdt

∫
Σ

G′y(s, t, yk(s, t), vk(s, t))z1
k(s, t) dsdt

+

∫
Σ

[G(s, t, yk(s, t), v0k(s, t))−G(s, t, yk(s, t), vk(s, t))] dsdt

+

∫
Ω

L′y(x, yk(x, T ), wk(x))z1
k(x) dx.

On the other hand, we have

d((vk1,ρ, w
k
1,ρ), (v̄, w̄)) ≤ d((vk1,ρ, w

k
1,ρ), (vk, wk)) + d((vk, wk), (v̄, w̄))

≤ LN (Ekρ ) + εn(k) ≤ ρLN (Σ) + εn(k).

There then exists ρk such that, for every 0 < ρ < ρk, we have

d((vk1,ρ, w
k
1,ρ), (v̄, w̄)) ≤ ρLN (Σ) + εn(k) ≤ λ(k).

Therefore, for all k > 0 and all 0 < ρ < ρk, (vk1,ρ, w
k
1,ρ) belongs to (Vad(v̄, k)×Wad)∩

Bdλ(k)(v̄, w̄). If we set (v, w) = (vk1,ρ, w
k
1,ρ) in (5.4), it follows that

lim sup
ρ→0

Jr,n(k)(yk, vk, wk)− Jr,n(k)(y
k
1,ρ, v

k
1,ρ, w

k
1,ρ)

ρ
≤ εn(k)LN (Σ).(5.9)

Taking (5.2), (5.7), and the definition of Jr,n into account, we get

−∆J1
k − 〈µk, φ′(yk)z1

k〉M(D)×C(D) ≤ εn(k)LN (Σ),(5.10)

where

µk =


rdC(φ(yk))∇dC(φ(yk))

[dC(φ(yk))2 + n(k)−2]
1
2

if dC(φ(yk)) > 0,

0 if not.
(5.11)
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For every k > 0, we consider the weak solution pk of


−∂pk
∂t

+Apk + f ′y(x, t, yk)pk = F ′y(x, t, yk) + [φ′(yk)∗µk]|Q in Q,

∂pk
∂nA

+ g′y(s, t, yk, vk)pk = G′y(s, t, yk, vk) + [φ′(yk)∗µk]|Σ on Σ,

pk(T ) = L′y(x, yk(T ), wk) + [φ′(yk)∗µk]|ΩT in Ω,

(5.12)

where [φ′(yk)∗µk]|Q is the restriction of [φ′(yk)∗µk] to Q, [φ′(yk)∗µk]|Σ is the restric-
tion of [φ′(yk)∗µk] to Σ, and [φ′(yk)∗µk]|ΩT is the restriction of [φ′(yk)∗µk] to ΩT . By
using the Green formula of Theorem 3.4, we obtain∫

Q

F ′y(x, t, yk)z1
k dxdt+

∫
Σ

G′y(s, t, yk, vk)z1
k dsdt+

∫
Ω

L′y(x, yk(T ), wk)z1
k(T ) dx

+〈µk, φ′(yk)z1
k〉M(D)×C(D)

=

∫
Q

pk

(
∂z1
k

∂t
+Az1

k + f ′y(x, t, yk)z1
k

)
dxdt+

∫
Σ

pk

(
∂z1
k

∂nA
+ g′y(s, t, yk, vk)z1

k

)
dsdt

=

∫
Σ

pk [g(s, t, yk, vk)− g(s, t, yk, v0k)] dsdt.

With this equality, with (5.10) and the definition of ∆J1
k , we get

∫
Σ

[G(s, t, yk, vk)− pkg(s, t, yk, vk)] dsdt(5.13)

≤
∫

Σ

[G(s, t, yk, v0k)− pkg(s, t, yk, v0k)] dsdt+ εn(k)LN (Σ)

≤
∫

Σ

[G(s, t, yk, v0k)− pkg(s, t, yk, v0k)] dsdt+
1

k2σ
LN (Σ)

for every k > 0 and every v0 ∈ Vad (where v0k is defined according to v0 in (5.5)).

Step 2. Approximate optimality conditions for the initial control wk satisfying
(5.3) and (5.4).

Let w0 be in Wad. We consider the sequence (vk2,ρ, w
k
2,ρ) defined by

vk2,ρ = vk, wk2,ρ = wk + ρ(w0 − wk)

and we denote by yk2,ρ the state corresponding to (vk2,ρ, w
k
2,ρ). Since Wad is convex,

we see that {(vk2,ρ, wk2,ρ), k > 0} ⊂ Vad(v̄, k)×Wad. Moreover, we have

d((vk2,ρ, w
k
2,ρ), (v̄, w̄)) ≤ ρ‖w0 − wk‖∞,Ω + εn(k)
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≤ εn(k) + ρ(‖w0 − w̄‖∞,Ω + ‖wk − w̄‖∞,Ω)

≤ εn(k) + ρ(εn(k) + ‖w0 − w̄‖∞,Ω).

As in Step 1, if ρk is small enough, for every 0 < ρ < ρk, we have

d((vk2,ρ, w
k
2,ρ), (v̄, w̄)) ≤ λ(k).

Thus, (vk2,ρ, w
k
2,ρ) belongs to (Vad(v̄, k) ×Wad) ∩ Bdλ(k)(v̄, w̄), for every k > 0 and for

every 0 < ρ < ρk. Then Theorem 4.1 gives

yk2,ρ = yk + ρz2
k + rkρ , lim

ρ→0

1

ρ
‖rkρ‖C(Q) = 0,(5.14)

J(yk2,ρ, v
k
2,ρ, w

k
2,ρ) = J(yk, vk, wk) + ρ∆J2

k + o(ρ),(5.15)

where z2
k is the weak solution of

∂z2
k

∂t
+Az2

k + f ′y(x, t, yk)z2
k = 0 in Q,

∂z2
k

∂nA
+ g′y(s, t, yk, vk)z2

k = 0 on Σ,

z2
k(0) = w0 − wk in Ω,

and

∆J2
k =

∫
Q

F ′y(x, t, yk)z2
k dxdt+

∫
Σ

G′y(s, t, yk, vk)z2
k dsdt

+

∫
Ω

L′y(x, yk(T ), wk)z2
k(T ) dx+

∫
Ω

L′w(x, yk(T ), wk)(w0 − wk) dx.

As in Step 1, from (5.4) and (5.15) we deduce that

−∆J2
k − 〈µk, φ′(yk)z2

k〉M(D)×C(D)(5.16)

≤ lim sup
ρ→0

Jr,n(k)(yk, vk, wk)− Jr,n(k)(y
k
2,ρ, v

k
2,ρ, w

k
2,ρ)

ρ

≤ εn(k)‖w0 − wk‖∞,Ω ≤ εn(k)(εn(k) + ‖w0 − w̄‖∞,Ω),

where µk is defined in (5.11).
If we consider the weak solution pk of (5.12), still using the Green formula of

Theorem 3.4, we obtain∫
Q

F ′y(x, t, yk)z2
k dxdt+

∫
Σ

G′y(s, t, yk, vk)z2
k dsdt+

∫
Ω

L′y(x, yk(T ), wk)z2
k(T ) dx

+〈[φ′(yk)∗µk]|Q\Ω0
, z2
k〉Mb(Q\Ω0)×Cb(Q\Ω0)
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=

∫
Q

pk

(
∂z2
k

∂t
+Az2

k + f ′y(x, t, yk)z2
k

)
dxdt+

∫
Σ

pk

(
∂z2
k

∂nA
+ g′y(s, t, yk, vk)z2

k

)
dsdt

+〈pk(0), z2
k(0)〉M(Ω)×C(Ω) = 〈pk(0), w0 − wk〉M(Ω)×C(Ω).

Taking (5.16) and the definition of ∆J2
k into account, we get

−
∫

Ω

L′w(x, yk(T ), wk)(w0−wk) dx−〈pk(0), w0−wk〉M(Ω)×C(Ω)(5.17)

−〈[φ′y(yk)∗µk]|Ω0
, w0 − wk〉M(Ω)×C(Ω) ≤ εn(k)(εn(k) + ‖w0 − w̄‖∞,Ω)

for every w0 ∈Wad.
Step 3. Convergence of sequences (µk)k and (pk)k. We observe that

|µk|M(D) ≤ rdC(φ(yk))
[
(dC(φ(yk)))2 + n(k)−2

]−1/2 ≤ r.

The sequence (µk)k is bounded inM(D), so there exist µ̄ ∈M(D) and a subsequence,
still denoted by (µk)k, such that

µk ⇀ µ̄ weak∗ in M(D).(5.18)

Let (δ, d) be a pair fulfilling (Cqσ). From Theorem 3.4, we deduce

‖pk‖Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C4

{
‖F ′y(·, yk)‖1,Q + ‖G′y(·, yk, vk)‖1,Σ + ‖L′y(·, yk(T ), wk)‖1,Ω

+|µk|M(D)‖φ′(yk)‖L(C(Q);C(D))

}
.

(Here L(C(Q);C(D)) denotes the space of linear continuous mappings from C(Q) to
C(D).)

Since the sequences (µk)k, (yk)k, (vk)k, and (wk)k are bounded, respectively, in
M(D), C(Q), Lσ(Σ), and in C(Ω), the sequence (pk)k is bounded in Lδ

′
(0, T ;W 1,d′(Ω)).

There then exist p̄ ∈ Lδ′(0, T ;W 1,d′(Ω)) and a subsequence, still denoted by (pk)k,
such that (pk)k weakly converges to p̄ in Lδ

′
(0, T ;W 1,d′(Ω)).

Let us prove that p̄ is the weak solution of (2.4). Let ϕ be in C1(Q) satisfying
ϕ(·, 0) = 0 in Ω. For every k > 0, we have

∫
Q

pk ∂ϕ∂t +
N∑

i,j=1

aijDjpkDiϕ+ f ′y(·, yk)pkϕ

 dxdt(5.19)

+

∫
Σ

{
pk

∂ϕ

∂nA
+ g′y(·, yk, vk)pkϕ

}
dsdt

=

∫
Q

F ′y(x, t, yk)ϕdxdt+

∫
Σ

G′y(s, t, yk, vk)ϕdsdt+

∫
Ω

L′y(x, yk(T ), wk)ϕ(T ) dx

+〈µk, φ′(yk)ϕ〉M(D)×C(D).

Since (δ, d) satisfies (Cqσ), the following imbeddings are continuous:

Lδ
′
(0, T ;W 1,d′(Ω)) ↪→ Lq

′
(Q), Lδ

′
(0, T ;W 1− 1

d′ ,d
′
(Γ)) ↪→ Lσ

′
(Σ).
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Therefore, (pk)k weakly converges to p̄ in Lq
′
(Q) and the sequence of traces (pk|Σ)k

weakly converges to the trace p̄|Σ in Lσ
′
(Σ).

Moreover, since (vk)k converges to v̄ in Lσ(Σ) (indeed, since dE(vk, v̄) ≤ εn(k) ≤
1
k2σ and |vk − v̄| ≤ k a.e. on Σ, we have

∫
Σ
|vk − v̄|σ dsdt ≤ 1

kσ ), since (wk)k con-

verges to w̄ in C(Ω), and since (yk)k converges to ȳ in C(Q), due to assumptions on
f, g, F,G,L, φ, we have

lim
k
‖f ′y(·, yk)− f ′y(·, ȳ)‖q,Q = 0, lim

k
‖F ′y(·, yk)− F ′y(·, ȳ)‖1,Q = 0,

lim
k
‖g′y(·, yk, vk)− g′y(·, ȳ, v̄)‖σ,Σ = 0, lim

k
‖G′y(·, yk, vk)−G′y(·, ȳ, v̄)‖1,Σ = 0,

lim
k
‖L′y(·, yk(T ), wk)−L′y(·, ȳ(T ), w̄)‖1,Ω = 0, lim

k
‖φ′(yk)−φ′(ȳ)‖L(C(Q);C(D)) = 0.

Thus, by passing to the limit in (5.19), it follows that∫
Q

p̄ ∂ϕ∂t +
N∑

i,j=1

aijDj p̄Diϕ+ f ′y(x, t, ȳ)p̄ϕ

 dxdt+

∫
Σ

{
p̄
∂ϕ

∂nA
+ g′y(s, t, ȳ, v̄)p̄ϕ

}
dsdt

=

∫
Q

F ′y(x, t, ȳ)ϕdxdt+

∫
Σ

G′y(s, t, ȳ, v̄)ϕdsdt+

∫
Ω

L′y(x, ȳ(T ), w̄)ϕ(T ) dx

+〈µ̄, φ′(ȳ)ϕ〉M(D)×C(D)

for every ϕ ∈ C1(Q) satisfying ϕ(·, 0) = 0 in Ω. Therefore, p̄ is the unique weak
solution of (2.4). Since the weak solution of (2.4) is unique in the sense of Definition
3.1, we can deduce by classical arguments that p̄ is independent of the pair (δ, d)
(chosen after (5.18)) and that the original sequence (pk)k converges weakly to p̄ in
Lδ
′
(0, T ;W 1,d′(Ω)) for every (δ, d) satisfying (Cqσ). To pass to the limit in (5.17), we

prove that

(pk(0) + [φ′y(yk)∗µk]|Ω0
)k ⇀ p̄(0) + [φ′y(ȳ)∗µ̄]|Ω0

weakly star in M(Ω).(5.20)

For this, let ϕ be in C(Ω) and let y be the solution of

∂y

∂t
+Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(0) = ϕ in Ω.

With the Green formula of Theorem 3.4, we have

〈pk(0)+[φ′y(yk)∗µk]|Ω0
, ϕ〉M(Ω)×C(Ω)−〈p̄(0)+[φ′y(ȳ)∗µ̄]|Ω0

, ϕ〉M(Ω)×C(Ω)

=

∫
Q

[
p̄f ′y(x, t, ȳ)y − pkf ′y(x, t, yk)y

]
dxdt+

∫
Σ

[
p̄g′y(s, t, ȳ, v̄)y − pkg′y(s, t, yk, vk)y

]
dsdt

+〈µk, φ′y(yk)y〉M(D)×C(D) − 〈µ̄, φ′y(ȳ)y〉M(D)×C(D).

Now (5.20) follows from the previous convergence results.
Step 4. Integral Pontryagin’s principle. Notice that (v0k)k tends to v0 in Lσ(Σ)

and (vk)k tends to v̄ in Lσ(Σ). By passing to the limit when k tends to infinity in
(5.13) and (5.17), and by using the convergence results stated in Step 3, we obtain∫

Σ

HΣ(s, t, ȳ, v̄, p̄) dsdt ≤
∫

Σ

HΣ(s, t, ȳ, v0, p̄) dsdt(5.21)
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for every v0 ∈ Vad, and

∫
Ω

L′w(x, ȳ(T ), w̄)(w̄ − w0) dx+ 〈p̄(0) + [φ′y(ȳ)∗µ̄]|Ω0
, w̄ − w0〉M(Ω)×C(Ω) ≤ 0(5.22)

for every w0 ∈Wad. On the other hand, from the definition of µk and from (5.2), we
deduce

〈µk, z − φ(yk)〉M(D)×C(D) ≤ 0 for all z ∈ C.

By passing to the limit in this expression, we obtain (2.3).
Step 5. Pointwise Pontryagin’s principle. The functions

(s, t) 7−→ v̄(s, t), (s, t) 7−→ HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t))

are measurable on Σ, and the function

(s, t, v) 7−→ HΣ(s, t, ȳ(s, t), v, p̄(s, t))

is a Carathéodory function from ΣR into R. Thanks to Lusin’s theorem and Scorza–
Dragoni’s theorem, for every ε > 0, there exist a compact subset Σε ⊂ Σ, continuous
mappings ϕε0, ϕ

ε
1 from Σε into R, and a continuous mapping ϕε2 from ΣεR into R such

that

LN (Σ \ Σε) ≤ ε, ϕε0(s, t) = v̄(s, t) on Σε,

ϕε1(s, t) = HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t)) on Σε,

ϕε2(s, t, v) = HΣ(s, t, ȳ(s, t), v, p̄(s, t)) on ΣεR.

Since v̄ is continuous on Σε, v̄ is bounded on Σε and, for M > ‖v̄‖∞,Σε , the multi-
mapping

(s, t) 7−→ KM (s, t) := KV (s, t) ∩ [−M,M ]

has nonempty compact values for all (s, t) ∈ Σε. From a Lusin type theorem for
measurable multimappings with compact values (see, for example, [2, Theorem 1.4.1]),
for every integer M > ‖v̄‖∞,Σε , there exists a measurable subset ΣεM ⊂ Σε such that
LN (Σε \ ΣεM ) ≤ ε

2M
and the restriction of KM to ΣεM is continuous. Let us denote

by Σ̃εM the set of Lebesgue points in ΣεM , of the characteristic function of ΣεM .
Now let (s0, t0) be in Σ̃εM and let v ∈ KM (s0, t0). Since the multimapping KM is
continuous on ΣεM (in fact we only use the lower semicontinuity of KM ), for every
integer n > 0, the multimapping KM admits a measurable selection vn and there
exists an increasing function γ from R+ into R+ such that

|vn(s, t)− v| ≤ 1

n
on B

(
(s0, t0), γ

(
1

n

))
∩ ΣεM and lim

n→∞ γ
(

1

n

)
= 0,

where B((s0, t0), γ( 1
n )) is the ball in RN centered on (s0, t0) and of radius γ( 1

n ). We
now set

Sε,M,n = Σ̃εM ∩B
(

(s0, t0), γ

(
1

n

))
,
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and we consider the variation

vM (s, t) =

 v̄(s, t) on Σ \ Sε,M,1,
vn(s, t) on Sε,M,n \ Sε,M,n+1 for every n > 0,
v if (s, t) = (s0, t0).

It is clear that vM ∈ Vad and that

lim
(s,t)→(s0,t0)

vM (s, t) = v.

If we take v0 = χSε,M,nvM +(1−χSε,M,n)v̄ in (5.21) (where χSε,M,n is the characteristic
function of Sε,M,n), it follows that

1

LN (Sε,M,n)

∫
Sε,M,n

ϕε1(s, t) dsdt ≤ 1

LN (Sε,M,n)

∫
Sε,M,n

ϕε2(s, t, vM (s, t)) dsdt.

(Note that for every n ≥ 1, LN (Sε,M,n) 6= 0 because (s0, t0) ∈ Σ̃εM .) By passing to
the limit in the above inequality when n tends to infinity, and using the continuity of
ϕε1 and ϕε2, we obtain

ϕε1(s0, t0) = HΣ(s0, t0, ȳ(s0, t0), v̄(s0, t0), p̄(s0, t0))

≤ ϕε2(s0, t0, v) = HΣ(s0, t0, ȳ(s0, t0), v, p̄(s0, t0))

for every (s0, t0) ∈ Σ̃εM and every v ∈ KV (s0, t0) such that |v| ≤M .
We set

Σ̃ε =
⋂

M∈N∗
M>‖v̄‖∞,Σε

Σ̃εM

and we observe that LN (Σ \ Σ̃ε) ≤ 2ε. For every (s, t) ∈ Σ̃ε and every v ∈ KV (s, t)
we have

HΣ(s, t, ȳ(s, t), v̄(s, t), p̄(s, t)) ≤ HΣ(s, t, ȳ(s, t), v, p̄(s, t)).

Upon setting Σ̃ =
⋃
ε>0 Σ̃ε, we have LN (Σ̃) = LN (Σ). The pointwise Pontryagin’s

principle is satisfied on Σ̃ and the proof is complete.

5.3. Proof of Pontryagin principle in nonqualified form. In this case, as
in [21], [31], [42], [26], and [12], we can consider the penalized functional

Jn(y, v, w) =


[(

J(y, v, w)− J(ȳ, v̄, w̄) +
1

n2

)+
]2

+ (dC(φ(y)))2


1/2

.

With such a choice, for every k > 0, (ȳ, v̄, w̄) is a 1
n2 -solution of the penalized problem

(P kn ) inf{Jn(y, v, w) | (y, v, w) ∈ C(Q)×Vad(v̄, k)×Wad, (y, v, w) satisfies (1.1)}.
As in section 5.2, for every k > 0, we choose n(k) such that

1

n(k)
≤ 1

k2σ
.
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Due to Ekeland’s principle, there exists (vk, wk) ∈ Vad(v̄, k)×Wad such that

d((vk, wk), (v̄, w̄)) ≤ 1

n(k)
,

Jn(k)(yk, vk, wk) ≤ Jn(k)(yvw, v, w) +
1

n(k)
d((vk, wk), (v, w))

for every (v, w) ∈ Vad(v̄, k)×Wad (yk is the solution of (1.1) corresponding to (vk, wk)).
With calculations similar to those in [26], [42], and [12], by using diffuse pertur-

bations, we get ∫
Σ

H(s, t, yk(s, t), vk(s, t), pk(s, t), νk) dsdt

≤
∫

Σ

H(s, t, yk(s, t), v0k(s, t), pk(s, t), νk) +
1

n(k)
LN (Σ)

for every k > 0 and every v0 ∈ Vad (v0k is defined in function of v0 in (5.5)) and

−
∫ νk

Ω

L′w(x, yk(T ), wk)(w0−wk) dx−〈pk(0)+[φ′y(yk)∗µk]|Ω0
, w0−wk〉M(Ω)×C(Ω)

≤ 1

n(k)

(
1

n(k)
+ ‖w0 − w̄‖∞,Ω

)
for every w0 ∈Wad, where

νk =

(
J(yk, vk, wk)− J(ȳ, v̄, w̄) + 1

n(k)2

)+

Jn(k)(yk, vk, wk)
,

µk =


dC(φ(yk))∇dC(φ(yk))

Jn(k)(yk, vk, wk)
if φ(yk)) 6∈ C,

0 otherwise,

and pk is the weak solution of

−∂pk
∂t

+Apk + f ′y(x, t, yk)pk = νkF
′
y(x, t, yk) + [φ′y(yk)∗µk]|Q in Q,

∂pk
∂nA

+ g′y(s, t, yk, vk)pk = νkG
′
y(s, t, yk, vk) + [φ′y(yk)∗µk]|Σ on Σ,

pk(T ) = νkL
′
y(x, yk(T ), wk) + [φ′y(yk)∗µk]|ΩT in Ω.

By passing to the limit when k tends to infinity, as in section 5.2, we finally get
the Pontryagin principle in nonqualified form with ν̄ = limk νk and µ̄ the weak-star
limit of µk. To prove that (ν̄, µ̄) is nonzero, we remark that ν2

k + |µk|2M(D)
= 1. If

ν̄ > 0, the proof is complete. If ν̄ = 0, we can prove that |µ̄|M(D) > 0 by using

limk |µk|M(D) = 1 and intC(D)C 6= ∅. Indeed, if intC(D)C is nonempty, there exists a

ball B(z; ρ) ⊂ C with ρ > 0 (where B(z; ρ) is the ball in C(D), centered at z and with
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radius ρ). We can choose zk ∈ B(0; ρ) such that 〈µk, zk〉M(D)×C(D) = 1
2ρ|µk|M(D).

Since z + zk ∈ C, from the definition of µk and from (5.2), we have

〈µk, z + zk − φ(yk)〉M(D)×C(D) ≤ 0.

By passing to the limit, we obtain

1

2
ρ+ 〈µ̄, z − φ(ȳ)〉M(D)×C(D) ≤ 0;

thus µ̄ 6= 0.
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Abstract. Two players A and B are randomly placed on a line. The distribution of the
distance between them is unknown except that the expected initial distance of the (two) players does
not exceed some constant µ. The players can move with maximal velocity 1 and would like to meet
one another as soon as possible. Most of the paper deals with the asymmetric rendezvous in which
each player can use a different trajectory. We find rendezvous trajectories which are efficient against
all probability distributions in the above class. (It turns out that our trajectories do not depend
on the value of µ.) We also obtain the minimax trajectory of player A if player B just waits for
him. This trajectory oscillates with a geometrically increasing amplitude. It guarantees an expected
meeting time not exceeding 6.8µ. We show that, if player B also moves, then the expected meeting
time can be reduced to 5.7µ.

The expected meeting time can be further reduced if the players use mixed strategies. We show
that if player B rests, then the optimal strategy of player A is a mixture of geometric trajectories.
It guarantees an expected meeting time not exceeding 4.6µ. This value can be reduced even more
(below 4.42µ) if player B also moves according to a (correlated) mixed strategy. We also obtain a
bound for the expected meeting time of the corresponding symmetric rendezvous problem.

Key words. rendezvous, linear search
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1. Introduction. Rendezvous search is a form of cooperative optimal search in
which two or more people wish to meet as quickly as possible. Although the topic
was discussed by Schelling in a book published in 1960 [15], it was not until 1994
that rendezvous search was formulated into a rigorous mathematical manner in a
seminal paper by Alpern [1]. Schelling’s discussion concentrates on focal points to
which the players would move, whereas Alpern places emphasis on the symmetries of
the region X in which the people are situated and formalizes the problem by specifying
a particular subgroup of the isomorphism group of X. (These symmetries reflect the
knowledge of the players about their location and movement in the region.) The field
is an attractive one because many of the problems are mathematically challenging
even though they are simple to state and understandable to a nonmathematician.
Anderson and Weber [4] investigated rendezvous search on a complete graph in 1990
but a solution of the problem for a complete graph with 4 or more vertices has still not
been found. Many one-dimensional rendezvous search problems also remain unsolved,
and our purpose in this paper is to present some results on problems on the line. The
main problem that we will investigate is the linear rendezvous problem which was
described by Alpern in [1] as follows.
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Two friends have agreed to meet at noon on a certain street but have
neglected to specify a specific point on the street. Assuming they
know the distribution of their arrival points on the street at noon,
how should they move to meet in minimum expected time?

It can be formulated mathematically in the following way.

At time t = 0 two players are placed on a line at a distance d from each other,
where d is chosen by means of a cumulative distribution function F with support in
[0,∞). The players know F but not d and neither player knows the direction of the
other (nor do they have a common notion of positive direction). They can move with
a maximum speed of 1 and wish to meet up with each other in the shortest possible
expected time (called the rendezvous value).

There are in fact several different rendezvous values depending on which search
strategies are permitted. We shall be primarily concerned with asymmetric problems
in which the players are distinguishable and so are able to adopt different strategies.
A strategy α is any continuous trajectory with speed not exceeding 1. A player
placed at point d will have the time paths d ± α(t) equiprobably. We choose the
coordinate system such that the first player, say A, starts at 0 and the other, say B,
starts equiprobably at ±d, where d is drawn from F. If player A uses trajectory α,
and B trajectory β, then their expected meeting time is the average of the meeting
time of player A following trajectory α with 4 agents (representing B) following the
paths: ±d ± β(t); we will adopt the convention that agents 1, 2, 3, and 4 follow the
paths +d− β(t), +d+ β(t), −d+ β(t), and −d− β(t), respectively. The asymmetric
rendezvous value is the minimal expected time achievable by the players.

Alpern and Gal [2] obtained a number of results when the support of F is bounded
or discrete and found the asymmetric rendezvous value for the case when the support
of F is a single point. They also pointed out that the asymmetric rendezvous problem
is closely related to the linear search problem (searching for a stationary target on the
line) which was introduced by Bellman [9] and extensively studied by Anatole Beck
and others (the latest references are [6] and [7]). In particular they found inequalities
connecting the two problems. Note that a rendezvous search problem on the line in
which one of the players has to remain stationary is just a symmetric linear search
problem. (A linear search problem in which the distribution of the target is symmetric
around the origin.) This problem is equivalent to finding the expected meeting time
of the wait for mummy strategy in which one player stays in his original location and
the other looks for him in an optimal way.

In contrast to the work in [2], we shall deal with general distribution functions
having support in [0,∞). We consider the case where the distribution F is unknown,
with the only information being that E(d) ≤ µ. (Such an approach has been used by
Beck and Newman [8] for the linear search problem.) Our results will provide upper
bounds for rendezvous values in the form Kµ, where K is a universal constant and µ is
the mean of F. However, it should be noted that our analysis does not require the value
of µ to be known. The work has a natural interpretation as a “game against nature”
and can also be viewed as a version of Alpern’s “adversary-rendezvous game” [1] in
which the initial placement of the players is made by an opponent who wishes to
maximize their rendezvous time.

In section 2 we find the minimax solution for the symmetric linear search prob-
lem. Work on the linear search problem has concentrated primarily on the searcher
adopting a pure search strategy; we conclude the section by demonstrating that, when
this restriction is removed and we allow the use of mixed strategies, the optimal so-
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lution yields an expected meeting time which is significantly lower. The next section
presents a strategy pair which yields an upper bound of at most 5.73µ for the asym-
metric rendezvous value; in this strategy pair the players have symmetric roles in
which one player takes a turn moving while the other remains stationary. The con-
cept of correlated strategies is well established in game theory and it has recently
been introduced into rendezvous search by Lim [13]. In section 4 we prove that the
asymmetric rendezvous value is at most 4.42µ when the players are permitted to use
correlated strategies. Symmetric rendezvous problems (ones in which both players
have to play the same strategy) appear to be more difficult to analyze than symmet-
ric ones; the symmetric problem on the line when the support of F comprises a single
point (see [3]) remains unsolved, whereas the corresponding asymmetric problem has
a comparatively simple solution [2]. In section 5 we find an upper bound for the
symmetric rendezvous value. Many attractive problems remain open and the paper
concludes with two conjectures.

2. The symmetric linear search problem. When players can adopt different
strategies in trying to meet up with each other, an obvious plan is for one of them to
remain stationary while the other one tries to find him. In this case the rendezvous
search problem reduces to a linear search problem in which the distribution function
is symmetric. The following theorem gives a best possible result for this case.

Theorem 2.1. For the symmetric linear search problem, there is a trajectory
such that the expected meeting time is at most (4 + 2

√
2)µ ≈ 6.83µ, where µ is the

mean of F.
Furthermore, this result is best possible in the sense that the constant cannot be

lowered. Moreover, the minimax search trajectory is unique up to a multiplicative
constant.

Proof. Adopting a coordinate system which has the searcher’s starting point as
origin, the proofs of Theorem 3.1 and Lemma 3.2 in [7] show that it is sufficient
to consider a search strategy of the form ((−1)ixi), where xi ≥ 0 and xi < xi+1

whenever xi > 0; this search strategy represents a path beginning at 0 and consist-
ing of the intervals · · · , [−x2i−1, x2i] traversed in the positive direction followed by

[−x2i+1, x2i] traversed in the negative direction, · · · . Put si =
∑i
j=−∞ xj , then the

expected meeting time L(F ) is given by

L(F ) =
∞∑

i=−∞

1

2

∫ xi+1

xi

(2si+1 + t) dF (t) +
1

2

∫ xi+1

xi

(2si + t) dF (t)

= µ+

∞∑
i=−∞

∫ xi+1

xi

(si + si+1) dF (t).

Let

(2.1) xi = (1 +
√

2)i,

then si = (1 +
√

2)xi/
√

2 and

∞∑
i=−∞

∫ xi+1

xi

(si + si+1) dF (t) =
∞∑

i=−∞

∫ xi+1

xi

xi(1 +
√

2)(2 +
√

2)/
√

2 dF (t)

= (3 + 2
√

2)
∞∑

i=−∞

∫ xi+1

xi

xi dF (t) ≤ (3 + 2
√

2)µ,
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and the first part of the result follows.
We now show it is best possible. Let λ = supxj 6=0 xj+1/xj ; we will only consider

the case where λ is finite because the case λ = ∞ follows in an analogous manner.
For each ε > 0, we can choose a k such that xk+1/xk > λ− ε. Putting rj = xj/xj+1

if xj 6= 0 and rj = 0 otherwise, we have

sk + sk+1

xk
= r−1

k + 2(1 + rk−1 + rk−1rk−2 + rk−1rk−2rk−3 + · · ·)
> λ− ε+ 2(1 + λ−1 + λ−2 + λ−3 + · · ·) = λ− ε+ 2λ/(λ− 1).

It is routine to check that the right-hand side is minimized as a function of λ by
λ = 1 +

√
2, so we have

sk + sk+1 ≥ (3 + 2
√

2)xk.

Let Fη be the distribution function given by 0 if t < xk + η, and 1 otherwise; then, by
taking η > 0 sufficiently small, L(Fη) can be made as near as we please to (4+2

√
2)µ.

Hence the asserted constant is the best possible and the second part of the theorem
is established.

The above result can also be proved using a general theorem (Theorem 7 in
Chapter 6.5 of [11]). Moreover, it also follows from the general theorem that any
trajectory with sk + sk+1 ≤ (3 +

√
2)xk is equal to (2.1) up to a multiplicative

constant.
Note that the corresponding value for the (usual) linear search problem is 9µ

(see [8]).
Corollary 2.2. For all distribution functions with support in [0,∞), the asym-

metric linear rendezvous value is at most (4 + 2
√

2)µ, where µ is the mean of F.
Proof. From Theorem 2.1 such a value can be achieved by a “wait for mummy”

strategy.
Theorem 2.3. When the searcher can use a mixed strategy, an upper bound for

the expected meeting time in the symmetric linear search problem is(
1 +

g∗ + 1

ln g∗

)
µ,

where µ is the mean of F and g∗ is the value of g which minimizes (g + 1)/ ln g; the
upper bound is approximately 4.6µ and g∗ approximately 3.6.

This is a best possible result in the sense that the constant cannot be lowered.
Proof. Let S be the searcher strategy given by (xi), where xi = (−1)igi+u and

u is a random variable uniformly distributed in [0,1). For a distance x and a fixed
trajectory, let D = D(x) be the first geometric term numerically greater than or
equal to x; then the expected time of the searcher to find an object which is initially
at distance x from the searcher’s starting point is given by

1

2

(
2D

g − 1
+ x

)
+

1

2

(
2Dg

g − 1
+ x

)
= x+

D(g + 1)

g − 1
.

Put x = gi+v, where 0 ≤ v < 1. Then

D =

{
gi+u if v ≤ u < 1,
gi+1+u if 0 ≤ u < v.
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Hence the expected time for strategy S to reach x is

x+
g + 1

g − 1

(∫ v

0

gi+1+udu+

∫ 1

v

gi+udu

)

= x+
g + 1

(g − 1) ln g

(
gi+1(gv − 1) + gi(g − gv)

)
= x+

(g + 1)gi+v

ln g
= x

(
1 +

g + 1

ln g

)
.

Thus S yields an expected meeting time of at most

µ

(
1 +

g + 1

ln g

)
.

The minimum of (g + 1)/ ln g is attained when g is approximately 3.6 which gives an
upper bound of at most 4.6µ.

Note that this is the same result as for the (usual) linear search problem (see [8]).
This is not surprising because the worst (actually ε-worst) distribution for the linear
search problem is symmetric. This distribution can keep the expected meeting time
for both problems to at least (1 + (g∗ + 1)/ ln g∗)µ which shows that this constant
cannot be lowered and that the strategy described in the proof is optimal.

3. The asymmetric linear rendezvous problem. It is not easy to improve
the bound in Corollary 2.2. If the other player, say B, is also moving, then any
reduction in the meeting time of player A and agent 1 also increases the meeting time
with agent 2. Similarly, meeting agent 3 earlier causes player A to meet agent 4 later
and vice versa.

Theorem 3.1. The asymmetric linear rendezvous value is at most 5.73µ, where
µ is the mean of F.

Proof. We describe the trajectories of the players in time intervals [ρ2i, ρ2i+2],
where −∞ < i <∞ and ρi = (g2 + 1)gi−1/(g− 1). Note that ρi+1 = ρi + gi+1 + gi−1.

In the interval [ρ2i, ρ2i+1], player A remains stationary at a point g2i from his
starting point while player B moves at speed 1 from a point g2i−1 from his starting
point to the point g2i+1 on the opposite side of his starting point.

In the interval [ρ2i+1, ρ2i+2], player B remains stationary at a point g2i+1 from
his starting point while player A moves at speed 1 from a point g2i from his starting
point to the point g2i+2 on the opposite side of his starting point.

Suppose the players start at distance x apart, where gi−1 < x ≤ gi and g ≥
(1 +

√
5)/2. At time ρi−1 + gi−2, one player, say A, is back at his starting point and

the other, say B, is at a distance gi−1 from his starting point. Take a coordinate
system with origin being the starting point of A and positive direction being the
direction of A’s motion in [ρi−1, ρi]; then the agents 1, 2, 3, and 4 of player B are
located at the points x− gi−1, x+ gi−1, −x+ gi−1, and −x− gi−1, respectively. Note
that the agents of B remain stationary in [ρi−1 + gi−2, ρi].

Agent 1. Player A will meet agent 1 at time ρi−1 + gi−2 + x− gi−1 < ρi and so
at time

x+
2gi−1

g − 1
.

Agent 2. Player A will meet agent 2 at time ρi−1 + gi−2 + x + gi−1 ≤ ρi if
x ≤ gi − gi−1 and at time ρi + x+ gi−1 − gi < ρi+1 if x > gi − gi−1. Thus they meet
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at time

x+
2gi

g − 1
.

Agent 3. Player A will meet agent 3 at time ρi−2 + gi−3 + x − gi−2 ≤ ρi−1

if x ≤ gi−1 + gi−2 and at time ρi+1 + x + gi + gi+1 < ρi+2 if x > gi−1 + gi−2 and
x ≤ gi(g2 − g). The last inequality holds because g ≥ (1 +

√
5)/2, and so they meet

at time

x+
2

g − 1

{
gi−2 if x ≤ gi−1 + gi−2,
gi+2 if x > gi−1 + gi+2.

Agent 4. Player A will meet agent 4 at time ρi + gi−1 + x + gi ≤ ρi+1 if
x ≤ gi+1 − gi and at time ρi+1 + x + gi − gi+1 if x > gi+1 − gi. Thus they meet at
time

x+
2gi+1

g − 1
.

Hence the expected meeting time for the players when they start at distance x apart
is at most

x+
(g + 1)(g2 + 1)

2(g − 1)

{
gi−2 if x ≤ gi−1 + gi−2

gi−1 if x > gi−1 + gi−2

and so at most

x+
g2 + 1

2(g − 1)
max

{
gx,

(g + 1)x

g

}
= x

{
1 +

g(g2 + 1)

2(g − 1)

}
because (1 +

√
5)/2 ≤ g. The minimum occurs when 2g + 1 = 2/(g − 1)2, and taking

g = 1.6775 gives a bound slightly less than 5.73.
It is easy to see that, for a particular distribution function, the expected meeting

time is not increased if player B continues moving after ρ2i+1, provided he arranges
to be stationary at the point g2i+1 from his starting point during the time interval
[ρ2i+1 +g2i+1 +g2i−1, ρ2i+2]. A corresponding comment holds for player A in the time
interval [ρ2i, ρ2i+1]. Although this modification does not result in an improvement in
our bound, it does suggest that the bound might be lowered by using strategies in
which players move simultaneously for at least some of the time. Note that, when
the support of F is a single point, the minimum expected meeting time is achieved
by strategies in which the players are always moving; furthermore, the trajectories of
the players are not symmetrical.

How much can the bound be reduced? The problem seems difficult but we can
get an idea by looking at the point distribution considered in [2]. There, the expected
meeting time is 2µ for the wait for mummy strategy and 13µ/8 for the optimum,
i.e., a reduction of nearly 19%. Such an extrapolation leads to about 5.55µ in our
case. While this is in no way a precise argument it may hint that the value 5.73µ we
obtained in Theorem 3.1 is not far from the optimum.

4. The correlated asymmetric linear rendezvous problem. Aumann [5]
has pointed out that, in game theory, it is often important whether players can use
the same randomizing device for their strategies; if they can, the resulting strategies
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are called correlated strategies and lead to the concept of correlated equilibria. The
idea has proved fruitful and is now covered in standard textbooks on game theory
([10], [14]). Lim [13] recently introduced the concept into rendezvous search, and our
analysis will address the simple case in which both players observe the same random
variable and know the realization value. Note that Theorem 2.3 provides us with an
upper bound for the correlated asymmetric linear rendezvous value where the random
variable is uniformly distributed in [0,1]. The next theorem shows that this bound
can be improved.

Theorem 4.1. Correlated strategies can reduce the expected meeting time of the
asymmetric linear rendezvous below 4.42µ, where µ is the mean of F.

Proof. Let g > 1 be fixed and let u be the realization value (known to both players)
of a random variable uniformly distributed in [0,1]. Put D(i) = gi+u. We describe the
trajectories of the players in the time interval [σi−1, σi], where σi = (g+1)D(i)/(g−1).

At time σi−1, player A is at distance D(i− 1) from his starting point and in the
interval moves at speed 1 to the point D(i) on the opposite side of his starting point.

Player B chooses a direction at random as forward at t = 0 and is at his starting
point at time σi−1; at speed 1 he moves forward, then backward, then forward, then
backward for times D(i − 1), D(i − 1), (D(i) − D(i − 1))/2, (D(i) − D(i − 1))/2,
respectively.

Note that the movement in this time interval corresponds to an optimal trajectory
under the assumption that the initial distance is D(i).

Suppose the players start at distance x apart where D(i − 1) < x ≤ D(i). With
the given trajectories, player A will meet two of player B’s agents in [σi−1, σi] at times

σi−1+2D(i−1)+
x−D(i− 1)

2
and σi−1+2D(i−1)+

D(i)−D(i− 1)

2
+
x−D(i− 1)

2

and the other two in [σi, σi+1] at times

σi + (D(i) + x)/2 and σi +D(i) + (D(i) + x)/2;

since σi = σi−1 +D(i− 1) +D(i), the expected time of meeting is therefore

σi−1 + x/2 + 9(D(i− 1) +D(i))/8 = x/2 +D(i− 1)

{
2

g − 1
+

17

8
+

9g

8

}
.

Hence if the players start at distance d apart, where d = gi+a and 0 ≤ a ≤ 1, the
expected meeting time is

d

2
+

{
2

g − 1
+

17

8
+

9g

8

}{∫ a

0

gi+u du+

∫ 1

a

gi−1+u du

}
=
d

2
+

{
2

g − 1
+

17

8
+

9g

8

}
g − 1

g ln g
d.

On minimizing with respect to g, the optimal g is approximately 3.5, giving a bound
of less than 4.42d, and the result follows.

5. Symmetric rendezvous on the line. We now turn to the case where the
players have to use the same strategy. Let g and a be positive constants. Consider the
situation in which the players adopt a (mixed) strategy which has the properties (i)–
(iii) listed below in time intervals [τn, τn+1], where τn = agn/(g−1) and −∞ < n <∞.
Assume that the players have not met up to and including time τn and that, at time
τn, they are in the same relative position to each other as they were at the start.

(i) If the players do not meet in [τn, τn+1] then, at time τn+1, they are also in
the same relative position to each other as they were at the start.
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(ii) If their distance apart at time τn is greater than gn, the players do not meet
in [τn, τn+1].

(iii) If their distance apart at time τn is at most gn, then there is a probability
ρ > 0 (a pure constant) that the players will meet in [τn, τn+1]; if they meet in
[τn, τn+1], their expected meeting time is τn + x/2 + νgn, where ν is a pure constant.

Suppose the players start at distance x apart, where x ∈ (gn−1, gn]. By property
(ii), the players do not meet in any of the time intervals [τr, τr+1] for r ≤ n − 1. By
property (iii), for r ≥ n, there is a probability (1− ρ)r−nρ that the players will meet
for the first time in [τr, τr+1]. Hence provided (1−ρ)g < 1, the expected meeting time
is

∞∑
r=n

(1− ρ)r−nρ
{
agr

g − 1
+
x

2
+ νgr

}
=
x

2
+
ρ(a/(g − 1) + ν)

(1− ρ)n

∞∑
r=n

(1− ρ)rgr

=
x

2
+
ρ(a/(g − 1) + ν)gn

1− (1− ρ)g
≤ x

2
+
ρ(a/(g − 1) + ν)

1− (1− ρ)g
gx.

The last expression tends to infinity as g → 1 from the right and as g → 1/(1 − ρ)
from the left, so it has a minimum g∗ in (1, (1− ρ)−1); note that g∗(1− ρ) < 1. The
turning points are at

g =
ν ±

√
a2 + νaρ− a2ρ

ν + a− aρ so g∗ =
ν +

√
a2 + νaρ− a2ρ

ν + a− aρ .

We use this analysis to prove the following theorem.
Theorem 5.1. The symmetric linear rendezvous value is at most (7 + 2

√
10)µ,

where µ is the mean of F.
Proof. We describe the trajectories of the players in the time interval [τn, τn+1],

where τn = 2gn/(g − 1).
At time τn a player is at his starting point and chooses a direction at random as

forward; he then moves at speed 1 forward, then backward, then forward for times
gn/2, gn, gn/2, respectively.

Clearly the players meet in [τn, τn+1] if and only if they start at distance x ≤ gn
apart and they choose opposite directions as forward. Thus for such x, they meet with
probability 1/2 and the expected meeting time is τn + x/2 + gn/2. Hence we have a
special case of the above analysis with a = 2, ρ = 1/2 = ν, so g∗ = (1 +

√
10)/3

giving the asserted bound of (7 + 2
√

10)µ; the value of g is approximately 1.39 and
the bound slightly less than 13.33µ.

Theorem 5.2. Correlated strategies can reduce the expected meeting time of the
symmetric linear rendezvous below 11.4µ, where µ is the mean of F.

Proof. Let g > 1 be fixed and let u be the realization value (known to both players)
of a random variable uniformly distributed in [0,1]. Put D(i) = gi+u. We describe the
trajectories of the players in the time interval [ηn, ηn+1], where ηn = 2D(n)/(g − 1).

At time ηn a player is at his starting point and chooses a direction at random as
forward; he then moves at speed 1 forward, then backward, then forward for times
D(n)/2, D(n), D(n)/2, respectively.

Suppose, at time t = 0, the players are at distance x apart, where D(i− 1) < x ≤
D(i), then, from our earlier analysis in this section, their expected meeting time is

x

2
+

1/(g − 1) + (1/4)

1− g/2 D(i) =
x

2
+

g + 3

2(2− g)(g − 1)
D(i).
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Hence if the players start at distance d apart, where d = gi+a and 0 ≤ a ≤ 1, the
expected meeting time is

d

2
+

g + 3

2(2− g)(g − 1)

{∫ a

0

gi+u+1du+

∫ 1

a

gi+udu
}

=
d

2
+

g + 3

2(2− g) ln g
d.

The last expression is minimized in [1,2] at approximately 1.43, giving a value for the
expression slightly less than 10.9µ. The theorem now follows.

6. Conclusions. Although our bounds are given in the form Kµ, where µ is
the mean of the distribution function, we do not need to know the value of µ in the
analysis of any of our cases. Apart from Theorems 2.1 and 2.3, it would be surprising
if our results were best possible. Many attractive problems remain, especially finding
the minimax trajectories and optimal correlated strategies for the linear rendezvous,
and we now formulate two conjectures.

The greedy strategy pair of length D is given by the following:
• At time t = 0 player A chooses a direction as forward, then moves at speed 1

forward for a time D and then backward for a time 2D;
• At time t = 0 player B chooses a direction as forward, then moves at speed 1

forward, then backward, then forward, then backward for times D/2, D/2, D, and
D, respectively.

The motions of the players after time 3D can be defined arbitrarily.
The name “greedy” originates from the fact that, if the players start at distance D

apart, then at time t = 0 player A and agent 1 move at maximum speed towards each
other; after they meet then player A and agent 2 move at maximum speed towards
each other and so on.

Note that the greedy strategy pair of length D is optimal for the asymmetric
linear rendezvous search problem where the players know they start at distance D
apart.

Note that in a time interval (t, t + δt) the players gain by both moving if the
distribution of their distance is increasing in (0, δt). If it is decreasing, then it is better
for one of them to remain stationary while the other player moves. This fact has been
observed in [12] (which also showed that “wait for mummy” is never optimal). Thus
the following conjectures seem reasonable.

Conjecture 6.1. Let F be a distribution function with support in [0, D] which
has a density function that is nondecreasing in [0, D]; then the greedy strategy pair
of length D is optimal for the asymmetric linear rendezvous search problem having
distribution function F.

Conjecture 6.2. Let F be a distribution function with support in [0, D] which
has a density function that is strictly decreasing in [0, D]; then there is an optimal
strategy pair for the asymmetric linear rendezvous search problem which takes the
following form:
• player A oscillates with speed 1;
• player B is stationary while player A discovers new points and moves at speed

1 forward, then backward for times t/2 and t/2 during any period of length t in which
player A does not discover new points.
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Abstract. In adaptive control, a standard approach is to resort to the so-called certainty
equivalence principle which consists of generating some standard parameter estimate and then using it
in the control law as if it were the true parameter. As a consequence of this philosophy, the estimation
problem is decoupled from the control problem and this substantially simplifies the corresponding
adaptive control scheme. On the other hand, the complete absence of dual properties makes certainty
equivalent controllers run into an identifiability problem which generally leads to a strictly suboptimal
performance.

In this paper, we introduce a cost-biased parameter estimator to overcome this difficulty. This
estimator is applied to a linear quadratic Gaussian controller. The corresponding adaptive scheme is
proven to be stable and optimal when the unknown system parameter lies in an infinite, yet compact,
parameter set.
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1. Introduction. Consider a linear time-invariant system

xt+1 = A◦xt +B◦ut + wt+1,(1)

where xt ∈ Rn is the state, ut ∈ Rm the control variable, and wt is a noise process of
independent, Normal N(0, 1) random variables. The system matrices A◦ and B◦ are
unknown.

Our control objective is to select the input ut in such a way as to minimize the
long-term average quadratic cost criterion

lim supt→∞
1

t

t∑
s=1

[
xTs Qxs + uTs Rus

]
, Q = QT ≥ 0, R = RT > 0.(2)

To this purpose, we observe the state xt and, based on this, we first generate an
estimate of the system matrices A◦ and B◦ and then exploit these estimates in a
certainty equivalence fashion.
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A common way to generate an estimate of A◦ and B◦ is to resort to the least
squares method which corresponds to minimizing the performance index

Vt(A,B) =
t∑

s=1

‖xs −Axs−1 −Bus−1‖2.(3)

It is well known, however, that the corresponding certainty equivalent adaptive control
law can suffer from an identifiability problem and that this can result in a degradation
of the control system performance; see [1, 2, 3, 4]. In particular, for the case where
matrices A◦ andB◦ belong to a finite known set, it is shown in [2] that the least squares
estimate can converge with positive probability to a false estimate, which then leads
to a strictly suboptimal value of the long-term average cost criterion. For the case
of controlled Markov chains, such a counterexample had earlier been exhibited in [1].
Parameter consistency is guaranteed under certain conditions which are satisfied only
in specific adaptive control situations, as, e.g., studied in [5] and [6].

This inability to identify the open loop system from closed-loop measurements
is one of the fundamental obstacles to self-optimizing adaptive control. To overcome
this, one approach is to occasionally probe the system. This can be done by either
adding dither to the control or by occasionally breaking the control loop. However,
such perturbations should be of small enough magnitude or infrequent enough so that
they do not in themselves add to the cost incurred. An account of this approach can
be found in Chen and Guo [7, 8, 9, 10, 11, 12].

To overcome this general problem of identifiability in closed loop, a very different
approach, which still preserves the certainty equivalent structure of the adaptive con-
troller and holds out the promise of general self-optimizing controllers, was proposed
in [13] for the class of controlled Markov chains. The novelty of this adaptive con-
troller is the employment of a cost-biased maximum likelihood parameter estimator,
rather than the usual maximum likelihood parameter estimator. This cost biasing
modifies the log-likelihood criterion by incorporating an additional term which favors
parameter estimates with smaller optimal costs. For controlled Markov chains with
a finite parameter set, it was shown in [13] that such a cost biasing eliminates pa-
rameters with costs larger than the optimal cost from occurring as limit points of the
estimator. As a consequence, the corresponding adaptive controller was proved to
provide optimal performance. This result was extended in [14] to the case of general
parameter sets, for controlled Markov chains with finite state spaces. Another exten-
sion to the case of a finite parameter set, but allowing for a general state space and
nonlinear systems, was provided in [15]. In the reference most pertinent to this paper,
[2], it was shown that the cost-biased maximum likelihood-based certainty equivalent
controller yielded an optimal cost for linear systems with quadratic costs, as in (1)
and (2), provided that the parameter set is finite.

The assumption that the parameter set is finite is crucial in the derivations of
[2]. Indeed, it was shown in [2] that the log-likelihood ratio Vt(A

◦, B◦) − Vt(A,B)
stays bounded for any fixed parameter (A,B), and, therefore, a wrong fixed parameter
(A,B) can gain, at most, a finite advantage over the true parameter (A◦, B◦) in the
standard least squares criterion. Thus, when the number of possible parameters is
finite, the maximum of these finite advantages is still finite, and so a mild biasing
is sufficient to prevent elements (A,B) with larger cost than the optimal cost from
occurring as limit points of the parameter estimator. This mildness of the biasing is
important in order not to destroy the ability of the least squares estimate to identify
closed-loop dynamics. Unfortunately, this argument is no longer true when turning to
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a more general setting allowing for infinitely possible true parameterizations. Indeed,
in such a case, inf(A,B)[Vt(A

◦, B◦) − Vt(A,B)] is no longer bounded and the above
argument valid for the finite case fails to apply. As a consequence of this and other
difficulties, the infinite parameter set case has remained so far unsolved.

It is the purpose of this paper to establish the optimality of a certainty equiva-
lent controller based on the cost-biased maximum likelihood parameter estimator for
linear quadratic Gaussian systems, in the case of compact parameter uncertainty set.
The aforementioned difficulty that the log-likelihood ratio Vt(A

◦, B◦) − Vt(A,B) is
unbounded is circumvented by resorting to a Bayesian embedding approach. In this
setting, one can show that the least squares estimate converges along the directions of
diverging information to the true parameter value. As a consequence, a sequence of
parameters (A′t, B

′
t) can be determined with the property that it converges to the true

parameter (A◦, B◦) and for which inf(A,B)[Vt(A
′
t, B

′
t) − Vt(A,B)] remains bounded.

Loosely speaking, (A′t, B
′
t) can be used in the analysis in place of (A◦, B◦) and, by a

careful use of continuity arguments, the optimality of the adaptive controller can be
established.

The paper is organized as follows. Our adaptive control scheme is described in
section 2. In section 3, the properties of the cost-biased maximum likelihood param-
eter estimator are worked out. Section 4 is devoted to the study of the self-tuning
properties of the adaptive scheme, and its stability and optimality are established in
section 5.

2. The adaptive control system. Throughout this paper, let [A,B] ∈
Rn×(n+m) denote the matrix obtained by concatenating matrices A ∈ Rn×n and B ∈
Rn×m.

In our adaptive control problem, matrices A◦ and B◦ of system (1) are unknown
and belong to a known compact set Θ as precisely stated in the following assumptions.

(A.i) There is a known compact set Θ ⊂ Rn×(n+m) such that

[A◦, B◦] ∈ interior(Θ).

(A.ii) (A,B) is reachable and (A,Q1/2) is observable, ∀[A,B] ∈ Θ.
Given the system parameters [A,B] ∈ Θ, the control law minimizing the cost

(2) for the system xt+1 = Axt + But + wt+1 is easily derived (see, e.g., Kumar and
Varaiya [16] or Bertsekas [17] for a comprehensive presentation of linear quadratic
control problems). First, one has to compute the positive semidefinite solution to the
algebraic Riccati equation

P = ATPA−ATPB(BTPB +R)−1BTPA+Q.

The existence and uniqueness of such a solution is a consequence of the reachability
and observability assumption (A.ii). Denoting such a solution by P (A,B), the control
law is then given by

ut = K(A,B)xt,(4)

where K(A,B) is the linear quadratic Gaussian (LQG) optimal gain defined by

K(A,B) = −(BTP (A,B)B +R)−1BTP (A,B)A.(5)

The corresponding optimal cost is denoted by J(A,B).
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When one is facing an adaptive control problem, the system matrices (A◦, B◦) are

not known and some estimates Ât and B̂t of them are needed. Once these estimates
have been generated, in the certainty equivalence approach they are simply used as
if they were the true system matrices. Correspondingly, the adaptive control law is
given by

ut = K(Ât, B̂t)xt.(6)

The heart of our adaptive control scheme lies in the cost-biased least squares
estimator of the system matrices as described below.

Choose a deterministic sequence µt such that µt →∞ and µt = o(log t) as t→∞.

The parameter estimate sequence {[Ât, B̂t]} is given by

[Ât, B̂t] =


arg min[A,B]∈Θ

{
t∑

s=1

‖xs −Axs−1 −Bus−1‖2 + µtJ(A,B)

}
, for t even,

[
Ât−1, B̂t−1

]
, for t odd

(7)

(when there is more than one minimizer, any of them can be chosen).
The distinguishing feature of the criterion (7) is the term µtJ(A,B), which in-

troduces a mild bias in favor of parameters (A,B) with lower optimal costs. The
biasing is “mild” because µt = o(log t). On the other hand, it is nonnegligible be-
cause µt → ∞. Without this term one would simply have the usual least squares
parameter estimator, with its attendant difficulty in identifying the system in closed
loop.

The intuitive rationale for the cost biasing in the least squares criterion is as
follows. Suppose that one simply employs a straightforward least squares parameter
estimator. Then, generically, it can be shown that the least squares parameter esti-
mates sequence [ÂLSt , B̂LSt ] converges to a limiting random variable [ÂLS∞ , B̂LS∞ ] (see

[18]). Such a limiting estimate results in a limiting controller ut = K(ÂLS∞ , B̂LS∞ )xt.
It is natural to expect that the least squares estimator will asymptotically identify,
at a minimum, the closed-loop behavior of the system. Thus, one expects that the
behavior of the true system with the loop closed by ut = K(ÂLS∞ , B̂LS∞ )xt will be the
same as the closed-loop estimated system, i.e., their closed-loop gains are equal:

A◦ +B◦K(ÂLS∞ , B̂LS∞ ) = ÂLS∞ + B̂LS∞ K(ÂLS∞ , B̂LS∞ ).

This implies that the cost of running the true system (A◦, B◦) with the feedback gain

K(ÂLS∞ , B̂LS∞ ) is the same as the cost of running the estimated system (ÂLS∞ , B̂LS∞ )

with the feedback K(ÂLS∞ , B̂LS∞ ). The latter is, however, the optimal configuration

for the system xt+1 = ÂLS∞ xt + B̂LS∞ ut + wt+1, while the former is not necessarily an
optimal configuration for the true system. Thus one has

J(ÂLS∞ , B̂LS∞ ) ≥ J(A◦, B◦).

This means that the least squares estimator has a natural tendency to return estimates
with larger optimal cost than the optimal cost associated with the true system. This
motivates the idea of somehow introducing a bias into the parameter estimator so
that it favors parameters (A,B) with smaller values of J(A,B).

Thus, one conceives of adding a term such as µtJ(A,B) to the squared error in
(7). However, one needs to choose µt with care. One does not want to destroy the
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ability of the least squares estimator to identify the closed-loop dynamics. This is
achieved by choosing µt small enough so that µt = o(logt). On the other hand, one
definitely wants the µtJ(A,B) term to assert itself, and this is achieved by choosing
µt →∞. Hence, we arrive at the cost-biased least squares parameter estimator (7).

Notation. For brevity, the following notation will be used throughout the paper:
P ◦ := P (A◦, B◦), P̂t := P (Ât, B̂t), K

◦ := K(A◦, B◦), K̂t := K(Ât, B̂t), J
◦ :=

J(A◦, B◦), and Ĵt := J(Ât, B̂t).

3. The properties of the parameter estimates. In this section, we study
the properties of the estimates [Ât, B̂t] returned by the estimator (7). Our main result
is that the introduction of the cost-bias term µtJ(A,B) in the identification criterion
prevents parameters [A,B] with cost J(A,B) strictly larger than the optimal cost

from occurring as limit points of [Ât, B̂t] (Theorem 2). In this way, our modification
is proven successful in counteracting the natural tendency of least squares to return
estimates with larger cost than the optimal one. In addition, we show that the
estimator preserves the capability of the least squares method of identifying the control
system closed-loop dynamics (Theorem 3).

We start by summarizing some known results on the least squares estimates rel-
evant to the forthcoming developments.

Denote by [ÂLSt , B̂LSt ] the least squares estimate of [A◦, B◦]:[
ÂLSt , B̂LSt

]
:= arg min[A,B]∈Rn×(n+m)

t∑
s=1

‖xs −Axs−1 −Bus−1‖2 .

The partial ability of the least squares estimates (ÂLSt , B̂LSt ) to estimate a por-
tion of the open-loop system can be stated precisely using the notion of the excited
subspace, originally introduced in [19].

Definition 1. Defining vTs := [xTs uTs ], the subspace

E⊥ :=

{
z ∈ Rn+m : zT

∞∑
s=1

vsv
T
s z <∞

}
is called the unexcited subspace. Its orthogonal complement E is the excited subspace.

Given [A,B], let [A,B]E and [A,B]E⊥ denote the matrices in Rn×(n+m) formed
by projecting the rows of [A,B] onto E and E⊥, respectively.

The main properties of the least squares estimate are stated in Theorem 1 below
(the proof of point (i) can be derived as a slight modification to that of Theorem 1 in
[18], whereas point (ii) follows from Theorem 2 in [20] and Theorem 2 in [21]).

Theorem 1. There exists a set N ∈ Rn+m with zero Lebesgue measure such
that, if [A◦, B◦] does not belong to N , then

(i)

lim
t→∞[ÂLSt , B̂LSt ] = [ÂLS∞ , B̂LS∞ ] a.s.,

where [ÂLS∞ , B̂LS∞ ] is an almost surely (a.s.) bounded random variable.
(ii)

[ÂLS∞ , B̂LS∞ ]E = [A◦, B◦]E a.s.

In particular, point (ii) asserts that the asymptotic estimation error is confined
to the unexcited subspace. This is not surprising since the uncertainty in the excited
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directions is overcome by the information, which diverges with time. This turns out
to be a crucial property in the derivation of several results concerning our adaptive
scheme.

Throughout, we assume that [A◦, B◦] does not belong to N .

Our first result on the cost-biased estimate [Ât, B̂t] proves that it abandons the
region with costs larger than the optimal cost, for t large enough. A key role is played
by the composite estimate

[A′t, B
′
t] := [ÂLSt , B̂LSt ]E + [A◦, B◦]E⊥ .

Theorem 2.

lim sup
t→∞

Ĵt ≤ J◦ a.s.

Proof. Define

Vt(A,B) :=
t∑

s=1

‖xs −Axs−1 −Bus−1‖2,

Dt(A,B) := Vt(A,B) + µtJ(A,B).

Note for future use that

Vt(A,B)− Vt(ÂLSt , B̂LSt ) =
t∑

s=1

∥∥∥{[A,B]− [ÂLSt , B̂LSt ]
}
vs−1

∥∥∥2

.

Indeed, recalling that the minimizer of Vt(A,B) is given by [ÂLSt , B̂LSt ] =
(
∑t
s=1 xsv

T
s−1)(

∑t
s=1 vs−1v

T
s−1)−1, one has

Vt(A,B) − Vt(Â
LS
t , B̂LSt )−

t∑
s=1

∥∥∥{[A,B]− [ÂLSt , B̂LSt ]
}
vs−1

∥∥∥2

=
t∑

s=1

‖xs‖2 +
t∑

s=1

vTs−1[A,B]T [A,B]vs−1 − 2
t∑

s=1

vTs−1[A,B]Txs

−
t∑

s=1

‖xs‖2 −
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]T [ÂLSt , B̂LSt ]vs−1 + 2
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]Txs

−
t∑

s=1

vTs−1[A,B]T [A,B]vs−1 −
t∑

s=1

vTs−1[ÂLSt , B̂LSt ]T [ÂLSt , B̂LSt ]vs−1

+ 2
t∑

s=1

vTs−1[A,B]T [ÂLSt , B̂LSt ]vs−1

= −2
t∑

s=1

vTs−1[A,B]Txs − 2Trace

{
[ÂLSt , B̂LSt ]

(
t∑

s=1

vTs−1vs−1

)
[ÂLSt , B̂LSt ]T

}

+ 2

t∑
s=1

vTs−1[ÂLSt , B̂LSt ]Txs + 2Trace

{
[ÂLSt , B̂LSt ]

(
t∑

s=1

vTs−1vs−1

)
[A,B]T

}
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= −2
t∑

s=1

vTs−1[A,B]Txs − 2Trace

{
t∑

s=1

xsv
T
s−1[ÂLSt , B̂LSt ]T

}

+ 2

t∑
s=1

vTs−1[ÂLSt , B̂LSt ]Txs + 2Trace

{
t∑

s=1

xsv
T
s−1[A,B]T

}
= 0.

For every [A,B] ∈ Sε := {[A,B] ∈ Θ : J(A,B) ≥ J◦ + ε} , ε > 0, the following
chain of inequalities holds true:

Dt(A,B)−Dt(A
′
t, B

′
t) ≥ Vt(ÂLSt , B̂LSt ) + µtJ(A,B)

−Vt(A′t, B′t)− µtJ(A′t, B
′
t)

≥ −
t∑

s=1

∥∥∥{[A′t, B
′
t]− [ÂLSt , B̂LSt ]

}
vs−1

∥∥∥2

+µt {J◦ + ε− J(A′t, B
′
t)} .(8)

Recalling that J(A,B) = TraceP (A,B) (see [16] or [17]), and that P (·, ·) is a con-
tinuous function of the entries of matrices A and B for any [A,B] ∈ Θ (see [22]), we
can conclude that J(·, ·) is continuous in [A◦, B◦]. Since [A′t, B

′
t] → [A◦, B◦] (which

follows from (ii) of Theorem 1), we therefore have

J◦ + ε− J(A′t, B
′
t)→ ε a.s.

Thus, the second term on the right-hand side of (8) tends to infinity as t → ∞. On
the other hand, by the very definition of unexcited subspace and [A′t, B

′
t], the first

term stays bounded. Therefore, the right-hand side of (8) is diverging, uniformly in
[A,B] ∈ Sε. That is, Dt(A,B) is strictly larger than Dt(A

′
t, B

′
t) for any [A,B] ∈ Sε

when t is large enough. Finally, by noting that [A′t, B
′
t] ∈ Θ for t large enough,

the conclusion is drawn that [Ât, B̂t] leaves set Sε in finite time. In view of the
arbitrariness of ε > 0, the proof is complete.

We now introduce Cδ as the set of parameters [A,B] such that the gain of the
corresponding optimal closed-loop system differs from the gain of the true system
with the loop closed by K(A,B) by at least δ in norm, i.e.,

Cδ := {[A,B] ∈ Θ : ‖[A◦ +B◦K(A,B)]− [A+BK(A,B)]‖ ≥ δ} .

We now prove that the estimate [Ât, B̂t] can visit Cδ only rarely, and so our cost-biased
estimator (7) still possesses good closed-loop identification properties.

Theorem 3.

t∑
s=1

1([Âs, B̂s] ∈ Cδ) = O(µt) a.s., ∀δ > 0.

Proof. We first prove that

t∑
s=1

∥∥∥{[A′t, B
′
t]− [Ât, B̂t]

}
vs−1

∥∥∥2

= O(µt), t even a.s.(9)



ADAPTIVE LINEAR QUADRATIC GAUSSIAN CONTROL 1897

Indeed,

t∑
s=1

∥∥∥{[A′t, B
′
t]− [Ât, B̂t]

}
vs−1

∥∥∥2

≤ 2
t∑

s=1

∥∥∥{[A◦, B◦]E⊥ − [ÂLSt , B̂LSt ]E⊥
}
vs−1

∥∥∥2

+ 2
t∑

s=1

∥∥∥{[ÂLSt , B̂LSt ]− [Ât, B̂t]
}
vs−1

∥∥∥2

.

The first term is bounded because of the definition of unexcited subspace. As for the
second term, it can be handled as follows:

t∑
s=1

∥∥∥{[ÂLSt , B̂LSt ]− [Ât, B̂t]
}
vs−1

∥∥∥2

= Vt(Ât, B̂t)− Vt(ÂLSt , B̂LSt )

= Dt(Ât, B̂t)−Dt(A
′
t, B

′
t) + µt

{
J(A′t, B

′
t)− Ĵt

}
+
{
Vt(A

′
t, B

′
t)− Vt(ÂLSt , B̂LSt )

}
.

The last term equals
∑t
s=1 ||{[A′t, B′t]− [ÂLSt , B̂LSt ]}vs−1||2 and is bounded, whereas,

by noting that [A′t, B
′
t] ∈ Θ for t large enough, the first term is less than or equal to

zero in the limit. Result (9) then follows from the fact that J(A′t, B
′
t)− Ĵt is bounded

(remember that J(·, ·) is a continuous function on Θ and Θ is a compact set).
Note now that the matrix

[A◦ +B◦K(A,B)]− [Ā+ B̄K(A,B)]

is continuous as a function of [A,B] ∈ Θ and [A,B] ∈ Θ (this follows from the
expression (5) of the gain K(A,B) and the continuity of P (A,B) in Θ (see [22])).

Therefore, ∀[Ã, B̃] ∈ Cδ, there exists a neighborhood N(Ã, B̃) of [Ã, B̃] and a nonzero
matrix H such that(

[A◦ +B◦K(A,B)]− [A+BK(A,B)]
)T (

[A◦ +B◦K(A,B)]− [A+BK(A,B)]
)

≥ HTH, ∀[A,B], [A,B] ∈ N(Ã, B̃).(10)

The set of all these neighborhoods constitutes a cover of Cδ, from which a finite
subcover {Nj}qj=1 can be extracted. The thesis of the theorem can then be recast as

t∑
s=1

1([Âs, B̂s] ∈ Nj) = O(µt) a.s., ∀j ∈ [1, q].(11)

Equation (11) will be proven by contradiction. To this purpose, set

#j,t :=
t∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
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and assume that there exist j ∈ [1, q] and a sequence of even time points {tk} such

that [Âtk , B̂tk ] ∈ Nj∀k, and

lim
k→∞

1

µtk
#j,tk

=∞.(12)

We prove that (12) implies

lim inf
k→∞

1

#j,tk

tk∑
s=1

s even

αj,s+1 > 0,(13)

where

αj,s+1 := (‖Hxs+1‖2 ∧ 1)1([Âs, B̂s] ∈ Nj)(14)

(H is the matrix introduced in (10) associated with Nj) and, in turn, this contradicts

(9).
For the proof of (13), define Fs := σ(w1, . . . , ws) and note first that

E[‖Hxs+1‖2 ∧ 1 | Fs] = E[‖H(A◦xs +B◦us) +Hws+1‖2 ∧ 1 | Fs]
≥ Prob(‖H(A◦xs +B◦us) +Hws+1‖ ≥ 1 | Fs)
≥ 1− Prob (‖H(A◦xs +B◦us)‖ − 1 < ‖Hws+1‖

< ‖H(A◦xs +B◦us‖+ 1 | Fs))
≥ 1− sup

α
Prob(α− 1 < ‖Hws+1‖ < α+ 1)

≥ c,
for a suitable constant c > 0, the last inequality following from the fact that H 6= 0.
We therefore have

1

#j,tk

tk∑
s=1

s even

E[αj,s+1 | Fs] ≥
1

#j,tk

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj) · c = c.(15)

On the other hand,

tk∑
s=1

s even

{
αj,s+1 − E[αj,s+1 | Fs]

}

=

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
{

(‖Hxs+1‖2 ∧ 1)− E[‖Hxs+1‖2 ∧ 1 | Fs]
}

= o

 tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj)
 ,(16)

on the set where

tk∑
s=1

s even

1([Âs, B̂s] ∈ Nj) =∞(17)
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(see [23]). Since (17) is satisfied if (12) holds, equations (15) and (16) prove that (13)
follows from (12).

We now prove that (13) contradicts (9).
The convergence result [A′t, B

′
t]→ [A◦, B◦] (see Theorem 1) implies that(

[A′t +B′tK(A,B)]− [A+BK(A,B)]
)T (

[A′t +B′tK(A,B)]− [A+BK(A,B)]
)

≥
(

1

2
H

)T (
1

2
H

)
∀[A,B], [A,B] ∈ Nj ,

for t sufficiently high (see (10)). In view of this, the following chain of inequalities
can be derived when (12), and, consequently, inequality (13) hold true:

∞ = lim
k→∞

1

µtk
#j,tk

· lim inf
k→∞

1

#j,tk

tk∑
s=1

s even

αj,s+1

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

αj,s+1

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

‖Hxs+1‖2 · 1([Âs, B̂s] ∈ Nj)

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

4‖
{

[A′tk +B′tkK̂s]− [Âtk + B̂tkK̂s]
}
xs+1‖2 · 1([Âs, B̂s] ∈ Nj)

≤ lim
k→∞

1

µtk

tk−2∑
s=1

s even

4‖
(

[A′tk , B
′
tk

]− [Âtk , B̂tk ]
)
vs+1‖2.

This contradicts (9). Thus, (12) is false with probability 1, and so (11) is proven.

4. The self-tuning property. A key issue in the analysis of any adaptive
control method consists of determining whether it is able to generate, at least asymp-
totically, control laws close to the optimal control law for the true system. The
objective of the present section is to prove that this is indeed the case for our adap-
tive scheme, except for very rare time instants. This result will play a crucial role in
the next section where we address stability and optimality issues.

Theorem 4.

t∑
s=1

1(‖K̂s −K◦‖ > ρ) = O(µt) a.s., ∀ρ > 0.

Proof. Since Θ is compact,

sup
[A,B]∈Θ

λmax[A+BK(A,B)] < 1.

This implies that A◦ +B◦K(A,B) is stable for [A,B] belonging to the closed set Ccδ
(where the overbar indicates closure and the superscript “c ” indicates the complement
of the set), for δ small enough.
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Denote by J(A,B;K) the cost for the system xt+1 = Axt+Bxt+wt+1 controlled
by ut = Kxt, whenever the corresponding closed-loop system is stable. It is known
that (see [16] or [17])

J(A,B;K) = TraceP (A,B;K),(18)

where P (A,B;K) is the unique positive semidefinite solution of the Lyapunov equa-
tion

P = KTRK + [A+BK]TP [A+BK] +Q.(19)

From this, it is easy to verify that J(A◦, B◦;K(A,B)) is a continuous function of
[A,B] ∈ Ccδ . On the other hand, the optimal gain K◦ for the true system (1) is
unique within the class of stabilizing gains:

J(A◦, B◦;K) > J◦, ∀K 6= K◦, K stabilizing.

Therefore, there exists ν(ρ) > 0 such that every gain K = K(A,B), [A,B] ∈ Ccδ ,
for which

J(A◦, B◦;K) ≤ J◦ + ν(ρ)

also satisfies the bound

‖K −K◦‖ ≤ ρ.(20)

Note now that since A+BK(A,B) is close to A◦+B◦K(A,B) when [A,B] ∈ Ccδ ,
δ small, from (19), we have

sup
[A,B]∈Cc

δ

‖P (A◦, B◦;K(A,B))− P (A,B;K(A,B))‖ → 0, δ → 0,

and, in view of (18),

sup
[A,B]∈Ccs

|J(A◦, B◦;K(A,B))− J(A,B;K(A,B))| → 0, δ → 0.

Fix δ(ρ) such that

sup
[A,B]∈Cc

δ(ρ)

‖J(A◦, B◦;K(A,B))− J(A,B;K(A,B))‖ ≤ 1

2
ν(ρ).(21)

Finally,

lim sup
t→∞

1

µt

t∑
s=1

1(‖K̂s−K◦‖ > ρ)

≤ lim sup
t→∞

1

µt

t∑
s=1

1(J(A◦, B◦; K̂s)− J◦ > ν(ρ)) (using (20))

≤ lim sup
t→∞

1

µt

t∑
s=1

1

(
|J(A◦, B◦; K̂s)− Ĵs| > 1

2
ν(ρ)

)
(using Theorem 2)

≤ lim sup
t→∞

1

µt

t∑
s=1

1
(

[Âs, B̂s] ∈ Cδ(ρ)

)
(using (21))

<∞ (using Theorem 3).
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5. Stability and optimality. According to Theorem 4, the adaptive gain K̂s is
close to the optimal gain K◦ except at very rare time instants, the number of which
grows at most as µt. At these exceptional time points, the closed-loop system may
be unstable. However, due to their rare occurrence, we establish that they cannot
endanger the stability of the adaptive closed-loop control system. The corresponding
stability result is given in Theorem 5. The proof of Theorem 5 relies heavily on the
results of [24] concerning stability of rarely destabilized time-varying systems. It is
very similar to that of Theorem 12 in [2] and is provided here only for the sake of
completeness.

Theorem 5.

lim sup
t→∞

1

t

t∑
s=1

[‖xs‖p + ‖us‖p] <∞ a.s., ∀p > 0.

Proof. We start by noting that, since A◦ +B◦K◦ is a stable matrix, there exists
a suitable norm on Rn such that, under the corresponding induced matrix norm,
‖A◦ +B◦K◦‖ < 1 (see, e.g., [25]). Throughout this proof all the norm symbols refer
to this particular norm.

It is easy to verify that the following inequality holds true for any integer n and
real numbers a, b, and ε > 0,

(a+ b)2n ≤ (1 + ε2)2n−1a2n + (1 + ε−2)2n−1b2
n

.(22)

Taking into account the relation xt+1 = A◦xt + B◦K̂txt + wt+1, from (22) we
obtain

‖xt+1‖2n ≤ (1 + ε2)2n−1‖A◦ +B◦K̂t‖2n‖xt‖2n + (1 + ε−2)2n−1‖wt+1‖2n ,
for any integer n and positive real ε.

Now fix n̄ such that 2n̄ ≥ p and choose ε̄ > 0 such that (1 + ε̄2)2n̄−1‖A◦ +

B◦K◦‖2n̄ < 1. Further, select ρ in such a way that

a := sup
K : ‖K−K◦‖≤ρ

(1 + ε̄2)2n̄−1‖A◦ +B◦K‖2n̄ < 1

and also let

b := sup
[A,B]∈Θ

(1 + ε̄2)2n̄−1‖A◦ +B◦K(A,B)‖2n̄ .

Then

‖xt+1‖2n̄ ≤ γt‖xt‖2n̄ + (1 + ε̄−2)2n̄−1‖wt+1‖2n̄ ,(23)

where

γt =

{
a, if ‖K̂t −K◦‖ ≤ ρ,
b, otherwise.

We now apply Theorem 2 in [24] to (23) (see also Remark 1 in the same paper).

By noting that
∑t
s=1 1(‖K̂s−K◦‖ > ρ) = O(µt) (Theorem 4) and that µt = o(log t),

from that theorem we can conclude that

lim sup
t→∞

1

t

t∑
s=1

‖xs‖2n̄ <∞ a.s.
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This implies that (recall that 2n̄ ≥ p)

lim sup
t→∞

1

t

t∑
s=1

‖xs‖p <∞ a.s.

Since ‖us‖ ≤ sup[A,B]∈Θ ‖K(A,B)‖‖xs‖, we also have

lim sup
t→∞

1

t

t∑
s=1

‖us‖p <∞ a.s.

This proves the stability result.
We are now in a position to prove the optimality of the adaptive scheme, namely,

that the incurred cost equals the optimal cost that could be obtained if the true
system parameter were known at the start.

Theorem 6.

lim sup
t→∞

1

t

t∑
s=1

[
xTs Qxs + uTs Rus

]
= J◦ a.s.

Proof. The dynamic programming equation for model xs+1 = Âsxs+B̂sus+ws+1

is (see [16])

Ĵs + xTs P̂sxs

= xTs Qxs + uTs Rus + E[(Âsxs + B̂sus + ws+1)T P̂s(Âsxs + B̂sus + ws+1) | Fs]
= xTs Qxs + uTs Rus + E[xTs+1P̂sxs+1 | Fs]
+
{

(Âsxs + B̂sus)
T P̂s(Âsxs + B̂sus)− (A◦xs +B◦us)T P̂s(A◦xs +B◦us)

}
.

From this,

1

t

t∑
s=1

Ĵs︸ ︷︷ ︸
A

+
1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}
︸ ︷︷ ︸

B

=
1

t

t∑
s=1

[xTs Qxs + uTs Rus] +
1

t

t∑
s=1

E[xTs+1(P̂s − P̂s+1)xs+1 | Fs]︸ ︷︷ ︸
C

+
1

t

t∑
s=1

{
(Âsxs+ B̂sus)

T P̂s(Âsxs+ B̂sus)− (A◦xs+B◦us)T P̂s(A◦xs+B◦us)
}

︸ ︷︷ ︸
D

.

(24)

Let us study separately the different terms appearing in this expression.
(A) From Theorem 2 we have

lim sup
t→∞

1

t

t∑
s=1

Ĵs ≤ J◦.
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(B)

1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}

=
1

t
xT1 P̂1x1−1

t
xTt+1P̂t+1xt+1

+
1

t

t∑
s=1

{
xTs+1P̂s+1xs+1 − E[xTs+1P̂s+1xs+1 | Fs]

}
.

The first term obviously tends to zero. As for the second one, note that, P̂t+1 ≤
sup[A,B]∈Θ P (A,B) being bounded, it tends to zero provided that ‖xt‖2/t → 0. The
fact that this is the case can be proven by contradiction. Suppose that there exists
a time sequence {tk} and a real number α > 0 such that ‖xtk‖2 > αtk,∀k. Then
lim supt→∞

1
t

∑t
s=1 ‖xs‖4 ≥ lim supk→∞

1
tk
‖xtk‖4 ≥ lim supk→∞

1
tk
α2t2k = ∞. This

contradicts Theorem 5. In the third term,

{αs+1} := {xTs+1P̂s+1xs+1 − E[xTs+1P̂s+1xs+1 | Fs]}

is a martingale difference. Therefore, 1
t

∑t
s=1 αs+1 → 0, provided that

∞∑
s=1

s−2E[α2
s+1 | Fs] <∞

(see [26]). Since P̂s+1 is bounded, it is easily seen that this last condition is implied by∑∞
s=1 s

−2[‖xs‖4 + ‖us‖4] <∞. Again, this conclusion can be drawn by contradiction
from Theorem 5. In fact, if this conclusion were false, sequence s−1/2[‖xs‖4 + ‖us‖4]
would be unbounded and, therefore, there would exist a sequence of times {tk} such

that [‖xtk‖4 + ‖utk‖4] ≥ t
1/2
k ∀k. From this, lim supk→∞

1
t

∑t
s=1[‖xs‖4 + ‖us‖4]4 ≥

lim supk→∞
1
tk

[‖xtk‖4 +‖utk‖4]4 ≥ lim supk→∞
1
tk
t2k =∞, and this is in contradiction

with Theorem 5. In conclusion,

lim
t→∞

1

t

t∑
s=1

{
xTs P̂sxs − E[xTs+1P̂s+1xs+1 | Fs]

}
= 0 a.s.

(C) We start by proving that

lim
t→∞

1

t

t∑
s=1

‖P̂s − P̂s+1‖2 = 0 a.s.(25)

Since P ◦ satisfies the equation

P ◦ = K◦TRK◦ + [A◦ +B◦K◦]TP ◦[A◦ +B◦K◦] +Q,

and P̂s satisfies the equation

P̂s = K̂T
s RK̂s + [Âs + B̂sK̂s]

T P̂s[Âs + B̂sK̂s] +Q,
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P ◦ is close to P̂s when K◦ is close to K̂s and A◦ + B◦K◦ is close to Âs + B̂sK̂s. In
view of Theorems 3 and 4, the total of the numbers of time points in which this does
not happen is O(µt). Therefore,

t∑
s=1

1(‖P̂s − P ◦‖ > ρ) = O(µt) a.s., ∀ρ > 0.

Equation (25) then easily follows from

1

t

t∑
s=1

‖P̂s − P̂s+1‖2 ≤ 2

t

t∑
s=1

[
‖P̂s − P ◦‖2 + ‖P̂s+1 − P ◦‖2

]
≤ 4

t

t+1∑
s=1

‖P̂s − P ◦‖21(‖P̂s − P ◦‖ > ρ) +
4(t+ 1)

t
ρ2

→ 4ρ2,

since ρ is an arbitrary positive real number.
Notice now that, by the Schwarz inequality,

1

t

t∑
s=1

|xTs+1(P̂s − P̂s+1)xs+1| ≤
(

1

t

t∑
s=1

‖P̂s − P̂s+1‖2
)1/2(

1

t

t∑
s=1

‖xs+1‖4
)1/2

.

Therefore, t−1
∑t
s=1 ‖xs+1‖4 being bounded (Theorem 5), (25) implies

lim
t→∞

1

t

t∑
s=1

xTs+1(P̂s − P̂s+1)xs+1 = 0 a.s.(26)

Finally, the conclusion

lim
t→∞

1

t

t∑
s=1

E[xTs+1(P̂s − P̂s+1)xs+1 | Fs] = 0 a.s.

is drawn from (26) by observing that

{βs+1} := {xTs+1(P̂s − P̂s+1)xs+1 − E[xTs+1(P̂s − P̂s+1)xs+1 | Fs]}

is a martingale difference for which, by calculations resembling those developed in
point (B),

∑∞
s=1 s

−2E[β2
s+1 | Fs] <∞.

(D) Since

‖PTP −RTR‖ ≤ ‖P −R‖(‖P‖+ ‖R‖), ∀P,R ∈ Rn×n,

we have

|(Âsxs + B̂sus)
T P̂s(Âsxs + B̂sus)− (A◦xs +B◦us)T P̂s(A◦xs +B◦us)|

= |xTs (Âs + B̂sK̂s)
T P̂s(Âs + B̂sK̂s)xs − xTs (A◦ +B◦K̂s)

T P̂s(A
◦ +B◦K̂s)xs|

≤ ‖xs‖2‖P̂s‖ ‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖(‖Âs + B̂sK̂s‖+ ‖A◦ +B◦K̂s‖).
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Also, ‖P̂s‖ is uniformly bounded over time. The same holds for (‖Âs+B̂sK̂s‖+‖A◦+

B◦K̂s‖). Furthermore, using the Schwarz inequality,

1

t

t∑
s=1

‖xs‖2‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖

≤
(

1

t

t∑
s=1

‖xs‖4
)1/2(

1

t

t∑
s=1

‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖2
)1/2

.

By Theorem 5 the first term is bounded. In light of Theorem 3, the second term can
be handled analogously to the calculations for t−1

∑t
s=1 ‖P̂s − P̂s+1‖2 in point (C),

thus yielding

lim
t→∞

1

t

t∑
s=1

‖(Âs + B̂sK̂s)− (A◦ +B◦K̂s)‖2 = 0 a.s.

This suffices to prove that D → 0, a.s.
By inserting all the partial results in (24) we finally obtain

lim sup
t→∞

1

t

t∑
s=1

[
xTs Qxs + uTs Tus

] ≤ J◦ a.s.

Since J◦ is the optimal cost for the true system, this proves the theorem.

6. Concluding remarks. In an adaptive control context, the minimization of
a given cost function is made difficult by the general identifiability problem stemming
from the natural tendency of classical identification methods to return estimates with
the corresponding optimal cost larger than the optimal cost for the true system. A
way out of this problem is to employ a more fine-grained estimation scheme which
exploits the properties of the set to which the estimates converge. Such a scheme has
been presented and analyzed in this paper for the linear quadratic Gaussian control
problem.

The results of this paper need to be extended in several directions to provide a
fuller theory of optimal adaptation:
• The presented scheme is nonrecursive. However, one can conceive of some-

how recursively minimizing our identification performance index so as to retain its
asymptotic identification properties. This must be further investigated.
• We assume full state observations. This limitation needs to be removed.
• Our adaptive scheme is, to some extent, tailored to linear quadratic Gaussian

control. In particular, a central role in the analysis is played by the uniqueness of the
optimal gain in linear quadratic Gaussian control problems. It would be of interest
to investigate how the biasing idea applies to other control strategies. An additional
point is concerning the Gaussianity of the noise. This assumption is exploited in
proving that the least squares estimate converges and that it tends to the true value
in the excited subspace. In an attempt to remove the Gaussianity assumption one can
use a weighted least squares algorithm, as suggested in [12], guaranteeing estimate
convergence. In doing so, however, consistency in the excited subspace is lost and this
may pose a difficulty in the derivation of many results.
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• Assumption µt = o(log t) may be very conservative. It is mainly motivated by
the stability analysis and it is possible that our results still hold with µt growing at
a faster rate. This and other choices made in the definition of our algorithm may be
further investigated.

All the above problems suggest interesting research opportunities and a promise
of self-optimizing adaptive control for nonlinear stochastic systems.
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1. Introduction. This paper studies some fundamental asymptotic aspects of
the finite-dimensional, constrained, differentiable optimization problem:

minimize θ(x)

subject to x ∈ X,(1)

where θ : <n → < is a continuously differentiable function and X is a nonempty
closed subset of <n. We write

θinf ≡ inf
x∈X

θ(x) ≥ −∞.

Throughout the paper we do not assume, unless explicitly stated, that θinf is finite
or a global minimizer of (1) exists. Thus the theory developed herein is applicable to
problems (1) whose optimum objective values are not necessarily attained.
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The asymptotic properties studied in this work are closely tied to the theory of
well-posedness for constrained optimization problems [8, 21]. According to the intro-
ductory discussion in these two books, the well-posedness concept for minimization
problems originates with A.N. Tykhonov [36]. Whereas the original Tykhonov well-
posedness concept was concerned with an unconstrained optimization problem, the
extension to the constrained case was introduced by Levitin and Polyak [17], who were
interested in the convergence analysis of numerical methods for solving constrained
optimization problems. Central to the Levitin–Polyak theory of well-posedness for
the problem (1) is the concept of a minimizing sequence. Specifically, a sequence
{xk} ⊂ <n is said to be Levitin–Polyak minimizing (or in short, LP minimizing) for
(1) if

(i) it is asymptotically feasible; i.e.,

lim
k→∞

dist(xk, X) = 0,

where dist(x,X) is the distance function from a vector x ∈ <n to the set X
measured in the Euclidean norm; and

(ii) it is asymptotically optimal; i.e.,

lim
k→∞

θ(xk) = θinf.

Based on this fundamental definition, various well-posedness concepts can be defined
for the problem (1); see [8, 21, 31]. Invariably, all of these concepts assume that the
optimization problem in question has a global minimizer which may or may not be
unique. In contrast, many results obtained in the present paper do not require that
(1) attains its minimum. This is an important point of departure of our work from
the classical well-posedness studies.

Independently of the classical Tykhonov–Levitin–Polyak theory of well-posedness,
a closely related theory of well-behaved convex functions is developed in the papers
by Auslender, Crouzeix, and Cominetti [3, 2, 1]. Cast in the framework of extended-
valued convex functions [33], the latter theory studies the class of well-behaved convex
functions and their role in the convergence theory of iterative minimization methods.
Specifically, a proper closed convex function f : <n → < ∪ {∞} is said to be well-
behaved if for all sequences {xk} and {ak} such that limk→∞ ak = 0 and ak ∈ ∂f(xk)
for all k, where ∂f denotes the subdifferential of f , we have limk→∞ f(xk) = inf{f(x) :
x ∈ <n}. Note that a well-behaved convex function is not required to attain its
global minimum. Characterizations of well-behaved proper closed convex functions
are obtained in [3]. A large subclass of these functions, denoted R, is introduced in
[2] which consists of those proper closed convex functions f such that the origin is an
element of the relative interior of the domain of the subdifferential of the conjugate
f∗ of f . Some nice properties of functions in this subclass are obtained; among these,
a function in the class R must have a nonempty set of global minimizers. In a later
section, we will discuss how this subdifferential approach is related to the Levitin–
Polyak approach, which handles constraints explicitly.

In an interesting paper [15], Lemaire refined the analysis in [3, 2, 1] and introduced
several additional asymptotic concepts that tie together the theory of well-behaved
convex functions in a Banach space with that of well-posed optimization problems.
Since an important goal of Lemaire’s study was to connect these two theories, he
had assumed that his problems all attained their global minima. Further details of
Lemaire’s results are given in sections 4.1 and 4.3.



1910 C.-C. CHOU, K.-F. NG, AND J.-S. PANG

This paper has two major goals. One is to study the detailed connection between
an LP minimizing sequence and a “stationary sequence”; the other is to investigate
how these sequences can be characterized in terms of some asymptotic KKT-type
optimality conditions. We use two classes of constrained optimization problems to
illustrate our results: one class involves the minimization of a “convex quadratic spline
function” subject to convex quadratic inequality constraints; the other class consists
of convex programs with “Hölderian minima.” An application of the derived results
to the convergence of a family of Newton-type iterative descent methods involving
singular quasi-Newton matrices for solving the problem (1) is also presented.

Unlike the subdifferential approach employed by Auslender and Crouzeix [3] and
Lemaire [15], our definition of a stationary sequence (see the next section) is based
on the concept of a residual function that is derived from the theory of error bounds.
There are multiple reasons to introduce a residual-based concept of asymptotic sta-
tionarity. One is that this approach handles constraints more effectively (than the
subdifferential approach) and allows the treatment of infeasible sequences. Another
motivation is that residuals are computable quantities often used to define stopping
rules in the practical implementation of iterative methods; thus it is reasonable to
develop an asymptotic theory that is based on these residuals.

Apart from the difference in the employed approaches, an important topic in-
cluded in our study that has not been treated by Auslender, Cominetti, Crouzeix and
Lemaire is the converse question: Are LP minimizing sequences necessarily station-
ary? As we shall see, the answer to this question is in the negative in general; it
turns out that the well-known ε-variational principle by Ekeland [9] has a key role to
play in the analysis of this question. In addition to this question, we shall consider
an alternate definition of a minimizing sequence in the case where the problem (1)
actually has a global minimizer; we shall investigate when this alternate notion and
the notion of an LP minimizing sequence are equivalent.

The dominant role of the (exact) KKT optimality conditions for the study of
inequality constrained nonlinear programs is well known. Inspired by such a role,
we will introduce a set of asymptotic KKT conditions as a characterization of an
LP minimizing sequence for these programs. To the best of our knowledge, these
asymptotic optimality conditions have never been formally considered in optimization
theory.

Although the motivation of studying minimizing sequences stems from a compu-
tational consideration, one should be cautious in directly applying the results obtained
herein to sequences generated by specific algorithms [35]. The principal reason for
such caution is that, by the way they are generated, the latter sequences typically
possess additional properties that are not taken into account in a general study of
this type. In particular the convergence results in the papers [14, 38, 40] that pertain
to specific descent methods should not be inferred as immediate consequences of the
results in this work and the theory of well-posedness. Instead, the latter theory is
developed in order to identify key properties of optimization problems that will render
these problems to behave well when solved by numerical methods of a broad nature.
In such an algorithmic context, there has been some initial success of the theory [3, 2].
The present paper will add to this success by demonstrating that a condition impor-
tant for LP minimizing sequences is necessary and sufficient for the convergence of
the (singular) Newton-type descent methods for solving the constrained minimization
problem (1). This result provides a new piece of evidence showing that by focusing on
the class of “well-behaved” constrained optimization problems, convergence of some
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well-known algorithms can be established under assumptions that are less restrictive
than those usually made in the literature.

The rest of this paper is divided into several sections. In the next section we intro-
duce several asymptotic stationarity concepts and clarify their relationships. Sections
3 and 4 treat the main topic of this paper, namely, the connection between minimizing
and stationary sequences. Section 5 discusses some approximate optimality systems
and how they are related to LP minimizing sequences. Two results that summarize
the various properties studied in the paper will be presented there. Finally, in section
6, we establish the convergence of the (singular) Newton-type methods for solving the
problem (1), using the arguments established in the previous sections.

In addition to the results obtained herein, the accompanying paper [13] studies
minimizing sequences of merit functions for nonlinear complementarity problems and
variational inequalities; a distinguishing feature of these functions is that they are
typically nonconvex but are nonnegative.

2. Stationary sequences. Associated with the constrained optimization prob-
lem (1), we have defined the concept of an LP minimizing sequence. Another central
concept in the asymptotic analysis of this problem is that of a stationary sequence.
For an unconstrained problem which has X = <n and a differentiable objective func-
tion θ, the concept of a stationary sequence can be defined easily. Namely, a sequence
{xk} is stationary if {∇θ(xk)} converges to zero. Nevertheless, for a problem with
constraints which has X being a proper subset of <n, there are several closely related
definitions. In this section, we shall present the various definitions of asymptotic
stationarity and clarify their interrelationships.

2.1. Residual-based asymptotic stationarity. In order to define the concept
of a stationary sequence of (1), we introduce the residual function

RN (x) ≡ x−ΠX(x−∇θ(x)), x ∈ <n,

where ΠX is the Euclidean projector onto the set X. Clearly, when X = <n, RN (x)
reduces to ∇θ(x). Moreover it follows from the well-known variational principle of
nonlinear programming that if x is a local minimum of (1), then RN (x) = 0; con-
versely, if θ is convex, then every zero of RN is a global minimum of (1).

The residual function RN (x) plays an important role in the error bound theory for
variational inequalities and complementarity problems; see [28, 29]. In [27], the term
“natural residual” was coined for this function. Borrowing this terminology (which
explains the subscript N in the function RN ), we say that a sequence {xk} ⊂ <n
is naturally stationary (or in short, N-stationary) for the constrained optimization
problem (1) if limk→∞RN (xk) = 0. This definition does not require the sequence
{xk} to be feasible to (1). Nevertheless it is easy to see that

lim
k→∞

RN (xk) = 0 =⇒ lim
k→∞

dist(xk, X) = 0.

Thus if {xk} is N-stationary, then it must be asymptotically feasible. We note a
fundamental property of the residual vector RN (x). Namely, for all vectors x ∈ <n
and y ∈ X,

(y − x+RN (x))T (∇θ(x)−RN (x)) ≥ 0;(2)

this inequality is a consequence of the variational principle for the Euclidean projector.
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An alternative definition of a stationary sequence is based on the normal map
for the problem (1). Like the function RN , the normal map is also fundamental for
variational inequalities and complementarity problems [32]. Specifically, associated
with the pair (∇θ,X), the normal map RN : <n → <n is defined as

RN (z) ≡ ∇θ ◦ΠX(z) + z −ΠX(z), z ∈ <n.

We say that a sequence {xk} ⊂ <n is normally stationary (or in short, N -stationary)
for the constrained optimization problem (1) if

(i) {xk} is asymptotically feasible, and
(ii) there exists a sequence {zk} ⊂ <n such that limk→∞RN (zk) = 0 and

ΠX(xk) = ΠX(zk) for each k.
Unlike the concept of N-stationarity, in which the asymptotic feasibility of the

sequence {xk} is an easy consequence of the limit condition limk→∞RN (xk) = 0, we
give below an example which shows that it is possible for a sequence {xk} to satisfy
condition (ii) in the definition of N -stationarity and fail condition (i) in the same
definition. Thus for such a sequence {xk}, we cannot expect it to be LP minimiz-
ing because asymptotic feasibility is part of the requirement of the LP minimizing
property.

Example 1. Let θ(x1, x2) ≡ cos2(x1x2) and

X ≡ { (x1, x2) ∈ <2 : (x1, x2) ≤ 0, x1x2 ≥ π/2 }.

We have θinf = 0. Consider the sequence {xk} with xk ≡ (1,−kπ/2) for all k. Clearly,

θ(xk) =

{
0 if k is odd,

1 if k is even,

and dist(xk, X) ≥ 1 for all k. Thus {xk} is neither asymptotically feasible nor asymp-
totically minimizing. Yet the projected vector x̄k = (x̄k1 , x̄

k
2) must satisfy x̄k1 x̄

k
2 = π/2

and ∇θ(x̄k1 , x̄k2) = (0, 0). Thus with zk ≡ x̄k, we have RN (zk) = 0 for all k. Conse-
quently condition (ii) in the definition of N -stationarity holds for the sequence {xk},
but condition (i) fails. Thus for this sequence {xk}, the corresponding projected se-
quence {x̄k} is LP minimizing, N-stationary, and N -stationary; yet the sequence {xk}
itself does not satisfy any of the asymptotic properties defined so far.

The above example illustrates an important feature of the natural residual func-
tion RN (x) which is not shared by the normal residual function RN (z). Namely, the
former residual function itself captures both the asymptotic feasibility and minimiz-
ing property of an infinite sequence, whereas the latter residual function alone is not
sufficient to handle infeasible sequences.

Since residual functions are practical tools employed in termination rules of it-
erative methods, it would be useful for us to say a few words about the potential
utility of the two residual functions RN (x) and RN (z) in this regard. In an iterative
algorithm for solving the constrained optimization problem (1), one generates an infi-
nite sequence of iterates {xk} which is not always feasible to the problem; sometimes
an auxiliary sequence {zk} is also obtained in the computational process. If this is
the situation, then both residual functions RN (xk) and RN (zk) can legitimately be
used in tests for terminating the iterative process (although as we have seen from the
above example, one needs to be somewhat cautious in using RN (zk) as the sole ter-
mination indicator). If no auxiliary sequence {zk} is readily available, then it may be
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computationally difficult to employ the residual function RN to verify the asymptotic
stationarity of {xk}; in this case, RN (xk) is the natural choice.

For later purposes, it is useful to state a relation between the two maps RN (x)
and RN (z) as follows. For x̄ ≡ ΠX(z), we have

RN (x̄) = ΠX(x̄−∇θ(x̄) +RN (z))−ΠX(x̄−∇θ(x̄)),

which implies, by the nonexpansiveness of the projection,

‖RN (x̄) ‖ ≤ ‖RN (z) ‖.
Consequently, for any two sequences {x̄k} and {zk} such that x̄k ≡ ΠX(zk), we have

lim
k→∞

RN (zk) = 0 =⇒ lim
k→∞

RN (x̄k) = 0.(3)

2.2. Subdifferential-based asymptotic stationarity. Since every constrained
optimization problem can be equivalently stated as an unconstrained problem with
the use of the indicator function of the feasible set, one can also define the concept of
asymptotic stationarity using the subdifferential approach of Auslender and Crouzeix
[3] (this concept was not formally defined in the reference). In order to introduce this
definition, we recall such standard notation as ∂φ and dom(∂φ) for the subdifferen-
tial and its domain of an (extended-valued) convex function φ; we also use ∂εφ for
the ε-subdifferential of φ [16]. If φ is the indicator function (denoted IS) of a closed
convex set S ⊆ <n (that is, IS(x) is equal to 0 if x ∈ S and equal to∞ if x 6∈ S), then
∂εφ(x) coincides with the set of ε-normals to the set S at the vector x ∈ S; that is,

∂εIS(x) = { v ∈ <n : vT (y − x) ≤ ε for all y ∈ S}.
Consider the problem (1), where we assume that θ is convex. Let

φ(x) ≡ θ(x) + IX(x) ∀x ∈ <n.(4)

We say that a sequence {xk} ⊂ <n is AC-stationary (AC for Auslender and Crouzeix)
if

(i) {xk} is asymptotically feasible, and
(ii) the projected sequence {x̄k}, where x̄k ≡ ΠX(xk) for all k, has the property

that for each k there exists ak ∈ ∂φ(x̄k) and the sequence of subgradients
{ak} converges to zero.

(Note: Since dom(∂φ) ⊆ X, we need to use the projected sequence in condition (ii)
in order to allow for the possibility that the original sequence {xk} is not feasible.)
We say that the sequence {xk} ⊂ <n is ACε-stationary if

(i) {xk} is asymptotically feasible, and
(ii) the projected sequence {x̄k} has the property that for some sequence of non-

negative scalars {εk} converging to zero, there exists for each k a vector
ak ∈ ∂εkφ(x̄k), and the sequence of ε-subgradients {ak} converges to zero,
where ∂εφ denotes the ε-subdifferential of φ.

2.3. Connections. As mentioned in the Introduction, Auslender, Crouzeix, and
Lemaire used the subdifferential approach to analyze the connection between an
asymptotically stationary sequence and an LP minimizing sequence. Their analy-
sis dealt principally with feasible sequences {x̄k} ⊂ X, satisfying requirement (ii) in
the definition of an AC-stationary sequence; we broaden this treatment by permitting
the sequence {xk} to be infeasible.
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We say that a function F : <n → <m is uniformly continuous near a sequence
{xk} if, for every ε > 0, there exists a δ > 0 such that for all k and y,

‖y − xk‖ ≤ δ ⇒ ‖F (y)− F (xk)‖ ≤ ε.

Uniform continuity is known to have an important role to play in the asymptotic
well-posedness theory of optimization problems; see [8]. There is no exception in our
work.

In what follows, we present a result that clarifies the relationship between the
asymptotic stationarity concepts defined so far. Specifically, this result states that
AC-stationarity is equivalent to N -stationarity, whereas these two concepts are not
necessarily equivalent to N-stationarity without some restrictions.

Proposition 2.1. Let θ : <n → < be a convex, continuously differentiable
function and X a closed convex subset of <n. Let {xk} be an arbitrary sequence of
vectors in <n. The following statements are valid.

(a) The sequence {xk} is AC-stationary if and only if it is N -stationary.
(b) If {xk} is AC-stationary and each xk ∈ X, then {xk} is N-stationary.
(c) If {xk} is AC-stationary and ∇θ is uniformly continuous near {xk}, then
{xk} is N-stationary.

(d) If {xk} is N-stationary, {∇θ(xk)} is bounded, and ∇θ is uniformly continuous
near {xk}, then {xk} is ACε-stationary.

Proof. Write x̄k ≡ ΠX(xk). Let φ be defined by (4). Since θ is differentiable, it
follows that

∂φ(x) = ∇θ(x) + ∂IX(x), for all x ∈ <n.
To prove (a), let {xk} be AC-stationary. Let {ak} be a sequence of vectors converging
to zero such that ak ∈ ∂φ(x̄k) for each k. For each k, let bk ∈ ∂IX(x̄k) be such that
ak = ∇θ(x̄k) + bk. Define zk ≡ x̄k + bk. It is then easy to verify that ΠX(zk) = x̄k

and RN (zk) = ak. This establishes the “only if” statement in (a). The converse can
be proved easily be reversing the argument. The details are omitted. Thus (a) holds.

To prove (b) and (c), let {xk} be AC-stationary. Let {zk} be the auxiliary
sequence as stated in condition (ii) of AC-stationarity. By (3), it follows that
limk→∞RN (x̄k) = 0. If each xk belongs to X, then xk = x̄k and (b) follows readily.
Instead, if ∇θ is uniformly continuous near {xk}, then since limk→∞ ‖xk − x̄k‖ = 0,
it follows that limk→∞RN (xk) = 0 also, establishing (c).

To prove (d), let {xk} be N-stationary. It has been noted this implies {xk} is
asymptotically feasible. Moreover, the uniform continuity of ∇θ near {xk} implies
that limk→∞RN (x̄k) = 0 and {∇θ(x̄k)} is bounded. Hence by letting

εk ≡ |RN (x̄k)T∇θ(x̄k) |,
the sequence {εk} converges to zero. It remains to show that RN (x̄k) ∈ ∂εkφ(x̄k), or
equivalently, for all y ∈ X,

(RN (x̄k)−∇θ(x̄k))T (y − x̄k) ≤ εk.

By (2), we have

(RN (x̄k)−∇θ(x̄k))T (y − x̄k) ≤ RN (x̄k)T (∇θ(x̄k)−RN (x̄k)) ≤ εk,

as desired.



MINIMIZING SEQUENCES OF OPTIMIZATION PROBLEMS 1915

3. Minimizing ⇒ stationary. We are now ready to investigate the detailed
relationships between an LP minimizing sequence and an asymptotically stationary
sequence for the constrained optimization problem (1). Throughout the analysis, we
let {xk} ⊂ <n be an arbitrary sequence satisfying θ(xk) > θinf for all k. We do not
assume that {xk} is bounded.

This section deals with the issue stated in its heading. Specifically, we wish to
answer the question, If {xk} is an LP minimizing sequence, is it necessarily an N-
stationary sequence? For this part of the analysis, we need θinf to be finite but do not
need the convexity of θ. Thus the assumption that θinf > −∞ is made throughout
this section. A remark about the assumption is made at the closing of the section.

We begin by giving an example to show that a minimizing sequence is not nec-
essarily stationary. This example illustrates the difference between an unbounded
minimizing sequence and a bounded minimizing sequence and provides the motiva-
tion for the remaining study. Since this example deals with an unconstrained opti-
mization problem (with X = <2), there is no distinction between N -stationarity and
N-stationarity; in this case, a sequence {xk} is stationary if limk→∞∇θ(xk) = 0.

Example 2. Consider an unconstrained optimization problem with the objective
function given by

θ(x1, x2) ≡ ex
2
1−x2 , (x1, x2) ∈ <2.

The function θ is convex and differentiable with an infimum value of zero that is not
attained. Consider the sequence {xk} defined by

xk = (xk1 , x
k
2) ≡ (k, k2 + 1

2 log k).

It is trivial to check that

θ(xk) = 1/
√
k and ∇θ(xk) =

(
2
√
k

−1/
√
k

)
.

Thus {xk} is minimizing but not stationary. Alternatively, consider the perturbed
sequence {yk} defined by

yk = (yk1 , y
k
2 ) ≡ (k − 1/

√
k, k2 + 1

2 log k).

It is easy to verify that {yk} is both minimizing and stationary; moreover, {xk−yk} →
0.

The above example illustrates an interesting phenomenon; namely, although the
sequence {xk} is not stationary, we have identified a nearby sequence {yk} that is
both minimizing and stationary. This phenomenon is not incidental, it is actually a
fact as stated in the proposition below. The proof of this proposition uses the well-
known ε-variational principle due to Ekeland [9]. Our original proof of the result used
a smooth variant of this principle obtained recently by Deville, Godefroy, and Zizler
[7]. The present proof is inspired by a referee’s comment.

Proposition 3.1. Let X be a nonempty closed convex subset of <n, and let
θ : <n → < be a continuously differentiable function with θinf finite. Let {xk} ⊂ <n
be an LP minimizing sequence of θ on X. If θ is uniformly continuous near {xk},
then there exists a nearby feasible sequence {yk} ⊂ X satisfying

(i) lim
k→∞

(xk − yk) = 0, (ii) lim
k→∞

θ(yk) = θinf , and (iii) lim
k→∞

RN (yk) = 0.
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Proof. For each k, let x̄k ≡ ΠX(xk); then limk→∞ ‖xk − x̄k‖ = 0 because {xk}
is asymptotically feasible. Since θ is uniformly continuous near {xk}, it follows that
{x̄k} is a feasible LP minimizing sequence. Take an arbitrary sequence of positive
scalars {εk} such that

lim
k→∞

εk = 0 and θ(x̄k) < θinf + εk ∀ k.

Let φ(x) be defined by (4). We clearly have

φinf ≡ inf
x∈<n

φ(x) = θinf,

and for each k, φ(x̄k) < φinf + εk. By Ekeland’s variational principle, there exists a
vector yk such that with

gk(y) ≡ √εk ‖ y − yk ‖, y ∈ <n,
(a) φ+gk attains its global minimum at yk, (b) φ(yk) ≤ φ(x̄k), and (c) ‖x̄k − yk‖ ≤ √εk.
Clearly, limk→∞(xk−yk) = 0. Moreover, yk ∈ X because φ takes the value∞ outside
X. Indeed yk is a global minimizer of the problem

minimize θ(x) + gk(x)

subject to x ∈ X.

Thus limk→∞ θ(yk) = θinf. For any y ∈ X, the directional derivative of θ + gk
at yk along y − yk must be nonnegative. So there exists wk ∈ ∂(θ + gk)(yk) such
that (wk)T (y − yk) ≥ 0. By [6, Propositions 2.3.3 and 2.1.1], wk can be written as
∇θ(yk)+zk with ‖zk‖ ≤ √εk. Since yk = ΠX(yk−wk), the global nonexpansiveness
of the Euclidean projector and the fact that wk −∇θ(yk) = zk → 0 imply

lim
k→∞

[
yk −ΠX(yk −∇θ(yk))

]
= 0;

that is,

lim
k→∞

RN (yk) = 0

as desired.
We remark that the only place in the above proof where the uniform continuity

of θ is used is to establish that the projected sequence {x̄k} is also LP minimizing.
In particular, this assumption can be dropped if the given sequence {xk} is already
feasible to (1). As the following example shows, in general, if {xk} is LP minimizing,
the projected sequence {x̄k} is not necessarily LP minimizing if θ is not uniformly
continuous near {xk}. (See also Example 1, which gives a sequence {xk} for which
the projected sequence {x̄k} is LP minimizing but {xk} itself is not.)

Example 3. Let θ(x1, x2) ≡ sin(x1x2) and

X ≡ {(x1, x2) ∈ <2 : (x1, x2) ≤ 0, x1x2 ≥ π/2}.
We have θinf = −1. Consider the sequence {xk} with xk ≡ (1/k,−kπ/2) for all k.
Since the distance between xk and the vector yk ≡ (−1/k,−kπ/2) ∈ X approaches
zero as k → ∞, it follows that {xk} is asymptotically feasible; thus {xk} is an LP
minimizing sequence for the constrained program (1). Since each projected vector
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x̄k = (x̄k1 , x̄
k
2) must satisfy x̄k1 x̄

k
2 = π/2, it follows that the sequence {x̄k} is not LP

minimizing.
An immediate consequence of Proposition 3.1 is the following result, which does

not require a proof.
Theorem 3.2. Let X be a nonempty closed convex subset of <n, and let θ :

<n → < be a continuously differentiable function with θinf finite. Let {xk} ⊂ <n be
an LP minimizing sequence of θ on X. If θ and ∇θ are uniformly continuous near
{xk}, then {xk} is an N-stationary sequence.

The finiteness assumption of θinf is essential for Ekeland’s variational principle to
be applicable in the proof of Proposition 3.1. Indeed Theorem 3.2 fails to hold with-
out this assumption. A trivial counterexample is the one-dimensional unconstrained
problem with θ(x) ≡ x, x ∈ X ≡ <. Clearly, θinf = −∞. Since the derivative is equal
to the constant 1, there is no stationary sequence; yet any sequence that tends to −∞
is minimizing.

4. Stationary ⇒ minimizing. We next turn to the converse of Theorem 3.2.
Although this issue has been treated to a reasonable extent in the papers [3, 2, 1], our
treatment offers a fresh perspective and additional insights for the results. Consistent
with the residual approach, we stress the importance of error bounds for the level sets
of (1) in our treatment. For this part of the analysis, we need the convexity of θ but
do not need the finiteness of θinf.

4.1. The role of error bounds. As evidenced in the work of Auslender and
Crouzeix, a key element in the treatment of the issue stated in this section’s heading
is the theory of error bounds for the level sets of the problem (1). In light of the
recent advances in this theory as described in the survey [29], we find it useful to give
a summary of the relevant error bound results that are useful for our purpose here.

First, we introduce a concept for the problem (1). Specifically, we say that this
problem has H-metrically regular level sets, or in short, (1) is H-metrically regular (H
for Hölderian) if for every scalar λ > θinf, there exist positive scalars c and γ (possibly
depending on λ) with γ < 1 such that

dist(x, L(λ)) ≤ c rγ(x) ∀x ∈ X,(5)

where L(λ) is the λ-level set of (1); that is,

L(λ) ≡ {x ∈ X : θ(x) ≤ λ },
and rγ(x) is the following residual for L(λ):

rγ(x) ≡ max ( [ ( θ(x)− λ )+ ]γ , ( θ(x)− λ )+ ) .

The function rγ(x) is a computable measure of the violation of the constraints by
vectors x ∈ X that fail to be in the λ-level set. (A remark: L(λ) is nonempty for all
λ > θinf.) In a nutshell, the H-metric regularity of (1) stipulates that error bounds of
a Hölderian type [29] hold for the λ-level sets of this problem for all λ > θinf. Note
that we do not require the exponent γ to be the same for all λ. If error bounds of
a Lipschitzian type hold for all of these level sets (i.e., (5) holds with γ = 1 for all
λ > θinf), then we say that (1) is L(ipschitzian)-metrically regular.

The H- or L-metric regularity of (1) does not require this problem to attain a
finite optimum objective value. If the set of optimal solutions

Xopt ≡ {x ∈ X : θ(x) ≤ θinf }
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is nonempty, several additional concepts can be defined. Specifically, (1) is said to
have weak sharp minima if Xopt is nonempty and a Lipschitzian error bound holds
for Xopt, i.e., there exists a constant c > 0 such that

dist(x,Xopt) ≤ c ( θ(x)− θinf ) ∀x ∈ X.

This concept was introduced in Michael Ferris’s Ph.D. dissertation [10], and its roles
are investigated extensively in [5, 11]. An obvious generalization of this definition is
the following. We say that (1) has Hölderian minima if Xopt is nonempty and an
Hölderian error bound holds for Xopt; that is, there exist positive constants c and γ
such that (5) holds for λ = θopt.

The concept of ψ-sharp minima has played an important role in the Tykhonov–
Levitin–Polyak well-posedness theory of optimization problems. A continuous func-
tion ψ : [0,∞) → [0,∞) is said to be a forcing function if for every sequence
{tk} ⊂ [0,∞),

lim
k→∞

ψ(tk) = 0 =⇒ lim
k→∞

tk = 0.

We say that the problem (1) has ψ-sharp minima if Xopt is nonempty and

θ(x) ≥ θinf + ψ(dist(x,Xopt)) ∀x ∈ X,

where ψ is a given forcing function. Adopting Lemaire’s terminology [15] to our
setting, we say that (1) has well-conditioned minima if Xopt is nonempty and there
exists a forcing function ψ such that (1) has ψ-sharp minima. If the forcing function
satisfies the stronger property that for every sequence {tk} ⊂ (0,∞),

lim
k→∞

ψ(tk)

tk
= 0 =⇒ lim

k→∞
tk = 0,

we use the terminology “ψ-very-sharp minima” and “very-well-conditioned minima,”
respectively.

Clearly, weak sharp minima is a special case of well-conditioned minima with the
forcing function being a positive multiple of the identity function; more generally,
Hölderian minima can also be shown to imply well-conditioned minima with a forcing
function ψ being the inverse of the strictly increasing function s ∈ [0,∞) 7→ c (s+sγ) ∈
[0,∞), where c and γ are the constants in the Hölderian error bound for Xopt.

Admittedly, the concept of ψ-sharp minima is significantly broader than that
of Hölderian minima. Nevertheless, it is generally not easy to identify the forcing
function ψ (thus to verify that (1) has well-conditioned sharp minima). The theory
of error bounds as summarized in [29], with the postulate of a specific family of ψ
functions as given above, offers a practical way of verifying this sharp property of
Xopt.

In what follows, we return to L- and H-metric regularity of the problem (1). In
the remainder of this section, we do not assume the nonemptiness of Xopt unless
otherwise stated.

Inspired by a “strong Slater” condition proposed recently by Mangasarian [26],
we present a necessary and sufficient condition for the problem (1) to be L-metrically
regular. In addition to [29], we refer the reader to [18] for a systematic treatment of
error bounds for convex inequality systems.

Lemma 4.1. Let θ : <n → < be a convex function and X be a closed convex
subset of <n. For a scalar c > 0, the following two conditions are equivalent.



MINIMIZING SEQUENCES OF OPTIMIZATION PROBLEMS 1919

(a) For all x ∈ X with θ(x) > θinf, there exists x̂ ∈ X satisfying θ(x̂) < θ(x) and

‖ x̂− x ‖ ≤ c (θ(x)− θ(x̂)).

(b) For all λ > θinf,

dist(x, L(λ)) ≤ c (θ(x)− λ)+ ∀ x ∈ X.
In particular, if (1) has weak sharp minima, then (1) is L-metrically regular.

Proof. (a) ⇒ (b). Let λ > θinf and x ∈ X be given. Without loss of generality,
we may assume that θ(x) > λ. Consider the problem of projecting x onto L(λ):

minimize 1
2 (z − x)T (z − x)

subject to z ∈ L(λ).

Let x̄ ≡ ΠL(λ)(x). We must have θ(x̄) = λ. Let x̂ ∈ X be the vector such that
θ(x̂) < θ(x̄) and

‖ x̂− x̄ ‖ ≤ c (θ(x̄)− θ(x̂)).

By results from convex analysis [33], there exist a nonnegative scalar η and a vector
a ∈ ∂θ(x̄) such that for all z ∈ X,

(z − x̄)T (x̄− x+ η a) ≥ 0.(6)

Letting z = x̂, we deduce

η aT (x̂− x̄) ≥ −(x̂− x̄)T (x̄− x).

By the definition of a, we have

θ(x̂)− θ(x̄) ≥ aT (x̂− x̄),

which implies

η (θ(x̂)− θ(x̄)) ≥ −(x̂− x̄)T (x̄− x).

Consequently, it follows that

η ≤ c ‖ x̄− x ‖.
Letting z = x in (6), we deduce

‖ x̄− x ‖2 ≤ η aT (x− x̄) ≤ η (θ(x)− θ(x̄)).

Since x 6= x̄ and θ(x̄) = λ < θ(x), we obtain

‖ x̄− x ‖ ≤ c (θ(x)− λ)+.

Thus (b) holds.
(b) ⇒ (a). Let x ∈ X with θ(x) > θinf be given. Choose λ such that θ(x) > λ >

θinf. Let x̂ be the Euclidean projection of x onto the level set L(λ). Then x̂ ∈ X and
θ(x̂) = λ < θ(x). By (b), we have

‖ x̂− x ‖ = dist(x, L(λ)) ≤ c (θ(x)− λ)+ = c (θ(x)− θ(x̂)).
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Thus (a) holds.
If (1) has weak sharp minima, then clearly (a) holds with x̂ ∈ Xopt satisfying

‖x− x̂ ‖ = dist(x,Xopt). Thus (b) follows.
We review some terminology of piecewise smooth functions; see Li [19]. We

say that a function θ : <n → < is piecewise quadratic if θ is continuous and there
exist finitely many convex polyhedra Pi, i = 1, . . . , p for some positive integer p,
whose union is <n such that θ is a quadratic function on each Pi; the latter quadratic
functions are called the pieces of θ. A vector function F : <n → <m is piecewise linear
if F is continuous and there exist finitely many convex polyhedra Si, i = 1, . . . , q, for
some positive integer q, whose union is <n such that F is an affine function on each Si;
these affine functions are called the pieces of F . It is well known [12] that a piecewise
linear function on <n is globally Lipschitz continuous. Clearly, if θ is a differentiable
piecewise quadratic real-valued function, then the gradient map ∇θ is a piecewise
linear vector-valued function. We say that a real-valued function θ defined on <n is
convex piecewise quadratic, or CPQ in short, if θ is convex and piecewise quadratic
(thus the pieces of θ must be convex quadratic functions). A convex quadratic spline
is a differentiable CPQ function. A simple one-dimensional convex quadratic spline
is the function t ∈ < 7→ (max(0, t))2 ∈ <+.

Lemma 4.2 below identifies two sufficient conditions for the problem (1) to be
H-metrically regular. The first condition assumes that this problem has an analytic
objective function and its feasible set is compact and defined by finitely many ana-
lytic inequalities; the conclusion follows easily from the error bound theory of analytic
inequality systems [23]. This part of the result illustrates the fact that H-metric regu-
larity holds trivially for the broad class of “analytic programs” with compact feasible
regions; this conclusion will not be used later. In contrast, the second condition
of Lemma 4.2 will serve two important objectives. One, it further illustrates that
H-metric regularity is a condition that will be easily satisfied by another class of con-
strained optimization problems. As a result, we can readily establish that this class of
problems is well behaved. Second, the proof of Lemma 4.2 under the second condition
is based on an Hölderian error bound for a general convex quadratic inequality system
established in [37]; it is a significant extension of the result of Luo and Luo [22] for a
convex quadratic inequality system which requires a Slater condition.

Lemma 4.2. Suppose that the pair (θ,X) satisfies either one of the two conditions
below:

(a) θ is an analytic function and X is a compact set defined by finitely many
analytic inequalities;

(b) θ(x) is a CPQ function and

X ≡ {x ∈ <n : gi(x) ≤ 0, i = 1, . . . ,m },

where each gi is a convex quadratic function and m is a given positive integer. Then
the problem (1) has H-metrically regular level sets. Furthermore if Xopt is nonempty,
then an Hölderian error bound holds for Xopt.

Proof. We prove the lemma under condition (b); the same proof given below can
be applied when (a) holds by using the error bound results in [23]. Let {Pi : i =
1 . . . , p} be the family of convex polyhedra whose union is <n such that θ is equal to
a quadratic function, which we denote qi, on each Pi. Let λ > θinf be given. Clearly,

L(λ) =

p⋃
i=1

Li(λ),
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where each

Li(λ) ≡ {x ∈ X ∩ Pi : qi(x) ≤ λ }
is the solution set of a system of finitely many convex quadratic inequalities (Li(λ), if
nonempty, need not have a nonempty interior). By the error bound in [37], for each i
for which Li(λ) is nonempty, there exists positive constant ci and γi with γi < 1 such
that

dist(x, Li(λ)) ≤ ci max ( [ ( qi(x)− λ )+ ]γi , ( qi(x)− λ )+ ) ∀x ∈ X ∩ Pi.
Since

dist(x, Li(λ)) ≥ dist(x, L(λ))

and qi coincides with θ on Pi, it follows that

dist(x, L(λ)) ≤ ci max ( [ ( θ(x)− λ )+ ]γi , ( θ(x)− λ )+ ) ∀x ∈ X ∩ Pi.
Since the union of the Pi is <n, it follows that by letting

c ≡ max ( ci : i = 1, . . . , p ) and γ ≡ min ( γi : i = 1, . . . , p ),

we obtain

dist(x, L(λ)) ≤ c max ( [ ( θ(x)− λ )+ ]γ , ( θ(x)− λ )+ ) ∀x ∈ X,
as desired. The above proof is clearly applicable to Xopt if this set is nonempty.

By the main result, Theorem 3.1 in [37], one can show that if X is a convex
polyhedron, the exponent γ in the error bounds for the level sets L(λ) can be chosen
to be equal to 1/2 for all λ ≥ θinf. This conclusion extends a result of Li [19, Corollary
2.8] which pertains to λ = θinf. An extension of this conclusion is presented in
Proposition 4.10 in section 4.3, which was proved by Li recently [20].

4.2. The implication and special cases. We are now ready to state the prin-
cipal result regarding the topic of this section. Although the main idea of proof is
borrowed from [3], the result itself is a useful refinement of this work in several re-
spects. First, our result gives a full treatment of infeasible sequences; second, it is
based on residual functions which are closely tied to the practical implementation
of iterative methods; third, the assumption of H-metric regularity offers an effortless
demonstration that an important class of constrained optimization problems is well
behaved; see Corollary 4.5 and Theorem 5.3.

Theorem 4.3. Let X be a nonempty closed convex subset of <n, and let θ :
<n → < be a continuously differentiable convex function. Let {xk} ⊂ <n be an
arbitrary sequence of vectors satisfying any one of the following three conditions:

(i) {∇θ(xk)} is bounded, ∇θ is uniformly continuous near {xk}, and {xk} is
N-stationary;

(ii) θ is uniformly continuous near {xk} and {xk} is N -stationary;
(iii) each xk is feasible to (1) and {xk} is N -stationary.

If (1) is H-metrically regular, then {xk} is an LP minimizing sequence of θ on X.
Proof. We first establish that the conclusion holds under (iii). In essence, if

(1) is L-metrically regular, then the conclusion follows immediately from the work of
Auslender and Crouzeix [3]. Our proof below is a slight extension of their argument
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in the case where the level sets have Hölderian (instead of Lipschitzian) error bounds.
For completeness, we give the detailed proof.

So we assume that each xk is feasible to (1) and the sequence {xk} isN -stationary.
It suffices to show limk→∞ θ(xk) = θinf. Assume for the sake of contradiction that
this is not true. Let the scalar λ be such that lim infk→∞ θ(xk) > λ > θinf. Let c
and γ be such that (5) holds. Since L(λ) is a nonempty closed convex set, it follows
that for each k, there exists yk ∈ L(λ) such that dist(xk, L(λ)) = ‖xk−yk‖; moreover
since the line segment joining xk and yk lies in X, we must have θ(yk) = λ. Since θ
is convex, by the gradient inequality,

λ = θ(yk) ≥ θ(xk) +∇θ(xk)T (yk − xk).

Since {xk} is N -stationary, there exists a sequence {zk} such that xk = ΠX(zk) for
all k and

lim
k→∞

RN (zk) = 0.

By the definition of RN (zk), it follows that

(yk − xk)T (∇θ(xk)−RN (zk)) ≥ 0,(7)

which implies

∇θ(xk)T (yk − xk) ≥ RN (zk)T (yk − xk).

Thus

θ(xk)− λ ≤ −RN (zk)T (yk − xk).

since θ(xk) > λ, by the Cauchy–Schwarz inequality and (5), we deduce

θ(xk)− λ ≤ c ‖RN (zk) ‖ max
(
θ(xk)− λ, (θ(xk)− λ)γ

)
.

Dividing by θ(xk)− λ, we obtain

1 ≤ c ‖RN (zk)‖ max
(
1, (θ(xk)− λ)γ−1

)
.

Since {RN (zk)} converges to zero and lim infk→∞ θ(xk) > λ, we obtain a contradiction
from the above expression by passing to the limit k →∞.

To prove (ii), let x̄k ≡ ΠX(xk). Then {x̄k} satisfies the conditions in (iii). By the
above proof, we deduce

lim
k→∞

θ(x̄k) = θinf.(8)

Since θ is uniformly continuous near {xk}, the same limit holds for the sequence {xk}.
Finally, assume the conditions in (i). We have noted that {xk} must be asymp-

totically feasible to (1); let x̄k ≡ ΠX(xk). The sequence {x̄k} is also N-stationary
because ∇θ is uniformly continuous near {xk}.

At this point, there are two ways to finish the proof. Both require us to show
that θ is uniformly continuous near {xk}. So we show this first. By the mean-value
theorem, for any vector y ∈ <n, there exists a scalar τk ∈ [0, 1] such that

θ(y)− θ(xk)= ∇θ(xk + τk(y − xk))T (y − xk)

= [∇θ(xk + τk(y − xk))−∇θ(xk)]T (y − xk) +∇θ(xk)T (y − xk),
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which easily establishes the uniform continuity of θ near {xk} under the assumptions
in (i).

To complete the proof, one way is to apply Proposition 2.1(c) to conclude that
{xk} is ACε-stationary; hence so is {x̄k}. By following the argument in Proposition 2.1
in [3] (which uses the theorem of Bronstedt and Rockafellar [4] about ε-subgradients),
we can deduce that (8) holds. Thus the uniform continuity of θ near {xk} completes
the proof.

Alternatively, we can follow our proof above and use instead of (7) the inequality

(yk − x̄k +RN (x̄k))T (∇θ(x̄k)−RN (x̄k)) ≥ 0,

which follows from (2). Either way, the desired conclusion of the theorem holds under
(i).

The above proof reveals a general fact that is worth further discussion; namely,
if θ is a continuously differentiable function with {∇θ(xk)} being bounded and ∇θ
uniformly continuous near {xk}, then θ is uniformly continuous near {xk}. When θ
is a quadratic function (not necessarily convex), then ∇θ(x) is an affine function in
x; thus ∇θ is uniformly continuous near any sequence. In this case, θ is uniformly
continuous near a sequence {xk} if and only if {∇θ(xk)} is bounded. Indeed it suffices
to prove the “only if” part. In turn, this proof is rather easy because, by means of
an orthogonal transformation of variables, we may assume without loss of generality
that θ is a separable quadratic function; under this assumption, the desired assertion
is easily seen to be valid.

Combining the above discussion with the globally Lipschitz continuous property
of a piecewise linear function, we state a useful property of a differentiable piecewise
quadratic function. The following lemma requires no proof.

Lemma 4.4. Let θ : <n → < be a differentiable piecewise quadratic function. The
following two statements hold:

(a) ∇θ is globally Lipschitz continuous;
(b) if {∇θ(xk)} is bounded, then θ is uniformly continuous near {xk}.
Based on Lemmas 4.4 and 4.2(b), we establish a corollary of Theorem 4.3 that

pertains to the following convex quadratically constrained quadratic spline program
(CQQSP):

minimize θ(x)

subject to Gi(x) ≡ 1
2x

TCix+ aTi x+ bi ≤ 0, i = 1, . . . ,m,
(9)

where θ is a convex quadratic spline, each Ci is an n×n symmetric positive semidefinite
matrix, each ai is an n-vector, and each bi is a scalar. A special case of the CQQSP
is the convex quadratically constrained quadratic program (CQQP) in which the
objective function θ is a convex quadratic function. The corollary below illustrates
an important benefit of weakening the Auslender–Crouzeix assumption of L-metric
regularity to H-metric regularity.

Corollary 4.5. Assume that the above CQQSP is feasible and that θinf is finite.
Let {xk} be an arbitrary sequence of vectors such that {∇θ(xk)} is bounded. Then
{xk} is N-stationary for (9) if and only if it is LP minimizing.

Proof. By the boundedness of {∇θ(xk)}, Lemma 4.4 implies that both θ and ∇θ
are uniformly continuous near {xk}. Consequently, if {xk} is LP minimizing for (9),
then Theorem 3.2 implies that {xk} is N-stationary.

Conversely assume that {xk} is N-stationary for the CQQSP. Condition (i) in
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Theorem 4.3 is thus satisfied. Moreover by Lemma 4.2, the CQQSP is H-metrically
regular. Theorem 4.3 completes the proof.

Using Lemma 4.1, we can easily establish the following result which identifies
another sufficient condition under which LP minimizing sequences and N-stationary
sequences are equivalent. As with the other results in this subsection, the result below
does not require Xopt to be nonempty.

Proposition 4.6. Let θ : <n → < be a convex, continuously differentiable
function, and let X be a closed convex subset of <n. Suppose θinf > −∞ and there
exists a constant c > 0 such that for all x ∈ X with θ(x) > θinf, there exists x̂ ∈ X
satisfying θ(x̂) < θ(x) and

‖ x̂− x ‖ ≤ c (θ(x)− θ(x̂)).

Let {xk} be an arbitrary sequence such that {∇θ(xk)} is bounded and ∇θ is uniformly
continuous near {xk}. Then {xk} is LP minimizing for (1) if and only if it is N-
stationary.

Proof. This follows easily from Theorems 3.2 and 4.3 and Lemma 4.1.
An immediate consequence of the above theorem is that if the program (1) has

weak sharp minima, then for any sequence {xk} such that {∇θ(xk)} is bounded and
∇θ is uniformly continuous near {xk}, the sequence {xk} is LP minimizing for (1) if
and only if it is N-stationary. This conclusion will be generalized in the next subsection
in which an expanded study is presented for the program (1) under the assumption
that Xopt is nonempty.

4.3. When optimal solutions exist. The boundedness of the sequence of gra-
dients {∇θ(xk)} has played an important role in several results in the last subsection.
In what follows, we derive some results that pertain to this boundedness issue. In
particular, these results lend support to the presumption that this boundedness as-
sumption is not too restrictive in order for the results in the last subsection to hold.

Consider the case where the problem (1) attains its global minimum; i.e., assume
Xopt 6= ∅. In this case, we say that a sequence {xk} ⊂ <n is near the optimal
set if limk→∞ dist(xk, Xopt) = 0. This notion requires Xopt to be nonempty. The
next result shows that if θ is uniformly continuous, then the property of “near the
optimal set” implies that of LP minimizing. This implication does not require θ to
be differentiable.

Proposition 4.7. Assume Xopt 6= ∅. If {xk} ⊂ <n is a sequence near the opti-
mal set of (1) and θ is uniformly continuous near {xk}, then {xk} is LP minimizing
for (1).

Proof. Since Xopt ⊆ X, it follows that

dist(xk, X) ≤ dist(xk, Xopt) ∀k.

Thus the sequence {xk} is asymptotically feasible. Moreover if yk ≡ ΠXopt(xk), then

lim
k→∞

θ(yk) = lim
k→∞

θ(xk),

by the uniform continuity of θ near {xk}. Hence {xk} is LP minimizing for (1), as
desired.

The following example shows that the uniform continuity assumption in the above
proposition is essential for the result to hold.
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Example 4. Let θ and X be as given in Example 3. Let

xk ≡ −
(

1/k

kπ/2

)
, yk ≡ −

(
3/k

kπ/2

)
for k = 0, 1, 2, . . . .

Each yk ∈ Xopt and lim
k→∞

‖xk − yk‖ = 0. Thus the sequence {xk} is near the optimal

set. Yet it is clear that {xk} is not LP minimizing because θ(xk) = 1 for all k.
Next we show that under the condition of Hölderian minima, the converse of the

above proposition holds.
Proposition 4.8. Assume that (1) has Hölderian minima. If {xk} ⊂ <n is an

LP minimizing sequence of (1), and if θ is uniformly continuous near {xk}, then {xk}
is near the optimal set.

Proof. Let x̄k ≡ ΠX(xk) for each k. Since θ is uniformly continuous near {xk},
the projected sequence {x̄k} is also LP minimizing. We have

dist(xk, Xopt) ≤ ‖xk − x̄k‖+ dist(x̄k, Xopt) ;

the right-hand sum clearly approaches zero as k →∞ because {xk} is asymptotically
feasible and the Hölderian error bound for Xopt implies that dist(x̄k, Xopt)→ 0 as k
tends to ∞. Thus {xk} is near the optimal set.

An immediate consequence of the above proposition is that if θ is uniformly
continuous on <n and (1) has weak sharp minima, then an arbitrary sequence {xk} ⊂
<n is LP minimizing if and only if it is near the optimal set. The CQQSP is another
instance where these two sequential properties are equivalent; see Theorem 5.3.

It has been shown by Mangasarian [24] that for a differentiable convex program,
i.e., for (1) where θ is a continuously differentiable convex function and X is a convex
set, the gradient of θ is equal to a constant on Xopt. (Actually, this result was
extended to a nondifferentiable function in the reference; nevertheless, consistent with
the treatment of this paper, we restrict the discussion to differentiable functions.)
Based on this fact, we establish a related property of a sequence near the optimal set;
this property can be used to partially atone for the boundedness assumption of the
gradient sequence {∇θ(xk)} in Theorem 4.3. In particular, under the assumptions of
Propositions 4.8 and 4.9, if these gradients are unbounded, then {xk} cannot be an
LP minimizing sequence for (1).

Proposition 4.9. Let X be a nonempty closed convex subset of <n, and let
θ : <n → < be a continuously differentiable convex function such that Xopt 6= ∅. Let
g ≡ ∇θ(x̄) for any x̄ ∈ Xopt. If {xk} is a sequence near the optimal set of (1) and
∇θ is uniformly continuous near {xk}, then limk→∞∇θ(xk) exists and equals g.

Proof. Let yk ≡ ΠXopt(xk). Since ∇θ(yk) = g ∀k, the desired conclusion follows
easily.

Under the assumption Xopt 6= ∅, several of our results are closely related to the
work of Lemaire [15], which is cast in the framework of an extended-valued convex
function (such as the function φ in (4)) in a Banach space. Phrased in our terminology,
Theorem 3.1 in this reference says that the following statements are equivalent.

(i) Every feasible, LP-minimizing sequence is near the optimal set.
(ii) The function φ defined in (4) has well-conditioned minima in the sense of

Lemaire’s Definition 2.1.
(iii) The function φ has very well-conditioned minima in the sense of Lemaire’s

Definition 2.2.
(iv) Every feasible AC-stationary sequence is near the optimal set.
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There are two obvious differences between Lemaire’s work and ours. The first dif-
ference lies in the treatment of infeasible sequences. In our case, the given sequence
{xk} is not necessarily feasible; this is a broadening of Lemaire’s treatment. The
other difference is that Lemaire did not consider the question of whether a sequence
that is near the optimal set is necessarily LP minimizing. As we see from Example 4
above, the answer to this question in general is in the negative. Although easy, the
issue considered in Proposition 4.9 has not been dealt with before.

To end this section, we give a result for the program (1) under a convexity as-
sumption and the existence of Hölderian minima for this convex program. This result,
which is obtained by Li [20], is related in spirit to some results in [3], like Proposition
2.8 therein; cf. also Lemma 4.1 in section 4.1.

Proposition 4.10. Let θ : <n → < be a convex function, and let X be a closed
convex subset of <n. Suppose that, for some scalar λ0 ≥ θinf, L(λ0) is nonempty and
there exist constants c > 0 and γ ∈ (0, 1) such that

dist(x, L(λ0)) ≤ c max ( [ ( θ(x)− λ0 )+ ]γ , ( θ(x)− λ0 )+ ) ∀x ∈ X.

Then for all λ > λ0,

dist(x, L(λ)) ≤ c max ( [ ( θ(x)− λ )+ ]γ , ( θ(x)− λ )+ ) ∀x ∈ X.

In particular, if (1) has Hölderian minima, then (1) has H-metrically regular level
sets.

Proof. Let x ∈ X and λ > λ0 be given. Without loss of generality, we may assume
that θ(x) > λ. Let x̄ ∈ λ0 be such that

dist(x, L(λ0)) = ‖x− x̄ ‖.
We must have θ(x̄) = λ0. Let τ ∈ (0, 1) be such that

θ(xτ ) = λ, where xτ ≡ τ x+ ( 1− τ ) x̄.

By the convexity of θ, it follows easily that

λ = θ(xτ ) ≤ τ θ(x) + ( 1− τ ) θ(x̄),

which yields

( 1−τ ) ( θ(x)−λ0 )+ ≤ ( θ(x)−λ )+ and [ ( 1−τ ) ( θ(x)−λ0 )+ ]γ ≤ [ ( θ(x)−λ )+ ]γ .

Consequently, since xτ ∈ L(λ), we have

dist(x, L(λ)) ≤ ‖x− xτ ‖

= ( 1− τ ) ‖x− x̄ ‖ = ( 1− τ ) dist(x, L(λ0))

≤ ( 1− τ ) c max ( [ ( θ(x)− λ0 )+ ]γ , ( θ(x)− λ0 )+ )

≤ c max ( [ ( 1− τ ) ( θ(x)− λ0 )+ ]γ , ( θ(x)− λ )+ )

≤ c max ( [ ( θ(x)− λ )+ ]γ , ( θ(x)− λ )+ ) ,

where the next-to-last inequality holds because τ ∈ (0, 1) and γ ∈ (0, 1). Finally, with
λ0 ≡ θinf, the last assertion of the proposition is obvious.
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5. Asymptotic optimality systems. We return to the general situation where
we do not assume the nonemptiness of Xopt.

When the set X possesses additional structure, we can use some asymptotic
optimality systems to characterize the LP minimizing property of a sequence. This
section is divided into two subsections. In the first one we consider the case where
X is a closed convex cone; in the second one we assume that X is defined by a finite
differentiable inequality system. In both subsections we will focus only on feasible
sequences. From Theorems 3.2 and 4.3 we see that by postulating some uniform
continuity assumptions on θ or ∇θ near a given (infeasible) sequence, results that are
derived for the projected (feasible) sequence will easily yield corresponding results for
the given (infeasible) sequence.

5.1. Approximate complementarity conditions. Consider the problem (1)
where X is a closed convex cone. In this case it follows that if x is a local minimum
of (1), then the following complementarity system holds:

X 3 x ⊥ ∇θ(x) ∈ X∗,(10)

where u ⊥ v means uT v = 0 and

X∗ ≡ {y ∈ <n : yT v ≥ 0 for all v ∈ X}
is the dual cone of X. Conversely, if θ is convex, then every vector x satisfying (10)
is a global minimum of (1). The goal in this subsection is to study the case where
instead of a single vector x, we are given a sequence {xk} ⊂ X (possibly unbounded),
and we want to characterize the LP minimizing property of this sequence in terms
of some approximate complementarity conditions. The following theorem is the main
result in this regard.

Theorem 5.1. Let X be a nonempty closed convex cone in <n, and let θ : <n →
< be a continuously differentiable function. Let {xk} ⊂ X be an arbitrary feasible
sequence.

(a) Assume θinf > −∞. If {xk} is LP minimizing for (1) and ∇θ is uniformly
continuous near this sequence, then there exists a sequence {wk} ⊂ X∗ such
that

lim
k→∞

(∇θ(xk)− wk) = 0 and lim
k→∞

(xk)Twk = 0.(11)

(b) Conversely, if θ is convex, (1) is H-metrically regular, and there exists a
sequence {wk} ⊂ X∗ satisfying (11) , then {xk} is LP minimizing for (1).

Proof. We first prove (a). By the proof of Proposition 3.1, we deduce the existence
of two sequences of vectors {yk} ⊂ X and {wk} ⊂ <n such that for each k, yk =
ΠX(yk − wk), and

lim
k→∞

(wk −∇θ(yk)) = 0, lim
k→∞

(yk − xk) = 0, and lim
k→∞

θ(yk) = θinf.(12)

Since X is a convex cone, we have

X 3 yk ⊥ wk ∈ X∗.

We have

∇θ(xk)− wk = (∇θ(xk)−∇θ(yk) ) + (∇θ(yk)− wk ),
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which clearly approaches zero as k →∞, by the uniform continuity of ∇θ near {xk}.
It remains to show limk→∞(xk)Twk = 0. We have

(xk)Twk = (xk − yk)Twk + (yk)Twk

= (xk − yk)T (wk −∇θ(yk))

+ (xk − yk)T∇θ(xk) + (xk − yk)T (∇θ(yk)−∇θ(xk)).

In view of (12) and by the uniform continuity of ∇θ near {xk}, it suffices to show

lim
k→∞

(xk − yk)T∇θ(xk) = 0.(13)

We have

θ(yk)− θ(xk) = (yk − xk)T∇θ(xk) + o(‖yk − xk‖),

where o(t) is a quantity which approaches zero as t ↓ 0. Since {yk} is also LP
minimizing for (1), the limit of the left-hand side is equal to zero as k →∞; thus (13)
follows. This establishes (a).

To prove (b), we follow the proof of Theorem 4.3 and assume for the sake of
contradiction that there is a scalar λ satisfying lim infk→∞ θ(xk) > λ > θinf. Let c
and γ be the scalars in the error bound for the level set L(λ), and let yk ∈ X be such
that θ(yk) = λ and dist(xk, L(λ)) = ‖xk − yk‖. As in previous arguments, we have

θ(xk)− λ ≤ −∇θ(xk)T (yk − xk).

The right-hand side is equal to

∇θ(xk)T (xk − yk) = (wk)T (xk − yk) + (∇θ(xk)− wk)T (xk − yk)

≤ |(wk)Txk|+ ‖∇θ(xk)− wk‖ ‖yk − xk‖,

where the inequality holds because (wk)T yk = 0. Thus we deduce

1 ≤ c ‖∇θ(xk)− wk ‖ max
(
1, (θ(xk)− λ)γ−1

)
+
| (wk)Txk |
θ(xk)− λ ,

which again is a contradiction upon passing to the limit k →∞.
It is natural to ask how the approximate complementarity system, (11) plus

{wk} ⊂ X∗, is related the limiting residual condition, limk→∞RN (xk) = 0, used
in the last sections; in particular, whether they are equivalent for an arbitrary feasi-
ble sequence {xk}. Our preliminary analysis suggests a negative answer. Since this
issue is not of primary importance in the remainder of the paper, we will not pursue
it further.

The conditions {wk} ⊂ X∗ and limk→∞(∇θ(xk)− wk) = 0 imply

lim
k→∞

dist(∇θ(xk), X∗) = 0.

Nevertheless the vector wk is not necessarily the closest point in X∗ to the vector
∇θ(xk), as illustrated in the example below.
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Example 5. Consider the convex program in 4 variables:

minimize θ(x) ≡ (x12 − 1)2 + (x21 − 1)2 + 1.5x2
22

subject to x ≡
(
x11 x12

x21 x22

)
is symmetric positive semidefinite.

Thus the constraint set is the cone of 2× 2 symmetric positive semidefinite matrices.
It is easy to check that

xε ≡
(

1/ε2 ε+ 1

ε+ 1 ε

)
, ε ↓ 0,

constitutes an LP minimizing sequence and θinf = 0; moreover this optimal objective
value is not attained. We have

∇θ(xε) ≡ ε

(
0 2

2 3

)
,

which is not positive semidefinite. With

wε ≡
(
ε3 0

0 3ε

)
,

we can easily verify that the sequence {wε} satisfies the conditions in Theorem 5.1.
However the Frobenius projection of the matrix ∇θ(xε) onto the cone of 2 × 2 sym-
metric positive semidefinite matrices can be calculated to be

4ε

5

(
1 2

2 4

)
,

which is not equal to wε; moreover the above matrix is not asymptotically perpendic-
ular to xε as ε ↓ 0.

5.2. Approximate KKT conditions. Consider the nonlinear program

minimize θ(x)

subject to G(x) ≤ 0,
(14)

where θ : <n → < and G : <n → <m are continuously differentiable functions. We
assume that each Gi is convex and that a Slater point exists for the constraints, i.e.,
there exists a vector x̂ ∈ <n satisfying Gi(x̂) < 0 for all i. In this setting it follows
that if x is a local minimum of (14), then there exist multipliers µi, i = 1, . . . ,m, such
that the following KKT conditions hold:

L(x, µ) ≡ ∇θ(x) +

m∑
i=1

µi∇Gi(x) = 0,

0 ≥ G(x) ⊥ µ ≥ 0;

conversely if θ is also convex and (x, µ) satisfies the latter KKT system, then x is a
global minimum of (14). In what follows, we generalize these basic results in nonlinear
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programming to the context of an LP minimizing sequence. For this purpose we
recall an asymptotic constraint qualification (ACQ) stated in Luo and Luo [22] that
is essentially due to Mangasarian [25]:
(ACQ) The scalar

sup
x,µ,I

{
‖µI‖ : G(x) ≤ 0, µI > 0, GI(x) = 0,

∥∥∥∥∥∑
i∈I

µi∇Gi(x)

∥∥∥∥∥ = 1,

∇Gi(x) linearly independent, i ∈ I ⊆ {1, . . . ,m}
}

is finite.
Theorem 5.2. Let θ : <n → < and G : <n → <m be continuously differentiable

functions. Assume that each Gi is convex and a Slater point exists. Let {xk} be an
arbitrary sequence of feasible vectors to (14).

(a) Assume θinf > −∞ and ACQ holds. If {xk} is LP minimizing for (14), ∇θ
and each ∇Gi are uniformly continuous near {xk}, and {∇θ(xk)} is bounded,
then there exists a sequence of bounded vectors {µk} ⊂ <m+ such that

lim
k→∞

vk = 0 and lim
k→∞

(µk)TG(xk) = 0,(15)

where vk ≡ L(xk, µk).
(b) Conversely if θ is convex, (1) is H-metrically regular, and there exists a se-

quence of bounded vectors {µk} ⊂ <m+ such that (15) holds, then {xk} is LP
minimizing for (14).

Proof. Let X denote the feasible set of (14). We first prove (a). Similar to the
proof of Theorem 5.1, we deduce the existence of two sequences of vectors {yk} ⊂ X
and {wk} ⊂ <n such that for each k, yk = ΠX(yk−wk) and (12) holds. In particular,
yk is an optimal solution of the following minimization problem:

minimize 1
2 ‖ y − ( yk − wk ) ‖2

subject to y ∈ X.

Since a Slater point exists for X, it follows that for each k there exists multipliers
{µk} ⊂ <m such that

wk +
m∑
i=1

µki∇Gi(yk) = 0,

0 ≥ G(yk) ⊥ µk ≥ 0.

By ACQ, it follows that for some constant c > 0, each multiplier µk can be chosen to
satisfy

‖µk‖ ≤ c ‖wk ‖.
Since {∇θ(xk)} is bounded and {∇θ(xk) − wk} converges to zero (see the proof of
Theorem 5.1), it follows that {wk} is bounded; thus so is {µk}. We have

vk = ∇θ(xk)− wk +
m∑
i=1

µki (∇Gi(xk)−∇Gi(yk)),
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which easily implies limk→∞ vk = 0.
To complete the proof of (i), it remains to show limk→∞(µk)TG(xk) = 0. We

have

0 ≥ (µk)TG(xk) ≥ (µk)TG(yk) +
m∑
i=1

µki ∇Gi(yk)T (xk − yk) = (wk)T (yk − xk).

Since the last term tends to zero as k tends to infinity, the proof of (a) is completed.
The proof of (b) is by contradiction. Since this is very similar to the proofs of

Theorem 4.3 and part (b) of Theorem 5.1, we omit the details.
We conclude this section by giving two results that combine all the essential

concepts presented in the paper. The first result pertains to the CQQSP (9) where
θ is a convex quadratic spline; the other result is for the convex program (14) with
Hölderian sharp minima.

Theorem 5.3. Assume that the CQQSP (9) has a strictly feasible solution and
that the objective function θ(x) is bounded below on the feasible set X. Then θinf

is finite and attained. Moreover for an arbitrary feasible sequence {xk} ⊂ X, the
following statements are equivalent:

(a) {xk} is LP minimizing for the CQQSP (9);
(b) there exists a sequence of bounded multipliers {µk} ⊂ <m+ such that (15) holds,

where vk ≡ L(xk, µk);
(c) {xk} is near the optimal set of the CQQSP;
(d) {∇θ(xk)} is bounded and {xk} is N-stationary for the CQQSP.
Proof. Let {Pi : i = 1, . . . , p} be the family of convex polyhedra whose union

is equal to <n, and let {qi(x) : i = 1, . . . , p} be the corresponding family of convex
quadratic pieces of θ. By the theory of `p-programming [34], it follows that for each
i for which X ∩ Pi is nonempty, the CQQP below attains its finite optimal objective
value:

minimize qi(x)

subject to x ∈ X ∩ Pi.

The smallest of these p optimal objective values is clearly equal to θinf; moreover
Xopt is obviously nonempty. By Lemma 4.2, the CQQSP has Hölderian minima and
H-metrically regular level sets.

(a) ⇒ (c). This follows easily because {xk} is assumed feasible and the CQQSP
has Hölderian minima.

(c) ⇒ (a). Assume (c). By Proposition 4.9, the sequence {∇θ(xk)} is bounded.
Since ∇θ is uniformly continuous near {xk}, it follows that θ is uniformly continuous
near {xk}. Hence (a) follows by Proposition 4.7.

(a) ⇒ (b). Assume (a). By Lemma 3.5 in [22], (ACQ) holds for the feasible set
X. By the equivalence of (a) and (c) and the above argument, the sequence {∇θ(xk)}
is bounded. Hence (b) follows from Theorem 5.2.

(b) ⇒ (a). This follows easily from Theorem 5.2.
(d) ⇔ (a). This is the content of Corollary 4.5.
Theorem 5.4. Let θ : <n → < and G : <n → <m be continuously differentiable

functions. Assume that θ and each Gi are convex, a Slater point exists for the feasible
set

X ≡ {x ∈ <n : G(x) ≤ 0 },
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the ACQ holds for X, and the problem (14) has Hölderian minima. Let {xk} be an
arbitrary sequence of feasible vectors to (14). Suppose that ∇θ and each ∇Gi are
uniformly continuous near {xk}. The following statements are equivalent:

(a) {xk} is LP minimizing for the program (14);
(b) there exists a sequence of bounded multipliers {µk} ⊂ <m+ such that (15) holds,

where vk ≡ L(xk, µk);
(c) {xk} is near Xopt;
(d) {∇θ(xk)} is bounded and {xk} is N-stationary.
Proof. This follows from the same argument as in the previous theorem, except

that Proposition 4.10 is used in place of Lemma 4.2.
Remark. When X is an arbitrary closed convex set, statements (a), (c), and (d)

of Theorem 5.4 remain equivalent without the Slater assumption and the ACQ.

6. Convergence of an iterative algorithm. In this last section, we consider
a family of iterative methods for solving the constrained minimization problem (1).
Our goal is to show that the H-metric regularity assumption that has played such an
important role in the study of LP minimizing sequences is key to the convergence of
these methods.

Consider the minimization problem (1) where θ is continuously differentiable and
X is closed and convex. We present below an iterative descent method for solving
this problem. The method generates a sequence of feasible vectors {xk} ⊂ X with
decreasing objective function values {θ(xk)}. The generation of each iterate xk+1 is
by solving a convex subprogram with a quadratic objective function which yields a
feasible descent direction dk for (1) at xk, followed by an Armijo line search on θ
starting at xk and moving along dk. Since the convergence analysis does not require
X to be a polyhedron, we do not make this polyhedral assumption on X; thus the
direction subprogram is not necessarily a quadratic program. In practice, this algo-
rithm is perhaps restricted to a linearly constrained nonlinear program in order for
the subprograms to be solved effectively.

A descent algorithm.
Step 0 (initialization). Let ρ, σ ∈ (0, 1) be given scalars. Let δ > 0 be an

arbitrary constant. Let x0 ∈ X be a given vector, and let B0 be a symmetric positive
semidefinite matrix. Set k = 0.

Step 1 (direction generation). Solve the convex program in the variable d ∈ <n:

minimize ∇θ(xk)T d+ 1
2 d

TBkd

subject to xk + d ∈ X

and ‖ d ‖ ≤ δ.

(16)

Let dk be an arbitrary globally optimal solution, which must exist and satisfy∇θ(xk)T dk

≤ 0.
If ∇θ(xk)T dk = 0, stop because xk is a stationary point of (1); thus xk is a

globally optimal solution if θ is convex. If ∇θ(xk)T dk < 0, continue.
Step 2 (Armijo line search). Let mk be the smallest nonnegative integer m such

that

θ(xk + ρmdk)− θ(xk) ≤ σ ρm∇θ(xk)T dk.

Let τk ≡ ρmk and set xk+1 ≡ xk + τk d
k.

Step 3 (termination check). Test xk+1 to determine if it satisfies a prescribed
stopping rule. If so, stop; xk+1 is a desired approximate solution of (1). Otherwise
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choose a symmetric positive semidefinite matrix Bk+1 and return to Step 1 with k
replaced by k + 1.

We make several remarks about the above algorithm. First, d = 0 is a feasible
solution to the subprogram (16) because xk ∈ X. Moreover a globally optimal solution
to this subprogram must exist because it has a nonempty compact feasible region.
Such an optimal solution is not necessarily unique because the matrix Bk is not
assumed to be positive definite. In the algorithm the direction dk can be any optimal
solution of (16). The assertion about the iterate xk in the case where ∇θ(xk)T dk = 0
can easily be proved; see [30] for a proof, which we omit. The integer mk is well
defined; the justification is standard. Finally, each iterate xk+1 clearly belongs to X.

The following is the main convergence result for the above algorithm. In the
theorem, the infimum value θinf is not assumed to be finite; moreover the sequence
{xk} is not assumed to be bounded.

Theorem 6.1. Let θ : <n → < be a continuously differentiable convex function,
and let X be a closed convex subset of <n. Let {Bk} be a sequence of symmetric
positive semidefinite matrices. Let {xk} be an infinite sequence of vectors generated
by the iterative descent algorithm. Assume that

(a) {Bk} is bounded;
(b) ∇θ is uniformly continuous near {xk};
(c) for each λ > θinf, there exist scalars c > 0 and γ ∈ (0, 1) such that for all k,

dist(xk, L(λ)) ≤ c max
(

(θ(xk)− λ)+, [(θ(x
k)− λ)+]γ

)
.

Then limk→∞ θ(xk) = θinf.
Before proving this theorem we make several remarks about the assumptions.

The first remark concerns the sequence {Bk}. We assume that each matrix Bk is only
semidefinite and not definite. This is a significant departure from many convergence
results of this type which assume that there exist constants α > β > 0 such that

β vT v ≤ vTBkv ≤ α vT v ∀k and v;

see, e.g., the recent note [38]. Our assumption is equivalent to the existence of the
positive upper bound α but allows the lower bound β to be zero. Wu and Wu [39],
focusing on the case where each Bk is identically equal to zero, established the above
theorem without conditions (b) and (c). In a private discussion, S. Wu told the authors
that he was not able to generalize his result to nonzero matrices Bk. Condition (c)
is of course the error bound assumption that is central to the issue of whether a
stationary sequence is LP minimizing. (We remind the reader that this condition
holds, for instance, in the case of the CQQSP and a convex program with Hölderian
minima.) In the present context, this condition can easily be seen to be necessary for
the conclusion of the theorem to hold. Thus, condition (c) is actually necessary for
the claimed convergence of the sequence {θ(xk)}. We suspect that condition (b) is
not essential to the theorem; however, the proof below makes use of this condition.
Finally we note that simple examples can be constructed to show that the theorem is
false without assumption (a).

Proof of Theorem 6.1. Clearly {θ(xk)} is a decreasing sequence of real numbers.
Thus the limit limk→∞ θ(xk) exists and is not smaller than θinf. We may assume by
way of contradiction that this limit is greater than θinf. Let λ be such that

lim
k→∞

θ(xk) > λ > θinf.
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By assumption, it follows that, for all k, there exists a vector x̄k ∈ L(λ) satisfying
θ(x̄k) = λ and

‖xk − x̄k ‖ ≤ c max
(
(θ(xk)− λ), (θ(xk)− λ)γ

)
.

Thus the sequence {xk − x̄k} is bounded. Moreover, defining the scalar

δk ≡
{

1 if ‖xk − x̄k ‖ ≤ 1,

‖xk − x̄k ‖−1 otherwise,

we see that the vector d ≡ δk(x̄k − xk) is feasible to the subprogram (16). Hence, by
the variational principle for this problem, we obtain

[ δk (x̄k − xk)− dk ]T (∇θ(xk) +Bkd
k) ≥ 0.

By the gradient inequality, we have, for each k,

λ− θ(xk) = θ(x̄k)− θ(xk) ≥ (x̄k − xk)T∇θ(xk)

≥ δ−1
k (dk)T (∇θ(xk) +Bkd

k)− (x̄k − xk)TBkd
k.

(17)

Since {xk − x̄k} is bounded, it follows that

0 < inf
k
δk ≤ sup

k
δk ≤ 1.

Thus {δ−1
k } is bounded. For each k, we have

∇θ(xk)T dk +
1

2
(dk)TBkd

k ≤ 0(18)

and

θ(xk+1)− θ(xk) ≤ σ τk∇θ(xk)T dk ≤ 0.

It follows that

lim
k→∞

τk∇θ(xk)T dk = 0.

If infk τk > 0, then we deduce

lim
k→∞

∇θ(xk)T dk = 0.(19)

Assume that infk τk = 0. Let {τk : k ∈ κ} be a subsequence of {τk} that converges to
zero. Thus

lim
k(∈κ)→∞

mk = ∞.

We claim that

lim
k(∈κ)→∞

∇θ(xk)T dk = 0.(20)

Since {dk} is bounded and ∇θ is uniformly continuous near {xk}, it follows that

lim
k(∈κ)→∞

θ(xk + ρmk−1dk)− θ(xk)− ρmk−1∇θ(xk)T dk

ρmk−1
= 0.
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By the definition of mk, we have

θ(xk + ρmk−1dk)− θ(xk) > σ ρmk−1∇θ(xk)T dk.

Using the fact that σ ∈ (0, 1), we easily deduce from the last two expressions that
(20) must hold.

Consequently, we have shown that regardless of the infimum value of the sequence
{τk} , (20) must hold for an infinite set κ. Without loss of generality, we may assume
that (19) holds. By (18), and the positive semidefiniteness of each Bk, it follows that
the sequence of scalars {(dk)TBkd

k} converges to zero. Furthermore, since {Bk} is
bounded (which implies that the eigenvalues of Bk are bounded above), it can easily
be shown, by diagonalizing each Bk, that the sequence of vectors {Bkdk} converges
to the zero vector.

Since {xk − x̄k} and {δ−1
k } are bounded, passing to the limit k →∞ in (17), we

deduce that the left-hand side converges to a negative limit, whereas the right-hand
side converges to zero. This is a contradiction.
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Abstract. A short proof of the optimality of the discrete Karhunen–Loève expansion as the
best linear approximation in the quadratic mean is presented.

Key words. Karhunen–Loève expansion
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Let R denote the field of real numbers, and view vectors in Rn as column vectors.
For x, y ∈ Rn, let 〈x, y〉 =

∑n
i=1 xiyi denote the scalar product, and let ‖x‖ =

√〈x, x〉
denote the Euclidean norm. Then the Karhunen–Loève expansion is defined as follows.

Theorem 0.1. Let X = (X1, . . . , Xn)T be a real-valued random-vector with finite
second moments, and let m be a fixed natural number not greater than n.

Let a and A denote the expectation vector or the covariance matrix of X, re-
spectively, and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A with corresponding
orthonormal eigenvectors w1, . . . , wn.

Then, for any vectors v0, v1, . . . , vm and any linear functionals φ1, . . . , φm : Rn → R,
the expectation

E

∥∥∥∥∥X −
(
v0 +

m∑
i=1

φi(X − a)vi

)∥∥∥∥∥
2


is minimal if v0 = a, vi = wi, and φi(x) = 〈x,wi〉 for i = 1, . . . ,m. Hence,

Y := a+

m∑
i=1

〈X − a,wi〉wi

is the best m-dimensional linear approximation to X in the quadratic mean and is
called the Karhunen–Loève expansion of X of order m. The approximation error is

E(‖X − Y ‖2) = λm+1 + · · ·+ λn.

An application of the discrete Karhunen–Loève expansion to image processing
can be found in [4, p. 382]. In this book this optimality property of the discrete
Karhunen–Loève expansion is stated without proof. For the author, the proof given
in [3] is unclear. In [1], the optimality of the Karhunen–Loève transform among all
unitary transforms is proved by Lagrangian multipliers but neglecting the orthogonal-
ity constraints among the basis vectors. Therefore, the author suggests the following
short proof. Another optimality property of the Karhunen–Loève expansion is dis-
cussed in [2].
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Proof. For i = 1, . . . ,m, write φi(x) = Fix with row vector Fi. Then
G :=

∑m
i=1 viFi is a quadratic matrix of rank ≤ m. Let H := I − G, where I is

the identity matrix, and let Z := X − a be the centralized random vector. Then

X −
(
v0 +

m∑
i=1

φi(X − a)vi

)
=

(
I −

m∑
i=1

viFi

)
Z − (v0 − a) = HZ − (v0 − a)

and, since E(Z) = 0,

E

∥∥∥∥∥X −
(
v0 +

m∑
i=1

φi(X − a)vi

)∥∥∥∥∥
2
 = E(‖HZ‖2) + ‖v0 − a‖2.

As E(‖HZ‖2) does not depend on v0, the optimal choice for v0 is v0 = a. Moreover

E(‖HZ‖2) =
n∑

i,j=1

E(ZiZj)(H
TH)ji = tr(AHTH).

If vi = wi and φi(x) = 〈x,wi〉 = wTi x for i = 1, . . . ,m, then

H = I −
m∑
i=1

wiw
T
i =

n∑
i=m+1

wiw
T
i

is the orthogonal projection onto the subspace spanned by wm+1, . . . , wn; thusHTH =
H and

tr(AHTH) =
n∑

i=m+1

tr(Awiw
T
i ) =

n∑
i=m+1

λitr(wiw
T
i ) =

n∑
i=m+1

λi.

For general vi and φi, we invoke Theorem 1 of [6] or [5] to obtain

tr(AHTH) ≥
n∑
i=1

λiµn+1−i,

where µ1 ≥ µ2 ≥ · · · ≥ µn denote the eigenvalues of HTH. We end the proof by
showing that

µ1 ≥ · · · ≥ µn−m ≥ 1,

which implies

n∑
i=1

λiµn+1−i ≥
n∑

i=m+1

λi.

Let U be the nullspace of the matrix G. As G has rank k ≤ m, U has dimension
n− k ≥ n−m. But for all nonzero unit vectors u ∈ U we have Hu = (I −G)u = u,
and hence ‖Hu‖2 = 1. Now the Courant–Fischer minimax theorem [7, p. 100] implies
that µn−k ≥ 1, and hence µn−m ≥ 1.
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Abstract. Closing the loop around an exponentially stable single-input single-output regular
linear system, subject to a globally Lipschitz and nondecreasing actuator nonlinearity and compen-
sated by an integral controller, is shown to ensure asymptotic tracking of constant reference signals,
provided that (a) the steady-state gain of the linear part of the plant is positive, (b) the positive
integrator gain is sufficiently small, and (c) the reference value is feasible in a very natural sense.
The class of actuator nonlinearities under consideration contains standard nonlinearities important
in control engineering such as saturation and deadzone.

Key words. regular infinite-dimensional systems, integral control, actuator nonlinearities, input
saturation, robust tracking, operator Riccati equations
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1. Introduction. The synthesis of low-gain integral (I) and proportional-plus-
integral (PI) controllers for uncertain stable plants has received considerable attention
in the last 20 years. The following principle is well known (see Davison [5], Lunze [20],
and Morari [24]): closing the loop around a stable, finite-dimensional, continuous-
time, single-input, single-output plant with transfer function G(s), compensated by
a pure integral controller k/s (see Fig. 1.1), will result in a stable closed-loop system
which achieves asymptotic tracking of arbitrary constant reference signals, provided
that |k| is sufficiently small and kG(0) > 0. Therefore, if a plant is known to be
stable and if the sign of G(0) is known (this information can be obtained from plant
step response data), then the problem of tracking by low-gain integral control reduces
to that of tuning the gain parameter k. Such a controller design approach (“tuning
regulator theory” [5]) has been successfully applied in process control; see, for example,
Coppus, Sha, and Wood [3] and Lunze [19].

An analogous result holds for finite-dimensional multivariable systems under suit-
able assumptions on G(0); see [5, 20] and [24]. Moreover, the result has been extended
by Logemann, Bontsema, and Owens [13], Logemann and Owens [14], Logemann and
Townley [17], Pohjolainen [27, 28], and Pohjolainen and Lätti [29] to various classes
of (abstract) infinite-dimensional systems and by Jussila and Koivo [9] and Koivo and
Pohjolainen [11] to differential delay systems. Furthermore, the problem of tuning
the integrator gain adaptively has been addressed recently in a number of papers; see
Cook [2] and Miller and Davison [22, 23] for the finite-dimensional case and Logemann
and Townley [16, 17, 18] for the infinite-dimensional case.

In this paper we present results which show that the above principle remains true
if the plant to be controlled is a single-input, single-output, infinite-dimensional, linear
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Fig. 1.1. Low-gain control system.
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Fig. 1.2. Low-gain control with input nonlinearity.

system subject to an input nonlinearity (see Fig. 1.2). More precisely, we prove that,
for an exponentially stable system with G(0) > 0, there exists a number K > 0 such
that, for all nondecreasing globally Lipschitz nonlinearities φ with Lipschitz constant
λ and all k ∈ (0,K/λ), the output y(t) of the closed-loop system shown in Fig. 1.2
converges to r as t→∞, provided that [G(0)]−1r ∈ clos (imφ). The number K is the
supremum of the set of all numbers k > 0 such that the function

1 + kRe
G(s)

s

is positive real. The essence of our approach is to invoke a particular coordinate
transformation and perform a Liapunov-type analysis on the transformed system. A
parametrized operator Riccati equation plays a central role in the latter analysis,
which further develops an idea presented in Townley and Kamstra [34].

The linear, infinite-dimensional part of the plant in Fig. 1.2 is assumed to be
regular. The class of regular linear infinite-dimensional systems, introduced by Weiss
[35, 36, 37, 38, 39], is rather general. It includes most distributed parameter systems
and all time-delay systems (retarded and neutral) which are of interest in applications.
Although there exist well-posed abstract infinite-dimensional systems which are not
regular, the authors are of the opinion that any physically motivated, well-posed,
linear, time-invariant control system is regular. We emphasize that our assumptions
on the actuator nonlinearity allow for standard nonlinearities occurring in control
engineering such as saturation and deadzone.

To our knowledge some of the results in this paper are new even for the finite-
dimensional case. While Desoer and Lin [6] consider the low-gain tracking problem
for a class of nonlinear finite-dimensional systems, their framework does not include
input saturation.

The paper is organized as follows. Definitions and fundamental facts pertaining
to regular systems are assembled in section 2. Section 3 contains the main result of
the paper as outlined above. Examples and simulations illustrating our results are
given in section 4. The proofs of three technical lemmas are given in the appendix.

Notation.

• For α ∈ R, set Cα := {s ∈ C |Res > α} .
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• For α ∈ R and H a Hilbert space, we define the exponentially weighted L2-
space L2

α(R+, H) := {f ∈ L2
loc(R+, H) | f(·) exp(−α ·) ∈ L2(R+, H)}.

• If A is a linear operator, then the domain, spectrum, and resolvent set of A
are denoted by dom (A), σ(A), and %(A), respectively.

• The set of all linear bounded operators from H1 to H2 (where H1, H2 are
Hilbert spaces) is denoted by B(H1, H2). We write B(H) for B(H,H).
• The Laplace transform is denoted by L.

2. Preliminaries on regular systems. In this section we give some back-
ground on well-posed linear systems; the reader is referred to Weiss [35, 36, 37, 38, 39]
for full details.

First, we introduce some further notation. For any Hilbert space H and any
τ ≥ 0, Rτ denotes the right shift by τ on L2

loc(R+, H). The truncation operator
Pτ : L2

loc(R+, H)→ L2(R+, H) is given by

(Pτu)(t) =

{
u(t) if t ∈ [0, τ ],
0 if t > τ.

For u, v ∈ L2
loc(R+, H) and τ ≥ 0, the τ -concatenation u

τ

♦ v is defined by

u
τ

♦ v = Pτu+ Rτv .

The fundamental concept of a well-posed linear system was introduced by Weiss [39];
an equivalent definition can be found in Salamon [33].

Definition 2.1. Let U , X, and Y be real Hilbert spaces. A well-posed linear
system with state-space X, input-space U , and output-space Y is a quadruple Σ =
(T,Φ,Ψ,F), where

(1) T = (Tt)t≥0 is a C0-semigroup of bounded linear operators on X,
(2) Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X

such that

Φτ+t(u
τ

♦ v) = TtΦτu+ Φtv

for all u, v ∈ L2(R+, U), and all τ, t ≥ 0,
(3) Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y )

such that

Ψτ+tx0 = Ψτx0

τ

♦ ΨtTτx0

for all x0 ∈ X and all τ, t ≥ 0, and Ψ0 = 0,
(4) F = (Ft)t≥0 is a family of bounded linear operators from L2(R+, U) to

L2(R+, Y ) such that

Fτ+t(u
τ

♦ v) = Fτu
τ

♦ (ΨtΦτu+ Ftv) ,

u, v ∈ L2(R+, U) and all τ, t ≥ 0, and F0 = 0.
Let an input u ∈ L2

loc(R+, U) and an initial state x0 ∈ X be given. The state
x(t) = x(t;x0, u) of Σ at time t ≥ 0 and the output y(·) = y(· ;x0, u) of Σ are defined
by

x(t) = Ttx0 + ΦtPtu ,(2.1)

Pty = Ψtx0 + FtPtu .(2.2)
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The state trajectory x(·) is a continuous function from R+ to X, and the output y(·)
is in L2

loc(R+, Y ).

We say that Σ is exponentially stable if the semigroup T is exponentially stable,
i.e.,

ω(T) := lim
t→∞

1

t
log ‖Tt‖ < 0 .

If Σ is exponentially stable, then the operators Φt and Ψt are uniformly bounded.
It is clear that there exist unique operators Ψ∞ : X → L2

loc(R+, Y ) and F∞ :
L2
loc(R+, U)→ L2

loc(R+, Y ) such that, for all τ ≥ 0,

Ψτ = PτΨ∞ , Fτ = PτF∞ .

It follows easily that PτF∞ = PτF∞Pτ for all τ ≥ 0, i.e., F∞ is a causal operator.
Moreover, if Σ is exponentially stable, then Ψ∞ is a bounded operator from X into
L2(R+, Y ) and F∞ maps L2(R+, U) boundedly into L2(R+, Y ).

The generator of T is denoted by A. Let X1 be the space dom (A) endowed with
the graph norm. The norm on X is denoted by ‖·‖, while ‖·‖1 denotes the graph norm.
Let X−1 be the completion of X with respect to the norm ‖x‖−1 = ‖(sI − A)−1x‖,
where s ∈ %(A) is fixed. We have X1 ⊂ X ⊂ X−1, and the canonical injections are
bounded and dense. The semigroup T can be restricted to a C0-semigroup on X1 and
extended to a C0-semigroup on X−1. The exponential growth constant is the same on
all three spaces. The generator on X−1 is an extension of A to X (which is bounded
as an operator from X to X−1). We shall use the same symbol T (respectively, A)
for the original semigroup (respectively, its generator) and the associated restrictions
and extensions. With this convention, we may write A ∈ B(X,X−1). Considered as a
generator on X−1, the domain of A is X.

By a representation theorem due to Salamon [33] (see also Weiss [37, 38]) there
exist unique operators B ∈ B(U,X−1) and C ∈ B(X1, Y ) (the control operator and
the observation operator of Σ, respectively) such that, for all t ≥ 0, u ∈ L2

loc(R+, U),
and x0 ∈ X1,

ΦtPtu =

∫ t

0

Tt−τBu(τ) dτ and (Ψ∞x0)(t) = CTtx0 .

B is called bounded if B ∈ B(U,X) (and unbounded otherwise), whereas C is called
bounded if it can be extended continuously to X (and unbounded otherwise). If T
is exponentially stable, then there exist constants α, β > 0 such that, for all t ≥ 0,
u ∈ L2(R+, U), and x0 ∈ X1,

‖ΦtPtu‖ =

∥∥∥∥∫ t

0

Tt−τBu(τ) dτ

∥∥∥∥ ≤ α‖u‖L2(0,t;U) ,(2.3)

‖(Ψ∞x0)(·)‖L2(0,t;Y ) =

(∫ t

0

‖CTτx0‖2 dτ
)1/2

≤ β‖x0‖ .(2.4)

As in [38], the Lebesgue extension of C is defined by

CLx0 = lim
t→0

C
1

t

∫ t

0

Tτx0 dτ ,
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where dom (CL) is the set of all those x0 ∈ X for which the above limit exists. Clearly
X1 ⊂ dom (CL) ⊂ X and, for any x0 ∈ X, we have Ttx0 ∈ dom (CL) for almost every
(a.e.) t ≥ 0. Furthermore,

(Ψ∞x0)(t) = CLTtx0 for a.e. t ≥ 0 .

It can be shown (see Weiss [36, 38]) that, if α > ω(T), x0 ∈ X, and u ∈ L2
α(R+, U),

then Ψ∞x0 ∈ L2
α(R+, Y ), F∞u ∈ L2

α(R+, Y ), and there exists a unique holomorphic
G : Cω(T) → B(U, Y ) such that, for all s ∈ Cα,

G(s)(Lu)(s) = [L(F∞u)](s) .

In particular, G is bounded on Cα for all α > ω(T). The function G is called the
transfer function of Σ.

Σ and its transfer function G are said to be regular if, for any u ∈ U , the limit

lim
s→∞, s∈R

G(s)u = Du

exists. It follows, from the principle of uniform boundedness, that D ∈ B(U, Y ). The
operator D is called the feedthrough operator of Σ. If Σ is regular, then for any x0 ∈ X
and u ∈ L2

loc(R+, U) the functions x(·) and y(·), defined by (2.1) and (2.2), satisfy
the equations

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 ,(2.5)

y(t) = CLx(t) +Du(t)(2.6)

for a.e. t ≥ 0 (in particular x(t) ∈ dom (CL) for a.e. t ≥ 0). The derivative on the
left-hand side of (2.5) has to be understood in X−1. In other words, if we consider the
initial value problem (2.5) in the space X−1, then for any x0 ∈ X and u ∈ L2

loc(R+, U)
the classical solution of (2.5) is given by the variation of parameters formula

x(t) = Ttx0 +

∫ t

0

Tt−τBu(τ) dτ .

It has been demonstrated in [36] that if Σ is regular, then (sI−A)−1BU ⊂ dom (CL)
for all s ∈ %(A) and the transfer function G can be expressed in the following way:

G(s) = CL(sI −A)−1B +D for all s ∈ Cω(T) ,

which is familiar from finite-dimensional systems theory. The operators A, B, C, and
D are called the generating operators of Σ.

The following lemma will be needed in section 3. Certainly, it should be well
known. However, since we could not find it in the literature, we include the proof.

Lemma 2.1. Suppose that Σ = (T,Φ,Ψ,F) is exponentially stable. Then the
following statements hold:

(1) There exist α, β > 0 such that, for any x0 ∈ X and any u ∈ L2(R+, U), the
solution x(·) of the initial-value problem (2.5) satisfies

‖x‖L2(R+,X) ≤ α‖u‖L2(R+,U) + β‖x0‖.
(2) If u ∈ L∞(R+, U) and limt→∞u(t) = u∞ exists, then for any x0 ∈ X, x(·)

defined by (2.5) satisfies

lim
t→∞ ‖x(t) +A−1Bu∞‖ = 0 .
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Proof. By the exponential stability we may assume, without loss of generality, that
x0 = 0. Consequently, we have x(t) =

∫ t
0

Tt−τBu(τ) dτ for all t ≥ 0. Let H2(C0, X)
denote the usual Hardy space of holomorphic functions defined on C0 with values in
X. Appealing to the Paley–Wiener theorem, statement (1) will follow if we can show
that there exists α > 0 such that, for all u ∈ L2(R+, U),

‖Lx‖H2(C0,X) ≤ α‖Lu‖H2(C0,U) .(2.7)

To this end, set ω0 := ω(T) and recall from [35] that for any ω > ω0 there exists
Mω > 0 such that, for all s ∈ Cω,

‖(sI −A)−1B‖B(U,X) ≤ Mω√
Re s− ω .(2.8)

It is clear that s 7→ (sI−A)−1B is a holomorphic B(U,X−1)-valued function: using the
resolvent identity, it follows that it is also holomorphic as a B(U,X)-valued function.
The Laplace transform Lx of x satisfies

(Lx)(s) = (sI −A)−1B(Lu)(s) for all s ∈ Cω0
.(2.9)

By hypothesis, ω0 < 0 and Lu ∈ H2(C0, X). Therefore, choosing ω1 ∈ (ω0, 0) and
combining (2.8) and (2.9) we see that (2.7) holds with, for example, α = Mω1/

√|ω1|.
This establishes statement (1).

To prove statement (2), we proceed as follows. Choose t∗ > 0 such that ‖Tt‖ ≤ 1/2
for all t ≥ t∗, let (tn) be a sequence of real numbers satisfying

t∗ ≤ tn+1 − tn ≤ 2t∗ ,

and set β = sup{‖Tt‖ | 0 ≤ t ≤ 2t∗}. For t ≥ tn we have

x(t) = Tt−tnx(tn) +

∫ t

tn

Tt−τBu(τ) dτ ,

and so, by exponential stability, (2.3), and statement (1) above, there exists α > 0
such that, for all n ∈ N,

‖x(t)‖ ≤ β‖x(tn)‖+ α
√

2t∗‖u‖L∞(tn,tn+1) if t ∈ [tn, tn+1](2.10)

and

‖x(tn+1)‖ ≤ 1

2
‖x(tn)‖+ α

√
2t∗‖u‖L∞(tn,tn+1) .(2.11)

We first consider the case when u∞ = 0. Then

lim
n→∞ ‖u‖L∞(tn,tn+1) = 0(2.12)

and (2.11) implies that

lim
n→∞ ‖x(tn)‖ = 0 .(2.13)

Combining (2.10), (2.12), and (2.13) shows that limt→∞ ‖x(t)‖ = 0. Finally, if u∞ 6= 0,
then, by writing u(t) = (u(t)− u∞) + u∞, it is clear that it suffices to show that

lim
t→∞

∥∥∥∥∫ t

0

TτBu∞ dτ +A−1Bu∞

∥∥∥∥ = 0 .(2.14)
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Setting z(t) =
∫ t

0
TτBu∞ dτ we have that

lim
t→∞ ‖ż(t)‖−1 = lim

t→∞ ‖TtBu∞‖−1 = 0 .(2.15)

The function z(·) is the classical solution of the initial-value problem ż(t) = Az(t) +
Bu∞, z(0) = 0, considered in X−1, and so we may write

z(·) +A−1Bu∞ = A−1ż(·) .(2.16)

Since A−1 ∈ B(X−1, X), (2.14) follows from (2.15) and (2.16).

3. Integral control in the presence of nonlinearities. In the following,
let (A,B,C,D) be the generating operators of a linear, single-input, single-output
regular system with state space X and transfer function G. Suppose that the system
is subject to an input nonlinearity φ, where φ : R→ R is locally Lipschitz. Denoting
the constant reference signal by r, an application of the integrator

u(t) = u0 + k

∫ t

0

[r − CLx(τ)−Dφ(u(τ))] dτ ,

where k is a real parameter (see Fig. 1.2), leads to the following nonlinear system of
differential equations:

ẋ = Ax+Bφ(u) , x(0) = x0 ∈ X,(3.1)

u̇ = k[r − CLx−Dφ(u)] , u(0) = u0 ∈ R .(3.2)

For a ∈ (0,∞], a continuous function

[0, a)→ X × R , t 7→ (x(t), u(t))

is called a solution of (3.1)–(3.2) if (x(·), u(·)) is absolutely continuous as an (X−1×R)-
valued function, x(t) ∈ dom (CL) for a.e. t ∈ [0, a), (x(0), u(0)) = (x0, u0), and the
differential equations (3.1) and (3.2) are satisfied a.e. on [0, a). Of course, the derivative
on the left-hand side on (3.1) has to be understood in X−1.1

An application of a well-known result on abstract Cauchy problems (see Pazy
[26, Thm. 2.4, p. 107]), shows that a continuous (X × R)-valued function (x(·), u(·))
is a solution of (3.1)–(3.2) if and only if it satisfies the following integrated version of
(3.1)–(3.2):

x(t) = Ttx0 +

∫ t

0

Tt−τBφ(u(τ)) dτ ,(3.3)

u(t) = u0 + k

∫ t

0

[r − CLx(τ)−Dφ(u(τ))] dτ .(3.4)

The next result shows that (3.1)–(3.2) has a unique solution.
Proposition 3.1. For any pair (x0, u0) ∈ X×R of initial conditions there exists

a unique solution (x(·), u(·)) of (3.1)–(3.2) defined on a maximal interval [0, amax). If
amax <∞, then

lim sup
t→amax

‖(x(t), u(t))‖ =∞ .(3.5)

1 Being a Hilbert space, X−1×R is reflexive. Hence any absolutely continuous (X−1×R)-valued
function is a.e. differentiable and can be recovered from its derivative by integration; see [1, Thm.
3.1, p. 10].
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If φ is globally Lipschitz, then amax =∞ .
For the proof of the above result it will be useful to consider the following initial-

value problem for u:

u̇ = k[r −Ψ∞x0 − F∞φ(u)] , u(0) = u0 .(3.6)

Clearly, (3.6) 2 is obtained from (3.2) on noting that CLx(t)+Dφ(u(t)) = (Ψ∞x0)(t)+
(F∞φ(u))(t). An absolutely continuous function u : [0, a)→ R is a solution of (3.6) if
u(0) = u0 and the differential equation in (3.6) is satisfied a.e. on [0, a).

Lemma 3.2. Let x0 ∈ X. For any initial condition u0 ∈ R there exists a unique
solution u(·) of (3.6) defined on a maximal interval [0, amax). If amax <∞, then

lim sup
t→amax

|u(t)| =∞ .(3.7)

If φ is globally Lipschitz, then amax =∞ .
The proof of this lemma is relegated to the appendix.
Proof of Proposition 3.1. Let u : [0, amax)→ R be the unique maximal solution of

(3.6) (whose existence is guaranteed by Lemma 3.2), and define x(·) to be the unique
solution of

ẋ = Ax+Bφ(u) , x(0) = x0 .

Then (x(·), u(·)) is the unique solution of equations (3.1)–(3.2), which satisfies equa-
tion (3.5) if amax <∞. Moreover, it follows trivially from Lemma 3.2 that amax =∞
if φ is globally Lipschitz.

Henceforth, let M denote the set of all bounded measures on [0,∞). A measure
µ ∈M can be written in the form

µ(dt) = a(t)dt+
∞∑
i=0

aiδti(dt) + µs(dt) ,

where a(·) ∈ L1(0,∞),
∑∞
i=0 aiδti , and µs, respectively, represent the absolutely con-

tinuous, the discrete, and the singular parts of µ. In particular, δti denotes the unit
point mass at ti ≥ 0 and the ai are real numbers such that

∑∞
i=0 |ai| <∞.

Furthermore, for λ > 0, let N (λ) denote the set of all nondecreasing globally Lip-
schitz nonlinearities φ : R→ R with Lipschitz constant λ. Finally, if G is holomorphic
and bounded on Cα for some α < 0 and G(0) > 0, then it is easy to show that

1 + kRe
G(s)

s
≥ 0 for all s ∈ C0(3.8)

for all sufficiently small k > 0; see Lemma 3.10 in [17]. We define

K := sup{k > 0 | (3.8) holds} .
The main result of this section is the following theorem.

Theorem 3.3. Let λ > 0 and φ ∈ N (λ). Assume that Tt is exponentially stable,
G(0) > 0, k ∈ (0,K/λ), and r ∈ R is such that

φr := [G(0)]−1r ∈ clos (imφ) .(3.9)

If C is bounded, then for all (x0, u0) ∈ X × R the unique solution (x(·), u(·)) of
(3.1)–(3.2) exists on [0,∞) and satisfies

2 Strictly speaking, to make sense of (3.6) we have to give a meaning to F∞v when v is a
continuous function defined on a finite interval [0, a) (recall that F∞ operates on the space of locally
square-integrable functions defined on the infinite interval [0,∞)). This can easily be done using the
causality of F∞. Moreover, by slight abuse of notation, the expression φ(u) on the right-hand side
of (3.6) denotes the function t 7→ φ(u(t)).
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(1) limt→∞ φ(u(t)) = φr ,
(2) limt→∞ ‖x(t) +A−1Bφr‖ = 0 ,
(3) limt→∞(r − y(t)) = 0 , where y(t) = Cx(t) +Dφ(u(t)) ,
(4) if φr ∈ imφ, then

lim
t→∞dist (u(t), φ−1(φr)) = 0 ,(3.10)

(5) if φr ∈ int (imφ), then u(·) is bounded.
If C is unbounded, then the statements (1), (2), (4), and (5) remain true provided
that L−1(G) ∈ M and statement (3) remains true provided that x0 ∈ dom (A) and
L−1(G) ∈M.

In particular, statement (4) says that u(t) converges as t→∞ if the set φ−1(φr)
is a singleton, which, in turn, is true if φr is not a critical value of φ.

¡
¡
¡¡

¡
¡
¡¡

- u

6

φ(u)

Fig. 3.1. Nonlinearity with saturation and deadzone.

The conditions imposed in Theorem 3.3 on φ are satisfied by saturation and
deadzone nonlinearities and combinations of the two, as shown in Fig. 3.1. The as-
sumption that L−1(G) ∈ M is not very restrictive and seems to be satisfied in all
practical examples of systems with H∞-transfer functions (in applications one usually
has µs = 0). If C is unbounded and x0 6∈ dom (A), then statement (3) does not hold in
general. However, in that case, as an inspection of the proof of Theorem 3.3 will show,
the error e(·) = r−y(·) admits a decomposition e = e1 +e2, where e1 ∈ L2

α(R+,R) for
some α < 0 and e2 is a continuous function satisfying limt→∞ e2(t) = 0. Thus, while
the error does not necessarily converge asymptotically to 0 as t → ∞, it is small for
large t in the sense that for all δ, ε > 0 there exists T > 0 such that

meas({t ≥ T | |e(t)| ≥ δ}) ≤ ε ,
where meas denotes the Lebesgue measure. In applying Theorem 3.3 it is important to
know the constant K or at least a lower bound for K. In principle, K can be obtained
from frequency-response experiments performed on the linear part of the plant; see
[15] for details.

For the proof of Theorem 3.3 two lemmas are required, the proofs of which can
be found in the appendix.

Lemma 3.4. Suppose that Tt is exponentially stable and G(0) > 0. Define

H(s) =
1

s
(G(s)−G(0)) .

If 0 < 2κ < K, then

‖H(1 + κH)−1‖∞ <
1

κ
(3.11)



INTEGRAL CONTROL IN THE PRESENCE OF SATURATION 1949

and there exists P ∈ B(X), with P = P ∗ ≥ 0 and such that the Riccati equation

〈Aκx1, Px2〉+ 〈Px1, Aκx2〉+ κ2〈CLx1, CLx2〉(3.12)

+ 〈(A−1B)∗Px1, (A
−1B)∗Px2〉 = 0

is satisfied for all x1, x2 ∈ dom(Aκ) = dom(A), where Aκ := A− κA−1BCL.
Lemma 3.5. Let φ : R → R be locally Lipschitz and (εn) be any sequence with

εn > 0 and limn→∞ εn = 0. Define the function φ� : R→ R by

φ�(ξ) = lim sup
n→∞

φ(ξ + εn)− φ(ξ)

εn
.

Then φ� ∈ L∞loc(−∞,∞) (φ� ∈ L∞(−∞,∞) if φ is globally Lipschitz) and φ� ◦ u is
Lebesgue measurable for all Lebesgue measurable functions u : [0,∞) → R. If u is
absolutely continuous, so is φ ◦ u and

d

dt
(φ ◦ u)(t) = φ�(u(t))u̇(t) for a.e. t ∈ [0,∞) .

Proof of Theorem 3.3. By Proposition 3.1, there exists a unique solution of (3.1)–
(3.2) on [0,∞). We denote this solution by (x(·), u(·)) and introduce new variables by
defining

z(t) := x(t) +A−1Bφ(u(t)) , v(t) := φ(u(t))− φr for all t ≥ 0.

By regularity it follows that z(t) ∈ dom (CL) for a.e. t ∈ [0,∞). Moreover, by Lemma
3.5, v̇(t) = φ�(u(t))u̇(t) for a.e. t ∈ [0,∞). Therefore, an easy calculation yields

ż = Az − kφ�(u)A−1B(CLz + G(0)v) , z(0) = z0 := x0 +A−1Bφ(u0),(3.13)

v̇ = −kφ�(u)(CLz + G(0)v) , v(0) = v0 := φ(u0)− φr .(3.14)

The derivative on the left-hand side of (3.13) and (3.14) has to be understood in X−1.
Notice that, since φ is nondecreasing, φ�(ξ) ≥ 0 for all ξ ∈ R. We observe that, while
in these new variables we still have an unbounded operator A−1BCL, the operator
A−1B is in B(R, X). We will investigate the stability properties of (3.13) and (3.14)
using a Liapunov approach.

Since 0 < kλ < K, it follows that there exists µ > λ/2 such that 0 < 2µk < K,
and therefore, by Lemma 3.4,

‖H(1 + µkH)−1‖∞ <
1

µk
.

By the same lemma, the Riccati equation (3.12) with κ = µk has a solution P ∈ B(X)
satisfying P = P ∗ ≥ 0. Set

P̃ =

(
P 0
0 µkG(0)

)
,

and define

Ãk =

(
A− µkA−1BCL −µkA−1BG(0)
−µkCL −µkG(0)

)
, B̃ =

(
A−1B

1

)
, C̃ = (CL G(0)) ,
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where dom(Ãk) = dom(A) × R. The operator Ãk generates a C0-semigroup. Using
(3.12), it is easy to show that

〈Ãkx̃1, P̃ x̃2〉+ 〈P̃ x̃1, Ãkx̃2〉+ µ2k2〈C̃x̃1, C̃x̃2〉+ 〈B̃ ∗P̃ x̃1, B̃
∗P̃ x̃2〉 = 0(3.15)

is satisfied for all x̃1, x̃2 ∈ dom(Ãk).
Setting z̃(·) = (z(·), v(·)), (3.13) and (3.14) can be reformulated as

˙̃z = Ãkz̃ + k(µ− φ�(u))B̃C̃z̃ , z̃(0) = z̃0 :=

(
z0

v0

)
,(3.16)

where the derivative on the left-hand side has to be understood in X−1 × R. For an
intermediate step in the Liapunov analysis we need differentiability in X × R, and
therefore, we will use an approximation argument. To this end let T > 0 be fixed but
arbitrary, and choose (wn) ⊂W 1,2(0, T ;R) and (z̃n0 ) ⊂ dom(Ãk) such that

lim
n→∞ ‖k(µ− φ�(u))C̃z̃ − wn‖L2(0,T ) = 0 , lim

n→∞ ‖z̃0 − z̃n0 ‖X×R = 0 .(3.17)

Consider the system

η̇(t) = Ãkη(t) + B̃wn(t) , η(0) = z̃n0 .(3.18)

ξ(t) = C̃η(t) .(3.19)

The abstract initial-value problem (3.18) has a strong solution z̃n on [0, T ] in the sense
that z̃n(0) = z̃n0 and (3.18) is satisfied for a.e. t ∈ [0, T ] (see Pazy [26, Cor. 2.10, p.
109]). Using (3.17) we obtain

lim
n→∞ ‖z̃ − z̃n‖L2(0,T ) = 0 ; lim

n→∞ ‖z̃(t)− z̃n(t)‖X×R = 0 for all t ∈ [0, T ] .(3.20)

Setting ξn(t) = C̃z̃n(t), it follows from the regularity of (3.18) that

lim
n→∞ ‖C̃z̃ − ξn‖L2(0,T ) = 0 .(3.21)

Differentiating the function

τ 7→ Vn(τ) = 〈z̃n(τ), P̃ z̃n(τ)〉
shows that, for a.e. τ ∈ [0, T ],

V̇n(τ) = 〈z̃n(τ), P̃ Ãkz̃n(τ)〉+ 〈Ãkz̃n(τ), P̃ z̃n(τ)〉+ 2〈B̃wn(τ), P̃ z̃n(τ)〉 .(3.22)

If t ∈ [0, T ], then integrating (3.22) from 0 to t, taking limits as n → ∞, invoking
(3.15), (3.17), (3.20), and (3.21), and setting

V (τ) = 〈z̃(τ), P̃ z̃(τ)〉
we obtain

V (t)− V (0) = −
∫ t

0

µ2k2(C̃z̃)2 −
∫ t

0

(B̃ ∗P̃ z̃)2 + 2

∫ t

0

〈B̃k(µ− φ�(u))C̃z̃, P̃ z̃〉 .

Completing the square gives

V (t)− V (0) = −
∫ t

0

[µ2k2 − k2(φ�(u)− µ)2](C̃z̃)2 −
∫ t

0

[k(φ�(u)− µ)C̃z̃ + B̃ ∗P̃ z̃]2 ,
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and hence

V (t)− V (0) = −k2

∫ t

0

[2µφ�(u)− (φ�)2(u)](C̃z̃)2(3.23)

−
∫ t

0

[k(φ�(u)− µ)C̃z̃ + B̃ ∗P̃ z̃]2 ,

which holds for all t ∈ [0, T ]. Since T > 0 was arbitrary, it follows that (3.23) holds
for all t ≥ 0. Therefore, using (3.23) and the definition of C̃,

k2

∫ t

0

(2µφ�(u)− (φ�)2(u))(CLz + G(0)v)2 ≤ V (0) <∞ for all t ≥ 0 .(3.24)

Now recall that 2µ > λ and ‖φ�(u)‖L∞(R+) ≤ λ, so that

2µφ�(u)− (φ�)2(u) > ε(φ�)2(u)

for some ε > 0. Therefore, (3.24) gives

εk2

∫ t

0

(φ�)2(u)(CLz + G(0)v)2 ≤ V (0) <∞ for all t ≥ 0 .

It follows that

φ�(u)(CLz + G(0)v) ∈ L2(R+) .(3.25)

Using this in (3.13) and appealing to the fact that A, A−1B, and C are the generating
operators of a stable regular system we may conclude that

CLz ∈ L2(R+) .(3.26)

Hence, by (3.25) and the boundedness of φ�(u),

φ�(u)v ∈ L2(R+),(3.27)

and thus

(CLz)φ
�(u)v ∈ L1(R+) .(3.28)

Using (3.24), (3.26)–(3.28), and the boundedness of φ�(u) it follows that

φ�(u)v2 ∈ L1(R+) .(3.29)

Multiplying (3.14) by v(t), integrating, and then using (3.28) and (3.29) shows that

lim
t→∞ v

2(t) = v2
0 + 2 lim

t→∞

∫ t

0

vv̇ = ν

for some ν ∈ [0,∞). By continuity of v(·) it follows that

lim
t→∞ v(t) =

√
ν or lim

t→∞ v(t) = −√ν .

In the following we distinguish two cases: bounded and unbounded observation.
Let us first consider the case of bounded C. In order to prove statement (1), we

have to show that ν = 0. Seeking a contradiction, suppose that ν > 0. Assuming
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that limt→∞ v(t) =
√
ν (the case limt→∞ v(t) = −√ν can be dealt with in an entirely

analogous fashion), we obtain that

φ∞ := lim
t→∞φ(u(t)) > φr .(3.30)

By Lemma 2.1, part (2), it follows that

lim
t→∞ ‖x(t) +A−1Bφ∞‖ = 0 .(3.31)

Using the boundedness of C it follows from (3.2), (3.30), and (3.31) that

lim
t→∞ u̇(t) = k(r + CA−1Bφ∞ −Dφ∞) = kG(0)(φr − φ∞) < 0 ,

and so

lim
t→∞u(t) = −∞ .(3.32)

Since φ is nondecreasing we obtain

φ∞ = lim
t→∞φ(u(t)) = inf(imφ) ≤ φr ,

contradicting (3.30). Therefore, ν = 0, and consequently limt→∞ φ(u(t)) = φr, which
is statement (1). Statement (2) follows now from Lemma 2.1, part (2), and statement
(3) is a consequence of statements (1) and (2).

To prove statement (4), let φr ∈ imφ. Seeking a contradiction, suppose that
the claim is not true. Then there exists a sequence of positive numbers (tn) with
limn→∞ tn =∞ and ε > 0 such that

dist (u(tn), φ−1(φr)) ≥ ε .(3.33)

If the sequence (u(tn)) is bounded, we may assume, without loss of generality, that
it converges to a finite limit u∞. By continuity of φ and statement (1) we have that
φ(u∞) = φr, and thus u∞ ∈ φ−1(φr). This contradicts (3.33). So, suppose that (u(tn))
is unbounded. Without loss of generality, we may then assume that limn→∞ u(tn) =
∞. By monotonicity and statement (1) it follows that φr = supφ. Since φr ∈ imφ
there exists ξ∗ such that

φ(ξ∗) = φr = supφ = maxφ .

By monotonicity of φ we have

φ(ξ) = φr = maxφ for all ξ ≥ ξ∗ .
In particular, we see that u(tn) ∈ φ−1(φr) for all sufficiently large n, contradicting
(3.33).

To prove statement (5) assume that φr ∈ int (imφ). Again seeking a contradic-
tion, suppose that the claim is not true. Then there exists a sequence of positive
numbers (tn) with limn→∞ tn = ∞ and limn→∞ |u(tn)| = ∞. Without loss of gen-
erality, we may assume that limn→∞ u(tn) = ∞. By monotonicity it then follows
that

φr = lim
n→∞φ(u(tn)) = supφ ,

contradicting the hypothesis φr ∈ int (imφ).
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Now let us consider the case of unbounded C with L−1(G) ∈ M. We will again
be seeking a contradiction, and hence assume that ν > 0. It is clear that (3.30) and
(3.31) still hold. It only remains to show that (3.32) is also true in this case. To this
end, write (3.2) in the form

u̇ = k[r − CLTtx0 − L−1(G) ? φ(u)] .(3.34)

Since limt→∞ φ(u(t)) = φ∞ and L−1(G) ∈ M it follows that limt→∞(L−1(G) ?
φ(u))(t) = G(0)φ∞ (see [8, Thm. 6.1, part (ii), p. 96]). Therefore, by (3.30) there
exists δ > 0 and T > 0 such that

G(0)φr − (L−1(G) ? φ(u))(t) ≤ −δ for all t ≥ T .(3.35)

Integrating (3.34) from T to t and using (3.35) gives

u(t) ≤ u(T ) + k

[∫ t

T

|CLTτx0| dτ − δ(t− T )

]
.(3.36)

By exponential stability of Tt we have that the map t 7→ CLTtx0 is in L2
α(R+,R) for

some α < 0, and hence in L1(R+,R). As a consequence, (3.36) yields

lim
t→∞u(t) = −∞ ,

which is (3.32). Statements (2), (4), and (5) then follow as in the case of bounded C.
Finally, write y(t) in the form

y(t) = CLTtx0 + (L−1(G) ? φ(u))(t) .

Under the assumption that x0 ∈ dom (A) and L−1(G) ∈M, we obtain

lim
t→∞ y(t) = G(0) lim

t→∞φ(u(t)) .

Combining this with statement (1) yields statement (3).
One of the conditions imposed in Theorem 3.3 is that [G(0)]−1r ∈ clos (imφ).

The following proposition shows that this condition is necessary for solvability of the
tracking problem.

Proposition 3.6. Let r ∈ R, and suppose that φ : R → R is continuous, Tt is
exponentially stable, and G(0) 6= 0. If there exist an initial condition x0 ∈ X and a
continuous function u : [0,∞)→ R such that φ(u(·)) is bounded and

lim
t→∞[CLx(t) +Dφ(u(t))] = r ,

where x(t) = Ttx0 +
∫ t

0
Tt−τBφ(u(τ)) dτ , then φr = [G(0)]−1r ∈ clos (imφ).

The proof of the above proposition requires some preparation. Recall the concept
of an ω-limit point (and ω-limit set Ω(ψ)) of a continuous function ψ : [0,∞)→ R. A
point ψ∗ is an ω-limit point of ψ if there exists an increasing sequence (tn) ⊂ [0,∞)
such that tn → ∞ and ψ(tn) → ψ∗ as n → ∞. The set Ω(ψ) of all ω-limit points is
the ω-limit set of ψ.

The following lemma is probably standard; however, we were unable to locate it
in the literature and so include a proof for completeness.
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Lemma 3.7. Let ψ : [0,∞)→ R be continuous and bounded. Then

lim
s→0, s>0

[s(Lψ)(s)] = ω =⇒ ω ∈ Ω(ψ) .

Proof. It suffices to prove the result in the case ω = 0 (if ω 6= 0, then simply replace
ψ by ψω : t 7→ ψ(t) − ω). It is well known that Ω(ψ) is compact and is approached
by ψ(t) as t → ∞ (see, for example, [10, p. 113]). Seeking a contradiction, suppose
0 6∈ Ω(ψ). Then there exists ε > 0 and T > 0 such that for all t ≥ T , |ψ(t)| ≥ ε. Since
ψ is continuous, we may restrict our attention, without loss of generality, to the case
ψ(t) ≥ ε for all t ≥ T . Then, for all s ∈ (0,∞), we have

(Lψ)(s) =

∫ ∞
0

e−stψ(t) dt ≥
∫ T

0

e−stψ(t) dt+ ε

∫ ∞
T

e−st dt(3.37)

=

∫ T

0

e−stψ(t) dt+
εe−sT

s
,(3.38)

whence the contradiction

0 = lim
s→0, s>0

s(Lψ)(s) ≥ ε > 0 .

Proof of Proposition 3.6. For δ ∈ (0, π/2) define the open sector S(δ) ⊂ C0 by

S(δ) := {ρeiα | ρ ∈ (0,∞), α ∈ (−δ, δ)} .

Setting ψ(t) = φ(u(t)) and y(t) = CLx(t) +Dψ(t) we obtain

(Ly)(s) = G(s)(Lψ)(s) + C(sI −A)−1x0 ,

and so by the final-value theorem (see [7, Satz 34.2] or [25, Thm. 14, p. 95])

r = lim
t→∞ y(t) = lim

s→0, s∈S(δ)
s(Ly)(s) = lim

s→0, s∈S(δ)
sG(s)(Lψ)(s) .

Since G(0) 6= 0 it follows using Lemma 3.7 that

φr = [G(0)]−1r = lim
s→0, s∈S(δ)

s(Lψ)(s) ∈ Ω(ψ) ⊂ clos (imφ) .

A result similar to Proposition 3.6 was stated without proof by Miller and Davison
[22] in a finite-dimensional context. However, their approach (as outlined by Miller
[21]) does not extend to infinite-dimensional regular systems.

4. Example: Controlled diffusion process with output delay. Consider a
diffusion process (with diffusion coefficient a > 0 and with Dirichlet boundary condi-
tions), on the one-dimensional spatial domain [0, 1], with scalar nonlinear pointwise
control action (applied at point xb ∈ (0, 1) via a nonlinearity φ with Lipschitz con-
stant λ > 0) and delayed (delay h ≥ 0) pointwise scalar observation (output at point
xc ∈ (0, 1), xc ≥ xb.). We formally write this single-input, single-output system as

zt(t, x) = azxx(t, x) + δ(x− xb)φ(u(t)), y(t) = z(t− h, xc),
z(t, 0) = 0 = z(t, 1) for all t > 0 .
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For simplicity, we assume zero initial conditions as follows:

z(t, x) = 0 for all (t, x) ∈ [−h, 0]× [0, 1] .

With input φ(u(·)) and output y(·), this example qualifies as a regular linear system
with transfer function given by

G(s) =
e−sh sinh

(
xb
√

(s/a)
)

sinh
(

(1− xc)
√

(s/a)
)

a
√

(s/a) sinh
√

(s/a)
.

In this case, a detailed analysis (see [15] for related investigations) yields

K := sup{k > 0 | (3.8) holds}
=

1

|G′(0)| =
6a2

xb(1− xc)(6ha+ 1− x2
b − (1− xc)2)

.

Therefore, by Theorem 3.3, for each k ∈ (0,K/λ), the integral control

u(t) = k

∫ t

0

[r − y(t)] dt

guarantees asymptotic tracking of every constant reference signal r satisfying

r

G(0)
=

ar

xb(1− xc) ∈ clos (imφ) .

For purposes of illustration, we adopt the following values:

a = 0.1, xb =
1

3
, xc =

2

3
, h = 1, r = 1.

We consider a nonlinearity φ of saturation type, defined as follows:

u 7→ φ(u) :=

 1, u ≥ 1,
u, u ∈ (0, 1),
0, u ≤ 0

in which case λ = 1 and

K =
243

620
(≈ 0.3919).

For r = 1, we have

r

G(0)
=

a

xb(1− xc) = 0.9 ∈ [0, 1] = clos (imφ) .

In each of the following three cases of admissible controller gains

(i) k = 0.39, (ii) k = 0.26, (iii) k = 0.13,

Fig. 4.1 depicts the output behavior of the system under integral control, while
Fig. 4.2 depicts the corresponding control input. These figures were generated using
SIMULINK Simulation Software within MATLAB wherein a truncated eigenfunction
expansion, of order 10, was adopted to model the diffusion process.
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Fig. 4.1. Controlled output.

Fig. 4.2. Control input.

Appendix.
Proof of Lemma 3.2. In proving Lemma 3.2, we will study an initial-value problem

which is slightly more general than (3.6). Let α ≥ 0, and let w ∈ C([0, α],R). Consider
the initial-value problem

u̇(t) = k[r − (Ψ∞x0)(t)− (F∞φ(u))(t)] , t ≥ α ,(A.1)

u(t) = w(t) , t ∈ [0, α] .(A.2)

Lemma A.1. Let x0 ∈ X. For any initial function w ∈ C([0, α],R) there exists
ε > 0 and a unique function u ∈ C([0, α + ε],R) with u(t) = w(t) for all t ∈ [0, α]
and such that u is absolutely continuous on [α, α + ε] and (A.1) is satisfied for a.e.
t ∈ [α, α+ ε].

Proof. Without loss of generality, we may assume that k = 1. For δ > 0 and
η > ‖w‖∞, define

Cδ,η = {u ∈ C([0, α+ δ],R) | |u(t)− w(t)| ≤ η if 0 ≤ t ≤ α ;

|u(t)− w(α)| ≤ η if α ≤ t ≤ α+ δ} .

Choosing η > ‖w‖∞ guarantees that Cδ,η contains the zero function. Using the causal-
ity of F∞, the boundedness of the operators PtF∞, and the Lipschitz continuity of
φ, it is clear that, for given numbers δ > 0 and η > ‖w‖∞, there exists λ > 0 such
that, for all ε ∈ (0, δ] and all u, v ∈ Cε,η,∫ α+ε

α

|F∞φ(u)− F∞φ(v)|2 ≤ λ2

∫ α+ε

0

|u− v|2 .
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Using Hölder’s inequality we obtain the estimate∫ α+ε

α

|F∞φ(u)− F∞φ(v)| ≤ λ√ε
(∫ α+ε

0

|u− v|2
)1/2

,(A.3)

which holds for all u, v ∈ Cε,η, and all ε ∈ (0, δ]. Moreover, if v = 0, then we may
conclude that, for all u ∈ Cε,η and all ε ∈ (0, δ],∫ α+ε

α

|F∞φ(u)| ≤
∫ α+ε

α

|(F∞φ(0))(τ)| dτ + λ
√
ε

(∫ α+ε

0

|u|2
)1/2

.(A.4)

Set f(t) = r − (Ψ∞x0)(t), and choose ρ > 0 such that∫ α+ρ

α

(|f(τ)|+ |(F∞φ(0))(τ)|) dτ ≤ η

2
.(A.5)

Now choose ε > 0 such that

ε ≤ δ , ε ≤ ρ , ε <
1

λ
, ε ≤ 1

4(α+ ρ)

(
η

λmax{‖w‖∞, |w(α)|+ η}
)2

.(A.6)

Define the operator Γ by

(Γu)(t) = w(t) , 0 ≤ t ≤ α ,

(Γu)(t) = w(α) +

∫ t

α

f(τ) dτ −
∫ t

α

(F∞φ(u))(τ) dτ , t ≥ α ,

and set

C̃ε,η := {u ∈ Cε,η | u(t) = w(t) if 0 ≤ t ≤ α} .

Clearly, C̃ε,η is a complete metric space, and the lemma follows if we can show that Γ

is a contraction on C̃ε,η.

We first show that Γ(C̃ε,η) ⊂ C̃ε,η. Using (A.4)–(A.6) we obtain, for all u ∈ Cε,η
and all t ∈ [α, α+ ε],

|(Γu)(t)− w(α)| ≤ λ√ε
(∫ α+ε

0

|u(τ)|2 dτ
)1/2

+
η

2

≤ η

2
+ λ
√
ε(α+ ρ) max{‖w‖∞, |w(α)|+ η}

≤ η ,
which shows that Γ(C̃ε,η) ⊂ C̃ε,η. It remains to show that Γ is a contraction on C̃ε,η.

To this end, let u, v ∈ C̃ε,η. Using (A.3) we obtain

sup
0≤τ≤α+ε

|(Γu)(τ)− (Γv)(τ)| ≤ λ√ε
(∫ α+ε

α

|u− v|2
)1/2

≤ ελ sup
0≤τ≤α+ε

|u(τ)− v(τ)| .

By (A.6) we have that ελ < 1, showing that Γ is a contraction on C̃ε,η.
Proof of Lemma 3.2. We proceed in several steps.
Step 1. Existence and uniqueness on a small interval.
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An application of Lemma A.1 with α = 0 shows that there exists an ε > 0 such
that (3.6) has a unique solution on the interval [0, ε).

Step 2. Extended uniqueness.
Let ui be a solution of (3.6) on the interval [0, ai), i = 1, 2. We claim that u1(t) =

u2(t) for all t ∈ [0, a), where a = min(a1, a2). Seeking a contradiction, assume that
there exists t ∈ (0, a) such that u1(t) 6= u2(t). Defining

t∗ = inf{t ∈ (0, a) |u1(t) 6= u2(t)} ,
it follows that t∗ > 0 (by Step 1), t∗ < a (by assumption), and u1(t∗) = u2(t∗) (by
continuity of u1 and u2). Clearly, the initial-value problem

u̇(t) = k[r − (Ψ∞x0)(t)− (F∞φ(u))(t)] , t ≥ t∗ ,
u(t) = u1(t) , t ∈ [0, t∗] ,

is solved by u1 and u2. This implies (by Lemma A.1) that there exists an ε > 0 such
that u1(t) = u2(t) for all t ∈ [0, t∗ + ε), which contradicts the definition of t∗.

Step 3. Continuation of solutions.
Let u be a solution of (3.6) on the interval [0, a), a < ∞. In order to prove that

u can be extended to a maximal solution (which satisfies (3.7) if amax < ∞), it is
sufficient to show that u can be continued to the right (beyond a) if u is bounded
on [0, a). Now u(t) = (Γu)(t) for all t ∈ [0, a), where Γ is the operator defined in the
proof of Lemma A.1 with α = 0. It is clear that limt→a−(Γu)(t) = γ exists and is
finite. Consequently, limt→a− u(t) = γ, and hence setting u(a) = γ makes u into a
continuous function on [0, a]. Finally, Lemma A.1 shows that the initial value problem

v̇ = k[r −Ψ∞x0 − F∞φ(v)] , t ≥ a ,
v(t) = u(t) , t ∈ [0, a] ,

has a unique solution u∗ on [0, a + ε) for some ε > 0. By the causality of the map
F∞φ, the function u∗ is a solution of (3.6) on [0, a+ ε), i.e., u∗ is a continuation of u.

Step 4. Global existence if φ is globally Lipschitz.
Assume that φ is globally Lipschitz. Seeking a contradiction suppose that amax <

∞. Let u be the solution of (3.6) defined on [0, amax). Multiplying (3.6) by u and
estimating we obtain that, for all τ ∈ [0, amax),

u(τ)u̇(τ) ≤ k[r2 + (Ψ∞x0)2(τ) + u2(τ) + |(F∞φ(u))(τ)u(τ)| ] .(A.7)

Integrating (A.7) from 0 to t and combining the estimate∫ t

0

|(F∞φ(u))u| ≤
∫ t

0

|F∞(φ(u)− φ(0))| |u| +
1

2

(∫ t

0

(F∞φ(0))2 +

∫ t

0

u2

)
,

the Cauchy–Schwarz inequality, and the global Lipschitz property of φ, it can be
readily shown that there exists positive constants α and β such that, for all t ∈
[0, amax),

u2(t) ≤ α+ β

∫ t

0

u2(τ) dτ .

An application of Gronwall’s lemma then shows that u2(t) ≤ αeβt for all t ∈ [0, amax).
Hence u is bounded on [0, amax), which by Step 3 is in contradiction to the maximality
of amax.
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Proof of Lemma 3.4. Since 0 < 2κ < K, it follows that there exists ε > 0 such
that

1 + 2κRe
G(s)

s
≥ ε for all s ∈ C0 .

Hence

1 + 2κRe
G(iω)

iω
≥ ε for all ω ∈ R, ω 6= 0 ,

and thus

1 + 2κReH(iω) ≥ ε for all ω ∈ R .(A.8)

By considering

e−(1+2κReH(s)) =
∣∣∣e−(1+2κH(s))

∣∣∣ ,
applying the maximum modulus theorem, and using the fact that H(s)→ 0 as |s| →
∞ in C0, it follows from (A.8) that

1 + 2κReH(s) ≥ ε for all s ∈ C0 .

Therefore, for all s ∈ C0,

ε+ κ2H(s)H̄(s) ≤ (1 + κH(s))(1 + κH̄(s)) .

Consequently, for all s ∈ C0,

H(s)(1 + κH(s))−1H̄(s)(1 + κH̄(s))−1 <
1

κ2
,

yielding (3.11).
By using the identity s(sI −A)−1 = A(sI −A)−1 + I, we easily obtain

H(s) =
1

s
(G(s)−G(0)) = CL(sI −A)−1A−1B .

Consider the state-space system given by the triple (A,A−1B,CL). For any T > 0, the
input-to-state map of this system maps L2(0, T ) boundedly into X1. Consequently,
the triple (A,A−1B,CL) defines a Pritchard–Salamon system with respect to the
spaces X1 and X; see Curtain et al. [4] or Pritchard and Townley [31]. Now, (3.11)
means in particular that the closed-loop system obtained from H by negative output
feedback with gain κ is input-output stable. By the equivalence of input-output and
exponential stability (see [4] or [32]), we may conclude that the semigroup generated
by Aκ, with 0 < 2κ < K, is exponentially stable. Moreover, combining Theorem 2.4
in Pritchard and Townley [30] (or, alternatively, Theorem 1 in Logemann [12]) and
(3.11), it follows that the structured complex stability radius of Aκ with respect
to the weightings A−1B and CL is greater than κ. Therefore, an application of
Proposition 1.5 in [31] shows that the Riccati equation (3.12) has a self-adjoint
positive-semidefinite solution P ∈ B(X) such that (3.12) holds for all x1, x2 ∈
dom(Aκ).

Proof of Lemma 3.5. It is clear that φ� ∈ L∞loc(−∞,∞) if φ is locally Lipschitz
and that φ� ∈ L∞(−∞,∞) if φ is globally Lipschitz. Moreover, as the limsup of a
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sequence of Borel functions, φ� is a Borel function. Consequently, φ� ◦ u is Lebesgue
measurable for all Lebesgue measurable functions u. Let u be absolutely continuous.
Setting v = φ ◦ u, it follows from the Lipschitz continuity of φ and the absolute
continuity of u that v is absolutely continuous. If t ∈ R is such that u is differentiable
at t, then we have

v(t+ h)− v(t) = φ(u(t) + hu̇(t))− φ(u(t)) + φ(u(t+ h))− φ(u(t) + hu̇(t)) .(A.9)

Moreover, by Lipschitz continuity of φ, there exists a constant L > 0 such that, for
all sufficiently small |h|,∣∣∣∣ 1h [φ(u(t+ h))− φ(u(t) + hu̇(t))]

∣∣∣∣ ≤ L ∣∣∣∣ 1h [u(t+ h)− u(t)]− u̇(t)

∣∣∣∣ .(A.10)

Let D ⊂ R be the set of all points t such that both u and v are differentiable at t.
Then D is of full measure, and combining (A.9) and (A.10) yields

lim
h→0

1

h
[v(t+ h)− v(t)] = lim

h→0

1

h
[φ(u(t) + hu̇(t))− φ(u(t))] for all t ∈ D.

Therefore, for every t ∈ D,

v̇(t) = 0 if u̇(t) = 0 ,(A.11)

v̇(t) = lim
h→0

φ(u(t) + hu̇(t))− φ(u(t))

hu̇(t)
u̇(t)

= φ′(u(t))u̇(t) if u̇(t) 6= 0 .(A.12)

In particular, if t ∈ D0 := {t ∈ D | u̇(t) 6= 0}, then φ is differentiable at u(t). For
t ∈ D0 we have, of course, φ�(u(t)) = φ′(u(t)), and thus it follows from (A.11) and
(A.12) that

v̇(t) = φ�(u(t))u̇(t) for a.e. t ∈ [0,∞) .
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Abstract. We study the stability of a flexible beam that is clamped at one end and free at
the other; a mass is also attached to the free end of the beam. To stabilize this system we apply a
boundary control force at the free end of the beam. We prove that the closed-loop system is well-
posed and is exponentially stable. We then analyze the spectrum of the system for a special case
and prove that the spectrum determines the exponential decay rate for the considered case.
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1. Introduction. In this paper, we study the stability of a flexible beam that
is clamped at one end and is free at the other end; a mass is also attached to the free
end. The equations of motion for this system are given by

utt + uxxxx = 0, 0 < x < 1, t ≥ 0,(1.1)

u(0, t) = ux(0, t) = uxx(1, t) = 0, t ≥ 0,(1.2)

−uxxx(1, t) +mutt(1, t) = w(t), t ≥ 0,(1.3)

where m > 0 is the tip mass and w(t) is the boundary control force applied at the
free end of the beam; a subscript letter denotes the partial derivation with respect to
that variable. For simplicity, and without loss of generality, the length of the beam,
the mass per unit length, and the flexural rigidity of the beam are chosen to be unity.
Our problem is to find a feedback control law for w(t) so that the solutions of the
resulting closed-loop system decay uniformly to zero. This can be achieved with a
highly unbounded feedback law; see (2.1).

The model given by (1.1)–(1.3) is a variant of the SCOLE model in the sense that
one has neglected the moment of inertia at x = 1, which has been studied in the past;
see, e.g., [1], [9], [14], [15]. It is known that for such types of models the feedback law

w(t) = −αut(1, t), α > 0, t ≥ 0,(1.4)

is sufficient for strong (i.e., asymptotic) stability but not sufficient for uniform (i.e.,
exponential) stability; see [9], where arbitrarily slow decay is proven by using asymp-
totic estimates of the eigenvalues. In fact, as shown in [14], the control law given by
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(1.4) may be considered as a compact perturbation of the uncontrolled system. It
is well known that such compact perturbations are not sufficient to provide uniform
stabilization; see [6], [17], [20]. Hence, to obtain uniform stability one has to choose
“stronger” feedback terms, such as uxxxt (see [13], [14]), where the lack of uniform
stability for the SCOLE model with usual feedback laws (e.g., velocity feedback; see
(1.4)) was proven by using the compactness argument, and uniform decay of the en-
ergy was obtained by means of higher-order feedback for rather smooth initial data.
Also in [15], decay estimates for a flexible cable with a tip mass were given. Let us
mention that these papers study the asymptotic or uniform decay for hybrid systems
by using energy multipliers; thus the decay is qualitative, and one cannot conclude
on the optimality of the decay rate. In [3] a flexible beam with rate control on the
bending moment was considered, the uniform decay was proven by using the esti-
mates of the resolvent operator on the imaginary axis, and a careful analysis of the
eigenvalues and eigenfunctions was given (similar to the one given in [12] but for a
harder problem). In [1] a three-dimensional model for the SCOLE system, including
the moment of inertia at x = 1, is considered, and then a feedback law similar to
(1.4) and another feedback law based on optimal control techniques are studied. As
stated above, these results also show the asymptotical or uniform decay of energy for
the system considered, but do not give the optimality of the decay rate.

In this paper we investigate the uniform stability of the system given by (1.1)–
(1.3). The paper is organized as follows. In the next section we prove the well-
posedness and the uniform stability of (1.1)–(1.3) with a proper choice for w(t) for a
norm weaker than the one used in [14] by introducing a specific change of variables.
Then we study the spectrum of the system for a particular case and prove that for
the considered case the spectrum determines the exponential decay rate for almost all
α > 0. We also show that in case m = 0 in (1.1)–(1.4) (i.e., the case of the cantilevered
beam with a boundary force control), for almost all α > 0, the spectrum determines
the exponential growth rate (see Appendix). Finally we give some concluding remarks.

2. Stability results. For the system given by (1.1)–(1.3) we propose the fol-
lowing linear feedback control law for w(t):

w(t) = −αut(1, t) + βuxxxt(1, t), t ≥ 0,(2.1)

where α and β are positive constants.
We define the auxiliary function η as

η(t) = −uxxx(1, t) +
m

β
ut(1, t), t ≥ 0.(2.2)

Upon substituting (2.1) and (2.2) into (1.3), the latter becomes

βη̇(t) + η(t) +

(
α− m

β

)
ut(1, t) = 0, t ≥ 0,(2.3)

where a dot represents the time derivative. We note that a similar control law has
been applied to the stabilization of a cable with a tip mass, see [10].

Let us introduce the following spaces:

V = {u : [0, 1]→ R|u ∈ H2(0, 1), u(0) = ux(0) = 0},(2.4)

H = {(u v η)
T |u ∈ V, v ∈ L2(0, 1), η ∈ R},(2.5)
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where the superscript T stands for the transpose; the spaces L2(0, 1) and Hk(0, 1) are
defined as

L2(0, 1) =

{
y : [0, 1]→ R|

∫ 1

0

y2dx <∞
}
,(2.6)

Hk(0, 1) = {y : [0, 1]→ R|y, y(1), . . . , y(k) ∈ L2(0, 1)}.(2.7)

In H we define the following inner-product:

< y, ỹ >H =

∫ 1

0

(uxxũxx + vṽ)dx+ Kηη̃,(2.8)

where y = (u v η)
T ∈ H, ỹ = (ũ ṽ η̃)

T ∈ H, K > 0 is chosen as

K =
β2

m+ αβ
.(2.9)

The reason for this choice will become clear later. Next we define the unbounded
operator A : D(A) ⊂ H → H as follows:

A

 u
v
η

 =

 v
−uxxxx

− 1
β η − 1

β (α− m
β )v(1)

 ,(2.10)

where the domain D(A) of the operator A is defined as

D(A) =

{
(u v η )

T |u ∈ H4(0, 1) ∩ V, v ∈ V, η ∈ R,(2.11)

uxx(1) = 0, η = −uxxx(1) +
m

β
v(1)

}
.

With the previous notation, (1.1)–(1.2) and (2.3) can be written formally as

ẏ = Ay, y(0) ∈ H,(2.12)

where y = (u v η)
T

, η is defined by (2.2), and v = ut.
Theorem 2.1. The operator A, defined by (2.10) and (2.11), generates a C0

semigroup of contractions on H. (For the terminology on the semigroup theory, the
reader is referred to [11].)

Proof. We apply the Lumer–Phillips theorem; see, e.g., [11, p. 14]. First, for any

y = (u v η)
T ∈ D(A),

〈Ay, y〉H =

∫ 1

0

(uxxvxx − vuxxxx)dx− K

β
η

(
η +

(
α− m

β

)
v(1)

)
= −K

β
u2
xxx(1)− Kmα

β2
v2(1),

(2.13)

where to derive the last equation we integrated by parts twice and used (1.2), (2.2),
and (2.9). Note that due to the particular choice of K given by (2.9), the term
multiplying v(1)uxxx(1) in (2.13) vanishes. It follows from (2.13) that the operator A
is dissipative.
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Next we show that the range of the operator λI −A : D(A) ⊂ H → H is onto for

λ > 0; that is, for any given z = (f g h)
T ∈ H, we have to find y = (u v η)

T ∈ D(A)
so that

(λI −A)y = z,(2.14)

which is equivalent to the following set of equations:

λu− v = f,(2.15)

λv + uxxxx = g,(2.16)

(
λ+

1

β

)
η +

1

β

(
α− m

β

)
v(1) = h.(2.17)

Upon substituting (2.15) into (2.16), the latter becomes

λ2u+ uxxxx = λf + g.(2.18)

By using (2.15) and (2.2) in (2.17), the latter becomes

−
(
λ+

1

β

)
uxxx(1) +

λ(α+mλ)

β
u(1) = h+

mλ+ α

β
f(1) .(2.19)

Therefore to prove that λI−A is onto, we have to prove the existence of a solution
for the following set of equations:

λ2u+ uxxxx = f∗,(2.20)

u(0) = ux(0) = uxx(1) = 0,(2.21)

−uxxx(1) + cu(1) = h∗,(2.22)

where f∗, h∗, and c are given by

f∗ = λf + g ∈ L2(0, 1), h∗ =
β

λβ + 1
h+

mλ+ α

λβ + 1
f(1) ∈ R,(2.23)

c =
λ(mλ+ α)

λβ + 1
> 0.

The existence, as well as the uniqueness and continuous dependence, of a solution
of (2.20)–(2.23) with respect to (f∗, h∗) can be considered as standard. One way to
prove it is to use the weak formulation of (2.20)–(2.23), which is∫ 1

0

uxxϕxxdx + λ2

∫ 1

0

uϕdx+ cu(1)ϕ(1)(2.24)

=

∫ 1

0

f∗ϕdx+ h∗ϕ(1), u ∈ V,∀ϕ ∈ V.

Since c > 0, the left-hand side of (2.24) is a coercive bilinear form of ϕ and u. Then
the existence and uniqueness of a u ∈ V satisfying (2.24) follow from the well-known
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Lax–Milgram theorem; see e.g. [19, p. 26]. By standard regularity u ∈ H4(0, 1) and
by using particular ϕ, one recovers the boundary conditions in u. Then v given by
(2.15) and η given by (2.17) are unique and (u v η)

T ∈ D(A). This shows that the
operator λI −A is onto for λ > 0, and the proof of the theorem now follows from the
Lumer–Phillips theorem.

Remark 1. It follows from Theorum 2.1 that for (u0 v0 η0)
T ∈ D(A), the prob-

lem (2.12) has a strong solution (u(t) v(t) η(t))
T ∈ C1(R+,V × L2(0, 1) × R) ∩

C0(R+, D(A)). Thus η(t) = −uxxx(1, t) + m
β ut(1, t) is differentiable, but uxxx(1, t)

and ut(1, t) are not guaranteed to be separably differentiable. This will be the case if

(u0 v0 η0)
T ∈ D(A2).

Next we prove that the semigroup generated by the operator A decays exponen-
tially to zero.

Theorem 2.2. Let T (t) be the C0 semigroup of contractions generated by the
operator A on H. Then there exist positive constants M and δ such that the following
holds:

‖T (t)‖L(H) ≤Me−δt, t ≥ 0,(2.25)

where the norm used is the norm induced by the inner-product given by (2.8).
Proof. We first define the following function:

V (t) = tE(t) +

∫ 1

0

x ut(x, t) ux(x, t)dx,(2.26)

where the “energy” E(t) is given by

E(t) =
1

2
‖z(t)‖2H =

1

2

∫ 1

0

(u2
t (x, t) + u2

xx(x, t))dx+
K

2
η2(t),(2.27)

z(t) = (u(·, t) ut(·, t) η(t))
T ∈ H is the solution of (2.12), and K is given by (2.9).

Assume that z(0) ∈ D(A); then by semigroup property we have z(t) = T (t)z(0) ∈
D(A) ∀t ≥ 0. Hence, in view of (2.13), we have

Ė(t) = < Az(t), z(t) >H = −K
β
u2
xxx(1, t)− Kmα

β2
u2
t (1, t) ≤ 0.(2.28)

Next, by using Cauchy–Schwarz and Poincaré’s inequalities, it can easily be shown
that the following holds for a positive constant C:

(t− C)E(t) ≤ V (t) ≤ (t+ C)E(t), t ≥ 0.(2.29)

(One can take C = 1 or even C = 1/
√

2.) By differentiating (2.26) with respect to
time and by using (1.1), we obtain

V̇ (t) = E(t) + tĖ(t) +

∫ 1

0

x uxt(x, t) ut(x, t)dx(2.30)

−
∫ 1

0

x ux(x, t) uxxxx(x, t)dx.

Using integration by parts and (1.2), we obtain∫ 1

0

x ux(x, t) uxxxx(x, t)dx = ux(1, t) uxxx(1, t) +
3

2

∫ 1

0

u2
xx(x, t)dx,(2.31)
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0

x uxt(x, t) ut(x, t)dx =
1

2
u2
t (1, t)−

1

2

∫ 1

0

u2
t (x, t) dx.(2.32)

By using (1.2), we obtain

u2
x(1, t) ≤

∫ 1

0

u2
xx(x, t)dx.(2.33)

We also have the following inequalities:

ux(1, t)uxxx(1, t) ≤ δ1u2
x(1, t) +

1

δ1
u2
xxx(1, t),(2.34)

η2(t) ≤ 2u2
xxx(1, t) + 2

m2

β2
u2
t (1, t),(2.35)

where δ1 > 0 is an arbitrary constant. By using (2.28) and (2.31)–(2.35) in (2.30), we
obtain

V̇ (t) ≤ −(1− δ1)

∫ 1

0

u2
xx(x, t)dx−

[
K

β
t−K − 1

δ1

]
u2
xxx(1, t)

−
[
Kmα

β2
t− 1

2
− Km2

β2

]
u2
t (1, t).

(2.36)

By choosing δ1 < 1, the integral term in (2.36) is negative. Hence there exists a
constant T ≥ 0, which depends only on the constants K, m, α, β, and δ1 such that
the following holds:

V̇ (t) ≤ 0, t ≥ T.(2.37)

Now, from (2.29) and (2.37) we obtain the following:

E(t) ≤ T + C

t− C E(0), t > max{C, T}.(2.38)

Note that E(t) = 1
2‖z(t)‖2H = 1

2‖T (t)z(0)‖2H; hence from (2.38) it follows that
‖T (t)‖L(H) < 1 for t > 0 sufficiently large. Hence it follows from the semigroup

property that the exponential decay, i.e., (2.25), holds.
Remark 2. From (2.25) and (2.27) we conclude that both the “energy” associated

with the flexible beam (i.e., the integral terms in (2.27)) and η defined by (2.2) decay
exponentially to zero. However, we cannot conclude that the same holds separately
for the tip mass velocity ut(1, t) and uxxx(1, t). If we assume that z(0) ∈ D(A), then
we also have for the graph norm

‖T (t)z(0)‖D(A) ≤Me−δt‖z(0)‖D(A).

In this case, T (t)z(0) decays exponentially to zero in H4(0, 1)×H2(0, 1)×R. Since,
similar to (2.33), we have

u2
t (1, t) ≤

∫ 1

0

u2
xt(x, t)dx,

we obtain exponential decay of the tip mass velocity ut(1, t) and uxxx(1, t) uniformly
for all smooth initial data z(0) ∈ D(A) bounded in D(A) for the graph norm.
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3. Analysis of the spectrum. In this section we calculate the spectrum of the
operator A for a special case and claim that the spectrum determines the optimal
exponential decay rate given by (2.25) for the considered case. Our method is to
prove that a system of eigenvectors of A forms a Riesz basis in H. To obtain this
result we compare the flexible beam with a tip mass to the flexible beam without a
tip mass for the spectral properties. Here we have to work in the complexified Hilbert
spaces V, L2(0, 1) and H. For convenience we do not change the notation for these
spaces.

Let λ ∈ C be an eigenvalue of A and let y = (u v η)
T ∈ D(A) be a corre-

sponding eigenvector. To find y we have to solve (2.14), and hence (2.15)–(2.17) for

z = (f g h)
T

= 0. Using (2.15) in (2.16), the latter, together with the boundary
conditions, becomes

λ2u+ uxxxx = 0,(3.1)

u(0) = ux(0) = uxx(1) = 0.(3.2)

Similarly, by using (2.15) and (2.2) in (2.17), the latter becomes (cf. (2.19))

−
(
λ+

1

β

)
uxxx(1) +

λ(α+mλ)

β
u(1) = 0.(3.3)

By solving (3.1)–(3.3) one can find u. Then v and η can be found from (2.15) and
(2.2), respectively.

The solutions of (3.1), together with the first two boundary conditions in (3.2),
can be found as (for 0 ≤ x ≤ 1)

u(x) = c1(cosh τx− cos τx) + c2(sinh τx− sin τx), λ = iτ2,(3.4)

where c1 and c2 are constants to be determined by the remaining boundary conditions,
cosh and sinh are the hyperbolic cosine and sine functions, respectively, and τ is one
square root of λ/i. The choice of the sign is not important since by using −τ instead
of τ nothing changes except the signs of the eigenvectors associated with λ.

By using (3.4) in (3.3) and the last boundary condition in (3.2), we obtain

τ2(cosh τ + cos τ)c1 + τ2(sinh τ + sin τ)c2 = 0,(3.5)

[−q1(λ)τ3(sinh τ − sin τ) + q2(λ)(cosh τ − cos τ)]c1
+[−q1(λ)τ3(cosh τ + cos τ) + q2(λ)(sinh τ − sin τ)]c2 = 0,

(3.6)

where

q1(λ) = λ+
1

β
, q2(λ) =

λ(mλ+ α)

β
.

By writing (3.5)–(3.6) in matrix form and taking the determinant of the coefficient
matrix, it can easily be shown that (3.5)–(3.6) admit nontrivial solutions for c1 and c2
if and only if λ (hence τ) satisfies the following equation with λ necessarily nonzero:

−τ3q1(λ)(1 + cosh τ cos τ) + q2(λ)(sinh τ cos τ − cosh τ sin τ) = 0.(3.7)
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The solutions of (3.7) give the eigenvalues of A; the corresponding eigenvectors can
be found from (3.4)–(3.6), (2.15), and (2.2).

In what follows we analyze the spectrum of A for the case α = m
β . From (2.3)

or (2.10) it is clear that this choice leads to simplifications in the system (1.1)–(1.3)
or (2.12), especially for the asymptotic behavior since the system is then uncoupled,
except for the initial conditions. Then (3.7) can be written in the following form:(

λ+
1

β

)
[−τ3(1 + cosh τ cos τ) + αλ(sinh τ cos τ − cosh τ sin τ)] = 0.(3.8)

From (3.8) it follows that λ∗ = − 1
β is an eigenvalue of A. To find the remaining

eigenvalues of A let us define the function f(·) given by

f(τ) = −τ3(1 + cosh τ cos τ) + αλ(sinh τ cos τ − cosh τ sin τ),(3.9)

which is just the remaining factor of (3.8) after the division by the term (λ + 1
β ).

Hence the remaining eigenvalues of A are precisely the (nonzero) roots of this factor:

−τ3(1 + cosh τ cos τ) + αλ(sinh τ cos τ − cosh τ sin τ) = 0.(3.10)

It is known that (3.10) is just the characteristic equation for the system given by
(1.1)–(1.4) with m = 0, i.e., the clamped-free (cantilevered) beam with boundary force
controller at the free end; see, e.g., [12]. Moreover the eigenvectors of A corresponding
to the roots of (3.10) are also related to the eigenvectors of the cantilevered beam in
a simple way. For these reasons we will briefly study the spectral properties of the
cantilevered beam in the following subsection.

3.1. Spectral analysis of the cantilevered beam. We consider the Euler–
Bernoulli beam with boundary force control:

utt + uxxxx = 0, 0 < x < 1, t ≥ 0,(3.11)

u(0, t) = ux(0, t) = uxx(1, t) = 0, uxxx(1, t) = αut(1, t), t ≥ 0,(3.12)

where α > 0. Note that this system is the same as (1.1)–(1.4) with m = 0.
We define the following spaces:

V = {v ∈ H2(0, 1); v(0) = vx(0) = 0},(3.13)

D(B) = {(u v)
T |u ∈ H4(0, 1) ∩ V, v ∈ V, uxx(1) = 0, uxxx(1) = αv(1)}.(3.14)

The operator B for the problem (3.11)–(3.12) is

B

(
u
v

)
=

(
v

−uxxxx
)
, (u v)

T ∈ D(B).(3.15)

The system given by (3.11), (3.12) can be written formally as

ż(t) = Bz(t), z(0) ∈ V × L2(0, 1),(3.16)

where z = (u(·, t) ut(·, t))T , and the domain of B is given by (3.14).
We first state the following well-known result.
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Lemma 3.1. Consider the system given by (3.16).
i : B generates an exponentially stable C0 semigroup of contractions in V ×

L2(0, 1).
ii : B has compact resolvent for λ > 0.
iii : The eigenvalues of B are countable and isolated. Moreover each eigenvalue

has finite algebraic multiplicity.
Proof. For i and ii, see [3]. Then iii follows from ii; see, e.g., [8, p. 187], [5,

p. 2292].

Writing z = (u v)
T

and Bz = λz, we get the following well-known characteristic
equation:

f(τ) = −τ3(1 + cosh τ cos τ) + iατ2(sinh τ cos τ − cosh τ sin τ) = 0,(3.17)

where λ = iτ2. Note that λ = 0 is not an eigenvalue of B. Hence the roots of (3.17)
are precisely the eigenvalues of B, and by Lemma 3.1, (3.17) has only countably many
roots; moreover each root is isolated and has finite algebraic multiplicity. Eigenvectors
corresponding to λ = iτ2 can be taken as (ϕ1 λϕ1)

T
, where

ϕ1(τ, x) = ( cosh τ + cos τ)(sinh τx− sin τx)(3.18)

− (sinh τ + sin τ)(cosh τx− cos τx).

All eigenvalues are geometrically simple. For the algebraic multiplicity we have
the following result.

Lemma 3.2. Consider the operator B on V × L2(0, 1) given by (3.15), where
D(B) is given by (3.14). Let λ be an eigenvalue of B and set λ = iτ2. Then the
algebraic multiplicity of λ is 1 if and only if f(τ) = 0 and f ′(τ) 6= 0 (i.e., if and only
if τ is a simple root of (3.17)).

Proof. The algebraic multiplicity of λ is greater than 1 if and only if Ker(B− λI)
2

\Ker(B− λI) 6= ∅, i.e., there exists (ψ1 ψ2)
T

which satisfies

(B − λI)

(
ψ1

ψ2

)
=

(
ϕ1

λϕ1

)
,(3.19)

which is equivalent to the following set of equations:

ψ2 − λψ1 = ϕ1,(3.20)

−ψ1xxxx − λψ2 = λϕ1,(3.21)

ψ1(0) = ψ1x(0) = ψ1xx(1) = 0, ψ1xxx(1) = αψ2(1).(3.22)

By eliminating ψ2, we obtain the following set of equations:

−ψ1xxxx − λ2ψ1 = 2λϕ1,(3.23)

ψ1(0) = ψ1x(0) = ψ1xx(1) = 0, ψ1xxx(1) = αλψ1(1) + αϕ1(1).(3.24)

The general solution of (3.23) satisfying the first three conditions of (3.24) is given
for all λ by ψ1 = dϕ1

dλ + z, where dϕ1

dλ = 1
2iτ

dϕ1

dτ and z satisfies

zxxxx + λ2z = 0,(3.25)
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z(0) = zx(0) = zxx(1) = 0.(3.26)

The last condition of (3.24) becomes

zxxx(1)− αλz(1) = αϕ1(1) + αλ
dϕ1

dλ
(1)−

(
dϕ1

dλ

)
xxx

(1) = µ.(3.27)

By computing µ defined in (3.27) from ϕ1 and dϕ1

dλ we get

µ =
d

dλ
[αλϕ1(1)− ϕ1xxx(1)] = 2

df(τ)

dλ
=

1

iτ
f ′(τ).(3.28)

We conclude that the algebraic multiplicity of λ is larger than 1 if and only if (3.25)–
(3.27) admit a solution z. Multiplying (3.25) by ϕ1, integrating by parts, and using
the boundary conditions on z and ϕ1, we obtain

zxxx(1)ϕ1(1)− z(1)ϕ1xxx(1) = [zxxx(1)− αλz(1)]ϕ1(1) = 0.(3.29)

Since ϕ1 is an eigenfunction of B, it could easily be shown that ϕ1(1) 6= 0 (otherwise
one obtains a contradiction; see, e.g., [4, p. 429]). Hence (3.25)–(3.27) admit a
solution if and only if µ = 0, in which case we could choose z = ϕ1. Hence λ is
algebraically simple if and only if f(τ) = 0 and f ′(τ) 6= 0, i.e., if and only if λ is a
simple root of (3.17).

By Lemma 3.1, B has at most countably many and isolated eigenvalues. Let
λn = iτ2

n, n ∈ Z, be the roots of (3.17). The corresponding eigenvectors of B can be
given as

Fnr =

(
ϕ1(τn, x)
λnϕ1(τn, x)

)
,(3.30)

where ϕ1 is given by (3.18).
Theorem 3.3. Consider the operator B on V × L2(0, 1) given by (3.15), where

D(B) is given by (3.14).
i. For any α > 0, all eigenvalues of B with sufficiently large modulus are alge-

braically simple.
ii. For almost all α > 0, the eigenvalues of B are algebraically simple.
iii. If all eigenvalues are algebraically simple, then the set of eigenvectors {Fnr,

n ∈ Z} is a Riesz basis for V ×L2(0, 1), provided that the normalization of eigenvectors
is suitable.

Proof. The proof requires detailed and lengthy calculations and is given in the
appendix. In this proof we compare the set of eigenfunctions of B for α = 0, denoted
by {Gnr, n ∈ Z} with {Fnr, n ∈ Z}, and show that these two sets are quadratically
close. Since the former set is a Riesz basis for V ×L2(0, 1), we then conclude that the
same is true for the latter set.

3.2. Spectral analysis of the operator A. We now consider the operator
A given by (2.10) for the case α = m/β. The eigenvalues of A are given by (3.8).
From (3.8) it follows that λ∗ = − 1

β is an eigenvalue of A. To find the corresponding

eigenfunction, we again set λ∗ = iτ2
∗ and rewrite (3.5) as (τ∗ 6= 0):

(cosh τ∗ + cos τ∗)c1 + (sinh τ∗ + sin τ∗)c2 = 0.(3.31)
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Note that since τ∗ is a solution of (3.8), (3.6) is linearly dependent on (3.5) and
hence will not be used to determine c1 and c2.

In (3.31) the coefficients c1 and c2 cannot be zero simultaneously. This follows
easily since τ∗ is not a purely imaginary number (note that λ∗ = − 1

β = iτ2
∗ ). So the

natural choice for c1 and c2 given by (3.5)–(3.6) is:

c1 = −(sinh τ∗ + sin τ∗),(3.32)

c2 = (cosh τ∗ + cos τ∗).(3.33)

Therefore an eigenfunction F∗ corresponding to λ∗ is

F∗ =

 u∗
v∗
η∗

 ,(3.34)

where

u∗(x) = ϕ1(τ∗, x) = (cosh τ∗ + cos τ∗)(sinh τ∗x− sin τ∗x)(3.35)

−(sinh τ∗ + sin τ∗)(cosh τ∗x− cos τ∗x),

v∗ = λ∗u∗(x),(3.36)

η∗ = 2f(τ∗),(3.37)

where f(·) and ϕ1 are given by (3.17) and (3.18), respectively. The remaining eigen-
values of A are precisely the (nonzero) roots of (3.10). From the preceding section
it follows that these eigenvalues are the roots of (3.17), and hence the eigenvalues of
B, i.e., the eigenvalues of the cantilevered beam without a tip mass. By Lemma 3.1,
(3.17) admits countably many distinct roots λn = iτ2

n, n ∈ Z, Re {λn} < 0. We set

un(x) = ϕ1(τn, x) = (cosh τn + cos τn)(sinh τnx− sin τnx)(3.38)

−(sinh τn + sin τn)(cosh τnx− cos τnx),

vn = λnun(x),(3.39)

ηn = 2f(τn) = 0,(3.40)

where ϕ1 is given in (3.18). As before, since Re{λn} < 0 implies that τn is not a
purely imaginary number, the constant factors in (3.18) cannot vanish simultaneously.
Then

Fn =

 un
vn
0

(3.41)

is an eigenvector for A associated with the eigenvalue λn. Note that (un vn)
T

is an
eigenvector of B (i.e., of the cantilevered beam) associated with the same eigenvalue.
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Assume now that all the eigenvalues λn of the cantilevered beam are algebraically
simple. By Lemma 3.2, this assumption can be written as

f(τn) = 0, f ′(τn) 6= 0,(3.42)

where λ = iτ2 and for f(τ) = 0 we have

f ′(τ) = −τ2

(
1 +

τ2

iα

)
(1 + cosh τ cos τ)− 2iατ2 sinh τ sin τ.(3.43)

Under the assumption given by (3.42), we now compute the algebraic multiplicity
of all the eigenvalues (λ∗, λn, n ∈ Z) of A. We note that the algebraic simplicity of λn
as an eigenvalue of B does not imply the algebraic simplicity of λn as an eigenvalue of
A. We have to distinguish two cases: η∗ = 2f(τ∗) 6= 0, in which case λ∗ 6= λn ∀n ∈ Z,
or η∗ = 0, in which case λ∗ = λN for some N ∈ Z.

An easy computation shows that η∗ = 0 if and only if

α =
β∗(2 + cosh 2β∗ + cos 2β∗)

sinh 2β∗ − sin 2β∗
,(3.44)

where β∗ = 1/
√

2β. Hence the case η∗ = 0 is just an exceptional one in the sense that
(α, β) have to belong to the curve defined by (3.44). For instance, if α is sufficiently
small, η∗ is always nonzero.

Let λ̃ be an eigenvalue of A, and let (ũ ṽ η̃)
T

be the corresponding eigenvector.
Let us study when the algebraic multiplicity of λ̃ is equal to one or not.

Obviously Ker(A− λ̃I)
2 \Ker(A − λ̃I) 6= ∅ if and only if there exists (u v η)

T ∈
D(A) such that

A

 u
v
η

− λ̃
 u

v
η

 =

 ũ
ṽ
η̃

 ,(3.45)

which is equivalent to the following:

v = λ̃u+ ũ,(3.46)

−uxxxx − λ̃v = ṽ = λ̃ũ,(3.47)

−
(
λ̃+

1

β

)
η = η̃,(3.48)

where (u v η)
T ∈ D(A). Equations (3.46)–(3.48) have a solution if and only if the

equations

−uxxxx − λ̃2u = 2λ̃ũ,(3.49)

−
(
λ̃+

1

β

)
η = η̃,(3.50)

u(0) = ux(0) = uxx(1) = 0,(3.51)
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η = −uxxx(1) + αλ̃u(1) + αũ(1)(3.52)

admit a solution.
Lemma 3.4. Let α = m/β and consider the operator A given by (2.10). Let α

be such that the eigenvalues of the operator B given by (3.15) are algebraically simple
(note that this is true for almost all α > 0 by Theorem 3.3). Let (λ∗, F∗) be the
eigenvalue-eigenvector pair of A given by λ∗ = 1/β and (3.34), respectively, and let
(λn, Fn), n ∈ Z be the remaining eigenvalue-eigenvector pairs of A, where λn is a root
of (3.10) and Fn is given by (3.41).

i. If η∗ 6= 0, then all eigenvalues of A are algebraically simple.
ii. If η∗ = 0, then the algebraic multiplicity of λ∗ is exactly 2 and all the eigen-

values λn 6= λ∗ are algebraically simple.
Proof. i. Let η∗ 6= 0, which implies λ∗ 6= λn, n ∈ Z. Then, for λ̃ = λ∗, (3.50)

implies η∗ = 0, which is a contradiction. Thus λ∗ is algebraically simple. Choose now
λ̃ = λn for n ∈ Z, and for simplicity, denote by λ = iτ2 the eigenvalue λn. Then
η̃ = ηn = 0, and since (λ̃+ 1

β ) 6= 0, we get η = 0 so that (3.49)–(3.52) reduces to

−uxxxx − λ2u = 2λun,(3.53)

u(0) = ux(0) = uxx(1) = 0,(3.54)

uxxx(1) = αλu(1) + αun(1).(3.55)

Then, proceeding exactly as in Lemma 3.2, we obtain that (3.53)–(3.55) has a solution
if and only if f ′(τ) = 0 (cf. (3.23), (3.24)). By Lemma 3.2 this implies that λn is
not algebraically simple as an eigenvalue of B, which is a contradiction. Hence by
Lemma 3.2 we see that λn is also algebraically simple as an eigenvalue of A.

ii. For the case η∗ = 0, by the argument given above, all the λn such that λn 6= λ∗
are also algebraically simple.

Let λ∗ = λN for some N ∈ Z, which is denoted by λ for simplicity. Then (3.49)–
(3.52) reduces to

−uxxxx − λ2u = 2λu∗,(3.56)

u(0) = ux(0) = uxx(1) = 0,(3.57)

−uxxx(1) + αλu(1) + αu∗(1) = η.(3.58)

Now proceeding again as in Lemma 3.2, but replacing the right-hand side of (3.27)
by µ− η, we obtain that (3.56)–(3.58) has a solution if and only if

η =
f ′(τ)

iτ
,(3.59)

and hence is nonzero by Lemma 3.2 if λ is an algebraically simple eigenvalue of B.
Consequently it is always possible to compute η∗∗ 6= 0 in a unique way such that
(3.59) is true for η = η∗∗, and then one has a (nonunique) solution u = u∗∗ of (3.56)–
(3.58) with v = v∗∗ = λ∗u∗∗ + u∗ such that (3.46)–(3.48) is satisfied. Thus in case

η∗ = 0, λ∗ has algebraic multiplicity at least two, F∗ = (u∗ v∗ 0)
T

is an eigenvector
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of A, and F∗∗ = (u∗∗ v∗∗ η∗∗)
T

with η∗∗ 6= 0 is a generalized eigenvector (but not
an eigenvector) of A. In fact, λ∗ has algebraic multiplicity exactly two, since for

w = (u v η)
T ∈ D(A), w ∈ Ker(A− λ∗I)3 \Ker(A− λ∗I)2

implies (A − λ∗I)w ∈
Ker(A− λ∗I)2 \ Ker(A− λ∗I); thus (A − λ∗I)w = (u∗∗ v∗∗ η∗∗)

T
. But this implies

that −(λ∗ + 1/β)η = η∗∗ (cf.(3.48)), hence η∗∗ = 0, which is impossible.
We have now the material to write down the Riesz basis property. Recall that

(un vn)
T

are not the functions given exactly by (3.38)–(3.39) but have been suitably
normalized to posses the adequate Riesz basis property for the cantilevered beam,
(see Theorem 3.3).

Theorem 3.5. Let α = m/β, λ∗ = −1/β, λn, n ∈ Z, be the roots of (3.10).
Assume (3.42) and η∗ = 2f(τ∗) 6= 0. Then {F∗, Fn, n ∈ Z} is a Riesz basis for H.
Moreover the estimate (2.25) is valid with δ > 0 such that

− δ = max{−1/β, Re{λn}, n ∈ Z},(3.60)

which is the optimal rate of decay.
Proof. Let z = (u v η)

T ∈ H be given. Since η∗ 6= 0, we can write

z =

 ũ
ṽ
0

+ c∗F∗,(3.61)

where

c∗ = η/η∗, ũ = u− c∗u∗ ∈ V, ṽ = v − c∗v∗ ∈ L2(0, 1).(3.62)

Since (un vn)
T
, n ∈ Z, is a Riesz basis for V × L2(0, 1), we can write(

ũ
ṽ

)
=
∑
n∈Z

cn

(
un
vn

)
,(3.63)

where cn ∈ l2(Z), and there exist positive constants C1, C2 such that

C1

∑
n∈Z

|cn|2 ≤
∥∥∥∥( ũ

ṽ

)∥∥∥∥2

V×L2

≤ C2

∑
n∈Z

|cn|2.(3.64)

Note that∥∥∥∥( ũ
ṽ

)∥∥∥∥2

V×L2

=

∫ 1

0

(ũ2
xx + ṽ2)dx , ‖z‖2H =

∫ 1

0

(u2
xx + v2)dx+Kη2,(3.65)

where K is given by (2.9). By using (3.62) we obtain

u2
xx = ũ2

xx + 2c∗ũxxu∗xx + c2∗u
2
∗xx,(3.66)

v2 = ṽ2 + 2c∗ṽv∗ + c2∗v
2
∗.(3.67)

It follows from Young’s inequality that∣∣∣∣∫ 1

0

2c∗ũxxu∗xxdx
∣∣∣∣ ≤ σ ∫ 1

0

ũ2
xxdx+

1

σ

∫ 1

0

| c∗ |2u2
∗xxdx(3.68)

≤ σ
∫ 1

0

ũ2
xxdx+

M1

σ
η2,
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where σ > 0 is an arbitrary constant and (using (3.62))

M1 =

∫ 1

0
u2
∗xx

η2∗
.

Similarly we obtain ∣∣∣∣∫ 1

0

2c∗ṽv∗dx
∣∣∣∣ ≤ σ ∫ 1

0

ṽ2dx+
M2

σ
η2,(3.69)

where

M2 =

∫ 1

0
v2
∗

η2∗
.

By using (3.66)–(3.69) in (3.65), we obtain

‖z‖2H ≤ (1 + σ)

∥∥∥∥( ũ
ṽ

)∥∥∥∥2

V×L2

+

(
K +M1 +M2 +

M1

σ
+
M2

σ

)
η2,(3.70)

‖z‖2H ≥ (1− σ)

∥∥∥∥( ũ
ṽ

)∥∥∥∥2

V×L2

+

(
K +M1 +M2 − M1

σ
− M2

σ

)
η2 .(3.71)

From (3.61)–(3.63) it follows that

z =
∑
n∈Z

cnFn + c∗F∗.(3.72)

Next we choose σ > 0 such that

M1 +M2

K +M1 +M2
< σ < 1,

which implies that all coefficients in (3.71) are positive. Since η is proportional to c∗
(see (3.62)), it follows from (3.64), (3.70)–(3.71) that there exist positive constants
C3 and C4 such that the following holds:

C3

(∑
n∈Z

|cn|2 + |c∗|2
)
≤ ‖z‖2H ≤ C4

(∑
n∈Z

|cn|2 + |c∗|2
)
.(3.73)

It follows from (3.72)–(3.73) that the system {F∗, Fn, n ∈ Z} is a Riesz basis in H.
Since F∗, Fn, n ∈ Z are all eigenvectors of A, we then have

T (t)z = T (t)

[∑
n∈Z

cnFn + c∗F∗

]
=
∑
n∈Z

eλntcnFn + eλ∗tc∗F∗.(3.74)

That (3.60) determines the optimal decay rate for the semigroup is now an im-
mediate and general consequence of the Riesz basis property in H.

Theorem 3.6. Let α = m/β, λ∗ = −1/β, λn, n ∈ Z, be the roots of (3.10).
Assume (3.42) and η∗ = 2f(τ∗) = 0. Then {F∗∗, Fn, n ∈ Z} is a Riesz basis for H.
Moreover, for any ε > 0, the estimate (2.25) is valid for δ − ε, where −δ is given by
(3.60). Hence −δ is again the optimal decay rate.
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Proof. We recall that here F∗ = FN for some N ∈ Z, Fn being suitably normalized
eigenvectors of A. The Riesz basis property can be proven as in Theorem 3.5 by just
replacing F∗ by F∗∗ and using the fact that η∗∗ 6= 0, so that with c∗∗ = η/η∗∗ we have

z =

 u
v
η

 =

 ũ
ṽ
0

+ c∗∗F∗∗,(3.75)

and for (ũ ṽ)
T

we use the Riesz basis property of Fn, n ∈ Z. Then we get

z =
∑
n∈Z

cnFn + c∗∗F∗∗,(3.76)

where Fn, n ∈ Z, are the eigenvectors of A, with FN = F∗, λN = λ∗, but F∗∗ ∈
Ker(A− λNI)

2 \Ker(A− λNI). Since F∗∗ satisfies (A− λ∗I)F∗∗ = F∗, we get

d

dt

(
eλ∗t(tF∗ + F∗∗)

)
= eλ∗tA(tF∗ + F∗∗).(3.77)

From (3.76)–(3.77) we get

T (t)z =
∑

n 6=N, n∈Z

eλntcnFn + eλ∗t
(

(cN + tc∗∗)F∗ + c∗∗F∗∗
)
.(3.78)

Now the fact that the estimate (2.25) holds for δ − ε, for any ε > 0, is an immediate
and general consequence of the Riesz basis property. Due to the fact that −δ given
by (3.60) may be achieved by λ∗, ε > 0 comes from the possible compensation of
e2Reλ∗tt2 by e(2Reλ∗+ε)t. If −δ > λ∗ = −1/β, then ε is unnecessary.

4. Conclusion. In this paper we studied the stability of a flexible beam with a
tip mass. The flexible beam is assumed to be clamped at one end and is free at the
other, where a mass is also attached. This model is a variant of the SCOLE model
and has been studied before; see, e.g., [1], [9], [13]. To stabilize this hybrid system we
apply a boundary control force at the free end of the beam. It is well known that for
this model the standard velocity feedback for the control force (e.g., (1.4)), which is
widely used in boundary control systems, yields only asymptotic, but not exponential,
stability; see e.g., [9], [13]. In this paper we proposed a (new) control law (see (2.1)),
which contains the term uxxxt(1, t) in addition to the standard feedback term ut(1, t).
We then proved that the system is well-posed and that the energy associated with the
system decays exponentially to zero if the initial data are in H. We also showed that
if the initial data are sufficiently smooth (i.e., in D(A)), then the tip mass velocity
also decays exponentially to zero. Then we analyzed the spectrum of the system for
the special case m = αβ and proved that the spectrum determines the exponential
decay rate for the considered case for almost all α > 0.

Appendix A. On the Riesz basis property of eigenvectors of the can-
tilevered beam with boundary force control. Here our aim is to prove Theo-
rem 3.3. We will consider the set of eigenvectors of the operator B given by (3.15)
for the cases α = 0 (i.e., uncontrolled cantilevered beam) and α > 0 (i.e., controlled
cantilevered beam) and show that these two sets are quadratically close. Since the
former set of eigenvectors is known to be a Riesz basis in V × L2(0, 1), we conclude
that the latter set is also a Riesz basis in the same space.
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Before we prove the Riesz basis property, first we will show that the number of
eigenvalues of the uncontrolled and controlled cantilevered beam are the same, count-
ing multiplicities, in sufficiently large disks. This result will enable us to enumerate
the eigenvalues of both systems in a similar way. We recall that the eigenvalues of
B for α ≥ 0 are precisely the roots of (3.10). Since λ = 0 is not an eigenvalue,
equivalently the eigenvalues are the roots of the following function (for λ = iτ2)

h(τ) =
f(τ)

τ2
= τ(1 + cosh τ cos τ)− iα(sinh τ cos τ − cosh τ sin τ);(A.1)

hence for the uncontrolled case (i.e., α = 0), the eigenvalues are the roots of the
following function

g(τ) = τ(1 + cosh τ cos τ).(A.2)

Note that τ = 0 is a simple root of both (A.1) and (A.2) but not an eigenvalue of B
for α ≥ 0. Hence it follows that if h(·) and g(·) have the same number of roots in a
large disk, then the same is true for the eigenvalues of the operator B for α = 0 and
α > 0.

Lemma A.1. There exists a sequence Rk ∈ R such that Rk → ∞ as k → ∞
and the number of roots of (A.1) and (A.2) are the same, counting multiplicities, in
B(0, Rk) where B(0, R) is defined as

B(0, R) = { τ ∈ C | | τ |≤ R }.(A.3)

Proof. Let R > 0 be given and γ = { τ ∈ C | | τ |= R }, i.e., a circle of radius
R. Since both h(·) and g(·) are analytic in B(0, R), by Rouché’s theorem they have
the same number of roots, counting multiplicities, if | h(τ)− g(τ) |<| g(τ) | for τ ∈ γ.
We will show that this is true for some sufficiently large R. For convenience let us
define

s(τ) = iα(sinh τ cos τ − cosh τ sin τ);(A.4)

hence equivalently we need to show the following:∣∣∣∣ s(τ)

g(τ)

∣∣∣∣ < 1, τ ∈ γ.(A.5)

Since both g(·) and s(·) are odd functions it is sufficient to consider the upper
half plane, and since cosh iτ = cos τ , cos iτ = cosh τ , sinh iτ = i sin τ , sin iτ = i sinh τ ,
it is sufficient to consider only the first quadrant, i.e., τ = Reiθ for 0 ≤ θ ≤ π/2.

Let τ = Reiθ. After straightforward calculations it could be shown that the
following holds:

| s(τ) |≤ α

2
(eRD + e−RD + eRS + e−RS),(A.6)

4 cosh τ cos τ = eRDeiRS + eRSe−iRD + e−RSeiRD + e−RDe−iRS ,(A.7)

where D = cos θ − sin θ, S = cos θ + sin θ.
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For 0 ≤ θ ≤ π/2 we have S ≥ 1 and S ≥| D |; hence | s(τ) |≤ 2αeRS . For
0 < θ < π/4 we have D > 0; hence for sufficiently large R the following holds:

| s(τ) |
| cosh τ cos τ | ≤

2α

| e−RS cosh τ cos τ | ≤M(A.8)

for some M > 0. For π/4 < θ < π/2 we have D < 0, and from (A.6) and (A.7) it
easily follows that an estimate similar to (A.8) holds. Hence for 0 < θ < π/2 and

θ 6= π/4 we have limR→∞ | s(τ)
g(τ) |= 0. For θ = 0 or θ = π/2 we have D = 1 or D = −1,

respectively; S = 1 and 1 + cosh τ cos τ = 1 + coshR cosR in both cases. Hence if

we choose R = 2nπ, we have limn→∞ | s(τ)
g(τ) |= 0. We note that this holds if R →∞

in such a way that | cosR |≥ δ for any δ > 0. For θ = π/4 we have D = 0, S > 1,

and 4 cosh τ cos τ = 2 cosRS + 2 coshRS; hence limR→∞ | s(τ)
g(τ) |= 0. Therefore, for

τ = Reiθ, R = 2nπ, and 0 ≤ θ ≤ 2π we have limn→∞ | s(τ)
g(τ) |= 0. Hence there exists

a sequence Rk = 2kπ, k ∈ N, and k →∞ such that limk→∞ | s(τ)
g(τ) |< 1 for | τ |= Rk.

Therefore, by Rouchée’s theorem, the number of roots of g(·) and h(·), or equivalently
the eigenvalues of the operator B for the cases α = 0 and α > 0, respectively, are the
same in B(0, Rk), counting multiplicities.

The lemma given above lets us enumerate the eigenvalues of uncontrolled and
controlled cantilevered beam in a similar way, at least if they are algebraically simple
(see Remark 3 for an extension). In what follows we will give asymptotic formulas for
these eigenvalues and then compare the corresponding eigenvectors.

Consider the system and the corresponding eigenvalue problem given by (3.11)–
(3.18). From (3.17) it follows that the eigenvalues occur in complex conjugate pairs.
Since there are countably many eigenvalues and each eigenvalue is isolated (see Lemma 3.1),
the eigenvalues which have positive imaginary part can be numerated by considering
the imaginary parts with increasing order. By using asymptotic analysis it can be
shown that asymptotically the solutions of (3.17) can be given as (λ = iτ2):

λk = −2α+O(1/k2) + i((mπ)
2

+ αO(1/k)),(A.9)

for sufficiently large k ∈ N, where m = k + 1/2; see [12, p. 76]. We note that
this estimate can also be obtained by using the wave propagation method (see [2])
for similar estimates. Here the symbol O(f(k)) denotes any function such that
limk→∞O(f(k))/f(k) exists and is finite.

By using λk = iτ2
k , the corresponding τk can easily be found as

τk = ±
[
(mπ +O(1/k2)) + i

( α

mπ
+O(1/k3)

)]
(A.10)

for sufficiently large k. In what follows we will consider (A.10) with + sign; the same
conclusions hold with - sign as well (see below). By using (A.10), with + sign, we
obtain the following estimates:

eτkx = emπx
(

(1 +O(1/k2)f1(x)) + i
( αx
mπ

+O(1/k3)f2(x)
))

,(A.11)

e−τkx = e−mπx
(

(1 +O(1/k2)f3(x))− i
( αx
mπ

+O(1/k3)f4(x)
))

,(A.12)
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eiτkx = e−
αx
mπ ((cosmπx+ cosmπx O(1/k3)f5(x)

− sinmπx O(1/k2)f6(x)) + i(sinmπx+ sinmπx O(1/k3)f7(x)(A.13)

+ cosmπx O(1/k2)f8(x))),

e−iτkx = e
αx
mπ ((cosmπx+ cosmπx O(1/k3)f9(x)

− sinmπx O(1/k2)f10(x))− i(sinmπx+ sinmπx O(1/k3)f11(x)(A.14)

+ cosmπx O(1/k2)f12(x))),

where the functions fi(·), i = 1, . . . , 12, are smooth and bounded functions with
bounded derivatives. By using (A.11)–(A.14), we obtain the following estimates:

(cosh τk + cos τk)(sinh τkx− sin τkx) =
eτkeτkx

4
+

(
− emπe−mπx

4

+emπO(1/k2)o1(x) + emπxo2(x)− emπ

2
sinmπx+ o3(x)

)
(A.15)

+i(emπO(1/k)o4(x) + emπxO(1/k)o5(x) + o6(x)),

(sinh τk + sin τk)(cosh τkx− cos τkx) =
eτkeτkx

4
+

(
emπe−mπx

4

+emπO(1/k2)o7(x) + emπxo8(x)− emπ

2
cosmπx+ o9(x)

)
(A.16)

+i(emπO(1/k)o10(x) + emπxO(1/k)o11(x) + o12(x)),

where the functions oi(·), i = 1, . . . , 12, are smooth and bounded functions (as a
function of k), and their derivatives are either bounded or satisfy the following:

o
(n)
i (x) = (kπ)

n
ôi(x), i = 1, . . . , 12, n ∈ N,(A.17)

where the functions ôi(·) are also smooth and bounded functions. By using (A.15)
and (A.16) in (3.18) we obtain

ϕ1(τk, x) =

[
− emπe−mπx

2
+ emπO(1/k2)o13(x) + emπxo14(x)

+
emπ

2
cosmπx− emπ

2
sinmπx+ o15(x)

]
(A.18)

+ i[emπO(1/k)o16(x) + emπxO(1/k)o17(x) + o18(x)],

where the functions oi(·) are of the same form as given in (A.15)–(A.16).
Let λ ∈ C be an eigenvalue of B (see (3.15)), and let E ∈ H = V × L2(0, 1) be

the corresponding (unnormalized) eigenvector given by

E =

(
ϕ1(τ, x)

iτ2ϕ1(τ, x)

)
;(A.19)

see (3.18). The norm of E can be found as

‖E‖2H = (| λ |2 − λ2)

∫ 1

0

ϕ1ϕ̄1dx− αλ| ϕ1(1) |2,(A.20)
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where a bar denotes the complex conjugate. Let λk and Ek be an eigenvalue, (unnor-
malized) eigenvector pair. By using (A.18) it easily follows that∫ 1

0

(Im{ϕ1})2
dx = O(e2kπ/(kπ)

2
)(A.21)

for k sufficiently large. By using the simple integrals∫ 1

0

cos2mπxdx =

∫ 1

0

sin2mπxdx = 1/2,

∫ 1

0

sinmπx cosmπxdx =
1

2mπ

(note that m = k + 1/2), it follows from (A.18) that∫ 1

0

(Re{ϕ1})2
dx = C1e

2kπ +O(e2kπ/(kπ))(A.22)

for k sufficiently large, where C1 > 0 is a constant. By using (A.9), (A.21), and (A.22)
in (A.20) it follows that

‖Ek‖2H = C2(kπ)
4
e2kπ +O(e2kπ(kπ)

3
)(A.23)

for k sufficiently large, where C2 > 0 is a constant. Hence we define the (approxi-
mately) normalized eigenvectors as

Fkr =
1

(kπ)
2
ekπ

(
ϕ1(τk, x)

iτ2
kϕ1(τk, x)

)
,(A.24)

where τk and ϕ1 are given by (3.17) and (3.18), respectively.
Now consider the system (3.11)–(3.12) with α = 0, i.e., uncontrolled system. By

using µ instead of τ , the characteristic equation (3.17) becomes

1 + coshµ cosµ = 0, λ = iµ2,(A.25)

whose roots are asymptotically given by

µk = mπ +O(e−mπ), m = k + 1/2(A.26)

for k sufficiently large. It follows that the corresponding function ϕ1(µk, x) is real.
By following the analysis given above, similar to (A.18), we obtain

ϕ1(µk, x) = −e
mπe−mπx

2
+ emπO(e−mπ)o19(x) + emπxo20(x)

+
emπ

2
cosmπx− emπ

2
sinmπx+ o21(x),

(A.27)

where the functions oi(·) are as given in (A.15)–(A.16). Hence, by following the anal-
ysis given above, we define the (approximately) normalized eigenvector corresponding
to µk as

Gkr =
1

(kπ)
2
ekπ

(
ϕ1(µk, x)

iµ2
kϕ1(µk, x)

)
.(A.28)

Theorem A.2. Consider the (approximately) normalized eigenvectors Fk and
Gk given by (A.24) and (A.28), respectively. Then the estimate

‖Fkr −Gkr‖H = O(1/k)(A.29)
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holds for sufficiently large k.
Proof. From (A.18) and (A.27) it follows that

ϕ1(τk, x)− ϕ1(µk, x) = emπO(1/k2)o22(x) + emπxo23(x) + o24(x)(A.30)

+ i[emπO(1/k)o25(x) + emπxO(1/k)o26(x) + o27(x)],

where the functions oi(·) are as given in (A.15). Also note that

iτ2
kϕ1(τk, x)− iµ2

kϕ1(µk, x) = iτ2
k [ϕ1(τk, x)− ϕ1(µk, x)](A.31)

+ i(τ2
k − µ2

k)ϕ1(µk, x).

From (A.17), (A.30), and (A.31) it follows that∫ 1

0

| ϕ1xx(τk, x)− ϕ1xx(µk, x) |2dx = O(e2kπ(kπ)
2
),(A.32)

∫ 1

0

| τ2
kϕ1(τk, x)− µ2

kϕ1(µk, x) |2dx = O(e2kπ(kπ)
2
)(A.33)

for k sufficiently large. Hence (A.29) easily follows from (A.32) and (A.33).
Now we consider the algebraic simplicity of the eigenvalues of B for the case α > 0

and prove the statement i of Theorem 3.3.
Lemma A.3. Consider the system given by (3.11)–(3.12) for α > 0. All eigen-

values of B with sufficiently large modulus are algebraically simple.
Proof. Since the operator B has compact resolvent (see Lemma 3.1), it follows

that the spectrum of B consists entirely of isolated points, at most countable, and
each eigenvalue has a finite algebraic multiplicity.

Let τ be a root of (3.17), and let λ = iτ2 be the corresponding eigenvalue. From
Lemma 3.2 it follows that λ has algebraic multiplicity greater than 1 if and only if
f ′(τ) = 0; see (3.43).

First note that by using (A.10), (A.13), (A.14), it follows that

cos τk = −(−1)
kO(1/k2)− i

(
(−1)

k α

mπ
+ (−1)

kO(1/k3)
)
,(A.34)

sin τk = (−1)
k

+ (−1)
kO(1/k2)− i((−1)

kO(1/k3)).(A.35)

By using (A.11), (A.12), (A.34), (A.35) in (3.43) we obtain

−if
′(τk)

τ2
k

= (emπo1(k) + o2(k)) + i(−mπemπ/2 + emπo3(k) + o4(k)),(A.36)

where oi(k), i = 1, . . . , 4 are bounded functions of k. Hence it follows that, for suffi-
ciently large k, we have f ′(τk) 6= 0, which implies that all eigenvalues with sufficiently
large modulus are algebraically simple.

Next we prove that, for almost all α > 0, the eigenvalues of B are algebraically
simple. Moreover the set of α > 0, for which there exists at least one eigenvalue
which is not algebraically simple, does not contain a limit point, i.e., any such α > 0
is necessarily isolated.
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Let F (τ) be defined as

F (τ) = G(τ) + iαS(τ),(A.37)

where

G(τ) = −τ(1 + cosh τ cos τ), S(τ) = sinh τ cos τ − cosh τ sin τ.(A.38)

We know that for a given α > 0, λ = iτ2 is an algebraically simple eigenvalue of B if
and only if F (τ) = 0, F ′(τ) 6= 0, (see Lemma 3.2). Note that we have

F ′(τ) = G′(τ) + iαS′(τ).(A.39)

Also note that if for some α > 0 and τ ∈ C we have F (τ) = F ′(τ) = 0, then by
eliminating α in (A.37) and (A.39) we obtain R(τ) = 0, where R(τ) is given by

R(τ) = G′(τ)S(τ)−G(τ)S′(τ).(A.40)

Note that G(τ) = 0 and S(τ) = 0 cannot be satisfied simultaneously. To see that,
assume that for some τ ∈ C we have G(τ) = S(τ) = 0. Then, since τ = 0 is not
an eigenvalue, from (A.38) we obtain cos τ = −1/cosh τ , sin τ = −sinh τ/cosh2τ .
Then, by using sin2τ + cos2τ = 1, we obtain cosh τ = ±1, and then (A.38) implies
cos τ = ∓1. It can now easily be shown that such a τ ∈ C does not exist. Hence if
F (τ) = 0, then both G(τ) 6= 0 and S(τ) 6= 0 must be true.

Lemma A.4. Let, for a > 0, the sets Ca and C∞ be defined as

Ca = {α ∈ R, 0 < α < a|∃τ ∈ C, F (τ) = F ′(τ) = 0},(A.41)

C∞ = {α ∈ R, α > 0|∃τ ∈ C, F (τ) = F ′(τ) = 0}.(A.42)

Then
i. The set C∞, if not empty, is at most countable.
ii. The set Ca, if not empty, contains finitely many points.
Proof. i. For some α > 0 and τ ∈ C we have F (τ) = F ′(τ) = 0. Then we assume

R(τ) = 0, where R(τ) is given by (A.40). Since R(τ) is a nonconstant analytic
function, it follows that its zero set (i.e., the roots of R(τ) = 0) is at most countable;
see, e.g., [16, p. 209, Thm. 10.18]. This also shows that the eigenvalues λ = iτ2 which
are not algebraically simple also satisfy R(τ) = 0, and hence are independent of α.
From (A.37) we obtain

α = i
G(τ)

S(τ)
.(A.43)

Since there are countably many τ ∈ C for which the eigenvalues λ = iτ2 are not
algebraically simple, and since for these τ (A.43) is satisfied, it follows that there are
at most countable many values for α > 0 such that there exists at least one eigenvalue
with algebraic multiplicity greater that one. Hence the set C∞ is countable.

ii. Let a > 0 be given and let 0 < α < a. From Lemma A.3 we know that all
eigenvalues with sufficiently large modulus are algebraically simple. Hence there exists
a M > 0 such that, for all 0 < α < a and for all eigenvalues λ = iτ2 which are not
algebraically simple, we have τ ∈ B(0,M), defined by (A.3). Moreover (A.36) implies
that f ′(τk) 6= 0 for sufficiently large k, uniformly with respect to α, for 0 < α ≤ a.
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This fact implies that the constant M is independent of α, for 0 < α ≤ a. However
such τ must also satisfy R(τ) = 0, where R(τ) is given by (A.40). Since B(0,M) is a
compact set, the number of roots of R(τ) = 0 in B(0,M) must be finite, for otherwise
there will be a limit point of zeros of R(τ) in B(0,M), which is a contradiction; see,
e.g., [16, p. 209, Thm. 10.18]. Since in B(0,M) there are at most finitely many
candidates of τ for eigenvalues which are not algebraically simple, it follows from
(A.43) that the set Ca also contains finitely many points.

The next corollary now proves assertion ii of Theorem 3.3.

Corollary A.5. i. For almost all α > 0 the eigenvalues of the operator B given
by (3.15) are algebraically simple.

ii. If for some α0 > 0 and τ0 ∈ C, λ0 = iτ2
0 is an eigenvalue which is not

algebraically simple, then there exists an open set U ⊂ R such that α0 ∈ U , and for
α ∈ U, α 6= α0, the eigenvalues of B are algebraically simple.

Proof. i. This follows easily from Lemma A.4.

ii. Note that the right-hand side of (A.43) is an analytic function around any
possible τ ∈ C such that the eigenvalue λ = iτ2 is not algebraically simple. Then
the result follows from, e.g., [16, p. 216, Thm. 10.32], and from the fact that all
eigenvalues with sufficiently large modulus are algebraically simple.

To prove that the generalized eigenfunctions of B form a Riesz basis in H, we
need the following simple fact.

Lemma A.6. Let B be a densely defined closed linear operator in a Hilbert space
H. Assume that the spectrum of B consists entirely of, at most countable, isolated
points, each of which has a finite algebraic multiplicity. Moreover assume that the
eigenvalues are distinct. Then the generalized eigenfunctions are ω-linearly indepen-
dent (for the definition of ω-independence, see, e.g.,[7, p. 316], or [18, p. 50]).

Proof. Proof of this fact is essentially the same as given in [7, p. 329] for bounded
operators. For closed (unbounded) operators with compact resolvent (discrete in
the notation of [5]), we may proceed by using [8, p. 178] or [5, pp. 2292–2293] as
follows. Let λn and νn denote the eigenvalues and their algebraic multiplicity of B,
respectively. Let ψij , i = 1, 2, . . . , n, . . . , j = 1, . . . , νi, denote the set of generalized
eigenfunctions. Since the spectrum of A does not contain an accumulation point, for
each λi we can find a constant ri > 0 such that the circle Ci = {λ ∈ C| | λ−λi |= ri}
does not encircle any eigenvalue other than λi. It is well known that the operator

Pi =
1

2πi

∫
Ci

(λI −A)
−1
dλ,(A.44)

is well defined and is the projection operator onto the generalized eigenspace corre-
sponding to λi; see, e.g., [8, p. 178], [5, pp. 2292–2293]. Now consider the following
equation:

∞∑
i=1

νi∑
j=1

cijψij = 0.(A.45)

By using the projection operator Pi given by (A.44), we obtain

Pi

 ∞∑
i=1

νi∑
j=1

cijψij

 =

νi∑
j=1

cijψij = 0.(A.46)
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Since νi < ∞ and the generalized eigenfunctions are linearly independent, it follows
from (A.46) that cij = 0, j = 1, . . . , νi. Since this is true for each i ∈ N, it follows
that the generalized eigenfunctions are ω-linearly independent.

Theorem A.7. Let α > 0 be given and assume the eigenvalues of the operator
B are all algebraically simple (note that this condition holds for almost all α > 0; see
Corollary A.5). Then the set of eigenvectors of B forms a Riesz basis for H.

Proof. Let Fkr and Gkr be given by (A.24) and (A.28), respectively. Note that
Fkr and Gkr are the (appropriately) normalized eigenvectors of the operator B, cor-
responding to given α > 0 and α = 0, respectively. We note that by Lemma A.1, it is
possible to enumerate these eigenvectors similarly, and because of algebraic simplicity
we consider only the eigenvectors and not the generalized eigenvectors. This point
is important in Theorum 3.5 and Theorum 3.6 in proving the spectrum-determined
growth property, which is our main aim.

From Theorum A.2 it follows that for some N we have∑
|k|>N

‖Fkr −Gkr‖2H <∞;(A.47)

see (A.29). Since N <∞, it follows that∑
k∈Z

‖Fkr −Gkr‖2H <∞.(A.48)

Hence the set of vectors {Fkr} is quadratically close to the set of vectors {Gkr}. It
is well known that the latter set of vectors forms a Riesz basis for H, since for α = 0
the operator B becomes a skew adjoint operator. Also by Lemma A.6, the former set
of vectors is ω-linearly independent. This implies that the set of vectors {Fkr} also
forms a Riesz basis in H; see, e.g., [18, p. 347, Thm. 11.3].

Remark 3. The requirement that the eigenvalues of B for α > 0 be algebraically
simple is not essential and could be relaxed. Let α > 0, and let λ ∈ C be a root of
(A.1), i.e., an eigenvalue of B. It is not known a priori whether the multiplicity of λ
as a root of (A.1) and the algebraic multiplicity of λ as an eigenvalue of B are the
same. Let us assume that these two multiplicities are the same, and let the set of
vectors {Fkr} include all eigenvectors and the generalized eigenvectors of B. Then by
using Lemma A.1, Lemma A.3, Theorem A.2, and Theorem A.7, we conclude that
the sets {Fkr} and {Gkr} are quadratically close; i.e., (A.48) holds. Hence the set
{Fkr} also forms a Riesz basis in H, and the spectrum-determined growth property
stated in Theorum 3.5 and Theorum 3.6 holds. The assumption on the equality of
the multiplicities stated above seems to be true; however, the proof of this statement
could be rather tedious. If we assume algebraic simplicity, which is generic (i.e., holds
for almost all α > 0), then these two multiplicities are the same; see Lemma 3.2. This
is the basic reason for the assumption on algebraic simplicity.

Corollary A.8. There exists an a > 0 such that, for all 0 < α < a, the set of
eigenfunctions of B forms a Riesz basis for H.

Proof. This fact was proven in [4]. Here we may obtain this result as a corollary
by using Lemma A.4, part ii, and Theorem A.7.

Appendix B. The authors thank the anonymous referees, who suggested many
improvements of the paper, and also Bo Peng Rao, who made valuable comments.
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REFERENCES

[1] A. V. Balakrishnan, Compensator design for stability enhancement with collocated con-
trollers, IEEE Trans. Automat. Control, 36 (1991), pp. 994–1008.

[2] G. Chen and J. Zhou, The wave propagation method for the analysis of boundary stabilization
of vibrating structures, SIAM J. Appl. Math., 50 (1990), pp. 1254–1283.

[3] G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne, and H. H. West, The Euler-Bernoulli
beam equation with boundary energy dissipation, in Operator Methods for Optimal Control
Problems, S. J. Lee, ed., Marcell–Dekker, New York, 1987, pp. 67–96.

[4] F. Conrad, Stabilization of beams by pointwise feedback control, SIAM J. Control Optim., 28
(1990), pp. 423–438.

[5] N. Dunford and J. T. Schwartz, Linear Operators, Vol. 3, Wiley-Interscience, New York,
1971.

[6] J. S. Gibson, A note on stabilization of infinite dimensional linear oscillators by compact
linear feedback, SIAM J. Control Optim., 18 (1980), pp. 311–316.

[7] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Nonselfadjoint Operators,
Trans. Math. Monogr. 18, AMS, Providence, RI, 1969.

[8] T. Kato, Perturbation Theory for Linear Operators, 2nd. ed., Springer-Verlag, New York,
1980.

[9] W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary
damping, Ann. di Mat. Pura ed Appl., 152 (1988), pp. 281–330.
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Abstract. We consider the limiting case α =∞ of the problem of minimizing∫
Ω

(‖∇u(x)‖α + g(u))dx on u ∈ u0 +W 1,α
0 (Ω),

where g is differentiable and strictly monotone. If this infimum is finite, it is evidently attained; we
show that any minimizing function u satisfies the appropriate form of the Euler–Lagrange equation,
i.e., for some function p,

div p(x) = g′(u(x)) for p(x) ∈ ∂jB(∇u(x)),

where jB is the indicator function of the closed unit ball in the Euclidean norm of RN and ∂ is the
subdifferential of the convex function jB .

Key words. extended valued functions, Euler–Lagrange equations, Hamilton–Jacobi control
systems, Pontryagin maximum principle
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1. Introduction. In this paper we consider the problem of minimizing∫
Ω

g(u)dx

for u ∈ u0 +W 1,∞
0 (Ω), subject to the Hamilton–Jacobi control equation

∇u(x) = v, v ∈ B,

where B is the Euclidean unit ball of RN , i.e., {y ∈ RN : ‖y‖ ≤ 1}. By the convexity
and compactness of the control set B, the minimization problem above admits a so-
lution whenever the set of functions u satisfying the control and boundary conditions
is nonempty. Under some assumptions on g (that include the linear case), but essen-
tially without assumptions on Ω and on the boundary datum u0, we show that to a
solution u we can associate a map p ∈ (L1(Ω))N such that, denoting by H the map

H(u, p, v) = −g(u)+ < p, v >,

we have

∇u(x) = ∇pH(x); div p(x) = −∂H
∂u

,
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and almost everywhere (a.e.)H(u(x), p(x), v(x)) = maxw∈B{H(u(x), p(x), w)}, i.e., the
solution satisfies the Pontryagin maximum principle [5].

Equivalently, the problem we consider can be seen as the problem of minimizing
the functional

F (u) =

∫
Ω

(jB(∇u(x)) + g(u))dx

for u ∈ u0 + W 1,∞
0 (Ω), where jB is the indicator function of the closed unit ball B.

The map y → jB(y) is convex, lower semicontinuous, and extended valued. The coer-
civity requirement for the existence of solutions to the minimum problem is obviously
satisfied; hence, when the functional F assumes a finite value for at least one function
u ∈ u0 + W 1,∞

0 (Ω), the minimization problem admits a solution. Even though the
integrand is not differentiable, the convexity of the function y → jB(‖y‖) leads one
to expect the validity of a Euler–Lagrange inclusion in the form

div p(x) = g′(u(x)) for p(x) ∈ ∂jB(∇u(x)).

This inclusion can be reduced to the usual language of an equation noticing that

∂jB(y) =

 {0} , if ‖y‖ < 1,
{αy : α ≥ 0} , if ‖y‖ = 1,
∅, if ‖y‖ > 1.

Hence, establishing the validity of the above differential inclusion for an admissible
function u amounts to providing a non-negative function α ∈ L1(Ω), with α(x) = 0
when ‖∇u(x)‖ < 1, such that

divα(x)∇u(x) = g′(u(x)).

This is what we mean by the Euler–Lagrange equation for this problem; solutions to
the above partial differential equation have to be understood in the standard distri-
butional sense. We have that, for this problem, the two formulations of the necessary
conditions, namely, the validity of the maximum principle or the validity of the Euler–
Lagrange equations, are entirely equivalent. In fact, the following identities hold for
v ∈ B :

〈p, v〉 = max
w∈B
〈p, w〉 ⇔ v ∈

{ {p/ ‖p‖} , if p 6= 0,
B, if p = 0,

⇔ p ∈ ∂jB(v).

It follows from our result, in particular, that whenever the functional F is finite along
exactly one function (the boundary function u0), then u0 must be a solution to the
Euler–Lagrange equation.

Although convex analysis is a guide to write the suitable form of the Euler–
Lagrange equation, it is of no help in establishing its validity for this problem. In
fact, the basic assumption needed for the applicability of the theory, namely the
continuity of the map ξ ∈ Lβ(Ω) → ∫

Ω
jB(‖ξ(x)‖)dx ([2, Theorem 4.1, p. 59]), is

violated in this case, no matter what β is.
In contrast with the usual approach, where regularity of the solution is obtained

as a consequence of its being a solution to the Euler–Lagrange equation, in our case
we must first prove some regularity of the solution in order to obtain from it the
validity of the equation.
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Finally, the minimization problem we consider can be seen as a limiting case for
β =∞ of the problem

minimize

∫
Ω

(‖∇u(x)‖β + g(u))dx on u ∈ u0 +W 1,β
0 (Ω), 1 < β <∞.

It is known (see [4]) that (under some suitable assumptions) solutions to these prob-
lems do exist and satisfy the Euler–Lagrange equation

β div(‖∇u‖β−2∇u) = g′(u).

Hence, our equation can be seen as a limiting case of the above equation.
Among several other results, a related problem, but with boundary condition

identically zero, has been considered by Bhattacharya, Di Benedetto, and Manfredi [1].

2. Main results. We consider the functional

F (u) =

∫
Ω

(jB(‖∇u(x)‖) + g(u(x))) dx

and the problem (P) of minimizing F (u) for u ∈ u0 + W 1,∞
0 (Ω). We wish to prove

the following result.
Theorem 2.1. Let Ω be an open bounded subset of RN , let g : R → R be

differentiable and strictly monotonic. Let u0 in W 1,∞(Ω) be such that F (u0) is finite.
Then the minimum in problem (P) is attained and any minimizing u is a distributional
solution to the Euler–Lagrange inclusion

div p(x) = g′(u(x)) for p(x) ∈ ∂j[0,1](‖∇u(x)‖),

i.e., there exists a non-negative function α ∈ L1(Ω), with α(x) = 0 when ‖∇u(x)‖ < 1
such that

divα(x)∇u(x) = g′(u(x))

in the sense of distributions.
The validity of the theorem is based in the monotonicity of g, needed to establish

Lemma 2.3. To prove it we should consider separately the two cases, g increasing and
g decreasing. We shall present the proof for the case g increasing. We shall use the
notation: for A ⊂ RN , ρ(x,A) = infy∈A{‖x− y‖}.

The following lemma is a first regularity result on the solution u.
Lemma 2.2. Under the same assumptions as in Theorem 2.1, let u be a solution

to problem (P). Then for every x0 and r > 0 such that Br(x0) is contained in Ω, we
have

sup{u(x)− u(x0) : ‖x− x0‖ = r} = r.

Proof. The map u must be, on Br(x0), Lipschitzian of Lipschitz constant 1.
Hence, the supremum above cannot be larger than r. Assume it is equal to ζr, with
ζ < 1. Let η be a Lipschitzian function such that

(i) η(x0) = −r,
(ii) ‖∇η‖ = 1,
(iii) η(x) = 0, x ∈ Ω \Br(x0).
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Fix λ ∈ (ζ, 1) and consider the function

ηλ(x) = λη(x)− (u(x)− u(x0)) + ζr.

We have that: for x ∈ ∂Br(x0), ηλ(x) = ζr − (u(x) − u(x0)) ≥ 0 while ηλ(x0) =
−λr + ζr < 0. Call E the connected component of the set {ηλ ≤ 0} containing x0

(the measure of E is positive). The map η−λ is then defined to be

η−λ (x) =

{
ηλ(x), x ∈ E,
0, elsewhere.

We have that η−λ (x) = 0 for x ∈ ∂Br(x0) and that η−λ (x0) < 0; moreover,

∇η−λ (x) =

{
λ∇η(x)−∇u(x), x ∈ E,
0, elsewhere,

so that ‖∇ηλ‖ ≤ 2. It is our purpose to show that for parameters t > 0 sufficiently
small, we have ‖∇u+ t∇η−λ ‖ ≤ 1.

a) Consider first those x ∈ E such that ‖∇u(x)‖ > 1+λ
2 . We have

〈∇u,∇η−λ 〉 ≤ λ‖∇u‖‖∇η‖ − ‖∇u‖2 = ‖∇u‖(λ− ‖∇u‖) ≤ ‖∇u‖λ− 1

2
< 0

and

|〈∇u,∇η−λ 〉| = −〈∇u,∇η−λ 〉 ≥ ‖∇u‖
1− λ

2
≥ 1− λ2

4
.

Hence, for t ∈ (0, 1−λ2

8 ) and a.e. x ∈ E, we have that 2|〈∇u,∇η−λ 〉| > 4t > t‖∇η−λ ‖2.
Since

‖∇u+ t∇η−λ ‖2 = ‖∇u‖2 + t2 ‖∇η−λ ‖2 + 2t〈∇u,∇η−λ 〉,
we obtain

‖∇u+ t∇η−λ ‖2 = ‖∇u‖2 + t(t‖∇η−λ ‖2 + 2〈∇u,∇η−λ 〉)
≤ 1 + t(t‖∇η−λ ‖2 − 2|〈∇u,∇η−λ 〉|) < 1.

b) Consider now those x ∈ E such that ‖∇u(x)‖ ≤ 1+λ
2 . Then, for t in (0, 1−λ2

8 ),
we simply have

‖∇u+ t∇η−λ ‖ ≤ ‖∇u(x)‖+ t‖∇η−λ ‖ <
1 + λ

2
+

1− λ
4

2 = 1.

Hence, from the above, the variation η−λ is admissible, in the sense that a.e. in Ω,
for all t sufficiently small,

‖∇u+ t∇η−λ ‖ ≤ 1.

For one such t, since: jB(‖∇u + t∇η−λ ‖) = 0, a.e. in Ω; u + tη−λ ≤ u, a.e. in Ω;
u+ tη−λ < u, a.e. in E, we have

F (u+ tη−λ ) =

∫
Ω

g(u(x) + tη−λ (x)) dx <

∫
Ω

g(u(x)) dx = F (u),
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a contradiction. The strict monotonicity of g is essential in this step.
As a simple consequence of the previous lemma, we have the following result.
Lemma 2.3. Under the same assumptions as in Lemma 2.2, for a.e. x ∈ Ω, we

have ‖∇u(x)‖ = 1; there exist at least one direction dx and a related interval [0, bx)
such that for λ ∈ [0, bx), u(x+ λdx)− u(x) = λ and x+ bx dx ∈ ∂Ω.

Proof. From Lemma 2.2, it follows that to any point x ∈ Ω we can associate at
least one unit vector (a direction) dx and (at least) one nonvanishing interval [0, l)
such that for t ∈ [0, l), u(x + tdx) − u(x) = t. Given x and dx, let bx be such that
[0, bx) is the largest such interval. Let y be on the closure of this segment. When y is
in Ω, by the previous lemma we can associate to it at least one direction dy with the
property stated above. This direction dy must coincide with dx. Otherwise, choose
x1 = x+ λdx with λ < bx and sufficiently close to it, and choose y1 = y+ µdy with µ
positive and sufficiently small, so that the segment from x1 to y1 is contained in Ω.
Then u is defined on this segment and u(y1)−u(x1) = (u(y1)−u(y))+(u(y)−u(x1)) =
‖y1 − y‖+ ‖y − x1‖ > ‖y1 − x1‖, a contradiction to the fact that u, a solution to the
minimum problem, is Lipschitzian with constant 1. In particular, x + bxdx must be
in ∂Ω otherwise we would contradict the maximality of bx.

Remarks. i) The set of the directions {dx} gives rise to a multivalued map x →
D(x).

ii) From the proof of the above lemma, in particular, we infer that dy is unique
whenever there exist x ∈ Ω, a direction dx and t in the interval (0, bx) such that
y = x+ t dx.

iii) For fixed x and dx, call (ax, bx) the largest open interval such that u(x +
t1d

x) − u(x + t2d
x) = t2 − t1 for t2 > t1 and t1 and t2 in (ax, bx). Whenever x

belongs to S(x) = {x + tdx : t ∈ (ax, bx)}, i.e., when ax < 0, we have that dx is
unique and that ax and bx depend only on x, i.e., we can consider the univalent maps
x→ d(x) = dx, x→ a(x) = ax, and x→ b(x) = bx. It will be convenient to set

S = ∪{x∈Ω}S(x).

Proof of Theorem 2.1. Let u be a solution to the minimum problem. We have to
define a function α with the properties stated in Theorem 2.1 such that for every φ
in C∞0 (Ω) we have∫

Σ

α(x)〈∇u(x),∇φ(x)〉 dx+

∫
Σ

g′(u(x))φ(x) dx = 0.

Step a) For k in {1, . . . N}, let dk denote the kth component of the vector d. About
the properties of the map x → d(x), we have the following claim, a first regularity
result on ∇u.

Claim 2.1. Fix k ∈ {1, . . . , N} and ε > 0. On

Ekε = {x ∈ S : (x− εd(x), x+ εd(x)) ⊂ S(x); dk(x) ≥ 1√
N

; ρ(x, ∂Ω) ≥ 3ε},

the map x→ d(x) is Lipschitzian of constant 2
√
N

8 .
Proof of Claim 2.1. Consider two points P and P ′ in Ekε and set d = d(P ),

d′ = d(P ′). In the case ‖P − P ′‖ ≥ ε
2
√
n
‖d− d′‖, we have

‖d(P )− d(P ′)‖ ≤ 2
√
N

ε
‖P − P ′‖.
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Hence, we consider the case ‖P − P ′‖ < ε
2
√
N
|d − d′|. Set r to be {P + λd : λ ∈ R}

and r′ to be {P ′ + λd′ : λ ∈ R}. Let O ∈ r and O′ ∈ r′ be the two points of minimal
distance for r and r′; then 〈O′ − O, d〉 = 〈O′ − O, d′〉 = 0. When O 6= O′ we shall
refer to the unique three-dimensional space containing r and r′ (the case O = O′

being similar and simpler). On the plane orthogonal to O′ −O and containing r, let
r′′ be the projection of the line r′. Also let P ∗ be the nearest point to P on r′′, so
that ‖P − P ′‖ ≥ ‖P − P ∗‖. The point P ′′ on r′′ is defined to be the point having
‖P − O‖ = ‖P ′′ − O‖ and lying on the same side (with respect to 0) as P ∗. By
elementary geometry we have

‖P − P ′′‖
‖P −O‖ =

‖d− d′‖
1

.

Consider the triangle O,P, P ′′ and let H be 1
2P + 1

2P
′′. We obtain

‖P − P ∗‖
‖P − P ′′‖ =

‖H −O‖
‖P ′′ −O‖ .

Since, by the definition of Ekε , we have that ‖H−O‖‖P ′′−O‖ ≥ 1√
N

, we obtain

‖P − P ′′‖ = ‖P − P ∗‖‖P
′′ −O‖

‖H −O‖ ≤
√
N‖P ∗ − P‖

so that

‖P −O‖ =
‖P − P ′′‖
‖d− d′‖ ≤

√
N
‖P − P ∗‖
‖d− d′‖ ≤

√
N
‖P − P ′‖
‖d− d′‖ ≤

ε

2
.

For symmetry reasons, also ‖P ′ − O′‖ ≤ ε
2 . Hence, we have obtained that both O

and O′ are in Ω, and u is, therefore, defined at O and O′. At this point we are free
to assume that u(O) ≥ u(O′).

Let A and D be the extremes of a segment on S(P ) centered on O and of half-
length ε

2 and B′, C ′ be the same on S(P ′) with respect to O′. We have ‖P −A‖ ≤ ε,
‖P −D‖ ≤ ε, and

‖P −B′‖ ≤ ‖B′−O′‖+ ‖O′−P ′‖+ ‖P ′−P‖ ≤ ε

2
+
ε

2
+

ε√
N
≤ 2ε, ‖P −C ′‖ ≤ 2ε.

Therefore, all the points A, D, B′, and C ′ lie in the ball B2ε(P ) ⊂ Ω. On this set,
the map u is Lipschitzian of Lipschitz constant 1. Let B and C be the projections of
the points B′ and C ′ on the plane orthogonal to O′ − O and containing O. We can
assume that

u(D)− u(A) = ‖D −A‖ and u(C ′)− u(B′) = ‖C ′ −B′‖ = ‖C −B‖.
Hence, we have

(1)
‖B′ −D‖ ≥ u(D)− u(B′) = u(D)− u(O) + u(O)− u(O′) + u(O′)− u(B′)

= ‖D −O‖+ u(O)− u(O′) + ‖B′ −O′‖ ≥ ‖D −O‖+ ‖B′ −O′‖,
while, on the other hand,

(2)
‖B′ −D‖2 = ‖B′ −B‖2 + ‖B −D‖2

= ‖O′ −O‖2 + ‖B −O‖2 + ‖O −D‖2 + 2〈O −D,B −O〉.
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By (1) and (2) we obtain

‖O′ −O‖2 + ‖B −O‖2 + ‖O −D‖2 + 2〈O −D,B −O〉
≥ ‖D −O‖2 + ‖B′ −O′‖2 + 2‖D −O‖‖B′ −O′‖;

hence,

‖O′ −O‖2 ≥ 2‖D −O‖ ‖B −O‖
(

1−
〈

O −D
‖D −O‖ ,

B −O
‖B −O‖

〉)
= ‖D −O‖ ‖B′ −O′‖(2− 2〈d, d′〉) =

(ε
2

)2

‖d− d′‖2.

It follows then that ‖d− d′‖ ≤ 2
ε‖O −O′‖ ≤ 2

ε‖P − P ′‖. Hence, we have

‖d(P )− d(P ′)‖ ≤ 2
√
N

ε
‖P − P ′‖

for every P and P ′ in Ekε . This proves the claim.
Step b) The purpose of this step is to define a countable partition of S consisting

of measurable sets.
Consider the set P of pairs (p, q), where p and q are integers and q is positive,

and let σ : N→ P be a numbering of this set. Denote by (pn, qn) the image σ(n). To
n ∈ N and k ∈ 1, . . . , N , we associate the two disjoint sets

E+,k
n =

{
y ∈ S(x) : xk =

pn
qn

; dk(x) = sup
1≤i≤N

|di(x)|; ρ(x, ∂Ω) ≥ 3

qn

and x− 1

qn
d(x), x+

1

qn
d(x) ∈ S(x)

}
and

E−,kn =

{
y ∈ S(x) : xk =

pn
qn

; dk(x) = − sup
1≤i≤N

|di(x)|; ρ(x, ∂Ω) ≥ 3

qn

and x− 1

qn
d(x), x+

1

qn
d(x) ∈ S(x)

}
.

In order to obtain a partition of S we operate in the standard way. Set Σ+,1
1 = E+,1

1

and, in general, Σ+,k+1
1 = E+,k+1

1 \{∪i=1,...,kΣ+,i
1 }. Set

+,1∑
n+1

= E+,1
n+1\

 ⋃
i=1,...,N ;m=1,...,n

+,i∑
m


and

+,k+1∑
n+1

= E+,k+1
n+1 \


 ⋃
i=1,...,N ;m=1,...,n

+,i∑
m

⋃ ⋃
i=1,...,k

+,i∑
n+1

 .

An analogous procedure is applied to the family E−,kn to yield the disjoint family
{Σ−,kn }. This second family is defined so as to be disjoint from {Σ+,k

n } as well.
We have defined a disjoint family. We wish to show that it covers S.
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Claim 2.2. S = ∪k=1,...,N ;n∈N(Σ+,k
n ∪ Σ−,kn ).

Proof of Claim 2.2. We have only to show that⋃
k=1,...,N ;n∈N

(
+,k∑
n

⋃ −,k∑
n

)
⊃ S.

Since ⋃
k=1,...,N ;n∈N

(
+,k∑
n

⋃ −,k∑
n

)
=

⋃
k=1,...,N ;n∈N

(
E+,k
n

⋃
E−,kn

)
,

we have to show that, for every x ∈ Ω, S(x) is contained in the set at the right-hand
side. Let x ∈ S(x′) for some x′ ∈ Ω. There exists a k such that either dk(x) =
supi=1,...,N |di(x)| or dk(x) = − supi=1,...,N |di(x)|. Let us consider the first case (the
other being analogous). Call ∆ = ρ(x, ∂Ω). Since S(x′) is an open interval, there
exists δ, 0 < δ < ∆

2 , such that

{x+ λd(x) : −δ ≤ λ ≤ δ} ⊂ S(x′).

Let q be a positive integer such that 1/q < δ/(2
√
N); there exists p such that |p/q −

xk| ≤ 1/2q. The point y = x + (pq − xk)/dk(x)d(x) has the following properties: its

kth component yk equals p/q; recalling that dk(x) ≥ 1/
√
N , we have that ‖x− y‖ =∣∣∣(pq − xk)/dk(x)

∣∣∣ ≤ √N/2q < δ/4. As a consequence, an interval (on S(x′)) centered

at y and of half-length 1/q is contained in S(y) (= S(x′)) and contains x. Moreover,
ρ(y, ∂Ω) ≥ ∆ − δ/4 ≥ 7/4δ ≥ 3/q. Hence, setting n = σ−1(p, q), we have x ∈ E+,k

n .
This proves Claim 2.2.

Claim 2.3. The measure of Ω\S equals zero.
Proof of Claim 2.3. Since the subset of Ω of those points where u is not differ-

entiable is of measure zero, it is enough to show that the subset of Ω\S where u is
differentiable is of measure zero. In particular, for x in such a set, we can assume that
there exists a unique vector dx, as defined in Step a); otherwise we would contradict
the differentiability at x.

Since ∪k,n(E+,k
n ∪E−,kn ) = S, we shall prove that m(Ω\ ∪k,n (E+,k

n ∪E−,kn )) = 0.
Assume, on the contrary, that this set is of positive measure and let x0 be a point
of density of it. As it easy to see, the map x → D(x) as defined in Step a) is upper
semicontinuous. In fact, it has a closed graph and its range is contained in the compact
set B. Then a well-known criterion for upper semicontinuity applies. It follows then
that for every ε there exists δ such that ‖dx − d(x0)‖ < ε for ‖x − x0‖ < δ and
dx ∈ D(x). By changing coordinates we shall assume x0 = 0 and dN (x0) = 1.

Let us consider the (family of) sets Q` = {x : 0 ≤ |xi| ≤ `, i = 1, . . . , N} and let
us choose ` so small that, for every x ∈ Q`, we have:

i) ρ(x, ∂Ω) ≥ `,
ii) dN (x) ≥ max{ 1√

N
, 2√

5
}.

Let us consider the subset of Q` defined by

I` =

{
x : xN = 0 and |xi| ≤ `

2
, i = 1, . . . , N − 1

}
.

The (N − 1)-dimensional measure of I` is `N−1, while the N -dimensional measure of
Q` is (2`)N . Fix t, `

3 ≤ t ≤ 2
3` and consider, on the hyperplane {xN = t}, the set

Pt =

{
x+ t

d(x)

dN (x)
: x ∈ I` and d ∈ D(x)

}
.
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Every point y in this set is interior to S(y); D(y) = d(y) so that it is possible to define
the map Ft : Pt → I` defined by

Ft(y) = y − t d(y)

dN (y)
.

Notice that Pt is contained in ENε as defined in Claim 2.1, with ε = `/3; hence the
restriction of d to Pt is Lipschitzian with constant (6

√
N)/`. For y and y′ in Pt, we

have∥∥∥∥ d(y)

dN (y)
− d(y′)
dN (y′)

∥∥∥∥ ≤ ‖d(y)− d(y′)‖
dN (y)

+
‖d(y′)‖

dN (y)dN (y′)
|dN (y)− dN (y′)|

≤
√
N

6
√
N

`
‖y − y′‖+N

6
√
N

`
‖y − y′‖ ≤ 12N

√
N

`
‖y − y′‖.

Hence, the map Ft is Lipschitzian with constant 1 + t 12N
√
N

` ≤ 1 + 8N
√
N .

Considering the (N − 1)-dimensional measure of a subset A of Pt, we have then
m(Ft(A)) ≤ (1 + 8N

√
N)m(A). Hence,

m(Pt) ≥ m(Ft(Pt))

1 + 8N
√
N

=
m(I`)

1 + 8N
√
N

=
`N−1

1 + 8N
√
N
.

The set ∪`/3≤t≤2`/3Pt is contained in S and, by Fubini’s theorem, its N -dimensional

measure is at least `N/(3 + 24N
√
N), a fixed fraction of the total measure of Q`.

Hence, x0 cannot be a point of density. This proves Claim 2.3.
Claim 2.4. For every k = 1, . . . , N , for every n, the sets Σ±,kn are measurable.
From now up to Step d) we shall fix a choice of either + or −, of k and of n. Hence,

for simplicity’s sake, we will drop ±, n, k and simply denote E±,kn by E and Σ±,kn by
Σ. We shall denote by x̂ the (N − 1)-dimensional vector (x1, . . . , xk−1, xk+1, . . . , xN ).
It is convenient to set Ê to be the subset of RN−1 defined by Ê = {x̂ : x ∈ E ∩ {x :
xk = pn/qn}}, and analogously for Σ̂. Consider (x̂, t), x̂ ∈ Ê, a(x̂) < t < b(x̂) and
define the map

Ξ(x̂, t) = x+ td(x).

This map is uniformly Lipschitz continuous.
Proof of Claim 2.4. As it is easy to see, both the maps a(x̂) and b(x̂) are lower

semicontinuous on Ê, and Ê can be described as the intersection of a closed set
with the counterimages through a and b of the interval [−1/qn, 1/qn]; hence it is a
measurable set. The subset of RN described by {(x̂, t) : x̂ ∈ Ê; a(x̂) < t < b(x̂)} is
measurable and so is E, its image through the Lipschitz continuous map Ξ. Similarly
for E. It follows that Σ is measurable. This proves Claim 2.4.

Step c) We wish to study the properties of the maps Ξ(x̂, t) defined above and of
JΞ(x̂, t).

For a.e. (x̂, t) ∈ (Ξ)−1(Σ), we have that ∇Ξ exists and a computation shows that
it can be obtained as follows. Consider the N ×N matrix ∇d(x) and form the matrix
I + t∇d(x). Replace the kth column by the components of d(x), and compute it
by setting the kth component of x to be pn/qn and the other components to be the
components of x̂. This is the matrix ∇Ξ. Hence, JΞ is uniformly bounded on Σ. It is
also a.e. different from zero. In fact, differentiating the identity ‖d(x)‖ = 1, we obtain
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(∇d(x)) d(x) = 0, so that (I + t∇d(x)) d(x) = d(x). By Cramer’s rule and the above
computation of ∇Ξ, we obtain

dk(x) = ± JΞ(x̂, t)

det(I + t∇d(x))
.

Since (on Σ), |dk| > 1√
N

, we finally have JΞ(x̂, t) 6= 0.

We wish to define a map α and prove it is in L1(Σ). Define first the map β on
(Ξ)−1(Σ) setting,

β(x̂, t) =
1

JΞ(x̂, t)

∫ t

a(x̂)

g′(u(Ξ(x̂, s)))JΞ(x̂, s) ds.

For x ∈ Σ define α as

α(x) = β((Ξ)−1(x)).

Claim 2.5. α ∈ L1(Σ).
Proof of Claim 2.5. We recall the change of variables formula ([3, Theorem 2,

p. 99]) that states for a function v ∈ L1 and an invertible and Lipschitzian transfor-
mation Ξ, we can write∫

v(Ξ(x̂, t) JΞ(x̂, t) d(x̂, t) =

∫
v(x) dx.

By this formula we obtain∫
Σ

g′(u(x)) dx =

∫
(Ξ)−1(Σ)

g′(u(Ξ(x̂, t)))JΞ(x̂, t) d(x̂, t)

=

∫
Σ̂

(∫ b(x̂)

a(x̂)

g′(u(Ξ(x̂, t)))JΞ(x̂, t) dt

)
dx̂.

Similarly, by the change of variables formula and applying the definitions of α and β,
we have∫

Σ

α(x) dx =

∫
(Ξ)−1(Σ)

β(x̂, t)JΞ(x̂, t) d(x̂, t) =

∫
Σ̂

(∫ b(x̂)

a(x̂)

β(x̂, t)JΞ(x̂, t) dt

)
dx̂

=

∫
Σ̂

(∫ b(x̂)

a(x̂)

∫ t

a(x̂)

g′(u(Ξ(x̂, s)))JΞ(x̂, s) ds dt

)
dx̂.

Integrating by parts we obtain that∫ b(x̂)

a(x̂)

∫ t

a(x̂)

g′(u(Ξ(x̂, s)))JΞ(x̂, s) ds dt = −
∫ b(x̂)

a(x̂)

(t− b(x̂))g′(u(Ξ(x̂, t)))JΞ(x̂, t) dt.

Hence, ∫
Σ

α(x) dx ≤
∫

Σ̂

diam(Ω)

(∫ b(x̂)

a(x̂)

g′(u(Ξ(x̂, t)))JΞ(x̂, t) dt

)
dx̂

= diam(Ω)

∫
Σ

g′(u(x)) dx.
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Step d) Since the sets Σ±,kn are disjoint and (with the addition of a null set) form
a partition of Ω, α is actually defined a.e. on Ω and by adding the previous inequalities
over + and − and all k and n, we have that α ∈ L1(Ω).

Setting p(x) = α(x)∇u(x)/(‖∇u(x)‖), we want to show that the pair (u(x), p(x))
is a solution to the Euler–Lagrange equation for the minimization problem (P).

Fix arbitrarily φ in C∞0 (Ω) and consider∫
Ω

α(x)〈∇u(x),∇φ(x)〉 dx.

Since ‖〈∇u(x),∇φ(x)〉‖ is bounded, the integrand is in L1(Ω) and the integral over
Ω is the sum of the integrals over Σ±,kn . We fix one such Σ±,kn that we denote by
Σ and recall the corresponding notations introduced in Step b). Recall that, by the
definition of Ξ and the properties of ∇u,

∂

∂t
Ξ(x̂, t) = ∇u(Ξ(x̂, t)),

independent of t. Hence,

∂

∂t
φ(Ξ(x̂, t)) = 〈∇u(Ξ(x̂, t)),∇φ(Ξ(x̂, t))〉.

By the change of variables formula and the definition of α, we have∫
Σ

α(x)〈∇u(x),∇φ(x)〉 dx =

∫
Σ̂

(∫ b(x̂)

a(x̂)

α(Ξ(x̂, t))
∂

∂t
φ(Ξ(x̂, t))JΞ(x̂, t)dt

)
dx̂

=

∫
Σ̂

(∫ b(x̂)

a(x̂)

∂

∂t
φ(Ξ(x̂, t))

∫ t

a(x̂)

g′(u(Ξ(x̂, s)))JΞ(x̂, s) ds dt

)
dx̂.

Integrating by parts we have∫
Σ

α(x)〈∇u(x),∇φ(x)〉 dx =

∫
Σ̂

[φ(Ξ(x̂, t))

∫ t

a(x̂)

g′(u(Ξ(x̂, s)))JΞ(x̂, s) ds

]b(x̂)

a(x̂)

−
∫ b(x̂)

a(x̂)

g′(u(Ξ(x̂, t)))φ(Ξ(x̂, t))JΞ(x̂, t) dt

)
dx̂.

The first term at the right-hand side is zero since Ξ(x̂, b(x̂)) belongs to ∂Ω.
In the same way we compute

∫
Σ
g′(u(x))φ(x) dx. We have∫

Σ

g′(u(x))φ(x) dx =

∫
Σ̂

(∫ b(x̂)

a(x̂)

g′(u(Ξ(x̂, t)))φ(Ξ(x̂, t))JΞ(x̂, t) dt

)
dx̂.

Hence, ∫
Σ

α(x)〈∇u(x),∇φ(x)〉 dx+

∫
Σ

g′(u(x))φ(x) dx = 0

for every Σ±,kn , hence the same is true on Ω. The pair (p(x), u(x)), where p =
α∇u/(‖∇u‖), is a distributional solution to the differential inclusion

div p(x) = g′(u(x)) for p(x) ∈ ∂j[0,1](‖∇u(x)‖).
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Abstract. In this paper we describe an optimization algorithm for the computation of solutions
to optimal control problems with control, state, and terminal constraints. Inequality and equality
constraints are dealt with by means of feasible directions and exact penalty approaches, respectively.
We establish a general convergence property of the algorithm which makes no reference to the ex-
istence of accumulation points; in this analysis the compactness of the space of relaxed controls is
used only to guarantee boundedness of the sequence of penalty parameters. We also demonstrate
that relaxed accumulation points of sequences generated by the algorithm satisfy standard first-
order necessary conditions of optimality. The algorithm contains a number of computation saving
features, including an ε-active strategy for dealing with the “infinite dimensional” inequality con-
straints. Our convergence analysis provides techniques for studying the convergence properties of
related optimization algorithms in which direction-finding subproblems involve the approximation of
directional derivatives of the Chebyshev functional associated with state constraints. A companion
paper provides details of implementation and numerical examples.

Key words. optimal control, state constrained problems, necessary optimality conditions,
numerical algorithms

AMS subject classifications. 49M10, 49J15
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1. Introduction. This paper concerns a new first-order, feasible directions al-
gorithm for the solution of the following optimal control problem with pathwise state
inequality constraints, labeled (P):

min
u
φ(x(1))

s.t. ẋ(t) = f(t, x(t), u(t)), a.e. on [0, 1], x(0) = x0,(1.1)

u(t) ∈ Ω a.e. on [0, 1],

h1
i (x(1)) = 0 ∀i ∈ E,
h2
j (x(1)) ≤ 0 ∀j ∈ I,

q(t, x(t)) ≤ 0 ∀t ∈ [0, 1],

expressed in terms of the data: finite sets of index values E, I, functions f : [0, 1] ×
Rn ×Rm → Rn, φ : Rn → R, h1

i : Rn → R for i ∈ E, h2
j : Rn → R for j ∈ I and

q : [0, 1]×Rn → R, a vector xo ∈ Rn, and a set Ω ⊂ Rm of the form

Ω = {u ∈ Rm : bi− ≤ ui ≤ bi+ for i = 1, 2, . . . ,m},(1.2)

in which bi−, bi+, i = 1, 2, . . . ,m are constants. Throughout, T denotes [0, 1].
Everything that follows can be adapted to allow for multiple pathwise inequality

constraints and also for presence of an integral cost term; we limit ourselves to the
above special case for notational simplicity.
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A control function u : T → Rm is a measurable function which satisfies u(t) ∈ Ω
a.e. Given any control function, under the hypotheses we shall impose there is a
unique absolutely continuous function x : T → Rn satisfying ẋ(t) = f(t, x(t), u(t))
a.e. on T and x(0) = x0. It is denoted by xu and is referred to as the state trajectory
corresponding to u.

The control problem (P) can be expressed as an optimization problem over the
set of control functions

U = {u : T → Rm : u is measurable and u(t) ∈ Ω a.e. on T}
with the aid of the functions F̃0 : L2

m[T ] → R, h̃1
i : L2

m[T ] → R for i ∈ E, h̃2
j :

L2
m[T ]→ R for j ∈ I and q̃ : L2

m[T ]→ C[T ]:

F̃0(u) = φ(xu(1)),

h̃1
i (u) = h1

i (x
u(1)) ∀i ∈ E,

h̃2
j (u) = h2

j (x
u(1)) ∀j ∈ I,

q̃(u)(t) = q(t, xu(t)) ∀t ∈ T.
The reformulated problem is

min
u∈U

F̃0(u)

s.t.

h̃1
i (u) = 0 ∀i ∈ E, h̃2

j (u) ≤ 0 ∀j ∈ I,
q̃(u)(t) ≤ 0 ∀t ∈ T.

The algorithm which we propose has the following features:
a) the algorithm aims to solve a related problem (Pc) in which the equality

constraints are replaced by an “exact penalty term” in the cost:

min
u∈U

F̃c(u)

s.t. h̃j(u) ≤ 0 ∀j ∈ I and q̃(u)(t) ≤ 0 ∀t ∈ T
in which

F̃c(u) = F̃0(u)/c+ max
i∈E
|h̃1
i (u)|.

(The penalty parameter c is updated according to a simple test, along the lines of
that earlier employed by Mayne and Polak [8].)

b) The algorithm generates a sequence of controls whose corresponding state
trajectories satisfy the pathwise and endpoint inequality constraints. Search directions
are generated by solving a convex control subproblem. The new control is found by
conducting an Armijo line search along the direction point obtained from a direction
finding subproblem.

Algorithms involving function space iterations for the solution of optimal control
problems with pathwise state inequality constraints, with accompanying convergence
analysis, have been proposed by Warga [20], Mayne and Polak [9], and Polak, Yang,
and Mayne [11]. Both the Warga and Mayne–Polak algorithms involve proximity-
type subalgorithms to generate search directions, and their effective implementation is
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hampered by the poor performance of proximity-type algorithms applied to the convex
sets in infinite dimensional spaces which arise in this context. The algorithm of Warga
generates a sequence of relaxed controls, accumulation points of which are shown to
satisfy a strong version of the relaxed maximum principle. None of these algorithms
involves an ε-active strategy for state constraints, a feature of our algorithm which
greatly enhances its efficiency. In the later Polak–Yang–Mayne algorithm, barrier
functions are used to eliminate pathwise state constraints from the direction-finding
problems. Computation experience of this algorithm is limited, though preliminary
findings are promising [11]. The algorithm applies only to problems with no equality
constraints.

Machielsen [10] and Alt and Malanowski [1] investigate “function space” second-
order methods for solving optimal control problems with state constraints; a local
convergence analysis and numerical examples are to be found in [1] and [10], respec-
tively. The fact that the direction-finding subproblems of [10] and [1] are, in general,
nonconvex optimal control problems creates difficulties both regarding efficient im-
plementation and global convergence analysis.

A companion paper provides a full discussion of implementational aspects of the
algorithm and also numerical examples. The examples include an optimal control
problem arising in flight mechanics, concerning optimal control strategies in the pres-
ence of windshear, extensively studied by Bulirsh, Montrone, and Pesch [4], [5]. The
fact that our feasible directions algorithm provides a solution to the “windshear” prob-
lem without recourse to prior information about junction times or control structure
(which are required in the method employed in [5]) is evidence of the effectiveness of
our algorithm (and indirect, nonlinear programming methods in general) as a com-
putational tool.

What special characteristics of the algorithm provided in this paper promote
efficient implementation? One is that search directions generated by the algorithm
drive state trajectories into the interior of the state constraint region. This means
that satisfaction of the state constraint over the entire time interval T can still be
guaranteed, even if we impose the state constraint at only relatively few points in T
[16]. Consequently a coarser discretization can be applied to the state constraint than
that associated with the parametrization of control functions. This is significant since
it is precisely the “dimensionality” of the pathwise constraint which makes it difficult
to compute optimal controls for (P). Techniques for the approximation of sets on
which the state constraint is required to be satisfied were anticipated in an algorithm
proposed by Fedorenko [6].

While techniques for deriving conditions on accumulation points generated in both
feasible directions and also exact penalty methods in finite dimensional nonlinear pro-
gramming are now available and well understood, developing a convergence analysis
for the optimal control problem (P) poses additional difficulties, notably those asso-
ciated with an inequality constraint function having infinite dimensional range and
with the fact that the set U is not compact. Novel features of the convergence analysis
are as follows. We propose the convergence analysis based on the “nonpositive de-
scent function,” which along the sequences generated by our algorithm is convergent.
Its limit point, equal to zero, is the statement of necessary optimality conditions. A
customary result in the literature would be that “relaxed” accumulation points of
sequences generated by our algorithm satisfy necessary conditions of optimality in
the form of a “relaxed” version of the maximum principle. Our convergence result is
stronger in the sense that it is valid for the whole sequence generated by our algo-
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rithm. The compactness of the space of relaxed controls is needed only to guarantee
boundedness of penalty parameters. The algorithm allows for a computation-saving
ε-active strategy in dealing with the “infinite dimensional” inequality constraint. A
single, simply stated constraint qualification (hypothesis (CQ) below) is invoked both
to ensure finite increase of the penalty parameter and to derive properties of accumu-
lation points in place of a pair of constraint qualification–type hypotheses featured, for
example, in [8], [9]. We clarify the relationship between standard necessary conditions
of optimality and the “nonpositive descent function”–type conditions.

It is to be expected that analytical techniques developed here will also be of ben-
efit in studying the convergence properties of related algorithms for solving optimal
control problems, involving Chebyshev-type functional constraints where, owing to
the use of a variable stepsize in integration or high order integration procedures, it is
either not possible or inconvenient to base the analysis on an a priori discretization of
the dynamic equations (see [13]). The algorithm (and its convergence analysis) pre-
sented in the paper can easily be adapted to control problems with state constraints
whose control functions are defined by piecewise constant (or piecewise polynomial)
functions. One such method, a second-order method which exploits the convergence
analysis presented here, is described in [13]. It favorably compares with efficient im-
plementations of sequential quadratic programming (SQP) algorithms [7], [22] applied
to nonlinear programming problems which are generated by collocation schemes [18].

2. Representation of functional directional derivatives. At each iteration
of the feasible directions algorithm, search directions are generated by solving a sim-
plified version of the exact penalty function problem in which the dynamics and cost
functional and constraint functionals are replaced by their first-order approximations
around the current control function u.

For d ∈ U − u we need to consider the first-order approximation xu + yu,d to
xu+d in which the perturbation yu,d to the nominal state trajectory xu is the unique
solution to the linearized equations

ẏ(t) = fx(t, xu(t), u(t))y(t) + fu(t, xu(t), u(t))d(t),(2.1)

y(0) = 0.

First-order approximations to the functionals F̃0(u + d) − F̃0(u), h̃1
i (u + d) − h̃1

i (u)
(i ∈ E), h̃2

j (u + d) − h̃2
j (u) (j ∈ I), and q̃(u + d)(t) − q̃(u)(t) (t ∈ [0, 1]) can now be

defined via yu,d as follows:

〈∇F̃0(u), d〉 := φx(xu(1))yu,d(1),

〈∇h̃1
i (u), d〉 := (h1

i )x(xu(1))yu,d(1) for i ∈ E,
〈∇h̃2

j (u), d〉 := (h2
j )x(xu(1))yu,d(1) for j ∈ I,

〈∇q̃(u)(t), d〉 := qx(t, xu(t))yu,d(t) ∀ t ∈ T.

The notation 〈∇F̃0(u), d〉 is intended to convey the suggestion that 〈∇F̃0(u), ·〉 is a
directional derivative associated with some kind of “derivative” ∇F̃0 of the functional
F̃0 at u. It is, however, unnecessary to pursue this interpretation (this would require
us to specify function spaces and the precise notation of the derivative ∇F̃0). As far as
describing the feasible directions algorithm and analyzing its convergence properties
are concerned, the simplest course is to take the above formulas for 〈∇F̃0(u), d〉,
etc., as definitions of constructs featured in the algorithm whose properties can be
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analyzed directly with the help of the results on the relationship between nonlinear
control systems and their linear approximations.

The propositions stated below are useful in the analysis of the convergence prop-
erties of optimal control algorithms (and our algorithm in particular). Reference will
be made in this and the subsequent sections to the following hypotheses.

(H1) f(t, ·, ·) is continuously differentiable for fixed t, and f , fx, and fu are
continuous functions. There exists K <∞ such that

‖fx(t, x, u)‖ ≤ K for all (t, x, u) ∈ T ×Rn × Ω.(2.2)

(H2) φ, h1
i , i ∈ E, h2

j , j ∈ I, are continuously differentiable functions. q(t, ·) is
differentiable for each t, and q, qx are continuous functions.

Conditions (H1) and (H2) are regularity hypotheses on the data. Condition
(2.2) could be substituted by any condition ensuring the uniform boundedness of
state trajectories, for then we can always arrange that (2.2) is satisfied by redefining
f for large values of the x variable, values which will never be encountered.

Proofs of the propositions, which are not provided here for the lack of space, are
to be found in [15].

Proposition 2.1. Assume (H1). For each u ∈ U and d ∈ L2
m[T ], (1.1) and (2.1)

have unique solutions (in the class of absolutely continuous vector valued functions on
[0, 1]) xu and yu,d, respectively. Furthermore there exist finite constants c1, c2, and
c3 such that

‖xu‖L∞ ≤ c1,
‖xu − xv‖L∞ ≤ c2‖u− v‖L2 ,

‖yu,d‖L∞ ≤ c3‖d‖L2

∀u, v ∈ U , d ∈ L2
m[T ]. In particular,

‖yu,d‖L∞ ≤ c3‖d‖L∞

if u ∈ U , d ∈ L∞m [T ].
Proposition 2.2. Assume (H1). Then there exists a function o1(·) : (0,∞)→

(0,∞) such that s−1o1(s)→ 0 as s ↓ 0 and

‖xu+d − (xu + yu,d)‖L∞ ≤ o1(‖ d‖L∞)

∀u ∈ U and d ∈ L∞m [T ].
Proposition 2.3. Assume (H1). Take a function q : T × Rn → R such that

q(t, ·) is differentiable and q, qx are continuous. Then for any ε > 0 there exists
oε2(·) : (0,∞)→ (0,∞) such that s−1oε2(s)→ 0 as s ↓ 0 and

| max
t∈Rε,u

[q(t, xu(t)) + qx(t, xu(t))yu,d(t)]−max
t∈T

q(t, xu+d(t))| ≤ oε2(‖d‖L∞)(2.3)

∀u ∈ U and d ∈ L∞m [T ]. Rε,u, the set of times at which the state constraint is ε-active,
is defined in (4.1).

Proposition 2.4. Assume (H1). Take a continuously differentiable function
h : Rn → R. Then there exists o3(·) : (0,∞) → (0,∞) such that s−1o3(s) → 0 as
s ↓ 0 and

|h(xu+d(1))− [h(xu(1)) + hx(xu(1))yu,d(1)]| ≤ o3(‖d‖L∞)
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for all u ∈ U and d ∈ L∞m [T ].
Proposition 2.5. Assume (H1). Take continuously differentiable functions

hi : Rn → R, i ∈ E. Then there exists o4(·) : (0,∞)→ (0,∞) such that s−1o4(s)→ 0
as s ↓ 0 and

|max
i∈E
|hi(xu(1)) + (hi)x(xu(1))yu,d(1)| −max

i∈E
|hi(xu+d(1))|| ≤ o4(‖d‖L∞)

for all u ∈ U , d ∈ L∞m [T ].

3. Relaxed controls. The convergence analysis to follow involves relaxed con-
trols. In this section we briefly review their properties and introduce some notation.

We recall that a Radon probability measure ς on the Borel sets of Ω is a regular
positive measure such that ς(Ω) = 1. The set of all Radon probability measures is
denoted by rpm(Ω). A relaxed control, µ, is a measurable function µ : T → rpm(Ω),
where “measurability” is as defined in [19]. The set of relaxed controls is denoted by
Ū .

Let L1(T, C(Ω)) denote the space of absolutely integrable functions from T to
C(Ω). Then the topology imposed on Ū is the weakest topology such that the mapping

µ→
∫
T

∫
Ω

ψ(t, u)µ(t)(du)dt

is continuous for all ψ ∈ L1(T, C(Ω)).
We recall [19, p. 287] that Ū is a compact and convex subset of a normed vector

space (namely, the dual space of L1(T, C(Ω)) with a “weak” norm whose topology
restricted to Ū coincides with the weak star topology).

Relaxed controls give rise to the relaxed dynamics:

ẋ(t) = fr(t, x(t), µ(t)) :=

∫
Ω

f(t, x(t), u)µ(t)(du), x(0) = x0,

whose solution we denote by xµr . Extensions to relaxed controls of functions in problem

(P) are denoted as follows: F̂0(µ) = φ(xµr (1)), ĥ1
i (µ) = h1

i (x
µ
r (1)), ĥ2

j (µ) = h2
j (x

µ
r (1)),

q̂(µ)(t) = q(t, xµr (t)). We can define then the relaxed problem (Pr) as the problem
(P) in which functions F̃0, etc., are substituted by F̂0, etc., ordinary controls u by
relaxed controls µ and U by Ū .

With each ordinary control u ∈ U we associate a relaxed control µ ∈ Ū defined
by the property µ(t)(S) = δu(t)(S) for all Borel sets S ⊂ Ω, where δu(S) = 1 if u ∈ S
and δu(S) = 0 otherwise. We write this control u. Naturally, u and u give rise to the
same state trajectory.

A useful concept, introduced in [3], for studying approximations to relaxed state
trajectories is the set of search directions:

D := {d(·, ·) : T × Ω→ Rm : d(·, u) is measurable, d(t, ·) is continuous,

and u+ d(t, u) ∈ Ω ∀u ∈ Ω a.e. on T}.

Take µ ∈ Ū and d ∈ D. yµ,dr is the solution to

ẏ(t) = (fx)r(t, x
µ
r (t), µ(t))y(t) +

∫
Ω

fu(t, xµr (t), u)d(t, u)µ(t)(du),

y(0) = 0.
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Notice that if µ(t) = δu(t) and d(t, u) = v(t)− u for some v ∈ U , then yµ,dr = yu,v−u.
For µ ∈ Ū and d ∈ D we denote

〈∇F̂0(µ), d〉r := φx(xµr (1))yµ,dr (1),

〈∇ĥ1
i (µ), d〉r := (h1

i )x(xµr (1))yµ,dr (1) for i ∈ E,
〈∇ĥ2

j (µ), d〉r := (h2
j )x(xµr (1))yµ,dr (1) for j ∈ I,

〈∇q̂(µ)(t), d〉r := qx(t, xµr (t))yµ,dr (t) for all t ∈ T.

Under the hypotheses (H1) and (H2) we deduce from standard properties of
relaxed controls [19]. For fixed d ∈ D, the following mappings are continuous:

µ→ xµr , µ→ 〈∇F̂0(µ), d〉r, µ→ 〈∇ĥ1
i (µ), d〉r, i ∈ E,

µ→ 〈∇ĥ2
j (µ), d〉r, j ∈ I, µ→ 〈∇q̂(µ)(·), d〉r,

where the domain in each case is Ū and the range spaces C(T,Rn), R|E|, R|I|, and
C(T,Rn), respectively.

4. The algorithm. We begin by describing the direction-finding subproblem
and some functions associated with it. First we define an approximation to the active
region of the pathwise inequality constraint with reference to the control function

Rε,u := {t ∈ T : q̃(u)(t) ≥ max
t̃∈T

q̃(u)(t̃)− ε}.(4.1)

Here ε > 0 is a parameter which governs the tightness of the approximation.
For fixed c and u the direction-finding subproblem Pc(u) for problem (Pc) is

min
d∈U−u,β∈R

β + 1/(2c)‖d‖2L2

s.t.

〈∇F̃0(u), d〉/c+ max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), d〉| −max
i∈E
|h̃1
i (u)| ≤ β,

h̃2
j (u) + 〈∇h̃2

j (u), d〉 ≤ β ∀j ∈ I,
q̃(u)(t) + 〈∇q̃(u)(t), d〉 ≤ β ∀t ∈ Rε,u.

The subproblem can be reformulated as an optimization problem over the space
L2
m[T ] whose objective function is strictly convex and has quadratic growth. It there-

fore has a unique solution (d̄, β̄). Since this solution depends on c and u, we may
define the descent function σc(u) and the penalty test function tc(u), which will be
used to test optimality of a control u and to adjust c, respectively, as

σc(u) = β̄

and

tc(u) = β̄ + max
i∈E
|h̃1
i (u)|/c

for given c > 0 and u ∈ U .
A starting point is required which is feasible with respect to the inequality con-

straints. This point is computed by applying a few iterations of an algorithm which
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is a simple variant of the algorithm below (see, e.g., [14]). (Other approaches are
possible, such as that described in [12].)

The algorithm is as follows.
Algorithm 1. Fix parameters ε > 0, γ, η ∈ (0, 1), c0 > 0, κ > 1.
1. Choose the initial control u0 ∈ U which satisfies h̃2

j (u0) ≤ 0 ∀j ∈ I and

q̃(u0)(t) ≤ 0 ∀t ∈ T . Set k = 0, c−1 = c0.
2. Let ck be the smallest number chosen from {ck−1, κck−1, κ

2ck−1, . . .} such that
the solution (dk, βk) to the direction-finding subproblem Pck

(uk) satisfies

tck(uk) ≤ 0.

If σck(uk) = 0, then STOP.
3. Let αk be the largest number chosen from the set {1, η, η2, . . . , } such that

uk+1 = uk + αkdk satisfies the relations

F̃ck(uk+1)− F̃ck(uk) ≤ γαkσck(uk),

h̃2
j (uk+1) ≤ 0 ∀j ∈ I,

q̃(uk+1)(t) ≤ 0 ∀t ∈ T.
Increase k by 1. Go to Step 2.

The descent function σck(uk) is nonpositive valued at each iteration. Suppose that
subsequences {uk}k∈K , {ck}k∈K of the sequences of control functions and penalty
parameters generated by the algorithm have limit points (in some sense) ū and c̄.
We would then expect that σck(uk) → σc̄(ū) (along the subsequence) and σc̄(ū) ≥
0, a condition which asserts that the direction-finding subproblem for ck = c̄ and
uk = ū has the solution (d = 0, β = 0) and which (together with the feasibility of
ū) can be interpreted as a first-order optimality condition satisfied by ū. If {ck}
is nondecreasing and bounded (thus convergent), then σck(uk) →k→∞ 0 would be
a stronger result because the existence of a convergent subsequence of {uk} is not
requested. Justifying these arguments (under precisely specified hypotheses) is the
essence of the convergence analysis to follow.

If u is not a stationary point for the problem (P), then d 6= 0 and β < 0, which
implies that

q̃(u)(t) + 〈∇q̃(u)(t), d〉 < 0 ∀t ∈ Rε,u.(4.2)

We can show, under the continuity assumption imposed on qx(·, ·), that q̃(u)(t) +
〈∇q̃(u)(t), d〉 is a Lipschitz function with respect to t [16]; therefore there is a finite
set of points A ⊂ Rε,u such that if

q̃(u)(t) + 〈∇q̃(u)(t), d〉 < 0 ∀t ∈ A,
then (4.2) is also satisfied. This property is exploited in the implementable version of
the algorithm discussed in [16].

Notice that the only requirement in the directional minimization related to the
state constraint is the feasibility of uk+1. Other exact penalty function methods such
as that in [9] do not combine the strict descent property (4.2) with the unrestrictive
direction minimization procedure regarding the state constraint.

The role of the penalty parameter test function tc is to ensure that the penalty
parameter is large enough in the limit (but finite) to force satisfaction of the equality
endpoint constraint. The algorithm ensures that, at the kth iteration,

tck(uk) = σck(uk) + max
i∈E
|h̃1
i (uk)|/ck ≤ 0.
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Since under favorable circumstances σck(uk) → 0 and {ck} is bounded, as we
will show, we conclude from this inequality that maxi∈E |h̃1

i (ū)| = 0; i.e., the limiting
control satisfies the endpoint equality constraint.

Before concluding this section we need to clarify two points about the algorithm.
They are to guarantee that Step 2 and 3 of Algorithm 1 can always be carried out
(under the hypotheses of section 2). These gaps are filled by the following proposition
in which we invoke a constraint qualification.

(CQ) For each µ ∈ Ū which is feasible w.r.t. the inequality constraints of the
problem (Pr) we have F(µ) 6= ∅ and, in the case E 6= ∅,

0 ∈ interior[E(µ)],

where

E(µ) := {{〈∇ĥ1
i (µ), d〉r}i∈E ∈ R|E| : d ∈ F(µ)}

and

F(µ) := {d ∈ D : max
j∈I

[ĥ2
j (µ) + 〈∇ĥ2

j (µ), d〉r] < 0,

max
t∈T

[q̂(µ)(t) + 〈∇q̂(µ)(t), d〉r] < 0}.

In the case I = ∅ (no terminal inequality constraints) we interpret maxj∈I [h̃2
j (µ) +

· · ·] = −∞.

(CQ) is related to hypotheses earlier invoked by Mayne and Polak [8]. It is a
local controllability condition on values of the (linearized) equality constraint func-
tions with respect to control functions which are strictly feasible w.r.t. the linearized
inequality constraints. The role of (CQ) is to ensure uniform boundedness of penalty
parameter values and that a convergence analysis can be carried out in terms of “nor-
mal” extremality conditions (conditions in which the cost multiplier is nonzero) as
stated in the next section.

Proposition 4.1.

(i) Assume that hypotheses (H1), (H2), and (CQ) are satisfied. Then for any
u ∈ U satisfying the endpoint and pathwise inequality constraints of (P) there exists
c̄ > 0 such that for all c > c̄

tc(u) ≤ 0.

(ii) Assume that hypotheses (H1) and (H2) are satisfied. Then for any u ∈ U
satisfying the endpoint and pathwise inequality constraints and c > 0 such that σc(u) <
0, there exists ᾱ > 0 such that if α ∈ [0, ᾱ), then

F̃c(ũ)− F̃c(u) ≤ γασc(u),

h̃1
j (ũ) ≤ 0 ∀j ∈ I,

q̃(ũ)(t) ≤ 0 ∀t ∈ T,

where ũ = u+αd and (d, β = σc(u)) is the solution to the direction-finding subproblem
corresponding to c and u.

A proof of this proposition is given in section 6.
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5. Convergence properties of the algorithm. In this section we show that
the descent function σc(u) converges to zero along the sequences {ck}, {uk} generated
by Algorithm 1. Furthermore we show that {ck} is bounded and that {uk}, regarded
as sequences in Ū , satisfy necessary optimality conditions.

Results are given in relation to the necessary conditions (NC) in normal form for
a control function µ̄, which is feasible for the relaxed problem (Pr), to be a minimizer.

(NC) There exist nonnegative numbers α2
j , j ∈ I, numbers α1

i , i ∈ E, an
absolutely continuous function p : [0, 1] → Rn and a nonnegative regular measure ν
on the Borel subsets of [0, 1](= T ) such that

−ṗr(t) = (fx)r(t, x
µ̄
r (t), µ̄(t))T (pr(t) +

∫
[0,t)

qx(s, xµ̄r (s))ν(ds)),

−(pr(1) +

∫
[0,1]

qx(s, xµ̄r (s))ν(ds)) = φx(xµ̄r (1))

+
∑
i∈E

α1
i (h

1
i )x(xµ̄r (1)) +

∑
j∈I

α2
j (h

2
j )x(xµ̄r (1)),

(
pr(t) +

∫
[0,t)

qx(s, xµ̄r (s))ν(ds)

)T ∫
Ω

fu(t, xµ̄r (t), u)d(t, u)µ̄(t)(du) ≤ 0

∀d ∈ D a.e. on [0, 1],(5.1)

supp{ν} ⊂ {t ∈ T : q(t, xµ̄r (t)) = 0} and α2
j = 0 if h2

j (x
µ̄
r (1)) < 0.

Here supp{ν} denotes the support of the measure ν.
Conditions (NC) are standard necessary optimality conditions for a relaxed min-

imizer (derivable, for example, from [19, Theorem VI.2.3]) valid under hypotheses
(H1), (H2), and (CQ) with the exception that (5.1) replaces the customary

supp{µ̄(t)} ⊂ arg min
u∈Ω

r(t)T f(t, xµ̄r (t), u) a.e. on T,(5.2)

where r(t) = p(t) +
∫

[0,t)
qx(s, xµ̄r (s))ν(ds).

However, (5.2) implies that for all d ∈ D and ε > 0

ε−1

∫
Ω

r(t)T (f(t, xµ̄r (t), u+ εd(t, u))− f(t, xµ̄r (t), u))µ̄(t)(du) ≤ 0 a.e. on T.

Passing to the limit as ε ↓ 0 with the help of the dominated convergence theorem
gives (5.1). It follows that (NC) are necessary conditions as claimed.

Theorem 5.1. Assume that the data for (P) satisfies hypotheses (H1), (H2),
and (CQ). Let {uk} be a sequence of control functions generated by Algorithm 1, and
let {ck} be the corresponding sequence of penalty parameters. Then

(i) {ck} is a bounded sequence;
(ii)

lim
k→∞

σck(uk) = 0, lim
k→∞

max
i∈E
|h̃1
i (uk)| = 0;

(iii) if µ̄ is any accumulation point of {uk} in Ū (and such an accumulation point
always exists), then µ̄ is feasible for the relaxed problem (Pr) and satisfies necessary
conditions (NC).
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Notice that if {uk} is a sequence in U such that uk → ū for some ū ∈ L2
m[T ] with

respect to the L2 norm, then uk → ū converges in Ū ([21]; see also [17]). Part (iii) of
Theorem 5.1 may therefore be substituted by the following weaker assertion:

(iii) if ū ∈ U is any L2 accumulation point of {uk}, then ū is feasible for (P) and
satisfies (NC).

Notice that the conditions (NC), when applied at an ordinary control, reduce
to simpler “nonrelaxed” necessary conditions of optimality. We see then that the
“relaxed” analysis subsumes the L2 analysis and improves on it by giving information
about asymptotic behavior of the algorithm even when L2 accumulation points do
not exist.

Part (iii) of the theorem implies that if u ∈ U is feasible and σc(u) = 0 for some
c > 0, then u satisfies necessary conditions (NC) of optimality. Fix εSTOP > 0. Part
(ii) of the theorem implies that the stopping condition

σck(uk) ≥ −εSTOP, max
i∈E
|h̃1
i (uk)| ≤ εSTOP, max

j∈I
h̃2
j (uk) ≤ 0, max

t∈T
q̃(uk)(t) ≤ 0

is satisfied after a finite number of iterations. Termination of the algorithm still occurs
after a finite number of iterations if the above stopping criterion is supplemented by

|F̃0(uk+1)− F̃0(uk)| ≤ εSTOP, ‖uk+1 − uk‖L2 ≤ ‖dk ‖L2≤ εSTOP.

The first inequality follows from (i), (ii), and the first inequality of Proposition 4.1(ii).
The second inequality is a consequence of the fact that the optimal value of the
subproblem Pc(u) is nonpositive whence

‖dk‖L2 ≤ −2ckσck(uk) and (ii) ⇒ lim
k→∞

‖dk‖L2 = 0.

Notice that (i) and (ii) correspond to the following general convergence result in
nonlinear programming related to minimizing a bounded (from below), continuously
differentiable function f : limk→∞∇f(xk) = 0. (The condition does not require the
existence of accumulation points of {xk} and is relevant, for example, in situations
when we seek to minimize f(x) = ex.) We are not aware of convergence results, of
this general nature, elsewhere in the constrained nonlinear programming literature.

6. Proof of the convergence theorem, etc. We precede the proof of Propo-
sition 4.1 with a lemma which describes important implications of the (CQ).

Lemma 6.1. Assume (H1), (H2), and (CQ). For any relaxed control µ satisfying
the inequality constraints for the relaxed problem there exist a neighborhood O(µ) of
µ, in the relaxed topology, K1 > 0 and K2 > 0 with the following properties: given
any u ∈ U satisfying the inequality constraints and such that u ∈ O(µ), there exists
v ∈ U such that

max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), v − u〉| −max
i∈E
|h̃1
i (u)| ≤ −K1 max

i∈E
|h̃1
i (u)|,(6.1)

max
j∈I

[h̃2
j (u) + 〈∇h̃2

j (u), v − u〉] ≤ −K1 max
i∈E
|h̃1
i (u)|,(6.2)

max
t∈T

[q̃(u)(t) + 〈∇q̃(u)(t), v − u〉] ≤ −K1 max
i∈E
|h̃1
i (u)|,(6.3)

and ‖v − u‖L2 ≤ K2 max
i∈E
|h̃1
i (u)|.(6.4)

The lemma is proved in the appendix.
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Proof of Proposition 4.1. (i) Fix u ∈ U satisfying the inequality constraints. We
must find ĉ > 0 such that if c > ĉ, then tc(u) ≤ 0. If M(u) := maxi∈E |h̃1

i (u)| = 0,
then of course tc(u) ≤ 0 for any c > 0. If M(u) > 0, then according to Lemma 6.1

there exists d̂ ∈ U − u such that if we set ε = K1M(u) > 0 with K1 as in Lemma 6.1,
then

θ(u) < −ε.

Here

θ(u) := max[max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), d̂〉| −max
i∈E
|h̃1
i (u)|,

max
j∈I

[h̃2
j (u) + 〈∇h̃2

j (u), d̂〉],

max
t∈T

[q̃(u)(t) + 〈∇q̃(u)(t), d̂〉]].

Because σc(u) ≤ 〈∇F̃0(u), d̂〉/c + θ(u), from the definition of tc and Proposition 2.1,
we get

tc(u) ≤ [W + max
i∈E
|h̃1
i (u)|]/c+ θ(u),

where W := max[0, 〈∇F̃0(u), d̂〉]. It follows that tc(u) ≤ 0 for any c > ĉ where

ĉ :=
W +M(u)

−θ(u)
.

(ii) Take u ∈ U satisfying the inequality constraints and c > 0 such that σc(u) < 0.
Let (d, β) be the solution to Pc(u). Since σc(u) 6= 0, it follows that d 6= 0.

We deduce from the differentiability properties of φ, h1
i , h

2
j , and q and Proposition

2.2 that there exists o : [0,∞) → [0,∞) such that s−1o(s) → 0 as s ↓ 0, and the
following three inequalities are valid for any α ∈ [0, 1]:

F̃c(u+ αd)− F̃c(u) ≤ α〈∇F̃0(u), d〉/c+ max
i∈E
|h̃1
i (u) + α〈∇h̃1

i (u), d〉|
−max

i∈E
|h̃1
i (u)|+ o(α),(6.5)

h̃2
j (u+ αd) ≤ h̃2

j (u) + α〈∇h̃2
j (u), d〉+ o(α) ∀j ∈ I,(6.6)

q̃(u+ αd)(t) ≤ q̃(u)(t) + 〈∇q̃(u)(t), d〉+ o(α) ∀t ∈ T.(6.7)

By the convexity of the function e→ maxi∈E |h̃1
i (u) + 〈∇h̃1

i (u), e〉|,

max
i∈E
|h̃1
i (u) + α〈∇h̃1

i (u), d〉| −max
i∈E
|h̃1
i (u)|

≤ α(max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), d〉| −max
i∈E
|h̃1
i (u)|).

From inequality (6.5), then

F̃c(u+ αd)− F̃c(u) ≤ α[〈∇F̃0(u), d〉/c+ max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), d〉|
−max

i∈E
|h̃1
i (u)|] + o(α)

≤ ασc(u) + o(α).
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It follows that

F̃c(u+ αd)− F̃c(u) ≤ αγσc(u) ∀α ∈ [0, α1],(6.8)

where α1 > 0 is such that o(β) ≤ β(γ − 1)σc(u) for all β ∈ [0, α1].
It remains to show that u + αd is feasible w.r.t. the inequality constraints for

sufficiently small α. Since h̃2
j (u) ≤ 0 and α ∈ [0, 1], (6.6) implies

h̃2
j (u+ αd) ≤ α[h̃2

j (u) + 〈∇h̃2
j (u), d〉] + o(α)

≤ ασc(u) + o(α) ≤ αγσc(u) < 0

for all α ∈ [0, α1], as required.
We deduce from the differentiability properties of q (Proposition 2.3) that

max
t∈T

q̃(u+ αd)(t) ≤ max
t∈Rε,u

[q̃(u)(t) + α〈∇q̃(u)(t), d〉] + o(α)

≤ ασc(u) + o(α)

≤ αγσc(u) < 0

for α ∈ [0, α1], as required.
Proof of Theorem 5.1. (i) Let {uk} be the sequence generated by Algorithm 1, and

let {ck} be the corresponding penalty parameters. Let {kl} be the sequence of index
values at which the penalty parameter increases. By extracting a further subsequence
(we do not relabel) we can arrange that the sequence {ukl} has a limit point µ̄ ∈ Ū
because Ū is compact. For simplicity of presentation we denote this subsequence by
{ukl}. We shall find a number ĉ < ∞ such that for sufficiently large kl, ckl > ĉ
implies σckl (ukl) ≤ −maxi∈E |h̃1

i (ukl)|/ckl . This contradicts our assumption that the
penalty parameter increases along the subsequence. So we may conclude that {ck} is
bounded.

Fix kl such that ukl ∈ O(µ̄), where O(µ̄) is in the neighborhood of µ̄ as specified
in Lemma 6.1. From the minimizing property of σckl (ukl) we deduce

σckl (ukl) ≤ 1/(2ckl)‖vkl − ukl‖2L2 + 〈∇F̃0(ukl), vkl − ukl〉/ckl
+ max{max

i∈E
|h̃1
i (ukl) + 〈∇h̃1

i (ukl), vkl − ukl〉| −max
i∈E
|h̃2
i (ukl)|,

max
j∈I

[h̃2
j (ukl) + 〈∇h̃2

j (ukl), vkl − ukl〉],
max
t∈T

[q̃(ukl)(t) + 〈∇q̃(ukl)(t), vkl − ukl〉]}(6.9)

for a control function vkl satisfying conditions (6.1)–(6.4) of Lemma 6.1 in which
vkl , ukl replace v, u, respectively. (Notice that Lemma 6.1 may be invoked since
h̃2
j (ukl) ≤ 0 ∀j ∈ I and q̃(ukl)(t) ≤ 0 ∀t ∈ T .) It follows

σckl (ukl) ≤ 1/(2ckl)

∫ 1

0

‖vkl(t)− ukl(t)‖2dt+ |〈∇F̃0(ukl), vkl − ukl〉|/ckl
−K1 max

i∈E
|h̃1
i (ukl)|.

Since the control constraint Ω is bounded and in view of Proposition 2.1, there exists
r > 0 (independent of kl) such that

1/(2ckl)

∫ 1

0

‖vkl(t)− ukl(t)‖2dt+ |〈∇F̃0(ukl), vkl − ukl〉|/ckl
≤ (r/ckl)‖vkl − ukl‖L2 .
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Hence

σckl (ukl) ≤ −(K1 − rK2/ckl) max
i∈E
|h̃1
i (ukl)|.

We conclude that

σckl (ukl) ≤ −max
i∈E
|h̃1
i (ukl)|/ckl

if ckl ≥ ĉ, where ĉ = K−1
1 (rK2 + 1).

(ii) and (iii) Let {uk} be an infinite sequence generated by the algorithm. We
must show that limk→∞ σck(uk) = 0 and, if a convergent subsequence of {uk} has a
limit point µ̄ ∈ Ū , that conditions (NC) are satisfied at µ̄.

Stage 1 (convergence analysis). Since the ck’s are bounded and can increase only
by multiples of c0, we must have ck = c for all k ≥ k0, for some k0 and c > 0. In view
of the manner in which uk’s are constructed, we have

F̃c(uk+1)− F̃c(uk) ≤ γαkσc(uk)

∀k ≥ k0. This means that, ∀j ≥ 1, k ≥ k0

F̃c(uk+j)− F̃c(uk) ≤ γ
j−1∑
i=0

αk+iσc(uk+i).(6.10)

Since {F̃c(uk)} is a bounded sequence and αkσc(uk) is nonpositive, we conclude

αkσc(uk)→ 0 as k →∞.(6.11)

Since σc(µ) is bounded as µ ranges over Ū , we can arrange by a subsequence
extraction (we do not relabel) that

σc(uk)→ β for some β ≤ 0.

We claim that β = 0. To show this, suppose to the contrary that β < 0. Then by
(6.11) αk → 0.

We must have

F̃c(uk + η−1αkdk)− F̃c(uk) > γη−1αkσc(uk)

or max
j∈I

h̃2
j (uk + η−1αkdk) > 0

or max
t∈T

q̃(uk + η−1αkdk)(t) > 0

for all k sufficiently large.
However, ‖αkdk‖L∞ → 0 as k → ∞. We deduce then from Proposition 2.3 and

the continuity of q that

max
t∈Rε,uk

q̃(uk + η−1αkdk)(t) = max
t∈T

q̃(uk + η−1αkdk)(t)

for all k sufficiently large. Since σc(uk) ≤ 0, we conclude that

max{F̃c(uk + η−1αkdk)− F̃c(uk),max
j∈I

h̃2
j (uk + η−1αkdk),

max
t∈Rε,uk

q̃(uk + η−1αkdk)(t)} ≥ γη−1αkσc(uk).(6.12)
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It follows now from Propositions 2.4–2.5 that there exists a function o : [0,∞)→
[0,∞) such that s−1o(s)→ 0 as s ↓ 0 and

max
j∈I

h̃2
j (uk + η−1αkdk) ≤ max

j∈I
[h̃2
j (uk) + 〈∇h̃2

j (uk), η−1αkdk〉]
+ o(η−1αk‖dk‖L∞),(6.13)

max
t∈Rε,uk

q̃(uk + η−1αkdk)(t) ≤ max
t∈Rε,uk

[q̃(uk)(t) + 〈∇q̃(uk), η−1αkdk〉]

+ o(η−1αk‖dk‖L∞)(6.14)

and

F̃c(uk + η−1αkdk)− F̃c(uk) ≤ 〈∇F̃0(uk), η−1αkdk〉/c
+ max

i∈E
|h̃1
i (uk) + 〈∇h̃1

i (uk), η−1αkdk〉|
−max

i∈E
|h̃1
i (uk)|+ o(η−1αk‖dk‖L∞).(6.15)

Since uk is feasible w.r.t. the inequality constraints, we have

max
j∈I

[h̃2
j (uk) + 〈∇h̃2

j (uk), η−1αkdk〉] ≤ η−1αk max
j∈I

[h̃2
j (uk)

+〈∇h̃2
j (uk), dk〉](6.16)

and

max
t∈Rε,uk

[q̃(uk)(t) + 〈∇q̃(uk)(t), η−1αkdk〉] ≤ η−1αk max
t∈Rε,uk

[q̃(uk)(t)

+〈∇q̃(uk)(t), dk〉](6.17)

for k sufficiently large. Also, by the convexity of e→ maxi∈E |h̃1
i (uk) + 〈∇h̃1

i (uk), e〉|,

max
i∈E
|h̃1
i (uk) + 〈∇h̃1

i (uk), η−1αkdk〉| −max
i∈E
|h̃1
i (uk)|

≤ η−1αk(max
i∈E
|h̃1
i (uk) + 〈∇h̃1

i (uk), dk〉| −max
i∈E
|h̃1
i (uk)|).(6.18)

Combining inequalities (6.12)–(6.18), noting the definition of σc(uk) and the fact
that (dk, βk) solves Pc(uk), and dividing across the resulting inequality by αk we
arrive at

η−1σc(uk) + α−1
k o(η−1αk‖dk‖L∞) ≥ η−1γσc(uk).

We get η−1β ≥ η−1γβ in the limit. But this implies γ ≥ 1, since β < 0 by assumption.
From this contradiction we conclude the validity of β = 0. Assertion (ii) of the theorem
follows from the definition of tc and part (i).

Let {uk} be a convergent subsequence with the limit point µ̄ ∈ Ū . We must show
that conditions (NC) are satisfied at µ̄. First we establish that µ̄ is feasible for (Pr)
and, for some c > 0,

0 ≤ {〈∇F̂0(µ̄), d〉r/c+ max
i∈E
|〈∇ĥ1

i (µ̄), d〉r|,
max
j∈I
〈∇ĥ2

j (µ̄), d〉r, max
t∈R0,µ̄

〈∇q̂(µ̄)(t), d〉r}
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for all d ∈ D.
Since uk → µ̄ we know that xuk

r → xµ̄r uniformly. Because uk is feasible w.r.t.
the inequality constraints and the penalty parameter is not updated for k sufficiently
large, we have

σc(uk) ≤ −max
i∈E
|h̃1
i (uk)|/c, max

j∈I
h̃2
j (uk) ≤ 0, max

t∈T
q̃(uk)(t) ≤ 0.

But we have shown that σc(uk) → 0 as k → ∞. It follows now from the fact that
uk → µ̄ ∈ Ū that in the limit

max
i∈E
|ĥ1
i (µ̄)| = 0, max

j∈I
ĥ2
j (µ̄) ≤ 0, max

t∈T
q̂(µ̄)(t) ≤ 0.(6.19)

We have established that µ̄ is feasible for (Pr).
Now choose any sequence ρk ↓ 0, ρk ≤ 1 ∀k such that

ρ−1
k σc(uk)→ 0 as k →∞.(6.20)

Choose any d ∈ D. By the convexity of U , ρkd(·, uk) ∈ U − uk for each k.
By definition of σc, then

σc(uk) ≤ 1/2ρ2
k‖d(·, uk)‖L2/c+ max{φx(xuk(1))yuk,ρkd(·,uk)(1)/c

+ max
i∈E
|h1
i (x

uk(1)) + (h1
i )x(xuk(1))yuk,ρkd(·,uk)(1)| −max

i∈E
|h1
i (x

uk(1))|,
max
j∈I

[h2
j (x

uk(1)) + (h2
j )x(xuk(1))yuk,ρkd(·,uk)(1)],

max
t∈T

[q(t, xuk(t)) + qx(t, xuk(t))yuk,ρkd(·,uk)(t)]}.(6.21)

Fix ε̂ > 0. Since ρk ↓ 0 (and consequently yuk,ρkd(·,uk) → 0 uniformly), and also
uk is feasible w.r.t. the inequality constraints for each k, we have:

max
j∈I

[h2
j (x

uk(1)) + (h2
j )x(xuk(1))yuk,ρkd(·,uk)(1)] ≤ max

Iε̂,µ̄
(h2
j )x(xuk(1))yuk,ρkd(·,uk)(1),

max
t∈T

[q(t, xuk(t)) + qx(t, xuk(t))yuk,ρkd(·,uk)(t)] ≤ max
t∈Rε̂,µ̄

qx(t, xuk(t))yuk,ρkd(·,uk)(t)

∀k sufficiently large. Inserting these inequalities into (6.21), noting that
yuk,ρkd(·,uk) = ρky

uk,d(·,uk), dividing across by ρk, and passing to the limit with the
help of (6.20) and continuity of F̂0(·), µ→ 〈∇F̂0(µ), d〉r, etc., we obtain

0≤ max{φx(xµ̄r (1))yµ̄,dr (1)/c+ max
i∈E
|(h1

i )x(xµ̄r (1))yµ̄,dr (1)|,
max
j∈Iε̂,µ̄

(h2
j )x(xµ̄r (1))yµ̄,dr (1), max

t∈Rε̂,µ̄
qx(t, xµ̄r (t))yµ̄,dr (t)}.(6.22)

This inequality is valid for each ε̂ > 0 and d ∈ D.
Again choose arbitrary d ∈ D and take εk ↓ 0. For each k let (h2

j )x(xµ̄r (1))yµ̄,dr (1)

achieve its maximum over Iεk,µ̄ at j = jk, and let qx(t, xµ̄r (t))yµ̄,dr (t) achieve its max-
imum over t ∈ Rεk,µ̄ at t = tk. Then

0 ≤ max{φx(xµ̄r (1))yµ̄,dr (1)/c+ max
i∈E
|(h1

i )x(xµ̄r (1))yµ̄,dr (1)|,
(h2
jk

)x(xµ̄r (1))yµ̄,dr (1), qx(tk, x
µ̄
r (tk))yµ̄,dr (tk)}.(6.23)
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Extract a subsequence (we do not relabel) such that jk = j̄ for all k and tk → t̄ for
some index value j̄ and some t̄. By continuity of the functions involved, j̄ ∈ I0,µ̄,
t̄ ∈ R0,µ̄, and (6.23) is valid with j̄ and t̄ replacing jk and tk, respectively.

We have arrived at

0 ≤ max{φx(xµ̄r (1))yµ̄,dr (1)/c+ max
i∈E
|(h1

i )x(xµ̄r (1))yµ̄,dr (1)|,
max
j∈I0,µ̄

(h2
j )x(xµ̄r (1))yµ̄,dr (1), max

t∈R0,µ̄

qx(t, xµ̄r (t))yµ̄,dr (t)}.

This inequality, which holds for all d ∈ D, in particular for (d ≡ 0) ∈ D, is what we
set out to prove.

Finally we must attend to the case when Algorithm 1 generates a finite sequence
which terminates at a control uk̄ = µ̄, satisfying the stopping criterion. This case is
dealt with by applying the preceding arguments to the infinite sequence of controls
obtained by “filling in” with repetitions of the following control uk.

Stage 2 (dualization). The conclusions of Stage 1 can be expressed as

min
d∈D

max
γ∈K

Φ(d, γ) = 0,

where

K :=
{
γ = (α0, {α1

i }i∈E , {α2
j}j∈I , ν) ∈ R1+|E|+|I| × C?(T ) :

α0 ≥ 0, α2
j ≥ 0, j ∈ I,

∑
i∈E
|α1
i | ≤ α0, α0 +

∑
j∈I

α2
j +

∫
T

ν(dt) = 1,

α2
j = 0 if j 6∈ I0,µ̄, ν ≥ 0, supp{ν} ⊂ R0,µ̄

}
and

Φ(d, γ) := α0〈∇F̂0(µ̄), d〉r/c+
∑
i∈E

α1
i 〈∇ĥ1

i (µ̄), d〉r

+
∑
j∈I0,µ̄

α2
j 〈∇ĥ2

j (µ̄), d〉r +

∫
T

〈∇q̂(µ̄)(t), d〉rν(dt).

Φ(·, γ) is a linear function on L1(T, C(Ω)), of which D is a convex subset. Φ(d, ·)
is a bounded linear map and K is a compact convex set with respect to the product
topology of R1+|E|+|I|×C?(T ), in which the weak star topology is imposed on the last
component. It follows from the minimax theorem [2] that there exists some nonzero
γ̄ ∈ K such that

min
d∈D

max
γ∈K

Φ(d, γ) = min
d∈D

Φ(d, γ̄) = 0,(6.24)

with γ̄ = (ᾱ0, {ᾱ1
i }i∈E , {ᾱ2

j}j∈I , ν̄).
We readily deduce from (CQ) that ᾱ0 6= 0. By scaling the multipliers we may

arrange that ᾱ0/c = 1.
Now define p to be the solution to the differential equation

−ṗr(t) = (fx)r(t, x
µ̄
r (t), µ̄(t))T

(
pr(t) +

∫
[0,t)

qx(s, xµ̄r (s))ν̄(ds)

)



2016 R. PYTLAK AND R. VINTER

and

−pr(1) =

∫
[0,1]

qx(s, xµ̄r (s))ν̄(ds) + φx(xµ̄r (1))

+
∑
i∈E

ᾱ1
i (h

1
i )x(xµ̄r (1)) +

∑
j∈I

ᾱ2
j (h

2
j )x(xµ̄r (1)).

We have, for any d ∈ D,

Φ(d, γ̄) +

∫
[0,1]

(
pr(t) +

∫
[0,t)

qx(s, xµ̄r (s))ν̄(ds)

)T
(ẏµ̄,dr (t)

−(fx)r(t, x
µ̄
r (t), µ̄(t))T yµ̄,dr (t)−

∫
Ω

fu(t, xµ̄r (t), u)d(t, u)µ̄(t)(du))dt ≥ 0.

This inequality reduces, via an integration by parts, to∫
[0,1]

(pr(t) +

∫
[0,t)

qx(s, xµ̄r (s))ν̄(ds))T
∫

Ω

fu(t, xµ̄r (t), u)d(t, u)µ̄(t)(du)dt ≥ 0.

These relationships imply that (xµ̄r , µ̄) satisfies the stated necessary conditions.

7. Appendix.
Proof of Lemma 6.1. Take any arbitrary µ̃ ∈ Ū which is feasible w.r.t. the

inequality constraints. Let r > 0 be a number such that

max
i∈E
|ĥ1
i (µ)| < r

∀µ ∈ Ū . We deduce from (CQ) that there is a simplex in E(µ̃) ⊂ RnE (nE = |E|)
with vertices {ej}nEj=0 which contains 0 as an interior point. By definition of E(µ̃),
there exist d0, . . . , dnE ∈ D and δ > 0 such that for j = 0, . . . , nE

{〈∇ĥ1
i (µ̃), dj〉r}i∈E = ej ,

max
i∈I

[ĥ2
i (µ̃) + 〈∇ĥ2

i (µ̃), dj〉r] ≤ −δ,
max
t∈T

[q̂(µ̃)(t) + 〈∇q̂(µ̃)(t), dj〉r] ≤ −δ.

Let (λ0, λ1, . . . , λnE ) be the barycentric coordinates of 0 w.r.t. the vertices ej of
the simplex; i.e.,

0

=

nE∑
j=0

λjej

 = ∇ĥ1(µ̃) ◦
nE∑
j=0

λjdj .

Here

∇ĥ1(µ) ◦ d := {〈∇ĥ1
i (µ), d〉r}i∈E .

We shall also write

ĥ1(µ) := {ĥ1
i (µ)}i∈E .

∇h̃1(u) ◦ d and h̃1(u) are defined analogously.
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Since the vertices are in general position and 0 is an interior point, the λi’s are
all positive, and we may find δ1 > 0 such thatλ0 −

nE∑
j=1

αj , λ1 + α1, . . . , λnE + αnE

 ∈
γ ∈ RnE+1 : γj ≥ 0 ∀j,

nE∑
j=0

γj = 1


whenever α ∈ B(0, δ1) ⊂ RnE . (B(0, δ1) is a ball of radius δ1.) Furthermore the
nE × nE matrix M(µ) defined by

M(µ)α :=

nE∑
j=1

∇ĥ1(µ) ◦ αj(dj − d0)(7.1)

is invertible for µ = µ̃ from the definition of dj , j = 1, . . . , nE .
In consequence of hypothesis (CQ) and in view of the continuity properties of

the mapping µ→ yµ,dr for fixed d, we may choose a neighborhood O(µ̃) of µ̃ in Ū and
numbers r > 0 and δ2 ∈ (0, r−1] such that for any u ∈ U satisfying u ∈ O(µ̃)

(i) max
i∈I

[h̃2
i (u) + 〈∇h̃2

i (u), vj − u〉] ≤ −δ/2 ∀j,
(ii) max

t∈T
[q̃(u)(t) + 〈∇q̃(u)(t), vj − u〉] ≤ −δ/2 ∀j,

(iii) M(u) is invertible,

(iv)

∥∥∥∥∥∥M(u)−1∇h̃1(u) ◦
 nE∑

j=0

λjvj

− u
∥∥∥∥∥∥ ≤ δ1/2,

(v) δ2‖M(u)−1‖n1/2
E ≤ δ1/2.

(In (v) the norm is the Euclidean norm and M(u) is defined analogously to M(µ).)
Here the controls vj ∈ U , j = 0, . . . , nE , are defined to be

vj(t) := u(t) + dj(t, u(t)).

Now suppose that the control u is feasible w.r.t. the inequality constraints and
h̃1(u) 6= 0. Set

α = M(u)−1

−∇h̃1(u) ◦
 nE∑

j=0

λjvj

− u
− δ2‖h̃1(u)‖−1

∞ h̃1(u)

 ,(7.2)

in which ‖h̃1(u)‖∞ := maxi∈E |h̃1
i (u)|. Notice that, by properties (iv) and (v), ‖α‖ ≤

δ1. Also set

v̂ = v0 +

nE∑
j=1

(λj + αj)(vj − v0).

Because ‖α‖ ≤ δ1 we have that v̂ ∈ U . Finally we define v to be

v = u+ (‖h̃1(u)‖∞/r)(v̂ − u).

Since ‖h̃1(u)‖∞/r ≤ 1, it follows that v ∈ U . We now verify that this control function
has the required properties.
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Notice first that

‖v − u‖L2 ≤ (2d/r) ‖ h̃1
i (u)‖∞,(7.3)

where d is a bound on the L2
m[T ] norms of elements in U .

We have from (7.1) and (7.2) that

M(u)α = ∇h̃1(u) ◦
nE∑
j=1

αj(vj − v0)

= −∇h̃1(u) ◦
 nE∑
j=1

λj(vj − v0) + v0 − u
− δ2‖h̃1(u)‖−1

∞ h̃1(u).

By definition of v̂,

∇h̃1(u) ◦ (v̂ − u) = −δ2‖h̃1(u)‖−1
∞ h̃1(u).

But then

∇h̃1(u)(v − u) = −(δ2/r)h̃
1(u).

Since δ2/r ≤ 1, it follows that

max
i∈E
|h̃1
i (u) + 〈∇h̃1

i (u), v − u〉| −max
i∈E
|h̃1
i (u)|

≤ −(δ2/r)‖h̃1(u)‖∞.(7.4)

We deduce from property (i) that〈
∇h̃2

j (u), v0 +

nE∑
i=1

(λi + αi)(vi − v0)− u
〉
≤ −h̃2

j (u)− δ/2 ∀j ∈ I.

It follows that

〈∇h̃2
j (u), v − u〉 ≤ (‖h̃1(u)‖∞/r)(−h̃2

j (u)− δ/2) ∀j ∈ I.

Since ‖h̃1(u)‖∞/r ≤ 1 and h̃2
j (u) ≤ 0 for all j ∈ I, we deduce that

h̃2
j (u) + 〈∇h̃2

j (u), v − u〉 ≤ −(δ/(2r))‖h̃1(u)‖∞ ∀j ∈ I.(7.5)

Likewise we deduce from property (ii) that

q̃(u)(t) + 〈∇q̃(u)(t), v − u〉 ≤ −(δ/(2r))‖h̃1(u)‖∞ ∀t ∈ T.(7.6)

Surveying inequalities (7.3)–(7.6), we see that v satisfies all relevant conditions for
completion of the proof when we set K1 = min{δ2, δ/(2r)} and K2 = 2d/r, numbers
whose magnitudes do not depend on our choice of u.
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Abstract. In this paper we consider nonholonomic control systems on Riemannian manifolds.
Such systems evolve on subbundles of tangent bundles, defined by the nonholonomic constraints.
This paper promotes the view of such systems as the restriction to the nonholonomic subbundle of
“Newton law”-type problems on the entire tangent bundle, defined by, in general, non-Riemannian
connections. These connections should be related to specific geometric properties of the nonholo-
nomic system. We introduce a particular class of connections and demonstrate the richness of the
class through four examples—the rolling ball, the constrained particle, the rolling penny, and the
generalized rolling ball. This class of connections is strongly related to questions of integrability of
the original nonholonomic system. This, in turn, provides additional insight into the relation between
nonholonomic control systems formulated as kinematic equations and those that are formulated as
the full dynamic equations.

Key words. Newton’s law, nonholonomic, integrability, connections
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1. Introduction. In this paper we consider nonholonomic control systems on
Riemannian manifolds, as a general framework in which to consider control problems
associated with classical nonholonomic mechanical systems. There has been much
work on nonholonomic mechanics and associated control systems, including work by
the authors [1], [2], [3], and others including Vershik and Gershkovich [4], Vershik
and Fadeev [5], and Bloch, Krishnaprasad, Marsden, and Murray [9]. An abstract
notion of mechanics may be cast in terms of second-order equations on manifolds
through the extra structure of a connection and from which a notion of “Newton law”
systems may be formed. Systems with constraints limited to only the configuration
variables, denoted holonomic systems, can be identified with Lagrangian systems.
Constraints on such systems which include the phase variables, not simply the con-
figuration variables, yield nonholonomic systems through application of d’Alembert’s
principle. These systems are not naturally identified as Lagrangian systems. If one
treats the constraints as in a constrained variational problem, rather than invoking
d’Alembert’s principle, one obtains a class of systems called vakonomic systems [4]–
[5]. Nonholonomic and vakonomic systems are contrasted in Vershik and Fadeev [5]
(see also Bloch and Crouch [2]).

Since nonholonomic systems are not naturally Lagrangian, one can ask about
other natural structures identified with nonholonomic systems. Vershik and Gersh-
kovich [4] identify a new connection on a reduced phase space on which nonholonomic
systems are given as a “Newton law” system. Other approaches include Bates and
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Sniatycki [6], Bloch, Krishnaprasad, Marsden, and Murray [9]. In this regard it is
interesting to note the fundamental contributions by Cartan [7] and Vershik and
Fadeev [5] (see also Arnold [10]).

In this work we expand upon the previous note [8] by the authors and take a
different point of view from the work described above. The fundamental perspective
is that nonholonomic systems may be viewed as “Newton law” systems defined by
connections on the entire phase space which are related to the system geometry.

Although there are many choices for these connections, we concentrate on one
particular class which has a very appealing structure. This sheds some light on the
ability to generate nonholonomic systems from “Newton law” systems defined by
metric connections. The structure also sheds light on the kinematic and dynamic
formulations on nonholonomic systems and the associated integrability problems.

To be more specific, we suppose that Mn, 〈·, ·〉 is a Riemannian manifold with
symmetric Riemannian connection ∇ and covariant derivative D/∂t. We sometimes
denote the metric by G. We may describe a class of nonholonomic control systems
on M , driven by external forces, by following the works of Bloch and Crouch [1], [2],
[3]. These are generally defined by systems of equations:

D2q

∂t2
=

m∑
i=1

λiWi + F ; q ∈M, ωi(q̇) ≡ 0, 1 ≤ i ≤ m,(1)

where ωi, 1 ≤ i ≤ m, are m independent constraint forms on M satisfying

ωi(X) = 〈Wi, X〉; X ∈ Γ(TM),

where Γ(V ) denotes the space of sections of a vector bundle V , Wi ∈ Γ(TM), 1 ≤ i ≤
m, and F ∈ Γ(TM) is an arbitrary external force field.

System (1) is nonholonomic precisely when the distribution N ⊂ TM defined by

Np = {Xp : X ∈ Γ(TM), ωi(X) ≡ 0, 1 ≤ i ≤ m}, p ∈M,(2)

is not integrable. Let aij = ωi(Wj), 1 ≤ i, j ≤ m. The independence of the forms ωi
implies that the matrix [aij ]1≤i,j≤m is invertible on the whole of M . By differentiating
the constraints we obtain from (1)

Dωi
∂t

(q̇) + ωi

(∑
j

λjWj + F

)
≡ 0, 1 ≤ i ≤ m,

and so we may solve for the multipliers λi as

λk = −
∑
j

a−1
kj

(
Dωj
∂t

(q̇) + ωj(F )

)
, 1 ≤ k ≤ m.

We may, therefore, obtain an equivalent formulation of the system described by (1)
in the form

D2q

∂t2
+
∑
k,j

Wka
−1
kj

Dωj
∂t

(q̇) = F −
∑
k,j

Wka
−1
k,jωj(F ),(3)

ωi(q̇) = 0, 1 ≤ i ≤ m.
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Much effort has gone into understanding or rationalizing this system of equations.
We briefly review the approach of Vershik and Gershkovich [4] and Fadeev and Vershik
[5].

For any X ∈ Γ(TM) we set

πN (X) = X −
∑
ki

Wka
−1
ki ωi(X).

It is evident that πN (X) ∈ Γ(N) and πN (πN (X)) = πN (X). Thus πN is the projection
onto the subbundle N ⊂ TM . By differentiating the constraints we find that

πN

(
D2q

∂t2

)
=
D2q

∂t2
−
∑
i,k

Wka
−1
ki ωi

(
D2q

∂t2

)

=
D2q

∂t2
+
∑
i,k

Wka
−1
ki

Dωi
∂t

(q̇).

We may, therefore, write (3) in the form

πN

(
D2q

∂t2

)
= πN (F ), q̇ ∈ N.(4)

Definition 1.1. In general, if ∇̄ is any connection on M , with corresponding
covariant derivative D̄/∂t, then we define the following second-order system

D̄2q

∂t2
= F̄ , q ∈M(5)

to be a “Newton law” system on M , with external forces modeled by the vector field
F̄ on M .

Thus, the nonholonomic system (1) may be viewed as simply the projection (4)
of the Newton law system, D2q/∂t2 = F , onto the subbundle N . However, even more
is true. We may define a new connection ∇′ on M by setting

∇′XY = ∇XY +
m∑

k,i=1

Wia
−1
ik (∇Xωk)(Y ); X,Y ∈ Γ(TM),(6)

which, in turn, defines a covariant derivative D′/∂t. Moreover, from (6), the connec-
tion ∇′ has the property

ωi(∇′XY ) = ωi(∇XY ) + (∇Xωi)(Y ) = X(ωi(Y )).

Thus, if X,Y ∈ Γ(N), ∇′XY ∈ Γ(N), and so ∇′|N defines a connection on the
subbundle N . Thus, we may write the nonholonomic system (1) in the form

D′2q
∂t2

= πN (F ); q̇ ∈ N,(7)

and view the system as a Newton law system on the bundle N . These observations
were made by Fadeev and Vershik [5]. We take a different perspective in this paper
and begin by noting that system (7) defines a perfectly good Newton law system on
all of TM :

D′2q
∂t2

= πN (F ), q ∈M.(8)
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Definition 1.2. Consider a Newton law system on M , defined by a connection
∇̄ and external force F̄ of the form

D̄2q

∂t2
= F̄ , q ∈M.

We say that the system has the restriction property if it restricts to the subbundle N ,
and on N it coincides with the nonholonomic system (1).

It follows that system (8) has the restriction property. However, the choice of
connection ∇′ seems to be an arbitrary choice, and motivated by conversations with
Vershik, we ask if there are not more natural choices, related to the geometry of the
nonholonomic system? To begin an analysis of this question in this paper, we consider
another n dimensional bundle over M , denoted V , with connection ∇V , and a vector
bundle isomorphism A : TM → V , and introduce a class of connections on TM ,
parameterized by A, and a symmetric two tensor S : TM ⊗ TM → R on M , denoted
∇(A,S). Corresponding to ∇(A,S), we may construct a covariant derivative D(A,S)/∂t,
and pose a similar question. When does the system

D(A,S)2

q

∂t
= πN (F ), q ∈M(9)

have the restriction property? We answer this question by making various assumptions
on the nonholonomic system and choices for V,∇V , and A. The defining property
of the connection ∇(A,S) is that when the system (9) is restricted to N it may be
rewritten as

DV v

∂t
= Aq(πN (F )); q̇ = A−1

q (v) ∈ N.

The particular choices of V , ∇V , and A of course impact the form and properties
of these transformed equations. We investigate the results for the particular choices
made in answering the question above, especially the question of integrability.

We may also ask another question. Is there another metric g on M , (which
is different from G), generating a Riemannian connection ∇g on M , such that the
Newton law system

Dg2

q

∂t2
= πN (F ), q ∈M

has the restriction property? We provide a partial answer to this question by providing
sets of conditions on g, A, and S, so that ∇g = ∇(A,S). Examples we have examined
thus far do not seem to arise from such a Riemannian connection.

We now outline the specific agenda for the paper. In section 2 we define the general
class of connections ∇(A,S) on M and prove some properties of these connections and
the associated Newton law systems. In section 3 we further develop our understanding
of the general class of connections by introducing a specific subclass of nonholonomic
systems (in which M must be parallelizable and including a large class of systems
of interest) and examining the proposed class of connections for the specific class of
nonholonomic systems. In section 4 we study the question of existence of Newton law
systems generated by Riemannian connections which have the restriction property.
In section 5 we discuss the relationship between the class of connections ∇(A,S) and
integrability of the corresponding Newton law, or nonholonomic systems. Finally,
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in section 6 we give four examples within the subclass identified in section 3 and
demonstrate the results of the paper in each case. These examples illustrate that
the connections introduced in section 2 are of real interest to the understanding of
nonholonomic systems in general.

2. Connections defined by bundle maps. We introduce another vector bun-
dle V over M ; isomorphic to TM , π : V →M , with Vq = π−1(q) and dim(Vq) = n for
q ∈M . We assume that V comes equipped with a connection ∇V , which defines a co-
variant derivative DV /∂t on V . We let A : TM → V be a vector bundle isomorphism
so that

Aq : TqM → Vq

is a nonsingular vector space isomorphism for each q ∈M , and hence A−1 : V → TM
is well defined. Assume also that we are given a Newton law system on M ,

D̄2q

∂t2
= F̄

defined by a connection ∇̄ on M . We are interested in how this system behaves under
the bundle map

v = Aq(q̇).(10)

To differentiate this expression we must introduce a connection on the bundle
L(TM ;V ) over M , of all bundle maps from TM to V . The connections ∇̄ and ∇V
allow us to define the induced connection ∇̄ on L(TM, V ) by setting

(∇̄XA)(Y )
∆→= ∇VX(AY )−A(∇̄XY ), A ∈ Γ(L(TM ;V )), X, Y ∈ Γ(TM).(11)

The implication for the notation is that the connection ∇V is fixed, whereas the
connection ∇̄ on M is allowed to vary. We may now differentiate equation (10) to
obtain

DV v

∂t
=
D̄Aq
∂t

(q̇) +Aq

(
D̄2q

∂t2

)
.(12)

Substituting our Newton law system (5), we obtain the following system on V :

DV v

∂t
=
D̄Aq
∂t

(A−1
q v) +Aq(F̄ ),(13)

q̇ = A−1
q (v).

Thus, by “changing coordinates” as in (10), we have complicated our Newton law
system (5) by the introduction of the term

D̄Aq
∂t

(A−1
q v) =

D̄Aq
∂t

(q̇).(14)

We can, therefore, ask the natural question “Can we choose the connection ∇̄ so
that the term (14) vanishes identically?” We may recast this question by introducing
another definition.
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Definition 2.1. A ∈ Γ(L(TM ;V )) is Killing with respect to ∇̄ if

(∇̄XA)(Y ) + (∇̄YA)(X) ≡ 0, X, Y ∈ Γ(TM),(15)

or

(∇̄XA)(X) ≡ 0, X ∈ Γ(TM).

Clearly, the last question may now be rephrased as “Is it possible to choose ∇̄
on M so that A is Killing?” Our choice of terminology is clearly reminiscent of the
definition in the case of vector fields X ∈ Γ(TM).

Recall that the Riemannian connection ∇, defined by the metric G, is uniquely
determined by the properties

(i) X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, (i.e., ∇G ≡ 0);

(ii) T (X,Y )
∆→= ∇XY −∇YX − [X,Y ] = 0.

T is known as the torsion tensor corresponding to∇. In general, we say any connection
∇̄ on M is symmetric if the torsion tensor corresponding to ∇̄ is identically zero.

Theorem 2.2. The unique symmetric connection ∇A on M , so that A ∈
Γ(L(TM ;V )) is Killing with respect to ∇A is given by

∇AXY = ∇XY +
1

2
A−1((∇XA)(Y ) + (∇YA)(X)); X,Y ∈ Γ(TM).(16)

Proof. We first show that A is indeed Killing with respect to ∇A defined by (16).
From the definition (11), we find that

(∇AXA)(Y ) = ∇VX(AY )−A(∇AXY )

= ∇VX(AY )−A(∇XY )− 1

2
((∇XA)(Y ) + (∇YA)(X)).

Thus

(∇AXA)(Y ) + (∇AYA)(X) = ∇VX(AY ) +∇VY (AX)−A(∇XY +∇YX)

−((∇XA)(Y ) + (∇YA)(X))

= 0.

Since ∇A is a symmetric connection, if ∇̄ is any other symmetric connection, we may
write

∇̄XY = ∇AXY + S(X,Y ),

where S is a symmetric two tensor. Thus

(∇̄XA)(X) = ∇VX(AX)−A(∇̄XX) = ∇VX(AX)−A(∇AXX)−AS(X,X)

= (∇AXA)(X)−AS(X,X).

But A is Killing with respect to ∇A, so

(∇̄XA)(X) = −AS(X,X).

Since A is full rank, if A is to be Killing with respect to ∇̄, we must have S ≡ 0.
Hence, ∇̄ = ∇A and ∇A is unique.
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Since we are interested primarily in nonholonomic systems (1), it is interesting to
study this result in the context of Newton law systems (5) which have the restriction
property. In this case we can weaken the requirement in (13) that the term D̄A/∂t(q̇)
vanish identically, and simply require that the term vanish for q̇ ∈ N . In this case the
transformation (10) maps the nonholonomic system (1) into a system of the form

DV v

∂t
= Aq(πN (F )), q̇ = A−1

q (v), q̇ ∈ N.(17)

Definition 2.3. A ∈ Γ(L(TM ;V )) is Killing on N with respect to ∇̄ if

(∇̄XA)(Y ) + (∇̄YA)(X) = 0 X,Y ∈ Γ(N),(18)

or

(∇̄XA)(X) = 0 X ∈ Γ(N).

Theorem 2.4. Let ∇(A,S) be a symmetric connection on M for which A ∈
Γ(L(TM ;V )) is Killing on N , with respect to ∇(A,S). Then

∇(A,S)
X Y = ∇XY +

1

2
A−1((∇XA)(Y ) + (∇YA)(X)) + S(X,Y ), X, Y ∈ Γ(TM),

(19)

for some symmetric two tensor S such that S|N ≡ 0.
Proof. Since S(X,Y ) = 0, for X,Y ∈ Γ(N), the proof of the previous theorem

demonstrates that A is indeed Killing on N with respect to ∇(A,S), as defined in (19).
The same proof demonstrates that the additional term S, such that S|N ≡ 0, is the
only flexibility in the definition of such a connection.

Corresponding to the connection ∇(A,S) on M , defined by (19), there exists a
covariant differentiation D(A,S)/∂t. From (19) we have

D(A,S)2

q

∂t2
=
D2q

∂t2
+A−1

(
DA

∂t

)
(q̇) + S(q̇, q̇).(20)

We may now ask another question. When does the Newton law system

D(A,S)2

q

∂t2
= πN (F ), q ∈M

have the restriction property? Since S|N ≡ 0, by comparing equations (3) and (20),
we obtain the necessary and sufficient condition

A−1DA

∂t
(q̇)−

∑
k,j

Wka
−1
kj

Dωj
∂t

(q̇)
∣∣∣
N
≡ 0.(21)

Now we set A(Wk)
∆→= Ŵk, 1 ≤ k ≤ m, and

B
∆→= A−

m∑
j,k=1

Ŵka
−1
kj ωj = A ◦ πN .(22)
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It follows that B|N⊥ = 0 and

(∇XB)(Y ) = (∇XA)(Y )−
m∑

j,k=1

∇X(Ŵka
−1
kj )ωj(Y )−

m∑
j,k=1

Ŵka
−1
kj (∇Xωj)(Y ),

so

A−1(∇XB)(X) = A−1(∇XA)(X)−
m∑

j,k=1

Wka
−1
kj (∇Xωj)(X);X ∈ Γ(N).

Since A is full rank, condition (21) is, therefore, equivalent to the fact that B is Killing
on N with respect to ∇.

Theorem 2.5. Given a vector bundle V , connection ∇V , symmetric tensor S,
S|N = 0, then a necessary and sufficient condition for the Newton law system on M

D(A,S)2

q

∂t
= πN (F ), q ∈M

to have the restriction property is that A ◦ πN is Killing on N with respect to ∇.

3. A special class of nonholonomic systems. Given a vector bundle V ,
connection ∇V , we wish to find examples of bundle maps A : TM → V so that A◦πN
is Killing on N with respect to ∇. To work toward this goal we restrict our attention
to a special subclass of nonholonomic systems which we describe here.

Definition 3.1. A one form ν on M is said to be a Killing form with respect to
a connection ∇̄ on M if

(∇̄Xν)(X) ≡ 0, X ∈ Γ(TM).(23)

A one form ν on M is said to be a Killing form on N with respect to a connection ∇̄
on M if

(∇̄Xν)(X) ≡ 0, X ∈ Γ(N).(24)

We note that if ν(X) = 〈V,X〉, X ∈ Γ(TM), then

X(ν(Y )) = 〈∇XV, Y 〉+ 〈V,∇XY 〉
= (∇Xν)(Y ) + ν(∇XY ).

Thus (∇Xν)(Y ) = 〈∇XV, Y 〉, and, in particular, (∇Xν)(X) = 〈∇XV,X〉. Hence, ν
is Killing with respect to ∇ if and only if V is Killing in the classical sense. We now
describe the importance of Killing forms for Newton law and nonholonomic systems.

Lemma 3.2. If ν is a Killing form with respect to ∇̄, then ν(q̇) is a constant of
motion for the Newton law system D̄2q/∂t2 = 0.

Proof.

d

dt
ν(q̇) =

(
D̄ν

∂t

)
(q̇) + ν

(
D̄2q

∂t2

)
= 0.

Lemma 3.3 (Arnold [10]). If ν is a Killing form on N with respect to ∇ such
that ν(N⊥) = 0, then ν(q̇) is a constant of motion for the nonholonomic system (3)
with F ≡ 0.
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Proof.

d

dt
ν(q̇) =

Dν

∂t
(q̇) + ν

(
D2q

∂t2

)
=
Dν

∂t
(q̇) +

∑
k,j

ν(Wk)a−1
kj

Dωj
∂t

(q̇) = 0,

since for q̇ ∈ N , Dν
∂t (q̇) = 0, and Wk ∈ N⊥.

Clearly, the existence of Killing one forms as in Lemmas 3.2 and 3.3 is linked to
the integrability of the systems. We discuss this further in section 5.

Assumption 3.1.
(i) M is parallelizable;
(ii) In the nonholonomic system (1) we may complete the set {ω1, . . . , ωm} to

a basis of Γ(T ∗M) by the set {ν1, . . . , νn−m} of one forms νk that are Killing on N
with respect to ∇ and νk(N⊥) = 0, 1 ≤ k ≤ n−m.

Let Vk, 1 ≤ k ≤ n − m be the vector fields defined by νk(X) = 〈Vk, X〉, X ∈
Γ(TM), and set A(Vk) = V̂k, 1 ≤ k ≤ n − m, bkj = νk(Vj), 1 ≤ k, j ≤ n − m.
Assumption 3.1 ensures that the matrix [bkj ]1≤k,j≤n−m is invertible on all of M . It
follows that

B = A ◦ πN =

n−m∑
j,k=1

V̂jb
−1
jk νk,

and so

A =

m∑
j,k=1

Ŵja
−1
jk ωk +

n−m∑
j,k=1

V̂jb
−1
jk νk.(25)

Lemma 3.4. B = A◦πN is Killing on N with respect to ∇, under Assumption 3.1,
if and only if

∇VX
( n−m∑

j=1

V̂jb
−1
jk

)
≡ 0, 1 ≤ k ≤ n−m, X ∈ Γ(N).(26)

Proof.

(∇XB)(X) =
∑
k

∇VX
(∑

j

V̂jb
−1
jk

)
νk(X) +

∑
jk

V̂jb
−1
jk (∇Xνk)(X).

Since νk is Killing on N with respect to ∇, (∇XB)(X) ≡ 0, for X ∈ Γ(N) if and only
if condition (26) is satisfied.

The condition expressed by (26) is not particularly attractive. We, therefore,
make some choices for V , ∇V , and A, namely, the following assumption.

Assumption 3.2. Under Assumption 3.1 set V = TM , V̂k =
∑
m Vmbmk, Ŵk =∑

mWmamk so that

A =
∑
m

Vmνm +
∑
m

Wmωm(27)
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and

∇V Vk = 0, 1 ≤ k ≤ n−m, ∇VWk = 0, 1 ≤ k ≤ m.
Corollary 3.5. Under Assumptions 3.1 and 3.2, B = A ◦ πN is always Killing

on N with respect to ∇.
Corollary 3.6. Under Assumptions 3.1 and 3.2, then for any symmetric tensor

S, S|N = 0, the Newton law system on M

D(A,S)2

q

∂t2
= πN (F ), q ∈M

has the restriction property. The corresponding nonholonomic system may be rewritten
in the form

DV v

∂t
=
n−m∑
i=1

Viνi(F ), q̇ = A−1
q (v), v, q̇ ∈ N.(28)

Clearly, there may be other means of satisfying the property that A◦πN be Killing
on N with respect to ∇ in addition to assumptions 3.1 and 3.2. In particular, Theo-
rem 2.5 does not preclude cases in which M is not parallelizable and more interesting
choices of V and ∇V are appropriate.

4. Riemannian connections compatible with bundle maps. In this section
we consider the question, “Does there exist a metric g on M such that ∇g = ∇(A,S)

for some bundle map A : TM → V and symmetric tensor S.” We first examine this
question in general, and then under Assumptions 3.1 and 3.2, making a natural choice
for g. We begin by giving a useful characterization of ∇g.

Lemma 4.1. The unique Riemannian connection ∇g on M corresponding to the
metric g on M is given by

g(Z,∇gXY ) = g(Z,∇XY ) +
1

2
{(∇Y g)(X,Z)(29)

+ (∇Xg)(Y,Z)− (∇Zg)(X,Y )}, X, Y, Z ∈ Γ(TM).

Proof. Note that∇ is, of course, the unique Riemannian connection corresponding
to the metric G. Clearly ∇g, defined by (29), is a symmetric connection. Hence, if ∇g,
defined by (29), also satisifes ∇gg ≡ 0, it must be the unique Riemannian connection
corresponding to the metric g. It is, therefore, sufficient to prove that ∇gg ≡ 0, or

Zg(X,Y ) = g(∇gZX,Y ) + g(X,∇gZY )

or

(∇Zg)(X,Y ) + g(∇ZX,Y ) + g(X,∇ZY ) = g(∇gZX,Y ) + g(X,∇gZY ).(30)

Now, from (29) we have

g(∇gZX,Y ) + g(X,∇gZY ) = g(∇ZX,Y ) + g(X,∇ZY )

+
1

2
[(∇Zg)(X,Y ) + (∇Xg)(Z, Y )

−(∇Y g)(Z,X) + (∇Zg)(Y,X)

+(∇Y g)(Z,X)− (∇Xg)(Z, Y )].
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But this is just the left-hand side of (30).
We may now compare ∇g, given by (29), and ∇A, defined by (16). In particular,

we see that

g(Z,∇AXY ) = g(Z,∇XY ) +
1

2
g(Z,A−1((∇XA)(Y ) + (∇YA)(X))).

Comparing this expression with that of ∇g we see that ∇g = ∇A if and only if

g(Z,A−1((∇XA)(Y ) + (∇YA)(X))) = (∇Y g)(X,Z) + (∇Xg)(Y,Z)− (∇Zg)(X,Y ).

Since this expression is symmetric in X and Y , we may simplify this condition, as in
the following lemma.

Lemma 4.2. ∇g = ∇A if and only if

g(Z,A−1(∇XA)(X)) = (∇Xg)(X,Z)− 1

2
(∇Zg)(X,X), X, Z ∈ Γ(TM).(31)

Ascertaining solutions A and g of (31) is a hard problem in general, but there is
an obvious candidate for g, namely,

g(X,Y ) = h(AX,AY ), X, Y ∈ Γ(TM),(32)

where h is a metric on V with ∇V h ≡ 0. We may substitute this special case into
the condition (31) to obtain a condition on the map A alone. Since (∇Zg)(X,Y ) =
Z(g(X,Y ))− g(∇ZX,Y )− g(X,∇ZY ) for the special case of (32) we have

(∇Zg)(X,Y ) = (∇VZh)(AX,AY ) + h(∇VZ (AX), AY ) + h(AX,∇VZ (AY ))

−h(A∇ZX,Y )− h(AX,A∇zY )

= h((∇ZA)(X), AY ) + h(AX, (∇ZA)(Y )).

Thus from (29) and (16) we have

h(AZ,A∇gXY ) = h(AZ,A∇AXY )

+
1

2
h(AX, (∇YA)(Z)− (∇ZA)(Y ))

+
1

2
h(AY,∇XA)(Z)− (∇ZA)(X)).

We may summarize these observations in the following result.
Theorem 4.3. For the metric g(X,Y ) = h(AX,AY ), ∇V h ≡ 0, we have

∇g = ∇(A,S),

where S is the symmetric tensor defined by

h(AZ,AS(X,Y )) =
1

2
h(AX, (∇YA)(Z)− (∇ZA)(Y ))(33)

+
1

2
h(AY, (∇XA)(Z)− (∇ZA)(X)).

We may apply this result in the situation of Theorem 2.5 to obtain the following
corollary.
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Corollary 4.4. The Newton law system on M , with g given by (32),

Dg2

q

∂t2
=
D(A,S)2

q

∂t2
= πN (F ), q ∈M

has the restriction property if and only if

(i) A ◦ πN is Killing on N with respect to ∇;(34)

(ii) S|N ≡ 0, S defined in (33).

We now examine condition (34) (ii) in the case where Assumptions 3.1 and 3.2
hold. We set

ω̂k(Wm) = δk,m, ω̂k(Vm) ≡ 0,(35)

ν̂k(Vm) = δk,m, ν̂k(Wm) ≡ 0,

so that {ω̂1, . . . , ω̂m, ν̂1, . . . , ν̂n−m} is a dual frame for {W1, . . . ,Wm, V1, . . . , Vn−m}
and choose the metric h to be

h =
1

2

m∑
k=1

ω̂k ⊗ ω̂k +
1

2

n−m∑
k=1

ν̂k ⊗ ν̂k.(36)

We must now check that indeed ∇V h ≡ 0, where V = TM and ∇V is defined in
Assumption 3.2. Since

∇VZX =
m∑
k=1

Z(ω̂k(X))Wk +
n−m∑
k=1

Z(ν̂k(X))Vk,

it is clear that

(∇VZh)(X,Y ) = Z(h(X,Y ))− h(∇VZX,Y )− h(X,∇VZY ) ≡ 0.

Now we may simplify the definition of S in (33), using the expression (36) for h and
(27) for A. We see that

(∇XA)(Y ) =
∑
m

∇VXVmνm(Y ) +
∑
m

∇VXWmωm(Y )

+
∑
m

Vm(∇Xνm)(Y ) +
∑
m

Wm(∇Xωm)(Y ).

Now we have the identity

dν(X,Y ) = (∇Xν)(Y )− (∇Y ν)(X), X, Y ∈ Γ(TM), ν ∈ Γ(T ∗M).

Thus, from the definition of ∇V , we see that

(∇XA)(Y )− (∇YA)(X) =
∑
m

Vmdνm(X,Y ) +
∑
m

Wmdωm(X,Y ),

and hence we have from (33)∑
m

νm(Z)νm(S(X,Y )) +
∑
m

ωm(Z)ωm(S(X,Y ))

=
1

2

∑
m

(νm(X) dνm(Y,Z) + ωm(X) dωm(Y,Z))

+
1

2

∑
m

(νm(Y ) dνm(X,Z) + ωm(Y ) dωm(X,Z)).
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We deduce the following result.
Lemma 4.5. If Assumptions 3.1 and 3.2 hold, and if S is the tensor defined in

(33), then S|N ≡ 0 if and only if

dνk(X, ·) ≡ 0, 1 ≤ k ≤ n−m, X ∈ Γ(N).(37)

It turns out that in all of the examples in section 6, this condition is never satisfied.
This negative result does not, of course, exclude the possibility that we can find
solutions to the equations

∇g = ∇(A,S)

for some metric g on M , and pairs (A,S) satisfying condition (34), which yields a
Newton law system with the restriction property, as in Corollary 4.4.

5. Integrability of nonholonomic systems. In this section we consider the
implications for the preceding analysis for the integrability of nonholonomic systems.
We recall that if we are given a differential equation on RN ,

ẋ = f(x, t), x ∈ RN ,

then the system is said to be integrable, if through coordinate transforms, it may be
reduced to a system of algebraic relations and quadratures. Of course, this property
may also be a local one, defined only in a particular open domain of RN . In the case
of differential equations defined on a Riemannian manifold, the situation is compli-
cated by the geometry in the case of a global property, but locally the properties are
identical. Our analysis and assumptions in this paper are particularly concerned with
the global integrability properties of a nonholonomic system defined on a Riemannian
manifold, even though our examples are such that the manifold is parallelizable, if
not Euclidean.

First we consider the situation studied in section 2, where we are given V , ∇V ,
the map A, and corresponding Newton law system on M ,

DA2

q

∂t2
= F̄ , q ∈M.(38)

Since ∇A is the unique connection so that A is Killing with respect to ∇A, we have
that if v = Aq q̇ we may rewrite this system in the form

DV v

∂t
= Aq(F̄ ), q̇ = A−1

q (v), (q, v) ∈ V.(39)

In general, this global transformation of coordinates does nothing to simplify the
integration of the system of equations. This depends upon the choice of vector bundle
V and connection ∇V . In particular, if V is parallelizable, with frame {Z1, . . . , Zn},
and dual frame {z1, . . . , zn} with ∇V Zk ≡ 0, 1 ≤ k ≤ n, then independent of the
original connection ∇ on M we are able to simplify system (39) as follows. Setting
vi = zi(v), 1 ≤ i ≤ n, we have v =

∑n
i=1 vizi(q), so now equations (39) become

v̇i = zi(F̄ ), 1 ≤ i ≤ n,(40)

q̇ =
n∑
i=1

A−1
q (Zi)vi, q ∈M.
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Thus the “dynamics” of (38), i.e., the first equation in (39), has been reduced to
quadratures, and one is essentially left with the “kinematics,” i.e., the second equation
in (39). In the case of classical dynamical systems, (with F̄ ≡ 0), the vi are indeed
constants and we would say that they are n integrals of the motion, through which
we can reduce the dynamics to a system evolving on a phase space of dimension n
only and not 2n.

In the case of a nonholonomic system (1), Theorem (2.5) provides a means of
reviewing it as a restriction to N of the Newton law system

D(A,S)2

q

∂t2
= πN (F ), q ∈M,

assuming, of course, that S|N ≡ 0 and A ◦ πN is Killing with respect to ∇. We
may apply the same analysis as above to the restriction to N and transform the
nonholonomic system to the form (39). If we now also insist that Assumptions 3.1
and 3.2 hold, then we may set

{Z1, . . . , Zn} = {W1, . . . ,Wm, V1, . . . , Vn−m},
{z1, . . . , zn} = {ω̂1, . . . , ω̂m, ν̂1, . . . , ν̂n−m},

v =

n−m∑
i=1

viVi(q) +

m∑
i=1

wiWi(q),

A =
∑
m

Vmνm +
∑
m

Wmωm,

A−1 =
∑
j,k

Vmb
−1
jk ν̂k +

∑
j,k

Wma
−1
jk ω̂k.

The nonholonomic system (1) is then reduced to system (40), which in this case takes
the form

v̇i = νi(F ), 1 ≤ i ≤ n−m, ẇi = 0, 1 ≤ i ≤ m,

q̇ =
n−m∑
k,j=1

Vjb
−1
jk vk.

Indeed, under Assumptions 3.1 and 3.2 we may now make precise the relationship
between nonholonomic control systems formulated as kinematic or dynamic systems.
If we set ui = vi(F ), 1 ≤ i ≤ n−m, then the nonholonomic control system modelled
with dynamics is

v̇i = ui, ẇi = 0, q̇ =
m∑

j,k=1

Vjb
−1
jk vk,

while the control system modeled on kinematics alone is simply

q̇ =

m∑
j,k=1

Vjb
−1
jk uk.

The reader should compare this discussion with the less succinct discussion in
Bloch and Crouch [2]. Note that the process of reducing the full nonholonomic dy-
namics to the kinematics is a different reduction to the procedures detailed in Bloch
and Crouch [1], and Bloch, Krishnaprasad, Marsden, and Murray [9].
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In the special case illustrated above, where we are able to reduce the system to
quadratures and the kinematics, the issue of complete integrability remains. In general
we cannot expect a nonholonomic system to satisfy Assumption 3.1, even though the
four examples we give in section 6 do satisfy this assumption. For example, the chain
of trailers, analyzed in Crouch and Jakubczyk [11], does not satisfy Assumption 3.1.
In some sense Assumption 3.1 provides n−m integrals, while the nonholonomic con-
straints provide another m integrals, and these integrals are all linear in the velocities.
Indeed, Lemmas 3.2 and 3.3 demonstrate this fact for the classical Newton law system
and unforced nonholonomic motion. In general, however, we cannot expect linearity
in the velocities, even if we are able to find integrals. For material on the integrability
of nonholonomic systems, see Zenkov [12], Hermans [13], and Arnold [10]. Arnold
does demonstrate that the rolling ball is indeed integrable, although he makes use
of an abstract result, applicable to all systems admitting an invariant measure. We
make some further comments about this example, which is also one of the examples
we treat in the next section.

6. Examples. In these examples we refer the reader to the cited references for
details of the notation employed.

Example 6.1 (rolling penny, Bloch, and Crouch [2]).
ẍ
ÿ

θ̈

φ̈

 = λ1


1
0

− cosφ
0

+ λ2


0
1

− sinφ
0

+ u1


0
0
1
0

+ u2


0
0
0
1

(41)

with the nonholonomic constraints: ẋ = cosφθ̇, ẏ = sinφθ̇, and Euclidean metric
structure.

We make the definitions

ω1 = dx− cosφdθ, ω2 = dy − sinφdθ,

W1 =
∂

∂x
− cosφ

∂

∂θ
, W2 =

∂

∂y
− sinφ

∂

∂θ
,

ν2 = dφ, ν1 = dθ + cosφdx+ sinφdy,

V2 =
∂

∂φ
, V1 =

∂

∂θ
+ cosφ

∂

∂x
+ sinφ

∂

∂y
.

Although W1, W2, V1, and V2 are not mutually orthogonal, W1 and W2 are orthogonal
to V1 and V2. Clearly, ν2 is Killing. We calculate (Dν1/∂t)(q̇).

Dν1

∂t
(q̇) = − sinφφ̇ẋ+ cosφφ̇ẏ = φ̇(ẏ cosφ− ẋ sinφ)

= cosφν2(q̇)ω2(q̇)− sinφν2(q̇)ω1(q̇).

Thus ν1 is not Killing, but it is Killing when restricted to N . Thus, this example does
satisfy Assumption 3.1, and we may impose Assumption 3.2, in which case we may
view system (41) as the restriction of a Newton law system defined by a connection
∇(A,S) described in Corollary 3.6.

We note that if η1 = sinφdφ, η2 = cosφdφ, then

(∇Xν1)(Y ) = η2(X)ω2(Y )− η1(X)ω1(Y )
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and

dν1(X,Y ) = (∇Xν1)(Y )− (∇Y ν1)(X) = (η2 ∧ ω2 − η1 ∧ ω1)(X,Y ).

In particular, even though dν1|N ≡ 0, condition (37) is not satisfied and we are unable
to cast ∇(A,S) as a metric connection.

Example 6.2 (Bates–Sniatycki example of a constrained particle [6]).ẍÿ
z̈

 = λ

−y0
1

+
u1√

1 + y2

1
0
y

+ u2

0
1
0

(42)

with the nonholonomic constraint ż = yẋ and Euclidean metric structure.
We make the following definitions:

ω = dz − ydx, W =
∂

∂z
− y ∂

∂x
,

ν1 =
1√

1 + y2
(dx+ ydz), V1 =

1√
1 + y2

(
∂

∂x
+ y

∂

∂z

)
,

ν2 = dy, V2 =
∂

∂y
.

Thus, W , V1, and V2 form an orthogonal set. Clearly, ν2 is Killing. We calculate
(Dν1/∂t)(q̇).

Dν1

∂t
(q̇) =

d

dt

(
1√

1 + y2

)
ẋ+

d

dt

(
y√

1 + y2

)
ż

=
ν2(q̇)ω(q̇)

(1 + y2)3/2
.

Thus ν1 is not Killing, but it is Killing when restricted to N . Hence, the example does
satisfy Assumption 3.1, and we may impose Assumption 3.2, in which case we may
view system (42) as the restriction of a Newton law system defined by a connection
∇(A,S) as described in Corollary 3.6.

We note that if we set η = (dy/(1 + y2)3/2), then

(∇Xν1)(Y ) = η(X)ω(Y )

and

dν1(X,Y ) = (η ∧ ω)(X,Y ).

In particular, even though dν1|N ≡ 0, condition (37) is not satisfied, and we are unable
to cast ∇(A,S) as a metric connection.

Example 6.3 (rolling ball, Bloch, and Crouch [2]).

Jν̇ = S(ν)Jν + λ1Pe1 + λ2Pe2, ν ∈ R3,(43)

Ṗ = S(ν)P, P ∈ SO(3),

mẍ = λ2 + u1, x, y ∈ R,
mÿ = −λ1 + u2,
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with the nonholonomic constraints

eT2 P
T ν + ẋ = 0, eT1 P

T ν − ẏ = 0,

and metric structure

〈(νA, ẋA, ẏA), (νB , ẋB , ẏB)〉 =
1

2
νTAJνB +

1

2
m(ẋAẋB + ẏAẏB).

Here ν is the angular velocity, measured in axes fixed in the rotating ball; P is
the angular position, represented by a special orthogonal matrix; x and y are the
coordinates of the center, and center of mass of the ball relative to inertial axes. J is
the inertia tensor of the ball and S(a) is the skew-symmetric matrix representation
of the three vector a, which is uniquely defined by the identity

S(a)b = b× a, a, b ∈ R3,

where “×” is the vector cross product in R3.
This system is 10-dimensional, evolving on T (R2 × SO(3)). For simplicity we

denote by aT∂/∂ν (aT dν) the right invariant vector field (one form) on SO(3) with
generator a. We may obtain

W1 = (J−1Pe1)T
∂

∂ν
− 1

m

∂

∂y
, ω1 = (Pe1)T dν − dy,

W2 = (J−1Pe2)T
∂

∂ν
+

1

m

∂

∂x
, ω2 = (Pe2)T dν + dx,

V1 = (Pe1)T
∂

∂ν
+

∂

∂y
, ν1 = (JPe1)T dν +mdy,

V2 = (Pe2)T
∂

∂ν
− ∂

∂x
, ν2 = (JPe2)T dν −mdx,

V3 = (Pe3)T
∂

∂ν
, ν3 = (JPe3)T dν.

V3 corresponds to the fact that along the motion eT3 P
TJν is a constant. In general,

we could insert another torque, u, exerted about Pe3, by adding a term uPe3 to the
first equation. Although W1,W2, V1, V2, V3 is not an orthogonal set relative to the
metric, {W1,W2} is orthogonal to {V1, V2, V3}, from which it is easy to see that they
form a spanning set for the tangent spaces Tq(R2 × SO(3)).

It was demonstrated in Bloch and Crouch [1], that (Pek)T (∂/∂ν) are Killing
vector fields, relative to the metric structure so V1, V2, V3 are indeed Killing, even
without restricting to N . It is also interesting to integrate the system equations using
the easily verified identities

d

dt
ν1(q̇) = u2,

d

dt
ν2(q̇) = −u1,

d

dt
ν3(q̇) = ω2(q̇) = ω1(q̇) ≡ 0.

Setting J = J + m(Pe1e
T
1 P

T + Pe2e
T
2 P

T ) and eT3 P
TJν = d(= const), we obtain

equations (40) in the form

Ṗ = S(J−1P (e1a2 + e2(−a1) + e3d))P,(44)

ẋ = −eT2 PT J−1P (e1a2 + e2(−a1) + e3d),

ẏ = eT1 P
T J−1P (e1a2 + e1(−a1) + e3d),

ȧ1 = u1, ȧ2 = u2.
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It is useful to rewrite equations (43) in terms of M = Jν. Note that

Pe1e
T
1 P + Pe2e

T
2 P = I − Pe3e

T
3 P = −S(Pe3)S(Pe3),

so M = Jν = Jν +mS(Pe3)S(ν)Pe3. From (44) we see that

ν = J−1P (e1a2 + e2(−a1) + e3d),

so

Ṁ =
d

dt
Jν = S(ν)M + P (e1u2 − e2u1).

Thus these equations, together with the kinematics (44) are equivalent to the original
system equations (43). It turns out that the rolling ball system (with u1 ≡ u2 ≡ 0) is
completely integrable, as demonstrated by Arnold [10]. This is not obvious from the
reduced order kinematic equations (44), and indeed Arnold demonstrates integrability
in another way—by applying an abstract result to the subsystem in M and P :

Ṁ = S(ν)M, Ṗ = S(ν)P, ν = J−1M.(45)

As is clear from (44), once these equations are integrated, the remaining states may
be obtained by quadratures. The main ingredient in the proof of Arnold’s result is
noting that system (45) admits an invariant measure,

(m− (Pe3)T (J +mI)−1Pe3)1/2

and four integrals, MTM , MTPe3, (Pe3)TPe3, and MT ν. It is clear that the first
three expressions are integrals from the structure of equations (45). To establish that
MT ν is an integral we proceed as follows. Since, for the rolling ball system (43), the
total kinetic energy of the system is conserved for u1 ≡ u2 ≡ 0 (see [2]), we have that

r = νTJν +mẋ2 +mẏ2

is an integral of the motion (43). Using the nonholonomic constraints we see that

r = νTJν +m[(νTPe2)2 + (νTPe1)2].

But (νTPe2)2 + (νTPe1)2 = ||Pe3 × ν||2 = ||S(ν)Pe3||2. Thus, MT ν = νTJν +
m||S(ν)Pe3||2 is indeed an integral for motion (43) and reduced motion (45).

The “angular” momentum M is, in fact, the nonholonomic momentum map dis-
cussed in Bloch, Krishnaprasad, Marsden, and Murray [9]. As a final remark, it is very
interesting to contrast the work described here with that of Cartan [7]. Indeed, many
of the constructions in Cartan [7] for the rolling ball example use exactly the frame
discussed in our Example 6.3. Clearly there is much further structure underlying
many of the observations made in this paper.

Example 6.4 (generalized rolling ball, Bloch, and Crouch [1], [2]). We assume
that G is a compact, semisimple Lie group of dimension L, with Lie algebra ð. We
assume that 〈·, ·〉G is a right invariant metric on G, with

〈ġA, ġB〉G = K(ġA, Jg ġB),
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where K is a bi-invariant metric on G and Jg : TgG → TgG is a positive definite
operator for each g ∈ G. The generalized rolling ball system described in Bloch and
Crouch [1], [2], is defined by the system of equations

D2g

∂t2
=

N∑
k=1

λkJ
−1
g X l

k, g ∈ G, L > N,(46)

mẍk = −λk + uk, 1 ≤ k ≤ N,
ẋk = 〈ġ, J−1

g X l
k〉G, 1 ≤ k ≤ N (nonholonomic constraints),

where D/∂t is the covariant derivative corresponding to the metric connection deter-
mined by 〈·, ·〉, and X l is the left invariant vector field corresponding to an element
X ∈ ð. We assume that X1, . . . , XN , XN+1, . . . , XL is a basis for ð. There is a
natural metric on the configuration space M = G× RN determined by

〈(ġA, ẋA), (ġB , ẊB)〉M =
1

2
〈ġA, ġB〉G +

m

2
ẋTAẋB .(47)

It was proved in Bloch and Crouch [1] that X l is a Killing vector field for X ∈ ð. We
define one forms on G× RN by

ωk(ġ, ẋ) = 〈ġ, J−1
g X l

k〉G − ẋk, 1 ≤ k ≤ N,
νk(ġ, ẋ) = 〈ġ, X l

k〉G + ẋkm, 1 ≤ k ≤ N,
νk(ġ, ẋ) = 〈ġ, X l

k〉G, N + 1 ≤ k ≤ L.

The corresponding vector fields are

Wk = J−1
g X l

k −
1

m
∂/∂xk, 1 ≤ k ≤ N,(48)

Vk = X l
k + ∂/∂xk, 1 ≤ k ≤ N,

Vk = X l
k, N + 1 ≤ k ≤ L.

Clearly, Vk and νk are Killing with respect to the metric connection determined by
metric (47). We also compute, for 0 ≤ k, j ≤ N ,

〈Wk, Vj〉M =
1

2
〈J−1
g X l

k, X
l
j〉G +

m

2

(
− 1

m

)〈
∂

∂xk
,
∂

∂xj

〉
Rn

=
1

2
K(X l

k, X
l
j)−

1

2
δkj .

Thus if we assume that X1, . . . , XL is an orthonormal basis of ð with respect to K,
we see that {W1, . . . ,WN} is orthogonal to {V1, . . . , VL}. It follows that the system
(46) and choice of vector fields (48) satisfy our Assumption (3.1). Hence, system (46)
may be viewed as the restriction of a Newton law system defined by a connection
described in Corollary 3.6. Note that in this example, just as in Example 6.3, we do
not have to restrict to the subbundle nonholonomic constraints.

Setting

vk = νk(ġ, ẋ), 1 ≤ k ≤ N,
dk = νk(ġ, ẋ), N + 1 ≤ k ≤ L,
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we can show (using analysis in [1], [2]) that ḋk = 0, v̇k = uk. By the independence of
the vector fields Wk, Vk, we may solve the L+N equations

0 = ωk(ġ, ẋ), 1 ≤ k ≤ N, vk = νk(ġ, ẋ), 1 ≤ k ≤ N, dk = νk(ġ, ẋ), N+1 ≤ k ≤ L,

for (ġ, ẋ) in terms of vk and dk. Hence, as in section (5), we may integrate the
2(L+N)-dimensional system (46), to obtain the corresponding (L+N)-dimensional
kinematic system.
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Abstract. We study the singular perturbation of optimal control problems for nonlinear systems
with constraints on the fast state variables and a cost functional either of Bolza type or involving
the exit time of the system from a given domain. Under a controllability assumption on the fast
variables, we show that these variables become controls in the limit problem. Our method consists of
passing to the limit in the associated Hamilton–Jacobi–Bellman (HJB) equations by means of some
tools in the theory of viscosity solutions.
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Introduction. In this paper we study a class of singular perturbation problems
for nonlinear systems of the form

(0.1)


y′(t) = f(y(t), z(t), α(t)), α(t) ∈ A, t > 0,

z′(t) =
1

ε
g(y(t), z(t), β(t)), β(t) ∈ B, t > 0,

(y(0), z(0)) = (x, ζ),

where ε > 0, A and B are compact, f and g are Lipschitzean in the state variables
and continuous, with Bolza cost functional

(0.2) Jε(x, ζ, t, α, β) :=

∫ t

0

e−λsl(y(s), z(s), α(s))ds+ e−λth(y(t), z(t)),

where l and h are bounded and continuous, λ ≥ 0, and the fast state variables z(·)
satisfy the constraint

(0.3) z(t) ∈ Ω ∀t > 0,

where Ω is an open connected subset of RM with Lipschitz boundary.
Problems of this kind have been extensively studied by many authors; see, e.g.,

the survey paper by Kokotović [19], the books by Kokotović, Khalil, and O’Reilly
[20] and Bensoussan [9], and a recent article [23]. However, we will make here rather
different assumptions and use different methods. Typically, in fact, one assumes some
solvability with respect to ζ of the algebraic equation

(0.4) g(x, ζ, b) = 0,
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†Dipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38050 Povo-Trento,

Italy (bagagiol@science.unitn.it).
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and expects that the limit optimal control problem involve the system

(0.5)


y′(t) = f(y(t), z(t), α(t)), α(t) ∈ A, t > 0,

0 = g(y(t), z(t), β(t)), β(t) ∈ B, t > 0,

y(0) = x,

which is obtained by setting ε = 0 in (0.1).
In this paper, instead of the solvability of (0.4), we will assume a controllability

condition on the fast variables z(·) of the following type:

(0.6) cog(y, z, B) ⊇ BRM (0, 1) ∀ y ∈ RN , z ∈ Ω,

where co denotes the closed convex hull and the set on the right-hand side is the
closed unit ball centered at 0 in RM (see section 4 for more general assumptions).
The optimal control problem we obtain in the limit as ε → 0 is the minimization of
the functional

(0.7) J(x, t, z, α) :=

∫ t

0

e−λsl(y(s), z(s), α(s))ds+ e−λt inf
ζ∈Ω

h(y(t), ζ)

for the system

(0.8)

{
y′(t) = f(y(t), z(t), α(t)), z(t) ∈ Ω, t > 0,

y(0) = x,

instead of (0.5). Our main result states that the value function V (x, t) of this problem
is the limit (uniform on compact sets), as ε → 0, of the value functions Vε(x, ζ, t) of
the problems corresponding to ε > 0.

The heuristic explanation of this result is the following. The controllability con-
dition (0.6) allows the system to reach any point ξ ∈ Ω from any starting point ζ in a
lap of time of order ε|ζ − ξ|. Therefore, the value function Vε is less and less sensitive
to ζ as ε→ 0. Moreover, since the control β does not appear in the equations for the
slow variables y(·), nor in the cost functional Jε, its role reduces to driving optimally
the z variable within Ω. Since this can be done arbitrarily fast as ε→ 0, β disappears
in the limit problem, and z takes the role of a control varying in Ω.

Our method is also quite different from usual. In fact we consider the viscosity
solution of the problem

(0.9)

ut + λu+H

(
y, z,∇yu, 1

ε
∇zu

)
= 0, in RN × Ω×]0,+∞[,

u(x, ζ, 0) = h(x, ζ), in RN × Ω,

and prove that it converges to the viscosity solution of

(0.10)

{
ut + λu+ supz∈ΩH(y, z,∇yu, 0) = 0, in RN×]0,+∞[,

u(x, 0) = infz∈Ω h(x, z), in RN .

Then we get the desired result because the value functions Vε and V are, respectively,
the viscosity solution of (0.9) and (0.10) with Bellman’s Hamiltonian

(0.11)

H(x, ζ, p, q) := sup
a∈A

{
− f(x, ζ, a) · p− l((x, ζ, a)

}
+ sup
b∈B

{
− g(x, ζ, b) · q

}
, ∀(x, ζ) ∈ RN × Ω, ∀(p, q) ∈ RN × RM .
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Note that the Hamilton–Jacobi equation in (0.9) has to be solved in a set which is not
open, thus solutions must be interpreted in the sense of constrained viscosity solutions
introduced by Soner [24]; see also Capuzzo Dolcetta and Lions [10].

Our convergence result for the solutions of the Cauchy problem (0.9) is more
general than we need for the specific application, because it holds for any Hamiltonian
satisfying a comparison principle and the conditions

(0.12)

lim
|q|→+∞

H(y, z, p, q) = +∞, uniformly for bounded y, z, p;

ε1 ≤ ε2 ⇒ H

(
y, z, p,

q

ε1

)
≥ H

(
y, z, p,

q

ε2

)
,

but not necessarily convex in the variables p and q as is Bellman’s Hamiltonian defined
by (0.11). In [21] Lions outlined a proof of a similar result for the case Ω = RM , λ = 0,
and under hypotheses of uniform continuity of the solutions and of the initial data h,
but with a weaker assumption on the Hamiltonian, namely, H(y, z, p, q) ≥ H(y, z, p, 0)
for all (y, z, p, q), instead of the second of (0.12). His proof is based on approximating
(0.9) with the addition of a small viscosity term, obtaining uniform gradient bounds,
independent of ε, for the solutions of these parabolic approximations, and using the
Ascoli–Arzelà theorem to extract a convergent sequence of Vε. The hard estimates
involved in this procedure are based on earlier work of Jensen and Lions [18] on
partial differential equations (PDE) methods for singular perturbation problems in
the optimal control of diffusion processes. Here, instead, we use the method of weak
limits in viscosity sense, or “relaxed half-limits,” introduced by Barles and Perthame
[6], [7], and a comparison theorem for merely semicontinuous sub- and supersolutions
of the limit HJB equation, which allow us to pass to the limit in the equations with
only L∞-estimates on Vε.

To show the flexibility of our method we also apply it to optimal control problems
where the cost functional is computed until the exit time of the system from a given
domain, either open or closed. In this case the value functions satisfy a Dirichlet
boundary value problem for a stationary HJB equation, and in the limit procedure
described previously we use the notion of boundary condition in viscosity sense and
a comparison theorem due to Ishii [16] (see also [7], [5], and [4]).

A simple application of the main result is given in section 3. We consider control
problems for the system (0.8) with controls z(·) restricted to Lipschitzean functions
with Lipschitz constant less than 1/ε and initial point ζ ∈ Ω. This corresponds to the
system (0.1) with g(x, ζ, b) = b ∈ BRM (0, 1). From the main result we obtain that,
as ε → 0, these value functions converge (uniformly on compact sets) to the value
function of the limit problem with measurable controls z(·). This problem is studied
in Chapter V, Section 6, of the book [9] in the special case Ω = RM by different
methods. The issue of Lipschitz controls was also studied by Barron, Evans, and
Jensen [8] in the more general framework of differential games (see also the references
therein) in the case that the set Ω where the controls are constrained is the unit cube
and the dynamics and the running cost are 1-periodic in the corresponding variables.
They use the theory of viscosity solutions and gradient estimates on approximating
parabolic equations.

We believe that our method is general enough to apply to several other singular
perturbation problems, in particular for differential games. A similar analysis has
been done for the infinite horizon problem (which is simpler with our PDE approach)
in [2], [3], [4], and recently extended in [1] to the case when the slow state variables
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y(·) are constrained by means of a comparison theorem of Ishii and Koike [17]. We
mention also that similar problems have been studied recently by Subbotina [27]
within Subbotin’s theory of minimax solutions [26], and that Soner studied singular
perturbations for some stochastic control problems by viscosity solutions methods in
[25] .

We refer to the books [20], [9] and the references therein for the motivations and
applications of singular perturbation problems in optimal control. We recall that the
pioneering work on the theory of viscosity solutions is due to Crandall and Lions
[13], Crandall, Evans, and Lions [12], and Lions [22]. For a comprehensive account of
the theory of viscosity solutions and its applications to optimal control, with special
attention to discontinuous solutions and the weak limit technique employed here, we
refer to the books by Barles [5], and Bardi and Capuzzo Dolcetta [4] for first-order
equations, and by Fleming and Soner [15] for second-order equations.

The paper is organized as follows. In section 1 we list the precise assumptions
and give some preliminary results. In section 2 we prove the main theorem, and in
section 3 we apply it to the problem of Lipschitz controls. In section 4 we relax
the controllability assumption (0.6) and illustrate the convergence result for singular
perturbations of exit time problems. An Appendix contains the proof of the continuity
of the value function for problems with state constraints.

1. Statement of the problem and basic results. Let Ω be an open connected
subset of RM , A, B be two compact sets and f : RN × RM × A → RN , g : RN ×
RM × B → RM be two continuous functions. For every (x, ζ) ∈ RN × Ω and for
every ε > 0, let us consider the controlled dynamical system (0.1), where the controls
α(·) and β(·) are measurable functions defined on [0,+∞[ and taking values in A and
B, respectively. The dynamics f and g are supposed to be Lipschitz functions on
(y, z) ∈ RN ×RM uniformly on a ∈ A and b ∈ B, respectively; moreover, we suppose
that f has linear growth with respect to y ∈ RN , i.e., there exists K > 0 such that

|f(y, z, a)| ≤ K(1 + |y|) ∀ (y, z, a) ∈ RN × Ω×A.
Under these assumptions on the dynamics, the system (0.1) has a unique con-

tinuous solution (trajectory), which continuously depends on the initial datum (x, ζ).
When no ambiguity arises about the dependence on ε, on (x, ζ), and on the choice of
the controls α and β, we shall denote this trajectory by (y(t), z(t)).

We want the trajectories of the system (0.1) to respect the state-space constraint
(0.3). Hence, we consider the possibly empty set of admissible controls for the system
(0.1), which depends on ε and on the starting point (x, ζ):

(1.1) (A× B)ε(x,ζ) :=
{

(α, β) : [0,+∞[→ A×B measurable | z(t) ∈ Ω ∀ t ≥ 0
}
.

Now we consider a finite horizon optimal control problem. Let l : RN × RM ×
A → R be a bounded continuous function, uniformly continuous with respect to
(y, z) ∈ RN ×RM uniformly in a ∈ A; let h : RN ×RM → R be a bounded continuous
function, which is uniformly continuous in the bounded sets of RN uniformly in z ∈ Ω,
i.e., for every R > 0 there exists a continuous increasing function ωR : [0,+∞[→ R
such that ωR(0) = 0 and

(1.2) |h(y1, z)− h(y2, z)| ≤ ωR(|y1 − y2|) ∀z ∈ Ω, ∀y1, y2 ∈ RN , |y1|, |y2| ≤ R.
Let us consider the cost functional Jε defined in (0.2), where (α, β) ∈ (A× B)ε(x,ζ),

t ∈ [0,+∞[, (x, ζ) ∈ RN × Ω and the subscript ε means that the trajectories are
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relative to system (0.1) with (x, ζ) as initial point and the admissible controls α and
β. The optimal control problem is to minimize the cost Jε over the set of admissible
controls, therefore respecting the state-space constraint z(t) ∈ Ω. Hence, we define
the value function:

(1.3) Vε(x, ζ, t) := inf
(α,β)∈(A×B)ε

(x,ζ)

Jε(x, ζ, t, α, β).

If the set of admissible controls is not empty for every initial point, then, by the
hypotheses on l and h, Vε is a real-valued function.

Now we define another control problem, which will turn out to be the limit prob-
lem as ε goes to zero. Let us consider the controlled dynamical system (0.8), where
x ∈ RN , α ∈ A := {α : [0,+∞[→ A measurable} and z ∈ Z := {z : [0,+∞[→
Ω measurable}.

The trajectories of system (0.8) will be denoted by y(·). Then we define the
following final cost:

(1.4) h̃(y) := inf
z∈Ω

h(y, z),

which is bounded and continuous, and consider the cost functional J defined in (0.7).
We have the following value function:

(1.5) V (x, t) := inf
(z,α)∈Z×A

J(x, t, z, α),

which is a real-valued function. Hence, we have a control problem without state-space
constraint and with α and z as controls.

Before stating our main result, we need some other hypotheses. The first is a
regularity assumption on the domain Ω, whose boundary should be piecewise of class
C1,1 and should have a uniform interior cone property, i.e., there exist two positive
constants h, r, a bounded uniformly continuous function η : Ω→ RM , and functions
gi ∈ C1,1(RM ), i = 1, . . . , q, q ∈ N, such that

(1.6)

{
ξ ∈ RM ∣∣|ξ − (z + tη(z))| ≤ rt} ⊆ Ω ∀z ∈ Ω,∀t ∈ [0, h],

Ω =
{
z ∈ RM : gi(z) ≤ 0 ∀i = 1, . . . , q

}
,∣∣∇gi(z)∣∣ > 0 ∀z such that gi(z) = 0.

The next hypothesis states the controllability in the z-variables, i.e.,

(1.7) cog(y, z, B) ⊇ {ξ ∈ RM ∣∣|ξ| ≤ 1
} ∀ y ∈ RN , z ∈ Ω,

where co means the closed convex hull of the set. Observe that (1.7) implies the
existence of an “inward field” on the boundary of Ω, i.e.,

(1.8) ∀z ∈ ∂Ω ∀y ∈ RN ∃b ∈ B such that gi(z) = 0⇒ g(y, z, b) · ∇gi(z) < 0.

Theorem 1.1. Under all the hypotheses stated before, the sequence of the value
functions defined in (1.3) uniformly converges to the value function defined in (1.5),
over the compact sets of RN ×Ω×]0,+∞[ as ε→ 0. Moreover, if the final cost h does
not depend on the variable z ∈ Ω, then the uniform convergence is over the compact
sets of RN × Ω× [0,+∞[.
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Next, we give some basic results about optimal control and viscosity solutions
of Hamilton–Jacobi–Bellman equations. Let us consider the optimal control problem
with state-space constraint given by system (0.1), the constraint (0.3), the cost func-
tional (0.2), and the value function (1.3). Under all the hypotheses stated before, the
following proposition holds.

Proposition 1.2. For every ε > 0, for every (x, ζ) ∈ RN × Ω, the set of
admissible controls is not empty. Moreover, the value function Vε is continuous and
bounded over the sets RN × Ω× [0, T ], for every T ∈]0,+∞[.

This proposition is a special case of Theorem A.1 in the Appendix.
Now we consider an open subset O ⊆ Rm, and a continuous real-valued function

H defined on O × Rm. Consider the Cauchy problem

(1.9) (P )

{
ut(x, t) + λu(x, t) +H(x,∇u(x, t)) = 0, in O×]0, T [,
u(x, 0) = h(x), in O,

where ∇ means the gradient with respect to the spatial variables and ut the time
derivative.

Definition 1.3. We say that a bounded and continuous function u : O× [0, T [→
R is a constrained viscosity solution of (P) if u satisfies the initial condition and for
every test function ϕ ∈ C1(O×]0, T [), the following holds:
(1.10)

if (x0, t0) ∈ O×]0, T [ is a local maximum point for u− ϕ in O×]0, T [, then

ϕt(x0, t0) + λu(x0, t0) +H(x0,∇ϕ(x0, t0)) ≤ 0;

(1.11)
if (x0, t0) ∈ O×]0, T [ is a local minimum point for u− ϕ in O×]0, T [, then

ϕt(x0, t0) + λu(x0, t0) +H(x0,∇ϕ(x0, t0)) ≥ 0.

If u satisfies (1.10) only, then we say that u is a viscosity subsolution in O×]0, T [
of (1.9); if u satisfies (1.11) only, then we say that u is a viscosity supersolution in
O×]0, T [ of (1.9).

Next, let us consider the following Cauchy problem, in RN × Ω× [0, T [ for every
T > 0:

(1.12) (Pε)

 (Vε)t(x, ζ, t) + λVε(x, ζ, t) +H

(
x, ζ,∇yVε(x, ζ, t), 1

ε
∇zVε(x, ζ, t)

)
= 0

Vε(x, ζ, 0) = h(x, ζ),

where ∇y and ∇z, respectively, mean the gradient with respect to the variable y ∈ RN
and z ∈ Ω ⊂ RM and the Hamiltonian H is defined in (0.11). Note that (Pε) is a
particular case of (P).

Theorem 1.4. The value function Vε defined in (1.3) is the unique constrained
viscosity solution of (Pε), among the bounded and continuous functions in RN ×Ω×
[0, T ].

Proof. Using standard techniques, the proof of the fact that Vε is a constrained
viscosity solution is easy (see, for instance, [24] or [4]). The uniqueness follows from
a comparison result, which we state next.

Theorem 1.5. Let u, v : RN × Ω × [0, T ] → R be two bounded and continuous
functions, such that u is a subsolution in RN ×Ω×]0, T [ of (1.12), v is a supersolution
in RN ×Ω×]0, T [ of (1.12), and u(x, ζ, 0) ≤ v(x, ζ, 0) for every (x, ζ) ∈ RN ×Ω. Then
u ≤ v in RN × Ω× [0, T ].
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Proof. This result is obtained using standard techniques. In particular, we use
test functions with penalization terms as in [24] (see also [10], [4]). The detailed proof
can be found in [2].

Finally, let us consider the following Cauchy problem in RN × [0, T [ without
state-space constraint:

(1.13) (P0)


Vt(x, t) + λV (x, t) + sup

z∈Ω

H(x, z,∇V (x, t), 0) = 0,

V (x, 0) = h̃(x),

where ∇ means the gradient with respect to the variable y ∈ RN and the initial datum
h̃ is defined in (1.4). Note that (P0) is a particular case of (P).

Theorem 1.6. The value function V defined in (1.5) is continuous and bounded
in RN × [0, T ] and it is the only viscosity solution of (P0) in RN×]0, T [ among the
continuous and bounded functions.

For the proof, see, for instance, [4]. In particular, the uniqueness follows from a
comparison result.

Theorem 1.7. Let u, v : RN × [0, T ] → R be bounded. If u is an upper semi-
continuous subsolution and v is a lower semicontinuous supersolution in RN×]0, T [
of (1.13) and u(x, 0) ≤ v(x, 0), for every x ∈ RN , then u ≤ v in RN × [0, T ].

2. The singular perturbation problem. This section is devoted to the proof
of Theorem 1.1. Hence, we put ourselves in the framework of section 1. Since we need
some technical results, we shall break the proof into several lemmas.

The value functions Vε are equibounded in RN×Ω×[0, T ] for every T > 0. Hence,
for every (x, ζ, t) ∈ RN × Ω × [0,+∞[, we can define the following real-valued weak
limits:

(2.1)

V (x, ζ, t) := lim inf
(y,z,τ,ε)→(x,ζ,t,0)

Vε(y, z, τ),

V (x, ζ, t) := lim sup
(y,z,τ,ε)→(x,ζ,t,0)

Vε(y, z, τ),

where the limits are taken in (y, z, τ, ε) ∈ RN ×Ω× [0,+∞[×]0,+∞[. Note that V is
lower semicontinuous and V is upper semicontinuous.

Lemma 2.1. For every (x, ζ, t) ∈ RN × Ω × [0,+∞[, the following inequality
holds:

V (x, t) ≤ V (x, ζ, t).

Proof. Let us define the following function:

(2.2) Ṽ (x, ζ, t) := V (x, t) ∀(x, ζ, t) ∈ RN × Ω× [0,+∞[.

It is easy to check that Ṽ is a subsolution of (1.12) for all ε > 0.
On the other hand, we have, for every ε > 0,

Ṽ (x, ζ, 0) = V (x, 0) = h̃(x) ≤ h(x, ζ) = Vε(x, ζ, 0).

Hence, by Theorem 1.5, we get for every ε > 0 and for every (x, ζ, t) ∈ RN × Ω ×
[0,+∞[: V (x, t) = Ṽ (x, ζ, t) ≤ Vε(x, ζ, t). By (2.1) and the continuity of V , we obtain

V (x, t) = lim inf
(y,τ)→(x,t)

V (y, τ) ≤ lim inf
(y,z,τ,ε)→(x,ζ,t,0)

Vε(y, z, τ) = V (x, ζ, t).



SINGULAR PERTURBATION WITH STATE CONSTRAINTS 2047

Lemma 2.2. For every (x, ζ) ∈ RN × Ω,

(2.3) V (x, ζ, 0) = h(x, ζ).

Proof. Let us note that the Hamiltonian in (0.9) can be written as

H

(
x, ζ, p,

1

ε
q

)
= sup
a∈A

{
− f(x, ζ, a) · p− l(x, ζ, a)

}
− 1

ε
inf
b∈B

{
g(x, ζ, b) · q

}
.

By (1.7), the last term of the right-hand side is nonnegative. Hence, if ε1 ≤ ε2, then
Vε2 is a supersolution of (1.12) with ε = ε1. So, by Theorem 1.5

(2.4) 0 < ε1 ≤ ε2 ⇒ Vε1 ≤ Vε2 in RN × Ω× [0,+∞[.

Using (2.4), the definition of V (2.1) and the fact that the Vε are continuous and
Vε(x, ζ, 0) = h(x, ζ), it is not hard to get (2.3).

Lemma 2.3. Let O ⊆ Rm be open and connected and u : O → R be a bounded
upper semicontinuous function solving in the viscosity sense

|∇u| ≤ 0 in O.

Then u is constant.
Proof. We shall prove that u is locally Lipschitz. Hence, u solves the equation

almost everywhere and we get the conclusion.
Let M be a lower bound for u in O. Let us take x0 ∈ O and consider r0 > 0

such that the open ball B with radius r0 and centre x0 is contained in O. Denoting
by B′ the open ball with radius r0/2 and centre x0, let us take x′ ∈ B′ and consider
the function

φ(y) = u(y)− C|x′ − y|2 ∀y ∈ O,

where the constant C > 0 will be fixed later. The function φ is upper semicontinuous
and, hence, it reaches its maximum in the closure of B. Let y′ be a point of maximum.
We claim that y′ belongs to B′. In fact, φ(x′) = u(x′) ≥M and, for a suitable choice
of the constant C, φ(y) ≤M for all y ∈ B \B′. Hence, by definition of subsolution,

2C|x′ − y′| ≤ 0,

which implies y′ = x′ and, hence, we get

u(y)− u(x′) ≤ C|y − x′| ∀y ∈ B.

By the arbitrariness of x′ ∈ B′, u is Lipschitz in B′.
Lemma 2.4. The upper weak limit V is constant with respect to the variable

ζ ∈ Ω, for every (x, t) ∈ RN×]0,+∞[.
Proof. First, we prove that V solves

(2.5) |∇zV | ≤ 0 in RN × Ω×]0,+∞[,

where ∇z denotes the gradient of V with respect to ζ. Let us take a test function ϕ
and a strict local maximum point (x0, ζ0, t0) for V − ϕ in RN × Ω×]0,+∞[. Hence,
there exists a sequence (xε, ζε, tε) of local maxima in RN×Ω×]0,+∞[ for Vε−ϕ, such
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that, for ε → 0, the sequence converges to (x0, ζ0, y0) and Vε(xε, ζε, tε) converges to
V (x0, ζ0, t0). Consequently, at (xε, ζε, tε), we have

(2.6) ϕt + λVε + sup
A

{− f · ∇yϕ− l} ≤ 1

ε
inf
B

{
g · ∇zϕ}.

Using the controllability condition (1.7), we have the following inequality:

1

ε
inf
b∈B

{
g(xε, ζε, b) · ∇zϕ(xε, ζε, tε)

} ≤ −1

ε

∣∣∇zϕ(xε, ζε, tε)
∣∣.

Since in a neighborhood of (x0, ζ0, t0) the left-hand side of (2.6) is bounded; we then
get ∇zϕ(x0, ζ0, t0) = 0 and hence (2.5).

Next, applying Lemma 2.3, we get the conclusion.
Now, our purpose is to compare the function V with the function V , in particular,

we want V (x, ζ, t) ≤ V (x, t). This will be done using the comparison result for the
limit problem (P0), Theorem 1.7. Unfortunately, if h is not constant with respect to
ζ ∈ Ω, then the inequality V (x, ζ, 0) ≤ V (x, 0) does not hold. Note that, by Lemma
2.4, the function

V(x, t) := inf
ζ∈Ω

V (x, ζ, t) ∀(x, t) ∈ RN × [0,+∞[.

satisfies

(2.7) V(x, t) = V (x, ζ, t) ∀(x, ζ, t) ∈ RN × Ω×]0,+∞[.

Lemma 2.5. For every (x, t) ∈ RN × [0,+∞[

(2.8) V(x, t) ≤ V (x, t).

Proof. First, we prove that V is a subsolution in RN×]0,+∞[ of (1.13). Let
us consider a test function ϕ ∈ C1(RN×]0,+∞[) and a point (x0, t0) of strict local
maximum for V − ϕ in RN×]0,+∞[. Let us take an arbitrary point ζ0 ∈ Ω and
consider the function φ(x, ζ, t) := ϕ(x, t) + |ζ − ζ0|2. Using Lemma 2.4 and (2.7), we
can say that (x0, ζ0, t0) is a strict local maximum point for V −φ. Hence, there exists
a sequence (xε, ζε, tε) of maximum point for Vε − φ, converging to (x0, ζ0, t0) and,
moreover, Vε(xε, ζε, tε) converges to V (x0, ζ0, t0). Then, by (1.12), we get

ϕt(xε, tε) + λVε(xε, ζε, tε)

+ sup
a∈A

{− f(xε, ζε, a) · ∇yϕ(xε, tε)− l(xε, ζε, a)
}

≤ 1

ε
inf
b∈B

{
g(xε, ζε, b) · 2(ζε − ζ0)

} ≤ 0,

where the last inequality holds by virtue of the controllability condition (1.7). Hence,
passing to the limit for ε → 0, recalling (2.7), using the arbitrariness of ζ0 ∈ Ω and
the continuity of f and l, we obtain

ϕt + λV + sup
Ω×A

{− f · ∇ϕ− l} ≤ 0 at (x0, t0).

On the other hand, by Lemma 2.2, the limit problem (P0) and the definition
of h̃, it turns out that V(x, 0) = V (x, 0), for every x ∈ RN . Hence, since V is a
supersolution of (1.13), Theorem 1.7 gives the conclusion.
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Proposition 2.6. The sequence of value functions Vε uniformly converges to V ,
over the compact sets of RN × Ω×]0,+∞[.

Proof. Using (2.7), Lemma 2.1, Lemma 2.5, and the definitions of the weak limits
(2.1), we obtain

V (x, t) ≤ V (x, ζ, t) ≤ V (x, ζ, t) ≤ V (x, t) ∀(x, ζ, t) ∈ RN × Ω×]0,+∞[,

and the conclusion easily follows.
Proposition 2.6 is close to the first statement of Theorem 1.1. The only difference

is that we have not yet proved the convergence up to the boundary of Ω. To complete
the proof, we consider a stronger controllability condition than (1.7), i.e.,

(2.9) g(y, z, B) ⊇
{
ξ ∈ RM ∣∣|ξ| ≤ 1

}
∀(y, z) ∈ RN × Ω,

which, however, is not restrictive. Indeed, the next lemma shows that, for g and
B satisfying (1.7), there exist g̃ and B̃ satisfying (2.9), such that the corresponding
Cauchy problems (Pε) are the same. Hence, the corresponding value functions Vε and
Ṽε coincide by the uniqueness statement of Theorem 1.4.

Lemma 2.7. There exist a compact set B̃ and a function g̃ : RN × RM × B̃ →
RM with the same regularity properties as g, satisfying in addition (2.9), such that
equations (1.12) are the same.

Proof. Let us consider the set

Λ :=

{
(λ1, . . . , λM+1) ∈ RM+1

∣∣∣λi ≥ 0 ∀i = 1, . . . ,M + 1,
M+1∑
i=1

λi = 1

}

and define B̃ := BM+1 × Λ. We denote the elements (b1, . . . , bM+1, λ1, . . . , λM+1) of
B̃ by b̃ and we define

g̃(y, z, b̃) :=

M+1∑
i=1

λig(y, z, bi) ∀(y, z, b̃) ∈ RN × RM × B̃.

It is easy to prove that B̃ is compact and that g̃ has the same regularity properties
as g. Moreover, by Carathéodory’s theorem (see, for instance, [11])

(2.10) cog(y, z, B) = g̃(y, z, B̃) ∀(y, z) ∈ RN × RM .
Since g̃(y, z, B̃) is closed, from (1.7) we see that g̃ has the property (2.9).

Now, let us note that the last term of the Hamiltonian is equal to

−1

ε
inf

ξ∈cog(x,ζ,B)

{
ξ · ∇zVε(x, ζ, t)

}
.

Hence, by (2.10), the corresponding equations (1.12) are the same.
In the sequel, we shall suppose that (2.9) holds for g and B.
Lemma 2.8. For every (x, ζ, t) ∈ RN × ∂Ω×]0,+∞[, there exist 0 < t < t, a

continuous path γ : [0, t]→ RN ×Ω, γ(τ) = (yτ , zτ ), and a constant C > 0, such that

(2.11)

 (y0, z0) = (x, ζ),
(yτ , zτ ) ∈ RN × Ω ∀τ ∈]0, t],
Vε(x, ζ, t)− Vε(yτ , zτ , t− τ) ≤ Cτ ∀τ ∈ [0, t],∀ε ∈]0, 1].
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Proof. Let (x, ζ, t) ∈ RN × ∂Ω×]0,+∞[ be fixed and η ∈ RM , 0 < t < t be such
that

τ ∈]0, t]⇒ ζ + τη ∈ Ω.

Such a η exists by virtue of (1.6). It is not restrictive to suppose |η| ≤ 1. We take an
arbitrary control α ∈ A and consider the continuous trajectory in RN , starting from
x and defined by

y(τ) = x+

∫ τ

0

f(y(s), ζ + sη, α(s))ds.

Next, for every 0 < ε ≤ 1, let us consider the set

D(ε) :=
{

(τ, b) ∈ [0, t]×B∣∣g(y(τ), ζ + τη, b) = εη
}
.

The set D(ε) is compact and, by virtue of (2.9), it is not empty. Hence, by a selection
lemma, see, for instance, [14], for every such ε, there exists a measurable function
βε : [0, t]→ B such that

g(y(τ), ζ + τη, βε(τ)) = εη, a.e. τ ∈ [0, t].

Then, for every 0 < ε ≤ 1, the following dynamical system
y′(τ) = f(y(τ), z(τ), α(τ)), τ ∈]0, t[,

z′(τ) =
1

ε
g(y(τ), z(τ), βε(τ)), τ ∈]0, t],

(y(0), z(0)) = (x, ζ)

has the unique solution: τ → (y(τ), ζ + τη) ∈ RN ×Ω. If we define γ(τ) = (yτ , zτ ) :=
(y(τ), ζ+τη), then γ has the first two properties listed (2.11). Next, we prove the third
one. Take any τ ∈]0, t], µ > 0 and 0 < ε ≤ 1. Consider a control (α′, β′) ∈ Aε(yτ ,zτ )

such that

(2.12) Vε(yτ , zτ , t− τ) + µ ≥ Jε(x, ζ, t− τ, α′, β′).

Then we define the control

(α′′(s), β′′(s)) =

{
(α(s), βε(s)), if 0 ≤ s < τ ,
(α′(s− τ), β′(s− τ)), if s ≥ τ ,

which is admissible for (x, ζ). Hence, using (2.12) and the controls (α′, β′) and
(α′′, β′′), we obtain the following estimate:

(2.13)
Vε(x, ζ, t)− Vε(yτ , zτ , t− τ)

≤ Jε(x, ζ, t, α′′, β′′)− Jε(yτ , zτ , t− τ, α′, β′) + µ.

From this, it is easy to deduce the last inequality in (2.11).
Lemma 2.9. The sequence of value functions Vε converges pointwise to the func-

tion V in the set RN × Ω×]0,+∞[.
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Proof. The pointwise convergence in RN × Ω×]0,+∞[ immediately follows from
Proposition 2.6. Hence, let us consider (x, ζ, t) ∈ RN × ∂Ω×]0,+∞[. Using the
notations of Lemma 2.8, let us fix δ > 0 and take τ ∈]0, t[ and 0 < ε ≤ 1 such that

(2.14)

Cτ ≤ δ

3
,∣∣Vε(yτ , zτ , t− τ)− V (yτ , t− τ)

∣∣ ≤ δ

3
∀0 < ε ≤ ε,∣∣V (yτ , t− τ)− V (x, t)

∣∣ ≤ δ

3
,

where the second inequality comes from Lemma 2.8 and Proposition 2.6 and the third
one by the continuity of V . Hence, using Lemma 2.8 again, we obtain

Vε(x, ζ, t)− V (x, t) ≤ δ

and we get the conclusion because Vε ≥ V (see Lemma 2.1).
Proof of Theorem 1.1. Recalling (2.4), we know that the sequence of value func-

tions Vε is monotone in RN×Ω× [0,+∞[. By Lemma 2.9, in the set RN×Ω×]0,+∞[,
the Vε are continuous and pointwise converge to the continuous function V . Hence,
the sequence uniformly converges to V , over any compact sets. Moreover, if the final
cost h does not depend on z ∈ Ω, then by (1.4) both Vε and V satisfy the same initial
condition. Hence, by (2.3) and Lemma 2.4, we can conclude that V is constant in the
variable ζ ∈ Ω, for every (x, t) ∈ RN × [0,+∞[. From this, proceeding as before, we
obtain the uniform convergence over any compact set of RN × Ω× [0,+∞[.

3. The case of Lipschitz controls. In this section we give a simple application
of Theorem 1.1. We consider Ω ⊆ RM , ζ ∈ Ω, ε > 0, λ ≥ 0, f : RN ×RM → RN , and
l, h : RN ×RM → R. All the regularity hypotheses on Ω, f , l, and h for applying the
results of the previous sections, are supposed to hold. Let us consider the following
controlled dynamical system in RN :

(3.1)

{
y′(t) = f(y(t), z(t)), t > 0,

y(0) = x,

where the controls z belong to the set

Lεζ :=

{
z : [0,+∞[→ Ω

∣∣ |z(t1)− z(t2)| ≤ 1

ε
|t1 − t2|, z(0) = ζ

}
.

Note that Lεζ is the set of Lipschitz functions with Lipschitz constant less than 1/ε
and with initial point ζ.

We want to minimize the cost functional

(3.2) J(x, t, z) :=

∫ t

0

e−λsl(yx(s; z), z(s))ds+ e−λth(yx(t; z), z(t)).

Hence, we define the value function

Vε(x, t, ζ) := inf
z∈Lε

ζ

J(x, t, z),

which depends also on the initial point ζ for the control z.
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Next, we consider the optimal control problem defined by system (3.1), measur-
able controls z ∈ Z taking value in Ω and value function

V (x, t) := inf
z∈Z

(∫ t

0

e−λsl(yx(s; z), z(s))ds+ e−λt inf
ζ∈Ω

h(yx(t; z), ζ)

)
.

Proposition 3.1. The value functions Vε uniformly converge to the value func-
tion V , over any compact set of RN ×Ω×]0,+∞[. Moreover, if h does not depend on
ζ ∈ Ω, then the convergence is uniform over any compact set of RN × Ω× [0,+∞[.

Proof. We set B :=
{
β : [0,+∞[→ {ξ ∈ RM , |ξ| ≤ 1} measurable

}
and consider

the system

(3.3)


y′(t) = f(y(t), z(t)), t > 0,

z′(t) =
1

ε
β(t), t > 0,

(y(0), z(0)) = (x, ζ).

This is a special case of system (0.1) (where A is a singleton) and the hypotheses of
Theorem 1.1 are satisfied. Then, we consider the set Bε(x,ζ) of admissible controls with

respect to the state-space constraint: z(t) ∈ Ω. By Theorem 1.1, if we take J defined
in (3.2) and the value function

V ε(x, ζ, t) := inf
β∈Bε

(x,ζ)

J(x, t, z),

they uniformly converge to V over the compact sets, as desired. On the other hand, a
function z is Lipschitz, with Lipschitz constant less than 1/ε, if and only if it satisfies
the equation z′ = (1/ε)β almost everywhere, with β ∈ B. Therefore, it is easy to see
that Vε = V ε and the proof is complete.

Now, we consider the set L of Lipschitz controls z : [0,+∞[→ Ω, with arbitrary
Lipschitz constant and without fixed initial point. Again, we consider the correspond-
ing value function

VL(x, t) := inf
z∈L

J(x, t, z).

Since piecing together two elements of L does not necessary give an element of L, the
dynamic programming principle (DPP) does not obviously hold. Hence, the standard
proof that the function VL satisfies the Hamilton–Jacobi equation does not work.
However, VL turns out to coincide with V by Proposition 3.1 because

V (x, t) ≤ VL(x, t) ≤ Vε(x, t, ζ) ∀ε > 0, ∀(x, ζ, t) ∈ RN × Ω× [0,+∞[.

4. Remarks and extensions. In this section, we give some ideas about possible
extensions and applications of our method to other control problems.

First of all, we consider the controllability hypothesis (0.6). If we replace (0.6)
with the following assumption:

(4.1) ∀(y, z) ∈ RN × Ω ∃r > 0 such that cog(y, z, B) ⊇ B(0, r),

then our method still works. The difference between (0.6) and (4.1) is that in (4.1)
the radius of the ball depends on the point (y, z). Actually, we can further enlarge



SINGULAR PERTURBATION WITH STATE CONSTRAINTS 2053

the class of perturbation problems as follows. We replace the equation for the fast
variables z in (0.1) with

(4.2) z′(t) = g1(y(t), z(t), β(t)) +
1

ε
g(y(t), z(t), β(t)),

with g and g1 satisfying the standard uniform Lipschitz continuity assumption and g
verifying (4.1). We note that the function εg1 + g does not necessarily satisfy (0.6);
however, since g1 is locally bounded, for every (y, z) we can take suitably small ε,
such that the function εg1 +g satisfies condition (4.1) in a neighborhood of (y, z). For
instance, a linear system

z′ = M1y +M2z +
1

ε
M3b,

where M1, M2 and M3 are matrices, satisfies (4.1) if M3B ⊇ B(0, r) for some r, but
the vector field ε(M1y +M2z) +M3b satisfies (0.6) only if M1 and M2 are both null.

Theorem 4.1. For every ε > 0, let Vε be the value function of the control
problem where the fast variables are driven by (4.2). Then, the sequence (Vε)ε>0

uniformly converges in any compact set of RN × Ω×]0,+∞[, as ε → 0, to the value
function V of the same limit problem as in section 2.

Sketch of the proof. Using the Lipschitz continuity of g and g1 in (y, z) uniformly
with respect to b, it is not hard to prove that the function

r(y, z, ε) := max

{
r > 0

∣∣co
[
g1(y, z, B) +

1

ε
g(y, z, B)

]
⊇ B(0, r)

}
is well defined and continuous in (y, z, ε) ∈ RN × Ω×]0,+∞[. Moreover, for every
(y, z), r(y, z, ε) > 0 for suitable small ε, by (4.1); hence for every compact set of
RN×Ω and small ε, r has a strictly positive minimum. Thus, modifying appropriately
the proofs of Lemmas 2.2, 2.4, 2.5, and 2.8 to the new system (4.2), (4.1), Theorem
4.1 can be easily proved.

Remark 4.1. We can consider the system (0.1) with the second equation

(4.3) z′(t) =
1

ε
(g1(y(t), z(t), β(t)) + g(y(t), z(t), β(t))) ,

and make the proofs of Lemmas 2.2, 2.4, and 2.5 work again, provided that, for every
ε > 0, the value function Vε is a subsolution of

(4.4) ∇zVε · g1 ≤ 0.

In this case, the sign of the uncontrollable terms in the proofs of the lemmas is the
correct one. Hence, we get the usual convergence result, at least in any compact set
of RN × Ω×]0,+∞[.

Next we explain how our method applies to exit time problems. With the notions
and hypotheses of the Introduction and section 1, we take an open bounded set
O ⊂ RN with smooth boundary, in particular with the interior cone property (i.e.,
the obvious analogue of the first property in (1.6)). For every trajectory (y(·), z(·)) of
the system (0.1) we define the exit time from O, which depends on the starting point
(x, ζ), on the admissible control (α, β), and on ε > 0:

(4.5) τε = τ(x, ζ, α, β, ε) := min
{
t ≥ 0

∣∣y(t) ∈ ∂O} .
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In the same way, we define the exit time from O for the limit system (0.8), which
depends on the starting point x and on the measurable controls z and α:

(4.6) τ = τ(x, z, α) := min
{
t ≥ 0

∣∣y(t) ∈ ∂O} .
We consider the following cost functionals:

(4.7) Jε(x, ζ, α, β) :=

∫ τε

0

e−λsl(y(s), z(s), α(s))ds+ e−λτ
ε

h(y(τε)),

(4.8) J(x, z, α) :=

∫ τ

0

e−λsl(y(s), z(s), α(s))ds+ e−λτh(y(τ)),

where λ > 0 and the terminal cost h is a continuous function in a neighborhood
B(∂O, δ) of ∂O. Next we define the value functions for the perturbed problems and
for the limit problem as, respectively,

(4.9) Vε(x, ζ) := inf
(α,β)∈(A×B)ε

(x,ζ)

Jε(x, ζ, α, β)

and

(4.10) V (x) := inf
(z,α)∈Z×A

J(x, z, α).

Let us now suppose that the terminal cost h satisfies the compatibility condition

(4.11) h(x) ≤ J(x, z, α) ∀x ∈ B(∂O, δ), ∀(z, α) ∈ Z ×A,
and the limit system has the controllability property

(4.12) sup
(ζ,a)∈Ω×A

f(x, ζ, a) · ν(x) > 0 ∀x ∈ ∂O,

where ν(x) is the exterior normal to O. These assumptions ensure the continuity of
the value function V by the results in Chapter 4 of [4] (see also [22] for similar results;
note that (4.11) implies h(x) ≤ V (x) in B(∂O, δ); thus V is lower semicontinuous at
all x ∈ ∂O, whereas (4.12) implies the upper semicontinuity of V at boundary points).
The value functions Vε, however, may be discontinuous.

Under the previous assumptions, the following theorem holds.
Theorem 4.2. When ε tends to 0, the sequence of value functions Vε converges

to the value function V uniformly over the compact sets of O × Ω.
Sketch of the proof. By the assumptions (4.11) and (4.12), V ∈ BUC(O) and it

is the solution of the boundary value problem

(4.13)

{
λV + supz∈ΩH(y, z,∇V, 0) = 0 in O,
V = h on ∂O,

where the Hamiltonian H is defined in (0.11).
Now, for every ε > 0, we denote by V ∗ε the upper semicontinuous envelope of Vε.

By the results of Ishii [16], V ∗ε is subsolution of

(4.14)

{
λV ∗ε +H(y, z,∇yV ∗ε , 1

ε∇zV ∗ε ) ≤ 0 in O × Ω,
V ∗ε ≤ h or λV ∗ε +H(y, z,∇yV ∗ε , 1

ε∇zV ∗ε ) ≤ 0 on ∂O × Ω,
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where the boundary condition is also interpreted in the viscosity sense.
Then, as in (2.1), we define the lower weak limit V and the upper weak limit V .

Also in this case, for every strict local maximum point (x0, ζ0) for V −ϕ there exists a
sequence (xε, ζε) ∈ O ×Ω of maximum points for V ∗ε − ϕ converging to (x0, ζ0), such
that V ∗ε (xε, ζε) converges to V (x0, ζ0). Hence, as in Lemma 2.4, we can say that V is
constant with respect ζ ∈ Ω in O × Ω. Then, if we define the function

(4.15) V(x) := inf
ζ∈Ω

V (x, ζ) ∀x ∈ O,

we obtain that V = V in O. As in Lemma 2.5, we can prove that V is an upper
semicontinuous subsolution of

(4.16)

{
λV + supz∈ΩH(y, z,∇V, 0) = 0 in O,
V = h or λV + supz∈ΩH(y, z,∇V, 0) = 0 on ∂O.

The only difference is the boundary condition, and we observe that if V(x0) > h(x0)
for some x0 ∈ ∂O, then, along the above sequence (xε, ζε) converging to (x0, ζ0) with
arbitrary ζ0 ∈ Ω, we have V ∗ε (xε, ζε) > h(xε), at least for small ε. Therefore, the
Hamilton–Jacobi equation holds at such points by (4.14), and by letting ε → 0 we
obtain that V satisfies the Hamilton–Jacobi equation at the boundary point x0.

Now we apply the comparison result in Ishii [16] (see also [4]) and get

V (x, ζ) ≤ V (x) ∀(x, ζ) ∈ O × Ω.

Since the inequality V ≤ V follows from the definitions of V , Vε, and V , we easily
get the conclusion.

Remark 4.2. The same convergence result as in Theorem 4.2 holds if we consider
the control problem with exit time from the closure of O. In this case we define

(4.17) τ̂ε = τ̂(x, ζ, α, β, ε) := inf
{
t ≥ 0

∣∣y(t) 6∈ O} ,
(4.18) τ̂ = τ̂(x, z, α) := inf

{
t ≥ 0

∣∣y(t) 6∈ O} .
Let V̂ε and V̂ be the value functions defined as in (4.9) and (4.10) with cost functionals
Jε and J as in (4.7) and (4.8) with τε and τ replaced by τ̂ε and τ̂ , respectively.

Then, under the hypotheses (4.11) and (4.12), V̂ε → V̂ = V when ε → 0, where
V is the value function defined in (4.10). In fact, V̂ = V because the upper semi-
continuous and lower semicontinuous envelopes V̂ ∗ and V̂∗ are, respectively, sub- and
supersolution of (4.16), hence, by a comparison theorem, V̂ ∗ ≤ V ≤ V̂∗ (see [16],
[4]). On the other hand, the functions V̂ε do not necessarily coincide with Vε defined
in (4.9), but V̂ ∗ε satisfies (4.14) for every ε. Thus the upper weak limit of V̂ε is a
subsolution of (4.16) and the conclusion follows as in the previous proof.

Appendix: Continuity of the value function. In this Appendix we shall use
the notation B(x, r) for the open ball with radius r and centre x.

We consider a general controlled dynamical system in Rm:

(A.1)

{
y′(t) = f(y(t), α(t)), t > 0,

y(0) = x,

with the constraint on the trajectories

(A.2) y(t) := yx(t;α) ∈ Ω ∀t > 0.
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We have the measurable controls α ∈ A, which takes values in a compact set A.
Hence, we consider the cost functional

(A.3) J(x, t, α) :=

∫ t

0

e−λsl(y(s), α(s))ds+ e−λth(y(t))

and the value function

(A.4) V (x, t) := inf
α∈Ax

J(x, t, α),

where Ax is the set of admissible controls. The hypotheses are the following:

(A.5)

Ω ⊆ Rm is open and connected and satisfies (1.6), with M replaced by m;

f : Rm ×A→ Rm is continuous;

|f(x, a)− f(y, a)| ≤ L|x− y| ∀x, y ∈ Rm,∀a ∈ A;

|f(x, a)| ≤ K(1 + |x|) ∀x, y ∈ Rm,∀a ∈ A;

l : Rm ×A→ R is continuous;

|l(x, a)− l(y, a)| ≤ ω(|x− y|), |l(x, a)| ≤ K ∀x, y ∈ Rm,∀a ∈ A;

h : Rm → R is continuous and bounded,

where ω(0) = 0 and ω is continuous and increasing. Note, that the fourth inequality
in (A.5), follows from the continuity of f and the compactness of A. Moreover, we
will use the following controllability assumption at points of ∂Ω:

(A.6) ∀z ∈ ∂Ω ∃a ∈ A such that gi(z) = 0⇒ f(z, a) · ∇gi(z) < 0.

It is easy to see that, for every ε > 0, the problem described in the previous section
by (0.1), (0.2), (0.3), and (1.3) is a particular case of the last one, with m = N +M .

THEOREM A.1. Under the assumptions above, Ax is not empty and V is bounded
and continuous in Ω× [0, T ], for every T > 0.

We need a lemma. First, let us define

(A.7)
It(x, α) :=

∫ t

0

e−λsl(yx(s;α), α(s))ds ∀x ∈ Ω, ∀α ∈ A, ∀t > 0,

Gi := {x ∈ RN : gi(x) ≤ 0}, i = 1, . . . , q.

LEMMA A.2. For every x0 ∈ Ω there exist constants r0 > 0, t∗ > 0, C > 0 such
that, for every x ∈ B(x0, r0) ∩ Ω and for every α ∈ A, there exists α ∈ A such that

(A.8) yx(t;α) ∈ Ω ∀t ∈ [0, t∗],

(A.9)
∣∣It∗(x, α)− It∗(x, α)

∣∣ ≤ C max
{

dist(yx(t, α), Gi) : t ∈ [0, t∗], i = 1, . . . , q
}
.

Proof. This proof is a modification of the Soner’s one [24]. If x0 ∈ Ω, then we are
done, since, by the third and the fourth of (A.5) and Gronwall’s lemma, we get

(A.10)

{ |yx(t;α)− yz(t;α)| ≤ eLt|x− z| ∀x, z ∈ Rm, ∀α ∈ A, ∀t ≥ 0;
|yx(t;α)− x| ≤ Kt(1 + |x|)eKt ∀x ∈ Rm, ∀α ∈ A, ∀t ≥ 0,
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and so, for a suitable small time interval independent on the control, all the trajectories
starting from the same point do not go out of a fixed compact set. Hence, let us
suppose x0 ∈ ∂Ω. By (A.5) and (A.6), there exist a nonempty set I ⊆ {1, . . . , q}, a
constant control a ∈ A, and two positive numbers δ0, ξ0, such that

(A.11)


gi(x0) = 0 ∀i ∈ I, gj(x0) < 0, ∀j 6∈ I,

B(x0, δ0) ⊆ ◦Gj ∀j 6∈I,
f(x, a) · ∇gi(x) < −ξ0 < 0 ∀x ∈ B(x0, δ0) ∩ Ω, ∀i ∈ I.

Now, let us take r0 < δ0, a point x ∈ B(x0, r0) ∩ Ω and fix t′ > 0 sufficiently small
such that

(A.12)

{
yx(t;α) ∈ B(x0, δ0) ∀t ∈ [0, t′], ∀α ∈ A,
f(yx(t;α), a) · ∇gi(yx(t, α)) ≤ −ξ0 < 0 ∀t ∈ [0, t′], ∀i ∈ I,

which is possible by (A.11). So we have

(A.13) yz(t;α) ∈ Gj ∀t ∈ [0, t′], ∀z ∈ B(x0, r0) ∩ Ω, ∀α ∈ A, ∀j 6∈ I.
Then, let us take a measurable control α ∈ A and define

(A.14)

t0 := inf
{
t ∈]0, t′] : yx(t;α) ∈ ∂Ω

}
, t0 := t′ if yx(t;α) 6∈ ∂Ω ∀t ∈ [0, t′],

µ := max
{

dist(yx(t;α), Gs) : t ∈ [0, t′], s = 1, . . . , q
}
,

α(t) := α(t)χ[0,t0[(t) + aχ[t0,t0+hµ](t) + α(t− hµ)χ]t0+hµ,+∞[(t),

where h > 0 will be fixed later and χS denotes the characteristic function of the set
S.

By (A.12), for proving (A.8), we have only to prove that yx(t;α) ∈ Gi, that is
gi(yx(t;α)) ≤ 0, for every fixed t ∈ [0, t′] and every i ∈ I (note that only for the
moment t′ is our main candidate as t∗).

If 0 ≤ t ≤ t0 then, by virtue of definition (A.14), there is nothing to prove. If
t0 < t ≤ t0 + hµ and t ≤ t′, then using (A.12), (A.13), and the fact that yx(t;α) is a
solution of (A.1), we get for every i ∈ I:

gi(yx(t;α)) = gi(yx(t0;α)) +

∫ t

t0

∇gi(yx(s;α)) · f(yx(s;α), α(s))ds ≤ −ξ0(t− t0) < 0,

and, hence, we get yx(t;α) ∈ Ω for every t ≤ t′,t ∈ [t0, t0 + hµ]. If t ≤ t′ and
t > t0 + hµ, then for a suitable τ > t0 it is t = τ + hµ. Then, using the definition of
α, we have

(A.15)

gi(yx(τ + hµ;α)) = gi(yx(t0;α)) +

∫ t0+hµ

t0

∇gi(yx(s;α)) · f(yx(s, α), a)ds

+

∫ τ+hµ

t0+hµ

∇gi(yx(s;α)) · f(yx(s;α), α(s− hµ))ds

≤ gi(yx(t0;α))− ξ0hµ+

∫ τ

t0

∇gi(yx(s+ hµ;α)) · f(yx(s+ hµ;α), α(s))ds.

Now, using (A.5) and the fact that gi is C1,1 and, hence, bounded and Lipschitz, with
its first derivatives over compact sets and using (A.10), we obtain, after adding and
subtracting suitable terms

(A.16) gi(yx(τ + hµ;α)) ≤ −ξ0hµ+ Chµ

∫ τ

t0

[
eL(s−t0)ds+ (gi ◦ yx(·, α))′(s)

]
ds,
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where the constant C > 0 depends on x0 only. Next, we suppose that the radius
r0 is small enough, such that, in the ball B(x0, r0), the following inequality holds:
gi(z) ≤ dist(z,Gi) for every z ∈ B(x0, r0). The last is not restrictive; it is sufficient
to divide the function gi by its Lipschitz constant in the ball B(x0, 2δ0) and to note
that the set Gi remains unchanged after this operation. Hence, if we take 0 < t∗ ≤ t′
such that

t∗ ≤ 1

L
log

(
1 +

Lξ0
2C

)
,

then we get

gi(yx(τ + hµ;α)) ≤ µ
(

1− ξ0
2
h

)
.

Hence, if we take h = 2/ξ0, (A.8) is proved.
Now, let us note that it is not restrictive to suppose the running cost l to be

a Lipschitz function on x ∈ RM uniformly in a ∈ A. In fact, we are interested in
the continuity of the value function and hence, if the value function with Lipschitz
running cost is continuous, then, taking a uniformly approximating sequence of Lips-
chitz running cost, we have a uniformly approximating sequence of continuous value
functions. So, for Lipschitz l, using the construction of α and standard estimates, it
is easy to prove that (A.9) holds.

Remark A.1. It is easy to convince oneself that, for x in a compact subset of Ω,
the constants r0, t∗ and C of Lemma A.2, and also the quantity h, can be uniformly
chosen.

Proof of Theorem A.1. Let us prove that Ax 6= ∅ for every x ∈ Ω. Let us take
x0 ∈ Ω and let t∗0 be the supremum of the values for t∗. If t∗0 = +∞, then we are done.
If it is not the case, let us take α0 ∈ A such that yx0

(t;α0) ∈ Ω for every 0 ≤ t ≤ t∗0. In
a similar way, we define t∗1 with respect to x1 := yx0

(t∗0;α0). If t∗1 = +∞, we are done.
If it is not the case, let us take α1 ∈ A such that yx1

(t;α1) ∈ Ω for every 0 ≤ t ≤ t∗1 and
take t∗2 with respect to x2 := yx1

(t;α1). Then we consider the measurable control α,
constructed by gluing the controls αn; it belongs to Ax0 if and only if

∑+∞
n=0 t

∗
n = +∞.

But if this is not true, then, by (A.10), the trajectory yx0(·;α) does not exit from a
compact subset of Ω. Hence, by Remark A.1, the values t∗n are bounded away from
zero, which is a contradiction to

∑+∞
n=0 t

∗
n < +∞.

The boundedness of the value function is obvious; then we prove the continuity in
every set Ω× [0, T ] with T > 0. Let us take T > 0, x0 ∈ Ω and consider a ball B with
x0 as centre. We shall show that, for a suitable ball B′ inside B and centered in x0,
the value function is uniformly continuous in B′ ∩ Ω × [0, T ]. Hence, the continuity
in Ω× [0, T ] will be proved. By Remark A.3, we can take the constants t∗, r0, and C
uniformly in B. Using (A.10), we take B′ such that, yx(t;α) ∈ B for every t ∈ [0, T ],
for every α ∈ A and for every x ∈ B′. Hence, using Lemma A.2 and proceeding as in
Soner [24], we get the following estimates, which hold for every x, z ∈ B′∩Ω, for every
α, for every α as in Lemma A.2 with respect to x and α, and for every t ∈ [0, t∗]:

(A.17)

∣∣yx(t;α)− yz(t;α)
∣∣ ≤ C∣∣x− z∣∣,∣∣It(x, α)− It(z, α)
∣∣ ≤ C∣∣x− z∣∣,

where C > 0 and It is defined as in (A.6). Moreover, starting from two points
x, z ∈ B′, the same estimates hold even for every t ∈ [0, T ], if T > t∗. In fact, if



SINGULAR PERTURBATION WITH STATE CONSTRAINTS 2059

T ≤ t∗, during the time-interval [0, T ], for every fixed α ∈ A, the trajectories starting
from a point of B′ do not exit from B. Hence, we can repeat the same argument, used
for getting the estimate, with respect to the starting points yx(t∗;α), yz(t

∗;α) and
to the same value t∗. Let us iterate this argument. At every nth step, we construct,
as in Lemma A.2, a control αn depending on the starting point yx(nt∗;αn−1) and on
the control α. Hence, for every x ∈ B′ ∩Ω and for every α ∈ A there exists a control
α such that yx(t;α) ∈ Ω and all the previous estimates hold for every t ∈ [0, T ].

Next, let us fix δ > 0. Then, by definition of V (A.4), for a suitable α ∈ Az we
have

(A.18)
V (x, t)− V (z, s)

≤ It(x, α)− Is(z, α) + e−λth(yx(t;α))− e−λsh(yz(s;α)) + δ.

Hence, using the estimates (A.17), the definition of It, denoting by ωh a modulus of
continuity of h in B, and adding and subtracting suitable terms, we get

V (x, t)− V (z, s) ≤ C1

∣∣t− s∣∣+ C
∣∣x− z∣∣+ ωh(C

∣∣x− z∣∣) + δ,

for a suitable positive constant C1 and for C as in (A.17). Hence, we reach the
conclusion by the arbitrariness of δ > 0.
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Abstract. Dissipativity is studied for a class of boundary control systems whose free evolution is
described by a holomorphic semigroup. It is proved that the system is dissipative if and only if there
exists a (bounded selfadjoint) solution of the corresponding linear operator inequality. In addition,
the Lur’e problem is solved under particular assumptions.
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1. Introduction. The quadratic regulator problem with stability is a complex
body of results; see [24]. Extensions to distributed systems were given in [25] for
uniformly continuous semigroup systems and in [14] for C0-semigroup systems. A
partial extension to a class of boundary control systems is in [13].

In this paper we present a further extension to a class of boundary control prob-
lems, a result on the spectral factorization of the related Popov function, and a proof
of existence of solutions to the corresponding Lur’e problem.

Now we describe the problems that we are going to study. We denote X and U
to be complex Hilbert spaces, and we consider a continuous quadratic form (QF) on
X × U,

F (x, u) = 〈x,Qx〉+ 〈x, Su〉+ 〈Su, x〉+ 〈u,Ru〉,(1)

where “〈·, ·〉” denotes both the inner product in the Hilbert space X and that in the
Hilbert space U . We assume that Q, S, R are linear bounded operators in the proper
spaces and that Q = Q∗ and R = R∗, but we are not assuming either that Q ≥ 0
or that R ≥ 0 (this last condition will be a consequence of Property P1 described
below).

We consider the boundary control system (S),

ẋ = A(x−Du), x(0) = x0(2)

(x ∈ X, u ∈ U). Systems of the form (2) have been studied in many papers in order
to describe boundary control systems.

The pair of the quadratic functional (QF) and of the system (S) is called a Popov
pair ((S),(QF)).

We must give a meaning to the solutions of the equation that describes system
(S). Formally, it is given by

x(t) = x(t;x0, u) = eAtx0 −A
∫ t

0

eA(t−s)Du(s) d s .(3)
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Of course, this equation does not make any sense in X unless we introduce some
restrictions. Two main classes under which this expression defines an element of the
space X are singled out in [9]. In this paper we study systems of the first class:
holomorphic semigroup systems. More precisely, we assume the following.

(i) Let α be any number larger than the exponential order ω(A) of the semi-
group. We define Xγ = dom(αI − A)γ , a space which is independent of α as long as

α > ω(A). Analogously, X
(∗)
γ = dom(αI−A∗)γ . We assume that there exists a number

γ̃ ∈ (0, 1) such that ImD ⊆ X1−γ̃ . Hence B = −AD = (αI −A)γ̃(αI −A)
1−γ̃

D−αD
belongs to L(U, (X

(∗)
γ )′).

We note that here and in the following we use the same symbol A in order to
denote the original operator A and its extension A∗

′ ∈ L(X, (domA∗)′).
(ii) The pair (A,D) is stabilizable by a bounded feedback operator. This means

that there exists an operator K ∈ L(X,U) with the following property: we consider
the operator AK defined by

AKx = A(I −DK)x, domAK = {x ∈ X, (I −DK)x ∈ domA} .
We require that the operator AK generate an exponentially stable semigroup (which
turns out to be a holomorphic semigroup; see [10, part 2, section 4].

Under these assumptions, it is known that the function x(·) is almost everywhere
(a.e.) X-valued and locally square integrable on (0,+∞), but in general it is not
continuous; see [10] and references therein.

In this paper we call “trajectory” of the control system (S) a pair (x(·), u(·)),
which satisfies (3) for a given x0 ∈ X. The function x(·) given in (3) will be called
the “state function,” which corresponds to the “initial datum” x0 and to the “input”
or “control function” u(·).

We consider the following quadratic functional computed along the trajectories
of the control systems (S):

J(x0;u) =

∫ +∞

0

F (x(t), u(t)) d t ,(4)

where x(t) = x(t;x0, u).
The first problem that we consider is the “regulator problem with stability.” This

means that we want to give equivalent conditions for the following property.
Property P1. There exists a number η ∈ R such that for each x0 ∈ X we have

inf{J(x0;u) , u(·) ∈ L2(0,+∞;U) such that x(·) ∈ L2(0,+∞;X)} ≥ η‖x0‖2 .
Here x(·) = x(·;x0, u).

We stress that we are not assuming simply integrability of F (x(·), u(·)), but we
require that possible trajectories which are not square integrable be discarded from
consideration. Hence we consider only the controls u(·) which belong to the set

Mx0
= {u(·) ∈ L2(0,+∞;U) such that x(·) ∈ L2(0,+∞;X)} .

The stabilizability assumption guarantees that for each x0 the set Mx0
is nonempty

but, in general, Mx0
will depend upon x0. If it happens that the semigroup eAt is

exponentially stable, then Mx0
= L2(0,+∞;U).

When Property P1 is satisfied, the pair of system (S) and of the quadratic func-
tional (QF) is called dissipative (or, in special applications, passive or positive.)
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We already noted that the previous problem was studied and solved in [14] in the
case in which ImD ⊆ domA (distributed control action). The extensions of the results
in [14] to boundary control systems may follow two routes, the first one being a direct
extension of the chain of lemmas in [14] to our system. Instead, following an idea which
we introduced already in the previous papers [15, 16], we prefer a different route. We
associate an “augmented system” to system (2). This is a distributed control system.
Then we can directly apply the results in [14] to the augmented system in order to
obtain the corresponding results for the boundary control system.

The methods used for the analysis of Property P1 were already used in the papers
[11, 12, 17, 18].

A second problem that we are going to study is the Lur’e problem. A precise
description, with assumptions and references, will be given in section 2, after the
description of the main results which concern Property P1. Roughly speaking, the
Lur’e problem is the following problem: we consider the case that the semigroup is
exponentially stable. A necessary condition which is satisfied when Property P1 holds
is that a certain operator valued function defined on the imaginary axis is nonnegative;
see the last statement of Theorem 1. This function is called the Popov function of
the system. This condition is necessary but not sufficient for Property P1, and it
is required that we find additional conditions under which Property P1 holds. This
problem is known as the Lur’e problem. It is an important and classical problem in
control theory which has not yet been completely clarified even for finite dimensional
systems. See [2, 5] for recent finite dimensional results.

The plan of the paper is as follows: in the next section we present our main
results; the augmented system is derived in section 3 and it is studied in section 3.1,
where Theorem 1 is proved under the further assumption that the semigroup eAt is
exponentially stable. The stability assumption is removed in section 4.

If the system is stable, the Popov function (defined in the next section) has an
analytic extension (with singularities) to the right half plane, and it makes sense
to study the factorization properties of this function; see section 5 where the Lur’e
problem is solved.

2. Main results and description of the Lur’e problem. If P1 and P2 are
continuous selfadjoint operators on X, we write P1 ≥ P2 if P1 − P2 ≥ 0.

The first result that we are going to prove is the following one.
Theorem 1. We have that Property P1 holds if and only if there exists a linear

bounded operator P on X, P = P ∗, such that the following holds for each x ∈ domA,
u ∈ U :

〈Ax,P (x+Du)〉+ 〈P (x+Du), Ax〉+ F (x+Du, u) ≥ 0.(5)

In this case, infu∈Mx0
J(x0;u) = 〈x0, P̂ x0〉, where the operator P̂ is the maximal

solution to the inequality (5).
If Property P1 holds, then

 F (x+Du, u) ≥ 0 for each x ∈ domA , u ∈ U such that

there exists a real ω for which iω(x+Du) = Ax ,
(6)

and R ≥ 0.
Inequality (5) is known as the dissipation inequality or linear operator inequality

(LOI).
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We note that if it happens that iω belongs to the resolvent set of the operator
A, then the last condition can be written in the form

Π(iω) = F (−iω(iωI −A)−1Du+Du, u) = F ((iωI −A)−1Bu, u) ≥ 0 .(7)

The function ω → F ((iωI −A)−1Bu, u) is called the Popov function of system (S).

A case in which the Popov function is defined for each real ω is the case that
the semigroup eAt is exponentially stable. In this case (iωI − A)−1Bu = (iωI −
A)−1Aγ̃A1−γ̃Du→ 0 for ω →∞ (we use the fact that the semigroup is holomorphic
here). Hence, if Property P1 holds and if the semigroup is exponentially stable, then

0 ≤ lim
ω→∞F ((iωI −A)−1Bu, u) = 〈u,Ru〉;

i.e., R is positive semidefinite.

We shall prove that the condition R ≥ 0 is implied by Property P1 even if the
semigroup is not exponentially stable.

Remark 1. The assumption that the semigroup is holomorphic has a crucial role
in the proof of the positivity of R. In particular, for hyperbolic control systems, the
condition Π(iω) ≥ 0 for every real ω does not imply R ≥ 0. See [20] for a counter-
example.

Now we can describe the Lur’e problem and the results that we are going to prove
concerning this problem.

The Lur’e problem is an important and difficult problem, which can be described
as follows: we assume that the semigroup is exponentially stable so that the Popov
function is defined on the imaginary axis. Let us assume that the Popov function Π(iω)
is nonnegative, 〈u,Π(iω)u〉 ≥ 0 for each u. The problem is to find additional conditions
under which there exists a solution P to (LOI). The oldest finite dimensional results
are due to [8, 23]. In those papers the additional condition was complete controllability.
Recent papers show that a much weaker condition than controllability is sufficient;
see [2, 5]. See [4, 19] for recent proofs which hold for distributed systems under the
assumption that eAt is a C0-group, still under a controllability assumption. These
proofs essentially reproduce the proof given in [25], which was based on the assumption
that eAt is a uniformly continuous group. Instead, the arguments in the present paper
are closer to the paper [1], where the Lur’e problem is studied for semigroup systems
with distributed control under quite demanding regularity assumptions on the input
and output operators. In fact, we study a problem analogous to the one studied in
[1] under the additional condition that the semigroup is holomorphic but with control
acting through the boundary and less stringent assumptions on the output operator.

The Lur’e problem is difficult even for finite dimensional systems, and we are
able to attack it only under particular conditions.

We describe the assumptions under which we study the Lur’e problem.

1. We assume that the input u is scalar so that S ∈ X and D ∈ X and the Popov
function is a scalar function.

2. We assume that the semigroup is holomorphic and exponentially stable, and
moreover, we assume σ(A) = σp(A) = {zn}; each zn is a simple eigenvalue
and the sequence {vn} of the normalized eigenvectors is a Riesz basis of X.
The eigenvalues of A are denoted zn = −xn + iyn (it will be assumed that
xn > 0 in section 5).
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3. There exists a number µ such that∣∣∣∣ ykxk
∣∣∣∣ < µ .

4. There exists an exponent δ < 1 and a positive number H such that, for |ω|
large enough,

|ω|δ|Π(iω)| > H .(8)

Now we state our result and then we discuss briefly the previous assumptions.
The result that we prove is the following.
Theorem 2. Let assumptions 1–4 hold. If Π(iω) ≥ 0 for every real ω, then there

exists a solution P = P ∗ ∈ L(X) of the (LOI) (5).
The proof of this result rests on the same ideas as [1]; see section 5.
Now we discuss the assumptions. The assumption that the spectrum of the gen-

erator is point spectrum with simple eigenvalues and that the eigenvectors are a Riesz
basis is satisfied in many cases of practical interest.

As to condition 3, we note that the spectrum of an analytic semigroup is contained
in a sector. In principle it could be a sector of amplitude π. We are assuming that the
amplitude is less then π. This assumption is not too restrictive. In particular, in the
very important case that the operator A is selfadjoint, the eigenvalues are real (and
in this case the proof of Theorem 2 can be simplified).

If we compare the previous assumptions with the existing finite dimensional the-
ory, we see that the weakest condition under which the (finite dimensional) Lur’e
problem was solved is that there exists at least one point ω0 such that P (iω0) 6= 0
(if the control is scalar). We expect that this condition is not sufficient in the case
of distributed systems since for finite dimensional systems it implies that there are
only finitely many zeros of P (iω) and a polynomial rate of decrease at ∞. Both these
conditions are not true for distributed systems.

This observation explains assumption 4, which is the most demanding (also from
the point of view of practical verification). We note that this assumption is extremely
strong for systems with distributed control action: the simple Popov function is
<e 1/[1 + iω] = O(1/ω2) for ω → +∞. In fact, assumption 4 can be relaxed if the op-
erator S is more regular. We note also that assumption 4 is not used if the system has
only finitely many eigenvalues. Hence, our proof can be applied to finite dimensional
systems, even if assumption 4 does not hold when R = 0.

Finally, we show an example of a system which satisfies assumptions 1–4. We
consider the heat equation in one space dimension with scalar control and observation

xt = xss, t > 0 , 0 < s < 1 ; x(t, 0) = u(t) , xs(t, 1) = 0 .

It is well known that assumptions 2 and 3 are satisfied.
Let Q = 0, R = 0, and

S∗(x(·)) =

∫ 1

0

x(s) d s,

and let us consider assumption 4. A simple calculation shows that the transfer function
is

S∗A(iωI −A)−1D = − 1

σ

sinhσ

coshσ
, σ = eiπ/4

√
ω
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(when ω > 0; otherwise σ = e−iπ/4
√
ω). It is a long but elementary computation to

see that there exist numbers 0 < m < M such that

m√
ω
≤ Π(iω) ≤ M√

ω
.

Hence, assumption 4 is satisfied, too.

3. Preliminaries: Stable semigroup systems. In this section we assume that
the operator A generates an exponentially stable semigroup, and we show that it is
possible to introduce an augmented Popov pair, whose analysis directly provides the
proof of Theorem 1. The special feature of this new Popov pair is that it is described
by a distributed (i.e., not boundary) control system.

A preliminary observation is the following one:

inf
u∈L2(0,+∞;U)

J(x0;u) ≤ J(x0, 0) ≤M‖x0‖2

for some number M . We note that infu J(x0;u) is computed with respect to any
u ∈ L2(0,+∞;U) since we are assuming that system (S) is exponentially stable.

The state function of an exponentially stable system depends continuously, in
the L2(0,+∞;X) norm, on the input function u(·) ∈ L2(0,+∞;U) and also on the
initial datum x0 ∈ X (see [10]). This observation is used in the following proof.

Lemma 3. Let eAt be an exponentially stable semigroup. We have the following.
1. Let H be a dense subspace of X and let us assume that

inf
u∈L2(0,+∞;U)

J(x0;u) ≥ η‖x0‖2(9)

for each initial condition x0 ∈ H. Then inequality (9) holds for each initial
condition x0 ∈ X.

2. Let H be a dense subspace of L2(0,+∞;U), and let us define the two numbers

α(x0) = inf
u∈L2(0,+∞;U)

J(x0;u),(10)

β(x0) = inf
u∈H

J(x0;u) .(11)

Then α(x0) = β(x0).
Proof. First, we prove item 1. By contradiction, let us assume that we can find

x̃ ∈ X and a control ũ(·) ∈ L2(0,+∞;U) such that J(x̃, ũ) < (η − ε)‖x̃‖2 for some
ε > 0.

Let us choose a sequence {xn} xn → x̃, xn ∈ H. Then, x(·;xn, ũ) → x(·; x̃, ũ)
in L2(0,+∞;X) so that we have J(xn; ũ) < (η − ε)‖x̃‖2 if n is large enough. As
(η− ε)‖xn‖2 → (η− ε)‖x̃‖2 we see that (η− ε)‖x̃‖2 < (η− ε/2)‖xn‖2 for large n. This
contradicts condition (9), which is assumed on H.

Next, we prove item 2. It is clear that α(x0) ≤ β(x0). By contradiction, let us
assume that α(x0) < β(x0) − ε so that we can find u0 ∈ L2(0,+∞;U) such that
α(x0) < J(x0;u0) < β(x0) − ε. We choose a sequence {un} in H which converges to
u0 in the norm of L2(0,+∞;U). Stability of eAt implies that J(x0;un)→ J(x0;u) so
that, for large n, J(x0;un) < β(x0)− ε. This is a contradiction.

This lemma shows that we can confine ourselves to study the boundedness from
below of the quadratic functional J(x0;u) by using regular controls, in particular by
using C1 controls.
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If the control u(·) is of class C1, then we have

x(t) = x(t;x0, u) = eAt{x0 −Du(0)}+Du(t)−
∫ t

0

eA(t−s)Du̇(s) d s,

i.e.,

x(t) = eAt{x0 −Du(0)}+Du(t)−
∫ t

0

eA(t−s)Dv(s) d s,(12)

u(t) = u(0) +

∫ t

0

v(s) d s .(13)

This observation is the essence of the method that we shall use: the functions ξ(·),
u(·), v(·) in (12), (13) represent the trajectories of the augmented system (AS),{

ξ̇ = Aξ −Dv, ξ(0) = x0 −Du0,
u̇ = v, u(0) = u0 .

(14)

We shall see that it is possible to study a suitable quadratic functional along the
trajectories of the augmented system in order to get informations on the original
problem.

We note that the block operators which describe the augmented system are the
operators A0, D:

A0 =

[
A 0
0 0

]
, D =

[ −D
I

]
.

Remark 2. Also, the subspace {u(·) ∈ L2(0,+∞;U) ∩ C1(0,+∞;U) , u(0) = 0}
is dense in L2(0,+∞;U) so that we could even consider u0 = 0 from the beginning.
It seems more interesting to show that the vector u(0) = u0 has no influence on the
results, even if it is nonzero (see the next section). Moreover, the applications of the
results in [14] are more direct if we do not assume u(0) = 0.

3.1. The quadratic regulator problem with stability. The previous argu-
ments suggest the following considerations. We define the quadratic functional (QFS)

Φ(ξ, u, v) = F (ξ +Du, u) .(15)

We note that this functional does not depend on v. We introduce the quadratic cost

J(ξ0, u0; v) =

∫ +∞

0

Φ(ξ(t), u(t), v(t)) d t

computed along the trajectories of the augmented system (AS) described by (12),
(13). This cost does not involve the input v explicitly. If u(·) is a C1 input function,
then

J(x0 −Du(0), u(0); v)|v=u̇
= J(x0;u) .

Hence, Lemma 3 shows that Property P1 holds if and only if for every x0, for every
u0 ∈ U , and for every v(·) ∈ L2(0,+∞;U) we have

J(x0 −Du0, u0; v) ≥ η‖x0‖2 = η‖(x0 −Du0) +Du0‖2 ,
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provided that the corresponding trajectory (ξ(·), u(·), v(·)) of the augmented system
(AS) is square integrable. Hence, we shall denote by Mξ0,u0

the set

Mξ0,u0
= {v(·) ∈ L2(0,+∞;U) which produces a square integrable

trajectory of system (AS) whose initial datum is (ξ0, u0)},
and we consider the following property.

Property P2. There exists a real number η such that

inf
v∈Mξ0,u0

J(ξ0, u0; v) > η‖ξ0 +Du0‖2 .

The previous considerations show that Property P1 and Property P2 are equivalent.
Now we observe that the augmented system (AS) is not exponentially stable but

is stabilizable. In fact, v = −u is a stabilizing feedback, because eAt is exponentially
stable.

A result from [14] shows that for stabilizable systems with distributed controls
we can study, instead of Property P2, the following apparently weaker condition.

Property P3. For each (ξ0, u0) we have infv∈Mξ0,u0
J(ξ0, u0; v) > −∞.

Property P3 is characterized in Theorem 3 in [14] as follows. Property P3 is
equivalent to the existence of an operator W = W ∗ ∈ L(X × U) such that

〈A0X +Dv,WX〉+ 〈WX ,A0X +Dv〉+ Φ(ξ, u, v) ≥ 0(16)

∀X = col[ξ, u] ∈ domA0, ∀v ∈ U .
The operators A0, D are the operators of the augmented system (AS).

Inequality (16) is the inequality (LOI) written for the augmented system. We
stress that Property P3 and (16) are equivalent conditions provided that the pair
(A,D) is stabilizable, as in our case.

From [14], Property P3 implies that

inf
v∈Mξ0,u0

J(ξ0, u0; v) =

〈[
ξ0
u0

]
Ŵ ,

[
ξ0
u0

]〉
,

where Ŵ is the maximal solution to (LOI). Hence there exists M ≤ inf σ(Ŵ ) such
that

inf
v∈Mξ0,u0

J(ξ0, u0; v) > M

∥∥∥∥[ ξ0
u0

]∥∥∥∥2

.

This proves the equivalence of Property P2 and Property P3. Furthermore, if Property
P3 holds, then for every (ω, ξ, u, v) ∈ R × X × U × U such that (iωI − A)X = Dv
(X =col[ξ, u]) we have that Φ(ξ, u, v) ≥ 0 (the frequency domain inequality).

These results are proved in [14, Theorem 3]. Now we shall elaborate on these
properties in order to obtain conditions for Property P1. A crucial observation is
that the left-hand side of (16) does not contain a quadratic term of v. Consequently
inequality (16) implies that the coefficient of v is zero, i.e., that WD = 0. In other
terms, this shows that the operator W solves the Lur’e problem for the augmented
system, with the functional Φ(ξ, u, v) (constant with respect to v).

From WD = 0 we see that any operator W which satisfies (16) has the following
block form:

W =

[
P PD
D∗P D∗PD

]
, P = P ∗ ∈ L(X).(17)
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We shall write P̂ for the (1, 1) block of the maximal solution Ŵ . In fact, if Wi j ,
1 ≤ i, j ≤ 2, are the blocks of W , then the equation WD = 0 shows that −W1 1D +
W1 2 = 0, −W2 1D +W2 2 = 0, and W2 1 = W ∗1 2, since W is selfadjoint.

Now we prove the following lemma.
Lemma 4. Let us define

α = inf
u∈L2(0,+∞;U)

J(x0;u) γ = inf
u0

inf
v∈Mx0+Du0,u0

J(x0 +Du0, u0; v) .

Then α = γ.
Proof. The inequality α ≤ γ is clear. We assume that α + ε < γ − ε (ε > 0) and

we show a contradiction.
We know that

γ − ε < γ ≤ J(x0 +Du0, u0; v)(18)

for each u0 ∈ U and v(·) ∈Mx0+Du0,u0
.

We know that (AS) is stabilizable. Let K be a stabilizing feedback and denote
by (AS)K the closed loop. Let JK(ξ, u; v) be the cost obtained from the quadratic
functional ΦK(ξ, u, w) = Φ(ξ, u,KX + w) = Φ(ξ, u) (since v = KX + w does not
appear explicitly in the quadratic functional Φ), X = col[ξ, u], i.e., the original cost
computed along the trajectories of system (AS)K. Then,

γ = inf
u0

inf
w(·)∈L2(0,+∞;U)

JK(x0 +Du0, u0;w),

i.e.,

γ − ε < γ ≤ JK(x0 +Du0, u0;w),

for each u0 ∈ U and w(·) ∈ L2(0,+∞;U) since we noted that

{J(x0 +Du0;u0; v) v ∈Mx0+Du0,u0
} = {JK(x0 +Du0;u0;w) w ∈ L2(0,+∞;U)} .

Stability of (AS)K implies that the transformation

(x0, u0, w)→ JK(x0 +Du0, u0;w), X × U × L2(0,+∞;U)→ R

is continuous. Hence we can find σ > 0 such that

γ − ε < JK(x̃+Dũ, ũ; w̃)(19)

provided that ‖x̃ − x0‖X < σ and also ‖ũ − u0‖U < σ, ‖w̃(·) − w(·)‖L2 < σ. The
elements u0 and w(·) are arbitrary in U and in L2(0,+∞;U). Hence, (19) holds
provided that ‖x̃− x0‖X < σ and each ũ ∈ U , w̃(·) ∈ L2(0,+∞;U).

Now let û be such that

α ≤ J(x0; û) < α+ ε .

We can assume that û belongs to C1(0,+∞;U) ∩ L2(0,+∞;U), and we can also
assume that ‖u(0)−u0‖U ≤ σ, since w = u̇ does not appear explicitly in JK(ξ0, u0;w).
Hence,

α ≤ J(x0 +Dû(0), û(0); û′(·)) < α+ ε < γ − ε .
This contradicts (19).
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The previous result implies that

inf
u∈Mx0

J(x0;u) = inf
u0

〈[
x0 −Du0

u0

]
,

[
P̂ P̂D

D∗P̂ D∗P̂D

] [
x0 −Du0

u0

]〉
= 〈x0, P̂ x0〉,

and we have the following.
Theorem 5. A necessary and sufficient condition for Property P1 is the existence

of an operator P̂ = P̂ ∗ ∈ L(X) such that

inf
u(·)∈L2(0,+∞;U)

J(x0;u) = 〈x0, P̂ x0〉 .

We show that P̂ solves a suitable dissipation inequality.
Let W of the form (17) be a solution of (16). Its (1, 1) block P solves

〈Aξ, P (ξ +Du)〉+ 〈P (ξ +Du), Aξ〉+ F (ξ +Du, u) ≥ 0(20)

for every ξ ∈ domA, u ∈ U , as wanted.
The previous observation applies in particular to the maximal solution Ŵ , hence

to P̂ . Now we show that, if a solution P to (20) exists, this implies Property P1. This
is easy since, if P satisfies (20), then we construct a solution W to (16) (see (17)),
and this implies Property P3 from [14]. Hence, Property P1 holds.

This proves the first part of Theorem 1 under the further assumption that the
semigroup eAt is exponentially stable. Now we consider the frequency domain condi-
tion. We note that the equality (iωI −A)X = Dv can be written as

(iωI −A)ξ = −Dv, iωu = v(21)

so that, if iω(ξ +Du) = Aξ, then we have the required inequality

F (ξ +Du, u) ≥ 0 .(22)

Equivalently, we proved that F (x, u) ≥ 0 when x −Du ∈ domA (i.e., x satisfies the
prescribed boundary conditions) and iωx = A(x−Du) for some real ω.

Remark 3. The crucial assumption in this section is that eAt is an exponentially
stable semigroup. The assumption that the semigroup is holomorphic is not used in
the previous arguments. It is used, instead, in the proof that R ≥ 0; see section 2. In
fact, Property P1 does not imply R ≥ 0 in general; see [20] for a counterexample.

In the next section we examine the case that system (S) is stabilizable, while in
section 5, we return to stable systems in order to study the Lur’e problem. For this
reason we consider now some additional material for stable systems, which will be
used in section 5.

We noted already that if system (S) is stable, then the augmented system can be
stabilized by using the simple feedback v = −u. We apply this special feedback and
we get a special stabilized augmented system (SAS). The operators of system (SAS)
are

AS =

[
A D
0 −I

]
, D =

[ −D
I

]
.

In fact, the input matrix is not affected by the feedbacks. Also, the quadratic functional
is not affected since it does not depend upon v.
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We compare the Popov function Π(iω) of the original Popov pair ((S),(QF))
with the Popov function P (iω) of the Popov pair of the stabilized augmented system
((SAS),(QFS)).

The Popov function of ((S),(QF)) is the function ω → Π(ω) in (7).
We note that

Φ(ξ, u, v) = 〈ξ +Du,Q[ξ +Du]〉+ 〈ξ +Du, Su〉+ 〈Su, ξ +Du〉+ 〈u,Ru〉
=

〈[
ξ
u

]
,

[
Q S +QD
D∗Q+ S∗ R+D∗QD

] [
ξ
u

]〉
=

〈[
ξ
u

]
,Q
[
ξ
u

]〉
and

〈w,P (iω)w〉 = 〈(iωI −AS)−1Dw,Q(iωI −AS)−1Dw〉
= −〈D∗(iωI +AS∗)−1Q(iωI −AS)−1Dw,w〉
=

1

1 + ω2
F (Dw − iω(iωI −A)−1Dw,w) =

1

1 + ω2
〈w,Π(iω)w〉

admits the holomorphic extension

〈w,P (z)w〉 = −〈D∗(zI +AS∗)−1Q(zI −AS)−1Dw,w〉.(23)

This extension is bounded in a strip |<e z| < ε, since AS generates an exponen-
tially stable semigroup.

4. Stabilizable systems. In this section we show that the results in section 3
can be extended to stabilizable systems.

We stabilize system (S) first by applying a stabilizing feedback u = Kx+ v. We
get a new system, the stabilized system, described by

ẋ = (A+BK)x+Bv(t),(24)

where AK = A + BK generates a stable holomorphic semigroup; see [10, section 4].
Moreover,

(zI −AK)−1 = [I + (zI −A)−1ADK]−1(zI −A)−1

for every z in a sector contained in ρ(A)∩ρ(AK), |z| large enough (see [10, section 4]).
Hence,

‖(zI −AK)−1B‖
= ‖[I + (zI −A)−1ADK]−1(zI −A)−1[(αI −A)γ̃(αI −A)1−γ̃D − αD]‖

is of the order of 1/|z|1−γ̃ . In particular, it is a bounded operator and the first resolvent
equation shows that DK = A−1

K AD ∈ X. This shows that system (24) can be written
as

ẋ = AK [x−DKv],(25)

and we can apply the results of the previous section to this stabilized system.
We denote by (SS) the system described by (25) (the stabilized system).
The cost that we should associate with system (SS) is

JK(x0; v) =

∫ +∞

0

F (x(t), u(t)) d t =

∫ +∞

0

F (x(t), v(t) +Kx(t)) d t
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and, of course,

inf
v∈L2(0,+∞;U)

JK(x0; v) = inf
u∈Mx0

J(x0;u)

(we used already an argument like this in the proof of Lemma 4). Consequently we can
check Property P1 with respect to system (SS), and system (SS) produces a stabilizable
augmented system, the pair (A,D) being replaced by the pair (AK ,DK). For maximum
clarity let us call (ASS) the augmented system which is obtained starting from system
(SS). Hence system (ASS) is the following system, where ξ = x−DKv:

ξ̇ = AKξ −DKw, v̇ = w .

We associate the following cost with system (ASS):

JK(ξ0, v0;w) =

∫ +∞

0

FK(ξ, v, w) d t , FK(ξ, v, w) = F (ξ +DKv, v +K(ξ +DKv)) .

Moreover, the set MK(ξ0, v0) is defined as M(ξ0, u0) but with respect to (ASS).
The same arguments as those used in the proofs of Lemmas 3 and 4 show the

following.
Lemma 6. We have that

inf
u∈Mx0

J(x0, u) = inf
v∈L2(0,+∞;U)

JK(x0, v) > −∞ ∀x0 ∈ X

if and only if

inf
w∈MK(ξ0,v0)

JK(ξ0, v0;w) > −∞ ∀(ξ0, u0) ∈ X × U .

Lemma 6, Theorem 4, and following considerations show that Property P1 holds
if and only if the dissipation inequality written with respect to system (ASS) and to
the functional JK(ξ0, v0;w) admits a solution, i.e., from the arguments of the previous
section, if and only if there exists P = P ∗ ∈ L(X) such that the quadratic form

〈AKξ, P (ξ +DKv)〉+ 〈P (ξ +DKv), AKξ〉+ F (ξ +DKv, v +K(ξ +DKv))(26)

is nonnegative for each ξ ∈ domAK and for each v ∈ U .
We make a formal computation now, which is justified below.
Let the vectors ξ and v in (26) be fixed. We introduce the vectors ζ, u, x defined

by

ξ = ζ −DKv, u = v +Kζ, x = ζ −Du .(27)

In terms of ζ, v we have

〈A(I −DK)[ζ −DKv], P ζ〉 = 〈AKζ −ADv, Pζ〉,
F (ξ +DKv, v +K(ξ +DKv)) = F (ζ, v +Kζ) .

If we introduce the vectors x, u we get

〈AKξ, Pζ〉 = 〈Ax,P (x+Du)〉,
F (ζ, v +Kζ) = F (x+Du, u),

(28)
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and this shows that the dissipation inequality (20) is equivalent to the dissipation
inequality for the augmented system, i.e., that Theorem 1 holds.

The following lemma justifies the previous assertions.
Lemma 7. Let ξ ∈ domAK , v be given, and x be defined as in (27). We have that

x ∈ domA and AKξ = Ax so that equality (28) holds.
Proof. We introduce the operator A∗

′ ∈ L(X, (domA∗)′). We know that A∗
′

is
an extension to X of the operator A in the following sense: let i be the (continuous
and dense) injection of domA∗ into X so that its adjoint i′ ∈ L(X, (domA∗)′) is the
continuous and dense injection of X in (domA∗)′ (the operator i′ is the restriction to
domA∗ of linear continuous functionals on X; see [22, section 5.1]). Then, x ∈ domA
if and only if A∗

′
x = i′x̃ ∈ i′X and in this case Ax = x̃. So we prove the lemma as

follows: we show that A∗
′
x = i′AKξ. This means that we show that the two functionals

A∗
′
x and i′AKξ act in the same way on domA∗.
Let 〈〈·, ·〉〉 be the pairing of domA∗ and its dual. We prove that for each y ∈

domA∗ ⊆ domA∗K we have

〈〈i′AKξ, y〉〉 = 〈〈A∗′x, y〉〉.
We have

〈〈i′AKξ, y〉〉 = 〈AKξ, y〉 = 〈ξ, A∗Ky〉, 〈〈A∗′x, y〉〉 = 〈x,A∗y〉 .
We shall prove that

〈DKv,A
∗
Ky〉 = 〈A−1

K ADv,A∗Ky〉 = 〈Dv,A∗y〉 .(29)

This equality being granted, we have

〈ξ, A∗Ky〉 = 〈ζ −DKv,A
∗
Ky〉 = 〈ζ, A∗Ky〉 − 〈DKv,A

∗
Ky〉

= 〈(I −DK)ζ, A∗y〉 − 〈Dv,A∗y〉 = 〈ζ −D[Kζ + v], A∗y〉
= 〈ζ −Du,A∗y〉 = 〈x,A∗y〉

as wanted. It remains to be proven that (29) holds if y ∈ domA∗.
We noted that the vector A−1

K ADv = (A∗
′
K)−1A∗

′
Dv belongs to X. This means

that the operator A∗
′
Dv, which is an element of (domA∗)′, is extensible to (domA∗K)

and 〈A−1
K ADv,A∗Ky〉 is the action of ADv = A∗

′
Dv as an element of (domA∗K)′ on

y ∈ domA∗ ⊆ domA∗K . The value taken by A∗
′
Dv on y is equal to 〈Dv,A∗y〉 as

wanted. This completes the proof.
The proved equality justifies (28).
Now we consider the frequency domain inequality (FDC) for (ASS), i.e.,

F (ξ +DKv, v +K(ξ +DKv)) ≥ 0 if iω(ξ +DKv) = AKξ .(30)

More explicitly, with ζ, x, u defined in (27),

F (ξ +DKv, v +K(ξ +DKv)) = F (ζ, v +Kζ) = F (x+Du, u) ≥ 0

if Ax = AKξ = iω(ξ +DKv) = iω(x+Du).
An important consequence of the (FDC) is easily seen from (30). We fix v and

we read (30) with

ξ = ξ(ω) = −(iωI −AK)−1iωDKv .
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Hence, lim|ω|→+∞ ξ(ω) = −DKv so that

F (ξ(ω) +DKv, v +K[ξ(ω) +DKv])→ F (0, v) = 〈v,Rv〉,
and we get the following theorem.

Theorem 8. The condition R ≥ 0 is implied by Property P1.

5. Scalar systems: Spectral factorization and the Lur’e problem. In this
section we solve the Lur’e problem. Hence, we assume that the conditions in Theorem
2 are satisfied. The proof makes use of the same ideas as in [1] so that the first step
is the construction of the spectral factorization of the positive Popov function. This
part of the proof follows ideas which are completely different from those in [1]. The
demanding assumption 4 is not used in this part of the proof. But, the assumption
that the semigroup is holomorphic is explicitly used.

5.1. Spectral factorization of P (iω). In this section we put ourselves in the
following case, which is in particular the case of the augmented system (SAS) when
the control is scalar.

(i) The control u enters as a distributed control and takes scalar values.
(ii) The semigroup generated by A is holomorphic and stable.
(iii) The Popov function is not identically zero.
We prove the following fact.
Theorem 9. Under the previous assumptions, and if P (iω) ≥ 0 for each real ω,

there exists a function M0(iω) which is holomorphic and bounded in <e z > 0 and
such that

P (iω) = M∗0 (iω)M0(iω) .

We use a penalization method for the proof. We consider the sequence of Popov
functions

Pn(z) = P (z) +
1

n

which correspond to the “penalized” cost obtained by the addition of 1
n‖u‖2 to (QFS).

We said already that the extension P (z) is holomorphic (and bounded) in a strip
|<e z| < ε. In this strip |Pn(z)| is bounded by max |P (z)| + 1. In particular, it is
uniformly bounded with respect to n.

We can exhibit explicitly a spectral factorization of the function Pn(z). This
function satisfies the conditions in Theorem 2 of [14] so that there exists a stabilizing
solution Wn of the corresponding dissipation inequality. We use this solution in order
to construct the factor

Mn(z) =
1√
n

+
√
nD∗Wn[zI −AS ]−1D .

The function Mn(z) is holomorphic and bounded in <e z > 0. It is easily seen, as for
finite dimensional systems, that

Pn(iω) = |Mn(iω)|2 .(31)

In fact, it happens that Wn solves the Riccati equation

〈ASX,WnY 〉+ 〈WnX,ASY 〉+ 〈X,QY 〉 = 〈X,WnD∗nDWnY 〉 ∀X,Y ∈ domAS
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so that we have also

(iωI +AS∗)−1WnD∗nDWn(iωI −AS)−1

= Wn(iωI −AS)−1 − (iωI +AS∗)−1Wn + (iωI +AS∗)−1Q(iωI −AS)−1 .

Once this formula is known, a direct computation shows (31). Furthermore, M−1
n (z)

is holomorphic and bounded in the right half plane:

M−1
n (z) =

√
n− n3/2D∗Wn(zI −AS −

√
nDD∗Wn)−1D.

The proof that the previous function is the inverse of Mn(z) is based on the second
resolvent identity, [7, p. 197, Theorem 5.103].

The boundedness of M−1
n (z) shows that the function Mn(z) is an outer function.

The fact that Mn(z) is holomorphic and bounded in <e z > 0 shows that for each
z we have

sup
<e z>0

‖Mn(z)‖2 = sup
ω∈R
|Mn(iω)|2 = sup

ω
‖P (iω) + 1/n‖ ≤ 1 + ‖P (·)‖∞ .(32)

Montel’s theorem [3, p. 153] shows that Mn(z) has a subsequence, still denoted
{Mn(z)}, which converges to an H∞ function M0(z) uniformly on compact sets of
<e z > 0. We noted that boundedness holds in a strip around the imaginary axis, too,
so that {Mn(z)} converges to M0(z) for <e z > −ε, ε > 0, uniformly on compact sets.

It follows thatM0(iω) is continuous on the imaginary axis and |P (iω)| = |M0(iω)|2.
We noted that the functions Mn(z) are outer functions. We prove that M0(z) is

an outer function, too.
We invoke a characterization of outer functions from [6, Theorem 4.6]. A function

L(z) is outer if and only if there exists a particular z = x + iy with x > 0 such that
the following equality holds:

log |L(z)| = 1

π

∫ +∞

−∞
log |L(it)| x

x2 + (y − t)2
d t .(33)

In fact, if the previous equality holds for one z it holds for every z such that <e z > 0.
The function M0(z) is not zero since we are assuming that the Popov function is

not identically zero. Hence there exists a point x0 of the real axis in which M0(x0) 6= 0.
Also, the functions Mn(·) are not zero in this point since an outer function is never zero
in the right half plane. Moreover, (33) holds for every Mn(·) and Mn(x0) → M(x0),
so that log |Mn(it)| → log |M0(it)| for each t. We prove that∫ +∞

−∞
log |Mn(it)| x0

x2
0 + t2

d t −→
∫ +∞

−∞
log |M0(it)| x0

x2
0 + t2

d t .

For this, we introduce the functions log+ a = max{0, log a} and log− a = min{0, log a}.
We note that log+ |Mn(it)| is nonnegative and bounded above, since {Mn(it)} is
bounded. The dominated convergence theorem shows that∫ +∞

−∞
log+ |Mn(it)| x0

x2
0 + t2

d t→
∫ +∞

−∞
log+ |M0(it)| x0

x2
0 + t2

d t .

In order to show the corresponding convergence for the integrals with log− we invoke
the monotone convergence theorem.
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By assumption, P (it) ≥ 0 so that

|Mn(it)| =
[
P (it) +

1

n

]1/2

≥
[
P (it) +

1

n+ 1

]1/2

= |Mn+1(it)| .

Hence, {|Mn(it)|} is a decreasing sequence of functions. Consequently, {log− |Mn(it)|}
is a decreasing sequence of negative functions. Convergence of the integrals follows
from monotone convergence theorem.

Consequently we proved the following.
Theorem 10. The function M0(iω) is an outer factor of P (iω) and P (iω) =

|M0(iω)|2.
Corollary 11. The factor M0(z) does not have zeros in <e z > 0. Moreover,

the function M0(z) belongs to H2 of the right half plane.
Proof. The first statement follows since an outer function does not have unstable

zeros. The second statement follows since when R = 0 we have from (23) that

|M0(iω)|2 = |P (iω)| ≤ K

|ω|2

and M0(iω) is continuous; in particular it is continuous for ω = 0.
This shows that M0(z) is H∞ and square integrable on the imaginary axis; hence

it is H2.
Corollary 12. The function M0(z) is the Laplace–Fourier transformation of a

function M̌0(t) whose support is in t ≥ 0 and which is square integrable.
Of course, we are not asserting that the factor M(z) has an inverse in H∞.

5.2. The Lur’e problem. In this section we prove Theorem 2. As we said, we
use the same method as in [1]; hence we make use of the factorization of Π(iω) found
in the previous section, with the properties in Corollaries 11 and 12. Moreover, we
prefer again to work with the stabilized augmented system so that we show that there
exists an operator W which solves the Lur’e equation (LuE),

(LuE) 2<e 〈ASΞ,WΞ〉+ 〈Ξ,QΞ〉 ≥ 0 ∀Ξ ∈ domAS , WD = 0 .

Here Q is the operator matrix of the functional (QFS) (see (23)) and D is the input
operator which is now a vector in X × C since we are considering scalar controls.

We prove the following lemmas first.
Lemma 13. Let the assumptions of Theorem 2 hold. Then there exist a number

c > 0 and a number γ < 1/2 such that |z̄k|1+γ |M0(−z̄k)| > c.
Proof. We assume first that Π(iω) does not have iω-axis zeros. Later we remove

this assumption.
We recall the assumptions that∣∣∣∣ ykxk

∣∣∣∣ < µ, Π(iω) >
const

ωβ
, β < 1 .

Moreover, we recall that P (iω) = Π(iω)/(1 + ω2) so that there exists s < 3 such that

P (iω)|ω|s > k > 0.(34)

We can assume that the previous estimate holds for each ω since we consider the case
in which the Popov function does not have zeros on the imaginary axis.
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Let us recall that −z̄k = xk + iyk, xk > 0.
We know that M0(z) is an outer function so that from [6] we know that

log |M0(−z̄k)| = 1

π

∫ +∞

−∞
logP (it)1/2 xk

x2
k + (yk − t)2

d t,

and also

log{|z̄k|1+γ |M0(−z̄k)|} =
1

π

∫ +∞

−∞
log |z̄k|1+γP (it)1/2 xk

x2
k + (yk − t)2

d t

=
1

π

∫ +∞

−∞
log |z̄k|γ+1P (i[yk − txk])1/2 1

1 + t2
d t

=
1

2π

∫ +∞

−∞
log

[x2
k + y2

k]γ+1

|yk − txk|s [|yk − txk|sP (i[yk − txk])]
1

1 + t2
d t(35)

=
1

2π

∫ +∞

−∞
log

[x2
k + y2

k]γ+1

|yk − txk|s
1

1 + t2
d t(36)

+
1

2π

∫ +∞

−∞
log [|yk − txk|sP (i[yk − txk])]

1

1 + t2
d t.(37)

The integral in (37) is bounded from below by (log k)/2; see (34).
We write the integral in (36) as follows:∫ +∞

−∞
log

[x2
k + y2

k]γ+1

|yk − txk|s
1

1 + t2
d t

= π log x
2(γ+1)−s
k + π log

[
1 +

(
yk
xk

)2
]γ+1

− s
∫ +∞

−∞
log

∣∣∣∣ ykxk − t
∣∣∣∣ 1

1 + t2
d t .

It is now sufficient to notice that the last integral is bounded from above (so that
minus the integral is bounded from below). This is clear since

log
∣∣∣ yk
xk
− t
∣∣∣ ≤ log(µ+ t) .

The second addendum is nonnegative and log x
2(γ+1)−s
k is bounded from below if

2(γ + 1) − s ≥ 0. We know that s = 3 − ε so that γ must satisfy γ > 1
2 − ε/2. In

particular there exists γ < 1/2 with this property.
Now we remove the assumption that Π(iω) does not have imaginary axis zeros.

By assumption, the zeros on the imaginary axis must be finite in number since we
assumed inequality (34) for large |ω|. Hence, it is sufficient to show how one of them,
say it0, can be handled. Moreover, we can confine ourselves to consider only those zk
with |zk| large. Hence we consider zk such that |t0/zk| < 1/2.

A zero t0 of P (iω) must have even multiplicity 2n. We remove the zero by mul-
tiplying and dividing the term P (iω) by the factor[

1 + i(t− t0)

t− t0

]2n

.

It is still true that

|t|s
[ |1 + i(t− t0)|

|t− t0|
]2n

P (it) > m > 0 .
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We replace the integrand in (35) with

log

{
[x2
k + y2

k]γ+1

|yk − txk|s
|yk − txk − t0|2n

|1 + i(yk − txk − t0)|2n

· |1 + i(yk − txk − t0)|2n
|yk − txk − t0|2n |yk − txk|sP (i[yk − txk])

}
.

This operation replaces the integral (37) with∫ +∞

−∞
log |yk − txk|s

{ |1 + i[yk − txk]− it0|
|yk − txk − t0|

}2n

P (i[yk − txk])
1

1 + t2
d t,

which is larger than 1
2 logm; this operation produces a new addendum,

1

2π

∫ +∞

−∞
log

∣∣∣∣ yk − txk − t0
1 + i[yk − txk]− it0

∣∣∣∣2n 1

1 + t2
d t

=
n

π

∫ +∞

−∞
log

∣∣∣∣ i(t− t0)

1 + i(t− t0)

∣∣∣∣ xk
xk + (t− yk)2

d t = log

∣∣∣∣ zk − it0
1 + zk − it0

∣∣∣∣ ,
since the function z−it0

1+z−it0 is H∞ and outer. Boundedness from below follows since∣∣∣∣ zk − it0
zk + 1− it0

∣∣∣∣ ≥ 1

2

1

1 + |1− it0|/|z̃| ,

where z̃ is one of the points −z̄k with minimal norm among those for which | t0zk | < 1/2.
This completes the proof.
Now we prove the following.
Lemma 14. There exists a vector q ∈ (dom(−AS)α)′, 0 ≤ α < 1/2, which

satisfies ∫ +∞

0

eAS
∗tqM̌0(t) d t =

∫ +∞

0

eAS
∗tQeAStD d t .(38)

This vector q also satisfies

M̌0(t) =

{ 〈D, eAS∗tq〉 if t > 0,
0 if t < 0 .

Proof. We note that the integral on the left of (38) makes sense for every q ∈
(dom(−AS∗)α)′ if α < 1/2, since we know that M̌0(t) is square integrable. In fact, it
is known that

‖(−AS∗)αeAS∗t‖ ≤ const

tα
e−σt

for a positive number σ; see [21]. For this same reason the integral on the right side
defines a vector in dom(−AS∗)1−ε for each ε > 0; see [10, part 1, Theorem 2.8].
Consequently, we must solve an equation of the form∫ +∞

0

eAS
∗tqM̌0(t) d t = (−AS∗)−(1−ε)l(39)

for a given vector l ∈ X.
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We introduce the basis vk of the eigenvectors of AS . We multiply scalarly both
sides of (39) by vk. We put lk = 〈vk, l〉 and qk = 〈vk, (−AS∗)−αq〉 = 〈vk, q̃〉, q̃ ∈ X.
We see that q is a solution if and only if

1

(−zk)1−ε lk =

∫ +∞

0

〈(−AS)αeAStvk, q̃〉M̌0(t) d t(40)

= (−zk)αM0(−zk)qk .(41)

This shows that qk is well defined:

qk =
1

(−zk)α+1−εM0(−z̄k)
lk .

In fact, M0(z) does not have zeros in the right half plane, since it is an outer function.
In order to prove the existence of q we must ascertain that the sequence {qk} belongs
to l2, i.e., that the sequence {M0(−z̄k)(−zk)α+1−ε} is bounded away from zero, since
we know that {lk} belongs to l2. This follows from the previous lemma with α = γ+ε.
We know that it is possible to choose γ < 1

2 so that α can be chosen less then 1
2 too,

since the positive number ε is arbitrary.
Now we prove the formula for M̌0(t). We introduce the functions

K(t) =

{
eAStD if t > 0,
0 if t < 0 ,

H(t) =

{ QeAStD if t > 0,
0 if t < 0 ,

and we consider the Fourier transformation of

t→
∫ +∞

0

〈K(s), H(t+ s)〉 d s,(42)

which is P (−iω), i.e., M∗(−iω)M(−iω). This is also the Fourier transformation of∫ +∞

0

M̌0(s)M̌0(t+ s) d s .(43)

We replace K(·) and H(·) with their expressions and we use (38). We see that the
difference of the integrals in (42) and (43) is∫ +∞

0

{M̌0(t+ s)− 〈D, eAS∗(t+s)q〉}M̌0(s) d s

for each t, and it is identically zero since both integrals are equal to P (−iω).
The function M0(z) has a set of zeros of null measure, since it is a nonzero H∞

function, and this implies that the brace is zero a.e., as wanted.
Now we define W :

〈Ξ′,WΞ〉 =

∫ +∞

0

〈Ξ′, eAS∗tQeAStΞ〉 d t−
∫ +∞

0

〈Ξ′, eAS∗tq〉 · 〈Ξ, eAS∗tq〉 d t .

The last integral makes sense since each factor is square integrable.
For each Ξ ∈ domAS , we have

2<e 〈ASΞ,WΞ〉 = −〈Ξ,QΞ+〉+ |〈〈Ξ, q〉〉|2 ≥ −〈Ξ,QΞ〉
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and

〈Ξ,WD〉 =

∫ +∞

0

〈eAStΞ,QeAStD〉 d t−
∫ +∞

0

〈Ξ, eAS∗tq〉〈eAS∗tq,D〉 d t

=

∫ +∞

0

〈eAStΞ,QeAStD〉 d t−
∫ +∞

0

〈Ξ, eAS∗tq〉M̌0(t) d t = 0 ,

as wanted. This ends the proof of the existence of solutions to the Lur’e problem
(LuE).

Acknowledgment. The author thanks the referee for useful comments, which
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Abstract. A general model for the valuation of natural resource investments is formulated and
analyzed within a stochastic control theoretic framework. Using dynamic programming, the value
of such an investment with a general payoff function is determined under the assumption that the
commodity price process is given by a stochastic differential equation. The analysis results in closed
form analytic solutions which can easily be computed and exhibits qualitatively different optimal
behaviors, depending on parameter values. Implications for stocks and options are also considered.
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1. Introduction. The area of real options has recently attracted considerable
interest (see Dixit and Pindyck [12] for a review). This approach to contractual claims
on real assets concentrates on their optionlike characteristics and uses option theory
to evaluate them. Techniques which are similar to the ones developed in finance,
especially to the seminal results of Black and Scholes, offer a new perspective and
turn out to be very useful in the valuation of investment decisions in industry. To
some extent, the same is true for the dynamic programming approach. Unlike the
traditional but, in some ways, still orthodox net present value approach, the real
options approach, as well as the dynamic programming approach can incorporate
some of the uncertainty, irreversibility, and timing on which investment decisions
depend.

In this paper, dynamic programming is used to study investments in industry
and, in particular, in the natural resource industry. More specifically, we consider
the problem of evaluating an investment in industry under the assumptions that
it produces a single commodity and its value depends on the commodity price as
well as on the way in which production is scheduled. Our model generalizes the one
studied in section 6.3 of Dixit and Pindyck [12], notably in the directions of adding an
abandonment option and of considering a much more general running payoff function.
With reference to the natural resource industry, our model is closely related to the
model studied by Brennan and Schwartz [7] using the contingent claim approach and
which was further analyzed by Paddock, Siegel, and Smith [20]. Also, other related
models have been studied by McDonald and Siegel [19], Pindyck [21], Dixit [11],
Cortazar and Schwartz [9], Brekke and Øksendal [6], and Shirakawa [23]. At this
point, it is important to emphasize that despite adopting the dynamic programming
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approach, we have implicitly solved the problem for the contingent claim approach as
well, provided the convenience yield of the commodity is constant. Further information
regarding this point can be found in Paddock, Siegel, and Smith [20] and the references
therein, as well as in Dixit and Pindyck [12]; following either of the two approaches, the
value of the project/firm is shown to satisfy equivalent nonlinear differential equations
which are connected by a simple change of variables which involves only trivial algebra.

Apart from giving a price for an investment, our analysis also addresses the ques-
tion of how production should be optimally scheduled. Our model is formulated as a
stochastic control problem in which one has to decide on the production rate (i.e., the
production per time unit) and the project’s abandonment time. With regard to the
production rate level, we make the assumption that this can be changed instantly and
without cost to any value within a given set of admissible values. Also, with reference
to the natural resource industry, we assume that the investment/firm under consider-
ation has access to an infinite amount of the resource. Undoubtedly, this assumption
is unrealistic from the perspective of a specific investment. However, it provides a
certain approximation of reality which is further supported by the fact that we obtain
easily computable results in a closed analytic form (see also the discussion at the end
of section 2).

The first step of our analysis is to establish the dynamic programming equation,
which is a variational inequality of the form encountered in the theory of optimal
stopping. Optimal stopping problems have been addressed by many authors in nu-
merous papers. Notable contributions to the solution of the general problem with a
probabilistic approach include Fakeev [14], Bismut and Skalli [5], El Karoui [13] and
a number of references therein. In a Markovian setting, Bensoussan and Lions [3] and
Krylov [18] have studied optimal stopping problems and have proved under very gen-
eral conditions that the corresponding value functions satisfy appropriate variational
inequalities. In this paper, we will adopt an approach which is classical in the theory
of stochastic optimal control (see, for example, Fleming and Soner [15, section IV.3]
and which consists of finding a solution of the dynamic programming differential
equation which satisfies the assumptions of a “verification theorem” which identifies
this solution with the control problem’s value function. In particular, we prove an
appropriate “verification theorem,” we explicitly solve the dynamic programming dif-
ferential equation, and we derive an optimal strategy. An important feature of our
results is that the optimal strategy can take qualitatively different forms, depending
on parameter values. It is worth mentioning that similar analyses of related problems
have been made by Brekke and Øksendal [6], who study a very general model of opti-
mal switching related to investment decisions, and Davis and Zervos [10], who study
a problem of combined singular stochastic control and optimal stopping.

Our analysis has a further implication. By deriving a value which is dependent
solely on the commodity price, a connection between asset valuation and equity prices
is established. In order to fix ideas, consider a company which produces a single
commodity and whose total asset value uncertainty depends only on the uncertainty
linked with the commodity price (e.g., the firm does not have debt). By assigning
an asset value v(x) to such a company, given that the commodity price is x, we
obtain an expression for the company’s stock price in terms of the commodity price.
Furthermore, under the assumption that the commodity price follows a geometric
Brownian motion, we show that the company’s asset value, and therefore its stock
price, is not a geometric Brownian motion (note that in Bensoussan, Crouhy, and
Galai [1], [2], a similar observation is made for the stock price of a firm for which
the total asset value is debt and equity, and the total asset value follows a geometric
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Brownian motion). However, we show that, for the simplest case considered here, the
Black & Scholes formula can be used to calculate an upper bound for the value of a
European option on the stock of the company, as well as an approximate value for
such options which is valid for short times to maturity and high commodity prices.
At this point, it is worth noting that the idea of establishing a connection between
a firm’s total asset value and the firm’s stock price under various conditions is not
novel. For example, in [1], [2] an extensive analysis in this direction is carried out.
However, a central drawback of these analyses is the simplifying assumption that the
company’s asset value always follows a geometric Brownian motion.

The paper is organized as follows. In section 2, a stochastic control problem which
models the decisions on how to optimally schedule production and on which the foun-
dations of our analysis are laid is formulated and discussed. Section 3 is concerned with
establishing the Hamilton–Jacobi–Bellman (HJB) equation, which takes the form of
a variational inequality, and proving a general existence result, whereas in section 4,
an associated ODE is studied. The HJB equation is explicitly solved and the opti-
mal strategy is derived in section 5 under certain additional hypotheses, whereas in
section 6, the solution is further developed for a special case which arises in the com-
parison of our model to the model developed by Brennan and Schwartz [7] and which
has special significance for the natural resource industry. In section 7, a European
option written on the firm’s stock is analyzed. Finally, section 8 contains a summary
of our results as well as a description of certain possible extensions of our research.

2. Formulation of the control problem. Let (Ω,F , P ) be a probability space
equipped with a filtration (Ft) satisfying the usual conditions of right continuity and
augmentation by P -negligible sets and carrying a standard one-dimensional (Ft)-
Brownian motion W . We will denote by T the set of all (Ft)-stopping times and by
C the set of all progressively measurable processes U with values in a compact subset
of the real line U .

We model the commodity price by the solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt , X0 = x > 0 ,(2.1)

where the following assumption holds.
Assumption A1. b, σ : R+ → R+ are given functions such that (2.1) has a unique

strong solution with values in ]0,∞[, P -almost surely (a.s.).
Specific assumptions under which (2.1) has a unique solution can be found in any

book treating the subject of SDEs (e.g., see Corollary 5.5.16 and Proposition 5.5.17
in Karatzas and Shreve [16], or Theorem IX.3.5 in Revuz and Yor [22]), whereas
Feller’s Test for Explosions (see [16, Theorem 5.5.29]) yields necessary and sufficient
conditions for the solution of (2.1) to have values in ]0,∞[, P -a.s.

A production rate process will be any process U ∈ C, whereas an abandonment
time will be any stopping time τ ∈ T . The set of admissible strategies Π will be the
family of all pairs (U, τ) such that U ∈ C and τ ∈ T .

With any admissible strategy (U, τ) ∈ Π, we associate the payoff

Jx(U, τ) = E

{∫ τ

0

e−rth(Xt, Ut)dt+ I{τ<∞}e−rτg(Xτ )

}
,(2.2)

where h : ]0,∞[×U → R and g : ]0,∞[→ R are given functions; given (x, u) ∈
]0,∞[×U , h(x, u) represents the running payoff resulting if the commodity price is
x and the production rate is u, whereas −g(x) represents the project’s abandonment
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cost . Note that, from a financial point of view, the abandonment cost should not de-
pend on the commodity price, and so, as far as modeling is concerned, g should be
a constant. However, for the part of our analysis that we shall consider nonconstant
g, such a generality adds no extra cost. The objective of the control problem is to
maximize Jx(U, τ) over Π. Accordingly, we define the value function v by

v(x) = sup
(U,τ)∈Π

Jx(U, τ) .(2.3)

The following assumptions on h and g will ensure that the optimization problem
is well posed in the sense that there are no policies with infinite payoff. (Obviously,
any project in the real world complies with such a restriction.)

Assumption A2. The running payoff function h is upper semicontinuous and if
h : ]0,∞[→ R is the function defined by

h(x) := max
u∈U

h(x, u) ,(2.4)

then

E

∫ ∞
0

e−rt|h(Xt)|dt <∞(2.5)

for every initial condition x > 0. Also, given any x > 0, the abandonment payoff g
satisfies

E ess sup
τ∈T

{
I{τ<∞}e−rτ |g(Xτ )|} <∞ .(2.6)

Note that since h is upper semicontinuous, h is upper semicontinuous as well (see
Bertsekas and Shreve [4, Proposition 7.32]). Moreover (see [4, Proposition 7.33]), there
exists a Borel measurable u : ]0,∞[→ U such that

h(x) = h(x, u(x)) .(2.7)

The very general Assumptions A1 and A2 will be used to prove part of the results
of section 3. In the same section, we will obtain a general existence result under the
following additional assumption.

Assumption A3. The functions b, σ, h are twice continuously differentiable,

σ(x) > 0 ∀x ∈ ]0,∞[ ,

and there exist constants C, k such that ∀x, y ∈ ]0,∞[

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y| ,

|b′(x)|+ |b′′(x)|+ |σ′(x)|+ |σ′′(x)| ≤ C(1 + xk) ,

|h(x)|+ |h′(x)|+ |h′′(x)|+ |g(x)|+ g′(x)|+ |g′′(x)| ≤ C(1 + xk) .

The analysis of sections 4–7 will assume that the commodity price follows a geo-
metric Brownian motion, that g is constant, and that h satisfies some different con-
ditions. More specifically, we will impose the following assumptions.
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Assumption A4.a. The functions b, σ are given by b(x) = bx, σ(x) =
√

2σx, for
some constants b, σ.

Assumption A4.b. The function h is upper semicontinuous, and if h is defined by
(2.4), then h is increasing and satisfies (2.5) as well as limx→∞ h(x) =∞. Also, g ≡ K
for some constant K ∈ R.

The additional hypotheses on h are satisfied in all economically sensible cases
since the running payoff function should be an increasing function of the commodity
price and should tend to infinity when the price explodes.

With reference to the natural resource industry, the assumption that an invest-
ment/firm has access to an infinite amount of the resource can intuitively be viewed
as reasonable as long as either production in the distant future has little effect on the
present value due to large discounting or a replacement cost for produced resource
has been incorporated into the model through appropriate choice of h. In the latter
case, every unit produced is replaced by a new one which is “added” to the reserves
at a given cost (such a cost can account for the exploration and development of new
reserves); in effect, the firm would then have an unlimited supply.

3. Existence of an optimal strategy. Consider the control problem described
in the previous section. With reference to Assumption A2, since h(x) is the best rate
of return given that the commodity price is x, it is intuitively clear that the optimal
production process should be indistinguishable from u ◦X. In this way, the problem
reduces to optimally choosing the abandonment time τ , i.e., to an optimal stopping
problem. As a consequence, with reference to standard results of the theory of optimal
stopping, we should expect that the value function satisfies the following variational
inequality

max

{
1

2
σ2w′′ + bw′ − rw + h , g − w

}
= 0 .(3.1)

In general, (3.1) does not admit a unique solution even within the space of in-
finitely differentiable functions.

Example 3.1. For σ(x) =
√

2x, b(x) = x, r = 4, h(x) = x, g(x) = 0, it is
straightforward to verify that each of the functions defined by

w(x) = Ax2 +Bx−2 +
1

3
x ,

where A,B ≥ 0, satisfies (3.1).
On the other hand, with reference to the theory of optimal stopping, and as

we will see in subsequent sections, we should expect that the value function is not
twice continuously differentiable. For this reason, we consider solutions of the HJB
equation (3.1) which belong to a Sobolev space W 2,p

loc (]0,∞[), 1 ≤ p ≤ ∞. Recall

(see, for example, Brezis [8, Chapter VIII]) that a function w ∈ W 2,p
loc (]0,∞[), 1 ≤

p ≤ ∞ admits a representative which is continuous with continuous classical first
derivative; moreover, it has a second derivative in the sense of distributions which
is a function w′′ ∈ Lploc(]0,∞[). Therefore, whenever we write w ∈ W 2,p

loc (]0,∞[) we
will refer to this continuous representative and we will denote by w′ its continuous
classical first derivative and by w′′ any function which identifies with its distributional
second derivative. Also, when we say that w ∈W 2,p

loc (]0,∞[) satisfies the HJB equation
(3.1), we mean that equality holds in (3.1) for Lebesgue almost all x. Of course,
since we consider the solvability of (3.1) in W 2,p

loc (]0,∞[), we have to assume that

g ∈W 2,p
loc (]0,∞[), as long as abandonment can ever be optimal.
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Note that identifying the value function of the control problem with a solution of
(3.1) in W 2,p

loc (]0,∞[) incorporates the so-called smooth pasting condition of optimal
stopping which, in the context of the problem studied here, requires that v′(x) =
g′(x) ∀x ∈ S := {x ∈ ]0,∞[ : v(x) = g(x)} and, in particular, on the boundary of
this set. The “smooth pasting condition” is a necessary condition for a wide class of
optimal stopping problems; related results can be found in Shiryayev [24, section 3.8]
and Krylov [18, Corollary 4.7.9].

We now prove a “verification theorem” that we will use in subsequent sections
and which relates the value function of the control problem with a solution of the
HJB equation (3.1).

Theorem 3.2. Consider the control problem described in section 2, and as-
sume that A1 and A2 hold. Suppose that the HJB equation (3.1) has a solution
w ∈W 2,p

loc (]0,∞[) for some p ∈ [1,∞] such that if M is the process defined by

Mt =

∫ t

0

e−rsσ(Xs)w
′(Xs)dWs , t ≥ 0 ,(3.2)

then, for every constant T > 0, the stopped process MT is a martingale. Given any
initial condition x > 0,

a) v(x) ≤ w(x), and
b) if

lim inf
t→∞ e−rtE|w(Xt)| = 0 ,(3.3)

then v(x) = w(x) and the optimal strategy is given by

Ũt = u(Xt) , τ̃ = inf{t ≥ 0 : Xt ∈ S} ,(3.4)

where u satisfies (2.7) and S := {x ∈ ]0,∞[ : w(x) = g(x)}.
Proof. a) Fix an arbitrary admissible strategy (U, τ) ∈ Π. An application of Itô–

Tanaka’s formula (see Theorem IV.1.5, Corollary IV.1.6, and the remarks thereafter
in Revuz and Yor [22]) yields

e−rtw(Xt) = w(x) +

∫ t

0

e−rs
[

1

2
σ2(Xs)w

′′(Xs) + b(Xs)w
′(Xs)− rw(Xs)

]
ds

+

∫ t

0

e−rsσ(Xs)w
′(Xs)dWs .

This implies that∫ τ∧t

0

e−rsh(Xs)ds+ e−r(τ∧t)g(Xτ∧t)

= w(x) + e−r(τ∧t) [g(Xτ∧t)− w(Xτ∧t)] +

∫ τ∧t

0

e−rsσ(Xs)w
′(Xs)dWs(3.5)

+

∫ τ∧t

0

e−rs
[

1

2
σ2(Xs)w

′′(Xs) + b(Xs)w
′(Xs)− rw(Xs) + h(Xs)

]
ds .

Since w satisfies (3.1), we obtain∫ τ∧t

0

e−rsh(Xs)ds+ e−r(τ∧t)g(Xτ∧t) ≤ w(x) +

∫ τ∧t

0

e−rsσ(Xs)w
′(Xs)dWs .
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Taking expectations, we find that

E

{∫ τ∧t

0

e−rsh(Xs)ds+ e−r(τ∧t)g(Xτ∧t)
}
≤ w(x) .

Letting t→∞, we obtain (by (2.5), (2.6), and the dominated convergence theorem)

E

{∫ τ

0

e−rth(Xt)dt+ I{τ<∞}e−rτg(Xτ )

}
≤ w(x) .

However, this and the fact that (because of (2.2), (2.7), and (2.4))

Jx(U, τ) ≤ E
{∫ τ

0

e−rth(Xt)dt+ I{τ<∞}e−rτg(Xτ )

}
(3.6)

imply that v(x) ≤ w(x).
b) If Ũ and τ̃ are as in (3.4), then (3.5) and (3.1) imply that∫ τ̃∧t

0

e−rsh(Xs, Ũs)ds+ I{τ̃≤t}e−rτ̃g(Xτ̃ )

=

∫ τ̃∧t

0

e−rsh(Xs)ds+ I{τ̃≤t}e−rτ̃g(Xτ̃ )

= w(x)− I{τ̃>t}e−rtw(Xt) +

∫ τ̃∧t

0

e−rsσ(Xs)w
′(Xs)dWs .

Taking expectations, we obtain

E

{∫ τ̃∧t

0

e−rsh(Xs, Ũs)ds+ I{τ̃≤t}e−rτ̃g(Xτ̃ )

}
= w(x)− e−rtE {I{τ̃>t}w(Xt)

}
.

In view of (3.3), we can pass to the limit t→∞ through an appropriate sequence to
obtain Jx(Ũ , τ̃) = w(x), which, combined with part a) of the theorem, implies that
v(x) = w(x).

Note that, among other things, the preceding theorem asserts that if the value
function of the control problem satisfies the HJB equation (3.1), then it is “minimal”
in the set of all solutions of (3.1), which may be uncountably many.

We now have the following existence result.
Theorem 3.3. Consider the control problem described in section 2 and assume

that A1–A3 hold. The value function v belongs to W 2,∞
loc (]0,∞[) and satisfies (3.1),

whereas the optimal strategy is given by (3.4).
Proof. Consider the optimal stopping problem defined by

v̂(x) = sup
τ∈T

E

{∫ τ

0

e−rth(Xt)dt+ I{τ<∞}e−rτg(Xτ )

}
.

The value function v̂ belongs to W 2,∞
loc (]0,∞[), satisfies (3.1), and the stopping time

τ̃ defined by (3.4) is optimal (see Krylov [18, Theorem 6.4.14]). Now, in view of (3.6)
and the fact that (3.6) holds with equality for U = Ũ , it is clear that v = v̂, and the
proof is complete.

It is well known that if |w′| is bounded by a polynomial, then the process M
defined by (3.2) is a square integrable martingale if stopped at any constant time.
The following lemma provides a similar condition which will be of use in section 5.
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Lemma 3.4. Consider the SDE (2.1), assume that b, σ satisfy A4.a, and let M
be the process defined by (3.2). If there exist constants C, k such that

|w′(x)| ≤ C(x−k + xk) ∀x > 0 ,

then, for every T > 0, the stopped process MT is a square integrable martingale.
Proof. In the case that we consider here, the unique strong solution of the SDE

(2.1) is given by (see Karatzas and Shreve [16, section 5.6.C])

Xt = x exp
{

(b− σ2)t+
√

2σWt

}
, t ≥ 0 .(3.7)

Therefore, given any reals κ, λ, and any t ≥ 0,

eκtEXλ
t = xλ exp

{[
σ2λ2 + (b− σ2)λ+ κ

]
t
}
E exp

{
−σ2λ2t+

√
2σλWt

}
(3.8)

= xλ exp
{[
σ2λ2 + (b− σ2)λ+ κ

]
t
}
,

and so,

E

∫ T

0

eκtXλ
t dt =

∫ T

0

eκtE[Xλ
t ]dt <∞ ∀T > 0 .

As a consequence, given any T > 0,

EM2
T = 2σ2E

∫ T

0

e−2rtX2
t |w′(Xt)|2dt

≤ 2σ2C2E

∫ T

0

e−2rt
(
X−2k+2
t + 2X2

t +X2k+2
t

)
dt

<∞ ,

which implies that the stopped local martingale MT has integrable quadratic varia-
tion and therefore is a square integrable martingale (see Revuz and Yor [22, Proposi-
tion IV.1.23].

4. Study of a fundamental ODE. In the following section, we will explicitly
solve the control problem which arises when the drift and dispersion of the SDE (2.1)
satisfy Assumption A4.a by finding a solution of the HJB equation which satisfies the
requirements of the Verification Theorem 3.2. In this case, the HJB equation takes
the form

max
{
σ2x2w′′(x) + bxw′(x)− rw(x) + h(x) , g(x)− w(x)

}
= 0 .(4.1)

It is well known that the general solution of the ODE

σ2x2w′′(x) + bxw′(x)− rw(x) + h(x) = 0(4.2)

which is associated with (4.1) is given by

wg(x) = Axm +Bxn ,(4.3)

where A,B ∈ R and m, n are given by

m =
1

2σ2

[
σ2 − b−

√
(σ2 − b)2

+ 4σ2r

]
(4.4)
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and

n =
1

2σ2

[
σ2 − b+

√
(σ2 − b)2

+ 4σ2r

]
.(4.5)

The following proposition is concerned with the construction and certain properties
of a special solution of (4.2). Note that part of these results are similar to results
presented in section 2 of Kobila [17]; in particular, conclusions b) and c) are the same
as Propositions 2.2 and 2.4 in this reference, respectively.

Proposition 4.1. Consider a measurable function h : ]0,∞[→ R, and let X be
the solution of the SDE (2.1) under A4.a. The following statements are equivalent:

i) E
∫∞

0
e−rt|h(Xt)|dt <∞ for every initial condition x > 0.

ii) There exists an initial condition x > 0 such that E
∫∞

0
e−rt|h(Xt)|dt <∞.

iii) x→ x−m−1h(x) ∈ L1(]0, y[) and x→ x−n−1h(x) ∈ L1(]y,∞[) ∀y > 0.
iv) There exists a y > 0 such that x → x−m−1h(x) ∈ L1(]0, y[) and x →

x−n−1h(x) ∈ L1(]y,∞[).
If i)–iv) are true, then

a) lim infx→∞ x−n|h(x)| = lim infx↓0 x−m|h(x)| = 0
and

(4.6)

wp(x) :=
1

σ2(n−m)

[
xm
∫ x

0

s−m−1h(s)ds+ xn
∫ ∞
x

s−n−1h(s)ds

]
, x ∈ ]0,∞[

defines a real valued function such that
b) wp is twice differentiable in the classical sense and is a special solution of the

ODE (4.2),
c) there exists a constant C such that

|w′p(x)| ≤ C(xm−1 + xn−1) ∀x > 0 ,

d) wp satisfies

wp(x) = E

∫ ∞
0

e−rth(Xt)dt ∀x > 0 ,(4.7)

and
e) limt→∞ e−rtE|wp(Xt)| = 0.
Proof. iii) ⇔ iv): Assume that there exists a y ∈ ]0,∞[ such that

C1 :=

∫ y

0

s−m−1|h(s)|ds <∞ and C2 :=

∫ ∞
y

s−n−1|h(s)|ds <∞ .

Given any x ∈ ]0, y[, it is clear that∫ x

0

s−m−1|h(s)|ds ≤ C1 .(4.8)

On the other hand, since m− n < 0,∫ ∞
x

s−n−1|h(s)|ds =

∫ y

x

sm−n · s−m−1|h(s)|ds+ C2

≤ xm−n
∫ y

x

s−m−1|h(s)|ds+ C2(4.9)

≤ C1x
m−n + C2 .
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Similarly, given any x ∈ ]y,∞[,∫ x

0

s−m−1|h(s)|ds ≤ C1 + C2x
n−m(4.10)

and ∫ ∞
x

s−n−1|h(s)|ds ≤ C2 .(4.11)

However, these bounds prove that iv) ⇒ iii). The reverse implication is obvious.
Proof of b). If iii) is satisfied, then wp is well defined, in which case it is trivial to

verify b).
Proof of c). The bounds (4.8)–(4.11) imply that

xm
∫ x

0

s−m−1|h(s)|ds, xn
∫ ∞
x

s−n−1|h(s)|ds ≤ C1x
m + C2x

n .(4.12)

Using these, we calculate

|w′p(x)| = 1

σ2(n−m)

∣∣∣∣mxm−1

∫ x

0

s−m−1h(s)ds+ nxn−1

∫ ∞
x

s−n−1h(s)ds

∣∣∣∣
≤ 1

σ2(n−m)

(
|m|xm−1

∫ x

0

s−m−1|h(s)|ds+ nxn−1

∫ ∞
x

s−n−1|h(s)|ds
)

≤ 1

σ2

(
C1x

m−1 + C2x
n−1
)
,

which proves c).
i) ⇔ iii) and ii) ⇔ iv): Assume first that h is positive and bounded. In this case,

it is clear that all of the statements i)–iv) are true. Also, it is easy to check that both
wp and x→ xw′p(x) are bounded. Applying Itô–Tanaka’s formula and the occupation
times formula, and using the fact that wp satisfies (4.2) (because iii), and therefore
b), is true), we obtain∫ t

0

e−rsh(Xs)ds = wp(x)− e−rtwp(Xt) +
√

2σ

∫ t

0

e−rsXsw
′
p(Xs)dWs .(4.13)

Taking expectations and passing to the limit t→∞, we obtain (4.7).
Now assume that h is an arbitrary positive function, and consider the sequences

of functions (hk) and (wp,k), where hk(x) = h(x)∧k and wp,k is defined by (4.6) with
hk in place of h. Since (hk) converges pointwise to h and (4.7) holds with wp,k, hk in
place of wp, h, respectively, for every k, the monotone convergence theorem implies
(4.7), where both sides may be equal to ∞.

In particular, we have just proved that for every measurable h,

(4.14)

E

∫ ∞
0

e−rt|h(Xt)|dt =
1

σ2(n−m)

[
xm
∫ x

0

s−m−1|h(s)|ds+ xn
∫ ∞
x

s−n−1|h(s)|ds
]

∀x ∈ ]0,∞[. However, this establishes the equivalences i) ⇔ iii) and ii) ⇔ iv).
Proof of d). We have proved the result for positive h. For an arbitrary h satisfying

i)–iv), the result follows by considering its positive and negative parts h+ and h−,
respectively.
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Proof of e). Define w̄p by

w̄p(x) :=
1

σ2(n−m)

[
xm
∫ x

0

s−m−1|h(s)|ds+ xn
∫ ∞
x

s−n−1|h(s)|ds
]
,

and note that if h satisfies iii), then the same is true for |h|. Now, since w̄p satisfies
the ODE (4.2) with h replaced by |h| (because of b)),∫ t

0

e−rs|h(Xs)|ds = w̄p(x)− e−rtw̄p(Xt) +
√

2σ

∫ t

0

e−rsXsw̄
′
p(Xs)dWs .

Taking expectations and noting that the stochastic integral has expectation zero be-
cause of c) and Lemma 3.4, we obtain

e−rtEw̄p(Xt) = w̄p(x)− E
∫ t

0

e−rs|h(Xs)|ds .

However, (4.14) and the monotone convergence theorem imply that the right-hand
side of this equation converges to zero as t → ∞, and so, limt→∞ e−rtEw̄p(Xt) = 0.
Now, e) follows from the fact that |wp| ≤ w̄p.

Proof of a). Suppose that lim infx→∞ x−n|h(x)| > 0, and let ε > 0 and y be such
that x−n|h(x)| ≥ ε ∀x ≥ y. Then,∫ ∞

y

x−n−1|h(x)|dx ≥ ε
∫ ∞
y

x−1dx =∞ ,

and so, (iii) does not hold. Similarly, we prove that lim infx↓0 x−m|h(x)| = 0.
Note that, at this generality, the necessary conditions a) of the preceding propo-

sition cannot be strengthened.
Example 4.2. Assume that the function h is defined by

h(x) =

{
xn+1 if x ∈ [k, k + k−2] , k ∈ N,

0 otherwise.

We can calculate

wp(1) =
1

σ2(n−m)

∞∑
k=1

1

k2
=

π2

6σ2(n−m)
<∞ ,

and so, wp satisfies statement iv) of the preceding proposition. However,

lim sup
x→∞

x−nh(x) =∞.

Remark 4.3. Using (3.8) we find that, given any constant λ,

E

∫ ∞
0

e−rtXλ
t dt =

∫ ∞
0

e−rtE[Xλ
t ]dt

= xλ
∫ ∞

0

exp
{[
σ2λ2 + (b− σ2)λ− r] t} dt,

which implies that

E

∫ ∞
0

e−rtXλ
t dt <∞ ⇔ λ ∈ ]m,n[ .
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As a consequence, if there exist constants k, l, and C such that m < k < l < n and

|h(x)| ≤ C(xk + xl) ∀x ∈ ]0,∞[ ,

then statements i)–iv) of Proposition 4.1 are satisfied.
Remark 4.4. At this point, note that since

w′′p (x) =
1

σ2(n−m)

(
m(m− 1)xm−2

∫ x

0

s−m−1h(s)ds

+n(n− 1)xn−2

∫ ∞
x

s−n−1h(s)ds

)
− 1

σ2
x−2h(x) ,

the bounds given by (4.12) imply that if h ∈ Lploc(]0,∞[), then wp ∈ W 2,p
loc (]0,∞[).

In particular, if h is a monotone function, then it is bounded on compact subsets
of ]0,∞[ and therefore wp ∈ W 2,∞

loc (]0,∞[), whereas if h is continuous, then wp ∈
C2(]0,∞[).

We will also need the following lemma.
Lemma 4.5. Consider any function h satisfying the requirements of Assumption

A4.b. If wp is the function defined by (4.6), then wp is increasing and limx→∞ wp(x) =
∞. Moreover,

n

∫ ∞
x

s−n−1h(s)ds = x−nh(x) +

∫ ∞
x

s−ndh(s) .(4.15)

Proof. Let any x < y, and denote by Xx and Xy the solutions of (2.1) with initial
conditions X0 = x and X0 = y, respectively. In view of (3.7), Xx

t < Xy
t ∀t, P -a.s.,

and therefore (4.7) and the fact that h is increasing imply that wp(x) < wp(y), which
proves that wp is increasing.

Now, let any y such that h(y) > 0; such a y exists because we have assumed that
limx→∞ h(x) =∞. For x > y,

wp(x) ≥ 1

σ2(n−m)

[
xm
∫ y

0

s−m−1h(s)ds+ xn
∫ ∞
x

s−n−1h(s)ds

]
≥ 1

σ2(n−m)

[
xm
∫ y

0

s−m−1h(s)ds+
1

n
h(x)

]
.

Since m < 0 < n and limx→∞ h(x) =∞, the last term in this expression tends to ∞
as x→∞, and therefore limx→∞ wp(x) =∞.

Finally, with reference to Proposition 4.1a), let (ak) be any sequence converging
to ∞ such that limk→∞ a−nk h(ak) = 0. Using the dominated and the monotone con-
vergence theorems and the integration by parts formula (see, for example, Revuz and
Yor [22, Proposition 0.4.5]), we calculate∫ ∞

x

s−n−1h(s)ds = lim
k→∞

∫ ak

x

s−n−1h(s)ds

= lim
k→∞

(
− 1

n

∫ ak

x

h(s)ds−n
)

= lim
k→∞

(
1

n
x−nh(x)− 1

n
a−nk h(ak) +

1

n

∫ ak

x

s−ndh(s)

)
=

1

n
x−nh(x) +

1

n

∫ ∞
x

s−ndh(s) ,
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which proves (4.15).
Remark 4.6. Note that the calculations used to establish (4.15) remain true if h

satisfies conditions i)–iv) of Proposition 4.1 and is decreasing instead of increasing.
Also, using similar arguments we can show that if h is a monotone function satisfying
i)–iv) of Proposition 4.1, then

m

∫ x

0

s−m−1h(s)ds = −x−mh(x) +

∫ x

0

s−mdh(s) .

Moreover, we can use this identity, (4.15), and a simple limiting argument to show
that

lim
x→∞x

−nh(x) = lim
x↓0

x−mh(x) = 0 ,

which is stronger than Proposition 4.1a).

5. The solution of the control problem. Consider the control problem de-
scribed in section 2 and assume A4. One possibility is that abandonment is never
optimal. Given an initial condition x > 0, never abandoning yields a payoff equal to
wp(x) (see Proposition 4.1d), whereas abandoning straightaway yields a payoff equal
to K. As a consequence, we should expect that abandonment is never optimal if
wp(x) ≥ K ∀x > 0, in which case the value function is equal to wp. If abandonment
is ever optimal, it should occur whenever the commodity price is sufficiently small. In
this case, we should expect that the optimal policy consists of producing optimally
as long as the commodity price is larger than a certain value y and abandoning as
soon as the commodity price falls below y. If this policy is optimal, we should find a
solution w of the HJB equation (4.1) such that w(x) = K ∀x ∈ ]0, y[ and, in view of
(4.3) and Proposition 4.1b),

w(x) = Axm +Bxn + wp(x) ∀x ∈ ]y,∞[ ,

where wp is given by (4.6) and A, B are parameters to be specified. Note that, given
any A,B ∈ R, this candidate solution of (4.1) can be expressed as

w(x) = g(x) +Bxn + wp(x)I{x≥y} ∀x ∈ ]0,∞[ ,

where g is a bounded function. Therefore, in view of (3.8) and Proposition 4.1e), we
must have B = 0 because otherwise (3.3) cannot hold. The remaining two parameters
A and y should be specified by the requirement that w is C1 at y (the “smooth pasting
condition” of optimal stopping). The next lemma is concerned with this issue.

Lemma 5.1. The system of equations

Aym + wp(y) = K ,(5.1)

mAym−1 + w′p(y) = 0(5.2)

for the parameters A and y has a solution with y > 0 if and only if

inf
x∈]0,∞[

wp(x) < K ,(5.3)

or equivalently, if and only if

inf
x∈]0,∞[

h(x) < rK .(5.4)
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In this case, y > 0 is the unique solution of∫ ∞
y

s−n−1[h(s)− rK]ds = 0(5.5)

whereas

A = − 1

m
y−m+1w′p(y) .(5.6)

Proof. The proof is organized as follows. We first show that the system of equations
(5.1), (5.2) is equivalent to (5.5), (5.6). We then show that if (5.5) has a solution y > 0,
then (5.3) is true. Next, we prove that (5.3) implies (5.4), and finally, we prove that
if (5.4) is true, then (5.5) has a unique solution y > 0.

It is straightforward to verify that the system of equations (5.1) and (5.2) is
equivalent to the system of equations consisting of (5.6) and

f(y) := mK −mwp(y) + yw′p(y) = 0 .(5.7)

Using the fact that σ2mn = −r, we can see that

f(y) =
1

σ2
yn
∫ ∞
y

s−n−1[h(s)− rK]ds ,(5.8)

which proves that the system (5.1), (5.2) is equivalent to (5.5), (5.6).
Since yw′p(y) > 0 ∀y > 0 and wp increases to ∞ as y → ∞ (see Lemma 4.5),

it is clear that (5.7) can have a solution only if (5.3) is true. Therefore existence of
solution of (5.5) implies (5.3).

Now, assume that (5.3) is true, and let any z > 0 such that

wp(z)−K < 0 .

Using the identity σ2mn = −r, we can calculate that this is equivalent to

zm
∫ z

0

s−m−1[h(s)− rK]ds+ zn
∫ ∞
z

s−n−1[h(s)− rK]ds < 0 ,

which implies (5.4), because otherwise, both integrands would be nonnegative func-
tions and the inequality would not hold.

Finally, suppose that (5.4) is true, and let any z > 0 such that h(z) < rK. Since
h is increasing, given y < z,

f(y) ≤ 1

σ2
yn
[∫ z

y

s−n−1[h(z)− rK]ds+

∫ ∞
z

s−n−1[h(s)− rK]ds

]
=

h(z)− rK
σ2n

+ yn
[
− [h(z)− rK]z−n

σ2n
+

1

σ2

∫ ∞
z

s−n−1[h(s)− rK]ds

]
−→
y↓0

h(z)− rK
σ2n

< 0 ,

which proves that f(y) is negative for sufficiently small y. On the other hand, f
increases to ∞ as y → ∞ (see Lemma 4.5). As a consequence, (5.5) has at least one
solution. However, this solution is unique because f is strictly increasing as follows:
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f ′(y) = − 1

σ2
y−1[h(y)− rK] +

n

σ2
yn−1

∫ ∞
y

s−n−1[h(s)− rK]ds

=
1

σ2
yn−1

[
−y−n[h(y)− rK] + n

∫ ∞
y

s−n−1[h(s)− rK]ds

]
=

1

σ2
yn−1

∫ ∞
y

s−ndh(s) > 0 ,

where we have used (4.15) with h(·)− rK in place of h.
We can now prove the main result of this section.
Theorem 5.2. Consider the control problem described in section 2, and assume

that A4 holds. We have the following two cases:
a) If infx∈]0,∞[ h(x) ≥ rK, then the value function v is equal to the function wp

defined by (4.6).
b) If infx∈]0,∞[ h(x) < rK, then the value function v is given by

v(x) =

{
K if x ∈ [0, y],
Axm + wp(x) if x ∈ [y,∞[,

(5.9)

where wp is given by (4.6), y is the unique solution of (5.5), and the parameter
A is given by (5.6).

In both cases, the optimal production process Ũ is given by (3.4). In the first case,
the optimal abandonment time is τ̃ = ∞, whereas in the second case, the optimal
abandonment time is given by τ̃ = inf{t ≥ 0 : Xt ∈ [0, y]}.

Proof. First, note that, in both cases, the candidate value functions belong to
W 2,∞
loc (]0,∞[) (see Remark 4.4; also note that, in case b, the function v defined by

(5.9) is C1 at y, by construction).
We now prove that, in both cases, the candidate value functions are nondecreasing

functions. In the first case, this has been proved in Lemma 4.5. In the second case, it
follows from the fact that, for x > y,

v′(x) = xm−1
[
x−m+1w′p(x)− y−m+1w′p(y)

]
> 0

because

d

dx

(
x−m+1w′p(x)

)
=

1

σ2
xn−m−1

[
−x−nh(x) + n

∫ ∞
x

s−n−1h(s)ds

]
(4.15)

=
1

σ2
xn−m−1

∫ ∞
x

s−ndh(s) > 0 ,

which proves that the function x→ x−m+1w′p(x) is increasing.
If (5.3) is not true, then it is clear that wp satisfies the HJB equation (4.1), that

it satisfies (3.3) (because of Proposition 4.1e), and that the process M defined as
in (3.2) is a square integrable martingale if stopped at any constant time (because
of Lemma 3.4 and Proposition 4.1c). Therefore it satisfies the assumptions of the
Verification Theorem 3.2, and hence the statements concerning part a) of the theorem
follow.

If (5.3) is true, then the function v defined by (5.9) will satisfy the HJB equation
(4.1) if

−rK + h(x) ≤ 0 ∀x ∈ [0, y[(5.10)
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and

K ≤ v(x) ∀x ∈ ]y,∞[ .(5.11)

(5.11) follows trivially from the fact that v is nondecreasing. On the other hand, in
view of (5.5), if z := inf{s > 0 : h(s) > rK}, then y < z. However, this proves (5.10)
because h is increasing. We conclude that w satisfies the HJB equation (4.1) as well
as (3.3) (because of Proposition 4.1e) and that the process M defined as in (3.2) is a
square integrable martingale if stopped at any constant time (because of Lemma 3.4
and Proposition 4.1c); i.e., it satisfies the requirements of Theorem 3.2, and the proof
is complete.

6. Closed form solution for a specific payoff function. In this section we
study the special case of the problem solved in section 5, which arises when the control
set is U = [0, c] for some constant c > 0, and the running payoff function h is given
by

h(x, u) = [αx− β]u− γ .(6.1)

Here, α, β, γ are some given positive constants. With reference to the natural resource
industry, β is the extraction cost per unit of the resource, 1 − α is proportional to
the “royalties,” and γ represents the running cost; for further information concerning
the choice of these parameters, the reader may consult Brennan and Schwartz [7]. A
standing assumption in this section is that

r > b .(6.2)

In the absence of (6.2), it is easy to show that the policy consisting of producing at
any constant positive capacity has infinite payoff, and so, Assumptions A2 and A4.b
do not hold.

The functions h, u defined by (2.4), (2.7) are now given by

h(x) = [αx− β]+c− γ , u(x) = c I{x≥β/α} ,

respectively, and h clearly satisfies A4.b. Noting that (6.2) implies that n > 1 and
using the fact that mn = −r/σ2 as well as the identities

σ2n(n− 1) = r − bn , σ2m(m− 1) = r − bm ,(6.3)

it is a matter of simple calculations to verify that, in the case that we consider here,
the function wp defined by (4.6) is given by

wp(x) =
βc

(n−m)(r − bn)

(
α

β

)n
xn − γ

r
,(6.4)

if x ≤ β/α, and by

wp(x) =
βc

(n−m)(r − bm)

(
α

β

)m
xm +

αc

r − bx−
βc+ γ

r
,(6.5)

if x ≥ β/α. Also, the function g which identifies with the left-hand side of (5.8), the
solution of which determines the “stopping barrier” y, is given by

f(x) =
βc

n(n− 1)
x−n

[(
αx

β

)n
− (γ + rK)(n− 1)

βc

]
,
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if x ≤ β/α, and by

f(x) =
αc

n− 1
x−n

[
x− (βc+ γ + rK)(n− 1)

αcn

]
,

if x ≥ β/α.
With reference to Theorem 5.2, depending on whether abandonment is part of

the optimal policy and, if yes, on whether the unique solution y of f(y) = 0 is larger
than or less than β/α, the optimal policy can take three qualitatively different forms,
depending on parameter values. In the first case (the PW-case), it is optimal either
to produce at full capacity or not to produce at all (i.e., wait); abandonment is never
optimal. In the second case (the PS-case), at each time instant, it is optimal either
to produce at full capacity or to abandon. In the third case (the PWS-case), the
scenario of optimal actions consists of producing at full capacity, not producing at all,
and abandoning. In view of Theorem 5.2 and the preceding calculations, we can now
analyze the three cases.

The PW-case. The strategy defined by

Ũt = c I{Xt≥β/α} ∀t ≥ 0 and τ̃ =∞

is optimal if and only if

inf
x∈]0,∞[

h(x) ≡ −γ ≥ rK .(6.6)

The value function v coincides with the function wp defined piecewisely by (6.4) and
(6.5).

The PS-case. The strategy defined by

Ũt = c ∀t ≥ 0 and τ̃ = inf{t ≥ 0 : Xt ∈ ]0, y]} ,

where

y =
(βc+ γ + rK)(n− 1)

αcn
,

is optimal if and only if (6.6) is not true and y ≥ β/α, which is equivalent to

(γ + rK)(n− 1) ≥ βc .(6.7)

The value function is given by v(x) = K if x ≤ y and by

v(x) = − αc

m(r − b)y
−m+1xm +

αc

r − bx−
βc+ γ

r

if x ≥ y.
The PWS-case. The strategy defined by

Ũt = c I{Xt≥β/α} ∀t ≥ 0 and τ̃ = inf{t ≥ 0 : Xt ∈ ]0, y]},

where

y =
β

α

[
(γ + rK)(n− 1)

βc

]1/n

,(6.8)
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is optimal if and only if (6.6) is not true and y ≤ β/α, or equivalently, if and only if
(6.6) and (6.7) do not hold. In this case, the value function v is given by v(x) = K if
x ≤ y, by

v(x) =
βc

(n−m)(r − bn)

(
α

β

)n [
xn − n

m
yn−mxm

]
− γ

r
(6.9)

if x ∈ [y, β/α], and by

(6.10)

v(x) =
βc

n−m
[

1

r − bm
(
α

β

)m
− n

m(r − bn)

(
α

β

)n
yn−m

]
xm +

αc

r − bx−
βc+ γ

r

if x ∈ [β/α,∞[. It is worth noting that if we use (6.8) and the identities

1

r − bn = − m

r(n− 1)
,

1

r − bm = − n

r(m− 1)
,

which follow directly from (6.3) and the fact that mn = −r/σ2, we can show that
(6.9) is equivalent to

v(x) =
γ + rK

r(n−m)

[
n

(
x

y

)m
−m

(
x

y

)n]
− γ

r
,

whereas (6.10) is equivalent to

v(x) =
βcn

r(n−m)

[
1

n− 1

(
αy

β

)n
− 1

m− 1

(
αy

β

)m](
x

y

)m
+

αc

r − bx−
βc+ γ

r
.

7. Options on stocks in the natural resource industry. In this section,
we consider a company whose total asset value conforms to the model analyzed in
sections 5 and 6. We assume that the commodity price is modeled by the geometric
Brownian motion defined by (2.1) and A4.a and the running payoff function is given
by (6.1) in the preceding section. Moreover, we make the assumption that K < 0,
which conforms to the idea that −K is the investment’s abandonment cost, and we
suppose that, at abandonment, the investment is scrapped and therefore becomes
totally worthless.

Now, given a function f ∈W 2,p
loc , we can show using the Itô–Tanaka formula that

f ◦X is a geometric Brownian motion if and only if f(x) = Cxk for some C, k ∈ R.
Therefore, in view of Theorem 5.2, the total asset value of the company, and therefore
its stock price, is not in general a geometric Brownian motion. Plainly, this means that
one cannot value options on these stocks using the Black & Scholes formula. However,
in the special case that we consider here, the Black & Scholes formula can be used to
calculate an approximate value for a European option when the commodity price is
high, as well as an upper bound for the value of such an option.

If the commodity price is high relative to the boundary of the “production region,”
the value function of the company can be approximated by

v(x) ≈ αc

r − bx−
βc+ γ

r
, x� y ∨ (β/α) ,(7.1)

because m < 0. (Note that this approximation holds for any of the PW, PS, PWS
cases.) Also, in the PS or PWS case, the probability that the company is abandoned
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within a short time interval can be reasonably neglected. Therefore a European call
option on the stock of the company with a short time to maturity consisting of payout
(v(XT )I{T<τ̃} − p)+ at maturity T is almost like a European call option giving the
right to buy αc/(r − b) units of commodity at time T for the price p + (βc + γ)/r.
Similarly, a European put option on the investment with strike price p is almost
equivalent to a European put option with strike price p + (βc + γ)/r on αc/(r − b)
units of commodity. The price of such options is given by the Black & Scholes formula,
so for very large commodity prices, the valuation of European options on stocks in
the investment has no problems.

Now, in view of the assumption that r > b, the facts that m < 0, 1 < n, and
the identities (6.3), we can easily check that, in any of the PW, PS, PWS cases,
the second derivative of the value function v is nonnegative, which implies that v is
convex. Combining this with the asymptotic expression (7.1), and taking into account
that v(0) = −γ/r or K < 0, depending on whether the PW or the PS, PWS is the
case, we can conclude that

v(x) ≤ αc

r − bx ∀x ≥ 0 ,

which implies that

(
v(XT )I{T<τ̃} − p

)+ ≤ ( αc

r − bXT − p
)+

∀T ≥ 0 , P -a.s.

As a consequence, the value of a European option on the stock of the company is
bounded from above by the value of a European option on the stock of a fictitious
company whose stock price is given by αc/(r − b)X, which can be calculated by the
Black & Scholes formula.

8. Conclusion. An improved model for evaluating natural resources projects
and stocks in the natural resource industry has been formulated and studied. This
will be useful for both investors who are interested in finding out discrepancies between
quoted prices and underlying values of companies, as well as for company executives
who are looking for tools to evaluate investment decisions. Here, we have adopted
the viewpoint that one can identify asset value with total stock value for a company
without debt or outstanding warrants. Our analysis can most easily be applied to
companies who (almost) exclusively have producing fields with firmly established re-
serves with relatively little uncertainty attached. As Paddock, Siegel, and Smith [20]
mention, there are a number of publicly quoted companies which more or less fit this
profile. Also, the mathematical analysis presented analyzes a much larger class of
payoffs than previously possible. With reference to the natural resource industry, it
is worth repeating that our model relies on the assumption that the investment/firm
under consideration has access to an infinite amount of the resource. Although such
an assumption does not hold in the real world, it can be defended as a good approx-
imation of reality by using a number of arguments. Its relaxation is the subject of
current research.

We are hereby able to move beyond the natural resource industry to other sectors.
One example concerns investments into microchip production facilities. The invest-
ment decisions for companies producing microchips fall squarely into the context of
our model. In this problem, the X process would be the price of one particular type
of microchip; the choice of a geometric Brownian motion with negative drift reflects
the fact that microchips of a particular variety are on average declining in price as
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their availability increases, the production processes become more widespread, and
new microchip generations are introduced. The controlled process U would be the
amount of microchips produced per unit of time and the payoff function could be
chosen appropriately. In this model, it is plain that the assumption discussed at the
end of the previous paragraph presents no difficulties at all because there is no upper
limit for the amount of chips producible over an infinite time horizon.

Finally, there is a natural need for comparing our theoretical results with market
data. As mentioned in [20], there is enough data available in a variety of forms to be
able to conduct some reasonable analysis.
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Abstract. This paper deals with the rational approximation of specified order n to transfer
functions which are assumed to be matrix-valued functions in the Hardy space for the complement
of the closed unit disk endowed with the L2-norm. An approach is developed leading to a new
algorithm, the first one to our knowledge which concerns matrix-transfer functions in L2-norm. This
approach generalizes the ideas presented in [L. Baratchart, M. Cardelli, and M. Olivi, Automatica,
27(1991), pp. 413–418] in the scalar case but involves substantial new difficulties.

Using the Douglas–Shapiro–Shields factorization of transfer functions, the criterion for the ra-
tional approximation problem above is expressed in terms of inner matrix functions of McMillan
degree n. These functions, which possess a manifold structure, are represented by means of local
coordinate maps obtained in [D. Alpay, L. Baratchart, and A. Gombani, Oper. Theory Adv. Appl.,
73(1994), pp. 30–66] from a tangential Schur algorithm and for which the coordinates range over n
copies of the unit ball. A gradient algorithm is then employed to solve the approximation problem
using the coordinate maps to describe the manifold locally and changing from one coordinate map to
another when required. However, while processing the gradient algorithm a boundary point can be
reached. It is proved that such a point can be considered as an initial point for searching for a local
minimum of lower degree while a local minimum of McMillan degree k < n provides a starting point
for searching for a local minimum at degree k + 1. The minimization process then pursues through
different degrees. The convergence of this algorithm to a local minimum of appropriate degree is
proved and demonstrated on a simple example.

Key words. rational approximation, identification, discrete time systems, inner matrices, gra-
dient algorithm, Schur analysis
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1. Introduction. The identification of linear time-invariant systems can be for-
malized as a rational approximation problem in which some criterion function is op-
timized over a set of systems. This approach has led to a wide variety in model
structure, performance criteria, and actual methods of estimation (see [38] and the
bibliography therein). Our interest is focused mainly on the particular class of dis-
crete time, linear, time-invariant, and strictly causal systems and their strictly proper
transfer functions. The order of such a system is defined to be its McMillan degree,
that is, the dimension of the state space in its minimal realizations. The criterion
which is chosen here is the L2-norm, and our approximation problem states in the
Hardy space H̄p×m

2 of the complement of the unit disk: given a transfer function
F ∈ H̄p×m

2 , we are concerned in minimizing

‖F −H‖22 =
1

2π
Tr

∫ 2π

0

[F −H](eit)[F −H](eit)
∗
dt ,(1)

as H ranges over the set of rational stable (i.e., analytic for |z| > 1) functions of order
at most n. Here, the symbol Tr stands for the trace and the superscript ∗ denotes
transpose-conjugate. It should be noticed that in a stochastic framework, (1) is equal
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to the mean square error between the output of a given system and the output of a
model of fixed order when both systems have the same white noise input (see [32]).

The above problem has received attention in [41], [40], [4], and more recently [37]
and [30], either in the discrete-time form studied here or in the continuous-time equiv-
alent. Many qualitative results have been proved in [6], such as the existence of a best
approximant and the property usually called normality: if F is not itself rational of
degree at most n, then a best local approximant H has degree exactly n. In [8], an
algorithm to find local minima in the L2 rational approximation problem is described
for scalar systems. It is the purpose of this paper to present an algorithm which
enables the results of this previous paper to be extended to the multivariable case.

Let us recall the main line of our approach in the scalar case (see [8] and [13]). In
this case, the minimum in (1) must be performed over the set of irreducible fractions
p/q, where q is a polynomial of degree n whose roots belong to the unit disk U. Our
optimization problem being linear with respect to the parameters of the numerator p,
we are led to minimize a cost function Ψn defined on the set P1

n of monic polynomials
q of degree n whose roots belong to U. This set can be described by the coefficients
of q and is open and bounded in Rn; the function Ψn is smooth, so that we can
use a gradient algorithm, producing a sequence of improving estimates, which either
converges to a local minimum or meets the boundary of the domain at some point
having some roots of modulus one. However, roots on the unit circle cancel and the
cost function Ψn extends to a neighborhood of the closure of P1

n. At the boundary the
extension of Ψn can be interpreted as the cost function of a lower-order approximation
problem. Thus the search for a local minimum can continue through different orders,
until such a minimum (of order k ≤ n) is actually reached. Conversely, multiplying
by z − 1 or z + 1 a minimum of order k provides an initial point for the optimization
problem at order k + 1: at such a point, the opposite of the gradient points inside
the domain. Finally, the procedure can continue until a local minimum of order n is
actually found.

Transition to the multivariable case involves substantial new difficulties, mainly
due to the fact that the domain of the cost function is no longer an open subset of
a Euclidean space but it does possess a manifold structure. A manifold has a cov-
ering by countably many open coordinate neighborhoods, each of these coordinate
neighborhoods corresponding to an open subset of some Rd by a local coordinate
homeomorphism (d is then the dimension of the manifold). The methods developed
for the Euclidean case then apply to each of the coordinate neighborhoods separately.
Over a manifold, an optimization problem can be tackled by using a search algorithm
through the manifold as a whole, using the coordinate maps to describe the manifold
locally and changing from one coordinate map to another when required. Such a
representation of the elements of the domain has the advantage to get rid of redun-
dancy and ensure identifiability [22]. Using state space representations, it was first
established by Hazewinkel and Kalman [26] that the set of stable transfer functions
of fixed degree possesses a manifold structure. Several atlases of local coordinate
maps (called sets of overlapping canonical forms in system theory) have been derived
from this approach ([33], [25]). However, this manifold is never compact, and con-
vergence of a gradient algorithm to points outside can occur. To avoid this problem,
a transfer function will be represented by means of the inner-unstable or Douglas–
Shapiro–Shields factorization (see [15]). The elimination of the parameters in which
the system is linear (namely, those of the unstable factor) allows us to perform the
search for an optimum on the manifold of inner matrix functions of degree n. We are
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then in a position to proceed to the generalization to the multivariable case of the
above-mentioned procedure.

The paper is organized as follows: Section 2 states the problem within the frame-
work of the Hardy spaces and introduces the cost function by means of the inner-
unstable factorization. In section 3, we first recall some results of [1], in which the
theory of reproducing kernel Hilbert spaces is used to construct local coordinates of
the manifold of inner matrix functions of fixed McMillan degree: such functions are
obtained by iterating a linear fractional transformation which changes an inner func-
tion into another one, the McMillan degree being increased by one. Then, a fractional
representation of this transformation is given in which the numerator (a polynomial
matrix) and the denominator (a polynomial) are polynomial functions in the local
coordinates. This representation allows us, in section 4, to study the cost function on
the boundary of the domain and to elaborate an algorithm which converges generically
to a local minimum. The numerical aspects have been examined in section 5.

2. Minimizing over the set of inner matrices. The Hardy spaces H2 and
H∞ of the unit disk are the closed subspaces of L2(T) and L∞(T), respectively,
consisting of functions whose Fourier coefficients (an) satisfy an = 0 when n < 0;
while the Hardy space H̄2,0 consists of functions for which an = 0 when n ≥ 0. Note
the orthogonal decomposition

L2(T) = H2 ⊕ H̄2,0.

It is well known (see, e.g., [27]) that members ofH2 are the nontangential limits on T of
analytic functions f in the unit disk for which the functions fr(t) = f(reit), r < 1, are
bounded in L2-norm as r → 1. Members of H∞ correspond to bounded holomorphic
functions in this process. Similarly, members of H̄2,0 correspond to analytic functions
f in the complement of the unit disk vanishing at infinity and satisfying an analogous
growth condition for r > 1. Thus, f belongs to H2 (resp., to H̄2,0) if and only if it
can be written as

f(z) =
∑
k≥0

ak z
k

(
resp., f(z) =

∑
k>0

ak z
−k
)
,

∑
|ak|2 < ∞.(2)

Note that (2) is the Taylor expansion at 0 (resp., at ∞) and at the same time the
Fourier expansion if we substitute z = eiθ.

The space Lp×m2 (T) of (p ×m)-matrices whose entries belong to L2(T) becomes
a Hilbert space when endowed with the scalar product

〈F,G〉 =
1

2π
Tr

∫ 2π

0

F (eit)G(eit)
∗
dt.(3)

The corresponding norm will also be given, for F = (fij), by ‖F‖22 =
∑
i,j ‖fij‖22, and

the orthogonal decomposition

Lp×m2 (T) = Hp×m
2 ⊕ H̄p×m

2,0(4)

is still valid. Taking into account the fact that z̄ = z−1 on T, and using the notation

G](z) = G(1/z̄)
∗
,
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(3) may be converted into the line integral

〈F,G〉 =
1

2iπ
Tr

∫
T
G](z)F (z)

dz

z
.

The Banach space Lp×m∞ (T) is endowed with the norm

‖F‖∞ = sup
θ
||F (eiθ)||,

where || . || denotes the operator norm Cm → Cp. The prefix R in front of the name
of some set (RH̄p×m

2,0 , RHp×m
2 , etc.) will indicate that we consider the real subspace

of functions whose Fourier coefficients are real. Such functions are relevant in most
applications. However, the natural framework for our study is the complex case which
plainly includes the real case by restriction. When necessary, the results will be stated
for real transfer functions.

The normality result mentioned in the introduction allows us to state the rational
approximation problem in degree n as follows: Given F ∈ H̄p×m

2,0 , minimize (1) over
the set Σ−p,m(n) of rational stable functions of McMillan degree exactly n. It is well
known that Σ−p,m(n) possesses the structure of a real analytic manifold of dimension
2n(m+ p) (see, e.g., [24]). We shall now give a description of this set which suits our
purpose by using the inner-unstable or Douglas–Shapiro–Shields factorization (see [15]
and [11]).

Recall that a Cp×p-valued analytic function Q in the unit disk is called inner if
it is analytic in U and takes unitary values on the unit circle T:

Q(eit) Q(eit)
∗

= Q(eit)
∗
Q(eit) = Ip,(5)

where Ip is the identity matrix of size p. This equality implies that the inverse of
a rational inner functions agrees with Q] and thus is analytic outside the unit disk.
Naturally associated with Q is the space QHp

2 ⊂ Hp
2 which is invariant by the shift

operator (i.e., multiplication by z), and its orthogonal complement H(Q). Note that
H(Q) consists of vectors v ∈ Hp

2 of the form Qu for some u in H̄p
2,0. These spaces

and the inner-unstable factorization are closely related to the shift realization (see
[19]). Observe that the McMillan degree of a rational matrix may be defined even if
this matrix fails to be analytic at infinity, using, for instance, Smith–McMillan forms
(see [28]). Furthermore, the McMillan degrees of Q and Q−1 agree.

Proposition 1 (inner-unstable factorization). Any rational function H in H̄p×m
2,0

can be written

H = Q−1 C,(6)

where Q is a (p × p)-rational inner function and C a (p ×m)-rational matrix whose
columns belong to H(Q). The matrices Q and C may be chosen left co-prime. With
this condition, the factorization is unique up to a common left unitary factor and Q
and H have same McMillan degree.

The matrix Q is called the left inner factor of H and the matrix Q−1 is usually
named in system theory an all-pass stable transfer function. To ensure uniqueness in
the inner-unstable factorization, we shall require that Q satisfies the condition

Q(1) = Ip.(7)

The set of Cp×p-valued rational inner functions of degree n will be denoted by Ipn,
and by Ipn(1) we denote the subset of functions satisfying the extra condition (7). As
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previously mentioned, RIpn andRIpn(1) will denote the corresponding sets of real inner
functions. It is proved in [1] that Ipn and Ipn(1) are smooth manifolds of dimension
2np + p2 and 2np, respectively (embedded in Hp×p

∞ ), while RIpn and RIpn(1) have
dimension np+ p(p− 1)/2 and np, respectively. Moreover, the set Σ−p,m(n) is a vector
bundle whose base space is Ipn(1) and whose fiber above Q is the vector space FQ of
matrices C whose columns belong to H(Q) (see [12]).

Now, we can write our approximation problem as

min
Q,C
‖F −Q−1C‖22,

where Q ∈ Ipn(1) and C ∈ FQ. Observe that for fixed Q, the minimum is obtained
when C is the projection of QF onto FQ. Since F ∈ H̄p×m

2,0 , C is also the projection of

QF onto Hp×m
2 that we shall denote by L(Q). Therefore, minimizing (1) is equivalent

to minimizing the function

Ψn : Ipn(1) → R,
Q → ‖F −Q−1L(Q)‖22,(8)

which is going to be the main purpose of the remainder of this paper. The first step
consists of studying the domain of this function and will be the content of the next
section.

First of all, we give a fractional representation of an inner matrix which will be
useful in the sequel. If q is a polynomial of degree n, we define its reciprocal polynomial
as being

q̃(z) = zn q](z),(9)

and if D is a polynomial matrix whose degree does not exceed n, we also put

D̃(z) = zn D](z).(10)

Recall that the degree of a polynomial matrix is defined to be the degree of its highest
degree entry. While both this degree and the McMillan degree are used in this work,
there should be no confusion from the context which is used.

Proposition 2. An inner matrix Q ∈ Ipn has a representation of the form
Q = D/q̃ by means of a polynomial matrix D whose degree does not exceed n and
a polynomial q of exact degree n whose roots belong to the open unit disk, satisfying
DD̃ = qq̃Ip and detD = εqq̃p−1, ε being a complex number of modulus one. Con-
versely, these conditions are sufficient for the rational matrix D/q̃ to belong to Ipn.

Proof. Since Q−1 is analytic outside the unit disk, it has a representation of
the form D̃/q, where q is, up to a constant factor, its polynomial of poles (see [28]).

Condition (5) yields an analogous representation for Q, i.e., Q = D/q̃, so that DD̃ =
qq̃Ip. It also implies that detQ is an inner scalar rational function, that is to say a
Blaschke product, and the number of zeros of detQ within U determines the McMillan
degree of Q, by the Potapov decomposition [35].

3. Parametrization of inner matrices. We describe here a parametrization
of the set of inner functions obtained in [1] from a matrix version of the classical Schur
algorithm that we now explain; in a fundamental paper [36], Schur proved that every
function f ∈ I1

n can be uniquely parameterized by a sequence yj , j = n, . . . , 1, of
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complex numbers with |yj | < 1. Moreover, Schur gave an algorithm for computing
these parameters:

yj = fj(0),

where fn = f and

fj−1(z) =
fj(z)− fj(0)

(1− fj(0)fj(z)) z
, j = n, . . . , 1.(11)

Since fj is an inner function it follows from the maximum modulus principle that
|yj | < 1, and fj has degree j, since a zero is eliminated at each step. Since f has
degree n, f0 is equal to a constant of modulus one. Other sequences of inner functions
of decreasing degree may be constructed from f in a similar way. The most general
recursion formula is the following (see [21]):

fj−1(z) + µj
1 + µ̄jfj−1(z)

=
fj(z)− yj
1− yjfj(z)

1− w̄jz
z − wj , j = n, . . . , 1,

where the wj ’s are the interpolation points, yj = fj(wj) and the µj ’s belong to U. The
wj ’s and the µj ’s being given, the sequence of numbers yj completely characterizes
the function f , which can recover inductively by the linear fractional transformations:

fj(z) =
[(z − wj) + µ̄jyj(1− w̄jz)] fj−1(z) + [µj(z − wj) + yj(1− w̄jz)]
[ȳj(z − wj) + µ̄j(1− w̄jz)] fj−1(z) + [µj ȳj(z − wj) + (1− w̄jz)] .(12)

The map (y1, . . . , yn, f0)→ f is a diffeomorphism from the product of n copies of the
open unit disk and of a copy of the unit circle onto I1

n.
This Schur algorithm is related to the classical interpolation problems of Nevanlin-

na–Pick and Carathéodory–Fejér (see [39]), which have a remarkable diversity of ap-
plications in systems engineering (see [5], [29]). Several approaches allow the extension
of these problems to matrix-valued analytic functions (see [42] and the bibliography
therein); however, the operator-theoretic one, involving reproducing kernel Hilbert
spaces, clarifies the connections between interpolation and realization theory and gives
a unified presentation of these problems (see, e.g., [17], [16], [3]). Another fundamen-
tal treatment can be found in [18], which emphasizes the relevance of the commutant
lifting theorem in these interpolations issues and also presents several applications to
engineering problems.

3.1. Reproducing kernel Hilbert spaces. For the convenience of the reader,
we shall recall some basic facts about reproducing kernel Hilbert spaces which may
be found in [16]. A complex Hilbert space H of Cp-valued functions defined on some
Ω open in C is called a reproducing kernel Hilbert space (RKHS) if there exists a
Cp×p-valued function K(z, w) defined on Ω× Ω such that for every choice of w ∈ Ω,
c ∈ Cp and f ∈ H:

(i) K(., w)c ∈ H,
(ii) 〈f,K(., w)c〉H = c∗f(w).

The function K is called the reproducing kernel, and the main facts are that it is
unique and it is a positive function in the following sense:

r∑
i,j=1

c∗jK(wj , wi)ci ≥ 0(13)
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for every choice of points w1, w2, . . . , wr ∈ Ω, and vectors c1, c2, . . . , cr ∈ Cp.
The Hardy space Hp

2 is clearly a reproducing kernel Hilbert space whose kernel is

Ip
1− w̄z , w ∈ U, z ∈ U,

and property (ii) is just the Cauchy formula. Finite dimensional Hilbert spaces of
Cp-valued functions are also reproducing kernel Hilbert spaces. Let (f1, f2, . . . , fN )
be some base of a finite dimensional Hilbert space. Then its reproducing kernel is
easily computed to be

K(z, w) = (f1(z), f2(z), . . . , fN (z))P−1(f1(w), f2(w), . . . , fN (w))
∗
,

where P = (Pij) is the Gram matrix with entries Pij = 〈fj , fi〉. The space H(Q)
introduced in the previous section as being the orthogonal complement of QHp

2 in Hp
2

is a reproducing kernel Hilbert space with reproducing kernel

KQ(z, w) =
Ip −Q(z)Q(w)

∗

1− w̄z ,(14)

which is the projection onto H(Q)
p

of the reproducing kernel of Hp
2 . This is readily

seen with the help of the evaluation

π+

(
Q(z)

−1 Ipc

1− w̄z
)

=
Q(w)

∗
c

1− w̄z ,(15)

where π+ denotes the orthogonal projection onto Hp
2 .

More generally, a RKHS is attached to every J-inner function. The study of
these spaces, which play a central role in the theory of realization and interpolation,
originates with de Branges and Rovnyak (see [14]). Put

J =

(
Ip 0
0 −Ip

)
.

A C2p×2p-valued rational function Θ is called J-inner if at every point of analyticity
of Θ in U, J −Θ(z)JΘ(z)

∗
is positive semidefinite:

Θ(z)JΘ(z)
∗ ≤ J,(16)

and equality holds for z point of analyticity on T. Consider the space H2p
2 endowed

with the sesquilinear Hermitian form, 〈f, g〉J = 〈f, Jg〉. This form is not positive
definite but it is nondegenerate. Hence, the space ΘH2p

2 has an orthogonal comple-
ment in H2p

2 , which we call H(Θ). Restricted to H(Θ), the form 〈., .〉J is positive
definite, so that H(Θ) is a Hilbert space. Moreover, it is a reproducing kernel Hilbert
space with reproducing kernel

KΘ(z, w) =
J −Θ(z)JΘ(w)

∗

1− w̄z(17)

and the dimension of H(Θ) agrees with the McMillan degree of Θ. In the next section,
we shall make an intensive use of one-dimensional H(Θ) spaces; let f be the function
defined by

f(z) =

(
u
v

)
1− w̄z ,
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where w ∈ U, u ∈ Cp with ‖u‖ = 1, and v ∈ Cp; let M be the linear span of f
endowed with the form 〈 , 〉J . If ‖v‖ ≤ 1, then the Gram matrix P = 〈f, f〉J is
positive and M is of the form H(Θ), where Θ is unique up to a J-unitary constant
multiplier on the right. It can be specified by the formula

Θ(z) = I2p − (1− ξ̄z)f(z)P−1f(ξ)
∗
J

for any point ξ ∈ T. In the sequel, we shall work with the J-inner function associated
with M which satisfies the condition Θ(1) = I2p. It is given by

Θ(w, u, v)(z) = I2p − (1− z) 1− |w|2
1− ‖v‖2

(
u
v

)
1− w̄z

(
u∗ v∗

)
1− w J.(18)

3.2. The linear fractional transformation associated with a J-inner
function. In this section we introduce the linear fractional transformation TΘ, which
generalizes (12) to the matrix case (for a precise comparison see the remark after The-
orem 7). The statements and the proofs of this section and the following are adapted
from [1].

Lemma 3. Let

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
(19)

be a (2p× 2p)-rational J-inner function analytic in U and let A be a (p× p)-rational
inner function. Then (Θ21A+ Θ22) is invertible in U and

TΘ(A) = (Θ11A+ Θ12) (Θ21A+ Θ22)
−1

(20)

is inner. Note that if Θ(1) = I2p and A(1) = Ip, then [TΘ(A)](1) = Ip, and if A and
Θ have real coefficients, then TΘ(A) also has real coefficients.

Proof. First, let us show that (Θ21A + Θ22) is invertible at every point of U.
Indeed, condition (16) implies

Θ22Θ∗22 ≥ Ip + Θ21Θ∗21 in U,

so that Θ22Θ∗22 is positive definite, and Θ22 is invertible at any point of U. Now, we
have

Ip ≥ Θ−1
22 (Θ−1

22 )
∗

+ (Θ−1
22 Θ21)(Θ−1

22 Θ21)
∗

in U,

and thus ‖Θ22(z)
−1

Θ21(z)‖ < 1, ∀z ∈ U. The matrix A, being inner, is contractive

in U: ‖A(z)‖ ≤ 1, ∀z ∈ U, so that ‖Θ22(z)
−1

Θ21(z)A(z)‖ < 1, ∀z ∈ U. Finally,
(Θ21A + Θ22) = Θ22 (Ip + Θ−1

22 Θ21A) is invertible at any point of U, and thus
B = TΘ(A) is analytic in U. Then, condition (5) for B can be written

B∗B − Ip =
(
B∗ Ip

)
J

(
B
Ip

)
= 0 on T.

Using the relation (
B
Ip

)
= Θ

(
A
Ip

)
(Θ21A+ Θ22)

−1
,(21)

we obtain

B∗B − Ip = ((Θ21A+ Θ22)
−1

)
∗ (

A∗ Ip
)

Θ∗JΘ

(
A
Ip

)
(Θ21A+ Θ22)

−1
,

and since condition (5) is satisfied for A, it will be satisfied for B as well.
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Lemma 4. The matrix B = TΘ(w,u,v)(A), where Θ(w, u, v) is given by (18),
satisfies the interpolation condition

B(w)
∗
u = v.(22)

Proof. Indeed, it can be verified that Θ(w, u, v) satisfies the equation(
u∗ −v∗ )Θ(w) = 0.

Thus (
u∗ −v∗ )Θ(w)

(
A(w)
Ip

)
= 0,

and together with (21) this implies our interpolation condition.
Now, the question is the converse: let B be some rational inner matrix, and Θ

J-inner analytic in U. Can we write B in the form B = TΘ(A) for some inner matrix
A? First, note that if B = TΘ(A), then A is the rational function given by

A = (Θ11 −BΘ21)
−1

(BΘ22 −Θ12),(23)

unless det(Θ11−BΘ21) vanishes identically. This may not happen since condition (16)
for Θ implies Θ∗11Θ11−Θ∗21Θ21 = Ip on T. So, Θ11−BΘ21 is invertible at any point
of T. However, it may fail to be invertible at some point of U, so that A may not be
analytic in U. To ensure analyticity, we must make an additional assumption.

Theorem 5. Let B be a rational inner function, and let Θ(w, u, v) be the J-
inner function (18). There exists an inner function A such that B = TΘ(A) if
and only if the interpolation condition B(w)

∗
u = v is satisfied. We then have

degB = degA + 1.
Proof. This is a special case of a more general result proved in [1, Thm. 3.3]

which is based on the links between H(Θ) and H(Q) spaces. For more details on
these problems we refer the reader to [2]. The content of the result of [1] is the
following: let B ∈ Ipn and Θ be a J-inner (2p × 2p)-rational function; consider the
map

τ : H(Θ) → Hp
2 ,(

f1

f2

)
→ f1 −Bf2.

Then there exists an inner function A such that B = TΘ(A) if and only if τ is an
isometry from H(Θ) to H(B). Moreover, degB = degΘ + degA. We shall admit
this result.

If Θ(w, u, v) is given by (18), the conditions:
(i) τ is an isometry from H(Θ) to H(B),
(ii) B(w)

∗
u = v

are equivalent. Indeed, τ sends the generator of H(Θ) as follows:

τ :

(
u
v

)
1− w̄z →

u−B(z) v

1− w̄z .

With the help of the evaluation (15), it is readily proved that u−B(z) v
1−w̄z ∈ H(B) if and

only if condition (ii) holds. In this case,〈(
f1

f2

)
,

(
f1

f2

)〉
J

= ‖f1‖22 − ‖f2‖22 = ‖f1‖22 − ‖Bf2‖22 = ‖f1 −Bf2‖22,
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and τ is an isometry from H(Θ) (endowed with the scalar product 〈 , 〉J) to H(B).
This proves the theorem.

3.3. Description of the charts. If Θ is of the form (18), then TΘ(A) and A
have the same value at z = 1. We can construct from the identity matrix Ip, using
n linear fractional transformations of this type, an inner matrix of degree n which
belongs to Ipn(1). Conversely, any matrix of Ipn(1) can be obtained in this way. This is
the content of the tangential Schur algorithm for which we need the following lemma.

Lemma 6. Let B be an inner function and w ∈ U. Then, there exists u ∈ Cp,
‖u‖ = 1, such that

‖B(w)
∗
u‖ < 1.

Proof. Suppose that for all unit vector u ∈ Cp, ‖B(w)
∗
u‖ = 1. Then, since

‖KB(., w)u‖22 = u∗KB(w,w)u =
1− ‖B(w)

∗
u‖

1− w̄w ,

for all u ∈ Cp, KB(., w)u = 0. So, KB(., w) is identically 0 and the matrix B must
be constant. But this contradicts the fact that B has McMillan degree n.

Theorem 7 (tangential Schur algorithm). Let Q ∈ Ipn(1), and wk ∈ U, k =
n, . . . , 1. Then, for k = n, . . . , 1 there exist unit vectors uk ∈ Cp such that the vectors
yk ∈ Cp given by

yk = Q(k)(wk)
∗
uk(24)

satisfy ‖yk‖ < 1, where Q(n) = Q,

Q(k) = TΘk(Q(k−1)),(25)

and Θk = Θ(wk, uk, yk) is the J-inner matrix given by (18). Then

Q = TΘn(TΘn−1
. . . TΘ1(Ip)) . . . = TΘn...Θ1(Ip).

Proof. This is an obvious consequence of Theorem 5 and Lemma 6.
Let w = (w1, w2, . . . , wn) and u = (u1, u2, . . . , un). Define the subset V(w,u) of

Ipn(1) by

V(w,u) = {Q ∈ Ipn(1) / ‖Q(k)(wk)
∗
uk‖ < 1},

and the function ϕ(w,u) by

ϕ(w,u) : V(w,u) → Bnp ,
Q → (y1, y2, . . . , yn),

where theQ(k)’s and the Schur parameters yk’s are defined recursively by (24) and (25),
and Bnp denotes the product of n copies of the unit ball of Cp.

Remark. Note that in the scalar case and for wj = 0, the transformation Q(j) =
TΘj (Q

(j−1)) is given by

Q(j)(z) =
(z − |yj |2)Q(j−1)(z) + (1− z)uj ȳj
(z − 1)ūjyj Q(j−1)(z) + (1− |yj |2z) .
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This formula is exactly (12) in which yj has been replaced by uj ȳj , since the inter-
polation condition is now Q(j)(0) = uj ȳj , and µj is chosen to be −uj ȳj . The general
formula with an arbitrary µj can also be obtained by a TΘ transformation where Θ
is of the form (18) multiplied by an adequate constant J-inner function. In this case
the normalization (7) is not conserved.

Theorem 8. The family (V, ϕ) defines a C∞ atlas on Ipn(1), which is compatible
with its natural structure of embedded submanifold of Hp×p

2 .
Proof. It follows from Lemma 6 that the collection of sets V(w,u) covers Ipn(1).

It remains to prove that the map ϕ(w,u) is an homeomorphism and that the change
of chart ϕ(w,u) ◦ ϕ(w′,u′) is smooth. The map ϕ(w,u) is one-to-one and onto by con-

struction. The coefficients of Q(k) depend continuously on that of Q(k−1) and on
yk, . . . , y1, so that the coefficients of Q depend continuously on the Schur parame-
ters. Since the matrix Q is inner and thus bounded in the unit disk, ‖Q(z)‖ ≤ 1,
∀z ∈ U, Lebesgue’s theorem finally implies that ϕ−1

(w,u) is continuous. Conversely,

note that the evaluation map Q → Q(wn)
∗
un is continuous, so that Q → yn is con-

tinuous. The coefficients of Q(n−1) depend continuously on that of Q and on yn,
and, if two normalized rational functions of bounded degree are closed in Hp×p

2 , then
their coefficients must also be closed; then, the map Q → Q(n−1) from Ipn to Ipn−1,
both endowed with the H2-topology, is continuous. We thus prove inductively that
ϕ(w,u) is continuous and consequently is an homeomorphism. Furthermore, the map
ϕ(w,u) ◦ ϕ(w′,u′) : Bnp → Bnp is C∞, as a bounded rational function.

In any chart of this atlas, the local coordinates are the 2np real and imaginary
parts of the components of the Schur parameters. Note that an atlas for RIpn(1) can
be obtained in a similar way, for which the wi’s lie in (−1, 1), the ui’s and the yi’s
have real components; indeed, in Lemma 6 u can be chosen real, and if A and Θ have
real coefficients, TΘ(A) also has real coefficients. The range of the charts is thus the
product of n copies of the unit ball of Rp.

3.4. Fractional representation in the local coordinates. In this section,
we give a fractional representation of the form D(k)/q̃(k) for the matrix Q(k) (see
Proposition 2). We introduce the map S(w,u) : (A, y) → TΘ(w,u,y)(A), so that the

inner matrix Q = ϕ−1
(w,u)(y) is computed by the iterative process:

Ip → Q(1) → · · · → Q(k) = S(wk,uk)(Q
(k−1), yk)→ · · · → Q(n) = Q.

Lemma 9. For any A ∈ Ipk , w ∈ U, u ∈ Cp, ‖u‖ = 1, and v ∈ Cp, ‖v‖ < 1, we
have

S(w,u)(A, y) = A+
1− βw

1− u∗Ay − βw(y∗y − u∗Ay)
(u−Ay)(y∗ − u∗A),(26)

with βw = bw/b̃w, where bw(z) = (z − w)(1− w̄).
Proof. Using (18) yields

TΘ(w,u,y)(A) =

(
A+ (1− βw)

u(y∗ − u∗A)

1− y∗y
) (

Ip + (1− βw)
y(y∗ − u∗A)

1− y∗y
)−1

.

A classical formula (see [28, Appendix A.20]) allows us to compute the inverse as
follows(

Ip + (1− βw)
y(y∗ − u∗A)

1− y∗y
)−1

= Ip − (1− βw)
y(y∗ − u∗A)

1− u∗Ay − βw(y∗y − u∗Ay)
,
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from which we deduce (26) by expanding the product.

Proposition 10. A fractional representation D(k)/q̃(k) of the inner matrix
Q(k) = TΘk...Θ1(Ip) can be computed by the recursion formulas: D(0) = Ip, q̃

(0) = 1,
and for k = 1, . . . , n,

D(k) = (̃bwk − y∗kyk bwk)D(k−1) − (̃bwk − bwk)

{
uku

∗
kD

(k−1) +D(k−1)yky
∗
k

(27)

−q̃(k−1) uky
∗
k +

u∗kD
(k−1)yk D

(k−1) −D(k−1)yku
∗
kD

(k−1)

q̃(k−1)

}
,

q̃(k) = (̃bwk − y∗kyk bwk) q̃(k−1) − (̃bwk − bwk)u∗kD
(k−1)yk,(28)

where bwk = (1− w̄k)(z−wk). The stable polynomial q(k) has degree k, and the coeffi-

cients of the polynomials q̃(k) and d
(k)
ij (the entries of D(k)) are polynomial functions

in the local coordinates.

Proof. Assume that such a fractional representation has been obtained for Q(k−1).
Replacing Q(k−1) by D(k−1)/q̃(k−1) in S(wk,uk)(Q

(k−1), yk) given by (26) yields a frac-

tional representation for Q(k). Note that (27) actually defines a polynomial matrix,
since q̃(k−1) does indeed divide u∗kD

(k−1)yk D
(k−1) − D(k−1)yk u

∗
kD

(k−1). In order

to prove this, put u∗k = (ūk1 , . . . , ū
k
p), y∗k = (ȳk1 , . . . , ȳ

k
p), and D(k−1) = (d

(k−1)
ij ). A

straightforward computation shows that(
u∗kD

(k−1)ykD
(k−1) −D(k−1)yk u

∗
kD

(k−1)
)
ij

=
∑
l,m

(
d

(k−1)
lm d

(k−1)
ij − d(k−1)

im d
(k−1)
lj

)
ūkl y

k
m,

where d
(k−1)
lm d

(k−1)
ij −d(k−1)

im d
(k−1)
lj is a minor of order 2 of D(k−1). But in the fractional

representation q̃(k−1) is, up to a constant factor, the polynomial of poles of Q(k−1),
which is the least common denominator of all the minors of Q(k−1) (see [28]). Thus,
it must divide all the minors of order 2 of D(k−1).

Now, let us prove by induction that, for k = 1, . . . , n, the coefficients of d
(k)
ij and

q̃(k) are polynomial functions in the local coordinates. This is true for d
(1)
ij and q̃(1)

and we shall assume that this is also true for d
(k−1)
ij and q̃(k−1): for l = 1, . . . , n, put

ylj = ξlj + i ηlj ,

where ylj is the jth component of yl; then the coefficients of d
(k−1)
ij and q̃(k−1) belong

to the ring Pk−1 of complex polynomials in the 2(k − 1)p variables ξlj and ηlj , l =
1, . . . , k−1, j = 1, . . . , p. In order to prove our assumption at order k, we must verify
that q̃(k−1) divides all the minors of order 2 of D(k−1) in the ring Pk−1[z]. Let

D(k−1)

(
i1 · · · il
j1 · · · jl

)
be the minor of D(k−1) computed from the lines i1, . . . , il and the columns j1, . . . , jl.
Since the matrix D/q̃ is the inverse of D̃/q, the minors of order 2 of D(k−1) are related
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to those of order p− 2 of D̃(k−1) by the formula (see [20]):

{q(k−1)}p−3D(k−1)

(
i1 i2
j1 j2

)
= (−1)

{i1+i2+j1+j2} D̃(k−1)

(
i′1 · · · i′p−2

j′1 · · · j′p−2

)
q̃(k−1),(29)

where {i1, i2, i′1, . . . , i′p−2} and {j1, j2, j′1, . . . , j′p−2} form complete sets of rows and

columns. If q̃(k−1) is irreducible we are done. We shall prove this still by induction.
First, q̃(0) is irreducible. Then, assume that q̃(l−1) is irreducible while q̃(l) can be
factored as

q̃(l) = αβ, α ∈ Pl[z], β ∈ Pl[z].

The polynomial q̃(l) can be viewed as a polynomial in the 2p coordinates ξl1, . . . , ξ
l
p,

ηl1, . . . , η
l
p, with coefficients in Pl−1[z]:

q̃(l) =

b̃wl − bwl


p∑
j=1

(ξlj)
2 + (ηlj)

2


 q̃(l−1)−(̃bwl−bwl)

p∑
j=1

{
p∑
i=1

ūlid
(l−1)
ij

}
(ξlj+iη

l
j).

If α does not depend on ξl1, for example, then α must divide −bwl q̃(l−1) and since
bwl does not divide q̃(l), we must have α = q̃(l−1). Therefore, q̃(l−1) must divide
each component of u∗lD

(l−1) in Pl−1[z]. But this is clearly impossible; indeed, since
Q(l−1)(1) = Ip we should have u∗lD

(l−1) = q̃(l−1)ul for every choice of local coordi-
nates. Thus both α and β have degree one in each ξlj and ηlj . But then, writing

α = α1ξ
l
1 + · · ·+αpξ

p
1 +α′1η

l
1 + · · ·+α′pη

p
1 +α0 and β = β1ξ

l
1 + · · ·+βpξ

p
1 +β′1η

l
1 + · · ·+

β′pη
p
1 +β0, we can see that such a factorization is impossible, so that q̃(l) is actually irre-

ducible.
Though the quotient in formula (27) is exact, we fail in searching for an explicit

formula for it, and we do not know if such a formula exists.

4. A generic algorithm to find a local minimum. The closure of Ipn(1) in
Hp×p

2 is a compact set, so that we can think of using a gradient algorithm to find a local
minimum of the function Ψn defined by (8) in section 2. The elements of Ipn(1) will
be parameterized as explained in the previous section, the local coordinates being the
real and imaginary parts of the components of the vectors y1, . . . , yn. We shall work
with the local representations of Ψn and denote by Ψn

(w,u) the local representation

associated with the chart defined by (w,u):

Ψn
(w,u) : Bnp → R,

y = (y1, . . . yn) → Ψn ◦ ϕ−1
(w,u)(y).

4.1. Limit points in the charts. The object of this section is to study what
happens when, running a gradient algorithm, the norm of some Schur parameter
tends to 1. In the scalar case, the structure of I1

n(1) is particularly simple, since
only one coordinate map is needed; as some |yk| tends to 1, the boundary of I1

n(1) is
reached. This boundary has been completely studied in the case of real functions; it
has been proved in [7] that the set RI1

n(1) can be identified with the set P1
n of

monic stable polynomials of degree n and established in [10] that its closure is a
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topological manifold with boundary, this boundary having corners. The smooth part
of the boundary, which plays an important role in the algorithm, consists of those
polynomials having exactly one irreducible factor over R whose roots are of modulus
one. In the matrix case, as some ‖yk‖ tends to 1, either the chart is no more available
and another one must be used, or some point of the boundary of Ipn(1) is reached.
Moreover, as we shall see later, the closure of Ipn(1) is no more a topological manifold
with boundary, and possesses some singular boundary points (see Proposition 13).

Proposition 11 below, describes regular boundary points. Observe that if ‖y‖ = 1,
the J-inner function Θ(w, u, y) is no more defined; however, if u∗Ay is not identically
equal to 1, the transformation S(w,u) keeps a sense and is given by

S(w,u)(A, y) = A+
(u−Ay)(y∗A− u∗)

(1− u∗Ay)
.

Proposition 11. Let y ∈ ∂Bnp , the boundary of Bnp , w ∈ Un, and u ∈ ∂Bnp , and

let (D(k), q̃(k)) be the sequence associated with w,u,y by the recursion formulas (27)
and (28). A sequence

Ip → Q(1) → · · · → Q(k) = S(wk,uk)(Q
(k−1), yk)→ · · · → Q(n)

of inner matrices can be computed, provided that u∗kQ
(k−1)(wk)yk is not identically

equal to 1 as ‖yk‖ = 1, or equivalently, q̃(k) does not vanish identically. In this case,
y will be called a regular limit point in the chart defined by (w,u). Then Q(k) =
D(k)/q̃(k), and

(a) q(k) still has degree k,
(b) if ‖yk‖ = 1, then q̃(k) and D(k) have common roots on T and Q(k) has degree

less than k.
Moreover, there exists a neighborhood W of y, such that ϕ−1

(w,u) extends smoothly to
W.

Proof. Assume that these assertions have been proved until order k − 1, and let
us prove that they still hold at order k. If ‖yk‖ < 1, there is nothing to prove. If
‖yk‖ = 1, then

q̃(k) = (1− |wk|2)(1− z)(q̃(k−1) − u∗kD(k−1)yk),

and since Q(k−1) is inner, by the maximum modulus principle, either u∗kQ
(k−1)yk is

identically equal to 1, and q̃(k) vanishes identically, or

q̃(k)(0) = (1− |wk|2)q̃(k−1)(0)(1− u∗kQ(k−1)(0)yk)

does not vanish and thus q(k) has degree k. In this case, Q(k) = S(wk,uk)(Q
(k−1), yk) =

D(k)/q̃(k) is well defined and still inner; 1, which is a root of q̃(k), must also be a root
of D(k), and the degree of Q(k) cannot exceed that of Q(k−1). More precisely,

degQ(k) = degQ(k−1) − ]{ξ ∈ T, yk = Q(k−1)(ξ)
∗
uk}.

By induction, the first part of the proposition is proved. Now, ϕ−1
(w,u)(y) = D(n)/q̃(n)

and since, by Proposition 10, the coefficients of the polynomials q̃(n) and d
(n)
ij are

polynomial functions in the local coordinates, there exists a neighborhood W of y,
such that ϕ−1

(w,u) extends smoothly to W.
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In the next lemma, we shall prove that any inner matrix of degree strictly less
than n can be viewed, up to a unitary matrix, as a boundary point of Ipn(1) of this
type.

Lemma 12. For each Q ∈ Ipd (1) of degree d strictly less than n, there exist
w′ ∈ Un, u′ ∈ ∂Bnp , y′ ∈ ∂Bnp , and a unitary matrix U , such that y′ is a regular limit

point in the chart defined by (w′,u′) and UQ = ϕ−1
(w′,u′)(y

′).
Proof. Let y = (y1, . . . , yd), w = (w1, . . . , wd), and u = (u1, . . . , ud) be such that

Q = ϕ−1
(w,u)(y):

Ip → Q(1) = S(w1,u1)(Ip, y1)→ Q(2) · · · → Q = S(wd,ud)(Q
(n−1), yd).

The Schur transform S(w,u) applied to some unitary matrix X and some unit vector
y such that y 6= X ∗u will give another unitary matrix. Thus, we can construct a
unitary matrix U in the following way:

U0 = Ip → U1 = S(w′1,u
′
1)(Ip, y

′
1)→ U2 · · · → U = S(w′

n−d,u
′
n−d)(Un−d−1, y

′
n−d),

where w′1, . . . , w
′
n−d, are chosen arbitrarily and u′1, . . . , u

′
n−d, y

′
1, . . . , y

′
n−d, are unit

vectors in Cp, satisfying for k = 1, . . . , n− d, u′k
∗ Uk−1 y

′
k 6= 1. Since we have

S(w,Xu)(XA, y) = XS(w, u)(A, y)

for any unitary matrix X , UQ can be computed by the following iterative process:

Ip → U1 = S(w′1,u
′
1)(Ip, y

′
1)→ U2 · · · → U = S(w′

n−d,u
′
n−d)(Un−d−1, y

′
n−d)

→ UQ(1) = S(w1,Uu1)(U , y1)→ UQ(2) · · · → UQ = S(wd,Uud)(UQ(n−1), yd).

Put

w′ = (w′1, . . . , w
′
n−d, w1, . . . , wd),

u′ = (u′1, . . . , u
′
n−d,Uu1, . . . ,Uud),

y′ = (y′1, . . . , y
′
n−d, y1, . . . , yd),

then y′ is a regular limit point in the chart defined by (w′,u′) and UQ = ϕ−1
(w′,u′)(y

′)
as required.

The next proposition is concerned with singular boundary points.
Proposition 13. Let η(t) : [0, 1] → Bnp be a smooth path whose terminal

point y = η(1) belongs to ∂Bnp and let D(t)/q̃(t) be the fractional representation of

Q(t) = ϕ−1
(w,u)(η(t)) obtained by the recursion formulas (27) and (28). Assume that

q̃(t) vanishes identically as t→ 1. Then, Q(t) converges to some inner function Qη,
depending in general on the path and whose degree may be less than or equal to n; it
is given by the number of roots of q(t) which converges within the unit disk.

Proof. Since D(t) and q̃(t) are polynomial functions in the local coordinates, they
do converge, respectively, to a polynomial matrix D and a polynomial q̃. We deal
with the case where q̃ is the zero polynomial. However, the quotient D(t)/q̃(t) must
converge to some inner function Qη. Let q(t)(z) = qn(t)zn + · · ·+ q1(t)z + q0(t). As
t→ 1, each coefficient tends to 0 while the quotients qk(t)/qn(t) being the well-known
elementary symmetric polynomials in the roots (of modulus at most 1) are bounded by
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the binomial coefficients (nk ) and thus converges. The polynomial q(t)/qn(t) converges
to some monic polynomial, which may have roots of modulus one, while the number
of its roots within the unit circle gives the degree of Qη.

Now, we are going to show that the limit Qη actually depends on the path and
may have degree as well less than or equal to n. Let us study the case where n = 1
(η(t) = y1(t)). Formulas (27) and (28) yield

q̃(1)(t) = b̃w1
u∗1(u1 − y1(t)) + bw1

(u1 − y1(t))∗u1 − bw1
(u1 − y1(t))∗(u1 − y1(t)),

and

D(1)(t) = q̃(1)(t)Ip − (̃bw1
− bw1

)(u1 − y1(t))(u1 − y1(t))
∗
,

so that

Q(1)(t) = Ip − b̃w1 − bw1

q̃(1)(t)
(u1 − y1(t))(u1 − y1(t))∗.

Now, as t → 1, q̃(1)(t) vanishes identically by assumption, and thus y1(t) must con-
verge to u1. Let

y1(t) = u1 −
∑
k≥l

(1− t)kξk, ξl 6= 0, ξk ∈ Cp

be its expansion. Consequently, q̃(1)(t) ∼ (̃bw1
u∗1ξl + bw1

ξ∗l u1)(1 − t)l and Q(1)(t)
converges to Ip, unless u∗1ξl = 0. In this case, let s be the smallest index satisfying
s > l and u∗1ξs 6= 0. Then, if s < 2l, Q(t) still converges to Ip, while if s ≥ 2l,

q̃(1)(t) ∼ (̃bw1u
∗ξ2l + bw1ξ

∗
2lu1 − b̃w1ξ

∗
l ξl)(1− t)2l,

and

Q(1)(t)→ Ip − b̃w1
− bw1

b̃w1
u∗1ξ2l + bw1

ξ∗2lu1 − b̃w1
ξ∗l ξl

ξlξ
∗
l ,

which is an inner function of degree 1. In conclusion, as y1(t) converges to u1, Q(1)(t)
converges either to Ip or to some inner matrix of degree 1, in which case, we leave
the domain of the chart while staying inside the manifold. The same situation arises
at each order, though it may be more complicated if the norms of several Schur
parameters go to 1.

As an illustration, the closure of RI2
1 (1) can be viewed as a cone. The sum-

mit represents the identity matrix and is a singular boundary point while the base
represents the circle of orthogonal matrices of determinant −1 and forms a regular
boundary. Two charts are needed to describe this manifold. For example, the chart
given by w = 0 and u = (1, 0)∗ parametrizes all the inner functions except for those of
the form (a line of the cone) (1

0
0
z−a
1−az

), a ∈ (−1, 1), while the chart given by w = 0 and

u = (0, 1)∗ parametrizes all the inner functions except for those of the form (
z−a
1−az

0
0
1 ).

4.2. Properties of the local representations of the criterion. The object
of this section is to study the behavior of the local representations of the criterion at
the neighborhood of a boundary point of Ipn(1). We have distinguished in the last
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section two kinds of limit points, the regular and the singular ones. In both cases,
if η(t) is a path whose terminal point y corresponds to a boundary point of degree
d < n, say Qη, then it is easily proved that

lim
t→1

Ψn
(w,u)(η(t)) = Ψd(Qη).

However, regular limit points play a central role in our algorithm, mainly due to
the fact that the local representations of the criterion extends smoothly at the neigh-
borhood of such points. To prove this result, we shall need the following expression
for Ψn.

Proposition 14. Let G(z) = F ](z)/z and Q = D/q̃ as in Proposition 2. Let R

be the remainder in the Weierstrass division in Hp×m
2 of GD̃ by q:

GD̃ = V q + R.(30)

Then q divides RD and if P is the matrix quotient, of degree at most n− 1, we have
that

Ψn(Q) = ‖F‖22 −
〈
F,
P̃

q

〉
.(31)

Proof. Since Q−1L(Q) and F − Q−1L(Q) are orthogonal, the cost function can
be rewritten:

Ψn(Q) = ‖F‖22 − 〈F,Q−1L(Q)〉.
The orthogonal projection L(Q) of QF onto Hp×m

2 is easily computed from the di-

vision (30) as being given by L(Q) = R̃/q̃, where R̃ = zn−1 R](z). Now, multi-

plying (30) by D on the right shows that q divides RD, and Q−1L(Q) = D̃/q R̃/q̃ =

P̃ /q.
Proposition 15. Assume that G(z) = F ](z)/z is analytic in Dr = {z, ‖z‖ ≤ r}

for some r > 1. Let y ∈ ∂Bnp be a regular limit point in some chart defined by (w,u)

(see Proposition 11) and let Q = ϕ−1
(w,u)(y) belong to Ipd for some d < n. Then, Ψn

(w,u)

extends in some open neighborhood of y to a smooth function still denoted by Ψn
(w,u).

Moreover, we have

Ψn
(w,u)(y) = Ψd

(
Q(1)−1Q

)
.

Proof. LetW be a neighborhood of y on which, by Proposition 11, ϕ−1
(w,u) extends

smoothly. We may assume that inW, |q̃(0)| ≥ µ, for some µ > 0. In order to proceed
to our extension, we shall use the expression (31) of Ψn, in which the polynomial
matrices D, R, and P , and the polynomial q, depend on the local coordinates. A
well-known integral representation for the remainder R (cf. [39]) is

R(z) =
1

2iπ

∫
T

GD̃

q

q(ξ)− q(z)
ξ − z dξ.

We may also restrict W so that the roots of q lie in a disk Ds = {z, |z| < s} for some
s, 1 < s < r. Then, we can extend R in W by putting

R(z) =
1

2iπ

∫
Γ

GD̃

q

q(ξ)− q(z)
ξ − z dξ,(32)
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where Γ is any contour lying in the open annulus between Ds and Dr. Indeed, the
coefficient of order k of R is given by

Rk =
1

2iπ

∫
Γ

GD̃

q
(ξn−k−1qn + · · ·+ qk+1)dξ

and since |q(ξ)| > µ d(Γ, Ds)
n, the integrand is bounded, and its derivatives are

also bounded. Finally, Lebesgue’s theorem says that the integral representation (32)
defines a smooth function. The extension of R is still the remainder of the division
(30). In W, q keeps on dividing RD and the quotient extends smoothly P . As for R,
Ψn

(w,u) extends smoothly by the integral representation

Ψn
(w,u)(y) = ‖F‖22 −

1

2iπ
Tr

∫
Γ

G(z)
P̃

q
(z)dz.

Let us give two important consequences of Proposition 15.

Lemma 16. Let Q ∈ Ipk(1) for some k < n and let y = (y1, . . . , yk) be its Schur
parameters in some chart defined by w = (w1, . . . , wk) and u = (u1, . . . , uk). Let
w0 ∈ U, u0 and y0 be two distinct unit vectors and put

U = Ip − (u0 − y0)(u0 − y0)
∗

1− u∗0y0
,

w′ = (w0, w1, . . . , wk), u′ = (u0, Uu1, . . . , Uuk), and y′ = (y0, y1, . . . , yk). Then y′

is a regular limit point in the chart defined by (w′,u′) and Q′ = UQ is given by
Q′ = ϕ−1

(w′,u′)(y
′). Moreover,

ψk+1
(w′,u′)(y

′) = ψk(w,u)(y).(33)

Corollary 17. Suppose that y is a local minimum of ψk(w,u)(y). Then, the

gradient of ψk+1
(w′,u′) at y′ is orthogonal to the surface S = {(y0, . . . , yn), ‖y0‖ =

1, ‖yj‖ < 1, j = 1, . . . n} and points outwards.

Proof. From Proposition 15 we see that the projection of the gradient of ψk+1
(w′,u′)

at y′ on S is just the gradient of ψk(w,u) at y, whence orthogonality holds. Moreover,

it cannot point inwards because this would imply that Q′ which is rational of order k
is a local minimum at order k+ 1, and this is impossible except if F itself has degree
k + 1 (cf. [6]).

4.3. The algorithm. The algorithm searching for a local minimum at order n
splits into four main operations.

A. Choosing an initial point. This choice involves the choice of (w,u) indexing
a chart. The initial point Qi = ϕ−1

(w,u)(yi) may have degree less than or equal to the

target order n.

B. Minimizing at fixed order k. A software is used which integrates the vector
field −grad Ψk

(w,u) from an initial point yi ∈ Bkp . The cost function is computed by

(31) where q = q(k) and D̃ = D̃(k) are given by the following recursion formulas,
immediately deduced from (27) and (28),
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D̃(l) = (bwl − y∗l yl b̃wl)D̃(l−1) − (bwl − b̃wl)
{
D̃(l−1)ulu

∗
l + yly

∗
l D̃

(l−1)

(34)

−q(l−1) ylu
∗
l +

y∗l D̃
(l−1)ul D̃

(l−1) − D̃(l−1)uly
∗
l D̃

(l−1)

q(l−1)

}
,

q(l) = (bwl − y∗l yl b̃wl) q(l−1) − (bwl − b̃wl) y∗l D̃(l−1)ul,(35)

and initialized by q(0) = 1 and D̃(0) = 1. Then, one of the following possibilities
occurs:

(i) a local minimum is reached. If k = n, we are done, while if k < n, this local
minimum provides an initial point for searching for a minimum of order k + 1, as
described in point D.

(ii) the norm of some Schur parameter tends to 1. This situation has been studied
in section 4.1; either a change of chart is necessary, or a boundary point of the manifold
is reached. More precisely, if the polynomial q̃(k) nearly vanishes while its roots stay
far from the unit circle, then the limit point belongs to Ipk(1), and the first eventuality
is true. In any other case, a boundary point is reached.

C. Meeting a boundary point. Such a boundary point, up to an unitary matrix,
is an element Qb of Ipd (1) for some d < k, and the criterion at order k converges to
Ψd(Qb). Then, a minimization process at order d can restart from Qb. If only the
first Schur parameter has norm 1, we can directly deduce from Lemma 16 some chart
and Schur parameters for Qb. Otherwise, the matrix Qb must be computed from the
recursion formulas (27) and (28), eliminating the roots of modulus one. Then, an
adequate chart has to be provided.

D. Choosing an adequate coordinate chart. Given a normalized inner matrix Q,
of order k, we must find a couple (w,u) such that Q belongs to the local neigh-
borhood V(w,u) defined in section 3.3, or equivalently such that a sequence Q(k) =

Q,Q(k−1), . . . , Q(1) = Ip of inner functions of decreasing degree can be constructed by
the Schur algorithm. The fractional representation of Q(l−1) is computed from that
of Q(l) by the recursion formulas

bwl b̃wl D̃
(l−1) = (b̃wl − y∗l yl bwl)D̃(l) − (b̃wl − bwl)(

D̃(l)ulu
∗
l + yly

∗
l D̃

(l) − q(l) ylu
∗
l +

y∗l D̃
(l)ul D̃

(l) − D̃(l)uly
∗
l D̃

(l)

q(l)

)
,

bwl b̃wl q
(l−1) = (b̃wl − y∗l yl bwl) q(l) − (b̃wl − bwl) y∗l D̃(l)ul.

The polynomial bwl b̃wl divides the right-hand sides, so that D̃(l−1) and q(l−1) actually
are polynomial, and Q(l−1) has degree l − 1 as required.

E. Increasing the degree. When the minimization procedure leads to a local
minimum of order k < n, say Qm, then Lemma 16, for any choice of w0, u0, and
y0 6= u0, provides a boundary point Q′m of Ipk+1(1) together with a local parametriza-

tion Q′m = ϕ−1
(w′,u′)(y

′
m), deduced from a local parametrization ϕ−1

(w,u)(ym) of Qm,

satisfying (33). Since by Corollary 17, −grad Ψk+1
(w′,u′) points inwards at y′, this point

can be used as an initial point for a minimization process at order k + 1.
The point is that the value of the criterion, where the criterion must be understood

as being Ψk when working at order k, decreases continuously, being conserved while
the order changes, so that the minimization process pursues through different orders.
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To ensure the good behavior of the algorithm, we shall make two extra assumptions.
First, we shall assume that grad Ψk does not vanish on the boundary of Ipk(1), for
1 ≤ k ≤ n. Second, we shall require all the critical points of Ψk in Ipk(1) to be
nondegenerate, i.e., to have a second derivative which is a nondegenerate quadratic
form. These two properties hold generically, that is for almost every F in some sense,
and we refer the reader to [8] for the first one, and [6] for the second one. They ensure
in particular that critical points in Ipk(1) are finite in number. Since the criterion
decreases continuously, we never meet twice the same local minimum and this ensures
that the procedure eventually comes to an end. Note that if the minimization process
stops at a critical point which is not a minimum, since this point is nondegenerate,
it will be unstable under small perturbations, thereby allowing us to continue the
procedure.

The choice of an initial point is crucial for our purpose (see the example in the
next section). In many problems, we hope that some more information or engineering
judgment could help us to select an initial point which ensures rapid convergence
of the procedure to the global minimum. However, it is well known that the L2

approximation problem possesses many local minima. Since our final goal is to find
the global minimum, we may think of initializing the algorithm at enough points
to reach all local minima and compare between them. But we do not know what
“enough” means and we do not have a bound for the number of initializing points.
Consequently, more efficient strategies should be investigated. For instance, we can
find all the local minima at order 1 and then, initialize our procedure at order 2, by
replacing them on the boundary of Ip2 (1) as described in point D, choosing w0, u0,
and y0 in several ways, and so on, step by step, until the target order. This strategy
gives rather good results.

The choice of a local chart at the neighborhood of a given point is an important
and difficult task. The main purpose of using coordinates is to be able to perform
calculations on a computer and as such it is desirable that the numerical condition-
ing of the chart is good. A criterion must be chosen to decide upon the quality of
local coordinates around a point on a manifold. Moreover, a distortion occurs when
mapping part of a manifold to Euclidean space, so that the sequence of improving
estimates produced by an optimization algorithm is dependent on the choice of the
chart, and it would be interesting to select the charts with the view to improve the
convergence of the algorithm. But in this case, the selection strategy will depend
upon the problem at hand and bring along a lot of “overhead costs.” The present
version of our algorithm uses a basic selection strategy, which minimizes the norm of
the Schur parameters at each step of the Schur algorithm over a finite atlas. This
point must be improved and is presently under study.

4.4. A numerical example. The sole purpose of the following example is to
demonstrate the procedure of computing local minima. For more real-data simula-
tions, we refer to the scalar case paper [8] or [9]. This example has been first considered
in [31] to demonstrate the procedure of computing the minimal degree approximation
in a Hankel-norm model reduction problem and refers to a fourth-order system:

F (z) =


1 + z

z2 − z + 1/4

1

z − 1/2

−z2 + z + 1

z3 + 1/2z2 − 1/4z − 1/8

z − 1/4

z2 + z + 1/4

 ,
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or equivalently F = N/d, where

d(z) = z4 − 1/2z2 + 1/16

and

N(z) =

 z3 + 2z2 + 5/4z + 1/4 z3 + 1/2z2 − 1/4z − 1/8

−z3 + 3/2z2 + 1/2z − 1/2 z3 − 5/4z2 + 1/2z − 1/16

 .

The system has four poles located at 1/2, 1/2, −1/2, −1/2. According to the theory,
if we look for a minimum of (1) with n = 4, we must recover the function F itself,
since from consistency, the criterion has no other critical points [12]. We shall use
this fact to test the procedure.

The function to be approximated is represented in the program by a great number
of Fourier coefficients (computed from frequency data in practice). Thus in this
example, the input of the program is not actually the function F but the 200 first
Fourier coefficients of its rational entries. The software package Scilab is used for the
implementation. We have run a great number of tests changing the starting point and
the initial chart. We present here a case in which every step of the algorithm must
be visited before, according to the theory, we finally recover the function F .

Step 1. We integrate at order 4 and reach the boundary. The initial point has
parameters y = ((0.5, 0.5)∗, ((0.5, 0.5)∗, (−0.5,−0.5)∗, (0.5, 0.5)∗) in the chart indexed
by w = (0, 0, 0, 0) and u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗), and corresponds to the
inner matrix Qi = Di/q̃i, where

D̃i(z) =( −0.3 + 0.4z + 0.4z2 − 0.8z3 + 0.5z4 −0.5 + 0.8z − 0.4z2 + 0.4z3 − 0.3z4

0.3− 0.4z + 0.4z2 − 0.8z3 + 0.5z4 0.5− 0.8z + 0.4z2 + 0.4z3 − 0.3z4

)
,(36)

qi(z) = z2(z2 − 1.2z + 0.4).(37)

Note that qi is not exactly the stable polynomial q(4) computed from the recursion
formulas (34) and (35) which has a leading coefficient equal to 0.3125. As we integrate
the opposite of the gradient using the Scilab function “ode,” the norm of the first
parameter tends to 1, while q̃(1)(0) = 0.49 stays far from 0. Thus we have reached a
regular boundary point Qb of parameters

yb = ((0.509, 0.86)∗, (0.357, 0.55)∗, (−0.659,−0.405)∗, (0.556, 0.264)∗).

The criterion is equal to 3.786.
Step 2. We integrate at order 3 and get a local minimum. We put u0 = (1, 0)∗

and y0 = (0.509, 0.86)∗ and we compute the unitary matrix

U = Ip − (u0 − y0)(u0 − y0)
∗

1− u∗0y0
.

Lemma 16 implies that Qb = UQ, where Q is the normalized inner matrix of degree 3
of parameters y = ((0.357, 0.55)∗, (−0.66,−0.405)∗, (0.556, 0.265)∗)) in the chart in-
dexed by w = (0, 0, 0) and u = ((0.509, 0.86)∗, (0.86,−0.509)∗, (0.509, 0.86)). Accord-
ing to the theory, the criterion at Q is still equal to 3.786. We restart the minimization
procedure from this point and find a third degree minimum for

ym = ((−0.574, 0.652)∗, (0.0214,−0.433)∗, (0.205, 0.428)∗),

where the criterion is equal to 0.997 and the relative error to 0.05.
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Step 3. We increase the degree and get out of the domain of the chart. This third
order local minimum provides starting points for fourth order minimizations. For
instance, applying Lemma 16 with w0 = 0, u0 = (1, 0)∗, and y0 = (0, 1)∗, which are
distinct unit vectors, yields to the initial point of parameters

y = ((0, 1)∗, (−0.574, 0.652)∗, (0.021,−0.433)∗, (0.205, 0.428)∗)

in the chart indexed by w = (0, 0, 0, 0) and

u = ((1, 0)∗, (0.86, 0.509)∗, (−0.509, 0.86)∗, (0.86, 0.509)∗).

The minimization process leads us to leave the domain of the chart. Indeed, it pro-
duces a sequence of inner functions whose denominators computed by formulas (27)
and (28), have leading coefficients which tends to 0 but roots which stay far from the
unit circle. We stop at

y = ((0.88, 0.096)∗, (−0.688, 0.102)∗, (0.169, 0.232)∗, (0.264,−0.027)∗)

at which the value of q̃(0) is about 0.125 which can produce important errors in the
computation.

Step 4. We change the chart and recover the function F . We choose to work with
a finite subset of the atlas described in section 3.3; the family (V(w,u), ϕ(w,u)) where
w = (0, 0, 0, 0), and u is composed of unit vectors either equal to e1 = (1, 0)∗ or to
e2 = (0, 1)∗. This family is a covering of the manifold Ipn(1). At each step of the Schur
algorithm, we choose uk = ej , where ej is the vector for which the norm of the Schur
parameter yk = Q(k)(0)∗(ej) is the smallest. It may happen that this process provides
Schur parameters of norm almost equal to 1. In this case we can try each chart of our
finite atlas to find a better one. In our case this process gives a new chart indexed by
w = (0, 0, 0, 0) and u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗). The parameters of the point
are given in this chart by y = ((0.632,−.278)∗, (−0.578,−.337)∗, (0.262, 0.192)∗,
(0.157,−.142)∗). The minimization can continue and the minimum is reached for

ym = ((0.495,−0.32)∗, (−0.57,−0.328)∗, (0.266, 0.202)∗, (0.146,−0.129)∗).

The approximant computed from these parameters agrees with F with four significant
digits.

If we start in the same initial chart w = (0, 0, 0, 0), and

u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗),

from the point

y = ((0.5,−0.5)∗, (−0.5,−0.5)∗, (0.5, 0.5)∗, (0.5,−0.5)∗),

we immediately reach the minimum with a very good accuracy. This emphasizes
the importance of the choice of the initial point. On the other hand, if we start
from the same initial point Qi given by (36) and (37), but in the chart indexed by
w = (0, 0, 0, 0) and u = ((0, 1)∗, (1, 0)∗, (0, 1)∗, (0, 1)∗) (the Schur parameters are
given by y = ((−.338,−.444)∗, (.0476, .506)∗, (.515, .515)∗, (−.3,−.3)∗)), then we do
not meet the boundary and we again reach the minimum with a very good accuracy.
This illustrates the dependence on the chart of the iterative path produced by the
gradient algorithm.
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5. Conclusion. A rational approximation problem in L2-norm has been studied.
A new parametrization of stable all-pass transfer functions has been used, based on
Schur analysis [1]. Such an overlapping parametrization (in differential geometry
an atlas of charts) has allowed us to use classical optimization procedures within
a local neighborhood, changing the neighborhood when necessary, in order to solve
our minimization problem. Using the state space approach, other parametrizations of
stable all-pass transfer functions are available as the one obtained in [25] in continuous-
time, based on the work of Ober on balanced canonical forms [33]. A link between
the two approaches is probable and a better understanding of the situation seems
desirable. In this connection, a state space formulation of the Schur algorithm has
been described in continuous-time in [23]. A balanced canonical form for discrete
time stable all-pass systems has been obtained in the SISO case [34] by requiring the
realization to be balanced and such that the reachability matrix is upper triangular
with positive diagonal entries. This canonical form can be parametrized by the Schur
parameters obtained in the classical algorithm (11). The generalization of these results
to the multivariable case is under study.

Using this parametrization, a minimization algorithm has been described and its
convergence to local minima has been proved. We have implemented this algorithm
using the matrix-based scientific software Scilab and demonstrated the procedure of
computing a local minimum in many simple examples. Later, using this work, a soft-
ware package named Hyperion has been implemented by J. Grimm to solve a problem
provided by the French CNES: identify from frequency data a 2 × 2 hyperfrequency
filter of order 8. Very good results have been obtained on this problem [9]. How-
ever, the selection strategy algorithm used in this package is still basic and must be
improved. This is going to be the object of forthcoming research.
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[19] P. Fuhrmann, Linear Systems and Operators in Hilbert Spaces, McGraw–Hill, New York, 1981.
[20] F. Gantmacher, Theorie des matrices I: theorie generale, Dunod, Paris, 1966.
[21] J. Garnett, Bounded Analytic Functions, Academic Press, New York, London, 1981.
[22] K. Glover and J. Willems, Parametrization of linear dynamical systems: canonical forms

and identifiability, IEEE Trans. Automat. Control, 19 (1974), pp. 640–646.
[23] A. Gombani and M. Olivi, A new parametrization of rational inner functions of fixed de-

gree: Schur parameters and realizations, Math. Control Signals Systems, submitted.
[24] B. Hanzon, On the differentiable manifold of fixed order stable linear systems, Systems Control

Lett., 13 (1989), pp. 345–352.
[25] B. Hanzon, A new balanced canonical form for stable multivariable systems, IEEE Trans.

Automat. Control, 40 (1995), pp. 374–378.
[26] M. Hazewinkel and R. Kalman, Moduli and canonical forms for linear systems, Tech. report,

Economic Institute, Erasmus University, Rotterdam, 1974.
[27] K. Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1988.
[28] T. Kailath, Linear Systems, Prentice–Hall, Englewood Cliffs, NJ, 1980.
[29] T. Kailath, Signal processing applications of some moment problems, in Moments in Mathe-

matics, Vol. 37, Proc. Symposia in Applied Mathematics, American Mathematical Society,
Providence, RI, 1987, pp. 71–109.

[30] W. Krajewski, A. Lepschy, M. Redivo-Zaglia, and U. Viaro, A program for solving the L2

reduced-order model problem with fixed denominator degree, Numer. Algorithms, 9(1995),
pp. 355–377.

[31] S. Kung and D. Lin, Optimal Hankel norm model reduction: Multivariable systems, IEEE
Trans. Automat. Control, 26 (1981), pp. 832–854.

[32] L. Meier and D. Luenberger, Approximation of linear constant system, in IEEE Trans.
Automat. Control, 12 (1967), pp. 585–588.

[33] R. Ober, Balanced realizations: Canonical form, parametrization, model reduction, Internat.
J. Control, 46 (1987), pp. 643–670.

[34] R. Peeters and B. Hanzon, A balanced canonical form for discrete-time stable all-pass sys-
tems, Systems and Networks: Mathematical Theory and Applications, Vol. 2, Akademie-
Verlag, Berlin, 1994, pp. 417–420.

[35] V. Potapov, The multiplicative structure of J-contractive matrix functions, Amer. Math. Soc.
Transl., 15 (1960), pp. 131–243.

[36] I. Schur, On power series which are bounded in the interior of the unit circle, I. Schur. methods
in operator theory and signal processing, Oper. Theory Adv. Appl., 18 (1986). Translation
from J. Reine Angew. Math. 147, 205-232 (1917).

[37] J. Spanos, M. Milman, and D. Mingori, A new algorithm for L2 optimal model reduction,
Automatica, 28 (1992), pp. 897–909.

[38] B. Wahlberg, On System Identification and Model Reduction, Report LiTH-ISY-I-0847, Uni-
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Abstract. We prove the approximate controllability of the semilinear heat equation in RN . We
introduce the weighted Sobolev spaces of Escobedo and Kavian and in that functional setting we
adapt the technique introduced by Fabre, Puel, and Zuazua for the problem in bounded domains.
That is, we first prove the approximate controllability of the linear equation and by a fixed-point
method obtain the main result.
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1. Introduction. This paper is concerned with the approximate controllability
of the semilinear heat equation in unbounded domains Ω when the control acts on
the interior of Ω.

The general statement of the problem is as follows: Let ω be an open and
nonempty subset of Ω. We consider the following semilinear heat equation: yt −∆y + f(y) = hχω in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T ),
y(x, 0) = y0(x) in Ω,

(1.1)

where h = h(x, t) ∈ L2(ω × (0, T )), χω is the characteristic function of ω, and y0 ∈
L2(Ω). We shall assume that f is a real and globally Lipschitz function such that
f(0) = 0. Let M be its Lipschitz constant, i.e.,

|f(s)− f(σ)| ≤M |s− σ|, ∀s,∀σ ∈ R.(1.2)

We say that the system (1.1) is approximately controllable in L2(Ω) at time T > 0
if the following holds: “For every y0 ∈ L2(Ω), the set of reachable states at time T > 0,

E(T ) = {y(x, T ), y solution of (1.1) with h ∈ L2(Q)}
is dense in L2(Ω).”

When Ω is a bounded set, Fabre, Puel, and Zuazua [6] proved the approximate
controllability of (1.1) in Lp(Ω), 1 ≤ p < ∞. Their proof is divided in two parts: a)
approximate controllability of the linearized system; b) fixed-point technique.

This technique cannot be applied when Ω is an unbounded set since the compact-
ness of Sobolev’s embeddings is one of the main ingredients used in b). In [14], we
proved the approximate controllability of the semilinear heat equation in unbounded
domains by an approximation method (used also in [13] for an insensitizing con-
trol problem). We considered the control problem in bounded domains of the form
Ωr = Ω ∩ Br, where Br denotes the ball centered in zero of radius r. We showed
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that the controls proposed in [6], for the problem restricted to Ωr, converge weakly
in Lp(ω × (0, T )) as r → ∞ to an approximate control for our problem in the whole
domain Ω. Nevertheless, this proof is indirect and rather technical and it does not
provide a method to effectively compute numerically the control.

The aim of this paper is to adapt the techniques introduced in [6] to unbounded
domains by introducing the weighted Sobolev spaces of Escobedo and Kavian [4] that
guarantee the compactness of the Sobolev’s embeddings. The use of these spaces
is interesting since it allows us to prove our approximate controllability result in a
“direct” way. It could also be interesting for numerical purposes.

Even if it is a known technique in the study of the asymptotic behavior of some
systems, it has not been used for controllability problems, as far as we know.

Nevertheless, this proof is valid only when Ω = RN or a cone-like domain, since
it is necessary to make a change of variables. For simplicity we limit ourselves to the
case Ω = RN and p = 2.

Under these conditions, the semilinear heat equation given in (1.1) reads as fol-
lows: {

ut −∆u+ f(u) = hχω in RN × (0, T ),
u(x, 0) = u0(x) in RN .(1.3)

The main result of the paper follows.
Proposition 1.1. If f is globally Lipschitz and f(0) = 0, system (1.3) is ap-

proximately controllable in L2(RN ) at any time T > 0. Furthermore, we can reach a
dense set of final states by using controls of the form

h(x, t) = (t+ 1)−N/2−1K−1

(
x√

1 + t

)
‖φ‖L1(q′)λ̃χω,

where λ̃ ∈ sgnφ̃ and φ̃(x, t) = φ( x√
1+t

, log(1 + t)) with φ solution of a suitable heat

equation, q′ = {(y, s), s ∈ (0, log(T + 1)), y = e−s/2x, x ∈ ω} and K a weight.
In order to implement the fixed point argument introduced by Fabre, Puel, and

Zuazua in [6], we must first study the approximate controllability problem associated
with the linear system with potential:{

ut −∆u+ a(x, t)u = hχω in RN × (0, T ),
u(x, 0) = u0(x) in RN(1.4)

with a(x, t) ∈ L∞((0, T )× RN ).
To avoid the problems related to the noncompactness of the Sobolev’s embeddings

in RN , we consider the operator

Lf = −∆f − y · ∇f
2

= − 1

K
div(K∇f),

K(y) = exp

( |y|2
4

)
,

D(L) ⊂ L2(K) =

{
f :

∫ N

R
K(y)|f(y)|2dy <∞

}
and the evolution equation{

vs + Lv +A(s, y)v =
N

2
v +H(y, s)χω′(s) in RN × (0, S),

v(y, 0) = v0(y) in RN
(1.5)
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with v0(y) ∈ L2(K), ω′ a suitable set in RN × (0, S), and S = log(T + 1). A change
of variables transforms (1.4) in (1.5). In fact, if we define for s ≥ 0, y ∈ RN

v(y, s) = e
sN
2 u(es/2y, es − 1),

A(y, s) = esa(es/2y, es − 1),

H(y, s) = e
s(N+2)

2 h(es/2y, es − 1);

(1.6)

then, for u0 ∈ L2(K) and u solution of (1.4), v verifies (1.5) with v0 = u0, S =
log(T + 1), and ω′(s) = e−s/2ω.

Reciprocally, if we know a solution v of (1.5), and we define for t ≥ 0, x ∈ RN

u(x, t) = (1 + t)−N/2v
(

x√
1 + t

, log(1 + t)

)
,(1.7)

it is not difficult to see that u satisfies (1.4) with u0 = v0, T = eS − 1, and

a(x, t) = (1 + t)−1A

(
x√

1 + t
, log(1 + t)

)
,

h(x, t) = (1 + t)−N/2−1H

(
x√

1 + t
, log(1 + t)

)
.

That change of variables is interesting because the operator L defined above has
compact inverse in L2(K) and then the equation (1.5) can be studied in the same
manner as the heat equation in a bounded region Ω of RN .

The paper is organized as follows. In section 2 we introduce the weighted Sobolev
spaces of Escobedo and Kavian and give some a priori estimates of the norm of the
solution in these spaces. In section 3 we state some preliminary results concerning
the existence and properties of the minima of a functional arising in the approximate
controllability of the linear case. Section 4 is devoted to proving the approximate
controllability of the linear case. We conclude with section 5 by proving Proposition
1.1 by a fixed-point method. Finally, in section 6 we discuss some extensions of the
methods used in this paper.

2. Weighted Sobolev spaces. In this section we introduce the weighted Sobolev
spaces of Escobedo and Kavian. We are going to see that system (1.5) is well posed
in these spaces. We give some a priori estimates on the norm of the solution.

Definition 2.1. Let K(y) = exp(|y|2/4). We define

L2(K) =

{
f ;

∫
RN

K(y)|f(y)|2dy <∞
}
,

Hs(K) = {f ∈ L2(K);Dαf ∈ (L2(K))N ,∀α : |α| ≤ s}.

We endow this space with the inner products (f, g)L2(K) =
∫
RN Kfgdy, (f, g)H1(K) =

(f, g)L2(K) + (∇f,∇g)(L2(K))N , (f, g)H2(K) = (f, g)H1(K) + (∆f,∆g)L2(K) with, re-
spectively, the associated norm ‖ ‖L2(K), ‖ ‖H1(K), ‖ ‖H2(K).

We recall the following result due to Escobedo and Kavian (see [4], [7]).
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Lemma 2.2.
i) There exists C > 0 such that for every v ∈ H1(K)∫

RN
K(y)|v(y)|2|y|2dy ≤ C

∫
RN

K(y)|∇v(y)|2dy.

ii) The imbedding H1(K) ↪→ L2(K) is compact.
iii) ∀v ∈ H1(K), N2

∫
RN K(y)|v|2dy ≤ ∫RN K(y)|∇v|2dy.

iv) v ∈ H1(K) ⇐⇒ K1/2v ∈ H1(RN ).
v) ∀f ∈ L2(K) there exists a unique u ∈ H2(K) such that Lu = f , i.e., D(L) =

H2(K).
vi) ϕ1 = exp(−|y|2/4) is an eigenfunction of L corresponding to λ1 = N/2, the

minimum eigenvalue of L, i.e., Lϕ1 = N/2ϕ1.
vii) L is a positive operator, self-adjoint in L2(K) with compact inverse.
viii)

If N = 1, v ∈ H1(K), then K1/2v ∈ L∞(R).
If N = 2, H1(K) ⊂ Lq(K) ∀q ≥ 2, and q <∞.
If N ≥ 3, H1(K) ⊂ L2∗(K) with 2∗ = 2N

N−2 .

Remark 1. Moreover, we have L2(K) ⊂ L1(RN ) with continuous embedding. If
v ∈ L2(K), then∫

RN
|v| =

∫
RN

1

K1/2
K1/2|v| ≤

(∫
RN

K|v|2
)1/2(∫

RN

1

K

)1/2

<∞.

The results of Lemma 2.2 allow us to prove (see, e.g., [9, Theorem 4.1, p. 257]),
that if H ∈ L∞(0, S;L2(K)), A(s, y) ∈ L∞(RN × (0, S)), and u0 ∈ L2(K), then (1.5)
has a unique solution:

v ∈ C([0, S];L2(K)) ∩ C((0, S];H2(K)),
vs ∈ L∞((0, S];L2(K)).

(2.1)

Moreover, v is given by the variation of constants formula. That is,

v(s) = S∗(s)v0 +

∫ s

0

S∗(s− σ)(A(σ)v(σ) +H(σ))dσ,(2.2)

where S∗ is the analytic semigroup generated by L−(N/2)I in L2(K). This semigroup
is given in the following way (cf. Kavian [7], Escobedo–Zuazua [5]): For every g ∈
L2(K), for every s > 0, and for every y ∈ RN

(S∗(s)g)(y) = esN/2(G(es − 1) ∗ g)(es/2y),

where G is the heat kernel, i.e., G(x, t) = (4πt)−N/2exp(−|x|
2

4t ).
Proposition 2.3. Let v be the solution of (1.5) given in (2.1). Then, there exists

a constant C = C(A,S) > 0 depending only on A,S such that
i)

‖v‖∞,K ≤ C(‖v0‖L2(K) + ‖H‖∞,K),(2.3)

ii)

‖v(s)‖H1(K) ≤ C(1 + s−1/2)(‖v0‖L2(K) + ‖H‖∞,K) ∀s > 0,(2.4)
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iii)

‖vs(s)‖(H1(K))′ ≤ C(1 + s−1/2)
(‖v0‖L2(K) + ‖H‖∞,K

) ∀s > 0,(2.5)

where ‖ ‖∞,K denotes the norm in L∞((0, S);L2(K)) and (H1(K))′ is the dual space
of H1(K).

Proof. The proofs of i) and ii) are classical. We give a sketch of the proof. For
proving i) it is enough to multiply (1.5) by v (in L2(K)) and then to apply Hölder’s,
Schwarz’s, and Gronwall’s inequalities.

For proving ii) we express v by the variation of constants formula (2.2) and take
H1(K) norms (see, e.g., [3] or [12]). To prove iii) we observe that (1.5) is satisfied in
(H1(K))′, that is,

vs = −Lv +A(s, y)v +
N

2
v +H(y, s)χω′(s) in (H1(K))′.

Let ϕ ∈ H1(K); then

〈vs(s), ϕ〉1 = −
∫
RN
K(Lv(s))ϕ−

∫
RN
KA(s)v(s)ϕ+

∫
RN

N

2
Kv(s)ϕ

+

∫
RN
KH(s)ϕ,

where 〈 , 〉1 denotes the duality pairing ((H1(K))′, H1(K)). We then have that

‖vs(s)‖(H1(K))′ ≤ C{‖v(s)‖H1(K) + ‖H(s)‖L2(K)},
and by ii) we conclude

‖vs(s)‖(H1(K))′ ≤ C(1 + s−1/2)
(‖v0‖L2(K) + ‖H(s)‖∞,K

) ∀s > 0,

where the constant C may vary from line to line.

3. Study of a functional arising in the controllability of linear sys-
tems. In this section we study the existence and properties of the minima of a
functional arising in the linear control problem. Let φ0 ∈ L2(K), v1 ∈ L2(K),
A(y, s) ∈ L∞(RN × (0, S)), and α > 0. We introduce the functional

J(φ0;A, v1) =
1

2

(∫
q′
|φ(x, s)|dsdx

)2

+ α‖φ0‖L2(K) −
∫
RN

Kv1φ0,(3.1)

where q′ = {(y, s); s ∈ (0, T ), y = e−s/2x, x ∈ ω} and φ denotes the solution of the
transposed problem:{

−φs + Lφ+A(y, s)φ =
N

2
φ in RN × (0, S),

φ(S) = φ0 in RN .
(3.2)

The main result of this section is the following.
Proposition 3.1. For every α > 0, v1 ∈ L2(K) and A ∈ L∞(RN × (0, S)),

J(.;A, v1) is a real strictly convex continuous function in L2 (K) and satisfies

lim inf
‖φ0‖L2(K)→∞

J(φ0;A, v1)

‖φ0‖L2(K)
≥ α.(3.3)
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The functional J(.;A, v1) achieves its minimum at a unique point φ̂0 ∈ L2(K).
Furthermore,

φ̂0 = 0⇐⇒ α ≥ ‖v1‖L2(K).

The proof of Proposition 3.1 is based on the following two results. The first one
is a unique continuation property that is a direct consequence of a result due to Saut
and Scheurer [10, Th. 1.1]. The second one is a classical compactness result (see, e.g.,
[11, Th. 5, p. 84]). We state it for completeness.

Proposition 3.2. Let ω be an open an nonempty set, ω′(s) = e−s/2ω and
q′ = {(y, s), s ∈ (0, T ), y ∈ ω′(s)}. Assume that A(y, s) ∈ L∞(RN × (0, S)). Let
φ ∈ L2((0, S);H2(K)) be such that{

−φs + Lφ+A(y, s)φ =
N

2
φ in RN × (0, S),

φ = 0 in q′.
Then φ ≡ 0.

(3.4)

Theorem 3.3. Let X,B, Y be Banach spaces such that X ⊂ B ⊂ Y with con-
tinuous embeddings, the embedding X ⊂ B being compact. Let 1 ≤ p ≤ ∞. If F is a
bounded subset of Lp(0, T ;X) and

‖τhf − f‖Lp(0,T−h;Y ) → 0 as h→ 0 uniformly for f ∈ F ,

where τhf(t) = f (t+ h) , then F is relatively compact in Lp(0, T ;B) (in C([0, T ] ;B)
if p =∞).

Proof of Proposition 3.1. The continuity and strict convexity are immediate. In
order to prove (3.3) we proceed by contradiction. That is, suppose that there exists
a sequence {φ0

n} ⊂ L2(K) such that

‖φ0
n‖L2(K) →∞, n→∞,(3.5)

lim inf
n→∞

J(φ0
n;A, v1)

‖φ0
n‖L2(K)

< α.(3.6)

We put ψ0
n =

φ0
n

‖φ0
n‖L2(K)

. Then,

J(φ0
n;A, v1)

‖φ0
n‖L2(K)

=
1

2
‖φ0

n‖L2(K)

(∫
q′
|ψn|

)2

+ α−
∫
RN

Kv1ψ0
n,(3.7)

where ψn denotes the solution of (3.2) with data ψn(S) = ψ0
n.

Since ‖ψ0
n‖L2(K) = 1, we can extract a subsequence (still denoted ψ0

n ) such that
ψ0
n ⇀ ψ0 weakly in L2(K).On the other hand, by Proposition 2.3, ‖ψn‖L2((0,S);L2(K)) ≤

C, and, therefore, we can extract a subsequence (of the previous one) such that

ψn ⇀ ψ weakly in L2((0, S);L2(K)).(3.8)

But (2.4) and (2.5) in Proposition 2.3 and Theorem 3.3 imply that for every T ≥ ε > 0

ψn → ψ strongly in C([0, S − ε];L2(K)).(3.9)
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Multiplying the equation satisfied by ψn by suitable test functions, and passing to the
limit along the sequence, we obtain that ψ ∈ L2(0, S;H2(K)) satisfies

−ψs + Lψ +Aψ =
N

2
ψ in RN × (0, S), ψ(S) = ψ0.

Let us see that (3.5) and (3.6) imply ψ ≡ 0. Observe that (3.8) and (3.9) imply
that ψnχω′(s) → ψχω′(s) in L1(RN × (0, S)). In fact,∫

q′
|ψ − ψn| ≤

∫ S−ε

0

∫
RN
|ψ − ψn|+

∫ S

S−ε

∫
RN
|ψ − ψn|.

In view of (3.9), the first term in the right-hand side converges to zero as n→∞.
The second term is, by (3.8), bounded by εC with C independent of n. Therefore,∫

q′
|ψ| = lim

n→∞

∫
q′
|ψn|.

We observe that
∫
q′ |ψ| = 0. Otherwise, (3.5) and (3.7) contradict (3.6). This proves

that ψ ≡ 0 in q′. Hence, by Proposition 3.2, ψ ≡ 0 in RN × (0, S) and ψ0 = 0. But

J(φ0
n;A, v1) ≥ ‖φ0

n‖L2(K)

(
α−

∫
RN

Kv1ψ0
ndy

)
.

In view of (3.5) and the convergence ψ0
n ⇀ 0, we obtain a contradiction with (3.6)

and we prove (3.3).

Now, if α ≥ ‖v1‖L2(K), we have J(φ0;A, v1) ≥ 0 for every φ0 and, hence, φ̂0 = 0.

Suppose now φ̂0 = 0; then J(φ0;A, v1) ≥ 0 for all φ0 ∈ L2(K). In particular,

lim
t→0+

J(tφ0;A, v1)

t
≥ 0 ∀φ0 ∈ L2(K),

and, therefore,

α‖φ0‖L2(K) ≥
∫
RN
Kv1φ0 ∀φ0 ∈ L2(K).

In particular, for φ0 = v1 ∈ L2(K) we get α ≥ ‖v1‖L2(K).
In order to study the nonlinear case, we need to make precise the dependence of

the minima with respect to the potential. This is gathered in the following proposition.
Proposition 3.4.
(i) If we denote by M the mapping

M : L∞(RN × (0, S))× L2(K)→ L2(K); M(A, v1) = φ̂0,

and if W is a compact subset of L2(K) and B a bounded subset of L∞(RN ×
(0, S)), then M(B ×W ) is a bounded subset of L2(K).

(ii) Moreover, if An ⇀ A weakly* in L∞((0, S) × RN ) and v1
n → v1 strongly in

L2(K), then φ̂0
n converges strongly in L2(K) to φ̂0.

Proof. In order to get (i), we first prove that (3.3) is uniform for (A, v1) in
B ×W . We again argue by contradiction and follow the same argument used in the
proof of (3.3): suppose that there exist sequences {An} ⊂ B; {v1

n} ⊂W such that the
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corresponding sequence of minimizers {φ̂0
n} ⊂ L2(K) verify (3.5). Since B is bounded

and W is compact, there exist A ∈ L∞(RN × (0, S)), v1 ∈ L2(K), and a subsequence
(still denoted by n) such that

An ⇀ A weakly* in L∞(RN × (0, S)),(3.10)

and

v1
n → v1 strongly in L2(K).(3.11)

Suppose that

lim
n→∞ inf

J(φ̂0
n;An, v

1
n)

‖φ̂0
n‖L2(K)

< α.(3.12)

As above, we denote by ψ0
n =

φ0
n

‖φ0
n‖L2(K)

. Since ‖ψ0
n‖L2(K) = 1 and An is bounded

in L∞(RN × (0, S)), the solution ψn of (3.2) corresponding to An with data ψn(S) =
ψ0
n, is also bounded. We can repeat the arguments of the previous proof to obtain

lim
n→∞ inf

J(φ̂0
n;An, v

1
n)

‖φ̂0
n‖L2(K)

≥ α,(3.13)

which contradicts (3.12). Now, if we suppose that the range of M is not bounded,

we can construct a sequence {An, v1
n, φ̂

0
n} ⊂ B ×W ×L2(K) satisfying (3.10), (3.11),

and ‖φ̂0
n‖L2(K) →∞. But for every n,

J(φ̂0
n;An, v

1
n) ≤ J(0;An, v

1
n) = 0,(3.14)

which contradicts (3.13) and proves (i).

We now prove (ii). From (i), we know that the minimizers φ̂0
n are bounded in

L2(K). Hence, they weakly converge to an element φ̃0 ∈ L2(K) and φ̂n weakly
converge in L2(0, S;L2(K)) to the solution φ̃ of (3.2) corresponding to A and φ̃(S) =
φ̃0. We can argue, as in the proof of Proposition 3.1, to show that∫

q′
|φ̃| = lim

n→∞

∫
q′
|φ̂n|,

and then

J(φ̃0;A, v1) ≤ lim
n→∞ inf J(φ̂0

n;An, v
1
n).(3.15)

Let us prove that for every φ0 ∈ L2(K),

lim
n→∞J(φ0;An, v

1
n) = J(φ0;A, v1).(3.16)

We denote by φn the solution of (3.2) with potential An and φn(S) = φ0. Since {An}
is a uniformly bounded sequence, Proposition 2.3 and Theorem 3.3 give us the strong
convergence of φn in L2(0, S;L2(K)) to the solution φ of (3.2) with potential A and
φ(S) = φ0. Passing to the limit in each term of the functional, we obtain (3.16).

Moreover, we have that

∀φ0 ∈ L2(K), J(φ̂0
n;An, v

1
n) ≤ J(φ0;An, v

1
n).(3.17)
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Combining (3.15) and (3.17), we obtain

J(φ̃0;A, v1) ≤ lim inf
n→∞ J(φ̂0

n;An, v
1
n) ≤ lim sup

n→∞
J(φ̂0

n;An, v
1
n)

≤ lim
n→∞J(φ0;An, v

1
n) ∀φ0 ∈ L2(K);(3.18)

hence, we obtain

∀φ0 ∈ L2(K), J(φ̃0;A, v1) ≤ J(φ0;A, v1).(3.19)

The strict convexity of J(.;A, v1) and (3.19) imply that φ̃0 = φ̂0. But, with this
equality, (3.18) gives

J(φ̂0;A, v1) = lim
n→∞J(φ̂0

n;An, v
1
n).(3.20)

On the other hand, we have

lim
n→∞

∫
RN
Kv1

nφ̂
0
ndy =

∫
RN
Kv1φ̂0dy,∫

q′
|φ̂|dyds = lim

n→∞

∫
q′
|φ̂n|dyds,

‖φ̂0‖L2(K) ≤ lim inf
n→∞ ‖φ̂

0
n‖L2(K).

Equation (3.20) then implies that

lim
n→∞ ‖φ̂

0
n‖L2(K) = ‖φ̂0‖L2(K).

Since φ̂0
n converges weakly to φ̂0 in L2(K) and L2(K) is uniformly convex, we de-

duce that the convergence is strong in L2(K), which ends the proof of Proposition
3.4.

We are now going to interpret the results of Proposition 3.1: Since the functional
J(.;A, v1) is convex continuous with real values, it possesses a subdifferential at every

point of L2(K) (e.g., Aubin [1, p. 187]). At its minimum, we have 0 ∈ ∂J(φ̂0;A, v1).
Let us now prove the following proposition.
Proposition 3.5. For every φ0 ∈ L2(K), φ0 6= 0, denoting by φ the solution of

(3.2) with φ(S) = φ0, we have

∂J(φ0;A, v1) =

{
ξ ∈ L2(K);∃λ ∈ sgn(φ)χq′ satisfying∫

RN
Kξ(y)θ0(y)dy =

(∫
q′
|φ|dy ds

)(∫
q′
λθdy ds

)
+α

∫
RN

Kφ0(y)

‖φ0‖L2(K)
θ0(y)dy −

∫
RN
Kv1(y)θ0(y)dy for every θ0 ∈ L2(K),

where θ is the solution of (3.2) with θ(S) = θ0

}
.

Proof. Since the functions A and v1 are fixed, we write J(φ0). We have J(φ0) =
1(φ0) + 2(φ0), where

1 =
1

2

(∫
q′
|φ|
)2

; 2 = α‖φ0‖L2(K) −
∫
q′
Kv1φ0.
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Since 2 is Gateaux differentiable at every φ0 6= 0 in L2(K), and 1 is sub-
differentiable at every φ0 6= 0 in L2(K), we have for every φ0 6= 0 in L2(K):
∂J(φ0) = ∂1(φ0) + ∂2(φ0).

We now determine the set ∂1(φ0). Let ξ ∈ ∂1(φ0). By definition, we have

∀θ0 ∈ L2(K) (ξ, θ0)L2(K) ≤ lim
t→0+

1(φ0 + tθ0)− 1(φ0)

t
.(3.21)

We can prove that

lim
t→0+

1(φ0 + tθ0)− 1(φ0)

t
=

(∫
q′
|φ|
)(∫

q′/A
(sgnφ)θ +

∫
A
|θ|
)
,

where A = {(y, s)|φ(y, s) = 0} ∩ q′. In view of (3.21), that implies

(ξ, θ0)L2(K) ≤
(∫

q′
|φ|
)(∫

q/A
(sgnφ)θ +

∫
A
|θ|
)
.(3.22)

Let us call F the mapping from L2(K) to L1(q′) , F (θ0) = θ , with θ the solution
of (3.2) corresponding to θ0. Then, the mapping F (θ0) → (ξ, θ0)L2(K) is a linear
form on F (L2(K)) ⊂ L1(q′) and applying the Hahn–Banach theorem, there exists a
linear form V on L1(q′), such that ∀θ0 ∈ L2(K), (ξ, θ0)L2(K) = V(θ), and for every
ϑ ∈ L1(q′)

V(ϑ) ≤
(∫

q′
|φ|
)(∫

A
|ϑ|+

∫
q′/A

(sgnφ)ϑ

)
.(3.23)

From (3.23), we deduce that V is linear and continuous on L1(q′) and, hence, V ∈
L∞(q′). Therefore, for every ϑ ∈ L1(q′), we have∣∣∣∣∣

∫
q′
V(y, s)ϑ(y, s)dyds−

(∫
q′
|φ|
)(∫

q′/A
(sgnφ)ϑ

)∣∣∣∣∣ ≤
(∫

q′
|φ|
)(∫

A
|ϑ|
)
.(3.24)

Take first ϑ ∈ L1(q′), whose support is contained in q′/A to obtain V(y, s) =

(
∫
q′ |φ|) φ(y,s)

|φ(y,s)| for almost every (y, s) ∈ q′/A. Now take ϑ whose support is contained

in A. We obtain that |V(y, s)| ≤ (
∫
q′ |φ|) almost everywhere on A. This proves that

V = (
∫
q′ |φ|)λ with λ ∈ sgnφχq′ .

Reciprocally, let V ∈ (
∫
q′ |φ|)sgnφχq′ . Then, if θ is the solution of (3.2) with

θ(S) = θ0, the mapping θ0 → ∫
q′ Vθdyds is linear and continuous on L2(K). Thus,

there exists a unique ξ ∈ L2(K) such that

(ξ, θ0)L2(K) =

∫
q′
Vθ(y, s)dyds.(3.25)

One can easily prove that ξ satisfies (3.22) and, hence, ξ ∈ ∂1 concluding the proof
of Proposition 3.5.



2138 LUZ DE TERESA

4. The linear case. In this section, we prove the approximate controllability in
L2(RN ) of the linear heat equation with potential. To this aim we need the following
approximate controllability result in L2(K).

Proposition 4.1. Let v1 ∈ L2(K) with ‖v1‖L2(K) > α, and φ̂ the solution of

(3.2) with φ̂(S) = φ̂0 the minimizer of J(.;A, v1). Then, there exists λ ∈ sgn(φ̂)χq′
such that the solution v of{

vs + Lv +A(y, s)v =
N

2
v + ‖φ̂‖L1(q′)K

−1λχω′(s) in RN × (0, S),

v(0) = 0 in RN
(4.1)

satisfies

v(S) = v1 − α φ̂0

‖φ̂0‖L2(K)

.

Therefore,

‖v(S)− v1‖L2(K) = α.

Remark 2. If ‖v1‖L2(K) ≤ α, we can take v = 0 to obtain ‖v(S) − v1‖L2(K) ≤ α
with control zero.

Proof of Proposition 4.1. Since ‖v1‖L2(K) > α, φ̂0 minimizes J(.;A, v1) and J is

subdifferentiable in φ̂0 6= 0, we have that 0 ∈ ∂J(φ̂0). In view of Proposition 3.5,
there exists λ ∈ sgn(φ)χq such that for every θ0 ∈ L2(K)

0 =

(∫
q′
|φ̂|
)(∫

q′
λθ

)
+ α

∫
RN
K

φ̂0

‖φ̂0‖L2(K)

θ0 −
∫
RN
Kv1θ0,(4.2)

where θ is the solution of (3.2) with θ(S) = θ0.
Now, if we multiply (4.1) by θ in L2(K), we obtain∫ S

0

∫
RN
Kvsθ −

∫ S

0

∫
RN
θdiv(K∇v) +

∫ S

0

∫
RN
KAθv

=
N

2

∫ S

0

∫
RN
Kθv + ‖φ̂‖L1(q′)

∫ S

0

∫
RN
λθχω′ .(4.3)

Therefore, ∫
RN
Kv(S)θ0 = ‖φ̂‖L1(q′)

∫
q′
λθ.(4.4)

By (4.2), we see that (4.4) is equivalent to

(v(S), θ0)L2(K) =

(
−α φ̂0

|φ̂0|L2(K)

+ v1, θ0

)
L2(K)

,

which concludes the proof.
We can now prove the main result in this section
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Proposition 4.2. Let u0, u1 ∈ L2(RN ), ω ⊂ RN an open and nonempty set.
Then, for every α > 0, there exists h ∈ L∞(RN × (0, T )) such that the solution u of{

ut −∆u+ a(x, t)u = hχω in RN × (0, T ),
u(x, 0) = u0(x) in RN(4.5)

satisfies

‖u(T )− u1‖L2(RN ) ≤ α.
Proof. We divide the proof into several steps.
Step 1. The case u0 = 0 and u1 ∈ L2(K).
We define A like in (1.6) and v1(y) = (T + 1)N/2u1((T + 1)1/2y). We have that

v1 ∈ L2(K). If ‖v1‖L2(K) > α we construct H like in Proposition 4.1; otherwise
H ≡ 0. Then v solution of (4.1) satisfies ‖v(S)− v1‖L2(K) ≤ α with S = log(T + 1).

Therefore, u(x, t) = (1 + t)−N/2v( x√
1+t

, log(1 + t)) satisfies (4.5) with h(x, t)χω =

(1 + t)−N/2−1e
−x2

1+t ‖φ‖L1(q′)λ, λ ∈ sgnφ, and

‖u(T )− u1‖2L2(RN ) ≤
∫
RN

e
|x|2

4(1+T ) (1 + T )−N |v
(

x√
1 + T

, S

)
− v1

(
x√

1 + T

)
|2dx

≤
∫
RN

K(1 + T )−N/2|v(S, y)− v1(y)|2dy
≤ (1 + T )−N/2‖v(S)− v1‖2L2(K) ≤ α2.

Step 2. The case u0 = 0 and u1 ∈ L2(RN ).
Since L2(K) ⊂ L2(RN ) with dense inclusion, we know that there exists a sequence

u1
n ⊂ L2(K) and Ñ > 0 such that n > Ñ implies

‖u1
n − u1‖L2(RN ) <

α

2
.

We just proved that there exists hn ∈ L∞((0, T );L2(RN )) such that the solution u of
( 4.5) satisfies

‖u(T )− u1
n‖L2(RN ) ≤

α

2
.

Therefore, hn with n > Ñ is an approximate control of our problem.
Step 3. The general case, i.e., u0, u1 ∈ L2(RN ) arbitrary.
We write u = y + Y , where y is the solution of{

yt −∆y + a(x, t)y = 0 in RN × (0, T ),
y(x, 0) = u0(x) in RN .(4.6)

Then y(T ) ∈ L2(RN ) . We construct h(u1 − y(T )) such that the solution Y of{
Yt −∆Y + a(x, t)Y = hχω in RN × (0, T ),
Y (x, 0) = 0 in RN(4.7)

satisfies

‖Y (T )− (u1 − y(T ))‖L2(RN ) ≤ α.(4.8)

Therefore, in (4.5) it is enough to chose h = h(u1 − y(T )), since the unique solution
is u = y + Y and in view of (4.8) we conclude the proof.
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5. The nonlinear case. We first analyze the case where f is of class C1, f(0) =
0 and verifies (1.2). We define the continuous function

g(z) =


f(z)

z
if z 6= 0,

f ′(0) if z = 0.

For ν̃ ∈ L2(0, S;L2(K)), u0 ∈ L2(K) we consider the solution u of{
ut −∆u+ g(ν̃)u = hχω in RN × (0, T ),

u(0) = u0 in RN .
(5.1)

Remark 3. The definition of g indicates that if ν̃ = u, then u is the solution of
the semilinear equation (1.3).

We define v and H like in (1.6), ν(y, s) = esN/2ν̃(es/2y, es − 1) and G(ν, s) =
esg(e−sN/2ν), ω′(s) = e−s/2ω. We see that if u is the solution of (5.1), then v satisfies vs + Lv +G(s, ν)v =

N

2
v +Hχω′(s) in RN × (0, S),

v(0) = u0 in RN
(5.2)

We are going to work on this equation to apply the fixed-point method introduced in
[6] to obtain the approximate control of (1.3).

We write v = w + V , where w is the solution of ws + Lw +G(s, ν)w =
N

2
w in RN × (0, S),

w(y, 0) = u0(y) in RN .
(5.3)

For every ν ∈ L2(K) , G(s, ν) ∈ L∞((0, S)×RN ) and, therefore, w ∈ C([0, S];L2(K)).
We can apply Theorem 3.3 to obtain that

{v1 − w(S), when ν ∈ L2(0, S;L2(K))}(5.4)

is a compact subset of L2(K).
In view of Proposition 4.1 we know that there exists λ(ν, v0, v1)

∈ sgn(φ̂(ν, v0, v1))χq′ with φ̂ minimizing J(φ0;G(s, ν), v1 − w(S)) and such that the
solution V of Vs + LV +G(s, ν)V =

N

2
V + ‖φ̂‖L1(q′)K

−1λχω′ in RN × (0, S),

V (y, 0) = 0 in RN
(5.5)

satisfies

‖V (S)− v1 + w(S)‖L2(K) ≤ α.
We deduce that v = w + V satisfies ‖v(S)− v1‖L2(K) ≤ α.

For λ ∈ sgn(φ̂(ν, v0, v1))χq′ , we denote by v(λ) the solution of vs + Lv +G(s, ν)v =
N

2
v + ‖φ̂‖L1(q′)K

−1λχω′ in RN × (0, S),

v(y, 0) = v0 in RN ,
(5.6)
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and consider the following set valued mapping:
Λ : L2((0, S);L2(K))→ P (L2((0, S);L2(K)

)
with

Λ(ν) = {v(λ), λ ∈ sgn(φ̂(ν, v0, v1))χq′ and ‖v(S)− v1‖L2(K) ≤ α}.(5.7)

We just proved that Λ(ν) is always a nonempty subset of L2((0, S);L2(K)) and we
have the following result.

Proposition 5.1. If f is of class C1 in R, f(0) = 0 and satisfies (1.2), then:
(i) There exists a compact subset X of L2(0, S;L2(K)) such that for every ν ∈

L2(0, S;L2(K)), Λ(ν) ⊂ X.
(ii) For all ν ∈ L2(0, S;L2(K)) , Λ(ν) is a nonempty, convex, and compact subset

of L2(0, S;L2(K)).
(iii) Λ is upper hemicontinuous on L2(0, S;L2(K)).
Proof. (i) Since G ∈ L∞((0, S)× RN ) and from Proposition 3.4, the solutions of −φ+ Lφ+G(t, ν)φ =

N

2
φ in RN × (0, S),

φ(S) = φ̂0,
(5.8)

where φ̂0 is the minimizer of J(.;G(t, ν), v1), are bounded in L∞(0, S;L2(K)). There-
fore, there exists a bounded set X in L2(0, S;L2(K)) such that for every ν ∈
L2(0, S;L2(K)), Λ(ν) ⊂ X. Let us now prove that we can choose X being com-
pact in L2(0, S;L2(K)). For this, it is sufficient to prove that the set V = {v(λ), λ ∈
sgn(φ̂(ν, v0, v1)), ν ∈ L2(0, S;L2(K))} is relatively compact in L2(0, S;L2(K)).

If v = v(λ) ∈ V, then there exist ν ∈ L2(0, S;L2(K)) and λ ∈ sgn(φ̂(ν, v0, v1))
such that we can write v = v∗ + v̂ + V (λ), where v∗, v̂, and V = V (λ) are defined by
the following equations: v∗s + Lv∗ =

N

2
v∗ in RN × (0, S),

v∗(0) = u0 in RN ,

 v̂s + Lv̂ +G(s, ν)(v∗ + v̂) =
N

2
v̂ in RN × (0, S),

v̂(0) = 0 in RN ,

 Vs + LV +G(s, ν)V =
N

2
V + ‖φ̂(ν, v0, v1)‖L1(q′)K

−1λχω in (0, S)× RN ,
V (0) = 0 in RN .

The function v∗ is fixed in L2(0, S;L2(K)). When varying ν in L2(0, S;L2(K)),
G(s, ν)v∗ describes a bounded set in L2(0, S;L2(K)). From (2.3), (2.4), (2.5), and
applying again Theorem 3.3, we see that v̂ describes (when varying ν) a relatively
compact set B1 ⊂ L2(0, S;L2(K)).

Since the functions φ̂(ν, v0, v1) are bounded in L2(0, S;L2(K)), we have

‖φ̂‖L1(q′)‖K−1/2λ‖L∞(RN×(0,T )) ≤ C
for some constant C > 0.
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Therefore, using again (2.3), (2.4), (2.5), and Theorem 3.3, we see that V (λ)
describes a relatively compact set B2 in L2(0, S;L2(K)). That proves that V ⊂
v∗ + B1 + B2 is relatively compact in L2(0, S;L2(K)). We choose for X the closure
of V in L2(0, S;L2(K)) to obtain (i).

(ii) We have already seen that for all ν ∈ L2(0, S;L2(K)), Λ(ν) is a nonempty set

of L2(0, S;L2(K)). Since the sets sgn(φ̂) and B(v1, α) are convex, it is easy to prove
that Λ(ν) is convex so we are just going to prove that it is compact. As we already
have Λ(ν) ⊂ X with X compact, we only have to prove that it is closed. Let {vn}n
be a sequence of elements of Λ(ν), which converges in L2(0, S;L2(K)) to an element
v ∈ X. Let us prove that v ∈ Λ(ν).

There exist functions λn ∈ sgn(φ̂) such that
v′n + Lvn +G(s, ν)vn =

N

2
vn + ‖φ̂‖L1(q′)K

−1λnχω′(s) in (0, S)× RN ,
vn(0) = v0 in RN ,
‖vn(S)− v1‖L2(K) ≤ α.

(5.9)

Since ‖λn‖∞ ≤ 1, there exists a subsequence λn converging weakly* in L∞(q′)
to an element λ ∈ L∞(q′). Furthermore, as λn ∈ sgn(φ̂) for every n, we have that

‖λ‖∞ ≤ 1 and λ = sgn0(φ̂) in {φ̂(ν, v0, v1) 6= 0} ∩ q′. This proves that λ ∈ sgnφ̂.
Now, by Proposition 2.3 and passing to the limit in (5.9), we obtain vs + Lv +G(s, ν)v =

N

2
v + ‖φ̂‖L1(q′)K

−1λχω′(s) in (0, S)× RN ,
v(0) = v0 in RN .

Due to the smoothing effects, vn(S) converges in L2(K) to v(S) and, therefore,
‖v(S)− v1‖L2(K) ≤ α. This proves that v ∈ Λ(ν) and concludes the proof of (ii).

(iii) We first recall that Λ is hemicontinuous at ν0 ∈ L2(0, S;L2(K)) if

ν → σ(Λ(ν), ϕ) = sup
v∈Λ(ν)

∫ S

0

∫
RN

Kϕvdyds

is upper semicontinuous at ν0 for every ϕ ∈ L2(0, S;L2(K)).
We then have to show that

∀ν0 ∈ L2(0, S;L2(K)), lim sup
νn→ν0

σ(Λ(νn), ϕ) ≤ σ(Λ(ν0), ϕ).

We denote by 〈u, v〉 the integral
∫ S

0

∫
RNKuv dyds. From (ii), we know that Λ(ν)

is compact in L2(0, S;L2(K)). Then, for every n ∈ N, there exists vn ∈ Λ(νn) such
that

σ(Λ(νn), ϕ) = 〈vn, ϕ〉.
From (i), (vn)n ⊂ X and, therefore, vn → v in L2(0, S;L2(K)). Let us prove that

v ∈ Λ(ν0). We write φn = φ̂(νn, v
0, v1). There exists λn ∈ sgn(φn) such that vn

satisfies
vn,s + Lvn +G(s, νn)vn =

N

2
vn + ‖φn‖L1(q′)K

−1λnχω in RN × (0, S),

v(y, 0) = v0 in RN ,
‖vn(S)− v1‖L2(K) ≤ α.
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We will need the following lemma.
Lemma 5.2. If νn → ν0 strongly in L2(0, S;L2(K)), then φ̂(νn, v

0, v1)→ φ̂(ν0, v
0, v1)

strongly in L2(K).
Proof of Lemma 5.2. The functions G(s, νn) are bounded in L∞((0, S) × RN ).

Hence, for a subsequence, it converges in the weak* topology to an element G̃ in
L∞((0, S)× RN ). But G is continuous and that means that G̃ = G(s, ν0). Moreover,
from (5.4) we know the existence of a subsequence wn(S) (where wn is the solution of
(5.3) corresponding to G(s, νn)) such that wn(S) → w(S) strongly in L2(K), where
w is the solution of (5.3) corresponding to G(s, ν0). In view of Proposition 3.4 (ii),
we have that

φ̂0
n → φ̂0 strongly in L2(K),

where φ̂0 is the minimizer of J(.;G(s, ν0), v1 − w(S)).

From Lemma 5.2 and Proposition 2.3, φ̂n converges strongly to φ̂(ν0, v
0, v1) in

L2(0, S;L2(K)). Hence, ‖φ̂n‖L1(q′) → ‖φ̂‖L1(q′) and

φ̂n(s, y)→ φ̂(s, y) almost everywhere in q′.

Since λn ∈ sgn(φ̂n), we can extract a subsequence converging weakly* in L∞(q′)
to λ ∈ sgn(φ̂)χω′(s). We then deduce that v is the solution of vs + Lv +G(s, ν0)v =

N

2
v + ‖φ̂‖L1(q′)K

−1λχω′(s) in RN × (0, S),

v(y, 0) = v0 in RN .

Moreover, due to the smoothing effects we keep the condition v(S) ∈ B(v1, α); thus
v ∈ Λ(ν0).

Now, we have 〈w, vn〉 → 〈w, v〉 with v ∈ Λ(ν0), which proves that Λ is upper
hemicontinuous in ν0.

Proposition 5.3. If f is of class C1, f(0) = 0, and satisfies (1.2), then there
exists v ∈ L2(0, S;L2(K)) such that v ∈ Λ(v).

Proof The restriction of Λ to the convex hull of X, conv(X) (that is compact
in L2(0, S;L2(K))) satisfies the hypothesis of Kakutani’s theorem, (see, e.g., Aubin
[1, p. 344]). We deduce that Λ has a fixed point v. We then have the existence of
φ0 ∈ L2(K) and λ ∈ sgn(φ)χq′ such that



−φs + Lφ+G(s, v)φ =
N

2
φ in RN × (0, S),

φ(S) = φ0 in RN ,

vs + Lv +G(s, v)v =
N

2
v + ‖φ‖L1(q′)K

−1λχω′(s) in RN × (0, S),

v(y, 0) = v0(y) in RN ,
‖v(S)− v1‖L2(K) ≤ α.

(5.10)

As a direct consequence of Proposition 5.3, the general case for globally Lipschitz
nonlinearities is easy to obtain.

Proposition 5.4. Let f be a globally Lipschitz function with f(0) = 0. There
exists A > 0 and {fn} ∈ C1(RN ), fn(0) = 0 and such that

∀n ∈ N, ∀σ ∈ R,
∣∣∣∣fn(σ)

σ

∣∣∣∣ ≤ A,(5.11)
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lim
n→∞ fn = f locally uniformly.

For each n ∈ N, if we denote by ϕn, λn ∈ sgn(ϕn) and vn the solution of (5.10)
associated to fn, there exists G̃ ∈ L∞(RN × (0, T )) such that ϕ0

n converges strongly
in L2(K) to the minimum ϕ0 of J(·; G̃, v1 − w(S)) and (ϕn, vn) converge strongly in
L2(0, T ;L2(K))× L2(0, T ;L2(K)) to the solution of

−φs + Lφ+ G̃φ =
N

2
φ,

φ(S) = φ0,

vs + Lv +G(v, s)v =
N

2
v + ‖φ‖L1(q′)K

−1λχω′(s) in RN × (0, S),

v(y, 0) = v0(y) in RN ,
‖v(S)− v1‖L2(K) ≤ α,

(5.12)

where λ ∈ sgn(ϕ)χq′ . Furthermore, G̃(y, s) = G(v(y, s), s) on the set v(y, s) 6= 0.
Since the proof of this proposition is a straightforward adaptation of Proposition

3.4 in [6], we refer to it to avoid technical details. We only mention that, in fact, once
the sequence satisfying (5.11) is obtained, we can obtain (5.12) as a direct consequence
of Propositions 5.3 and 3.4.

We conclude with the proof of Proposition 1.1.
Proof of Proposition 1.1. As in the proof of Proposition 4.2, we divide the proof

into steps.
Step 1. u0, u1 in L2(K).
We make the change of variables v1(y) = (T + 1)N/2u1((T + 1)1/2y) and S =

log(1 + T). From Proposition 5.4 we know the existence of φ ∈ L2(0, S;L2(K)),
λ ∈ sgn(φ)χq′ , and v solution of

vs + Lv +G(v, s)v =
N

2
v + ‖φ‖L1(q′)K

−1λχω′(s) in RN × (0, S),

v(y, 0) = u0(y) in RN ,

‖v(S)− u1‖L2(K) ≤ α.
We define u(x, t) as in (1.7). By construction of G, u is the solution of (1.3) with

h(x, t) = (t+ 1)−N/2−1K−1

(
x√

1 + t

)
‖φ‖L1(q′)λ̃χω,

where λ̃ ∈ sgnφ̃ and φ̃(x, t) = φ( x√
1+t

, log(1 + t)). Moreover, we observe that φ̃ is a

solution of 
−φ̃s −∆φ̃+ g(u)φ̃ = 0 in RN × (0, T ),

φ̃(T ) = (1 + T )−N/2φ0

(
x√

1 + T
, S

)
in RN .

The end of the proof follows as in Step 1 in the proof of Proposition 4.2 obtaining

‖u(T )− u1‖L2(RN ) ≤ α.

Step 2. u0 ∈ L2(K), u1 ∈ L2(RN ).
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Since L2(K) ⊂ L2(RN ) with dense inclusion, there exists a sequence {u1
n} ⊂

L2(K) such that u1
n → u1 strongly in L2(RN ). From the first step, we know the

existence of controls hn such that un, the solution of (1.3) with h = hn, satisfies

‖un(T )− u1
n‖L2(RN ) ≤

α

2
.

Let Ñ be such that for every n > Ñ ,

‖u1 − u1
n‖L2(RN ) ≤

α

2
.

Then u, the solution of (1.3) with h = hÑ , satisfies ‖u(T )− u1‖L2(RN ) ≤ α.

Step 3. u0 ∈ L2(RN ).
Then there exists a sequence u0

n such that u0
n → u0 strongly in L2(RN ).Moreover,

as we saw previously, there exists a sequence of controls hn such that un, the solution
of (1.3) corresponding to u0

n and hn, satisfies

‖un(T )− u1‖L2(RN ) ≤
α

2
.

Let Ñ > 0 be such that

‖u0
Ñ
− u0‖L2(RN ) ≤ e

−MT
2

α

2
,

where M is the constant given in (1.2).
Consider u the solution of (1.3) corresponding to u0 and h = hÑ . Let z = u−uÑ .

Then z satisfies {
zt −∆z + f(u)− f(uÑ ) = 0 in RN × (0, T ),
z(x, 0) = u0(x)− u0

Ñ
(x) in RN .(5.13)

We multiply (5.13) by z and integrate over RN . Since f satisfies (1.2), we obtain

‖z(T )‖L2(RN ) ≤ e
MT

2 ‖z(0)‖L2(RN ) ≤
α

2
,

and, therefore,

‖u(T )− u1‖L2(RN ) ≤ ‖z(T )‖+ ‖uÑ (T )− u1‖ ≤ α.

6. Further results. In this section we mention some possible extensions of the
results and techniques of this article.

6.1. Cone-like domains. All the results of this paper hold for the semilinear
heat equation (1.1) when Ω is a cone-like domain. In fact, consider a domain Ω
satisfying

0 ∈ Ω̄, ∀λ > 0, ∀x ∈ Ω, λx ∈ Ω.

Then we can study the controllability of the linear equation ut −∆u+ a(x, t)u = hχω in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 in Ω

(6.1)
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in the same way as the case of the whole space RN .
Observe that defining v, H, A as in (1.6) we obtain that v satisfies

vt + Lv +A(y, t)v =
N

2
v +Hχω′ in Ω× (0, S),

v = 0 on ∂Ω× (0, S),

v(y, 0) = u0 in Ω.

(6.2)

In this case the functional setting will be

H1
0 (K,Ω) =

{
v;

∫
Ω

(|v|2 + |∇v|2)K(y)dy <∞, v|∂Ω = 0

}
.

6.2. Other functional settings. In this article we have chosen to work in
the L2(RN ) functional setting. The same type of results can be proved in Lp(RN )
spaces for 1 ≤ p < ∞. In this aim it is necessary to introduce the corresponding
weighted Sobolev spaces, i.e., Lp(K) = {u : RN → R :

∫
RN |u|pK(y)dy < ∞} and

W 1,p(K) = {u ∈ Lp(K);∇u ∈ Lp(K)}.
The only essential change that has to be done in the proof is that we have to

minimize a functional of the form (3.1) in the dual space to the one we have chosen
to prove controllability. We refer to [6] in the case where the domain is bounded.

6.3. Insensitizing controls. Suppose that in (1.3) the initial data are partially
known, i.e., u0 = û0 + τ ū0, where ū0 ∈ L2(RN ) is unknown, ‖ū0‖L2(RN ) = 1 and
τ ∈ R is unknown and small enough. The insensitizing problem consists of finding
a control function such that some functional of the state is locally insensitive to the
perturbations of these initial data. We say that the control h, ε-insensitizes Φ(u) if∣∣∣∂Φ(u(x, t;h, τ))

∂τ
|τ=0

∣∣∣ ≤ ε.(6.3)

Let θ ⊂ RN be an open “observation” subset. When

Φ(u) =
1

2

∫ T

0

∫
Θ

u2(x, t)dxdt,(6.4)

the condition of ε-insensitivity is equivalent to an approximate control problem. Let
y and q be the solutions of the following cascade system:{

yt −∆y + f(y) = hχω in RN × (0, T ),
y(., 0) = u0 in RN ,(6.5)

{ −qt −∆q + f ′(y)q = yχ
Θ

in RN × (0, T ),
q(., T ) = 0 in RN ,(6.6)

where χΘ is the characteristic function of the observation subset Θ.
Then the condition of ε-insensitivity is equivalent to

‖q(., 0)‖L2(RN ) ≤ ε.(6.7)

The techniques of this paper may be adapted to prove that when ω ∩ θ 6= ∅, f is
of class C1 and globally Lipschitz, then there exists an ε-insensitizing control for the
functional (6.4). For insensitizing controls in bounded domains we refer to [2]. The
case of insensitizing controls in unbounded domains is treated in [13] by using the
approximation technique mentioned in the introduction.
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Abstract. We deal with problems connected with the identification of linear dynamic systems
in situations when inputs and outputs may be contaminated by noise. The case of uncorrelated noise
components and the bounded noise case is considered. If also the inputs may be contaminated by
noise, a number of additional complications in identification arise, in particular the underlying system
is not uniquely determined from the population second moments of the observations. A description
of classes of observationally equivalent systems is given, continuity properties of mappings relating
classes of observationally equivalent systems to the spectral densities of the observations are derived
and the classes of spectral densities corresponding to a given maximum number of outputs are studied.
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1. Introduction. In the “main stream approach” to linear systems identifica-
tion (see Deistler [7]) one of the basic assumptions is that all noise is added to the
outputs (or to the equations, which is the same for our purpose). The noise thereby
is assumed to be orthogonal to the inputs. In econometrics this is called the errors-
in-equations approach. Here we are concerned with a different and, in principle,
more general approach to noise modeling, where all variables may be contaminated
by noise. Models of this kind are called errors-in-variables (EV) or latent variables
models, or in a different but equivalent formulation, factor models. For the case of
static systems, such models have been analyzed and used for a long time in statis-
tics, science (in particular, chemistry), psychometrics, and econometrics (see, e.g.,
Adcock [1], Spearman [26], Gini [14], Frisch [13]). In the last two decades there has
been a resurging interest in such models (see, e.g., Aigner et al. [2], Anderson [5]).
Recently—mainly triggered by Kalman’s work [18, 19, 20]—EV models have also
been analyzed in systems engineering. The dynamic case has been treated, e.g., in
Anderson and Deistler [3] and Deistler and Anderson [9].

The traditional errors-in-equations approach is justified in a great number of
applications dealing, for instance, with prediction. On the other hand, in a number
of cases the asymmetry in errors-in-equations modeling cannot be justified and may
lead to “prejudiced” results (Kalman [20]). For example, in sonar array processing,
when an array of n sensors is assumed to receive noisy signals from n − m sources
(Haykin [16]), EV models arise in a natural way. More generally, we can distinguish
the following three main areas for EV modeling:

1. If we are interested in the “true system” underlying the data (rather than,
for instance, in prediction) and if we cannot be sure a priori that the inputs have been
observed free of noise. This is the “classical” motivation for EV models, for example,
in econometrics.
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2. If we want to approximate a high dimensional data vector by a small number
of factors. This is the “classical” motivation for factor analysis (e.g., in psychometrics,
where an example would be determining the intelligence factors underlying the test
scores). A related issue is that EV modeling may considerably reduce the dimension
of parameter spaces in comparison with multivariate AR or ARMA models.

3. In a number of cases, no sufficient a priori information about the number of
equations and/or about the classification of the variables into inputs and outputs is
available. Then, one has to use a symmetric system model which in turn demands a
symmetric noise model. This point has been emphasized in particular by Kalman [18].

The systems considered are of the form

w(z)x̂t = 0,(1.1)

where x̂t is an n-dimensional vector of latent (i.e., not necessarily observed) real
valued random variables, z is used for the backward-shift on the integers Z (i.e.,
z (x̂t|t ∈ Z) = (x̂t−1|t ∈ Z) ) as well as for a complex variable, and where

w(z) =

∞∑
j=−∞

Wjz
j ; Wj ∈ Rm×n and

∞∑
j=−∞

‖Wj‖ <∞.(1.2)

We will call w(z) the relation function; it represents an exact (i.e., deterministic)
linear system of a very general form. Clearly, systems of the form (1.1) are symmetric
in the sense that no a priori classification of the variables x̂t as inputs and outputs
and no a priori information about causality are needed. Here also the number of
equations, m, in (1.1) is not assumed to be known a priori. Without restriction of
generality, we will assume that 1 ≤ m ≤ n holds and that w(z) contains no linearly
dependent rows.

The observed variables xt are of the form

xt = x̂t + ut,(1.3)

where ut is the n-dimensional noise vector.
Throughout the paper we will assume the following:

(a.1) The processes (xt), (x̂t), and (ut) are (wide sense) stationary with absolutely
summable autocovariance functions. Thus, in particular, the spectral densities Σ, Σ̂,
and Σ̃ of (xt), (x̂t), and (ut), respectively, exist and are bounded continuous functions.
(In addition, limits of random variables are understood in the sense of mean square
convergence.)

(a.2) Ex̂t = 0 and Eut = 0.
(a.3) Ex̂tu

′
s = 0.

(a.4) Unless the contrary is stated explicitly, we assume that Σ > 0 holds.
Assumptions (a.1)–(a.4) are not severe restrictions of generality. They are either
natural or are imposed to avoid technical problems.

Due to (1.1), the spectral density Σ̂ is singular and

w(e−iλ)Σ̂(λ) = 0(1.4)

holds. Note that for a given process (x̂t), a relation function w satisfies (1.1) iff w
satisfies (1.4) for the spectral density Σ̂ of x̂t; in other words, there is no loss of
information concerning w in going from the process (x̂t) to its spectral density.

Assume that the spectral density Σ̂ of corank m is given and that the m×n matrix
w satisfies wΣ̂ = 0, where w has rank m. Then we may select m independent columns
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from w and regroup the columns of w such that these columns appear in the first m
positions, which gives a partitioning of w as (w1, w2). By a conformal rearrangement
of the components of x̂t and a corresponding partitioning of x̂t = ((x̂1

t )
′, (x̂2

t )
′)′, we

obtain from (1.1) that w1x̂
1
t + w2x̂

2
t = 0. Now assume that w−1

1 has an absolutely
summable Laurent series expansion in an annulus containing the unit circle; then by
premultiplying w with w−1

1 we obtain

x̂1
t = −w−1

1 (z)w2(z)︸ ︷︷ ︸
k(z)

x̂2
t

which describes the input-output behavior of the system (1.1). In general this choice
of outputs x̂1

t is not unique. Note that for a nonsingular m × m transfer function
t(z), which satisfies additional conditions (e.g., that both t and t−1 have an abso-
lutely summable Laurent series expansion in an annulus containing the unit circle)
the relation functions w(z) and t(z)w(z) are equivalent in the sense that, for a given
choice of outputs, they represent the same input-output behavior k(z).

Note that there is a close relation to the behavioral approach developed by
Willems [29]; also see Heij, Scherrer, and Deistler [17]. The main differences of the
behavioral approach to the setup of this paper are that here we impose stationarity
and that we do not require the system to be finite dimensional.

Under rather general conditions, the restriction that (x̂t) is contained in the kernel
of w(z) (see (1.1)) can be replaced by the restriction that (x̂t) is contained in the image
of a suitably chosen n× (n−m) transfer function Λ(z), i.e.,

x̂t = Λ(z)εt,(1.5)

where, in particular, (1.5) can be chosen to be the Wold representation of the process
(x̂t). This gives rise to the linear dynamic factor model

xt = Λ(z)εt + ut,(1.6)

where (εt) is interpreted as the (n−m) dimensional factor process, which by assump-
tion is white noise. Λ(z) is called the matrix of factor loadings.

We commence from the equation

Σ = Σ̂ + Σ̃(1.7)

for the spectral densities. For given Σ, the matrix Σ̂ is called compatible (with Σ)
if (1.7) is satisfied, where Σ̂ and Σ̃ are positive semidefinite and where, in addition,
Σ̂ is singular and typically, Σ̃ satisfies further assumptions such as (a.5) or (a.6)
below. Instead of compatible, we also use the term observationally equivalent. A
relation function w(z) is called compatible (with Σ) if there exists a compatible Σ̂,
such that wΣ̂ = 0 holds.

Without imposing additional a priori assumptions such as (a.5) or (a.6) below,
the problem considered is not sufficiently structured. In particular, without such
assumptions, every relation function w would be compatible with a given Σ > 0.
This is an easy consequence of the fact that, for every singular n× n spectral density
ˆ̂
Σ, a constant c > 0 exists such that Σ̂ = c

ˆ̂
Σ is compatible with a given Σ > 0. Thus,

some additional structure has to be imposed, which can be justified in a sufficiently
large number of cases. In this paper, the two following alternative assumptions are
considered:
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(a.5) Σ̃ is diagonal.
This case will be called the Frisch case. The idea behind this assumption is to provide
a decoupling of common and individual effects between the variables. The common
effects are attributed to the system and the individual effects to the noise. Another
motivation for this assumption relates to the case where all noise is measurement
noise and the measurement devices for each channel are independent. Note that the
Frisch case, in particular for the static case, has a long tradition in econometrics
and psychometrics; see, e.g., Aigner et al. [2], Anderson [5], Anderson and Rubin [6],
Gini [14], Ledermann [22], and Spearman [26].

An alternative assumption is that the noise level is bounded. This will be ex-
pressed as follows:

(a.6) λn(Σ̃(λ)) ≤ ε.
This case will be called the bounded noise case. Here λn denotes the maximum eigen-
value of Σ̃(λ) and ε is an a priori given bound. This assumption is justified, for
instance, if all noise is measurement noise and the magnitude of the error of the mea-
surement devices (in terms of the noise spectrum) is known a priori. Additional infor-
mation about the noise spectra may be taken into account by appropriate prefiltering
of the data. This, in particular, relates to scale transformations and weightings of
frequency bands.

Identification of errors-in-variables models is considerably more complicated than
identification of errors-in-equations models. The purpose of this paper is twofold: first,
to add a further step towards a theory of identification for this general case and second,
to illustrate the additional complications arising with the departure from errors-in-
equations models. We restrict ourselves to structure theory, i.e., we commence from
population second moments rather than from real data. The main problem considered
in this paper is obtaining the underlying systems from the population second moments
of the observations (xt) given by the spectral density Σ. One of the main complications
of the errors-in-variables problem is that, in general, the underlying system is not
uniquely determined from Σ. This is a major difference to the errors-in-equations
approach, where the underlying transfer function is uniquely determined from the
second moments of the observations under a so-called persistent excitation condition.
This nonuniqueness in the EV case is caused by a lack of a priori knowledge concerning
the noise structure. This is an uncertainty about the underlying system which has
nothing to do with sampling variation; it remains even in the case of an “infinite”
sample.

Here our basic philosophy is not to impose additional conditions which guarantee
identifiability. Such conditions, in many cases, are not justified by a priori knowledge
and thus may lead to prejudiced results. For this reason, the aim considered here is to
obtain classes of observationally equivalent systems from the second moments of the
observations rather than a single system. Since, in general, an exact description of
such equivalence classes has not yet been obtained, we will give a qualitative descrip-
tion in terms of topological and geometrical properties. These results may be helpful
for the development of numerical procedures to compute the equivalence classes. In
addition, they give an illustration of the uncertainty about the underlying model due
to the lack of knowledge about the error structure.

The structure theory presented in this paper, in our opinion, is of central im-
portance for the more general problem of identification in a linear dynamic errors-in-
variables setting, where we commence from data (x1, . . . , xT ) rather than from the
second order population moments. We will give a brief sketch of this more general
identification problem in order to motivate the results obtained in this paper.
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In linear system identification, in many cases in a first step the data are com-
pressed in an estimate of the second moments of the observations, in our case in an
estimate ΣT of the spectrum Σ.

Let ΣT (λ) denote an estimate of Σ(λ), where T denotes the sample size. Then
the class of observationally equivalent systems corresponding to ΣT is an estimate for
the class corresponding to Σ. Therefore any (numerical) procedure which constructs
the equivalence class to a given Σ gives an identification procedure. Such a procedure
is not only reasonable, but it seems to be the obvious one.

Under general conditions, the spectral density Σ(λ) of (xt) can be consistently
estimated. If the mapping attaching to Σ the corresponding class of observationally
equivalent systems is continuous, then the above estimate is consistent. Therefore, in
addition to describing equivalence classes for a given Σ, the continuity of the mapping
described above will be considered in this paper. Since the statistical analysis of
spectral estimates is well known for a number of decades, the two problems of structure
theory addressed in this paper are a major and perhaps the most important module
for a general theory of identification of EV models.

The main approaches to spectral estimation are as follows: on the one hand
nonparametric spectral estimation, where the spectrum is estimated at a finite number
of frequencies (here the number of frequencies may increase with the sample size T );
on the other hand the spectrum may be estimated by fitting AR or ARMA models.

For the rest of this paper the spectral densities Σ, Σ̂, and Σ̃ as well as the relation
function w(e−iλ) are considered for arbitrary but fixed frequency λ. If we commence
from a nonparametric spectral estimate, and if no additional a priori assumptions on
the order of the relation functions w(z) are imposed, then our results, obtained for an
arbitrary but fixed frequency, can be applied immediately.

However, our results can also be applied for varying frequencies by putting them
together pointwise, e.g., a relation function w is compatible with Σ if and only if
w(e−iλ) is compatible with Σ(λ) for every frequency λ. In particular for instance,
we can check whether a given relation function w is compatible. However, we do
not analyze, e.g., the additional restrictions on the equivalence classes coming from
rational parametrization for Σ, Σ̂, Σ̃, and w with bounded order. Such an approach
seems to be very complicated; see Stemmer [27] and also some remarks in section 5.

Clearly, the results obtained for fixed frequency also apply to situations where
only a narrow frequency band is considered.

No information from the observations, besides the second moments, Σ is used.
This is a reasonable limitation; however, it should be mentioned that in the non-
Gaussian case, higher order moments may provide important information to identify
the system (see, e.g., Deistler [8], Tugnait [28]). In this respect, EV models are
different from errors-in-equations models; however, we will not comment further on
this issue here.

The paper is organized as follows. In section 2 we present the basic notations and
definitions as well as a short description of the main results of the paper. The main
results are contained in section 3 (for the Frisch case) and section 4 (for the bounded
noise case). As an illustration, in section 5 the bivariate case is studied.

2. Problem statement. Remember that from now on we only consider the case
of fixed frequency. For fixed frequency Σ, Σ̂, and Σ̃ are constant positive semidefinite
matrices with complex entries, rather than functions of the frequency λ. The relation
(function) is a constant matrix w ∈ Cm×n and we will assume that it is of full rank
m. In order to be completely precise, we partly repeat definitions which have been
given before now for the case of fixed frequency.
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From equations (1.7) and (1.4) and our assumptions we have, for the case of fixed
frequency,

Σ, Σ̂, Σ̃ ∈ Cn×n,
Σ = Σ̂ + Σ̃; Σ̂ ≥ 0, Σ̃ ≥ 0,

Σ̂ is singular.

(2.1)

For a given Σ, a matrix Σ̂ is called compatible with Σ if Σ̂ and Σ̃ = Σ − Σ̂
satisfy (2.1) and where, typically, Σ̃ satisfies further assumptions such as (a.5) or
(a.6). Analogously then, Σ̃ and the decomposition (2.1) are called compatible with Σ.
A relation w, i.e., a full rank matrix w ∈ Cm×n, is called compatible with Σ if there
exists a compatible Σ̂ such that wΣ̂ = 0.

The set of all compatible relations corresponding to Σ with m rows is called the
m-relation set Rm (of Σ). Sometimes we use the notation Rm(Σ). For many purposes
it is appropriate to describe the system in terms of the linear m-dimensional subspace
of Cn generated by the rows of the relation w. By Rm(Σ) we denote the set of all
such subspaces corresponding to Rm(Σ). By system we mean either a relation w or
the subspace generated by the rows of w. Thus Rm(Σ) and Rm(Σ) in this sense are
the sets of all systems with m outputs compatible with Σ.

An important integer is the maximum corank of Σ̂, denoted by mc(Σ), among
the set of all Σ̂ which are compatible with a given Σ. At the same time, mc(Σ) is the
maximum number of equations and (n −mc(Σ)) is the minimum number of factors.
The subclass Rm corresponding to m = mc(Σ) is of special interest, since in many
cases we want to explain as much as possible by the system.

We define S as the set of all spectral densities Σ and Sm as the subset of S where
mc(Σ) = m holds, i.e.,

S = {Σ|Σ > 0}; Sm = {Σ|Σ > 0,mc(Σ) = m}.

Note that the sets Rm(Σ), Rm(Σ), and Sm depend on the particular assumption
(a.i); i=5,6 imposed. We will not introduce distinct notation for each assumption
since it will become clear from the context which assumption is considered.

For the Frisch case it is convenient to consider the set of all compatible noise
spectral densities for given Σ, E(Σ) say, and the subsets Em(Σ) of E(Σ) corresponding
to a given corank m of Σ̂ = Σ− Σ̃. Of course E(Σ) = E1(Σ)∪ · · · ∪ En(Σ), and Em(Σ)
is empty for all m > mc(Σ). Since Σ̃ is diagonal with real elements, the sets E(Σ)
and Em(Σ) can be considered as subsets of Rn.

The following three structural problems are analyzed in detail in the paper:
1. As has been said already, our basic philosophy is not to obtain identifiability

by imposing additional restrictions (which in many cases would be a preju-
dice). The ultimate aim is to estimate classes of observationally equivalent
systems. Thus one important structural problem is to describe classes of
observationally equivalent systems, i.e. sets of systems which are compati-
ble with given Σ. The main results concerning the description of classes of
compatible systems are as follows:

For the Frisch case, section 3 contains a number of results concerning
observationally equivalent systems in terms of the sets E and Em. An in-
teger of central importance for the Frisch case is the so-called Ledermann
bound mL =

√
n.

The structure of the set E(Σ), as well as of the sets Em(Σ), is analyzed
in Propositions 3.1 and 3.3, respectively. A central result is contained in
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Proposition 3.5, namely, that “typically” for m ≤ mL the sets Em(Σ) are
differentiable submanifolds of Rn with boundaries of dimension n−m2.
In addition by Proposition 3.6, for m = mc(Σ), the set of systemsRm(Σ)
is a differentiable submanifold of the set of all m-dimensional subspaces
of Cn.
In the bounded noise case, things are different and in a certain sense
easier. Note that in the Frisch case all off-diagonal elements of Σ̃ have to
be zero, which means that we have n(n−1) real equality constraints on Σ̃,
whereas in the bounded noise case there is only one inequality constraint
on Σ̃. This is an intuitive explanation of why, in the bounded noise
case, the set of systems Rm(Σ) are typically “thick” for m ≤ mc(Σ),
in the sense that they contain a nonvoid open subset of the set of all
m-dimensional subspaces of Cn. See Proposition 4.3.

2. As has been stated already, from the point of view of identification the conti-
nuity of the mapping attaching classes of observationally equivalent systems
to Σ is important. This relates to consistency of estimation of these equiva-
lence classes, as explained above.

For the Frisch case we show, in particular, that the mapping attaching
E(Σ) to Σ is continuous (Proposition 3.7) and that on a generic subset
of S the mapping attaching Rm(Σ) to Σ is continuous (Proposition 3.9).
For the bounded noise case, by Proposition 4.5 the mapping attaching
Rm(Σ) to Σ is continuous on a generic subset of S.

3. Another important problem is estimation of mc(Σ). For this purpose some
properties of the sets Sm of spectral densities Σ such that mc(Σ) = m holds
are analyzed.

In the Frisch case, for m ≤ mL, all sets Sm of spectral densities with
mc(Σ) = m are “thick” in the sense that they contain a nonvoid open
subset of S. On the other hand, for m > mL, the sets Sm are “thin” in
the sense that they have Lebesgue measure zero. In this sense, spectral
densities which allow for a system having more than mL outputs are a
priori unlikely.
Let ΣT denote an unrestricted and consistent estimate of Σ and let
mc(Σ) ≤ mL; then by the results of Proposition 3.5, generically, mc(ΣT )
will be equal to mc(Σ) from a certain T onwards. On the other hand, for
mc(Σ) > mL, typically mc(ΣT ) ≤ mL will hold. Thus in the first case
mc(Σ) can be directly determined from mc(ΣT ), whereas in the second
case the distance of ΣT to the set Sm has to be taken into account in
order to decide whether or not mc(Σ) = m holds. Such a decision can
be based on a test or an information criterion.
Again, for the bounded noise case things are simpler. By Proposition 4.4
all sets Sm are “thick.”

Now let us introduce some notation. For a matrix A, say, we use the corresponding
lowercase letter aij to denote its i, jth entry. The (left) kernel of a matrix A is
denoted by ker(A); rank(A) and corank(A), respectively, denote the rank and corank,
respectively, of A. If A ∈ Cn×n is a Hermitian matrix, then λ1(A) ≤ λ2(A) ≤ · · · ≤
λn(A) denote its eigenvalues. For a vector v, diag(v) denotes the (square) diagonal
matrix whose diagonal elements are the corresponding entries of v. For a complex
matrix A ∈ Cm×n, the matrix A∗ is the complex conjugate transposed matrix. For a
subset A, say, of a topological space, Ao denotes the interior of A and A denotes the
closure of A.
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In the remaining part of this section we will describe topologies and geometrical
structures used in this paper.

For many purposes, it is appropriate to describe the system in terms of the linear
m-dimensional subspace (of Cn) generated by the rows of the relation (function) w.
Let G(m,n) denote the Grassmannian of all complex subspaces of dimension m of
Cn. Note that these subspaces can be identified with the equivalence classes {tw|t ∈
Cm×m,det(t) 6= 0}, w ∈ Cm×n, rank(w) = m. The topology of the Grassmannian
is the quotient topology and G(m,n) is a differentiable manifold of real dimension
2m(n−m). Clearly Rm(Σ) is a subset of the corresponding Grassmannian G(m,n).

We always identify the set of all Hermitian Cn×n matrices with Rn2

in an obvious
way. (Note that a Hermitian n×n matrix is given by its n real diagonal elements and
by its n(n − 1)/2 complex upper diagonal elements.) The set of all strictly positive
matrices Σ > 0 (of all positive semidefinite matrices Σ ≥ 0) is denoted by S (andM,

respectively). Note that S is an open subset of Rn2

andM is the closure of S in Rn2

,

i.e., S =M⊆ Rn2

.
ByMm ⊂M we denote the set of all nonnegative definite matrices of corank m.

Mm is a differentiable submanifold of Rn2

of dimension n2−m2. By rearranging the
rows and corresponding columns, we may partition Σ̂ ∈Mm as

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂∗12 Σ̂22

) }m
} n−m ,

︸︷︷︸
m

︸︷︷︸
n−m

where Σ̂22 > 0 holds. For Σ̂22 > 0 the statements Σ̂ ≥ 0, corank(Σ̂) = m, and

gn,m(Σ̂) = (Σ̂11 − Σ̂12Σ̂−1
22 Σ̂∗12) = 0

are equivalent. Since gn,m(Σ̂) is a Hermitian m×m matrix, we can interpret gn,m as

a function defined on an open subset of Rn2

mapping to Rm2

. As gn,m is infinitely
often differentiable and has full rank m2 everywhere, gn,m(Σ̂) = 0 is a local equation
system for Mm and (

Σ̂11 Σ̂12

Σ̂∗12 Σ̂22

)
7−→ (Σ̂12, Σ̂22)

is a local coordinate system for Mm.
In the following, we will often use partitionings analogous to the partitioning

above, without further explaining the notation used.
Let us define the set of all diagonal covariance matrices

D = {Σ̃ ≥ 0 | Σ̃ is diagonal } ⊆ Rn,

and for an index set I ⊆ {1, . . . , n} we define

DI = {Σ̃ ∈ D | σ̃ii > 0 for i ∈ I and σ̃ii = 0 otherwise} .

|I| denotes the number of elements of the index set I.
Let A be a metric space endowed with the metric d(x, y). Then for two compact

subsets U ,V ⊆ A, the Haussdorff distance dH(U ,V) is defined by

dH(U ,V) = min(ρ(U ,V), ρ(V,U)),
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where

ρ(U ,V) = sup
x∈U

inf
y∈V

d(x, y).

If C(A) denotes the set of all compact subsets of A, then dH is a metric defined on
C(A). We will consider the following three cases:

1. A = Rn and d(x, y) = ‖x−y‖ is the usual Euclidean distance. The Haussdorff
distance is then defined on C(Rn), the set of all compact subsets of Rn.

2. Using the Haussdorff distance we can define a metric on the Grassmannian
G(m,n): let x, y ∈ G(m,n); then we define

dG(x, y) = dH({x ∈ x, ‖x‖ ≤ 1}, {y ∈ y, ‖y‖ ≤ 1}).

In other words, the distance of two m-dimensional subspaces of Cn is defined as the
Haussdorff distance of the intersections of these subspaces with the unit ball. This
distance has a close connection to the canonical correlations of the spaces x and y.

3. A = G(m,n) and d(x, y) = dG(x, y). The Haussdorff distance is then defined
on C(G(m,n)), the set of all compact subsets of G(m,n).

3. The Frisch case. Here condition (a.5), i.e., that Σ̃ is diagonal, is imposed
throughout. For given Σ then, a decomposition (2.1) is called a Frisch decomposition.

3.1. The set of all observationally equivalent systems. This subsection is
concerned with the description of sets of observationally equivalent (i.e., compatible)
spectra Σ̂ of the latent variables (x̂t) and of observationally equivalent systems. For
convenience, in this section we will consider sets of observationally equivalent noise
spectral densities Σ̃. Since for given Σ the matrices Σ̂ and Σ̃ are in an obvious one-
to-one relation, this also gives a description of the set of all observationally equivalent
Σ̂. Replacing Σ̂ by Σ̃ is only done since sets of Σ̃’s can be embedded in Rn. Whether
or not sets of observationally equivalent Σ̂’s or of observationally equivalent systems
are of primary interest depends on the particular application.

The main results obtained in this subsection are as follows: In Proposition 3.1
we give a topological description of the set E(Σ) of all compatible noise spectra: E(Σ)
is shown to be topologically equivalent to the intersection of the unit sphere with
the first orthant in Rn. This result is important for illustrating the nonuniqueness
inherent in the Frisch case. In Proposition 3.3 we consider subsets of E corresponding
to different numbers of outputs. In particular we see that the set E1 corresponding to
the single output case is generic and that the closures of these sets are nested in the
sense that E1 ⊇ · · · ⊇ En holds.

Proposition 3.5 contains one of the most important results of the paper. It is
shown that, for a generic set of spectra Σ, the sets Em(Σ) are either empty (for
m > mc(Σ)) or differentiable manifolds of dimension n − m2 with boundaries. In
particular this generic set contains only spectra with a Frisch corank mc(Σ) ≤ √n.
As has been mentioned already, the case m = mc(Σ) is of particular interest. In
many cases only systems with the maximum number of outputs are considered. In
Proposition 3.6 we show that in this case, the set of observationally equivalent Σ̃ is
homeomorphic to the set of all observationally equivalent systemsRm(Σ). In addition,
in this case the set of observationally equivalent systems is generically a differentiable
manifold of dimension n−m2 with boundaries.

We start with the following description of the set E ⊆ Rn of all observationally
equivalent Σ̃. For the next Proposition see Deistler and Scherrer [11].
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Proposition 3.1. E is homeomorphic to K+ = {d ∈ Rn | di ≥ 0, ‖d‖ = 1}. Thus
E is compact and is a topological manifold with boundaries of real dimension n− 1.

Proof. For each d ∈ K+, the matrix (Σ − λ diag(d)) is positive semidefinite
and singular (and thus compatible with Σ) iff λ is the smallest real number, λ0 say,
for which (Σ − λ diag(d)) is singular. Clearly then, 1/λ0 is the largest eigenvalue
of Σ−1/2 diag(d)Σ−∗/2. Now we define a function on K+ by d 7→ λ0 diag(d). This
function is continuous, because the largest eigenvalue is a continuous function of the
matrix elements. (See, e.g., Golub and van Loan [15].) Since Σ is nonsingular, the
inverse mapping defined by Σ̃ 7→ (σ̃11, . . . , σ̃nn)/‖(σ̃11, . . . , σ̃nn)‖ is well defined and
continuous, too.

The second statement of the proposition is an immediate consequence of the
first.

It is a trivial consequence of the proposition above that the Frisch decompositions
always exist and that Σ̃ is never unique without imposing further restrictions. The
intersection of E(Σ) with a coordinate axis corresponds to the regression of one com-
ponent of xt on all other components, i.e., to the case where only one component of
xt is corrupted by noise. It has been shown in Schachermayer and Deistler [24] that
E is smooth exactly at the points where corank(Σ− Σ̃) = 1 holds.

In the next step we analyze the partitioning of the set E as E = E1 ∪ · · · ∪ En,
i.e., according to different numbers of outputs. The first problem in this context is to
determine mc(Σ). We have the following result (compare Deistler and Anderson [10]).

Proposition 3.2. m = mc(Σ) if and only if Rm(Σ) 6= ∅ and Rm(Σ) contains
no w with a column equal to zero.

Proof. As can be easily seen, m > mc(Σ) if and only if Rm(Σ) = ∅. Let w ∈
Rmc(Σ)(Σ). Clearly, by the appropriate choice of a nonsingular transformation t, a
column of w can be made equal to the first unit vector. By omitting the firstm−mc(Σ)
rows from w, we obtain an element of Rm(Σ) with a zero column.

Conversely, suppose that w ∈ Rm(Σ) contains a zero column, e.g., the first one.
We can interpret (Σ−Σ̃) as a variance-covariance matrix of a certain vector of complex
valued random variables. The regression of the first component of this random vector
on the remaining components gives a relation. By adding this relation as a row to w,
we get a compatible relation for Σ with rank m+ 1.

Note that Proposition 3.2 does not provide us with a criterion of great practical
use. Practically useful criteria are available for the case mc(Σ) ≥ mu = (n+ 1)/2 and
for the static case mc(Σ) = 1. See Anderson and Rubin [6], Anderson and Deistler [4],
and Deistler and Scherrer [11] for the first case and see Frisch [13], Kalman [18], and
Klepper and Leamer [21] for the static case.

Proposition 3.3. For every 1 ≤ m ≤ n, the set Em is open and dense in
Em ∪ · · · ∪ En.

Proof. Let Σ̃k ∈ Em+1∪ · · ·∪En be a convergent sequence with Σ̃k → Σ̃0. Since E
is compact, Σ̃0 ∈ E holds. Note that the corank is an upper semicontinuous function
of the matrix elements, since the determinant is a continuous function. Therefore
corank(Σ− Σ̃0) ≥ m+ 1 holds and thus Em+1 ∪ · · · ∪ En is closed.

We now show that Em is dense in Em∪· · ·∪En by showing that every neighborhood
of a Σ̃0 ∈ Ek+1 contains a Σ̃ in Ek. Let w be a basis of ker(Σ − Σ̃0). From wΣ =
wΣ̃0 6= 0, we see that at least one column of w and the corresponding diagonal
element of Σ̃0 are unequal to zero. Then, after rearrangement of variables in xt and
by a suitable transformation t, we may write w = (I, w2) and σ̃0

11 > 0 holds. Now
Σ̃ = Σ̃0 − εdiag(1, 0, . . . , 0) for 0 < ε < σ̃0

11 is still compatible and the corank of
Σ− Σ̃ = Σ− Σ̃0 + εdiag(1, 0, . . . , 0) has been decreased by one. Thus Σ̃ ∈ Ek.
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It is an immediate consequence of the above proposition that Em(Σ) = Em(Σ) ∪
· · · ∪ En(Σ) = Em(Σ) ∪ · · · ∪ Emc(Σ)(Σ), and in addition by the inequality Σ̃ ≤ Σ, it

follows that Em(Σ) and in particular Emc(Σ)(Σ) are compact subsets of Rn.
The next proposition gives some basic results for the sets Rm(Σ) and Rm(Σ),

respectively. Note that for any compatible m-relation there exists a compatible Σ̃ ∈
Em(Σ)) = Em(Σ) ∪ · · · ∪ En(Σ). Thus the sets Rm(Σ) and Rm(Σ) are related to
Em(Σ) rather than to Em(Σ). Furthermore there is, in general, no one-to-one relation
between Σ̃ and the system, since the mapping attaching to Σ̃ the kernel of (Σ − Σ̃)
is not injective in general. This can be seen from wΣ = wΣ̃ by considering the case
where w has a zero column.

Proposition 3.4. Rm(Σ) is a compact subset of G(m,n).
Proof. This is an immediate consequence of the fact that Em(Σ) ∪ · · · ∪ En(Σ) is

compact.
Now let us consider the mapping

fm : Mm ×D : −→ M ⊆ Rn2

,
(Σ̂, Σ̃) 7−→ Σ = (Σ̂ + Σ̃),

and the restrictions fm,I of fm onMm×DI attaching to every Σ̂ with corank m and
every Σ̃ ∈ DI the corresponding Σ.

A heuristic motivation for the dimension of Em can be given as follows. The
dimension of the domain of definition of fm is n2−m2 +n; the dimension ofM is n2.
Thus by comparing the dimensions, one may expect that for m < mL, where

mL =
√
n,(3.1)

the set Em is either empty or has dimension n−m2. In the following we give a precise
formulation of this statement. On the other hand, for m ≥ mL the set Em can be
expected to either be empty or to consist of a finite number of points. The number
mL is called the Ledermann bound. (Strictly speaking this term has been used only
for the static case where the Ledermann bound is mL = (−1 +

√
1 + 8n)/2. See, e.g.,

Ledermann [22].)
Let Sr ⊆ S be the set of all Σ, which are regular points of all the mappings

fm,I , 1 ≤ m ≤ n and I ⊆ {1, . . . , n}. Note that (Σ̂, Σ̃) ∈ (Mm × DI) is called a

regular point of fm,I if the derivative has full rank n2 in (Σ̂, Σ̃). A point Σ ∈ Rn2

is
called a regular point of fm,I if all decompositions (Σ̂, Σ̃) ∈ f−1

m,I(Σ) are regular points

of fm,I . (Note that, therefore, all points Σ for which f−1
m,I is empty are regular.) A

point Σ is an “irregular” point of fm,I iff there exists a decomposition Σ = Σ̂ + Σ̃,
(Σ̂, Σ̃) ∈ (Mm ×DI), where the derivative of fm,I has rank less than n2.

For this set Sr of regular points we have the following. (For parts of this propo-
sition compare Dufour [12], Deistler and Scherrer [11], and Scherrer [25].)

Proposition 3.5.
1. The complement of Sr, i.e., S \Sr, is a set of Lebesgue measure zero (in this

sense Sr is generic in S).
2. Sm ∩ Sr = ∅ for all m > mL.
3. Sm ∩ Sr is open and nonvoid in S, and dense in Sm, for all m ≤ mL.
4. For Σ ∈ Sr and m < mL, the set Em(Σ) is either empty or a differentiable

submanifold of Rn with boundaries of dimension n −m2. For Σ ∈ Sr and m = mL,
the set Em(Σ) contains only a finite number of points.

Proof. 1. By the theorem of Sard (see Milnor [23]) we know that the set of
“irregular” points of fm,I is a set of Lebesgue measure zero. Therefore S \ Sr has
Lebesgue measure zero, since it is a finite union of sets of measure zero.
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2. The domain of definition of fm,I has dimension n2−m2 + |I|, which is strictly
smaller than n2 for m > mL.

3. We first prove that Sr is open in S. Suppose that Sr is not open. Then
there exists a sequence Σk ∈ S \ Sr with Σk → Σ0 ∈ Sr. For each Σk there exists
a Frisch decomposition (Σ̂k, Σ̃k) ∈ (Mm(k),DI(k)), which is an “irregular” point of
fm(k),I(k). There is only a finite number of possible combinations (m(k), I(k)); thus at

least one of them, (s,J ) say, must occur infinitely often. Since (Σ̂k, Σ̃k) are bounded,
there exists a convergent subsequence. Putting this together we have (Σ̂k, Σ̃k) ∈
(Ms,DJ )→ (Σ̂0, Σ̃0). Clearly we have Σ0 = Σ̂0+Σ̃0 and Σ̂0 ∈Mm, m ≥ s, Σ̃0 ∈ DI ,
I ⊆ J . Since (Σ̂0, Σ̃0) is a regular point of fm,I , we may construct a neighborhood
U of (Σ0, Σ̃0) as indicated in Lemma A.2. Now by assumption, (Σk, Σ̃k) must be an
element of U for all k large enough; thus (Σ̂k, Σ̃k) is a regular point of fs,J for all such
k, in contradiction to our assumptions.

In Proposition 3.12 we will show, that Sm is nonvoid and that Sm ∪ · · · ∪ S1 is
open. Therefore, for Σ0 ∈ Sm, there exists an open neighborhood U ⊆ Sm ∪ · · · ∪ S1.
By Lemma A.3 and by the continuity of fm,I , we may find a Σ = Σ̂ + Σ̃ ∈ U , where
(Σ̂, Σ̃) is a regular point of fm,I . Since fm,I is locally surjective in (Σ̂, Σ̃), we may find
an open neighborhood V ⊆ Sn ∪ · · · ∪ Sm of Σ. Thus V ∩ U ⊆ Sm is a nonvoid open
neighborhood of Σ. Since S \Sr has Lebesgue measure zero also Sr∩V ∩U ⊆ Sr∩Sm
is open and nonvoid, which proves that Sm ∩Sr is nonvoid. For each Σ ∈ Sm ∩Sr we
may construct neighborhoods U , V as above. Then U ∩ V ∩ Sr ⊆ Sm ∩ Sr is an open
neighborhood of Σ.

Let Σ0 ∈ Sm. By the same arguments as above, we see that in any neighborhood
of Σ0 there exists an Σ ∈ Sm, which has an open neighborhood U ⊆ Sm, i.e., Σ ∈ Som.
Since S \ Sr has Lebesgue measure zero, we can find in any neighborhood of Σ an
element in Sr and thus in Sr ∩ Sm.

4. Let Σ0 ∈ Sr, mc(Σ0) ≥ m, and mL > m hold. Thus there exists a decompo-
sition Σ0 = Σ̂0 + Σ̃0, Σ̂0 ∈ Mm, and Σ̃0 ∈ DI for some index set I. Since Σ0 > 0,
we may arrange the variables such that I = {1, . . . , l} and that Σ̂0

22 > 0 holds. Since
(Σ̂0, Σ̃0) is a regular point of fm,I , we may construct a neighborhood U ⊆ Rn as in
Lemma A.1.

Let J ⊆ I, |J | = m2 be such that the derivative of gn,m(Σ0− Σ̃) with respect to
dJ (Σ̃) has full rank m2. If K = {1, . . . , n} \ J , then the mapping

h : U → Rn,
Σ̃ 7→ (gn,m(Σ0 − Σ̃), dK(Σ̃))

has full rank n in the point Σ̃0. Thus we may further restrict U in a way such that
h : U ⊆ Rn → V = h(U) ⊆ Rn is a local diffeomorphism of Rn. By this construction
we have found a coordinate system h of Rn, such that

h(Em(Σ0) ∩ U) = ({0} × (R+)n−m
2

) ∩ V
holds.

Now we consider the case m = mL. Note that Σ0 ∈ Sr implies that mc(Σ0) ≤ mL

and thus m = mL = mc(Σ0) or Em(Σ0) is empty. If Em(Σ0) contains infinitely
many points, then Em(Σ0) must contain a limiting point, Σ̃0 say, since Emc(Σ0) is
closed and bounded. On the other hand, since all points Σ̃ ∈ Em give regular points
(Σ0− Σ̃, Σ̃) of fm,I (and in this case fm,I is locally injective) all points of Em must be
isolated.

From the proposition above we see that Sr is a set of “well-behaved” spectral
densities in the sense that, for every Σ ∈ Sr, the sets Em(Σ) are nice mathematical
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objects, i.e., they are differentiable manifolds. In addition, mc(Σ) is a continuous
function on Sr, since S \ Sr contains all points of discontinuity of mc(Σ).

Note that, in addition, S1 is fully contained in Sr, since for all Σ ∈ S1 and
Σ̃0 ∈ E(Σ),

gn,1(Σ− Σ̃) = σ11 − σ̃11 − Σ12(Σ22 − Σ̃22)−1Σ∗12

is defined in a neighborhood of Σ̃0 and has full rank 1. Thus for all Σ ∈ S1, the set
E(Σ) is differentiable submanifold of Rn with boundaries of dimension n− 1.

The set S \ Sr in particular contains all spectral densities with Frisch corank
larger than the Ledermann bound. Thus the latter case is highly nongeneric.

For Σ ∈ S \ Sr the following cases may occur (see Scherrer [25]):
1. Em(Σ) is not a differentiable submanifold of Rn.
2. Em(Σ) is a differentiable submanifold of Rn, but the dimension of Em(Σ) is

either larger or smaller than n−m2.
As has been stated already, in many cases the class of observationally equivalent

systems with a maximum number of equations is of particular interest. In this case
we have the following.

Proposition 3.6. For m = mc(Σ), the sets Em(Σ) and Rm(Σ) are homeomor-
phic. If, in addition, Σ ∈ Sr and mc(Σ) < mL hold, then Rm(Σ) is a differentiable
submanifold of G(m,n) with boundaries of dimension n−m2 and Em(Σ) and Rm(Σ)
are diffeomorphic.

Proof. First we note that, for m = mc(Σ), the mapping

κm : Em(Σ) −→ Rm(Σ),
Σ̃ 7−→ ker(Σ− Σ̃)

is bijective by Proposition 3.2; this is true because we can compute Σ̃ from the equation
wΣ = wΣ̃, since w ∈ Rm(Σ) contains no zero column for m = mc(Σ). (Note that w
and tw give the same Σ̃.)

Now let Σ̃0 ∈ Em(Σ), where w.l.o.g. we assume that (Σ22 − Σ̃0
22) > 0 holds.

Therefore the matrix w = (I,−Σ12(Σ22− Σ̃22)−1) is a basis for ker(Σ− Σ̃), and this is
true in a neighborhood U ⊆ Em(Σ) of Σ̃0. In addition, in a neighborhood V ⊆ G(m,n)
of ker(Σ− Σ̃0), we can use the coordinate mapping

k : G(m,n) ⊇ V −→ V ′ ⊆ R2m(n−m),
{t(w1, w2)|det(t) 6= 0} 7−→ w−1

1 w2

for G(m,n). Therefore κm(Σ̃) = k−1(−Σ12(Σ22 − Σ̃22)−1) for all Σ̃ ∈ U and κm(·) is
continuous, since k is a homeomorphism.

Next, define the mapping

h : w ∈ Cm×n 7−→ diag((w∗jwΣj)/(w
∗
jwj))j=1,...,n,

where wj denotes the jth column of w and Σj denotes the jth column of Σ. The
mapping h is defined and continuous for all w ∈ Cm×n, which have no zero column.
Then we have κ−1

m (x) = h(I, k(x)) for all x ∈ V ∩ Rm(Σ), which proves that κ−1
m is

continuous.
Now we consider the case Σ ∈ Sr and m = mc(Σ) < mL. As is shown in the

proof of Proposition 3.5, we can use the mapping

h : U ⊆ Em(Σ) −→ U ′ ∩ (R+)n−m
2

,
Σ̃ 7−→ x = dK(Σ̃)
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as a coordinate mapping for Em(Σ), where dK(Σ̃) denotes a (suitable) selection of

n − m2 diagonal entries of Σ̃. (Note that U ′ ⊆ Rn−m2

is open in Rn−m2

.) Since
Em(Σ) and Rm(Σ) are homeomorphic by the above considerations, we can choose
U ,U ′ and V,V ′ in a way such that κm(U) = Rm(Σ) ∩ V holds.

Next we consider the mapping

k ◦ κm ◦ h−1 : x 7→ Σ̃ 7→ ker(Σ− Σ̃) 7→ −Σ12(Σ22 − Σ̃22)−1.

Note that (by choosing U ′ small enough) k ◦ κm ◦ h−1 is defined and differentiable on
U ′. (Thus we allow for the moment also small negative entries in Σ̃.) The derivative
is given by

δx 7→ δΣ̃ 7→ δker(Σ− Σ̃) 7→ −Σ12(Σ22 − Σ̃22)−1︸ ︷︷ ︸
w2

δΣ̃22(Σ22 − Σ̃22)−1,

which is zero iff δΣ̃22 = 0, since w2 contains no zero column. Since gn,m(Σ− Σ̃) ≡ 0,
each direction δΣ̃ in the tangent space of Em(Σ) must fulfill the equation

−δΣ̃11 − w2δΣ̃22w
∗
2 = 0.

Thus δΣ̃22 = 0 implies δΣ̃ = 0, and k ◦ κm ◦ h−1 has full rank n−m2 in all points of
U ′ ∩ (R+)n−m

2

. Therefore we can find a diffeomorphism k′ : V ′ ⊆ R2m(n−m) → V ′′ ⊆
R2m(n−m) such that k′ ◦ k ◦ κm ◦ h−1 takes the form

(x1, . . . , xn−m2) 7→ (x1, . . . , xn−m2 , 0, . . . , 0).

(Again we have to shrink the neighborhoods U ,U ′ and V,V ′,V ′′ suitably.) Putting
this together we have found a coordinate mapping k′′ = k′ ◦ k : V → V ′′ of G(m,n)
such that

k′′(Rm(Σ) ∩ V) = ((R+)n−m
2 × {0}) ∩ V ′′

holds.

3.2. Continuity results. If we commence from real data, Σ is not known a
priori but has to be estimated. As is well known under general assumptions on (xt),
e.g., the usual nonparametric estimates ΣT of the spectral density of Σ are consistent.
Then, e.g., Rm(ΣT ) is an estimate for Rm(Σ). In this context the question arises
whether the estimate Rm(ΣT ) is close to the “true” set of systems Rm(Σ), if ΣT is
close to Σ; in other words, whether the mapping Σ 7→ Rm(Σ) is continuous. Then if
ΣT → Σ, this implies Rm(ΣT )→ Rm(Σ), i.e., Rm(ΣT ) are consistent estimates.

First we consider the continuity of the mappings Σ 7→ E(Σ) and Σ 7→ Em(Σ).
Proposition 3.8 shows that the mapping Σ 7→ Em(Σ) is continuous for Σ ∈ Sr and
Proposition 3.7 shows that Σ 7→ E(Σ) is globally continuous. Proposition 3.9 shows
that the mapping Σ 7→ Rm(Σ) is continuous for Σ ∈ Sr.

Proposition 3.7. The mapping S → C(Rn) : Σ → E(Σ) is continuous (with
respect to the Haussdorff distance).

Proof. We consider a sequence (Σk ∈ S) which converges to Σ0 ∈ S, i.e., Σk → Σ0.
In order to prove that dH(E(Σ0), E(Σk))→ 0 holds, by Lemmas A.4 and A.5, we have
to construct, for every Σ̃0 ∈ E(Σ0), a sequence (Σ̃k ∈ E(Σk)) with Σ̃k → Σ̃0. It is easy
to see that Σ̃k = λΣ̃0, where λ is the reciprocal of the largest eigenvalue of the matrix
(Σk)−1/2Σ̃0(Σk)−∗/2, gives such a sequence, since λ → 1. Note that the largest



2162 W. SCHERRER AND M. DEISTLER

eigenvalue of (Σ0)−1Σ̃0(Σ0)−1 is equal to one. (Compare the proof of Proposition
3.1.)

Proposition 3.8. The mapping Sr → C(Rn): Σ → Em(Σ) is continuous (with
respect to the Haussdorff distance).

Proof. We consider a point Σ0 ∈ Sr and a sequence Σk ∈ Sr with Σk → Σ0. By
Proposition 3.5, w.l.o.g. we can assume that mc(Σk) = mc(Σ0) = m0 ≤ mL holds.

If m > m0, then Em(Σ0) = ∅ = Em(Σk). Thus we have only to consider the case
m ≤ m0.

Let Σ̃0 ∈ Em(Σ0); then (Σ̂0, Σ̃0) ∈ (Ms × DI) is a regular point of fs,I , where
Σ̂0 = Σ0− Σ̃0, s ≥ m, and I ⊆ {1, . . . , n}. For each neighborhood U ⊆ (Ms×DI) of

(Σ̂0, Σ̃0), the image fs,I(U) ⊆ Rn2

is a neighborhood of Σ0 in Rn2

, since fs,I is locally
surjective. Since Σk → Σ0, we have Σk ∈ fs,I(U) for all k large enough and we can

find a decomposition Σk = Σ̂k + Σ̃k, (Σ̂k, Σ̃k) ∈ U (and thus Σ̃k ∈ Em(Σk)) for all
such k’s. Now, by considering a sequence of “shrinking” neighborhoods of (Σ̂0, Σ̃0),

we can construct a sequence Σ̃k ∈ Em(Σk) with Σ̃k → Σ̃0. By Lemmata A.4 and A.5

we therefore have dH(Em(Σ0), Em(Σk))→ 0.
In the following proposition we describe the continuity results for the relation sets

Rm(Σ). Note that by Proposition 3.4, the relation sets Rm(Σ) are compact subsets
of the Grassmannian G(m,n).

Proposition 3.9. The function Sr → C(G(m,n)): Σ 7→ Rm(Σ) is continuous
(with respect to the Haussdorff distance).

Proof. This result immediately follows from Proposition 3.8 and Lemma
A.7.

Note that for mc(Σ) >
√
n, typically the set Em(Σ) for m = mc(Σ) will be a

singleton, i.e., the system corresponding to the maximum number of outputs will be
unique; see Scherrer [25]. If m = mc(Σ) is known, then estimates for Σ taking into
this restriction may be used. For this case the following result holds.

Proposition 3.10. For a sequence Σk ∈ S, mc(Σk) ≥ m, Σk → Σ0 ∈ S,
Em(Σ0) = {Σ̃0}, and Rm(Σ0) = {x0}, we have

dH(Em(Σk), Em(Σ0))→ 0 and dH(Rm(Σk),Rm(Σ0))→ 0.

Proof. Note that for m < mc(Σ0), the set Em(Σ0) contains infinitely many ele-
ments. Thus the assumption Em(Σ0) = {Σ̃0} implies mc(Σ0) = m. Since S1∪· · ·∪Sm
is open (see Proposition 3.12), our assumptions imply that mc(Σk) = m for all k large
enough. Thus Em(Σ0) and Em(Σk) are compact subsets of Rn for all such k’s.

Now we define a sequence (Σ̃k ∈ Em(Σk)) by

‖Σ̃0 − Σ̃k‖ = inf
Σ̃∈Em(Σk)

‖Σ̃0 − Σ̃‖.

Since the (Σ̃k)’s are bounded, there exist a limiting point Σ̃l, say. As in the proof of
Lemma A.5, we can see that Σ̃l ∈ Em(Σ0) and thus Σ̃l = Σ̃0. Therefore Lemmata A.4
and A.5 imply the convergence of the sets Em(Σk)→ Em(Σ0).

The convergence of the sets Rm(Σk) → Rm(Σ0) follows from an analogous rea-
soning.

In the next proposition, continuity results are considered when the true system is
observed with small noise satisfying (a.5). Then the set of observationally equivalent
systems is small and close to the true system.

Proposition 3.11 (low noise). Let Σ̂0 ∈ Mm and w ∈ Cm×n be a basis for the
left kernel of Σ̂0 such that w contains no zero column. If Σk ∈ S → Σ̂0, then E(Σk)→
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{0 ∈ Cn×n} holds. If we have, in addition, mc(Σk) ≥ m, then Em(Σk)→ {0 ∈ Cn×n}
and Rm(Σk)→ {ker(Σ̂0)} hold.

Proof. By assumption there is a vector v ∈ ker(Σ̂0) such that all components vi
of v are nonzero. Let us define εk = v(Σk − Σ̂0)v∗. Then we have

0 ≤ v(Σk − Σ̃)v∗ = vΣ̂0v∗︸ ︷︷ ︸
=0

+ v(Σk − Σ̂0)v∗︸ ︷︷ ︸
=εk

−vΣ̃v∗,

and thus

σ̃ii ≤ εk/v2
i → 0

for all Σ̃ ∈ E(Σk). The second statement can be proved analogously to the proof of
Proposition 3.10.

3.3. Some further properties of Sm. In applications one might be interested
in determining mc(Σ) from data. For this purpose one may use, for instance, a
sequence of likelihood ratio tests. In order to derive the properties of such a procedure,
the properties of the sets Sm have to be investigated. In addition to Proposition 3.5,
we have the following properties of these sets: from Propositions 3.5 and 3.12 we see
that S1 is a nonvoid open subset of S, S2, . . . ,Sm, m ≤ mL contain nonvoid open
subsets, and Sm, m > mL are thin subsets of S. The closures of the sets Sm, m ≥ mL

are nested. It should be noted, however, that for the derivation of the statistical
properties of likelihood ratio test, in addition a manifold structure usually is required.

Proposition 3.12.
1. Sm is nonvoid for all 1 ≤ m ≤ n.
2. Sm ∪ · · · ∪ S1 is open in S for all 1 ≤ m ≤ n.
3. Sm = Sm ∪ · · · ∪ Sn for m ≥ mL.

Proof. 1. Let w = (1, . . . , 1) and O ∈ Cn×(n−m) with wO = 0 and O∗O =
I ∈ C(n−m)×(n−m). We now prove that Σ = OO∗ + εI is an element of Sm for all
0 < ε < 1/(n − 1). Clearly mc(Σ) ≥ m. Suppose that Σ = Σ̂ + Σ̃ is a Frisch
decomposition of Σ. Now 0 ≤ wΣ̂w∗ = wOO∗w∗ + εww∗ − wΣ̃w∗ implies that
σ̃ii ≤ nε for all i. Thus we have for all v = λO∗, λ ∈ C1×n−m, λλ∗ = 1 = vv∗,

vΣ̂v∗ = vOO∗v∗ + εvv∗ − vΣ̃v∗ = 1 + ε− vΣ̃v∗ ≥ (1 + ε)− nε = 1− (n− 1)ε > 0.

Therefore O∗Σ̂O > 0, and thus corank(Σ̂) ≤ m must hold.
2. Consider a sequence Σk ∈ Sn∪· · ·∪Sm+1, Σk → Σ0 ∈ S. For each k there exists

a Frisch decomposition Σ = Σ̂k+Σ̃k with corank(Σ̂k) ≥ m+1. Since the (Σ̂k, Σ̃k) are
bounded there exists a limiting point (Σ̂0, Σ̃0). For this point we have Σ0 = Σ̂0 + Σ̃0,
Σ̂0 ≥ 0, corank(Σ̂0) ≥ m+ 1, and Σ̃0 ≥ 0 which implies Σ0 ∈ Sn ∪ · · · ∪ Sm+1.

3. Let Σ0 ∈ Sm+1. We consider all matrices Σ of the form Σ = Σ0 + ΛΛ∗,
Λ ∈ Cn×n, where the largest eigenvalue of ΛΛ∗ is smaller than some ε > 0. Clearly
this set contains an open and nonvoid subset of S. Since Sr is dense in S, there
exists a Λ such that Σ0 + ΛΛ∗ ∈ Sr, and therefore mc(Σ0 + ΛΛ∗) ≤ mL. We now

define n matrices Σi = Σ0 +
∑i
j=1 λjλ

∗
j , where λj denotes the jth column of Λ. It

is trivial to see that mc(Σi) ≥ mc(Σi−1)− 1 holds. Thus we must have mc(Σi) = m
for some index i. In this way we may find a matrix Σ ∈ Sm in any neighborhood of
Σ0 ∈ Sm+1.

4. The bounded noise case. In a number of applications, the assumption
(a.5) that Σ̃ is diagonal, i.e., that the noise components are mutually uncorrelated, is
not appropriate. Here we consider the alternative assumption that the noise level is
bounded. This assumption is expressed as
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(a.6) λn(Σ̃(λ)) ≤ ε.
The idea behind this assumption is that the order of magnitude of the noise is

known a priori and nothing else. We will adhere to assumption (a.6) throughout this
section. Clearly, terms such as compatible or m-relation set in this section relate to
assumption (a.6) and not to (a.5).

If we replace assumption (a.6) by

trΣ̃ ≤ ε,

most results can be shown analogously. Note that in the static case, tr(Σ̃) = Eu′u
is the mean square error.

In Proposition 4.1, for a given relation w a corresponding minimal noise spectrum
Σ̃ is derived. In Proposition 4.2, a characterization of compatible relations is given
and it is shown that mc(Σ) can be easily determined from the eigenvalues of Σ. From
Proposition 4.3, we see that for λm(Σ) < ε the sets Rm(Σ), in a certain sense, are of
the same topological dimension as G(m,n), namely, 2m(n−m). For the Frisch case,
on the other hand for the special case m = mc(Σ) < mL, we see from Propositions 3.5
and 3.6 thatRm(Σ) has generically dimension n−m2 which is smaller than 2m(n−m).
This result is not implausible, since (a.5) imposes more restrictions than (a.6). Some
topological properties of the sets Sm are considered in Proposition 4.4; it is shown
that all sets Sm are “thick” in the sense that they contain an open nonvoid subset of
S. Finally, Proposition 4.5 shows that the mapping Σ 7→ Rm(Σ) is continuous on a
generic subset of S.

For the next proposition see Kalman [20].
Proposition 4.1. Let Σ be given, let w be an arbitrary but fixed relation, and

consider the set of all Σ̃ satisfying (1.7) and (1.4), and Σ̂, Σ̃ ≥ 0. With respect to
the semi-ordering given by semipositivity of matrices, this set has a unique minimal
element

Σ̃w = Σw∗(wΣw∗)−1wΣ.(4.1)

Proof. Since w has full rank, there is “coordinate transformation” xt → t(z)xt,

such that w̄ = wt−1 = (I, 0). If Σ̄, ˆ̄Σ, and ˜̄Σ denote the corresponding transformed
spectral densities Σ, Σ̂, and Σ̃, respectively, then in an obvious partitioning,(

Σ̄11 Σ̄12

Σ̄21 Σ̄22

)
=

(
0 0

0 ˆ̄Σ22

)
+

(
˜̄Σ11

˜̄Σ12

˜̄Σ21
˜̄Σ22

)

holds. Since ˜̄Σ must be positive semidefinite, the above equation implies ˜̄Σ22 ≥
Σ̄21Σ̄−1

11 Σ̄12. This inequality now gives

˜̄Σ ≥
(

Σ̄11 Σ̄12

Σ̄21 Σ̄21Σ̄−1
11 Σ̄12

)
= Σ̄w̄∗(w̄Σ̄w̄∗)−1w̄Σ̄,

and thus by backsubstituting, Σ̃ = t−1 ˜̄Σt−∗ ≥ Σw∗(wΣw∗)−1wΣ.
An (almost) immediate consequence of the above proposition is the following

characterization of compatible relations, and of the maximum corank, for a given Σ.
Proposition 4.2.

1. w ∈ Cm×n, rank(w) = m is compatible with Σ iff wSw∗ ≥ 0 holds, where
S = εΣ− ΣΣ.
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2. mc(Σ) = m iff λ1(Σ) ≤ λ2(Σ) ≤ · · · ≤ λm(Σ) ≤ ε < λm+1(Σ) ≤ · · · ≤ λn(Σ)
holds.

Proof. By Proposition 4.1, we know that w is compatible iff

Σ̃w = Σw∗(wΣw∗)−1wΣ ≤ εI
holds. As can be easily seen, this equivalent to(

εI Σw∗

wΣ wΣw∗

)
≥ 0,

which in turn is equivalent to wΣw∗ ≥ 1
εwΣΣw∗.

Now Rm(Σ) is not empty iff S = εΣ−ΣΣ has at least m eigenvalues greater than
or equal to zero. Thus item 2 follows immediately.

Note that in this case, as opposed to the Frisch case, the characterization of
mc(Σ) from Σ is easy. Note also that in the bounded noise case considered here, all
m-relation sets may be empty (if ε is too small) and thus mc(Σ) = 0 may hold.

In the next proposition, some topological and geometric properties of the m-
relation set Rm(Σ) are given.

Proposition 4.3.
1. Rm(Σ) is a compact subset of G(m,n).
2. For λm(Σ) < ε, the set Rm(Σ) contains an open (and nonvoid) subset of

G(m,n) and Rm(Σ) = Rm(Σ)o.
Proof. 1. Since G(m,n) is compact, it remains to prove that Rm(Σ) is closed.

Let xk ∈ Rm(Σ) be a sequence converging to x0 ∈ G(m,n). Without loss of generality,
let w0 = (I, w0

2) be a basis for x0 and let wk = (I, wk2 ) be the corresponding basis for
xk. Then clearly wk → w0 and Σ̃wk → Σ̃w0 , where Σ̃w denotes the least squares error
covariance defined by (4.1). Clearly Σ̃w0

satisfies (a.6) and thus x0 ∈ Rm(Σ) holds.
2. By assumption, the matrix S = εΣ − ΣΣ has at least m eigenvalues strictly

larger than zero. If w ∈ Cm×n spans the corresponding eigenspace of S, then wSw∗ >
0 holds. Thus Rm(Σ) and therefore, also, Rm(Σ) contains an open and nonvoid
subset.

Clearly Rom ⊆ Rm and thus Rom ⊆ Rm = Rm.
Since unitary coordinate transformations do not change the topological structure

of Rm(Σ), we may, w.l.o.g., assume that Σ is a diagonal matrix and that the diagonal
elements of Σ are ordered increasing in size. Let S = εΣ− ΣΣ be partitioned as

S =

(
Θ11 0

0 Θ22

)
,

where Θ11 is an s × s, s ≥ m matrix and Θ11 ≥ 0 and Θ22 < 0 hold. If x ∈ Rm(Σ)
has a basis w = (w1, w2), which is partitioned conformingly, then it is easy to see
that w1 must have full rank m. If tw1 = 0 holds for some vector t ∈ C1×m, then 0 ≤
twSw∗t∗ = tw2Θ22w

∗
2t
∗ implies tw2 = 0, since Θ22 < 0 holds. Since by assumption

Θ11 has at least rank m, it follows that in any neighborhood of w1 there exists a full
rank matrix w̄1, such that w̄1Θ11w̄

∗
1 > w1Θ11w

∗
1 holds. Let w̄ = (w̄1, w2); then clearly

w̄Sw̄∗ > 0 holds, i.e., the corresponding subspace x̄ is an element of Rom.
Item 2 of the above proposition shows that the boundary of Rm(Σ) has a simple

structure. Next we consider some topological properties of the sets Sm of all spectral
densities Σ with mc(Σ) = m.

Proposition 4.4. Sm contains an open nonvoid subset and Sn ∪ · · · ∪ Sm is
closed in S.
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Proof. The result is a straightforward consequence of the fact that, for two Her-
mitian matrices A, E, the following relations for the eigenvalues holds:

λk(A) + λ1(E) ≤ λk(A+ E) ≤ λk(A) + λn(E).

(See, e.g., Golub and van Loan [15].)
The above propositions state that all sets Sm are “thick subsets” of the set of

all spectral densities. Note that in the Frisch scheme, on the contrary, the set of all
spectral densities corresponding to a corank m >

√
n are “thin subsets.”

With the same motivation as in the Frisch case, we now consider the continuity
of the mapping Σ 7→ Rm(Σ).

Proposition 4.5. The mapping

S(ε) −→ C,
Σ 7−→ Rm(Σ),

is continuous for all 1 ≤ m ≤ n. Here C denotes the set of compact subspaces
of G(m,n) endowed with the Haussdorff metric and S(ε) ⊆ S is the set of spectral
densities, which have no eigenvalue equal to ε.

Proof. This follows immediately from Lemma A.8.
For the low noise case, a continuity result similar to Proposition 3.11 holds. How-

ever, in this case ε has to go to zero at a suitable rate.

5. The bivariate case. As an important special case and as a further explana-
tion of some of the preceding results, we now discuss the case n = 2. This is done for
the Frisch case and for the bounded noise case.

First we consider the Frisch case. In this case mc(Σ) = 2 holds iff Σ is diagonal.
This case is not really interesting since we may then choose Σ̂ = 0 and Σ̃ = Σ and
thus every w ∈ C1×2 is compatible.

For mc(Σ) = 1, by Proposition 3.2, w.l.o.g., we may choose a normalization
w = (1,−k) for the relation functions. Then k corresponds to the transfer function
of the second component of x̂ to the first component. Clearly Σ̂ is compatible iff

σ̂11σ̂22 − |σ12|2 = 0,
0 ≤ σ̂11 ≤ σ11,
0 ≤ σ̂22 ≤ σ22,

and thus k is compatible iff

k =
σ12

σ̂22
where σ̂22 ∈

[ |σ21|2
σ11

, σ22

]
.

(See Anderson and Deistler [3].) In particular here, the phase is uniquely determined
and the gain is in an interval whose boundaries correspond to the Wiener filter formula,
where all noise is added either to the second or first component.

Next we consider the bounded noise case. Again we introduce the normalization
w = (1,−k). This normalization excludes relation functions of the form w = (0, k)
which by Proposition 4.2 are compatible iff s22 ≥ 0 holds. Using the normalization
above, w is a compatible relation iff

wSw∗ = ks22k
∗ − ks21 − s12k

∗ + s11 ≥ 0.

For s22 6= 0 this is equivalent to(
k − s12

s22

)
s22

(
k − s12

s22

)∗
+

det(S)

s22
≥ 0,
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Table 5.1

s22 det(S)/s22 compatible k mc(Σ)
0 ≤ ε < λ1 < 0 < 0 none 0

λ1 ≤ ε < ε0 < 0 ≥ 0 |k − s12/s22)| ≤
√
− det(S)/s222 1

ε = ε0 0 ∞ 2<(ks21) ≤ s11 1

ε0 < ε < λ2 > 0 < 0 |k − s12/s22| ≥
√
− det(S)/s222 1

λ2 ≤ ε > 0 ≥ 0 all 2

and for s22 = 0 this is equivalent to

2<(ks21) ≤ s11.

In the next step we analyze the variation of the 1-relation set for a fixed spectral
density Σ but with a varying noise bound ε. To simplify the analysis we assume
that Σ is not diagonal and that 0 < λ1 < λ2 holds for the eigenvalues of Σ. Clearly
det(S) ≤ 0 holds for λ1 ≤ ε ≤ λ2 and det(S) > 0 otherwise. Let ε0 denote the value
of ε for which s22 becomes zero. Since s22 = e2Se

∗
2, where e2 = (0, 1), we see that

λ1 ≤ ε0 ≤ λ2 must hold. Since Σ is not diagonal and thus e2 is not an eigenvector of
S, we have λ1 < ε0 < λ2. Putting this together gives cases shown in Table 5.1.

The three cases corresponding to mc = 1 are shown in Figure 5.1 for

Σ =

(
0.5 0.2 + 0.5i

0.2− 0.5i 1.5

)
.(5.1)

Note that the set of compatible transfer functions k is unbounded for ε0 ≤ ε < λ2.
This is a consequence of our normalization w1 = 1. In these cases the relation function
w = (0, k) is compatible!

In Figure 5.2, we show in an exemplary way how our results, which have been
obtained for a fixed frequency, can be applied for the case of varying frequencies.
By putting together sets of compatible systems frequency by frequency, we obtain a
“tube” containing all compatible transfer functions. To be more precise, the set of all
compatible transfer functions is the set of all transfer functions contained in this tube.
Note, however, that the tube may contain functions which are not transfer functions,
e.g., if k is not continuous (compare (1.2)). The figures are given for the spectrum

A =

(
0.25 1
0.2 0.55

)
Σ(λ) =

(
I −Ae−iλ)−1 (

I −A′eiλ)−1
.(5.2)

Rationality of transfer functions, bounding of order, and causality impose addi-
tional restrictions on the set of compatible transfer functions; see, e.g., [9] for the
Frisch case. An extreme example can be easily seen from Figure 5.2, where both
equivalence classes do not contain a static system (i.e., a system of order 0).

6. Conclusion. In identification of errors-in-variables models—where also in-
puts may be contaminated by noise—often there is not sufficient a priori knowledge
about the noise available in order to obtain unique models. Imposing additional as-
sumptions, which are not justified by a priori knowledge, in order to get uniqueness
may give prejudiced results. Therefore our basic philosophy is to attach to the data a
set of observationally equivalent models, rather than a single model. Clearly such an
approach faces additional complications. These complications, treated in an idealized
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Fig. 5.1. Here, for Σ given in (5.1), sets of compatible transfer functions k, evaluated at a
fixed frequency, are represented in the complex plane marked by dark areas. Figures (a)–(e) show
the bounded noise case for a growing noise bound ε (see also Table 5.1). Figure (f) shows the Frisch
case. Note that the sets have dimension 2 in the bounded noise case and dimension 1 in the Frisch
case.

setting, where the relation between second moments of the observations (rather than
data) and models is analyzed, are studied here.

In particular the following problems are addressed:

1. The description of the classes of observationally equivalent models. In many
cases a simple analytic description is not available; for this reason we focus on topo-
logical and geometric properties of these classes.

2. For the well-posedness of the identification problem, the continuity of the
mapping attaching equivalence classes to second moments of the observations is im-
portant.

3. The class of observationally equivalent models may contain systems with a
different number of outputs. Here the maximum number of outputs is of special inter-
est. For inference for this number (e.g., by likelihood ratio testing) some topological
properties of sets of spectral densities corresponding to a given maximum number of
outputs are analyzed.

These problems are investigated for two different assumptions on the noise, namely,
for the Frisch case (mutually uncorrelated noise components) and for the case of
bounded noise.

Appendix A. Some lemmata.

Lemmas A.1–A.7 deal with the Frisch case and Lemma A.8 deals with the bounded
noise case.

Lemma A.1. Let Σ̂0 ∈ Mm, Σ̃0 ∈ DI , Σ0 = Σ̂0 + Σ̃0 > 0, where I = {1, . . . , l}
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Fig. 5.2. Here, for the spectrum Σ given in (5.2), the set of compatible transfer functions k is
shown. The left-hand figure shows the Frisch case and the right-hand figure shows the bounded noise
case. The above figures are obtained by putting together the sets shown in Figure 5.1, frequency by
frequency. (Of course, here only one noise bound ε was used.) Note that the Frisch case gives a
“band,” whereas the bounded noise case gives a “tube” of compatible k’s.

and Σ̂0
22 > 0 holds. Then the following statements hold:
1. We can find an open neighborhood U ⊆ Rn of Σ̃0 such that (Σ0

22 − Σ̃22) > 0
and σ̃ii > 0 for i ∈ I hold for all Σ̃ ∈ U . In this neighborhood the mapping Σ̃ 7→
gn,m(Σ0− Σ̃) is defined and differentiable, and Σ̃ ∈ Em(Σ0) holds iff gn,m(Σ0− Σ̃) = 0
and Σ̃ ≥ 0 holds.

2. The mapping fm,I has full rank in (Σ̂0, Σ̃0) iff the derivative of gn,m(Σ0− Σ̃),
with respect to dI(Σ̃), has full rank in Σ̃0. Here dI(Σ̃) denotes the vector of the
diagonal elements of Σ̃ corresponding to the index set I.

Proof. The first statement is evident. In order to prove the second statement
note that the derivative of fm,I is given by

I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
X X H2 H1 0 0
0 0 0 I I 0
X X X X 0 I


} ∂v(Σ12)

} ∂o(Σ22)

} ∂d2(Σ22)

} ∂o(Σ11)

} ∂d1(Σ22)

} ∂d(Σ11)︸ ︷︷ ︸
∂v(Σ̂12)

︸ ︷︷ ︸
∂o(Σ̂22)

︸ ︷︷ ︸
∂d2(Σ̂22)

︸ ︷︷ ︸
∂d1(Σ̂22)

︸ ︷︷ ︸
∂d1(Σ̃22)

︸ ︷︷ ︸
∂d(Σ̃11)

.

Here block entries of this derivative, which do not play a role in our analysis, are
simply marked with an X. Furthermore, the vector of diagonal elements of Σ̂22 and
Σ̃22 is split into two parts d1(·) and d2(·), such that dI(Σ̃) = (d(Σ̃11)′, d1(Σ̃22)′)′.

On the other hand, the derivative of gn,m(Σ0 − Σ̃) with respect to d(Σ̃) is given
by ( −I X X

0 H1 H2

) } ∂d(gn,m)

} ∂o(gn,m)︸ ︷︷ ︸
∂d(Σ̃11)

︸ ︷︷ ︸
∂d1(Σ̃22)

︸ ︷︷ ︸
∂d2(Σ̃22)

.
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Since both matrices have full rank iff H1 has full rank, statement 2 has been
proven.

Lemma A.2. Let Σ0 = Σ̂0 + Σ̃0, (Σ̂0, Σ̃0) ∈ Mm × DI be a regular point of

fm,I . There exists an open neighborhood U ⊆ (Rn2 × Rn), of (Σ0, Σ̃0), such that for
all (Σ, Σ̃) ∈ U we have that: if Σ̂ = (Σ− Σ̃) ∈Ms and Σ̃ ≥ 0 hold, then

1. s ≤ m,
2. Σ̃ ∈ DJ , J ⊇ I, and
3. (Σ̂, Σ̃) is a regular point of fs,J .

Proof. By a rearrangement of variables in xt we may achieve that Σ̂0
22 > 0 and

I = {1, . . . , l} hold. We then can choose U in such a way that (Σ22 − Σ̃22) > 0 and
σ̃ii > 0 for all i ∈ I hold for all (Σ, Σ̃) ∈ U . Thus we have shown 1 and 2.

By Lemma A.1 we know that the derivative of gn,m(Σ− Σ̃) with respect to dI(Σ̃)
evaluated at (Σ0, Σ̃0) has full rank m2, since (Σ̂0, Σ̃0) is a regular point of fm,I . Now
let U be so small that this derivative has full rank m2 for all points (Σ, Σ̃) ∈ U . We
consider a pair (Σ, Σ̃) ∈ U , Σ̂ = (Σ− Σ̃) ∈ Ms, Σ̃ ∈ DJ . Again by rearrangement of
the first m variables in xt, we can achieve that the lower right (n− s)× (n− s) corner
of Σ̂ has full rank n − s. By the identity gn,s = gm,s ◦ gn,m and the chain rule, the
derivative of gn,s(Σ− Σ̂) with respect to dI(Σ̃) has full rank s2, since the derivative of
gm,s has rank s2 and since the derivative of gn,m with respect to dI(Σ̃) has rank m2.
Therefore we again have by Lemma A.1 that (Σ̂, Σ̃) is a regular point of fs,I .

Lemma A.3. The set of all pairs (Σ̂, Σ̃) ∈ (Mm ×DI), where fm,I has full rank
min(n2, n2 −m2 + |I|), is open and dense in (Mm ×DI).

Proof. We first prove that the set of pairs (Σ̂, Σ̃) with a full rank derivative is
dense. Let us consider a pair (Σ̂0, Σ̃0), where, w.l.o.g., we may assume that Σ̂0

22 > 0
and I = {1, . . . , l} holds. By the results of Lemma A.1, it suffices to consider the
derivative of o(Σ̂12Σ̂22Σ̂21) with respect to the first s = l −m diagonal elements of
Σ̂22. Let A = Σ̂12Σ̂−1

22 ; then this derivative is given by

<(a11a
∗
21) <(a12a

∗
22) . . . . . . <(a1sa

∗
2s)

=(a11a
∗
21) =(a12a

∗
22) . . . . . . =(a1sa

∗
2s)

<(a11a
∗
31) <(a12a

∗
32) . . . . . . <(a1sa

∗
3s)

=(a11a
∗
31) =(a12a

∗
32) . . . . . . =(a1sa

∗
3s)

...
...

...
<(a11a

∗
m1) <(a12a

∗
m2) . . . . . . <(a1sa

∗
ms)

=(a11a
∗
m1) =(a12a

∗
m2) . . . . . . =(a1sa

∗
ms)

<(a21a
∗
31) <(a22a

∗
32) . . . . . . <(a2sa

∗
3s)

=(a21a
∗
31) =(a22a

∗
32) . . . . . . =(a2sa

∗
3s)

...
...

...
...

...
...

<(am−1,1a
∗
m1) <(am−1,2a

∗
m,2) . . . . . . <(am−1,sa

∗
m,s)

=(am−1,1a
∗
m1) =(am−1,2a

∗
m,2) . . . . . . =(am−1,sa

∗
m,s)



}∂<((·)12)
}∂=((·)12)
}∂<((·)13)
}∂=((·)13)
...
}∂<((·)1s)
}∂=((·)1s)
}∂<((·)23)
}∂=((·)23)
...
...
}∂<((·)m−1,m)
}∂=((·)m−1,m)

In each neighborhood of A0 = Σ̂0
12(Σ̂0

22)−1, we may find a matrix A such that all
entries aij are nonzero and <(a11a

∗
21) 6= 0 holds. Now let us consider the left upper

(k + 1)× (k + 1) block of the above matrix, which is partitioned as(
H11 h12

h21 H22

)
.
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If H11 is regular, then the determinant of this block is equal to det(H11)(h22 −
h21H

−1
11 h21). The element h22 is the real or imaginary part of a product of the

form ai,k+1a
∗
j,k+1 for some i 6= j. It is easy to see that we can disturb these two

entries ai,k+1 and aj,k+1 such that (h22 − h21H
−1
11 h21) is nonzero. Then after a finite

number of such steps, we end up with a full rank matrix H. Since A = Σ̂12Σ̂−1
22 , these

arbitrarily small changes in A may be achieved by arbitrarily small changes in Σ̂12.
Thus we have proved that, in any neighborhood of (Σ̂0, Σ̃0), we may find a pair (Σ̂, Σ̃)
such that the derivative fm,I has full rank.

Since the determinant of the derivative is a continuous functions of the entries of
(Σ̂, Σ̃), it follows that the set of pairs (Σ̂, Σ̃) with a full rank derivative is open.

Lemma A.4. Let A be a metric space endowed with the metric d(x, y) and let
(Uk ∈ C(A)) be a sequence of compact subsets of A and U0 ∈ C(A). Then

ρ(U0,Uk) = sup
x∈U0

inf
y∈Uk

d(x, y) −→ 0

iff

ik(x) = inf
y∈Uk

d(x, y) −→ 0 for all x ∈ U0,

i.e., iff for all x ∈ U0 there exists a sequence yk ∈ Uk, such that yk → x holds.
Proof. Let us consider two points x1, x2 ∈ U0. Since Uk is compact, there are two

points y1, y2 ∈ Uk such that ik(xj) = infy∈Uk d(xj , y) = d(xj , yj), j = 1, 2. From the
triangle inequality, we get

ik(x1) = d(x1, y1) ≤ d(x1, y2) ≤ d(x1, x2) + d(x2, y2) = d(x1, x2) + ik(x2),
ik(x2) = d(x2, y2) ≤ d(x2, y1) ≤ d(x2, x1) + d(x1, y1) = d(x1, x2) + ik(x1),

and thus

|ik(x1)− ik(x2)| ≤ d(x1, x2).

Now suppose that ik(x) → 0 holds for all x ∈ U0, but supx∈U0
ik(x) does not

converge to zero. Then there exist an ε > 0 and a sequence of points xk ∈ U0, such
that ik(xk) ≥ ε for infinitely many k’s. Since U0 is compact, there exists a limiting
point x0 ∈ U0 of these sequence of points xk. By the above inequality, we further get

ik(xk) ≤ |ik(xk)− ik(x0)|︸ ︷︷ ︸
≤d(xk,x0)→0

+ ik(x0)︸ ︷︷ ︸
→0

−→ 0,

in contradiction to ik(xk) ≥ ε. Thus we have shown that ik(x)→ 0, ∀x ∈ U0 implies
that ρ(U0,Uk)→ 0. The reverse statement is evident. Clearly ik(x)→ 0 is equivalent
to the existence of a sequence yk ∈ Uk, with yk → x.

Now we consider the mapping Σ 7→ Em(Σ). In the next proposition the semicon-

tinuity of this mapping, in the sense that the limiting set of a sequence Em(Σk) is a

subset of Em(lim Σk), is stated.
Lemma A.5. For S 3 Σk → Σ0 ∈ S, we have

ρ(Em(Σk), Em(Σ0)) = sup
Σ̃k∈Em(Σk)

inf
Σ̃0∈Em(Σ0)

‖Σ̃k − Σ̃0‖ → 0.
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Proof. Note that Em(Σ) is closed and bounded by Propositions 3.1 and 3.3. Thus

ρ(Em(Σk), Em(Σ0)) is well defined.
If mc(Σ0) < m (and thus Em(Σ0) = ∅), then also mc(Σk) < m (and thus

Em(Σk) = ∅) must hold from some k onwards. (This follows from the fact that
S1 ∪ · · · ∪ Sm−1 is open; see Proposition 3.12.) If we define ρ(∅, ∅) = 0, then the
proposition is proved in this case.

Suppose that there is an ε > 0 such that ρ(Em(Σk), Em(Σ0)) > ε holds for in-

finitely many k’s. Then for each such k there exists a Σ̃k ∈ Em(Σk) such that
inf

Σ̃∈Em(Σ0)
‖Σ̃k− Σ̃‖ > ε holds. Since the Σ̃k’s are bounded, there is a limiting point

Σ̃0, say. Note that Σ̃0 ∈ Em(Σ0) holds, since (Σk − Σ̃k) ≥ 0, corank(Σk − Σ̃k) ≥ m,
and Σ̃k ≥ 0 hold.

Therefore we have

inf
Σ̃∈Em(Σ0)

‖Σ̃k − Σ̃‖ ≤ ‖Σ̃k − Σ̃0‖ → 0,

in contradiction to the construction of the Σ̃k’s.
Lemma A.6. For a convergent sequence (Σk ∈ S), Σk → Σ0 ∈ S, we have

ρ(Rm(Σk),Rm(Σ0))→ 0.

Proof. In the case mc(Σ0) < m, we have mc(Σk) < m from some k0 onwards.
Thus Rm(Σ0) = ∅ = Rm(Σk) for all k ≥ k0.

Now we consider the case where mc(Σ0) ≥ m holds. We suppose that there
exist an ε > 0 and a sequence xk ∈ Rm(Σk), such that infy∈Rm(Σ0) dG(xk, y) ≥ ε
holds for infinitely many k’s. Since G(m,n) is compact, there exists a limiting point
x0 ∈ G(m,n) of these xk’s.

To each xk there exists a corresponding Σ̃k ∈ E(Σk), such that xk ⊆ ker(Σk− Σ̃k).
Since the Σ̃k’s are bounded, there exist a limiting point Σ̃0, say. It is easy to see that
Σ̃0 ∈ E(Σ0) and x0 ⊆ ker(Σ0 − Σ̃0) hold. Thus x0 ∈ Rm(Σ0) holds and we have

inf
y∈Rm(Σ0)

dG(xk, y) ≤ dG(xk, x0)→ 0,

in contradiction to the construction of the sequence xk.
Lemma A.7. Consider a sequence Σk ∈ S, Σk → Σ0 ∈ S, where mc(Σ0) = m0,

and Es(Σk)→ Es(Σ0) for all m ≤ s ≤ m0 holds. In this case,

dH(Rm(Σk),Rm(Σ0))→ 0

holds.
Proof. For x0 ∈ Rm(Σ0) there is a Σ̃0 ∈ Em(Σ0) such that x0 ⊆ ker(Σ0 − Σ̃0). In

order to prove the proposition we consider the following two cases:
1. x0 = ker(Σ0 − Σ̃0), i.e. Σ̃0 ∈ Em(Σ0). Since Em(Σk) → Em(Σ0), we can find

a sequence Σ̃k ∈ Em(Σk), such that Σ̃k → Σ̃0 holds. There must be an index k0

such that corank(Σk − Σ̃k) = m, and thus Σ̃k ∈ Em(Σk), holds for all k ≥ k0. Thus
xk = ker(Σk− Σ̃k) ∈ Rm(Σk) holds for all k ≥ k0. Since ker(Σ̂) continuously depends
on Σ̂, we have found a sequence xk ∈ Rm(Σk)→ x0.

2. x0 ⊂ ker(Σ0 − Σ̃0), i.e., Σ̃0 ∈ Es(Σ0) for some s > m. We can construct a
sequence yk ∈ Rs(Σk) → y0 = ker(Σ0 − Σ̃0) as described above. Without loss of
generality, we assume that w0 = (I, w0

2) is a basis for y0. For all k large enough, yk
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has a basis wk = (I, wk2 ). Clearly wk → w0 holds. Since x0 ⊂ ker(Σ0−Σ̃0) = y0, there
exists a matrix o ∈ Cm×s such that ow0 ∈ Cm×n is a basis for x0. Then owk ∈ Rm(Σk)
holds and the corresponding subspace xk (spanned by the rows of owk) is an element
of Rm(Σk). Thus we have found a sequence xk ∈ Rm(Σk)→ x0 ∈ Rm(Σ0).

Now, using Lemmata A.4 and A.6 gives us the desired result.

Lemma A.8. Let Σk ∈ S be a convergent sequence of spectral densities with
limn→∞Σk = Σ0 ∈ S.

1. ρ(Rm(Σk),Rm(Σ0)) = supx∈Rm(Σk) infy∈Rm(Σ0) dG(x, y) −→ 0.

2. If λm(Σ0) < ε, then ρ(Rm(Σ0),Rm(Σk)) = supx∈Rm(Σ0) infy∈Rm(Σk) dG(x, y)
−→ 0

Proof. 1. First we note that, if mc(Σ0) < m holds (and thus Rm(Σ0) is void),
then mc(Σk) < m (and thus Rm(Σk) = ∅) must hold for all k large enough. If we
define dH(∅, ∅) = 0, then the statement is true for this case.

Next we consider the case mc(Σ0) ≥ m. If ρ(Rm(Σk),Rm(Σ0)) does not con-
verge to zero, then there exist a µ > 0 and a sequence xk ∈ Rm(Σk) such that
infy∈Rm(Σ0) dG(xk, y) ≥ µ holds. Since G(m,n) is compact, the sequence xk has a
convergent subsequence. To simplify the notation we use the same index k for this
subsequence. We now have limk xk = x0. If (after possibly reordering variables)
w0 = (I, w0

2) is a basis for the subspace x0, then we can find wk = (I, wk2 ) which span
the subspaces xk. Since xk → x0, we have wk → w0 and w0(εΣ0 − Σ0Σ0)(w0)∗ =
limk w

k(εΣk − ΣkΣk)(wk)∗ ≥ 0. Thus x0 ∈ Rm(Σ0) and

inf
y∈Rm(Σ0)

dG(xk, y) ≤ dG(xk, x0)→ 0

holds, which gives the desired contradiction.

2. By Lemma A.4 it suffices to show that for each w0 ∈ Rm(Σ0) a sequence
wk ∈ Rm(Σk) with wk → w0 can be constructed. Let Sk = εΣk − ΣkΣk and S0 =
εΣ0 − Σ0Σ0. Since S0 has at least m eigenvalues strictly larger than zero, we may
find a sequence vl → w0 such that vlΣ0(vl)∗ > 0 holds (see item 2 of Proposition 4.3.)
Since Σk → Σ0, for each l there exists an integer k(l) such that vlΣk(vl)∗ ≥ 0
holds for all k ≥ k(l). Now we define the sequence wk by wk = vl for k(l) ≤ k <
k(l + 1).

Appendix B. Notation.

S ⊆ Cn×n set of all n× n complex positive definite matrices
M⊆ Cn×n set of all n× n complex positive semidefinite matrices
Mm ⊆M set of all n× n complex positive semidefinite matrices of

corank m
Sm ⊆ S set of all Σ with mc(Σ) = m
G(m,n) set of all m-dimensional subspaces of Cn (Grassmannian)
xt observations
x̂t latent variables
ut noise
Σ ∈ S spectral density of (xt) evaluated at a fixed frequency λ
ΣT ∈ S an estimate of Σ based on a sample of length T
Σ̂ ∈Mm spectral density of (x̂t) evaluated at a fixed frequency λ
Σ̃ ∈M spectral density of (ut) evaluated at a fixed frequency λ
w ∈ Cm×n relation function evaluated at a fixed frequency λ
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E(Σ) set of all compatible Σ̃
Em(Σ) ⊆ E(Σ) set of all compatible Σ̃, such that Σ̂ = Σ− Σ̃ has corank m
Rm(Σ) ⊆ Cm×n set of all compatible w, m-relation set of Σ
Rm(Σ) ⊆ G(m,n) set of all subspaces spanned by a compatible w ∈ Rm(Σ)
mc(Σ) maximum corank of all compatible Σ̂ = Σ− Σ̃
mL =

√
n Ledermann bound

D ⊆ Rn set of all positive semidefinite diagonal n× n matrices Σ̃
DI ⊆ D set of all positive semidefinite diagonal n× n matrices Σ̃,

where σ̃ii > 0 for all i ∈ I ⊆ {1, . . . , n} and σ̃ii = 0 else
ker(A) kernel of a complex matrix A
rank(A), corank(A) rank and corank of a complex matrix A
λi(A) eigenvalues of a complex Hermitian matrix
Ao,A interior and closure of a set A
dH(·, ·) Hausdorff distance
dG(·, ·) gap metric, defined on G(m,n)
<(z),=(z) real and imaginary part of a complex number z
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Abstract. Nonlinear control systems can be stabilized by constructing control Lyapunov func-
tions and computing the regions of state space over which such functions decrease along trajectories
of the closed-loop system under an appropriate control law. This paper analyzes the computational
complexity of these procedures for two classes of control Lyapunov functions. The systems con-
sidered are those which are nonlinear in only a few state variables and which may be affected by
control constraints and bounded disturbances. This paper extends previous work by the authors,
which develops a procedure for stability analysis for these systems whose computational complexity
is exponential only in the dimension of the “nonlinear” states and polynomial in the dimension of
the remaining states. The main results are illustrated by a numerical example for the case of purely
quadratic control Lyapunov functions.
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1. Introduction. Many dynamical systems can be represented by ordinary dif-
ferential equations in the physical states of the system influenced by other parameters,
such as disturbance and control inputs. The focus of state-feedback control theory
is to design a control law (a function which maps measured states of the system to
control inputs) which produces a desired performance for the system. Very different
theories apply to this problem depending on whether the state derivatives are linear
or nonlinear functions of the states in the differential equations defining the system.
Many simple, straightforward techniques for robust optimal control of linear systems
have been developed. Extensions of these methods to nonlinear systems are some-
times possible, but the analogous procedures which result from this exercise cannot
typically be executed in a computationally tractable way. As a result, control of
nonlinear systems has been a topic of intense research for some time.

Progress on the nonlinear control problem is difficult because of the inherent com-
plexity of methods which are general enough to apply to arbitrary nonlinear systems.
One method which has recently come into favor is to construct a stabilizing control
law based on a known control Lyapunov function (CLF) for the system [2, 13, 27, 29].
A function is a CLF if a control law exists to render it a Lyapunov function for the
closed-loop system. The computation of a stabilizing control law is straightforward
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from any of a number of universal formulas [13, 17, 27] based on the CLF and the
system dynamics, so the control synthesis problem is reduced to constructing a CLF
for the system and computing the region of state space over which a control exists to
stabilize the system based on the given CLF. Recently, the authors have developed
a computationally efficient procedure for solving a version of the nonlinear control
problem (Problem 1 below) based on a given CLF [18, 19]. In its general form, the
procedure requires one to construct a CLF and to determine the region of state space
over which that CLF guarantees stability of the closed-loop system. In this paper,
we analyze the computational complexity of these two problems for two important
classes of Lyapunov functions.

We consider the problem of designing a control law which stabilizes a nonlinear
system in the sense prescribed by Definition 1.2 below. The formal stability definition
is a version of the concept of uniform asymptotic stability used in [16]. That definition
is repeated below.

Definition 1.1 (see [16]). Given a system ẋ = f(x,w) with w(t) ∈ W ⊆ Rl for
all t ≥ 0 and a compact subset Ω ⊂ Rn, define ‖x‖Ω .

= inf{‖x− y‖, y ∈ Ω}. Then the
system is robustly uniformly asymptotically stable with respect to Ω, or RUAS-Ω, if
the following conditions hold:

1. For every x(0) ∈ Rn and w(t) ∈ W, the solution x(t) is defined for all t ≥ 0.
2. Uniform stability: There exists a radially unbounded, continuous, strictly

increasing function δ(ε), with δ(0) = 0, such that, for any ε > 0, ‖x(0)‖Ω ≤ δ(ε),
t ≥ 0, and w(t) ∈ W, we have ‖x(t)‖Ω < ε.

3. Uniform attraction: For any r, ε > 0, there exists T > 0, such that for every
w(t) ∈ W, ‖x(t)‖Ω < ε whenever ‖x(0)‖Ω < r and t ≥ T .

Definition 1.2. Given a system ẋ = f(x,w) with w(t) ∈ W ⊆ Rl for all t ≥ 0, a
positively invariant set X ⊆ Rn, and a compact subset Ω ⊂ X , the system is robustly
uniformly asymptotically stable over X with respect to Ω, or RUAS(X ,Ω), if it is
RUAS-Ω whenever x(0) ∈ X . We call the set X a region of stability for the system.

In particular, we consider the following control synthesis problem.
Problem 1. Consider a continuous time, time-invariant, nonlinear system influ-

enced by a control u(t) in a closed subset U ⊆ Rm and a disturbance w(t) ∈ W ⊆ Rl.
The state vector x(t) ∈ Rn is partitioned into xN ∈ Rk and xL ∈ Rn−k, and the
system has the form[

ẋN
ẋL

]
=

[
fN (xN )
fL(xN )

]
+

[
AN (xN )
AL(xN )

]
xL(1.1)

+

[
gNw (xN )
gLw(xN )

]
w +

[
gNu (xN )
gLu (xN )

]
u,

where all functions of xN are C1. Construct sets Ω ⊂ X ⊆ Rn containing an equilib-
rium point at x = 0 and a static state-feedback control law µ : X → U such that the
closed-loop system with u = µ(x) is RUAS(X ,Ω).

Note that Problem 1 includes the problem of analyzing robust stability for an
autonomous system without control, since this is just the case U = {0}.

Obviously, we would like X to be as large as possible and Ω as small as possible.
When W = {0} and the system is locally asymptotically stabilizable, local stabiliza-
tion theory yields a set X such that the system is RUAS(X ,{0}) [30, 13]. To compute
the region of stability generally requires computation times which are exponential in
the state dimension n; for the system (1.1), however, the computations required to
find X are tractable.
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In many applications, the engineer knows from the physics of the problem that
only a few physical quantities affect the system dynamics in a nonlinear way, so that
the system can be modeled in the form (1.1). Such systems are also considered in [3],
where the output-feedback stabilization problem (with output xN ) is solved based on
an output control Lyapunov function, assuming that the solution to the state-feedback
stabilization problem is already available and the output CLF can be constructed.

We now define some relevant terms pertaining to a system of the general form
given below, where f ∈ C1(Rn → Rn) and gw(x) and gu(x) are continuous:

ẋ = f(x) + gw(x)w + gu(x)u.(1.2)

Definition 1.3. A level set of a proper, positive-definite function V : Rn → R
is defined by real numbers c2 > c1 ≥ 0 via V −1[c1, c2]

.
= {x ∈ Rn | c1 ≤ V (x) ≤ c2}.

Definition 1.4 (see [5]). Given a locally Lipschitz function V : Rn → R and a
continuous vector field f on Rn, the Lie derivative of V (x) along f(x) is defined by

LfV (x)
.
= lim sup

t→0+

V (x+ tf(x))− V (x)

t
.

If V (x) is differentiable at a point x ∈ Rn, then LfV (x) = ∂V
∂x (x)f(x).

Definition 1.5 (see [12, 27]). Consider a subset W ⊆ Rl, a closed subset
U ⊆ Rm, a positive-definite function W (x), and real numbers c2 > c1 ≥ 0. A proper,
positive-definite C1 function V (x) is a robust control Lyapunov function (RCLF) with
stability margin W (x) with controls in U over V −1[c1, c2] for the system (1.2) if there
exists a control law µ : Rn → U such that

sup
x∈V −1[c1,c2]

sup
w∈W

LfV (x) + LgwV (x)w + LguV (x)µ(x) +W (x) ≤ 0.

Equivalently,

sup
x∈V −1[c1,c2]

inf
u∈U

sup
w∈W

LfV (x) + LgwV (x)w + LguV (x)u+W (x) ≤ 0.

Remark 1. If U = Rm, the condition in Definition 1.5 is equivalent to

sup
x∈V −1[c1,c2]∩ker(LguV )

sup
w∈W

LfV (x) + LgwV (x)w +W (x) ≤ 0.

By Definition 1.5, if V (x) is an RCLF, then a static state-feedback control law
exists such that the closed-loop system is robustly stable in the sense defined by
Definition 1.2. We now proceed to show how to determine whether a given function
V (x) is an RCLF over a given level set in section 2. In section 3, we investigate the
problem of finding the RCLF V (x) which maximizes the volume of the region over
which stability can be guaranteed. We also analyze the computational complexity
of these procedures in each of these sections. A numerical example is presented in
section 4 to illustrate the findings of the paper. The main results are summarized in
section 5.

2. Stability analysis using a given RCLF. Given an RCLF V (x) and a
stability margin W (x), our objective is to determine whether V (x) is an RCLF with
stability margin W (x) with controls in U over some level set given by V −1[c1, c2] for
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the nonlinear system (1.1). By Definition 1.5, this stability condition holds if and
only if

sup
x∈V −1[c1,c2]

inf
u∈U

sup
w∈W

LfV (x) + LgwV (x)w + LguV (x)u+W (x) ≤ 0.(2.1)

Since the term infu∈U LguV (x)u is a constant over sets of the form {x ∈ Rn |
LguV (x) = ψT } for ψ ∈ Rm, it is useful to parameterize sets of this form when
evaluating the condition (2.1).

Under certain assumptions which are made precise in sections 2.1–2.2, the set
{x ∈ Rn | LguV (x) = ψT } can be parameterized by xN and a parameter λ ∈
Rn−k−m. With this parameterization, we can express V (x) restricted to {x ∈ Rn |
LguV (x) = ψT } by a function V (xN , ψ, λ). This parameterization can be chosen so
that V (xN , ψ, λ) is minimized at λ = 0 for each (xN , ψ).

To analyze stability over the level set V −1[c1, c2], we first make the following
definitions:

Y(c2)
.
= {(xN , ψ) ∈ Rk ×Rm | V (xN , ψ, 0) ≤ c2},

Z(c1, c2, xN , ψ)
.
= {λ ∈ Rn−k−m | c1 ≤ V (xN , ψ, λ) ≤ c2},

Γ(xN , ψ, λ)
.
= sup
w∈W

LfV (x) + LgwV (x)w +

[
inf
u∈U

ψTu

]
+W (x),

Γ(c1, c2, xN , ψ)
.
= max
λ∈Z(c1,c2,xN ,ψ)

Γ(xN , ψ, λ).

The set Y(c2) is simply the allowable range of (xN , ψ) in the given level set, and
Z(c1, c2, xN , ψ) maps the level set to the parameter space of the variable λ.

Proposition 2.1. V (x) is an RCLF with stability margin W (x) with controls in
U over V −1[c1, c2] if and only if Γ(c1, c2, xN , ψ) ≤ 0 for all (xN , ψ) ∈ Y(c2).

The condition in Proposition 2.1 implies that Γ(c1, c2, xN , ψ) ≤ 0 for all (xN , ψ) ∈
Rk×Rm. Since Y(c2) is compact, we check the condition in Proposition 2.1 by gridding
Y(c2) and solving a feasibility problem to determine whether Γ(c1, c2, xN , ψ) ≤ 0 for
all (xN , ψ) in the grid.

When U = Rm, we see from Remark 1 that we need only to check whether
Γ(c1, c2, xN , ψ) ≤ 0 for ψ = 0. In this case, it is necessary only to grid over the per-
missible values of xN , which is a compact region of dimension k rather than dimen-
sion (k+m). Therefore, Proposition 2.1 holds with the following modified definition:

Y(c2)
.
= {(xN , ψ) ∈ Rk ×Rm | ψ = 0, V (xN , 0, 0) ≤ c2}.

Remark 2. The procedure just described also applies in the analysis of closed-
loop robust stability under a control law of the form µ(x) = µN (xN ) + µL(xN )xL. In
this case, the control is already fixed, so we do not need to parameterize sets of the
form {x ∈ Rn | LguV (x) = ψT }. In other words, we simply parameterize the level set
V −1[c1, c2] by the variable xN . The only additional step is to check that µ(x) ∈ U over
V −1[c1, c2], but this is straightforward for certain common classes of control constraint
sets [21].

In sections 2.1–2.2, we fill in the details of this stability analysis procedure for
two specific Lyapunov function classes and evaluate the computational complexity of
the procedure in each case.
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2.1. Quadratic RCLF with constant P matrix. In this section, we fill in the
details of the stability analysis procedure for the special case of a standard quadratic
RCLF and stability margin of the form

V (x) = xTPx = xTNPNNxN + xTNPNLxL + xTLPLNxN + xTLPLLxL,(2.2)

W (x) = xTQx = xTNQNNxN + xTNQNLxL + xTLQLNxN + xTLQLLxL.(2.3)

We begin by parameterizing sets of the form {x ∈ Rn | LguV (x) = ψT } for ψ ∈ Rm.
For a system of the form (1.1) and a Lyapunov function (2.2), we have

LguV (x) = 2xTN [PNNg
N
u (xN ) + PNLg

L
u (xN )] + 2xTLY (xN ),

Y (xN )
.
= PLNg

N
u (xN ) + PLLg

L
u (xN ).

To simplify the algebra, we make the following assumption.
Assumption 1. For all xN ∈ Rk, rank Y (xN ) = m ≤ n− k.
Assumption 1 can be relaxed, if necessary, with some modifications to the analysis

which follows. Theorem 2.2 shows how the set {x ∈ Rn | LguV (x) = ψT } can be
parameterized by xN and a parameter λ ∈ Rn−k−m.

Theorem 2.2. Given a function V (x) of the form (2.2) and a vector ψ ∈ Rm,

{x ∈ Rn | LguV (x) = ψT }
=

{[
xN

G(xN )λ− P−1
LLPLNxN − ξ(xN , ψ)

]
, xN ∈ Rk, λ ∈ Rn−k−m

}
,

ξ(xN , ψ)
.
= P−1

LLY (xN )[Y (xN )TP−1
LLY (xN )]−1

[
gNu (xN )TRxN − 1

2
ψ

]
,

R
.
= PNN − PNLP−1

LLPLN ,

for any matrix G(xN ) ∈ R(n−k)×(n−k−m) of full rank such that Y (xN )TG(xN ) ≡ 0.
Proof. Note that since G(xN ) is full rank, G(xN )λ completely characterizes the

null space of Y (xN )T . Therefore, if any element in the set described above is an
element of {x ∈ Rn | LguV (x) = ψT }, then that set is equal to {x ∈ Rn | LguV (x) =
ψT }. Hence, it is sufficient to check the value of LguV (x) when λ = 0:

LguV (x) = 2xTN [PNNg
N
u (xN ) + PNLg

L
u (xN )] + 2xTLY (xN )

= 2xTN [PNNg
N
u (xN ) + PNLg

L
u (xN )]− 2[P−1

LLPLNxN + ξ(xN , ψ)]TY (xN )

= 2xTNRg
N
u (xN )− 2

[
gNu (xN )RxN − 1

2
ψ

]T
= ψT .

With the parameterization of Theorem 2.2, we can express V (x) restricted to
{x ∈ Rn | LguV (x) = ψT } as follows:

V (xN , ψ, λ) = xTNRxN + ξ(xN , ψ)TPLLξ(xN , ψ) + λTG(xN )TPLLG(xN )λ.

In order to grid Y(c2), we need bounds on the values of xN and ψ which can be
achieved on this set. The permissible values of xN are those satisfying xTNRxN ≤ c2.
Now, for fixed xN , LguV (x) is affine in xL for systems of the form (1.1). Hence, each
element of LguV (x) can be represented as [LguV (x)]p = ap(xN ) + xTLbp(xN ), where[

a1(xN ) · · · am(xN )
]

= 2xTN [PNNg
N
u (xN ) + PNLg

L
u (xN )],[

b1(xN ) · · · bm(xN )
]

= 2Y (xN ).
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The bounds on each element ψp are therefore given as follows:

min
V (x)≤c2

ap(xN ) + xTLbp(xN ) ≤ ψp ≤ max
V (x)≤c2

ap(xN ) + xTLbp(xN ).

By the method of Lagrange multipliers [28], we find this to be equivalent to

αp(xN )− βp(xN ) ≤ ψp ≤ αp(xN ) + βp(xN ),(2.4)

where, for xTNRxN ≤ c2,

αp(xN )
.
= ap(xN )− bp(xN )TP−1

LLPLNxN ,

βp(xN )
.
=
√

[c2 − xTNRxN ][bp(xN )TP−1
LLbp(xN )].

The bounds in (2.4) give us the set of values of LguV (x) over which we must grid in
order to complete the stability analysis. If ψ = 0 is within the allowable range for
a given xN , we should use this as one of the grid points to ensure that at least the
condition for stability from Remark 1 for the case of unlimited control (U = Rm) is
satisfied.

By Theorem 2.2, we can parameterize the stability condition as follows for each
(xN , ψ) ∈ Y(c2):

Γ(xN , ψ, λ) = sup
w∈W

a0(xN , ψ) + b0(xN , ψ)Tλ+ λTC0(xN )λ(2.5)

+ wT [s(xN , ψ) + T (xN )λ].

The coefficients can be found by straightforward algebra. We can check the condition
Γ(c1, c2, xN , ψ) ≤ 0 by solving a linear matrix inequality (LMI) feasibility problem
using the S-procedure as discussed in [6]. Let us first consider the case of no distur-
bances (W = {0}), for which the parameterized stability condition (2.5) gives us

Γ(c1, c2, xN , ψ) = max
c1≤V (xN ,ψ,λ)≤c2

a0(xN , ψ) + b0(xN , ψ)Tλ+ λTC0(xN )λ.(2.6)

Checking whether Γ(c1, c2, xN , ψ) ≤ 0 is therefore a quadratic feasibility problem
with quadratic constraints, which can be solved using the S-procedure in the manner
discussed in [6]. With only one quadratic constraint, the S-procedure is nonconserva-
tive [6], but a potential problem arises in our case because there are two constraints.
Fortunately, the two constraints are never simultaneously active, as shown in the
following theorem.

Theorem 2.3. Suppose (xN , ψ) ∈ Y(c2), and consider the maximization prob-
lem (2.6). If C0(xN ) 6< 0, then Γ(c1, c2, xN , ψ) = Γ(0, c2, xN , ψ). If C0(xN ) < 0, one
of the following applies for λ∗ = − 1

2C0(xN )−1b0(xN , ψ):
1. If V (xN , ψ, λ

∗) < c1, then Γ(c1, c2, xN , ψ) = Γ(c1,∞, xN , ψ).
2. If V (xN , ψ, λ

∗) > c2, then Γ(c1, c2, xN , ψ) = Γ(0, c2, xN , ψ).
3. Otherwise, Γ(c1, c2, xN , ψ) = a0(xN , ψ)− 1

4b0(xN , ψ)TC0(xN )−1b0(xN , ψ).
Proof. See Appendix A.
Consider next the case where W is polytopic; for example, W = {w | ‖w‖∞ ≤ 1}

belongs to this category. Since the expression in (2.5) is affine in w, robust stability
can be analyzed exactly using Theorem 2.3 with each of the extreme points of W
substituted for w. This approach gives us the value of

Γ(c1, c2, xN , ψ) = max
w∈V

max
c1≤V (xN ,ψ,λ)≤c2

[a0(xN , ψ) + s(xN , ψ)Tw]

+ [b0(xN , ψ) + T (xN )Tw]Tλ+ λTC0(xN )λ,
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Table 2.1
Computation times for stability analysis using a quadratic RCLF with a constant P matrix.

Operation Time (unbounded control) Time (bounded control)

Solve for LguV (x) = ψT O(Nk
c n

3) O(Nk+m
c n3)

Compute V (xN , ψ, λ) O(Nk
c n

4) O(Nk+m
c n4)

Check Γ(c1, c2, xN , ψ) ≤ 0 O(2lNk
c n

3) O(2lNk+m
c n3)

where V is the set of extreme points of W. Other classes of disturbance constraints
can be handled in the S-procedure framework, but we do not enumerate them here.

We now analyze the computational complexity of the stability analysis procedure
outlined in this section. To verify whether a desired stability margin is achieved over
a given level set, we must parameterize the set {x ∈ Rn | LguV (x) = ψT } and the
level set. We then evaluate robust stability over the resulting parameterized set at
various grid point values of xN (and ψ if there are control limitations). Approximate
computation times determined numerically for a system influenced by disturbances
contained in W = {w ∈ Rl | ‖w‖∞ ≤ 1} are listed in Table 2.1. The quantity Nc is
the number of grid points in Y(c2) over each dimension, so that the total number of
grid points is roughly Nk

c (or Nk+m
c if there are control limitations).

The complexity of this procedure should be compared with the complexity of
evaluating Lyapunov derivatives over a level set to determine the region of stability
for a general nonlinear system. This problem is discussed in [8, 9, 10, 14, 15, 20, 24,
26]. For an arbitrary nonlinear system, it is necessary to grid the level set over all
dimensions, so the computation times required to solve this problem to some desired
accuracy grow exponentially with the state dimension. In the procedure developed
here for the system (1.1), on the other hand, we grid only (xN , ψ) ∈ Y(c2) and evaluate
whether Γ(c1, c2, xN , ψ) ≤ 0 at each grid point. By Theorem 2.3, this reduces to an
LMI feasibility problem, and there are standard methods for solving this problem to
a desired level of accuracy with a computation time which is polynomial in the state
dimension [6, 23]. For example, the author implemented an ellipsoid algorithm [6] and
found the computation time to vary roughly as (n − k −m)3. Due to gridding over
Y(c2), the computation time is still exponential in dim(xN ) or in dim(xN ) + dim(u)
when control constraints are active. In other words, the computational complexity is
exponential only in the degree of nonlinearity in the problem.

2.2. Quadratic RCLF with state-dependent P matrix. In this section, we
fill in the details of the stability analysis procedure for the special case of an RCLF
and stability margin which are arbitrarily nonlinear in xN but quadratic in xL. In
other words, V (x) and W (x) have the form

V (x) = xTP (xN )x,(2.7)

W (x) = xTQ(xN )x,(2.8)

where P ∈ C1(Rk → Rn×n) and Q ∈ C0(Rk → Rn×n). We assume that V (x) and
W (x) are positive-definite and that the matrices P (xN ) and Q(xN ) are partitioned
in the same manner as for the P and Q matrices in section 2.1.

We begin by parameterizing sets of the form {x ∈ Rn | LguV (x) = ψT } for ψ ∈
Rm. We can simplify the treatment considerably by making the following assumption
on the system (1.1).

Assumption 2. For all xN ∈ Rk, gNu (xN ) = 0.
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For a system of the form (1.1) satisfying Assumption 2 and a Lyapunov function
of the form (2.7), we have

LguV (x) = 2xTNPNL(xN )gLu (xN ) + xTLY (xN ),

Y (xN )
.
= 2PLL(xN )gLu (xN ).

To simplify the algebra, we make the following assumption.
Assumption 3. For all xN ∈ Rk, rank gLu (xN ) = m ≤ n− k.
Note that Assumption 3 is equivalent to the condition that rank Y (xN ) = m for

all xN ∈ Rk. This assumption can be relaxed, if necessary, with some modifications to
the analysis which follows. Theorem 2.4 shows how the set {x ∈ Rn | LguV (x) = ψT }
can be parameterized by xN and a parameter λ ∈ Rn−k−m.

Theorem 2.4. Given a function V (x) of the form (2.7) and a vector ψ ∈ Rm,

{x ∈ Rn | LguV (x) = ψT } =

{[
xN

σ(xN , ψ)

]
, xN ∈ Rk, λ ∈ Rn−k−m

}
,

σ(xN , ψ)
.
= G(xN )λ− PLL(xN )−1PLN (xN )xN

+ PLL(xN )−1Y (xN )[Y (xN )TPLL(xN )−1Y (xN )]−1ψ,

for any matrix G(xN ) ∈ R(n−k)×(n−k−m) of full rank such that Y (xN )TG(xN ) ≡ 0.
Proof. The proof of Theorem 2.4 follows the same arguments as the proof of

Theorem 2.2.
With the parameterization of Theorem 2.4, we can express V (x) restricted to

{x ∈ Rn | LguV (x) = ψT } as follows:

V (xN , ψ, λ) = xTNR(xN )xN + ψT [Y (xN )TPLL(xN )−1Y (xN )]−1ψ

+ λTG(xN )TPLL(xN )G(xN )λ,

R(xN )
.
= PNN (xN )− PNL(xN )PLL(xN )−1PLN (xN ).

In order to grid Y(c2), we need bounds on the values of xN and ψ which can be
achieved on this set. The permissible values of xN are those satisfying xTNR(xN )xN ≤
c2. Similarly, the permissible values of LguV (x) = ψT corresponding to each such
value of xN are those contained in the ellipsoid described by

ψT [Y (xN )TPLL(xN )−1Y (xN )]−1ψ ≤ c2 − xTNR(xN )xN .

This is the set of values of LguV (x) over which we must grid in order to complete the
stability analysis. We should always use ψ = 0 as one of the grid points to ensure that
at least the condition for stability from Remark 1 for the case of unlimited control
(U = Rm) is satisfied.

By Theorem 2.4, we can parameterize the stability condition as follows for each
(xN , ψ) ∈ Y(c2):

Γ(xN , ψ, λ) = sup
w∈W

a0(xN , ψ) + b0(xN , ψ)Tλ+ λTC0(xN , ψ)λ

+ wT [s(xN , ψ) + T (xN , ψ)λ] +

k∑
i=1

[λTDi(xN )λ][hi(xN )Tλ+ vi(xN )Tw].(2.9)

The coefficients can be found by straightforward algebra. We can rearrange the ex-
pression for Γ(c1, c2, xN , ψ) when (xN , ψ) ∈ Y(c2) by introducing the following scaling
matrix:

K(xN , ψ)
.
=
√
c2 − V (xN , ψ, 0)

[
G(xN )TPLL(xN )G(xN )

]−1/2
,
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where M−1/2 is the positive-definite square root of M−1 for M = MT > 0. Then we
can replace λ by K(xN , ψ)λ and set b0 ← Kb0, C0 ← KC0K, T ← TK, Di ← KDiK,
and hi ← Khi to obtain

Γ(c1, c2, xN , ψ) = max
β(xN ,ψ)≤λTλ≤1

sup
w∈W

a0(xN , ψ) + b0(xN , ψ)Tλ+ λTC0(xN , ψ)λ

+ wT [s(xN , ψ) + T (xN , ψ)λ](2.10)

+

k∑
i=1

[λTDi(xN , ψ)λ][hi(xN , ψ)Tλ+ vi(xN )Tw],

where β(xN , ψ) = [c1 − V (xN , ψ, 0)]/[c2 − V (xN , ψ, 0)] ≤ 1. This alternative form
simplifies the development of a method to evaluate the stability condition.

Checking the condition Γ(c1, c2, xN , ψ) ≤ 0 is a nonconvex constrained feasibility
problem, which is known to be NP-hard [7, 22]. However, in practice, good upper
and lower bounds can be computed in polynomial time by transforming the problem
to a real µ analysis problem of the type developed in [31]. Let us first consider the
case of no disturbances (W = {0}). We approximate the parameterized stability
condition (2.10) by

Γ̃(0, c2, xN , ψ)
.
= max
‖λ‖∞≤1

φ0(λ),

φ0(λ)
.
= a0 + bT0 λ+ λTC0λ+

k∑
i=1

λThi(λ
TDiλ),(2.11)

where we have suppressed the dependence of the coefficients in (2.11) on (xN , ψ).
By assuming W = {0}, we guarantee that c1 = 0. This implies that β(xN , ψ) ≤ 0;
in other words, the constraint set in (2.10) is given by ‖λ‖2 ≤ 1. It is useful to the
development of the procedure which follows that this set is convex. We also replace the
condition ‖λ‖2 ≤ 1 by ‖λ‖∞ ≤ 1. Since ‖λ‖∞ ≤ ‖λ‖2, this approach is conservative
because Γ(0, c2, xN , ψ) ≤ Γ̃(0, c2, xN , ψ). Nevertheless, we obtain the following test
for stability, which is adapted from Proposition 2.1.

Proposition 2.5. IfW = {0}, then V (x) is an RCLF with stability margin W (x)
with controls in U over V −1[0, c2] if Γ̃(0, c2, xN , ψ) ≤ 0 for all (xN , ψ) ∈ Y(c2).

We now show how Proposition 2.5 can be converted to a real µ analysis problem.
Recall that in the real µ analysis problem, we are given a matrix M and an uncertainty
class ∆, and we seek to evaluate

µ(M,∆)
.
=


[

min
∆∈∆
{σ̄(∆) | det(I +M∆) = 0}

]−1

∃∆ ∈∆ | det(I +M∆) = 0,

0 otherwise.

In other words, µ(M,∆) is the maximum singular value of the smallest perturbation
∆ ∈ ∆ which destabilizes a linear fractional interconnection between M and ∆ by
the small gain theorem [31]. Our objective here is to transform Proposition 2.5 to a
problem of computing µ(M,∆) for some relevant M and ∆.

The following theorem is a general result on how to convert the problem of max-
imizing any rational function of a constrained variable to a real µ analysis problem.

Theorem 2.6 (see [7]). For any q ≥ 0 and any expression φ0(λ) which can be
expressed as a linear fractional transformation of λ and λT , there exists a matrix M
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Fig. 2.1. Block diagram representation of φ0(λ) from (2.11).
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N

Λ, . . . ,Λ

Fig. 2.2. Block diagram from Figure 2.1 with uncertainty representation.

and an uncertainty class ∆ such that

max
‖λ‖∞≤1

|φ0(λ)| < q ⇔ µ(M,∆) < q.(2.12)

A basic idea of how to compute M and ∆ is given in [7], where this is done
(in slightly more generality) for a quadratic φ0(λ). We seek to apply Theorem 2.6
when φ0(λ) has the form (2.11), where C0 = CT0 and Di = DT

i for all i = 1, . . . , k.
Following [7], the first step is to generate a block diagram representation for φ0(λ)
from (2.11) such that y = φ0(λ)d for d, y ∈ R. To this end, we define e

.
= [1, . . . , 1]T

with dim(e) = dim(λ) and Λ
.
= diag(λ), so that λ = Λe. Then φ0(λ) is represented

in block diagram form as in Figure 2.1.
Note that the Λ block is repeated k+2 times in Figure 2.1. It is useful to transform

the block diagram to the alternative form shown in Figure 2.2, where

N =



0 · · · 0 D1 0 0
...

. . .
...

...
...

...
0 · · · 0 Dk 0 0
0 · · · 0 0 0 e

h1e
T · · · hke

T C0 0 0

0 · · · 0 bT0 eT a0


, ∆ =



Λ
.. .

Λ
Λ

Λ
δ


.
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Note from (2.12) and the discussion in [7] that the condition |φ0(λ)| < q is equiv-
alent to µ(M,∆) < q for any q > 0, where M is obtained by multiplying all but the
last row of N by q.

At this stage we notice that |φ0(λ)| is used in Theorem 2.6, but what we are
really interested in is the maximum of φ0(λ) itself over ‖λ‖∞ ≤ 1. Fortunately, this
distinction is not restrictive. Indeed, it is straightforward to find a crude lower bound
L such that φ0(λ) ≥ L for all λ satisfying ‖λ‖∞ ≤ 1. Given such a lower bound, we
can define φ̃0(λ)

.
= φ0(λ)− L, and we have |φ̃0(λ)| = φ̃0(λ) whenever ‖λ‖∞ ≤ 1. By

constructing M̃ based on φ̃0(λ) rather than φ0(λ), we obtain the following necessary
and sufficient condition for a given bound on Γ̃(0, c2, xN , ψ) to hold:

µ(M̃,∆) < q ⇔ Γ̃(0, c2, xN , ψ) < q + L.

In other words, the condition in Proposition 2.5 holds if µ(M̃,∆) < −L. Therefore,
we can evaluate the stability condition using the standard real µ analysis procedure
from [32].

Consider next the case where W = {w ∈ Rl | ‖w‖∞ ≤ 1}. Since the expression
in (2.10) is affine in w, robust stability can be analyzed exactly by solving the non-
convex feasibility problem with each of the extreme points of W substituted for w.
Alternatively, we could add a block W

.
= diag(w) to Figures 2.1 and 2.2 so that

y = φ0(λ)d, where

Γ̃(0, c2, xN , ψ)
.
= max
‖λ‖∞≤1

max
‖w‖∞≤1

φ0(λ),

φ0(λ)
.
= a0 + bT0 λ+ λTC0λ+ wT [s+ Tλ] +

k∑
i=1

(λTDiλ)(hTi λ+ vTi w).

Note, however, that we can only analyze stability in the special case c1 = 0 using this
procedure because the level set must be convex. In general, we expect the stability
condition to be violated over the level set V −1[0, c2] unless a matching condition on
gw(xN ) and gu(xN ) holds.

We now analyze the computational complexity of the stability analysis procedure
outlined in this section. The parameterizations of the set {x ∈ Rn | LguV (x) = ψT }
and of the level set do not differ significantly from those used in section 2.1. Robust
stability analysis can be accomplished either by general techniques for solving non-
convex constrained feasibility problems or by conversion to a real µ analysis problem.
The nonconvex solution procedure is NP-hard [7, 22], but the solution (if it can be
found) is exact. Alternatively, approximate bounds on Γ̃(0, c2, xN , ψ) can be found
using standard techniques for real µ analysis. The computational complexity of this
approximation is analyzed in [32]. Approximate computation times for a system influ-
enced by disturbances contained inW = {w ∈ Rl | ‖w‖∞ ≤ 1} are listed in Table 2.2.
The quantity Nc is the number of grid points in Y(c2) over each dimension, so that the
total number of grid points is roughly Nk

c (or Nk+m
c if there are control limitations).

The quantity N∆
.
= (n − k −m)(k + 2) + l + 1 is the dimension of the perturbation

block ∆. The nonconvex solution procedure is at least as complex as gridding over
the entire state space to evaluate the Lyapunov derivative.

3. Optimization over the RCLF. Now we turn our attention to the problem
of constructing an RCLF such that the volume of the level set for guaranteed stability
is maximized. This problem formulation is inspired by [10], in which a quadratic
Lyapunov function is used to find the stability region of maximum volume for an
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Table 2.2
Computation times for stability analysis using a quadratic RCLF with a state-dependent P

matrix.

Operation Time (unbounded control) Time (bounded control)

Solve for LguV (x) = ψT O(Nk
c n

3) O(Nk+m
c n3)

Compute V (xN , ψ, λ) O(Nk
c n

4) O(Nk+m
c n4)

Nonconvex solution O(2lNn
c ) O(2lNn

c )

µ upper bound O(Nk
c N

3
∆) O(Nk+m

c N3
∆)

arbitrary nonlinear autonomous system of the form ẋ = f(x). For this problem, we
do not wish to impose a particular stability margin, so we consider the following
modified definition for a function to be an RCLF.

Definition 3.1. Consider a subset W ⊆ Rl, a closed subset U ⊆ Rm, and
real numbers c2 > c1 > 0. A proper, positive-definite C1 function V (x) is an RCLF
with controls in U over V −1[c1, c2] for the system (1.2) if there exists a control law
µ : Rn → U such that

sup
x∈V −1[c1,c2]

sup
w∈W

LfV (x) + LgwV (x)w + LguV (x)µ(x) < 0.

Equivalently,

sup
x∈V −1[c1,c2]

inf
u∈U

sup
w∈W

LfV (x) + LgwV (x)w + LguV (x)u < 0.

Remark 3. If U = Rm, the condition in Definition 3.1 is equivalent to

sup
x∈V −1[c1,c2]∩ker(LguV )

sup
w∈W

LfV (x) + LgwV (x)w < 0.

Note that the analysis of stability over a level set in this scenario is slightly differ-
ent from the procedure used in section 2 because we require the Lyapunov derivative
to be strictly negative. In other words, if we define

Γ(xN , ψ, λ)
.
= sup
w∈W

LfV (x) + LgwV (x)w +

[
inf
u∈U

ψTu

]
,

Γ(c1, c2, xN , ψ)
.
= max
λ∈Z(c1,c2,xN ,ψ)

Γ(xN , ψ, λ),

then a condition for V (x) to be an RCLF is given by Proposition 3.2.
Proposition 3.2. V (x) is an RCLF with controls in U over V −1[c1, c2] if and

only if Γ(c1, c2, xN , ψ) < 0 for all (xN , ψ) ∈ Y(c2).
Since we are optimizing over V (x) at this point, we do not need to iterate over the

level values to determine the largest region of stability. Therefore, we shall henceforth
consider the problem of finding the function V (x), which is an RCLF with controls in
U over V −1[γ, 1] for some γ > 0 such that the volume of the set V −1[0, 1] is maximized.
The appropriate value of γ depends on the RCLF. However, if we assume that there
exists some nominal V0(x) which is an RCLF with controls in U over V −1

0 [c1, c2], then
we could fix γ to be the largest value satisfying V −1[0, γ] ⊆ V −1

0 [0, c2]. In this way,
we can find a control law which renders the system RUAS(X ,Ω) with X = V −1[0, 1]
and Ω = V −1

0 [0, c1] by the method in [19]. In other words, the inner level set over
which stability is guaranteed is independent of the particular RCLF used. Therefore,
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a direct comparison of the volumes of sets of the form V −1[0, 1] for different RCLFs
is a meaningful comparison of the size of the stability region.

In sections 3.1–3.2, we describe the optimization procedures which might be ap-
plied to the two Lyapunov function classes of section 2 and evaluate the computational
complexity of the procedure in each case.

3.1. Quadratic RCLF with constant P matrix. Our objective is to find a
quadratic function V (x) of the form (2.2) which is an RCLF with controls in U over
V −1[γ, 1] and which maximizes the volume of the level set V −1[0, 1]. Following [10],
we can pose the following optimization problem.

Problem 2. Suppose that V0(x)
.
= xTP0x is an RCLF with controls in U over

V −1
0 [c1, c2]. Determine P = PT and γ from the following optimization problem:

minimize det(P )

subject to γ > 0,

P/γ ≥ P0/c2,

Γ(γ, 1, xN , ψ) < 0 for all (xN , ψ) ∈ Y(1).

Problem 2 is a nonlinear, nonconvex optimization problem in the variables P
and γ. From [6], we note that by casting the problem in terms of P−1 instead of P ,
we can rewrite the objective using the convex function log det(P−1). However, the
stability condition Γ(γ, 1, xN , ψ) < 0 is nonconvex in both P and P−1, and there is
no obvious way to reformulate Problem 2 to be convex. Consequently, Problem 2 is
NP-hard. In particular, the computational complexity of this problem is comparable
to the complexity of gridding over the set of symmetric positive-definite matrices P .
Note that the largest value of γ which satisfies the constraint P/γ ≥ P0/c2 can be
computed exactly by γ = c2λmin(PP−1

0 ).
An approximate solution to Problem 2 is developed in [11]. If the nonlinear terms

in the dynamics of (1.1) are rational functions of xN , then the system can be written
in the following linear fractional representation:

ẋ = Ax+Bww +Buu+Bpp,

q = Cqx+Dqww +Dquu+Dqpp,

p = ∆(x)q,

∆(xN ) = diag(x1Ir1 , . . . , xkIrk).

In other words, the nonlinear dynamics of the system are written as a linear fractional
transformation (LFT) between a nominal linear time-invariant system and a pertur-
bation block containing (possibly repeated) values of the “nonlinear” states xN . Note

that dim(q) = dim(p) =
∑k
i=1 ri, which is the size of the perturbation block required

to represent the nonlinear terms in the dynamics. This quantity could possibly be
much larger than dim(xN ), depending on the types of nonlinearities present.

The control design method proposed in [11] could therefore be used to obtain
an RCLF V (x) = xTPx. Since the problem formulation in [11] is an LMI convex
optimization problem, we can use this procedure to try to optimize any convex func-
tion of the matrix P subject to the constraint of stability over a level set. However,
there are two important sources of conservatism in this procedure. The first is that a
linear controller structure is assumed, and the solution to the optimization problem
under this assumption may not yield the optimal Lyapunov function when nonlinear
control laws are allowed. The conservatism due to this assumption could probably
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Table 3.1
Computation times for optimization using a quadratic RCLF with a constant P matrix.

Operation Time (unbounded control) Time (bounded control)

Nonconvex solution O(2lNn
c ) O(2lNn

c )

LFT solution O(Nk
c [l + r]3) O(Nk+m

c [l + r]3)

be reduced by assuming an LFT structure for the control as well as the plant in a
manner analogous to the incorporation of time-varying parameters in the control for
a linear parameter-varying (LPV) system in [25].

The second source of conservatism is probably more important. The stability
constraint in [11] is derived from the small gain theorem from robust control and
actually requires that the following system is stable:

ẋ = Ax+Bww +Buu+Bpp,

q = Cqx+Dqww +Dquu+Dqpp,

p = ∆(t)q.

In this alternative system description, the perturbation block is allowed to be any
matrix function ∆(t) ∈ ∆ for some constraint set ∆ representing an upper bound
on the allowable magnitude of the nonlinear states over the appropriate level set of
V (x). Treating nonlinearities as disturbances and applying robust control techniques
is known to be an overly conservative approach to nonlinear control [1]. Consequently,
there is no guarantee that the matrix P obtained using this procedure solves the
original optimization problem. Nevertheless, this procedure is an alternative which
may yield good results in some cases.

We now analyze the computational complexity of the optimization procedure
described in this section. The optimization can be accomplished either by general
nonconvex optimization techniques or by solving an equivalent real µ analysis problem
applied to the LFT representation. The general nonconvex optimization problem is
NP-hard [22], but the solution (if it can be found) is exact. The number of variables
in this problem is equal to n(n+1)/2, the dimension of the set of symmetric matrices.
Alternatively, approximate bounds on Γ(γ, 1, xN , ψ) can be found using standard
techniques for real µ analysis [32]. Approximate computation times for a system
influenced by disturbances contained in W = {w ∈ Rl | ‖w‖∞ ≤ 1} are listed in
Table 3.1. Note that the perturbation block in the robust stability problem with an
LFT representation for the nonlinear terms has dimension l + r, where r =

∑k
i=1 ri.

An alternative to the LFT representation would be to regard the system (1.1)
as a quasi-LPV system and apply the procedure from [4] for LPV systems. In this
procedure, an RCLF is computed by solving a family of LMI convex optimization
problems parameterized over the “nonlinear” states xN . Here again the computational
complexity is exponential in k (exponential in k+m in the bounded control case) and
polynomial in the remaining state dimension. Note, however, that LPV systems are
slightly different from the system (1.1): in (1.1) the dynamics of xN are known and
xN is part of the state vector to be regulated to a desired equilibrium point.

3.2. Quadratic RCLF with state-dependent P matrix. The problem of
optimizing over a function V (x) of the form (2.7) is substantially more complicated
than the problem in section 3.1. The optimization problem under consideration here
is the following.
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Fig. 3.1. Cart with inverted pendulum and spring.

Problem 3. Suppose that V0(x)
.
= xTP0(xN )x is an RCLF with controls in U

over V −1
0 [c1, c2]. Determine P (xN ) = PT (xN ) and γ from the following optimization

problem:

maximize vol V −1[0, 1]

subject to γ > 0,

V −1[0, γ] ⊆ V −1
0 [0, c1],

Γ(γ, 1, xN , ψ) < 0 for all (xN , ψ) ∈ Y(1).

To develop a tractable approximate solution to Problem 3, we would like to view
the problem as an optimization over P (xN ), which is analogous to Problem 2 but
parameterized by the xN states. We can write the objective and the second constraint
in Problem 3 in terms of P (xN ), although the formulas may be complicated. In the
stability constraint, however, the derivatives of P (xN ) with the xN states appear in
Γ(γ, 1, xN , ψ). Therefore, we cannot simply evaluate this constraint at a given value
of xN independent of the others; we really need to optimize over the whole function
P (xN ). Consequently, we cannot view Problem 3 as a parameterized collection of
subproblems for fixed xN as we would like. We do not currently have a procedure for
solving Problem 3 even approximately which is not NP-hard.

4. Numerical example. In the system shown in Figure 3.1, a pole is hinged on
a cart, and a spring joins the top of the pole to a fixed point on the wall behind the
cart. The control is a force on the cart, which is limited by a saturation constraint.
We want a control design to drive the system to the origin from an initial condition.
A simplified model of the dynamics has the form[

θ̇
ẋL

]
= f(θ) +A(θ)xL + gu(θ)u,
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where xN = θ and xL = [θ̇;x; ẋ]. After designing an RCLF V (x) and stability margin
W (x), we analyze stability over V −1[0, 1] under the saturation constraint using the
method described in section 2.1. A comparison of the computational complexity
of this procedure with that of a “brute-force” gridding procedure for different grid
densities Nc is shown in Figure 4.1. This example shows the computational complexity
increasing as a function of Nc with a higher exponent for the case of the brute-force
grid than for the method of section 2.1. Specifically, for large Nc the complexity
increases as N4

c for the brute-force grid and as N2
c for the method of section 2.1, as

expected.

5. Conclusions. The most serious hindrance to progress on the nonlinear con-
trol problem is the inherent complexity of the class of arbitrary nonlinear systems.
Therefore, it is important to identify a class of systems which is sufficiently restricted
so that computations can be made tractable, yet which is general enough to apply to
a wide variety of real control systems. We have shown some ways in which systems
of the form (1.1) form such a class. When the dynamics are nonlinear in only a fixed
number of variables xN , the computation time required for stability analysis given
a quadratic RCLF is exponential only in dim(xN ) and polynomial in the dimension
of the remaining states. For an RCLF of the form V (x) = xTP (xN )x, the stability
analysis problem is NP-hard. In practice, however, good bounds on the Lyapunov
derivative can be found by converting the problem to a real µ analysis problem. This
results in an approximate solution procedure with a computational complexity which
is exponential in dim(xN ) and polynomial in the dimension of the remaining states.

Similarly, the problem of optimizing over RCLFs to get the largest possible stabil-
ity region is NP-hard. We can get a computationally tractable, approximate solution
procedure by finding an LFT representation for the system dynamics. The computa-
tional complexity of this problem is exponential only in dim(xN ). The computation
time also depends polynomially on the dimension of the perturbation block needed to
represent the nonlinear dynamics. Since this procedure relies on bounding the non-
linear terms in the dynamics and applying robust control techniques, we expect this
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procedure to be overly conservative. We do not obtain a computationally tractable
optimization procedure for RCLFs of the form V (x) = xTP (xN )x.

Appendix A. Proof of Theorem 2.3. Suppose that C0(xN ) 6< 0. It is
clear that Γ(c1, c2, xN , ψ) ≤ Γ(0, c2, xN , ψ). Let λ∗ ∈ Z(0, c2, xN , ψ) be such that
Γ(xN , ψ, λ

∗) = Γ(0, c2, xN , ψ). By the S-procedure, this quantity is equal to the
smallest r such that τ ≥ 0 exists to satisfy the following for all values of λ:

−Γ(xN , ψ, λ) + r + τ [V (xN , ψ, λ)− c2] ≥ 0.(A.1)

Therefore, τ [V (xN , ψ, λ
∗) − c2] ≥ 0. On the other hand, the constraint and τ ≥ 0

combine to give τ [V (xN , ψ, λ
∗) − c2] ≤ 0. Therefore, τ [V (xN , ψ, λ

∗) − c2] = 0.
Since (A.1) must hold for all λ, we require C0(xN ) − τC1(xN ) ≤ 0 for C1(xN ) =
G(xN )TPLLG(xN ) > 0. Hence, if C0(xN ) 6≤ 0, then we require τ > 0, which implies
V (xN , ψ, λ

∗) = c2. If C0(xN ) ≤ 0 but C0(xN ) 6< 0, then there exists µ 6= 0 such
that C0(xN )µ = 0. We want to show that for any λ satisfying V (xN , ψ, λ) < c2,
there exists β ∈ R such that Γ(xN , ψ, λ+ βµ) ≥ Γ(xN , ψ, λ) but V (xN , ψ, λ+ βµ) =
c2, and this will complete the proof. Now V (xN , ψ, λ + βµ) = [µTC1(xN )µ]β2 +
[2µTC1(xN )λ]β + V (xN , ψ, λ). Therefore, the equation V (xN , ψ, λ + βµ) = c2 is
quadratic in β, and if V (xN , ψ, λ) < c2, there are two real roots: one positive
and one negative. Since Γ(xN , ψ, λ + βµ) = Γ(xN , ψ, λ) + βb0(xN , ψ)Tµ, and at
least one of the roots has the property βb0(xN , ψ)Tµ ≥ 0, we get Γ(xN , ψ, λ +
βµ) ≥ Γ(xN , ψ, λ) and V (xN , ψ, λ + βµ) = c2. Therefore, there exists λ∗ with
the property V (xN , ψ, λ

∗) = c2 and Γ(xN , ψ, λ
∗) = Γ(0, c2, xN , ψ), and we conclude

that Γ(c1, c2, xN , ψ) = Γ(0, c2, xN , ψ). Finally, suppose that C0(xN ) < 0. Then
Γ(xN , ψ, λ) is concave and is maximized for λ∗ = − 1

2C0(xN )−1b0(xN , ψ). If λ∗ 6∈
Z(c1, c2, xN , ψ), then Γ(xN , ψ, λ) is maximized on the boundary of Z(c1, c2, xN , ψ)
closest to λ∗. This proves the first two statements. Otherwise, Γ(c1, c2, xN , ψ) =
Γ(xN , ψ, λ

∗) = a0(xN , ψ) − 1
4b0(xN , ψ)TC0(xN )−1b0(xN , ψ), which proves the third

statement.
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In a previous paper [1] certain arguments in the proofs of Proposition 1, Propo-
sition 4, and subsection 4.4 are erroneous. These errors are highly regretted by this
author and are corrected as follows. These corrections, however, do not affect the
main results of the paper.

1. In Definition 1 (of a strictly causal matrix) the second sentence should be
corrected as “A causal matrix M is called strictly causal if all entries of M are in J .”

2. In the sufficiency part of the proof of Proposition 1, the two sentences starting
in line 3 of the paragraph “Since It(N) ⊆ J , using . . . units of R−1A,” should be
replaced by the following:

“From NY = (I − X)d and the assumption that all entries of P are in J (and
hence that of N , since d is nonzerodivisor), it follows that all entries of I −X are in
J . Hence detX = det(I − (I −X)) is of the form 1 + j where j is in J . This implies
that detX is a unit of R−1A as J is the Jacobson’s radical.”

3. The proof of the necessity part of Proposition 4 is erroneous. Since this result
is not needed further in the paper. We replace it with the following version stating
only the sufficient condition.

Proposition 4. A strictly causal P = Nd−1 in (F)n is stabilizable if

a+ b = A.

The proof should be read from the third paragraph of the existing proof after
deleting the line “Second, the proof is by sufficiency.”

4. The arguments made in subsection 4.4 are erroneous. This subsection should
be replaced by the following:

“4.4. Relaxing strict causality. We now show that for integral domains the
strict causality of P can be replaced by a more concrete and weaker condition (than
strict causality), which makes Proposition 1 stronger. (Recall that the strict causality
of P is required in the necessity part of the proof of Proposition 1. This condition is
as follows.)

Now let A be an integral domain and P satisfy the condition that the equation
det(I − PY ) = 0 has no solution Y over A.

Since the solutions of equation (1) are invariant with respect to the choice of
fractions of P , choose a pair of fractions N and d 6= 0. Now, as X = I − PY is
equivalent to NY = (I − X)d, it follows from the above condition that if X is a
solution of (1) then detX 6= 0. Thus every solution of (1), satisfies this condition.
Note further that this condition is not necessary for existence of solutions X with

∗Received by the editors April 11, 1997; accepted for publication (in revised form) November 4,
1997; published electronically September 3, 1998.
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nonzero determinants. For instance, P of example 2 does not satisfy this condition
but is still stabilized by the controller C = [0 X2

1 +X2
2 +X2

3 ], as can be easily checked.”
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item 2 above.
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